WO2023171653A1 - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
WO2023171653A1
WO2023171653A1 PCT/JP2023/008513 JP2023008513W WO2023171653A1 WO 2023171653 A1 WO2023171653 A1 WO 2023171653A1 JP 2023008513 W JP2023008513 W JP 2023008513W WO 2023171653 A1 WO2023171653 A1 WO 2023171653A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter side
inner diameter
outer diameter
protrusion
cylinder
Prior art date
Application number
PCT/JP2023/008513
Other languages
French (fr)
Japanese (ja)
Inventor
淳 斎藤
幸一 加藤
Original Assignee
株式会社パイオラックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パイオラックス filed Critical 株式会社パイオラックス
Publication of WO2023171653A1 publication Critical patent/WO2023171653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip

Definitions

  • the present invention relates to a damper device used, for example, for braking the opening and closing operations of a glove box of an automobile.
  • a damper device is sometimes used in a car glove box to suppress the lid from opening suddenly and allow the lid to open slowly.
  • Patent Document 1 describes a housing, a piston rod that slides within the housing, a piston head provided at the front end of the piston rod, and an annular groove formed on the outer periphery of the piston head.
  • An air damper assembly is described having a lip seal attached to the air damper assembly.
  • the lip seal includes a base, an inner lip that protrudes from the inner edge of one axial end of the base, contacts the bottom of the annular groove, protrudes from the outer edge of the one axial end of the base, and contacts the inside of the housing. It consists of an outer lip that comes into contact with the circumferential surface, and has a substantially U-shaped cross section. Further, the outer lip projects obliquely outward with respect to the inner lip, and normally, the tip of the outer surface of the outer lip partially abuts against the inner circumferential surface of the housing.
  • an object of the present invention is to provide a damper device that can reduce the operating force of the piston when the piston moves in the return direction opposite to the damper braking direction.
  • the present invention provides a damper device that is attached between a pair of members that move closer to each other and applies a braking force when the pair of members move closer to each other or move away from each other, the damper device having an opening at one end.
  • a cylinder provided with an annular groove; a rod movably inserted into the cylinder through the opening; a piston connected to the rod and having an annular groove formed on its outer periphery; and a seal ring that is pressed against the inner circumferential surface of the cylinder, and the seal ring has an annular base disposed in the annular groove and at least two seal rings protruding from the inner diameter side surface of the base.
  • the outer diameter side protrusion is a surface of the base on the outer diameter side, and the top of the outer diameter side protrusion is placed at a position corresponding to between the tops of the inner diameter side protrusions adjacent to each other in the axial direction. Since the seal ring protrudes in an annular shape so that , the operating force of the piston can be reduced.
  • FIG. 1 is an exploded perspective view showing one embodiment of a damper device according to the present invention. It is a perspective view of the same damper device. It is an enlarged perspective view of the piston which constitutes the same damper device.
  • FIG. 2 is an enlarged perspective view of a seal ring that constitutes the damper device.
  • 5 is a cross-sectional view taken along the line of arrow BB in FIG. 4.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, with the rod pulled out a predetermined length.
  • FIG. FIG. 3 is an enlarged cross-sectional explanatory view of a main part of the damper device when the piston moves in the damper braking direction.
  • FIG. 7 is an explanatory enlarged cross-sectional view of a main part of the damper device when the piston moves in the return direction opposite to the damper braking direction.
  • the damper device 10 shown in FIG. 1 is attached to a pair of members that move close to each other and separate from each other, and applies braking force when the pair of members approach or move away from each other. It can be used for braking a glove box, a lid, etc., which is attached to the opening of the provided storage part so as to be openable and closable.
  • one member is a fixed body such as an instrument panel accommodating part
  • the other member is a glove box, a lid, etc. that is attached to the opening of the fixed body so that it can be opened and closed. This will be explained as an opening/closing body.
  • the damper device 10 of this embodiment includes a cylinder 20 having an opening 23 at one end, a rod 30 movably inserted into the cylinder 20, and a cylinder 20 connected to the rod 30. , a piston 40 having an annular groove 45 formed on its outer periphery, a seal ring 50 attached to the annular groove 45 of the piston 40, and a detachment prevention cap 60 attached to the opening 23 at one end of the cylinder 20. It mainly consists of Further, as shown in FIG. 6, when the piston 40 is inserted into the cylinder 20, the seal ring 50 is brought into pressure contact with the inner peripheral surface of the cylinder 20. A first chamber V1 (air chamber) is formed on the side in the insertion direction of the rod 30, and a second chamber V2 is formed on the side of the opening 23 of the cylinder 20.
  • a first chamber V1 air chamber
  • V2 is formed on the side of the opening 23 of the cylinder 20.
  • one end or “one end” means one end or one end of the damper device 10 on the damper braking direction side
  • the other end or “other end” means the damper It means the other end or other end on the return direction side opposite to the braking direction.
  • the "damper braking direction” in this embodiment means that the piston 40 moves away from the end wall 25 of the cylinder 20 (see FIG. 6), and the amount of the rod 30 pulled out from the opening 23 of the cylinder 20 increases. (See arrow F1 in FIG. 6).
  • the "return direction opposite to the damper braking direction" means that the piston 40 is close to the end wall 25 of the cylinder 20 and inside the cylinder 20. This means the direction in which the amount of pushing of the rod 30 increases (see arrow F2 in FIG. 6).
  • the wall portion 21 of the cylinder 20 has an annular cross section perpendicular to its axial direction having a long axis and a short axis, and is wide on the long axis side and narrow on the short axis side. It has a thin cylindrical shape (a cylindrical shape with a thin box shape). More specifically, this wall portion 21 includes a pair of long-axis wall portions 21a, 21a that extend linearly along the long-axis direction and are arranged parallel to each other, and these long-axis wall portions. It has a pair of short axis wall portions 21b, 21b which connect both ends of the 21a and 21a and are curved in an arc shape.
  • One end of the wall 21 in the axial direction is open, and an opening 23 is provided. Further, locking holes 23a, 23a are formed in the long axis wall portions 21a, 21a, which are disposed at the periphery of the opening 23 and are opposed to each other, respectively. Further, as shown in FIG. 6, an end wall 25 is disposed at the other end of the wall 21 in the axial direction (the end wall 25 is disposed on the opposite side of the wall 21 from the opening 23). The other end of the wall portion 21 is closed.
  • the detachment prevention cap 60 has a rod insertion hole 61 formed in its center to allow insertion of the shaft portion 31 of the rod 30 while restricting its rotation. It can be inserted into the cylinder 20 with rotation restricted. Further, a plurality of locking protrusions 62 are protruded from predetermined locations on the outer periphery of the detachment prevention cap 60, and each locking protrusion 62 can be respectively locked in each corresponding locking hole 23a of the cylinder 20. (See FIG. 2), and a detachment prevention cap 60 is attached to the opening 23 of the cylinder 20 (see FIG. 6). The detachment prevention cap 60 comes into contact with the piston 40 when the rod 30 is pulled out to the maximum extent from the opening 23 of the cylinder 20, and prevents the rod 30 and the piston 40 from detaching from the cylinder 20.
  • the rod 30 of this embodiment has a prismatic shaft portion 31 that extends in one direction.
  • a connecting piece 33 having a connecting hole 33a is provided at one end in the longitudinal direction of this shaft portion 31.
  • a connecting shaft (not shown) of the other member mentioned above is inserted into the connecting hole 33a, so that the rod 30 is rotatably connected to the other member.
  • the piston 40 of this embodiment is connected to the other end of the rod 30 in the longitudinal direction, and has an annular groove 45 formed on its outer periphery. It is integrally formed.
  • this piston 40 has a first side wall portion 41 and a second side wall portion 42 that are arranged opposite to each other so as to be parallel to each other, and a connection that connects the both side wall portions 41 and 42 to each other. It consists of a wall part 43.
  • Each of the side wall portions 41 and 42 has a shape that matches the inner peripheral shape of the wall portion 21 of the cylinder 20, that is, both side surfaces in the long axis direction are parallel to each other, and both side surfaces in the short axis direction are arcuate.
  • the connecting wall portion 43 has a similar shape in which the outer circumference thereof is smaller than the outer circumferences of the both side wall portions 41 and 42.
  • the surface of the first side wall portion 41 facing the second side wall portion 42 is referred to as the inner surface 41a of the first side wall portion 41
  • the surface of the second side wall portion 42 facing the first side wall portion 41 is referred to as the inner surface 41a of the first side wall portion 41.
  • a space surrounded by the pair of side walls 41 and 42 and the connecting wall 43 forms an annular groove 45. Further, the outer peripheral surface of the connecting wall portion 43 forms the bottom surface 45a of the annular groove 45.
  • the bottom surface 45a is formed parallel to the axial direction of the piston 40 (the direction along the axis C of the piston 40).
  • the axial proximal end portion of the rod 30 is connected to the outer surface (the surface opposite to the surface facing the second side wall portion 42) of the first side wall portion 41 disposed on one end side in the longitudinal direction of the piston 40.
  • the piston 40 and the rod 30 are integrated.
  • a plurality of spaces K defined by a partition wall 46 are provided inside the side walls 41, 42 and the connecting wall 43, and each space K has a The second side wall portion 42 side is open.
  • the first side wall part 41 here, at one end side in the axial direction of the first side wall part 41 and at the center position in the width direction, it communicates with a predetermined space K.
  • An orifice 47 in the form of a small diameter round hole is formed. This orifice 47 allows the first chamber V1 and the second chamber V2 in the cylinder 20 to communicate with each other via the space K. Note that the damper braking force is adjusted by the flow resistance of the air passing through the orifice 47.
  • a pair of notch grooves 48, 48 formed by cutting out the first side wall portion 41 and the connecting wall portion 43 are provided at positions point symmetrical with respect to the axis C of the piston 40. formed at depth.
  • This notch groove 48 forms an exhaust flow path that exhausts the air in the first chamber V1 to the second chamber V2 side when the piston 40 moves in the return direction F2 (this will be described later).
  • the seal ring 50 is made of an elastic material such as rubber or an elastomer, and is flexible and deformable. , at least two inner diameter protrusions 53, 55 protruding from the outer diameter surface (hereinafter also simply referred to as the "outer diameter surface 51b") of the base 51; It has an outer diameter side protrusion 57 that presses against the inner circumferential surface of the cylinder 20. Note that the inner diameter side surface and the outer diameter side surface of the base portion 51 can also be referred to as an "inner circumferential surface” and an “outer circumferential surface", respectively.
  • the base portion 51 has an annular shape that matches the outer peripheral shape of the annular groove 45 of the piston 40. Further, the axial length W1 of the base 51, that is, the length between one end surface 51c and the other end surface 51d of the base 51 in the axial direction, is the axial width of the annular groove 45 (the inner surface 41a of the first side wall portion 41 and the The seal ring 50 is formed to be smaller than the length of the inner surface 42a of the second side wall portion 42, thereby allowing the seal ring 50 to move in the axial direction within the annular groove 45.
  • the inner circumferential surface of the cylinder 20 in this embodiment means the inner circumferential surface of the wall portion 21 that constitutes the cylinder 20, and this also applies in the following description.
  • the inner protrusions are two protruding parts of the base 51 that protrude from both ends of the seal ring 50 in the axial direction. It consists of a first inner diameter protrusion 53 provided therein and a second inner diameter protrusion 55 protruded from the other end in the axial direction.
  • "axial direction” means the axial direction of the seal ring unless otherwise specified.
  • the protrusions 53, 55, and 57 protruding from the inner diameter surface 51a and the outer diameter surface 51b of the base 51 all extend radially outward from the inner circumferential surface and the outer circumferential surface of the base 51. , it has an annular shape that continues in the circumferential direction, that is, it is an annular protrusion that is not interrupted midway in the circumferential direction of the base portion 51 .
  • the first inner diameter side protrusion 53 has a top portion 53a that most protrudes from the inner diameter surface 51a of the base portion 51, an outer surface 53b located on the outer side in the axial direction, and an inner surface 53c located on the inner side in the axial direction. There is.
  • the inner surface 53c is a surface facing the second inner diameter protrusion 55 adjacent to the axial direction, and the outer surface 53b is opposite to the surface facing the second inner diameter protrusion 55 (inner surface 53c). It is on the side.
  • the second inner diameter protrusion 55 has a top portion 55a that most protrudes from the inner diameter surface 51a of the base portion 51, an outer surface 55b located on the outer side in the axial direction, and an inner surface 55c located on the inner side in the axial direction. are doing.
  • the inner surface 55c is a surface facing the first inner diameter protrusion 53 adjacent to the axial direction, and the outer surface 55b is opposite to the surface facing the first inner diameter protrusion 53 (inner surface 55c). It is on the side.
  • the outer surface 55b of the inner diameter side protrusion (second inner diameter side protrusion 55) located closest to the return direction F2 side opposite to the damper braking direction F1 is the inner diameter surface of the base portion 51. As it moves away from 51a, it has a shape that inclines toward the other axially adjacent inner diameter side protrusions.
  • the outer surface 55b of the second inner diameter side protrusion 55 which is located closest to the damper return direction F2, moves away from the inner diameter surface 51a of the base 51. It forms an inclined surface inclined toward the first inner diameter side protrusion 53 adjacent in the axial direction.
  • the second inner diameter side protrusion adjacent in the axial direction It forms an inclined surface that slopes toward the portion 55.
  • the outer surface 53b of the first inner diameter side protrusion 53 is a continuous surface (flush) with no step with respect to one end surface 51c of the base 51 in the axial direction, and similarly, the outer surface 53b of the first inner diameter side protrusion 53 is a continuous surface (flush) with no step.
  • the outer surface 55b of the protrusion 55 is also continuous with the other end surface 51d of the base 51 in the axial direction without any step.
  • the top portions 53a and 55a of the inner diameter side protrusions 53 and 55 have rounded shapes, respectively, so as to form arcuate curved surfaces.
  • the inner surface 53c of the first inner diameter protrusion 53 and the inner surface 55c of the second inner diameter protrusion 55 are arranged so that they are substantially parallel to each other (substantially perpendicular to the axial direction of the seal ring 50). ), are placed opposite each other.
  • the first inner diameter side protrusion 53 and the second inner diameter side protrusion 55 have a shape that is line symmetrical with respect to the axial center line S (described later) of the seal ring 50, and the inner diameter side protrusion 51a of the base portion 51 The protrusion height from the top is also the same.
  • the inner diameter protrusions 53 and 55 in this embodiment generally have one side substantially perpendicular and the other side gradually becoming wider from the tops 53a and 55a toward the inner diameter surface 51a of the base 51. It has a cross-sectional shape in the shape of a right triangular mountain.
  • the boundary portion (corner portion) between the inner surface 53c of the first inner diameter side protrusion 53 and the inner diameter surface 51a of the base 51, and the inner surface 55c of the second inner diameter side protrusion 55 and the inner diameter surface of the base 51.
  • R-shaped fillet portions 53d and 55d are formed at the boundary portions (corner portions) with 51a, respectively.
  • the outer diameter side protrusion 57 is the outer diameter surface 51b of the base 51, and protrudes from the center position in the axial direction. It has an outer surface 57b located at one end and an outer surface 57c located at the other end in the axial direction.
  • top portion 57a of the outer diameter side protrusion 57 has a rounded shape to form an arcuate curved surface.
  • the top portion 57a of the outer diameter protrusion 57 is always in contact with the inner circumferential surface of the cylinder 20 and is in pressure contact with the inner circumferential surface of the cylinder 20.
  • both outer surfaces 57b and 57c of the outer diameter protrusion 57 form inclined surfaces that gradually make the outer diameter protrusion 57 wider as they approach the outer diameter surface 51b of the base 51. That is, the outer diameter side protrusion 57 has a cross-sectional shape that gradually becomes wider from the apex 57a toward the outer diameter surface 51b of the base 51, and has a substantially equilateral triangular mountain shape (which can also be called a widening shape). ing. Note that both outer side surfaces 57b and 57c of the outer diameter side protrusion 57 are inclined so as to be line symmetrical with respect to the axial center line S of the seal ring 50.
  • R-shaped fillet portions 57d and 57d are formed at the boundary portions (corner portions) between both outer side surfaces 57b and 57c of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base portion 51, respectively. ing.
  • the entirety of the seal ring 50 described above has the following characteristics with respect to the axial center line S passing through the axial center (a line perpendicular to the axial direction of the seal ring 50 and passing through the top 57a of the outer diameter side protrusion 57). It has a line-symmetrical cross-sectional shape (see FIG. 5). Further, each part constituting the seal ring 50, that is, the base portion 51, the inner diameter side protrusions 53, 55, and the outer diameter side protrusion 57 are all integrally formed.
  • the outer protrusion 57 has an annularly protruding structure such that the apex 57a of the outer protrusion 57 is disposed at a corresponding position between the apexes 53a and 55a of the inner protrusions 53 and 55 adjacent in the axial direction. It has become. In other words, the top 57a of the outer protrusion 57 does not overlap in the axial direction of the seal ring 50, but is shifted from the top 53a, 55a of the inner protrusion 53, 55. It is set up like this.
  • the outer diameter side protrusion 57 has an outer diameter side protrusion at a position corresponding to the middle between the tops 53a and 55a of the two inner diameter side protrusions 53 and 55 (a position between the top 53a and the top 55a).
  • the top portion 57a of the portion 57 is disposed.
  • the inner surfaces 53c and 55c of the axially adjacent inner diameter side protrusions 53 and 55 are located on the outer side in the axial direction than the top 57a of the outer diameter side protrusion 57.
  • the width W2 between the outer surfaces 57b and 57c is smaller than the distance W3 between the tops 53a and 55a of the axially adjacent inner projections 53 and 55.
  • the width W2 between the outer surfaces 57b and 57c of the outer diameter side protrusion 57 is defined as the width W2 from the point P1 where the fillet 57d continuous from the base end of the outer surface 57b and the outer diameter surface 51b of the base 51 intersect, It means the length up to a point P2 where the fillet portion 57d continuous to the outer surface 57c and the outer diameter surface 51b of the base portion 51 intersect. That is, the width of the outer diameter side protrusion 57 is a concept that includes the widened portions of the fillets 57d, 57d that are connected to both the outer side surfaces 57b, 57c.
  • both side portions 51e, 51e of the outer diameter side protrusion 57 of the base portion 51 are bent and deformed so as to curve slightly inward in the radial direction of the seal ring 50 (see FIG. 7), and accordingly, the inner diameter side protrusion
  • the portions 53 and 55 are flexibly deformed so as to expand toward both ends of the seal ring 50 in the axial direction.
  • the outer surfaces 53b, 55b of the inner diameter side protrusions 53, 55 are deformed so as to approach the inner surface of the annular groove 45 (the inner surfaces 41a, 42a of each side wall portion 41, 42), and the inner diameter side protrusions
  • the pair of inner diameter side protrusions 53 and 55 are deflected and deformed so as to spread toward both ends of the seal ring 50 in the axial direction.
  • the protrusion height of the outer diameter side protrusion 57 from the outer diameter surface 51b of the base portion 51 in the free state of the seal ring 50 before the seal ring 50 is installed in the annular groove 45 is (The length between the top 57a of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base 51) is H, and when the seal ring is free, the tops 53a, 55a of the inner diameter side protrusions 53, 55 and the outer diameter side
  • L1 be the length in the radial direction between the top 57a of the protrusion 57 and L2 be the length between the inner circumferential surface of the cylinder 20 and the bottom surface 45a of the annular groove 45, which the inner protrusions 53 and 55 abut.
  • the setting is such that H>L1-L2.
  • the displacement amount with respect to the top portion 57a is defined as the wrap amount R1 of the outer diameter side protrusion 57 with respect to the inner circumferential surface of the cylinder 20.
  • top portions 53a, 55a of the inner diameter side protrusions 53, 55 in the seal ring free state, and the top portions 53a, 53a of the inner diameter side protrusions 53, 55 that contact the bottom surface of the annular groove when the seal ring 50 is attached to the annular groove 45, 55a is defined as the overlap amount R2 of the inner diameter side protrusions 53, 55 with respect to the bottom surface 45a of the annular groove 45.
  • the setting is such that H>R1+R2.
  • the seal ring 50 When the piston 40 is stationary, the seal ring 50 has the top 57a of the outer protrusion 57 in pressure contact with the inner circumferential surface of the cylinder 20, and the tops 53a and 55a of the inner protrusion 53 and 55 in the annular groove.
  • a seal ring 50 is disposed within the annular groove 45 so as to be in contact with the bottom surface 45 a of the seal ring 45 . In this case, as shown in FIGS. 7 and 8, the seal ring 50 is disposed within the cylinder 20 in a deformed state from the seal ring free state shown in FIG.
  • the gap between the inner surface of the annular groove 45 on the other axial end side and the other end surface 51d of the base 51 is sealed, and the gap between the inner circumferential surface of the cylinder 20 and the outer circumferential surface of the seal ring 50 is also sealed. Since the openings of the pair of notched grooves 48, 48 on the second side wall portion 42 side are respectively closed, the first chamber V1 in the cylinder 20 is depressurized and damper braking force is exerted.
  • each notch groove 48 on the second side wall portion 42 side opens, so that the air in the first chamber V1 in the cylinder 20 passes through each notch groove 48, as shown by the arrow in FIG. Then, it flows out into the second chamber V2. As a result, the damper braking force is released.
  • the wall portion 21 of the cylinder 20 in this embodiment has a substantially thin cylindrical shape
  • the wall portion of the cylinder may have a substantially rectangular tube shape or a substantially cylindrical shape, for example.
  • the rod, piston, seal ring, seal cap, detachment prevention cap, etc. also have a shape that corresponds to the wall of the cylinder.
  • the cylinder 20 of this embodiment is closed with an end wall 25 disposed at the other end in the axial direction, but for example, a through hole is formed in the end wall disposed at the other end of the cylinder. It is also possible to form a structure in which the through hole is opened and closed by a seal cap.
  • the rod 30 of this embodiment has a prismatic shaft portion 31, but the rod may include, for example, a shaft portion and a pair of side walls disposed on both sides of the shaft portion via a plurality of ribs. It may have a structure consisting of a long plate-like or cylindrical shaft, as long as pistons can be connected in series.
  • annular groove 45 in the piston 40 of this embodiment has a bottom surface 45a that is parallel to the axial direction of the piston 40, but the annular groove may have an inclined bottom surface or a stepped shape. It may be done without.
  • the seal ring 50 of this embodiment has two inner diameter side protrusions 53 and 55, which are provided so as to protrude from both axial ends of the inner diameter surface 51a. There may be three or more protrusions on the inner diameter side. Further, in the case of this embodiment, both of the inner diameter side protrusions 53 and 55 come into contact with the bottom surface 45a of the annular groove 45, but at least one inner diameter side protrusion comes into contact with the bottom surface of the annular groove. Just make contact.
  • outer surfaces 53b, 55b of the inner diameter side protrusions 53, 55 are flush with the axial end surfaces 51c, 51d of the base 51 without any step.
  • the outer surface may be arranged axially inward with respect to both axial end surfaces of the base (may be provided with a step).
  • inner surfaces 53c and 55c of the inner diameter protrusions 53 and 55 are parallel to each other, one or both inner surfaces may be inclined with respect to the axial direction of the piston. Furthermore, the outer surfaces of the inner diameter protrusions may be perpendicular to the axial direction of the piston, or may be inclined in directions away from each other.
  • both outer surfaces 57b and 57c of the outer diameter side protrusion 57 are inclined so as to be line symmetrical with respect to the axial center line S of the seal ring 50.
  • the side surfaces may have different inclination angles relative to the axial direction of the seal ring, or may be perpendicular to the axial direction of the piston.
  • the braking force due to the reduced pressure in the first chamber V1 is reduced. is applied and the piston 40 moves in a direction approaching the end wall 25 of the cylinder 20 (when the piston 40 moves in the damper return direction F2), the braking force is released.
  • the damper braking force acts, and the piston 40 moves in the direction away from the end wall 25 of the cylinder 20.
  • the damper braking force may be released when the vehicle moves.
  • one member is used as a fixed body such as an instrument panel accommodating part, and the other member is used as an opening/closing body such as a glove box or a lid, but the pair of members can be moved close to and separated from each other.
  • the pair of members can be moved close to and separated from each other. There is no particular limitation as long as it is.
  • an air chamber (first chamber V1) is formed in the cylinder 20 on the side in the insertion direction of the rod 30 from the seal ring 50, but on the opposite side of the rod insertion direction in the cylinder.
  • An air chamber may be provided on the side.
  • an exhaust hole is formed in the end wall of the cylinder, and a seal cap that allows the exhaust hole to be opened and closed is attached to the periphery of the exhaust hole.
  • the cap attached to the opening at one end of the cylinder has a structure that can seal the periphery of the opening and also seal the gap between the rod insertion port and the rod inserted into the rod insertion port.
  • a sealed air chamber is provided inside the cylinder on the opposite side of the rod insertion direction.
  • the piston 40 is stationary within the cylinder 20 when one member (fixed body, etc.) and the other member (opening/closing body, etc.) are close to each other.
  • the top 57a of the outer protrusion 57 is in contact with the inner peripheral surface of the cylinder 20, and the tops 53a, 55a of the inner protrusions 53, 55 are in contact with the bottom 45a of the annular groove 45.
  • a seal ring 50 is disposed within the annular groove 45.
  • the outer diameter side protrusion 57 is arranged so that its apex 57a is shifted from the apex 53a, 55a of the inner diameter side protrusion 53, 55 without overlapping in the axial direction of the seal ring 50. Since the thickness of the seal ring 50 in the radial direction can be reduced, the base portion 51 can be easily bent and deformed, and the reaction force F3 acting on the inner peripheral surface of the cylinder 20 can be suppressed. be able to. As a result, the operating force of the piston 40 when the piston 40 moves in the damper return direction F2 can be reduced.
  • the at least two inner diameter side protrusions 53 and 55 make it easier to maintain the seal ring 50 in a stable posture, and when the piston 40 moves in the damper braking direction F1, the inner peripheral surface of the cylinder 20 and the seal ring 50 can be firmly sealed, and the desired damper braking force can be reliably exerted.
  • the inner diameter side protrusions 53 and 55 are two pieces that respectively protrude from both ends of the base 51 in the axial direction
  • the outer diameter side protrusion 57 is composed of two inner diameter side protrusions.
  • the top 57a of the outer diameter side projection 57 is arranged at a position corresponding to the middle between the tops 53a and 55a of the side projections 53 and 55 (a position between the top 53a and the top 55a).
  • the entire seal ring 50 has a shape that is line symmetrical with respect to the axial center line S. It can be made easier. As a result, when the seal ring 50 is attached to the annular groove 45, there is no directionality in the seal ring 50, so that the workability of attaching the seal ring 50 to the annular groove 45 can be improved. Further, the seal ring 50 attached to the annular groove 45 can be easily held in a more stable posture.
  • the inner surfaces 53c, 55c of the axially adjacent inner diameter side protrusions 53, 55 are located axially outer than the top 57a of the outer diameter side protrusion 57, and
  • the width W2 between the outer surfaces 57b and 57c of the radial projection 57 is smaller than the distance W3 between the tops 53a and 55a of the axially adjacent inner radial projections 53 and 55.
  • the protrusion height of the outer diameter side protrusion 57 from the outer diameter surface 51b of the base portion 51 in the free state of the seal ring 50 before the seal ring 50 is installed in the annular groove 45 is (The length between the top 57a of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base 51) is H, and the tops 53a, 55a of the inner diameter side protrusions 53, 55 and the outer diameter side protrusion in the free state are The length in the radial direction between the top portion 57a of the portion 57 is L1, and the length between the inner circumferential surface of the cylinder 20 and the bottom surface 45a of the annular groove 45, which the inner diameter protrusions 53, 55 abut, is L2. At this time, it is set so that H>L1-L2.
  • the outer diameter side surface (outer diameter surface 51b) of the base portion 51 is attached to the cylinder 20. can be prevented from coming into contact with the inner circumferential surface of the damper, and the operating force of the piston 40 when the piston 40 moves in the damper return direction F2 can be further reduced.
  • the base portion 51 has a shape that inclines toward the other axially adjacent inner diameter side protrusions as the base portion 51 moves away from the inner diameter surface 51a.
  • the seal ring 50 when the seal ring 50 is attached to the annular groove 45, it is possible to prevent the second inner diameter side protrusion 55 from expanding beyond the other end surface 51d in the axial direction of the base 51.
  • the sealing performance between the inner surface of the groove 45 located in the damper return direction F2 (the inner surface 42a of the second side wall portion 42) and the seal ring 50 can be improved.
  • a desired damper braking force can be reliably exerted.
  • both outer surfaces 57b and 57c of the outer diameter side protrusion 57 form inclined surfaces that make the outer diameter side protrusion 57 gradually wider as it approaches the outer diameter surface 51b of the base 51. ing.
  • the outer diameter side protrusion 57 has a so-called flared shape, when the piston 40 moves in the damper braking direction F1, the frictional force from the inner peripheral surface of the cylinder 20 is applied to the outer diameter side protrusion. 57, the outer diameter side protrusion 57 can be made less likely to fall down (or be less likely to deform). As a result, it becomes easier to maintain the sealing performance of the outer diameter side protrusion 57 with respect to the inner circumferential surface of the cylinder 20, so that the damper braking force can be stably exerted.
  • the present invention is not limited to the embodiments described above, and various modified embodiments are possible within the scope of the gist of the present invention, and such embodiments are also included within the scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

Provided is a damper device that makes it possible to reduce piston operation force when a piston moves in a return direction opposite to a damper braking direction. This damper device 10 includes a cylinder 20, a rod 30, a piston 40 provided with an annular groove 45, and a seal ring 50. The seal ring 50 includes a base 51, two inner diameter-side protrusions 53, 55, and an outer diameter-side protrusion 57. At least one of the inner diameter-side protrusions 53, 55 is in contact with the bottom surface 45a of the annular groove 45. The outer diameter-side protrusion 57 is a surface on the outer diameter side of the base 51 and protrudes in an annular shape so that a top section 57a of the outer diameter-side protrusion 57 is arranged at a position corresponding to the interval between the top sections 53a, 55a of the axially adjacent inner diameter-side protrusions 53, 55.

Description

ダンパー装置damper device
 本発明は、例えば、自動車のグローブボックスの開閉動作等の制動に用いられる、ダンパー装置に関する。 The present invention relates to a damper device used, for example, for braking the opening and closing operations of a glove box of an automobile.
 例えば、自動車のグローブボックスには、リッドが急に開くのを抑制して緩やかに開かせるために、ダンパー装置が用いられることがある。 For example, a damper device is sometimes used in a car glove box to suppress the lid from opening suddenly and allow the lid to open slowly.
 このようなダンパー装置として、下記特許文献1には、ハウジングと、ハウジング内にてスライドするピストンロッドと、該ピストンロッドの前端に設けられたピストンヘッドと、ピストンヘッドの外周に形成された環状溝に装着されたリップシールとを有する、エアダンパ組立体が記載されている。 As such a damper device, Patent Document 1 below describes a housing, a piston rod that slides within the housing, a piston head provided at the front end of the piston rod, and an annular groove formed on the outer periphery of the piston head. An air damper assembly is described having a lip seal attached to the air damper assembly.
 リップシールは、基部と、該基部の軸方向一端部の内側縁から突設し、環状溝の底部に当接する内側リップと、基部の軸方向一端部の外側縁から突設し、ハウジングの内周面に当接する外側リップとからなり、断面が略コ字状をなしている。また、外側リップは、内側リップに対して斜め外方に突出しており、通常は、ハウジングの内周面に対して、外側リップ外面の先端部が部分的に当接するようになっている。 The lip seal includes a base, an inner lip that protrudes from the inner edge of one axial end of the base, contacts the bottom of the annular groove, protrudes from the outer edge of the one axial end of the base, and contacts the inside of the housing. It consists of an outer lip that comes into contact with the circumferential surface, and has a substantially U-shaped cross section. Further, the outer lip projects obliquely outward with respect to the inner lip, and normally, the tip of the outer surface of the outer lip partially abuts against the inner circumferential surface of the housing.
特開平8-277873号公報Japanese Patent Application Publication No. 8-277873
 上記特許文献1のエアダンパ組立体の場合、ピストンヘッドがダンパー制動方向とは反対の戻り方向に移動するときに、ハウジングの軸心に対してピストンロッドが傾くことがある。この場合、ピストンロッドの傾きに追随して、ピストンヘッドも傾くので、その環状溝に装着されたリップシールの、外側リップ外面が、ハウジングの内周面に広く当接することになる。その結果、ハウジングの内周面に対するリップシールの摩擦抵抗が増大し、ピストンヘッドの操作力が高くなることがあった。 In the case of the air damper assembly of Patent Document 1, when the piston head moves in the return direction opposite to the damper braking direction, the piston rod may tilt with respect to the axis of the housing. In this case, since the piston head also inclines following the inclination of the piston rod, the outer lip outer surface of the lip seal attached to the annular groove comes into wide contact with the inner circumferential surface of the housing. As a result, the frictional resistance of the lip seal against the inner circumferential surface of the housing increases, which may increase the operating force of the piston head.
 したがって、本発明の目的は、ピストンがダンパー制動方向とは反対の戻り方向に移動するときの、ピストンの操作力を低減することができる、ダンパー装置を提供することにある。 Therefore, an object of the present invention is to provide a damper device that can reduce the operating force of the piston when the piston moves in the return direction opposite to the damper braking direction.
 上記目的を達成するため、本発明は、互いに近接離反する一対の部材の間に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するダンパー装置であって、一端部に開口部を設けたシリンダーと、前記開口部を通して前記シリンダー内に移動可能に挿入されるロッドと、前記ロッドに連設され、外周に環状溝を形成したピストンと、前記環状溝に装着されて、前記シリンダーの内周面に圧接されるシールリングとを有しており、前記シールリングは、環状をなし前記環状溝内に配置される基部と、前記基部の内径側の面から突出した少なくとも2個の内径側突部と、前記基部の外径側の面から突出し、前記シリンダーの内周面に当接する外径側突部とを有しており、前記内径側突部のうち、少なくとも1個が前記環状溝の底面に当接し、前記外径側突部は、前記基部の外径側の面であって、軸方向に隣接する前記内径側突部の頂部どうしの間に対応する位置に、前記外径側突部の頂部が配置されるように、環状に突出することを特徴とする。 In order to achieve the above object, the present invention provides a damper device that is attached between a pair of members that move closer to each other and applies a braking force when the pair of members move closer to each other or move away from each other, the damper device having an opening at one end. a cylinder provided with an annular groove; a rod movably inserted into the cylinder through the opening; a piston connected to the rod and having an annular groove formed on its outer periphery; and a seal ring that is pressed against the inner circumferential surface of the cylinder, and the seal ring has an annular base disposed in the annular groove and at least two seal rings protruding from the inner diameter side surface of the base. and an outer diameter side protrusion that protrudes from the outer diameter side surface of the base and comes into contact with the inner circumferential surface of the cylinder, and at least one of the inner diameter side protrusions is in contact with the bottom surface of the annular groove, and the outer diameter side protrusion is located on the outer diameter side surface of the base, at a position corresponding to between the tops of the axially adjacent inner diameter side protrusions. , characterized in that it protrudes in an annular shape such that the top of the outer diameter side protrusion is located.
 本発明においては、外径側突部は、基部の外径側の面であって、軸方向に隣接する内径側突部の頂部どうしの間に対応する位置に、外径側突部の頂部が配置されるように、環状に突出するので、シールリングが撓み変形しやすくなって、シリンダー内周面に対するシールリングからの反力を抑えることができ、ピストンがダンパー戻り方向へ移動するときの、ピストンの操作力を低減することができる。 In the present invention, the outer diameter side protrusion is a surface of the base on the outer diameter side, and the top of the outer diameter side protrusion is placed at a position corresponding to between the tops of the inner diameter side protrusions adjacent to each other in the axial direction. Since the seal ring protrudes in an annular shape so that , the operating force of the piston can be reduced.
本発明に係るダンパー装置の、一実施形態を示す分解斜視図である。1 is an exploded perspective view showing one embodiment of a damper device according to the present invention. 同ダンパー装置の斜視図である。It is a perspective view of the same damper device. 同ダンパー装置を構成するピストンの拡大斜視図である。It is an enlarged perspective view of the piston which constitutes the same damper device. 同ダンパー装置を構成するシールリングの拡大斜視図である。FIG. 2 is an enlarged perspective view of a seal ring that constitutes the damper device. 図4のB-B矢視線における断面図である。5 is a cross-sectional view taken along the line of arrow BB in FIG. 4. FIG. 図2のA-A矢視線での断面であって、ロッドを所定長さ引き出した状態での断面図である。3 is a cross-sectional view taken along the line AA in FIG. 2, with the rod pulled out a predetermined length. FIG. 同ダンパー装置において、ピストンがダンパー制動方向に移動した場合の要部拡大断面説明図である。FIG. 3 is an enlarged cross-sectional explanatory view of a main part of the damper device when the piston moves in the damper braking direction. 同ダンパー装置において、ピストンがダンパー制動方向とは反対の戻り方向に移動した場合の要部拡大断面説明図である。FIG. 7 is an explanatory enlarged cross-sectional view of a main part of the damper device when the piston moves in the return direction opposite to the damper braking direction.
 (ダンパー装置の一実施形態)
 以下、図面を参照して、本発明に係るダンパー装置の一実施形態について説明する。
(One embodiment of a damper device)
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a damper device according to the present invention will be described below with reference to the drawings.
 図1に示されるダンパー装置10は、互いに近接離反する一対の部材に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するものであって、例えば、自動車のインストルメントパネルに設けられた収容部の開口部に、開閉可能に取付けられたグローブボックスやリッド等の、制動用として用いることができる。なお、以下の実施形態においては、一方の部材を、インストルメントパネルの収容部等の固定体とし、他方の部材を、固定体の開口部に開閉可能に取付けられた、グローブボックスやリッド等の開閉体として説明する。 The damper device 10 shown in FIG. 1 is attached to a pair of members that move close to each other and separate from each other, and applies braking force when the pair of members approach or move away from each other. It can be used for braking a glove box, a lid, etc., which is attached to the opening of the provided storage part so as to be openable and closable. In the following embodiments, one member is a fixed body such as an instrument panel accommodating part, and the other member is a glove box, a lid, etc. that is attached to the opening of the fixed body so that it can be opened and closed. This will be explained as an opening/closing body.
 図1に示すように、この実施形態のダンパー装置10は、一端部に開口部23を設けたシリンダー20と、シリンダー20内に移動可能に挿入されるロッド30と、このロッド30に連設され、外周に環状溝45を形成したピストン40と、該ピストン40の環状溝45に装着されたシールリング50と、シリンダー20の一端部側の開口部23に装着された外れ防止キャップ60とから、主として構成されている。また、図6に示すように、ピストン40がシリンダー20内に挿入されることで、シールリング50がシリンダー20の内周面に圧接されるが、このシールリング50を境にして、シリンダー20の、ロッド30の挿入方向側に、第1室V1(空気室)が形成され、シリンダー20の開口部23側に、第2室V2が形成されるようになっている。 As shown in FIG. 1, the damper device 10 of this embodiment includes a cylinder 20 having an opening 23 at one end, a rod 30 movably inserted into the cylinder 20, and a cylinder 20 connected to the rod 30. , a piston 40 having an annular groove 45 formed on its outer periphery, a seal ring 50 attached to the annular groove 45 of the piston 40, and a detachment prevention cap 60 attached to the opening 23 at one end of the cylinder 20. It mainly consists of Further, as shown in FIG. 6, when the piston 40 is inserted into the cylinder 20, the seal ring 50 is brought into pressure contact with the inner peripheral surface of the cylinder 20. A first chamber V1 (air chamber) is formed on the side in the insertion direction of the rod 30, and a second chamber V2 is formed on the side of the opening 23 of the cylinder 20.
 なお、以下の説明においては、「一端部」又は「一端」とは、ダンパー装置10のダンパー制動方向側の一端部又は一端を意味し、「他端部」又は「他端」とは、ダンパー制動方向とは反対の戻り方向側の他端部又は他端を意味する。また、この実施形態における「ダンパー制動方向」とは、シリンダー20の端部壁25(図6参照)からピストン40が離反して、シリンダー20の開口部23からの、ロッド30の引出し量が増大する方向を意味する(図6の矢印F1参照)。更に、この実施形態における「ダンパー制動方向とは反対の戻り方向」(以下、単に「ダンパー戻り方向」ともいう)とは、ピストン40がシリンダー20の端部壁25に近接して、シリンダー20内への、ロッド30の押し込み量が増大する方向を意味する(図6の矢印F2参照)。 In addition, in the following description, "one end" or "one end" means one end or one end of the damper device 10 on the damper braking direction side, and "the other end" or "other end" means the damper It means the other end or other end on the return direction side opposite to the braking direction. In addition, the "damper braking direction" in this embodiment means that the piston 40 moves away from the end wall 25 of the cylinder 20 (see FIG. 6), and the amount of the rod 30 pulled out from the opening 23 of the cylinder 20 increases. (See arrow F1 in FIG. 6). Furthermore, in this embodiment, the "return direction opposite to the damper braking direction" (hereinafter also simply referred to as "damper return direction") means that the piston 40 is close to the end wall 25 of the cylinder 20 and inside the cylinder 20. This means the direction in which the amount of pushing of the rod 30 increases (see arrow F2 in FIG. 6).
 図1に示すように、前記シリンダー20の壁部21は、その軸方向に直交する断面が、長軸及び短軸を有する環状をなし、長軸側が幅広で短軸側が幅狭とされた、薄型筒状(薄箱状を呈した筒状)となっている。より具体的には、この壁部21は、長軸方向に沿って直線状に延び、互いに平行となるように対向配置された一対の長軸壁部21а,21аと、これらの長軸壁部21а,21аの両端部どうしを連結すると共に、円弧状に屈曲した形状をなす、一対の短軸壁部21b,21bとを有している。この壁部21の、軸方向の一端部側が開口して、開口部23が設けられている。また、開口部23の周縁であって、対向配置された長軸壁部21а,21аには、それぞれ係止孔23a,23aが形成されている。更に図6に示すように、壁部21の軸方向の他端部には、端部壁25が配置されて(壁部21の、開口部23の反対側に端部壁25が配置されている、ともいえる)、壁部21の他端部が閉塞されている。 As shown in FIG. 1, the wall portion 21 of the cylinder 20 has an annular cross section perpendicular to its axial direction having a long axis and a short axis, and is wide on the long axis side and narrow on the short axis side. It has a thin cylindrical shape (a cylindrical shape with a thin box shape). More specifically, this wall portion 21 includes a pair of long- axis wall portions 21a, 21a that extend linearly along the long-axis direction and are arranged parallel to each other, and these long-axis wall portions. It has a pair of short axis wall portions 21b, 21b which connect both ends of the 21a and 21a and are curved in an arc shape. One end of the wall 21 in the axial direction is open, and an opening 23 is provided. Further, locking holes 23a, 23a are formed in the long axis wall portions 21a, 21a, which are disposed at the periphery of the opening 23 and are opposed to each other, respectively. Further, as shown in FIG. 6, an end wall 25 is disposed at the other end of the wall 21 in the axial direction (the end wall 25 is disposed on the opposite side of the wall 21 from the opening 23). The other end of the wall portion 21 is closed.
 また、前記端部壁25の外面、及び、壁部21の外周であって軸方向一端部からは、回動孔27aを形成した回動支持片27がそれぞれ突設されている。所定の回動孔27aには、前述した一方の部材の、図示しない回動軸が回動可能に挿入されて、一方の部材にシリンダー20の外周が回動可能に連結されるようになっている。 Further, from the outer surface of the end wall 25 and the outer periphery of the wall portion 21 from one end in the axial direction, a rotation support piece 27 having a rotation hole 27a formed therein is protruded, respectively. A rotation shaft (not shown) of one of the aforementioned members is rotatably inserted into the predetermined rotation hole 27a, so that the outer periphery of the cylinder 20 is rotatably connected to the one member. There is.
 図1に示すように、外れ防止キャップ60は、その中央部に、ロッド30の軸部31を回転規制した状態で挿通可能とするロッド挿通口61が貫通して形成されており、ロッド30を回転規制した状態でシリンダー20内に挿入可能となっている。また、外れ防止キャップ60の外周の所定箇所からは、複数の係止突起62が突設されており、各係止突起62を、シリンダー20の対応する各係止孔23aにそれぞれ係止させることで(図2参照)、シリンダー20の開口部23に、外れ防止キャップ60が取付けられるようになっている(図6参照)。この外れ防止キャップ60は、シリンダー20の開口部23からロッド30が最大限に引き出されたときに、ピストン40に当接して、シリンダー20からロッド30やピストン40が外れることを防止する。 As shown in FIG. 1, the detachment prevention cap 60 has a rod insertion hole 61 formed in its center to allow insertion of the shaft portion 31 of the rod 30 while restricting its rotation. It can be inserted into the cylinder 20 with rotation restricted. Further, a plurality of locking protrusions 62 are protruded from predetermined locations on the outer periphery of the detachment prevention cap 60, and each locking protrusion 62 can be respectively locked in each corresponding locking hole 23a of the cylinder 20. (See FIG. 2), and a detachment prevention cap 60 is attached to the opening 23 of the cylinder 20 (see FIG. 6). The detachment prevention cap 60 comes into contact with the piston 40 when the rod 30 is pulled out to the maximum extent from the opening 23 of the cylinder 20, and prevents the rod 30 and the piston 40 from detaching from the cylinder 20.
 次に、ロッド30について説明する。 Next, the rod 30 will be explained.
 このロッド30は、シリンダー20の開口部23を通して、シリンダー20内に移動可能に挿入されて、シリンダー20内において、シリンダー20の軸方向にスライド動作するものである。 This rod 30 is movably inserted into the cylinder 20 through the opening 23 of the cylinder 20 and slides within the cylinder 20 in the axial direction of the cylinder 20.
 図1に示すように、この実施形態のロッド30は、一方向に長く延びる角柱状をなした軸部31を有している。この軸部31の長手方向の一端部に、連結孔33aを設けた連結片33が設けられている。この連結孔33aには、前述した他方の部材の、図示しない連結軸が挿入されて、他方の部材にロッド30が回動可能に連結されるようになっている。 As shown in FIG. 1, the rod 30 of this embodiment has a prismatic shaft portion 31 that extends in one direction. A connecting piece 33 having a connecting hole 33a is provided at one end in the longitudinal direction of this shaft portion 31. As shown in FIG. A connecting shaft (not shown) of the other member mentioned above is inserted into the connecting hole 33a, so that the rod 30 is rotatably connected to the other member.
 次に、ピストン40について説明する。 Next, the piston 40 will be explained.
 図1や図3に示すように、この実施形態のピストン40は、ロッド30の長手方向の他端部に連設され、その外周に環状溝45が形成されたものであって、ロッド30と一体形成されている。 As shown in FIGS. 1 and 3, the piston 40 of this embodiment is connected to the other end of the rod 30 in the longitudinal direction, and has an annular groove 45 formed on its outer periphery. It is integrally formed.
 図6,7を併せて参照すると、このピストン40は、互いに平行となるように対向配置された第1側壁部41,第2側壁部42と、両側壁部41,42どうしを互いに連結する連結壁部43とからなる。各側壁部41,42は、シリンダー20の壁部21の内周形状に適合する形状、すなわち、長軸方向の両側面が互いに平行で短軸方向の両側面が円弧状をなしている。また、連結壁部43は、その外周が、両側壁部41,42の外周よりも小さい相似形状となっている。 Referring to FIGS. 6 and 7 together, this piston 40 has a first side wall portion 41 and a second side wall portion 42 that are arranged opposite to each other so as to be parallel to each other, and a connection that connects the both side wall portions 41 and 42 to each other. It consists of a wall part 43. Each of the side wall portions 41 and 42 has a shape that matches the inner peripheral shape of the wall portion 21 of the cylinder 20, that is, both side surfaces in the long axis direction are parallel to each other, and both side surfaces in the short axis direction are arcuate. Further, the connecting wall portion 43 has a similar shape in which the outer circumference thereof is smaller than the outer circumferences of the both side wall portions 41 and 42.
 なお、第1側壁部41の、第2側壁部42に対向する面を、第1側壁部41の内面41aとし、第2側壁部42の、第1側壁部41に対向する面を、第2側壁部42の内面42aとする。 Note that the surface of the first side wall portion 41 facing the second side wall portion 42 is referred to as the inner surface 41a of the first side wall portion 41, and the surface of the second side wall portion 42 facing the first side wall portion 41 is referred to as the inner surface 41a of the first side wall portion 41. This is the inner surface 42a of the side wall portion 42.
 そして、一対の側壁部41,42と連結壁部43とで囲まれた空間が、環状溝45をなしている。また、上記連結壁部43の外周面が、環状溝45の底面45aをなしている。なお、上記底面45aは、ピストン40の軸方向(ピストン40の軸心Cに沿った方向)に対して平行となるように形成されている。 A space surrounded by the pair of side walls 41 and 42 and the connecting wall 43 forms an annular groove 45. Further, the outer peripheral surface of the connecting wall portion 43 forms the bottom surface 45a of the annular groove 45. The bottom surface 45a is formed parallel to the axial direction of the piston 40 (the direction along the axis C of the piston 40).
 また、ピストン40の長手方向の一端部側に配置された第1側壁部41の外面(第2側壁部42との対向面とは反対側の面)にロッド30の軸方向基端部が連結されて、ピストン40とロッド30とが一体化されている。 Further, the axial proximal end portion of the rod 30 is connected to the outer surface (the surface opposite to the surface facing the second side wall portion 42) of the first side wall portion 41 disposed on one end side in the longitudinal direction of the piston 40. The piston 40 and the rod 30 are integrated.
 更に図6及び図7に示すように、両側壁部41,42及び連結壁部43の内側には、隔壁46により画成された複数の空間Kが設けられており、各空間Kは、第2側壁部42側が開口している。また、図3を併せて参照すると、第1側壁部41の所定位置、ここでは第1側壁部41の軸方向一端部側であって幅方向中央位置には、所定の空間Kに連通する、細径丸孔状のオリフィス47が形成されている。このオリフィス47は、シリンダー20内の第1室V1と第2室V2とを、空間Kを介して互いに連通させる。なお、オリフィス47内を通過する空気の流通抵抗によって、ダンパー制動力が調整されるようになっている。 Furthermore, as shown in FIGS. 6 and 7, a plurality of spaces K defined by a partition wall 46 are provided inside the side walls 41, 42 and the connecting wall 43, and each space K has a The second side wall portion 42 side is open. Also, referring to FIG. 3, at a predetermined position of the first side wall part 41, here, at one end side in the axial direction of the first side wall part 41 and at the center position in the width direction, it communicates with a predetermined space K. An orifice 47 in the form of a small diameter round hole is formed. This orifice 47 allows the first chamber V1 and the second chamber V2 in the cylinder 20 to communicate with each other via the space K. Note that the damper braking force is adjusted by the flow resistance of the air passing through the orifice 47.
 更に図3に示すように、ピストン40の軸心Cに対して点対称となる位置には、第1側壁部41及び連結壁部43を切欠いてなる、一対の切欠き溝48,48が所定深さで形成されている。この切欠き溝48は、ピストン40が戻り方向F2に移動するときに、第1室V1内の空気を第2室V2側へと排気させる、排気流路をなす(これについては後述する)。 Furthermore, as shown in FIG. 3, a pair of notch grooves 48, 48 formed by cutting out the first side wall portion 41 and the connecting wall portion 43 are provided at positions point symmetrical with respect to the axis C of the piston 40. formed at depth. This notch groove 48 forms an exhaust flow path that exhausts the air in the first chamber V1 to the second chamber V2 side when the piston 40 moves in the return direction F2 (this will be described later).
 次に、図4や図5を参照して、シールリング50について説明する。 Next, the seal ring 50 will be explained with reference to FIGS. 4 and 5.
 このシールリング50は、ラバーやエラストマー等の弾性材料から形成されて撓み変形可能なものであって、環状をなし環状溝45内に配置される基部51と、基部51の内径側の面(以下、単に「内径面51a」ともいう)から突出した少なくとも2個の内径側突部53,55と、基部51の外径側の面(以下、単に「外径面51b」ともいう)から突出し、シリンダー20の内周面に圧接する外径側突部57とを有している。なお、基部51の内径側の面、外径側の面は、それぞれ「内周面」、「外周面」ともいえる。 The seal ring 50 is made of an elastic material such as rubber or an elastomer, and is flexible and deformable. , at least two inner diameter protrusions 53, 55 protruding from the outer diameter surface (hereinafter also simply referred to as the "outer diameter surface 51b") of the base 51; It has an outer diameter side protrusion 57 that presses against the inner circumferential surface of the cylinder 20. Note that the inner diameter side surface and the outer diameter side surface of the base portion 51 can also be referred to as an "inner circumferential surface" and an "outer circumferential surface", respectively.
 上記基部51は、ピストン40の環状溝45の外周形状に適合する環状をなしている。また、基部51の軸方向長さW1、すなわち、基部51の軸方向の一端面51cと他端面51dとの長さは、環状溝45の軸方向幅(第1側壁部41の内面41aと第2側壁部42の内面42aとの長さ)よりも小さく形成されており、それによって、環状溝45内にてシールリング50が軸方向に移動可能となっている。なお、シリンダー20の内周面とは、この実施形態の場合、シリンダー20を構成する壁部21の内周面を意味しており、これは以下の説明においても同様である。 The base portion 51 has an annular shape that matches the outer peripheral shape of the annular groove 45 of the piston 40. Further, the axial length W1 of the base 51, that is, the length between one end surface 51c and the other end surface 51d of the base 51 in the axial direction, is the axial width of the annular groove 45 (the inner surface 41a of the first side wall portion 41 and the The seal ring 50 is formed to be smaller than the length of the inner surface 42a of the second side wall portion 42, thereby allowing the seal ring 50 to move in the axial direction within the annular groove 45. Note that the inner circumferential surface of the cylinder 20 in this embodiment means the inner circumferential surface of the wall portion 21 that constitutes the cylinder 20, and this also applies in the following description.
 図4及び図5には、環状溝45にシールリング50が装着される前の状態、すなわち、シールリング50が、シリンダー20の内周面に押圧されて撓み変形する前の、自由状態が示されている。なお、以下のシールリング50の各部分の関する形状・構造や、レイアウト(各部分の位置や配置)の説明においては、特に断りがない限り、シールリング50の自由状態での形状・構造、レイアウトを意味する。 4 and 5 show a state before the seal ring 50 is installed in the annular groove 45, that is, a free state before the seal ring 50 is pressed against the inner peripheral surface of the cylinder 20 and is deformed. has been done. In addition, in the following description of the shape, structure, and layout (position and arrangement of each part) of each part of the seal ring 50, unless otherwise specified, the shape, structure, and layout of the seal ring 50 in its free state are used. means.
 この実施形態における内径側突部は、基部51の、シールリング50の軸方向の両端部から、それぞれ突出した2個のもの、すなわち、基部51の内径面51aの、軸方向の一端部から突設した第1内径側突部53と、軸方向の他端部から突設した第2内径側突部55とからなる。なお、以下のシールリング50に関する説明において、「軸方向」とは、特に断りがない限り、シールリングの軸方向を意味する。 In this embodiment, the inner protrusions are two protruding parts of the base 51 that protrude from both ends of the seal ring 50 in the axial direction. It consists of a first inner diameter protrusion 53 provided therein and a second inner diameter protrusion 55 protruded from the other end in the axial direction. In the following description regarding the seal ring 50, "axial direction" means the axial direction of the seal ring unless otherwise specified.
 また、基部51の内径面51a及び外径面51bから突出した、突部53,55,57は、いずれも、基部51の内周面及び外周面から、基部51の径方向外方に向けて、環状をなすように周方向に連続する形状、すなわち、基部51の周方向途中で途切れることのない環状突部となっている。 In addition, the protrusions 53, 55, and 57 protruding from the inner diameter surface 51a and the outer diameter surface 51b of the base 51 all extend radially outward from the inner circumferential surface and the outer circumferential surface of the base 51. , it has an annular shape that continues in the circumferential direction, that is, it is an annular protrusion that is not interrupted midway in the circumferential direction of the base portion 51 .
 第1内径側突部53は、基部51の内径面51aから最も突出した頂部53aと、軸方向の外側に位置する外側面53bと、軸方向の内側に位置する内側面53cとを有している。内側面53cは、軸方向に隣接する第2内径側突部55に対向する面となっており、外側面53bは、第2内径側突部55との対向面(内側面53c)とは反対側の面となっている。 The first inner diameter side protrusion 53 has a top portion 53a that most protrudes from the inner diameter surface 51a of the base portion 51, an outer surface 53b located on the outer side in the axial direction, and an inner surface 53c located on the inner side in the axial direction. There is. The inner surface 53c is a surface facing the second inner diameter protrusion 55 adjacent to the axial direction, and the outer surface 53b is opposite to the surface facing the second inner diameter protrusion 55 (inner surface 53c). It is on the side.
 また、第2内径側突部55は、基部51の内径面51aから最も突出した頂部55aと、軸方向の外側に位置する外側面55bと、軸方向の内側に位置する内側面55cとを有している。内側面55cは、軸方向に隣接する第1内径側突部53に対向する面となっており、外側面55bは、第1内径側突部53との対向面(内側面55c)とは反対側の面となっている。 Further, the second inner diameter protrusion 55 has a top portion 55a that most protrudes from the inner diameter surface 51a of the base portion 51, an outer surface 55b located on the outer side in the axial direction, and an inner surface 55c located on the inner side in the axial direction. are doing. The inner surface 55c is a surface facing the first inner diameter protrusion 53 adjacent to the axial direction, and the outer surface 55b is opposite to the surface facing the first inner diameter protrusion 53 (inner surface 55c). It is on the side.
 更に、内径側突部のうち、最もダンパー制動方向F1とは反対の戻り方向F2側に位置する内径側突部(第2内径側突部55)の外側面55bは、基部51の、内径面51aから離反するにつれて、軸方向に隣接する他の前記内径側突部に向けて傾斜する形状となっている。 Further, among the inner diameter side protrusions, the outer surface 55b of the inner diameter side protrusion (second inner diameter side protrusion 55) located closest to the return direction F2 side opposite to the damper braking direction F1 is the inner diameter surface of the base portion 51. As it moves away from 51a, it has a shape that inclines toward the other axially adjacent inner diameter side protrusions.
 具体的には、2つの内径側突部53,55のうち、最もダンパー戻り方向F2側に位置する第2内径側突部55の外側面55bは、基部51の内径面51aから離反するにつれて、軸方向に隣接する第1内径側突部53に向けて傾斜する傾斜面をなしている。また、この実施形態の場合、ダンパー制動方向F1側に位置する第1内径側突部53の外側面53bも、基部51の内径面51aから離反するにつれて、軸方向に隣接する第2内径側突部55に向けて傾斜する傾斜面をなしている。 Specifically, among the two inner diameter side protrusions 53 and 55, the outer surface 55b of the second inner diameter side protrusion 55, which is located closest to the damper return direction F2, moves away from the inner diameter surface 51a of the base 51. It forms an inclined surface inclined toward the first inner diameter side protrusion 53 adjacent in the axial direction. In the case of this embodiment, as the outer surface 53b of the first inner diameter side protrusion 53 located on the damper braking direction F1 side also moves away from the inner diameter surface 51a of the base 51, the second inner diameter side protrusion adjacent in the axial direction It forms an inclined surface that slopes toward the portion 55.
 更に、第1内径側突部53の外側面53bは、基部51の軸方向の一端面51cに対して、段差のない連続した面(面一)となっており、同様に、第2内径側突部55の外側面55bも、基部51の軸方向の他端面51dに対して、段差のない連続した面となっている。 Furthermore, the outer surface 53b of the first inner diameter side protrusion 53 is a continuous surface (flush) with no step with respect to one end surface 51c of the base 51 in the axial direction, and similarly, the outer surface 53b of the first inner diameter side protrusion 53 is a continuous surface (flush) with no step. The outer surface 55b of the protrusion 55 is also continuous with the other end surface 51d of the base 51 in the axial direction without any step.
 また、各内径側突部53,55の頂部53a,55aは、それぞれ円弧曲面状をなすように、丸みを帯びた形状となっている。更に、第1内径側突部53の内側面53c、及び、第2内径側突部55の内側面55cは、互いにほぼ平行となるように(シールリング50の軸方向に対してほぼ直交となるように)、対向して配置されている。なお、第1内径側突部53と第2内径側突部55とは、シールリング50の軸中心線S(後述)に対して線対称となる形状となっており、基部51の内径面51aからの突出高さも同一となっている。 Further, the top portions 53a and 55a of the inner diameter side protrusions 53 and 55 have rounded shapes, respectively, so as to form arcuate curved surfaces. Further, the inner surface 53c of the first inner diameter protrusion 53 and the inner surface 55c of the second inner diameter protrusion 55 are arranged so that they are substantially parallel to each other (substantially perpendicular to the axial direction of the seal ring 50). ), are placed opposite each other. Note that the first inner diameter side protrusion 53 and the second inner diameter side protrusion 55 have a shape that is line symmetrical with respect to the axial center line S (described later) of the seal ring 50, and the inner diameter side protrusion 51a of the base portion 51 The protrusion height from the top is also the same.
 以上まとめると、この実施形態における内径側突部53,55は、概ね、頂部53a,55aから、基部51の内径面51aに向けて、一側面がほぼ垂直で他側面が次第に幅広となる、略直角三角形の山形状をなした断面形状を呈している。 In summary, the inner diameter protrusions 53 and 55 in this embodiment generally have one side substantially perpendicular and the other side gradually becoming wider from the tops 53a and 55a toward the inner diameter surface 51a of the base 51. It has a cross-sectional shape in the shape of a right triangular mountain.
 また、第1内径側突部53の内側面53cと、基部51の内径面51aとの境界部分(隅部分)、及び、第2内径側突部55の内側面55cと、基部51の内径面51aとの境界部分(隅部分)には、R状をなした隅肉部53d,55dがそれぞれ形成されている。 Also, the boundary portion (corner portion) between the inner surface 53c of the first inner diameter side protrusion 53 and the inner diameter surface 51a of the base 51, and the inner surface 55c of the second inner diameter side protrusion 55 and the inner diameter surface of the base 51. R-shaped fillet portions 53d and 55d are formed at the boundary portions (corner portions) with 51a, respectively.
 一方、外径側突部57は、基部51の外径面51bであって、その軸方向の中央位置から突出しており、基部51の外径面51bから最も突出した頂部57aと、軸方向の一端側に位置する外側面57bと、軸方向の他端側に位置する外側面57cとを有している。 On the other hand, the outer diameter side protrusion 57 is the outer diameter surface 51b of the base 51, and protrudes from the center position in the axial direction. It has an outer surface 57b located at one end and an outer surface 57c located at the other end in the axial direction.
 また、外径側突部57の頂部57aは、円弧曲面状をなすように丸みを帯びた形状となっている。この外径側突部57の頂部57aが、シリンダー20の内周面に常時当接して、シリンダー20の内周面に圧接するようになっている。なお、上記の「常時」とは、ピストン40が静止した状態、ピストン40がダンパー制動方向F1に移動した状態、ピストン40がダンパー戻り方向F2に移動した状態の、ピストン40がシリンダー20内にて採りうる全ての状態を意味する(以下の説明でも同様)。 Further, the top portion 57a of the outer diameter side protrusion 57 has a rounded shape to form an arcuate curved surface. The top portion 57a of the outer diameter protrusion 57 is always in contact with the inner circumferential surface of the cylinder 20 and is in pressure contact with the inner circumferential surface of the cylinder 20. Note that the above-mentioned "always" means that the piston 40 is in the cylinder 20 when the piston 40 is stationary, when the piston 40 moves in the damper braking direction F1, and when the piston 40 moves in the damper return direction F2. It means all possible states (the same applies in the following explanation).
 更に、外径側突部57の両外側面57b,57cは、基部51の外径面51bに近接するにつれて、外径側突部57を次第に幅広とする傾斜面をなしている。すなわち、この外径側突部57は、その頂部57aから基部51の外径面51bに向けて次第に幅広となる、略正三角形の山形状(裾広がり形状ともいえる)をなした断面形状を呈している。なお、外径側突部57の両外側面57b,57cは、シールリング50の軸中心線Sに対して線対称となるように傾斜している。 Furthermore, both outer surfaces 57b and 57c of the outer diameter protrusion 57 form inclined surfaces that gradually make the outer diameter protrusion 57 wider as they approach the outer diameter surface 51b of the base 51. That is, the outer diameter side protrusion 57 has a cross-sectional shape that gradually becomes wider from the apex 57a toward the outer diameter surface 51b of the base 51, and has a substantially equilateral triangular mountain shape (which can also be called a widening shape). ing. Note that both outer side surfaces 57b and 57c of the outer diameter side protrusion 57 are inclined so as to be line symmetrical with respect to the axial center line S of the seal ring 50.
 また、外径側突部57の両外側面57b,57cと、基部51の外径面51bとの境界部分(隅部分)には、R状をなした隅肉部57d,57dがそれぞれ形成されている。 Furthermore, R-shaped fillet portions 57d and 57d are formed at the boundary portions (corner portions) between both outer side surfaces 57b and 57c of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base portion 51, respectively. ing.
 以上説明したシールリング50は、その全体が、軸方向の中心を通る軸中心線S(シールリング50の軸方向に直交し且つ外径側突部57の頂部57aを通る線)に対して、線対称となる断面形状をなしている(図5参照)。また、シールリング50を構成する各部分、すなわち、基部51、内径側突部53,55、外径側突部57は、全て一体形成されている。 The entirety of the seal ring 50 described above has the following characteristics with respect to the axial center line S passing through the axial center (a line perpendicular to the axial direction of the seal ring 50 and passing through the top 57a of the outer diameter side protrusion 57). It has a line-symmetrical cross-sectional shape (see FIG. 5). Further, each part constituting the seal ring 50, that is, the base portion 51, the inner diameter side protrusions 53, 55, and the outer diameter side protrusion 57 are all integrally formed.
 そして、このシールリング50においては、内径側突部53,55のうち、少なくとも1個が環状溝45の底面45aに当接し、外径側突部57は、基部51の外径面51bであって、軸方向に隣接する内径側突部53,55の頂部53a,55aどうしの間に対応する位置に、外径側突部57の頂部57aが配置されるように、環状に突出する構成となっている。言い換えれば、外径側突部57は、その頂部57aが、内径側突部53,55の頂部53a,55aに対して、シールリング50の軸方向に重ならずに、位置ずれした位置となるように設けられている。 In this seal ring 50, at least one of the inner protrusions 53 and 55 is in contact with the bottom surface 45a of the annular groove 45, and the outer protrusion 57 is in contact with the outer diameter surface 51b of the base 51. The outer protrusion 57 has an annularly protruding structure such that the apex 57a of the outer protrusion 57 is disposed at a corresponding position between the apexes 53a and 55a of the inner protrusions 53 and 55 adjacent in the axial direction. It has become. In other words, the top 57a of the outer protrusion 57 does not overlap in the axial direction of the seal ring 50, but is shifted from the top 53a, 55a of the inner protrusion 53, 55. It is set up like this.
 また、外径側突部57は、2個の内径側突部53,55の頂部53a,55aどうしの中間に対応する位置(頂部53aと頂部55aとの間の位置)に、外径側突部57の頂部57aが配置されるように設けられている。 Further, the outer diameter side protrusion 57 has an outer diameter side protrusion at a position corresponding to the middle between the tops 53a and 55a of the two inner diameter side protrusions 53 and 55 (a position between the top 53a and the top 55a). The top portion 57a of the portion 57 is disposed.
 更に、軸方向に隣接する内径側突部53,55の内側面53c,55cは、外径側突部57の頂部57aよりも軸方向の外側に位置しており、外径側突部57の両外側面57b,57cどうしの幅W2は、軸方向に隣接する内径側突部53,55の頂部53a,55aどうしの間隔W3よりも小さく形成されている。 Further, the inner surfaces 53c and 55c of the axially adjacent inner diameter side protrusions 53 and 55 are located on the outer side in the axial direction than the top 57a of the outer diameter side protrusion 57. The width W2 between the outer surfaces 57b and 57c is smaller than the distance W3 between the tops 53a and 55a of the axially adjacent inner projections 53 and 55.
 なお、外径側突部57の外側面57b,57cどうしの幅W2とは、外側面57bの基端から連続した隅肉部57dと基部51の外径面51bとが交差する箇所P1から、外側面57cに連続した隅肉部57dと基部51の外径面51bとが交差する箇所P2までの長さを意味する。すなわち、外径側突部57の幅とは、両外側面57b,57cに連設された隅肉部57d,57dの広がった部分を含む概念である。 Note that the width W2 between the outer surfaces 57b and 57c of the outer diameter side protrusion 57 is defined as the width W2 from the point P1 where the fillet 57d continuous from the base end of the outer surface 57b and the outer diameter surface 51b of the base 51 intersect, It means the length up to a point P2 where the fillet portion 57d continuous to the outer surface 57c and the outer diameter surface 51b of the base portion 51 intersect. That is, the width of the outer diameter side protrusion 57 is a concept that includes the widened portions of the fillets 57d, 57d that are connected to both the outer side surfaces 57b, 57c.
 また、環状溝45にシールリング50を装着した状態で、ピストン40がシリンダー20内に挿入されると、環状溝45の底面45aに内径側突部53,55が当接したシールリング50の外径側突部57が、シリンダー20の内周面に押圧されて、図7や図8に示すようにシールリング50が撓み変形するようになっている。 Further, when the piston 40 is inserted into the cylinder 20 with the seal ring 50 attached to the annular groove 45, the outer surface of the seal ring 50 with the inner diameter protrusions 53 and 55 in contact with the bottom surface 45a of the annular groove 45 The radial protrusion 57 is pressed against the inner circumferential surface of the cylinder 20, so that the seal ring 50 is bent and deformed as shown in FIGS. 7 and 8.
 この実施形態の場合、上記のように、ピストン40がシリンダー20内に挿入され、シリンダー20の内周面に圧接した外径側突部57が、シリンダー20の内周面に押圧されることで、基部51の、外径側突部57の両側部分51e,51eが、シールリング50の径方向内方にやや湾曲するように撓み変形し(図7参照)、これに伴って、内径側突部53,55が、シールリング50の軸方向両端部側に広がるように撓み変形する。すなわち、内径側突部53,55の外側面53b,55bが、環状溝45の内面(各側壁部41,42の内面41a,42a)の面方向に近接するように変形すると共に、内径側突部53,55の内側面53c,55cどうしが、互いに広がるように変形することで、一対の内径側突部53,55が、シールリング50の軸方向両端部側に広がるように撓み変形する。 In the case of this embodiment, as described above, the piston 40 is inserted into the cylinder 20, and the outer diameter side protrusion 57 that is in pressure contact with the inner peripheral surface of the cylinder 20 is pressed against the inner peripheral surface of the cylinder 20. , both side portions 51e, 51e of the outer diameter side protrusion 57 of the base portion 51 are bent and deformed so as to curve slightly inward in the radial direction of the seal ring 50 (see FIG. 7), and accordingly, the inner diameter side protrusion The portions 53 and 55 are flexibly deformed so as to expand toward both ends of the seal ring 50 in the axial direction. That is, the outer surfaces 53b, 55b of the inner diameter side protrusions 53, 55 are deformed so as to approach the inner surface of the annular groove 45 (the inner surfaces 41a, 42a of each side wall portion 41, 42), and the inner diameter side protrusions By deforming the inner surfaces 53c and 55c of the portions 53 and 55 so as to spread out from each other, the pair of inner diameter side protrusions 53 and 55 are deflected and deformed so as to spread toward both ends of the seal ring 50 in the axial direction.
 また、この実施形態においては、環状溝45にシールリング50が装着される前の、シールリング50の自由状態における、外径側突部57の、基部51の外径面51bからの突出高さ(外径側突部57の頂部57aと基部51の外径面51bとの長さ)をHとし、シールリング自由状態における、内径側突部53,55の頂部53a,55aと、外径側突部57の頂部57aとの、径方向における長さをL1とし、シリンダー20の内周面と、環状溝45の、内径側突部53,55が当接する底面45aとの長さをL2としたとき、H>L1-L2となるように設定されている。 Furthermore, in this embodiment, the protrusion height of the outer diameter side protrusion 57 from the outer diameter surface 51b of the base portion 51 in the free state of the seal ring 50 before the seal ring 50 is installed in the annular groove 45 is (The length between the top 57a of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base 51) is H, and when the seal ring is free, the tops 53a, 55a of the inner diameter side protrusions 53, 55 and the outer diameter side Let L1 be the length in the radial direction between the top 57a of the protrusion 57 and L2 be the length between the inner circumferential surface of the cylinder 20 and the bottom surface 45a of the annular groove 45, which the inner protrusions 53 and 55 abut. When this happens, the setting is such that H>L1-L2.
 更にこの実施形態の場合、図5に示すように、上記Hと、シリンダー20の内周面に対する外径側突部57のラップ量R1と、環状溝45の底面45aに対する内径側突部53,55のラップ量R2との関係が、以下のように設定されている。 Furthermore, in the case of this embodiment, as shown in FIG. 55 and the wrap amount R2 is set as follows.
 すなわち、図5に示すように、シールリング自由状態における外径側突部57の頂部57aと、環状溝45にシールリング50を装着した状態におけるシリンダー内周面に圧接する外径側突部57の頂部57a(図5の二点鎖線参照)との変位量を、シリンダー20の内周面に対する外径側突部57のラップ量R1とする。また、シールリング自由状態における内径側突部53,55の頂部53a,55aと、環状溝45にシールリング50を装着した状態における環状溝底面に当接する内径側突部53,55の頂部53a,55a(図5の二点鎖線参照)との変位量を、環状溝45の底面45aに対する内径側突部53,55のラップ量R2とする。このようにした場合、H>R1+R2となるように設定されている。 That is, as shown in FIG. 5, the top 57a of the outer diameter side protrusion 57 in the seal ring free state and the outer diameter side protrusion 57 in pressure contact with the inner peripheral surface of the cylinder when the seal ring 50 is attached to the annular groove 45. The displacement amount with respect to the top portion 57a (see the two-dot chain line in FIG. 5) is defined as the wrap amount R1 of the outer diameter side protrusion 57 with respect to the inner circumferential surface of the cylinder 20. Furthermore, the top portions 53a, 55a of the inner diameter side protrusions 53, 55 in the seal ring free state, and the top portions 53a, 53a of the inner diameter side protrusions 53, 55 that contact the bottom surface of the annular groove when the seal ring 50 is attached to the annular groove 45, 55a (see the two-dot chain line in FIG. 5) is defined as the overlap amount R2 of the inner diameter side protrusions 53, 55 with respect to the bottom surface 45a of the annular groove 45. In this case, the setting is such that H>R1+R2.
 次に、ピストン40がダンパー制動方向F1に移動するとき、及び、ダンパー戻り方向F2に移動するときの、環状溝45内におけるシールリング50の動作について説明する。 Next, the operation of the seal ring 50 within the annular groove 45 when the piston 40 moves in the damper braking direction F1 and when the piston 40 moves in the damper return direction F2 will be described.
 ピストン40が静止した状態では、シールリング50は、外径側突部57の頂部57aが、シリンダー20の内周面に圧接すると共に、内径側突部53,55の頂部53a,55aが環状溝45の底面45aに当接した状態で、環状溝45内にシールリング50が配置されている。この場合、シールリング50は、図7や図8に示すように、図5に示すシールリング自由状態から変形した状態で、シリンダー20内に配置されている。 When the piston 40 is stationary, the seal ring 50 has the top 57a of the outer protrusion 57 in pressure contact with the inner circumferential surface of the cylinder 20, and the tops 53a and 55a of the inner protrusion 53 and 55 in the annular groove. A seal ring 50 is disposed within the annular groove 45 so as to be in contact with the bottom surface 45 a of the seal ring 45 . In this case, as shown in FIGS. 7 and 8, the seal ring 50 is disposed within the cylinder 20 in a deformed state from the seal ring free state shown in FIG.
 この状態から、ピストン40がダンパー制動方向F1に移動すると、外径側突部57に、シリンダー20の内周面から、ダンパー制動方向F1とは反対の摩擦力が作用するので、同摩擦力によってシールリング50がダンパー戻り方向F2側に押される。その結果、図7に示すように、シールリング50の基部51の軸方向の他端面51dが、環状溝45の軸方向他端側の内面(第2側壁部42の内面42a)に当接する。すると、環状溝45の軸方向他端側の内面と基部51の他端面51dとの隙間がシールされると共に、シリンダー20の内周面とシールリング50の外周面との隙間もシールされ、且つ、一対の切欠き溝48,48の、第2側壁部42側の開口がそれぞれ閉塞されるので、シリンダー20内の第1室V1が減圧されて、ダンパー制動力が発揮される。 When the piston 40 moves in the damper braking direction F1 from this state, a frictional force opposite to the damper braking direction F1 acts on the outer diameter side protrusion 57 from the inner peripheral surface of the cylinder 20. The seal ring 50 is pushed toward the damper return direction F2. As a result, as shown in FIG. 7, the other axial end surface 51d of the base 51 of the seal ring 50 comes into contact with the inner surface (the inner surface 42a of the second side wall portion 42) on the other axial end side of the annular groove 45. Then, the gap between the inner surface of the annular groove 45 on the other axial end side and the other end surface 51d of the base 51 is sealed, and the gap between the inner circumferential surface of the cylinder 20 and the outer circumferential surface of the seal ring 50 is also sealed. Since the openings of the pair of notched grooves 48, 48 on the second side wall portion 42 side are respectively closed, the first chamber V1 in the cylinder 20 is depressurized and damper braking force is exerted.
 一方、ピストン40がダンパー戻り方向F2に移動すると、外径側突部57に、シリンダー20の内周面から、ダンパー戻り方向F2とは反対の摩擦力が作用するので、同摩擦力によってシールリング50がダンパー制動方向F1側に押される。その結果、図8に示すように、シールリング50の基部51の軸方向の一端面51cが、環状溝45の軸方向一端側の内面(第1側壁部41の内面41a)に当接すると共に、基部51の軸方向の他端面51dが、環状溝45の他端側の内面(第2側壁部42の内面42a)から離反する。すると、各切欠き溝48の、第2側壁部42側の開口が開くので、図8の矢印に示すように、シリンダー20内の第1室V1の空気が、各切欠き溝48を通過して、第2室V2へと流出される。その結果、ダンパー制動力が解除されるようになっている。 On the other hand, when the piston 40 moves in the damper return direction F2, a frictional force in the opposite direction to the damper return direction F2 acts on the outer diameter side protrusion 57 from the inner peripheral surface of the cylinder 20. 50 is pushed toward the damper braking direction F1. As a result, as shown in FIG. 8, one axial end surface 51c of the base 51 of the seal ring 50 comes into contact with the inner surface (the inner surface 41a of the first side wall 41) on the one axial end side of the annular groove 45. The other axial end surface 51d of the base portion 51 is separated from the inner surface on the other end side of the annular groove 45 (the inner surface 42a of the second side wall portion 42). Then, the opening of each notch groove 48 on the second side wall portion 42 side opens, so that the air in the first chamber V1 in the cylinder 20 passes through each notch groove 48, as shown by the arrow in FIG. Then, it flows out into the second chamber V2. As a result, the damper braking force is released.
 (変形例)
 本発明におけるダンパー装置を構成する、シリンダー、ロッド、ピストン、シールリング等の形状や構造は、上記態様に限定されるものではない。
(Modified example)
The shapes and structures of the cylinder, rod, piston, seal ring, etc. that constitute the damper device in the present invention are not limited to the above embodiments.
 この実施形態のシリンダー20の壁部21は、略薄型筒状をなしているが、シリンダーの壁部としては、例えば、略角筒状にしたり、略円筒状にしたりしてもよい。この場合、ロッドや、ピストン、シールリング、シールキャップ、外れ防止キャップ等も、シリンダーの壁部に対応する形状とすることが好ましい。 Although the wall portion 21 of the cylinder 20 in this embodiment has a substantially thin cylindrical shape, the wall portion of the cylinder may have a substantially rectangular tube shape or a substantially cylindrical shape, for example. In this case, it is preferable that the rod, piston, seal ring, seal cap, detachment prevention cap, etc. also have a shape that corresponds to the wall of the cylinder.
 また、この実施形態のシリンダー20は、軸方向の他端部側に端部壁25が配置されて閉塞されているが、例えば、シリンダーの他端部に配置した端部壁に、貫通孔を形成して、この貫通孔をシールキャップで開閉する構造としてもよい。 Further, the cylinder 20 of this embodiment is closed with an end wall 25 disposed at the other end in the axial direction, but for example, a through hole is formed in the end wall disposed at the other end of the cylinder. It is also possible to form a structure in which the through hole is opened and closed by a seal cap.
 更に、この実施形態のロッド30は、角柱状の軸部31を有しているが、ロッドとしては、例えば、軸部と、その両側に複数のリブを介して配設された一対の側壁とからなる構造としたり、長板状や円柱状等をなした軸部からなる構造としたりしてもよく、ピストンが連設可能であればよい。 Further, the rod 30 of this embodiment has a prismatic shaft portion 31, but the rod may include, for example, a shaft portion and a pair of side walls disposed on both sides of the shaft portion via a plurality of ribs. It may have a structure consisting of a long plate-like or cylindrical shaft, as long as pistons can be connected in series.
 また、この実施形態のピストン40における環状溝45は、その底面45aが、ピストン40の軸方向に対して平行となっているが、環状溝としては、例えば、底面が傾斜していたり段状をなしていたりしてもよい。 Further, the annular groove 45 in the piston 40 of this embodiment has a bottom surface 45a that is parallel to the axial direction of the piston 40, but the annular groove may have an inclined bottom surface or a stepped shape. It may be done without.
 更に、この実施形態のシールリング50は、内径面51aの軸方向両端部から内径側突部53,55が突設されており、2個の内径側突部53,55を有しているが、内径側突部としては、3個以上であってもよい。また、この実施形態の場合、内径側突部53,55の両方が、環状溝45の底面45aに当接するようになっているが、少なくとも1個の内径側突部が、環状溝の底面に当接すればよい。 Furthermore, the seal ring 50 of this embodiment has two inner diameter side protrusions 53 and 55, which are provided so as to protrude from both axial ends of the inner diameter surface 51a. There may be three or more protrusions on the inner diameter side. Further, in the case of this embodiment, both of the inner diameter side protrusions 53 and 55 come into contact with the bottom surface 45a of the annular groove 45, but at least one inner diameter side protrusion comes into contact with the bottom surface of the annular groove. Just make contact.
 更に、内径側突部53,55は、その外側面53b,55bが、基部51の軸方向の両端面51c,51dに対して段差のない面一形状となっているが、内径側突部の外側面を、基部の軸方向両端面に対して、軸方向内側に配置してもよい(段差を有するように設けてもよい)。 Further, the outer surfaces 53b, 55b of the inner diameter side protrusions 53, 55 are flush with the axial end surfaces 51c, 51d of the base 51 without any step. The outer surface may be arranged axially inward with respect to both axial end surfaces of the base (may be provided with a step).
 また、内径側突部53,55は、その内側面53c,55cが互いに平行となっているが、一方又は両方の内側面が、ピストンの軸方向に対して傾斜していてよい。更に、内径側突部の外側面を、ピストンの軸方向に対して直交させたり、或いは、互いに離反する方向に傾斜させたりしてもよい。 Furthermore, although the inner surfaces 53c and 55c of the inner diameter protrusions 53 and 55 are parallel to each other, one or both inner surfaces may be inclined with respect to the axial direction of the piston. Furthermore, the outer surfaces of the inner diameter protrusions may be perpendicular to the axial direction of the piston, or may be inclined in directions away from each other.
 また、外径側突部57の両外側面57b,57cは、シールリング50の軸中心線Sに対して線対称となるように傾斜しているが、例えば、外径側突部の両外側面を、シールリングの軸方向に対して互いに異なる傾斜角度としたり、ピストンの軸方向に対して直交させたりしてもよい。 Further, both outer surfaces 57b and 57c of the outer diameter side protrusion 57 are inclined so as to be line symmetrical with respect to the axial center line S of the seal ring 50. The side surfaces may have different inclination angles relative to the axial direction of the seal ring, or may be perpendicular to the axial direction of the piston.
 更に、この実施形態においては、ピストン40がシリンダー20の端部壁25から離反する方向に移動したとき(ピストン40がダンパー制動方向F1に移動したとき)に、第1室V1の減圧による制動力が作用し、ピストン40がシリンダー20の端部壁25に近接する方向に移動したとき(ピストン40がダンパー戻り方向F2に移動したとき)に、上記制動力が解除されるように構成されている。ただし、これとは逆に、ピストン40がシリンダー20の端部壁25に近接する方向に移動したときに、ダンパー制動力が作用し、ピストン40がシリンダー20の端部壁25から離反する方向に移動したときに、ダンパー制動力が解除されるように構成してもよい。 Furthermore, in this embodiment, when the piston 40 moves in a direction away from the end wall 25 of the cylinder 20 (when the piston 40 moves in the damper braking direction F1), the braking force due to the reduced pressure in the first chamber V1 is reduced. is applied and the piston 40 moves in a direction approaching the end wall 25 of the cylinder 20 (when the piston 40 moves in the damper return direction F2), the braking force is released. . However, on the contrary, when the piston 40 moves in the direction approaching the end wall 25 of the cylinder 20, the damper braking force acts, and the piston 40 moves in the direction away from the end wall 25 of the cylinder 20. The damper braking force may be released when the vehicle moves.
 また、この実施形態においては、一方の部材を、インストルメントパネルの収容部等の固定体とし、他方の部材を、グローブボックスやリッド等の開閉体としたが、一対の部材は互いに近接離反可能なものであれば、特に限定はされない。 Furthermore, in this embodiment, one member is used as a fixed body such as an instrument panel accommodating part, and the other member is used as an opening/closing body such as a glove box or a lid, but the pair of members can be moved close to and separated from each other. There is no particular limitation as long as it is.
 更に、この実施形態においては、シリンダー20内の、シールリング50よりロッド30の挿入方向側に、空気室(第1室V1)が形成されているが、シリンダー内の、ロッド挿入方向とは反対側に空気室を設けてもよい。例えば、シリンダーの端部壁に排気孔を形成し、この排気孔の周縁に、排気孔を開閉可能とするシールキャップを装着する。更に、シリンダーの一端部の開口部に装着されるキャップを、開口部周縁をシール可能な構造とすると共に、ロッド挿通口と、該ロッド挿通口に挿通されたロッドとの隙間をシール可能な構造として、シリンダー内の、ロッド挿入方向とは反対側に、密閉された空気室を設ける。そして、ピストンがシリンダーの端部壁から離反する方向に移動したとき(ロッド挿入方向とは反対側に移動したとき)、空気室が加圧されることで、ダンパー制動力が発揮されるようになっている。なお、ピストンがシリンダーの端部壁に近接する移動したとき(ロッド挿入方向側に移動したとき)は、シールキャップが排気孔を開いて、空気室内の空気が排気されて、ダンパー制動力が解除される。 Furthermore, in this embodiment, an air chamber (first chamber V1) is formed in the cylinder 20 on the side in the insertion direction of the rod 30 from the seal ring 50, but on the opposite side of the rod insertion direction in the cylinder. An air chamber may be provided on the side. For example, an exhaust hole is formed in the end wall of the cylinder, and a seal cap that allows the exhaust hole to be opened and closed is attached to the periphery of the exhaust hole. Furthermore, the cap attached to the opening at one end of the cylinder has a structure that can seal the periphery of the opening and also seal the gap between the rod insertion port and the rod inserted into the rod insertion port. As such, a sealed air chamber is provided inside the cylinder on the opposite side of the rod insertion direction. Then, when the piston moves away from the end wall of the cylinder (when it moves in the opposite direction to the direction in which the rod is inserted), the air chamber is pressurized, so that damper braking force is exerted. It has become. Note that when the piston moves close to the end wall of the cylinder (moves in the rod insertion direction), the seal cap opens the exhaust hole, the air in the air chamber is exhausted, and the damper braking force is released. be done.
 (作用効果)
 次に、上記構成からなるダンパー装置10の作用効果について説明する。
(effect)
Next, the effects of the damper device 10 having the above configuration will be explained.
 このダンパー装置10は、一方の部材(固定体等)に対して、他方の部材(開閉体等)が互いに近接した状態では、シリンダー20内でピストン40が静止した状態となっている。この状態では、外径側突部57の頂部57aがシリンダー20の内周面に当接すると共に、内径側突部53,55の頂部53a,55aが、環状溝45の底面45aに当接した状態で、環状溝45内にシールリング50が配置されている。 In this damper device 10, the piston 40 is stationary within the cylinder 20 when one member (fixed body, etc.) and the other member (opening/closing body, etc.) are close to each other. In this state, the top 57a of the outer protrusion 57 is in contact with the inner peripheral surface of the cylinder 20, and the tops 53a, 55a of the inner protrusions 53, 55 are in contact with the bottom 45a of the annular groove 45. A seal ring 50 is disposed within the annular groove 45.
 上記状態から、一方の部材に対して、他方の部材が離反する方向に移動すると(固定体から開閉体が開いた場合)、ピストン40が、シリンダー20内をダンパー制動方向F1に移動すると共に、ロッド30がシリンダー20の開口部23側から引き出されていく。すると、上述した段落0059で説明したように、シリンダー20内の第1室V1が減圧されるので、ピストン40にダンパー制動力が付与されて、一方の部材に対して他方の部材をゆっくりと移動させることができる(固定体から開閉体をゆっくりと開くことができる)。 From the above state, when one member moves in a direction away from the other member (when the opening/closing body opens from the fixed body), the piston 40 moves within the cylinder 20 in the damper braking direction F1, and The rod 30 is pulled out from the opening 23 side of the cylinder 20. Then, as explained in paragraph 0059 above, the pressure in the first chamber V1 in the cylinder 20 is reduced, so a damper braking force is applied to the piston 40, causing one member to slowly move relative to the other member. (the opening/closing body can be opened slowly from the fixed body).
 また、一方の部材に対して、他方の部材を近接する方向に移動させると(固定体に対して開閉体を閉じる場合)、ピストン40が、シリンダー20内をダンパー戻り方向F2に移動すると共に、ロッド30がシリンダー20内に押し込まれていく。 Furthermore, when one member moves in a direction closer to the other member (when closing the opening/closing body with respect to the fixed body), the piston 40 moves within the cylinder 20 in the damper return direction F2, and The rod 30 is pushed into the cylinder 20.
 すると、外径側突部57に、シリンダー20の内周面から、ダンパー戻り方向F2とは反対の摩擦力が作用するので、同摩擦力によってシールリング50がダンパー制動方向F1側に押され、上述した段落0060で説明したように、各切欠き溝48の、第2側壁部42側の開口が開き、第1室V1の空気が、各切欠き溝48を通過して第2室V2へと流出されて、ダンパー制動力が解除される。 Then, a frictional force opposite to the damper return direction F2 acts on the outer diameter protrusion 57 from the inner circumferential surface of the cylinder 20, so the seal ring 50 is pushed in the damper braking direction F1 by the frictional force. As explained in paragraph 0060 above, the opening of each notch groove 48 on the second side wall portion 42 side opens, and the air in the first chamber V1 passes through each notch groove 48 to the second chamber V2. and the damper braking force is released.
 そして、環状溝45にシールリング50を装着した状態で、ピストン40がシリンダー20内に挿入されると、シリンダー20の内周面に圧接した外径側突部57が、シリンダー20の内周面に押圧されるが、同時に、外径側突部57を介してシリンダー20の内周面に、押圧力に対する反力F3が作用するようになっている。 When the piston 40 is inserted into the cylinder 20 with the seal ring 50 attached to the annular groove 45, the outer diameter protrusion 57 that is in pressure contact with the inner circumferential surface of the cylinder 20 is pressed against the inner circumferential surface of the cylinder 20. However, at the same time, a reaction force F3 against the pressing force acts on the inner circumferential surface of the cylinder 20 via the outer diameter side protrusion 57.
 このとき、このダンパー装置10においては、内径側突部53,55のうち、少なくとも1個が環状溝45の底面45aに当接し、外径側突部57は、基部51の外径面51bであって、軸方向に隣接する内径側突部53,55の頂部53a,55aどうしの間に対応する位置に、外径側突部57の頂部57aが配置されるように、環状に突出する構成となっている。 At this time, in this damper device 10, at least one of the inner protrusions 53 and 55 contacts the bottom surface 45a of the annular groove 45, and the outer protrusion 57 contacts the outer diameter surface 51b of the base 51. The structure protrudes annularly so that the apex 57a of the outer protrusion 57 is disposed at a corresponding position between the apexes 53a and 55a of the inner protrusions 53 and 55 adjacent in the axial direction. It becomes.
 そのため、シールリング50が撓み変形しやすくなるので、シリンダー20の内周面に作用する、シールリング50からの反力F3を抑えることができる。すなわち、外径側突部57は、その頂部57aが、内径側突部53,55の頂部53a,55aに対して、シールリング50の軸方向に重ならずに、位置ずれした位置となるように設けられているので、シールリング50の径方向における厚みを小さくすることができ、基部51を撓み変形させやすくすることが可能となり、シリンダー20の内周面に作用する反力F3を抑制することができる。その結果、ピストン40がダンパー戻り方向F2へ移動するときの、ピストン40の操作力を低減することができる。 Therefore, since the seal ring 50 is easily bent and deformed, the reaction force F3 from the seal ring 50 acting on the inner peripheral surface of the cylinder 20 can be suppressed. In other words, the outer diameter side protrusion 57 is arranged so that its apex 57a is shifted from the apex 53a, 55a of the inner diameter side protrusion 53, 55 without overlapping in the axial direction of the seal ring 50. Since the thickness of the seal ring 50 in the radial direction can be reduced, the base portion 51 can be easily bent and deformed, and the reaction force F3 acting on the inner peripheral surface of the cylinder 20 can be suppressed. be able to. As a result, the operating force of the piston 40 when the piston 40 moves in the damper return direction F2 can be reduced.
 また、少なくとも2個の内径側突部53,55によって、シールリング50を安定した姿勢に維持しやすくなり、ピストン40がダンパー制動方向F1に移動するときの、シリンダー20の内周面とシールリング50の外周面との隙間を、しっかりとシールすることができ、所望のダンパー制動力を確実に発揮させることができる。 Moreover, the at least two inner diameter side protrusions 53 and 55 make it easier to maintain the seal ring 50 in a stable posture, and when the piston 40 moves in the damper braking direction F1, the inner peripheral surface of the cylinder 20 and the seal ring 50 can be firmly sealed, and the desired damper braking force can be reliably exerted.
 また、この実施形態においては、内径側突部53,55は、基部51の、軸方向の両端部から、それぞれ突出した2個のものからなり、外径側突部57は、2個の内径側突部53,55の頂部53a,55aどうしの中間に対応する位置(頂部53aと頂部55aとの間の位置)に、外径側突部57の頂部57aが配置されるように設けられている。 Further, in this embodiment, the inner diameter side protrusions 53 and 55 are two pieces that respectively protrude from both ends of the base 51 in the axial direction, and the outer diameter side protrusion 57 is composed of two inner diameter side protrusions. The top 57a of the outer diameter side projection 57 is arranged at a position corresponding to the middle between the tops 53a and 55a of the side projections 53 and 55 (a position between the top 53a and the top 55a). There is.
 上記態様によれば、内径側突部53,55及び外径側突部57が上記のような構造となっているので、シールリング50全体を、軸中心線Sに対して線対称となる形状にしやすくすることができる。その結果、環状溝45にシールリング50を装着する際に、シールリング50に方向性がなくなるので、環状溝45に対するシールリング50の装着作業性を向上させることができる。また、環状溝45に装着されたシールリング50を、より安定した姿勢にさせやすくすることができる。 According to the above aspect, since the inner diameter side protrusions 53, 55 and the outer diameter side protrusion 57 have the above structure, the entire seal ring 50 has a shape that is line symmetrical with respect to the axial center line S. It can be made easier. As a result, when the seal ring 50 is attached to the annular groove 45, there is no directionality in the seal ring 50, so that the workability of attaching the seal ring 50 to the annular groove 45 can be improved. Further, the seal ring 50 attached to the annular groove 45 can be easily held in a more stable posture.
 更に、この実施形態においては、軸方向に隣接する内径側突部53,55の内側面53c,55cは、外径側突部57の頂部57aよりも軸方向の外側に位置しており、外径側突部57の両外側面57b,57cどうしの幅W2は、軸方向に隣接する内径側突部53,55の頂部53a,55aどうしの間隔W3よりも小さく形成されている。 Furthermore, in this embodiment, the inner surfaces 53c, 55c of the axially adjacent inner diameter side protrusions 53, 55 are located axially outer than the top 57a of the outer diameter side protrusion 57, and The width W2 between the outer surfaces 57b and 57c of the radial projection 57 is smaller than the distance W3 between the tops 53a and 55a of the axially adjacent inner radial projections 53 and 55.
 上記態様によれば、軸方向に隣接する内径側突部53,55どうしの隙間(シールリング50の軸方向の隙間)を広く確保しやすくなるので、基部51を撓み変形させやすくすることができ、ピストン40がダンパー戻り方向F2へ移動するときの、ピストン40の操作力を、より低減することができる。 According to the above aspect, it becomes easier to ensure a wide gap between the axially adjacent inner diameter side protrusions 53 and 55 (the axial gap of the seal ring 50), so it becomes easier to bend and deform the base 51. , the operating force of the piston 40 when the piston 40 moves in the damper return direction F2 can be further reduced.
 また、この実施形態においては、環状溝45にシールリング50が装着される前の、シールリング50の自由状態における、外径側突部57の、基部51の外径面51bからの突出高さ(外径側突部57の頂部57aと基部51の外径面51bとの長さ)をHとし、前記自由状態における、内径側突部53,55の頂部53a,55aと、外径側突部57の頂部57aとの、径方向における長さをL1とし、シリンダー20の内周面と、環状溝45の、内径側突部53,55が当接する底面45aとの長さをL2としたとき、H>L1-L2となるように設定されている。 Furthermore, in this embodiment, the protrusion height of the outer diameter side protrusion 57 from the outer diameter surface 51b of the base portion 51 in the free state of the seal ring 50 before the seal ring 50 is installed in the annular groove 45 is (The length between the top 57a of the outer diameter side protrusion 57 and the outer diameter surface 51b of the base 51) is H, and the tops 53a, 55a of the inner diameter side protrusions 53, 55 and the outer diameter side protrusion in the free state are The length in the radial direction between the top portion 57a of the portion 57 is L1, and the length between the inner circumferential surface of the cylinder 20 and the bottom surface 45a of the annular groove 45, which the inner diameter protrusions 53, 55 abut, is L2. At this time, it is set so that H>L1-L2.
 上記態様によれば、環状溝45にシールリング50を装着した状態で、ピストン40をシリンダー20内に挿入したときに、基部51の、外径側の面(外径面51b)が、シリンダー20の内周面に当接することを防止することができ、ピストン40がダンパー戻り方向F2へ移動するときの、ピストン40の操作力を、より一層低減することができる。 According to the above aspect, when the piston 40 is inserted into the cylinder 20 with the seal ring 50 attached to the annular groove 45, the outer diameter side surface (outer diameter surface 51b) of the base portion 51 is attached to the cylinder 20. can be prevented from coming into contact with the inner circumferential surface of the damper, and the operating force of the piston 40 when the piston 40 moves in the damper return direction F2 can be further reduced.
 更に、この実施形態においては、内径側突部のうち、最もダンパー制動方向F1とは反対の戻り方向F2側に位置する内径側突部(第2内径側突部55)の外側面55bは、基部51の、内径面51aから離反するにつれて、軸方向に隣接する他の前記内径側突部に向けて傾斜する形状となっている。 Furthermore, in this embodiment, among the inner diameter side protrusions, the outer surface 55b of the inner diameter side protrusion (second inner diameter side protrusion 55) located closest to the return direction F2 side opposite to the damper braking direction F1, The base portion 51 has a shape that inclines toward the other axially adjacent inner diameter side protrusions as the base portion 51 moves away from the inner diameter surface 51a.
 上記態様によれば、環状溝45にシールリング50を装着した状態で、第2内径側突部55が、基部51の軸方向の他端面51dよりも広がることを防止することができるので、環状溝45の、ダンパー戻り方向F2に位置する内面(第2側壁部42の内面42a)と、シールリング50とのシール性を高めることができる。その結果、ピストン40がダンパー制動方向F1に移動するときに、所望のダンパー制動力を確実に発揮させることができる。 According to the above aspect, when the seal ring 50 is attached to the annular groove 45, it is possible to prevent the second inner diameter side protrusion 55 from expanding beyond the other end surface 51d in the axial direction of the base 51. The sealing performance between the inner surface of the groove 45 located in the damper return direction F2 (the inner surface 42a of the second side wall portion 42) and the seal ring 50 can be improved. As a result, when the piston 40 moves in the damper braking direction F1, a desired damper braking force can be reliably exerted.
 また、この実施形態においては、外径側突部57の両外側面57b,57cは、基部51の外径面51bに近接するにつれて、外径側突部57を次第に幅広とする傾斜面をなしている。 Further, in this embodiment, both outer surfaces 57b and 57c of the outer diameter side protrusion 57 form inclined surfaces that make the outer diameter side protrusion 57 gradually wider as it approaches the outer diameter surface 51b of the base 51. ing.
 上記態様によれば、外径側突部57がいわゆる裾広がり形状となるので、ピストン40がダンパー制動方向F1に移動するときに、シリンダー20の内周面からの摩擦力が外径側突部57に作用しても、外径側突部57を倒れにくくすることができる(変形しにくくすることができる)。その結果、シリンダー20の内周面に対する外径側突部57のシール性を維持しやすくなるので、ダンパー制動力を安定して発揮させることができる。 According to the above aspect, since the outer diameter side protrusion 57 has a so-called flared shape, when the piston 40 moves in the damper braking direction F1, the frictional force from the inner peripheral surface of the cylinder 20 is applied to the outer diameter side protrusion. 57, the outer diameter side protrusion 57 can be made less likely to fall down (or be less likely to deform). As a result, it becomes easier to maintain the sealing performance of the outer diameter side protrusion 57 with respect to the inner circumferential surface of the cylinder 20, so that the damper braking force can be stably exerted.
 また、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で、各種の変形実施形態が可能であり、そのような実施形態も本発明の範囲に含まれる。 Furthermore, the present invention is not limited to the embodiments described above, and various modified embodiments are possible within the scope of the gist of the present invention, and such embodiments are also included within the scope of the present invention. .
10 ダンパー装置
20 シリンダー
23 開口部
30 ロッド
40 ピストン
45 環状溝
45a 底面
50 シールリング
51 基部
53 第1内径側突部
53a 頂部
53b 外側面
53c 内側面
55 第2内径側突部
55а 頂部
55b 外側面
55c 内側面
57 外径側突部
57а 頂部
57b,57c 外側面
60 防止キャップ
10 Damper device 20 Cylinder 23 Opening 30 Rod 40 Piston 45 Annular groove 45a Bottom surface 50 Seal ring 51 Base 53 First inner diameter protrusion 53a Top 53b Outer surface 53c Inner surface 55 Second inner diameter protrusion 55a Top 55b Outer surface 55c Inner surface 57 Outer diameter protrusion 57a Top portions 57b, 57c Outer surface 60 Prevention cap

Claims (6)

  1.  互いに近接離反する一対の部材の間に取付けられ、該一対の部材が近接又は離反するときに制動力を付与するダンパー装置であって、
     一端部に開口部を設けたシリンダーと、
     前記開口部を通して前記シリンダー内に移動可能に挿入されるロッドと、
     前記ロッドに連設され、外周に環状溝を形成したピストンと、
     前記環状溝に装着されて、前記シリンダーの内周面に圧接されるシールリングとを有しており、
     前記シールリングは、
     環状をなし前記環状溝内に配置される基部と、
     前記基部の内径側の面から突出した少なくとも2個の内径側突部と、
     前記基部の外径側の面から突出し、前記シリンダーの内周面に当接する外径側突部とを有しており、
     前記内径側突部のうち、少なくとも1個が前記環状溝の底面に当接し、
     前記外径側突部は、前記基部の外径側の面であって、軸方向に隣接する前記内径側突部の頂部どうしの間に対応する位置に、前記外径側突部の頂部が配置されるように、環状に突出することを特徴とするダンパー装置。
    A damper device that is installed between a pair of members that move closer to each other and applies a braking force when the pair of members move closer to each other or move away from each other,
    a cylinder with an opening at one end;
    a rod movably inserted into the cylinder through the opening;
    a piston connected to the rod and having an annular groove formed on its outer periphery;
    a seal ring installed in the annular groove and pressed against the inner circumferential surface of the cylinder;
    The seal ring is
    a base having an annular shape and disposed within the annular groove;
    at least two protrusions on the inner diameter side protruding from the inner diameter side surface of the base;
    and an outer diameter protrusion that protrudes from the outer diameter side surface of the base and comes into contact with the inner peripheral surface of the cylinder,
    At least one of the inner diameter protrusions abuts the bottom surface of the annular groove,
    The outer diameter side protrusion is a surface on the outer diameter side of the base, and the top of the outer diameter side protrusion is located at a position corresponding to between the tops of the inner diameter side protrusions adjacent to each other in the axial direction. A damper device characterized in that it projects in an annular manner so as to be arranged.
  2.  前記内径側突部は、前記基部の、軸方向の両端部から、それぞれ突出した2個のものからなり、
     前記外径側突部は、2個の前記内径側突部の頂部どうしの中間に対応する位置に、前記外径側突部の頂部が配置されるように設けられている請求項1記載のダンパー装置。
    The inner diameter side protrusions are composed of two protrusions respectively protruding from both ends of the base in the axial direction,
    2. The outer diameter side protrusion is provided such that the top of the outer diameter side protrusion is located at a position corresponding to the middle of the tops of the two inner diameter side protrusions. damper device.
  3.  軸方向に隣接する前記内径側突部の内側面は、前記外径側突部の頂部よりも軸方向の外側に位置しており、
     前記外径側突部の両外側面どうしの幅は、軸方向に隣接する前記内径側突部の頂部どうしの間隔よりも小さく形成されている請求項1又は2記載のダンパー装置。
    The inner surface of the inner diameter side protrusion adjacent to each other in the axial direction is located on the outer side in the axial direction than the top of the outer diameter side protrusion,
    3. The damper device according to claim 1, wherein a width between both outer surfaces of the outer diameter side protrusion is smaller than an interval between the tops of the inner diameter side protrusions adjacent in the axial direction.
  4.  前記環状溝に前記シールリングが装着される前の、前記シールリングの自由状態における、前記外径側突部の、前記基部の外径側の面からの突出高さをHとし、
     前記自由状態における、前記内径側突部の頂部と、前記外径側突部の頂部との、径方向における長さをL1とし、
     前記シリンダーの内周面と、前記環状溝の、前記内径側突部が当接する底面との長さをL2としたとき、
     H>L1-L2となるように設定されている請求項1~3のいずれか1つに記載のダンパー装置。
    H is the protrusion height of the outer diameter side protrusion from the outer diameter side surface of the base in a free state of the seal ring before the seal ring is installed in the annular groove;
    In the free state, the length in the radial direction of the top of the inner diameter side protrusion and the top of the outer diameter side protrusion is L1,
    When L2 is the length of the inner circumferential surface of the cylinder and the bottom surface of the annular groove that the inner diameter side protrusion comes into contact with,
    The damper device according to any one of claims 1 to 3, wherein the damper device is set so that H>L1-L2.
  5.  前記内径側突部のうち、最もダンパー制動方向とは反対の戻り方向側に位置する前記内径側突部の外側面は、前記基部の、内径側の面から離反するにつれて、軸方向に隣接する他の前記内径側突部に向けて傾斜する請求項1~4のいずれか1つに記載のダンパー装置。 Among the inner diameter side protrusions, the outer surface of the inner diameter side protrusion located closest to the return direction opposite to the damper braking direction becomes adjacent to the inner diameter side surface in the axial direction as it moves away from the inner diameter side surface of the base. The damper device according to any one of claims 1 to 4, wherein the damper device is inclined toward the other inner diameter side protrusion.
  6.  前記外径側突部の両外側面は、前記基部の外径側の面に近接するにつれて、前記外径側突部を次第に幅広とする傾斜面をなしている請求項1~5のいずれか1つに記載のダンパー装置。 Any one of claims 1 to 5, wherein both outer surfaces of the outer diameter side protrusion form inclined surfaces that gradually widen the outer diameter side protrusion as it approaches the outer diameter side surface of the base. 1. The damper device according to item 1.
PCT/JP2023/008513 2022-03-10 2023-03-07 Damper device WO2023171653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022037557 2022-03-10
JP2022-037557 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171653A1 true WO2023171653A1 (en) 2023-09-14

Family

ID=87935182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008513 WO2023171653A1 (en) 2022-03-10 2023-03-07 Damper device

Country Status (1)

Country Link
WO (1) WO2023171653A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484971U (en) * 1990-11-30 1992-07-23
JPH061930U (en) * 1992-06-15 1994-01-14 イナバゴム株式会社 Seal member for piston

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484971U (en) * 1990-11-30 1992-07-23
JPH061930U (en) * 1992-06-15 1994-01-14 イナバゴム株式会社 Seal member for piston

Similar Documents

Publication Publication Date Title
WO2010131682A1 (en) Air damper
WO2023171653A1 (en) Damper device
US11459812B2 (en) Damper
JP6934108B2 (en) Damper
JP2023075322A (en) gasket
JP2007211927A (en) Boots for constant velocity universal joint
JP7134206B2 (en) Seal ring
JP7203970B2 (en) sealing device
WO2023171654A1 (en) Damper device
WO2020255879A1 (en) Air damper
WO2023171655A1 (en) Damper device
JP2000145754A (en) Ball joint
WO2020066966A1 (en) Temporary holding structure for gasket
JP7462546B2 (en) Damper
JP2020190271A (en) Seal device
WO2023182215A1 (en) Damper device
WO2023181646A1 (en) Damper device
WO2018174024A1 (en) Air damper
JP7206493B2 (en) damper
JP7431095B2 (en) Sleeve connection structure and hose joint manufacturing method
JP7344913B2 (en) grommet
JP7450214B2 (en) Annular seal member and seal structure
JP7094939B2 (en) Fuel adapter structure
JP3261270B2 (en) Sealing device
WO2022181353A1 (en) Damper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766829

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)