WO2023171598A1 - プローブを使用したオリゴヌクレオチドの検出方法 - Google Patents

プローブを使用したオリゴヌクレオチドの検出方法 Download PDF

Info

Publication number
WO2023171598A1
WO2023171598A1 PCT/JP2023/008243 JP2023008243W WO2023171598A1 WO 2023171598 A1 WO2023171598 A1 WO 2023171598A1 JP 2023008243 W JP2023008243 W JP 2023008243W WO 2023171598 A1 WO2023171598 A1 WO 2023171598A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
probe
target oligonucleotide
sequence
nucleotide
Prior art date
Application number
PCT/JP2023/008243
Other languages
English (en)
French (fr)
Inventor
雅子 大澤
風和 小川
拓郎 秋谷
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Publication of WO2023171598A1 publication Critical patent/WO2023171598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes

Definitions

  • the present invention relates to a method for detecting or quantifying oligonucleotides with high sensitivity, excellent specificity, and quantitative performance.
  • Nucleic acid drugs induce sequence-specific gene silencing, and have attracted much attention in recent years as new therapeutic agents for various diseases that have been difficult to treat, including genetic diseases and intractable diseases. (Non-patent Document 1, Ando 2012).
  • PK/PD pharmacokinetic/pharmacodynamic screening tests in the exploration stage of drug development, in safety tests, pharmacology tests, and pharmacokinetic tests in the non-clinical stage, and in the clinical stage, animals or humans to which drugs are administered
  • the drug concentration in the biological sample is measured.
  • Non-Patent Document 1 Ando 2012
  • Healey et al. reported that a lower limit of quantitation of 0.01 pg/ ⁇ L was achieved using the stem-loop RT-PCR method (Non-patent Document 3, Chen 2005) (Non-Patent Document 2, Healey 2014). ).
  • Yu et al. developed a hybridization/ligation ELISA method (Non-patent Document 4, Yu et al. 2002).
  • a "template” oligonucleotide containing a sequence complementary to the oligonucleotide to be measured and a "ligation probe” are used.
  • the "template” oligonucleotide has a 9mer of additional nucleotides adjacent to the 5' terminal nucleotide of the complementary sequence and has biotin at the 3' end.
  • the "ligation probe” is a 9mer oligonucleotide having a sequence complementary to the additional nucleotide of the 9mer, and has phosphate at the 5' end and digoxigenin at the 3' end. Therefore, when the oligonucleotide to be measured is intact, the intact oligonucleotide and ligation probe will hybridize on the template oligonucleotide without any gaps. Treatment of this hybridization product with ligase joins the intact oligonucleotide and ligation probe. On the other hand, if the oligonucleotide to be measured is metabolized and the 3'-end nucleotide is missing, this linkage does not occur.
  • ligation product is bound to a solid phase using biotin, unreacted ligation probe is washed and removed, and digoxigenin at the 3' end of the immobilized ligation product is detected by ELISA (See Figure 1 of Yu 2002, Non-Patent Document 4).
  • ELISA See Figure 1 of Yu 2002, Non-Patent Document 4.
  • Wei et al. discloses performing S1 nuclease treatment after ligase treatment in order to improve the specificity of the hybridization/ligation ELISA method (Non-Patent Document 5, Wei 2006).
  • the hybridization/ligation ELISA method is complicated and unsuitable for multiplexing because it is necessary to design an optimal ligation probe sequence in consideration of the sequence of the oligonucleotide to be measured.
  • Omori et al. decomposed and removed products derived from metabolites of the target oligonucleotide using S1 nuclease, etc., and the remaining intact target oligonucleotide developed a method for measuring products derived from (Patent Document 1).
  • the target oligonucleotide to be measured is hybridized with a complementary nucleic acid probe (3'-complementary sequence to the target sequence-5'), or the target oligonucleotide to be measured is injected with polyA, etc.
  • first polynucleotide Add any base (first polynucleotide) to this and hybridize with a complementary nucleic acid probe (3'-complementary sequence of target oligonucleotide + complementary sequence of first polynucleotide -5')
  • a complementary nucleic acid probe 3'-complementary sequence of target oligonucleotide + complementary sequence of first polynucleotide -5'
  • the incomplete hybridization products are degraded and removed using a single-strand specific nuclease such as S1 nuclease, and the nucleic acid probe contained in the remaining complete hybridization products is measured.
  • Omori et al.'s method is a method for measuring oligonucleotides that is more sensitive, specific, and quantitative than conventional methods such as hybridization/ligation ELISA, but single-strand-specific methods such as S1 nuclease It is disadvantageous in that it is complicated because it uses nuclease and requires additional incubation time. Furthermore, the Ministry of Health, Labor and Welfare's ⁇ Guidance on conducting non-clinical safety studies for drug clinical trials and manufacturing and marketing approval applications'' states that toxicity studies are required if the cross-reactivity of metabolites exceeds 10%. has been done.
  • the present inventors developed a method that is simple, highly sensitive, quantitative, and metabolite discriminatory. We have developed an excellent method for detecting or quantifying oligonucleotides and completed the present invention.
  • liquid chromatography-mass spectrometry (LC-MS) and HPLC-UV methods can distinguish between metabolites and intact target oligonucleotides, but they suffer from a lack of sensitivity.
  • the problem to be solved by the present invention is to provide a method for measuring oligonucleotides that is simpler, more sensitive, and has excellent specificity and quantitative properties compared to conventional measuring methods.
  • Another problem to be solved by the present invention is to provide a method for measuring oligonucleotides with excellent specificity that can distinguish between the unchanged substance and the metabolite and detect only the unchanged substance. .
  • Patent Document 3 As a method for measuring anti-drug antibodies, a double antigen crosslinking immunoassay method using a capture drug antibody and a tracer drug antibody is known (Patent Document 3).
  • the capture drug antibody and the tracer drug antibody specifically bind to the analyte (anti-drug antibody) contained in the sample, resulting in a triple concentration of capture drug antibody-analyte-tracer drug antibody.
  • a body is formed.
  • the present inventors investigated a hybridization method using a capture probe and an assist probe (see Patent Document 4) as a method for measuring target oligonucleotides in samples, and eventually nucleic acid drugs (hereinafter referred to as CP-AP method for convenience). ).
  • CP-AP method a first nucleic acid probe contained in a capture probe and a second nucleic acid probe contained in an assist probe specifically hybridize to a nucleic acid drug (target oligonucleotide) contained in a sample.
  • a capture probe-nucleic acid drug-assist probe trimer is formed (see Figure 1).
  • the length of the probe chain in signal detection methods based on hybridization is determined by taking into account the efficiency of hybridization between the probe and the target oligonucleotide. , most of them are designed with 15mer or more. Indeed, in the example of US Pat.
  • the oligonucleotide (SEQ ID NO: 5) consisted of a 21-mer oligonucleotide and a 59-mer tag sequence.
  • Patent Document 4 the distinction between the target analyte and its metabolite is not recognized as an issue, and as a result, it is natural that the positional relationship between the defective site of the metabolite and the probe compared to the target analyte is not recognized as an issue. has not been considered.
  • the present inventors have made intensive studies to realize the measurement of oligonucleotides and nucleic acid medicines by the CP-AP method, and have used capture probes and assist probes with short base lengths within a certain range that are not normally considered.
  • nucleic acid drug target oligonucleotide
  • cross-reactivity of metabolites of nucleic acid medicines can be suppressed to a surprisingly low level.
  • the present invention has the following configuration.
  • Embodiment 1 A method of measuring a target oligonucleotide in a sample using a combination of a capture probe and an assist probe based on the principle of hybridization, and a method of distinguishing between a target oligonucleotide that retains its full-length sequence and its metabolites.
  • the capture probe includes a solid phase and a first nucleic acid probe immobilized on the solid phase
  • the assist probe includes a tag or label and a second nucleic acid probe linked to the tag or label,
  • the nucleotide closest to the solid phase forms a base pair with a nucleotide at the 3' end or 5' end of the target oligonucleotide,
  • the first nucleic acid probe is capable of hybridizing to a portion of the target oligonucleotide that includes a nucleotide that is missing in the metabolite
  • the second nucleic acid probe can hybridize to a portion of the target oligonucleotide other than the portion
  • the capture probe, target oligonucleotide, and assist probe form a complex; Method.
  • a method for detecting a target oligonucleotide in a sample as distinct from a metabolite lacking one or more nucleotides from its 3' or 5' end comprising the following steps: (i) A capture probe for capturing the target oligonucleotide and a probe for detecting the target oligonucleotide are applied to a sample containing the target oligonucleotide or a metabolite lacking one or more nucleotides from its 3' or 5' end.
  • the capture probe includes a solid phase and a first nucleic acid probe immobilized on the solid phase
  • the assist probe includes a tag or label and a second nucleic acid probe linked to the tag or label
  • the sequence of the first nucleic acid probe is complementary to a partial sequence of the target oligonucleotide, and the partial sequence includes a nucleotide that is missing in the metabolite
  • the sequence of the second nucleic acid probe is complementary to a sequence other than the partial sequence of the target oligonucleotide
  • the solid phase is bound to the terminal nucleotide of the first nucleic acid probe, and the terminal nucleotide is attached to the target oligonucleotide which is missing in the metabolite when the target oligonucleotide and the first nucleic acid probe hybridize.
  • the first nucleic acid probe is fixed to a solid phase via its 5' nucleotide. 5. The method of embodiment 4, wherein the sequence of the first nucleic acid probe is complementary to a sequence comprising the 3' end of the target oligonucleotide.
  • the first nucleic acid probe When detecting a target oligonucleotide in a sample separately from a metabolite lacking one or more nucleotides from its 5' end, the first nucleic acid probe is immobilized on a solid phase via the nucleotide at its 3' end. 5. The method of embodiment 4, wherein the sequence of the first nucleic acid probe is complementary to a sequence comprising the 5' end of the target oligonucleotide.
  • a method of detecting a target oligonucleotide in a sample comprising the steps of: (i) contacting the sample with a capture probe for capturing the target oligonucleotide and an assist probe for detecting the target oligonucleotide to form a complex of the capture probe, the target oligonucleotide, and the assist probe;
  • the capture probe includes a solid phase and a first nucleic acid probe immobilized on the solid phase
  • the assist probe includes a tag or label and a second nucleic acid probe linked to the tag or label, the sequence of the first nucleic acid probe is complementary to a partial sequence of the target oligonucleotide including the terminal nucleotide of the target oligonucleotide;
  • the sequence of the second nucleic acid probe is complementary to a sequence other than the partial sequence of the target oligonucleotide, and
  • the solid phase is bound to a nucleotide at the end of the first
  • the sequence of the first nucleic acid probe is complementary to the 3'-side partial sequence of the target oligonucleotide, which includes the 3'-terminal nucleotide of the target oligonucleotide
  • the sequence of the second nucleic acid probe is complementary to the 3'-side partial sequence of the target oligonucleotide, which includes the nucleotide at the 3' end of the target oligonucleotide.
  • the sequence of the first nucleic acid probe is complementary to the 5' partial sequence of the target oligonucleotide, which includes the nucleotide at the 5' end of the target oligonucleotide
  • the sequence of the second nucleic acid probe is complementary to the 5' partial sequence of the target oligonucleotide, which includes the nucleotide at the 5' end of the target oligonucleotide.
  • Embodiments 1 to 9 wherein the first nucleic acid probe included in the capture probe has a length of 5 bases, 6 bases, 7 bases, 8 bases, 9 bases, 10 bases, or 11 bases. Any method described.
  • the second nucleic acid probe included in the assist probe is 4 bases long, 5 bases long, 6 bases long, 7 bases long, 8 bases long, 9 bases long, 10 bases long, 11 bases long, 12 bases long, 13 bases long.
  • Base length 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases, 21 bases, 22 bases, 23 bases, 24 bases or 25 bases
  • the second nucleic acid probe included in the assist probe is Nucleic acid probes are not 4 bases long.
  • the capture probe comprises an adapter or spacer between the first nucleic acid probe and the solid phase.
  • the pair of signal amplification probes capable of self-assembly consists of a first signal amplification probe and a second signal amplification probe, A nucleic acid in which the first signal amplification probe includes three or more nucleic acid regions, and includes, in order from the 5' end, at least a nucleic acid region X, a nucleic acid region Y, and a nucleic acid region Z or a nucleic acid region Z containing a polyT sequence.
  • the second signal amplification probe includes three or more nucleic acid regions, and in order from the 5' end, a nucleic acid region X' that is complementary to at least the nucleic acid region X, and a nucleic acid region Y that is complementary to the nucleic acid region Y. ', and a nucleic acid region Z' complementary to the nucleic acid region Z' or a nucleic acid region Z' containing a polyA sequence.
  • a detection kit used for detecting a target oligonucleotide comprising a capture probe, an assist probe, and a pair of signal amplification probes that have complementary base sequence regions that can hybridize with each other and can form a probe polymer by self-assembly.
  • the capture probe includes a solid phase and a first nucleic acid probe immobilized on the solid phase
  • the assist probe includes a tag having a base sequence complementary to part or all of one signal amplification probe in the pair of signal amplification probes, and a second nucleic acid probe linked to the tag.
  • the sequence of the first nucleic acid probe is complementary to a partial sequence of the target oligonucleotide including the terminal nucleotide of the target oligonucleotide
  • the sequence of the second nucleic acid probe is complementary to a sequence other than the partial sequence of the target oligonucleotide
  • the solid phase is bound to a nucleotide at the end of the first nucleic acid probe, and the nucleotide at the end of the first nucleic acid probe binds to the target oligonucleotide when the target oligonucleotide and the first nucleic acid probe hybridize. forming a base pair with the terminal nucleotide of the nucleotide; Detection kit.
  • Embodiment 18 18. The detection kit according to embodiment 17, wherein the first nucleic acid probe includes an adapter or a spacer between the first nucleic acid probe and the solid phase.
  • a detection kit for measuring a target oligonucleotide in a sample while distinguishing it from a metabolite lacking one or more nucleotides from its 3' end, the first nucleic acid probe included in the capture probe comprising: The detection kit according to embodiment 17 or 18, which is immobilized on a solid phase via a nucleotide at the 5' end.
  • a detection kit for measuring a target oligonucleotide in a sample while distinguishing it from a metabolite lacking one or more nucleotides from its 5' end, the first nucleic acid probe included in the capture probe comprising: The detection kit according to embodiment 17 or 18, which is immobilized on a solid phase via a nucleotide at the 3' end. [Embodiment 21] 21. The detection kit according to any one of embodiments 17 to 20, wherein at least one of the pair of signal amplification probes is labeled with a labeling substance.
  • the pair of signal amplification probes includes a first signal amplification probe and a second signal amplification probe
  • the first signal amplification probe is a nucleic acid probe that includes, in order from the 5' end, at least a nucleic acid region X, a nucleic acid region Y, and a nucleic acid region Z or a nucleic acid region Z containing a poly T sequence
  • the second signal amplification probe includes, in order from the 5' end, at least a nucleic acid region X' complementary to the nucleic acid region X, a nucleic acid region Y' complementary to the nucleic acid region Y, and a nucleic acid region complementary to the nucleic acid region Z.
  • a nucleic acid probe containing a nucleic acid region Z′ or a nucleic acid region Z′ containing a polyA sequence The detection kit according to any one of embodiments 17 to 21.
  • the present invention it is possible to detect or quantify oligonucleotides easily, with high sensitivity, and with excellent specificity and quantitative performance, without using enzymes or the like, in a step that involves only hybridization between probes.
  • it distinguishes between oligonucleotide metabolites in which the 5' or 3' side of the target oligonucleotide to be measured is deleted and unchanged oligonucleotides, and there is almost no cross-reactivity of metabolites, and only unchanged oligonucleotides are detected.
  • a method for detecting or quantifying oligonucleotides with excellent specificity and quantitative performance can be provided.
  • FIG. 1 is a diagram showing the principle of a hybridization method (CP-AP method) using a capture probe and an assist probe.
  • FIG. 2 is a diagram showing the structure of LNA and DNA components.
  • FIG. 3 is a diagram showing the cross-reactivity of capture probes with different orientations.
  • FIG. 2 is a diagram showing cross-reactivity when using the PALSAR method and when using a conventional method as a signal amplification method.
  • FIG. 3 is a diagram showing the results of quantifying target nucleic acids.
  • FIG. 1 is a schematic diagram showing the principle of signal amplification (PALSAR method) using a pair of probes that can self-assemble.
  • FIG. 2 is a schematic diagram of a case where a target nucleic acid has a binding region that is not recognized by a capture probe (CP) and an assist probe (AP) (when the AP chain length is fixed).
  • FIG. 2 is a schematic diagram of a case where a target nucleic acid has a binding region that is not recognized by a capture probe (CP) and an assist probe (AP) (when the CP chain length is fixed).
  • sample used in the method of the present invention is human, monkey, dog, pig, rat, guinea pig, or mouse whole blood, serum, plasma, lymph fluid, urine, saliva, tear fluid, sweat, gastric juice, pancreatic juice, bile. , body fluids such as pleural effusion, joint cavity fluid, cerebrospinal fluid, cerebrospinal fluid, bone marrow fluid, or tissues such as liver, kidney, lung, heart, etc.
  • the sample is human, monkey, dog, pig, rat, guinea pig, or mouse, preferably human whole blood, serum, plasma, or urine.
  • the sample is whole blood, serum, plasma, or urine of a human, monkey, dog, pig, rat, guinea pig, or mouse, preferably a human, who has been administered a medicament containing the target oligonucleotide.
  • target oligonucleotide refers to the intact oligonucleotide to be measured (intact target oligonucleotide/unchanged form). That is, the term “target oligonucleotide” does not include distinguishable metabolites.
  • target oligonucleotide refers to any DNA or RNA, single-stranded or double-stranded oligonucleotide, as long as it can form a specific hybrid with a nucleic acid probe. May be modified.
  • Chemical modifications include phosphorothioate modification (S-modification), 2'-F modification, 2'-O-Methyl (2'-OMe) modification, 2'-O-Methoxyethyl (2'-MOE) modification, morpholino modification, and LNA. modification, BNACOC modification, BNANC modification, ENA modification, cEt BNA modification, etc.
  • the base length of the target oligonucleotide is not limited, but preferably 12mer, 13mer, 14mer, 15mer, 16mer, 17mer, 18mer, 19mer, 20mer, 21mer, 22mer, 23mer, 24mer, 25mer, 26mer, 27mer. , 28mer, 29mer, or 30mer.
  • the “capture probe” used in the present invention is a probe for capturing a target oligonucleotide, and includes a nucleic acid probe and a solid phase adjacent to a nucleotide at the 3' end or 5' end of the nucleic acid probe.
  • the “assist probe” used in the present invention is a probe for detecting a target oligonucleotide, and includes a nucleic acid probe and a tag or label adjacent to a nucleotide at the 5' end or 3' end of the nucleic acid probe.
  • nucleic acid probes included in capture probes and assist probes consist of deoxyribonucleotides or ribonucleotides, and in one embodiment of the present invention, each independently comprises 0, 1, 2, 3, 4, 5, Contains 6, 7, 8, 9, 10, or 11 locked nucleic acids (LNA) ( Figure 2).
  • LNA locked nucleic acids
  • Figure 2 When the nucleic acid probe has a base length of 5mer, the nucleic acid probe preferably contains 5 locked nucleic acids (LNA), and when the nucleic acid probe has a base length of 6mer to 11mer, the nucleic acid probe preferably contains 0. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 locked nucleic acids (LNA).
  • the nucleic acid probe included in the capture probe has a base length of 5mer, 6mer, 7mer, 8mer, 9mer, 10mer, or 11mer.
  • the nucleic acid probes included in the assist probe are 4mer, 5mer, 6mer, 7mer, 8mer, 9mer, 10mer, 11mer, 12mer, 13mer, 14mer, 15mer, 16mer, 17mer, 18mer, 19mer, 20mer, 21mer, 22mer. , has a base length of 23mer, 24mer or 25mer.
  • the nucleic acid probe included in the assist probe has a base length of 4mer, 5mer, 6mer, 7mer, 8mer, 9mer, 10mer, 11mer, 12mer, 13mer, 14mer, 15mer, or 16mer.
  • an embodiment in which the nucleic acid probe included in the capture probe has a base length of 11 mer and the nucleic acid probe included in the assist probe has a base length of 4 mer is not included in the present invention.
  • the present invention includes an embodiment in which the nucleic acid probe included in the capture probe has a base length of 10 mer, and the nucleic acid probe included in the assist probe has a base length of 4 mer.
  • an embodiment in which the nucleic acid probe included in the capture probe has a base length of 10 mer and the nucleic acid probe included in the assist probe has a base length of 4 mer is not included in the present invention.
  • contact refers to the formation of chemical bonds such as covalent bonds, ionic bonds, metallic bonds, and non-covalent bonds between a substance and another substance. This means placing these substances in close proximity to each other so that they can
  • "contacting" a substance and another substance means mixing a solution containing the certain substance and a solution containing the other substance.
  • a complex is formed by bringing a capture probe, a target oligonucleotide, and an assist probe into contact with each other.
  • the step of contacting the sample with the capture probe and the assist probe includes contacting the sample, the capture probe, and the assist probe at a melting temperature of the target oligonucleotide and the nucleic acid probe contained in the capture probe. +2°C to -10°C, +1°C to -9°C, 0°C to -8°C, -1°C to -7°C, -2°C to -6°C, or -3°C compared to Tm) -5°C, or +10°C, +9°C, +8°C, +7°C, +6°C, +5°C, +4°C, +3°C, +2°C, +1°C, 0°C, - This is done by keeping the temperature at 1°C, -2°C, -3°C, -4°C, -5°C, -6°C, -7°C, -8°C, -9°C, or -10°C for a certain period of time.
  • the heat retention time is 10 seconds to 4 minutes, 20 seconds to 3 minutes, or 30 seconds to 2 minutes, or 10 seconds, 20 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds, 90 seconds, 100 seconds, 110 seconds, 120 seconds, 130 seconds, 140 seconds, 150 seconds, 160 seconds, 170 seconds, or 180 seconds.
  • the capture probe "captures" the target oligonucleotide primarily means that the nucleic acid probe contained in the capture probe and the target oligonucleotide hybridize. In one embodiment, the capture probe "captures" the target oligonucleotide, which means that the target oligonucleotide binds to a solid phase included in the capture probe via a nucleic acid probe included in the capture probe or by an adapter or spacer. It means to bind indirectly to a solid phase.
  • the capture probe directly captures the target oligonucleotide and further indirectly captures the assist probe via the target oligonucleotide, thereby producing a signal proportional to the amount of the target oligonucleotide in the sample. Can be obtained from assist probes.
  • hybridization of a nucleic acid probe included in a capture probe or an assist probe to a target oligonucleotide means that a nucleic acid probe contained in a capture probe or an assist probe hybridizes to a single-stranded target oligonucleotide having a specific base sequence, and is complementary to a part of the sequence. It means that single-stranded nucleic acid probes having the same sequence bind together through base pairing to form a double-stranded nucleic acid molecule.
  • a portion of the nucleic acid probe and the target oligonucleotide contained in the capture probe specifically hybridize, and , means that the nucleic acid probe contained in the assist probe and another part of the target oligonucleotide specifically hybridize to form a trimer.
  • specifically hybridizing between the nucleic acid probe and a portion of the target oligonucleotide means that all bases contained in the nucleic acid probe, excluding the tag, form pairs with the bases of the target oligonucleotide. In one embodiment, all the bases included in the target oligonucleotide form pairs with the bases of the nucleic acid probe included in the capture probe or the bases of the nucleic acid probe included in the assist probe.
  • free assist probes can be removed by washing the solid phase contained in the capture probe or the solid phase bound via an adapter or spacer contained in the capture probe.
  • the liquid phase of the reaction liquid may be separated by centrifuging or filtering the reaction liquid in which the solid phase is suspended.
  • the solid phase has magnetism, it is also possible to collect the solid phase using a magnet. The solid phase may be washed multiple times if necessary.
  • a tag or label included in the assist probe or a label attached via a tag can be utilized.
  • the solid phase contained in the capture probe can emit a signal such as fluorescence, the signal can also be used.
  • the signal from the label or solid phase may be any signal as long as it is physically or chemically detectable, but optically detectable signals are preferred in order to achieve high throughput.
  • a pair of “self-assembly capable” signal amplification probes used in the method of the present invention has complementary base sequence regions in which the first signal amplification probe and the second signal amplification probe can hybridize with each other.
  • hybridizable means, in one embodiment, completely complementary in the complementary base sequence region.
  • the pair of probes capable of self-assembly with a labeling substance for detection in advance.
  • at least one of the first and second signal amplification probes is labeled with a labeling substance.
  • labeling substances include radioactive isotopes, biotin, digoxigenin, fluorescent substances, luminescent substances, and dyes.
  • radioisotopes such as 125 I and 32 P, luminescent/chromogenic substances such as digoxigenin and acridinium ester, luminescent substances such as dioxetane, and fluorescent substances such as 4-methylumbelliferyl phosphate are used.
  • the labeling substance is biotin, and the oligonucleotide is labeled by biotinylating the 5' end or 3' end.
  • the labeling substance is biotin, the substance that specifically binds to the labeling substance is streptavidin or avidin.
  • the labeling substance is not biotin, and the substance that specifically binds to the labeling substance is not streptavidin or avidin.
  • a pair of probes capable of self-assembly consisting of first and second signal amplification probes is brought into contact with a complex containing a hybridization product of a target oligonucleotide, a capture probe, and an assist probe according to the present invention.
  • Detection may be performed by binding the complex to a probe polymer consisting of a second signal amplification probe ( Figure 6).
  • the assist probe used above includes a tag capable of binding to one of a pair of probes capable of self-assembly consisting of first and second signal amplification probes, and the assist probe includes a tag capable of binding to one of a pair of probes capable of self-assembly consisting of first and second signal amplification probes, and binds the target oligonucleotide to the probe polymer. It has the role of assisting.
  • a first aspect of the assist probe includes a tag comprising a sequence complementary to the entire sequence or a partial sequence of at least one of the first or second oligonucleotide, and a tag complementary to the partial sequence of the target oligonucleotide.
  • a probe containing a sequence is
  • solid phase examples of the term “solid phase” include insoluble microparticles, microbeads, fluorescent microparticles, magnetic particles, microplates, microarrays, glass slides, substrates such as electrically conductive substrates, and the like.
  • the "solid phase” is a fluorescent fine particle, in another embodiment, a fluorescent bead, and in yet another embodiment, a bead having a fluorescent substance on its surface.
  • the "beads having a fluorescent substance on their surface” used in the present invention are not particularly limited as long as they have a fluorescent substance, and for example, MicroPlex TM Microspheres manufactured by Luminex can be suitably used.
  • the "solid phase" is a microplate.
  • Materials for the microplate used in the present invention include, but are not limited to, polystyrene, polypropylene, polycarbonate, and cyclic olefin copolymers.
  • the microplate includes a biotin coated plate, a protein A, G, A/G, and/or L coated plate, an anti-GST antibody coated plate, a glutathione, nickel, and/or copper coated plate.
  • the solid phase is not an insoluble microparticle, not a microbead, not a fluorescent microparticle, not a magnetic particle, not a microplate, not a microarray, not a glass slide, or a substrate such as an electrically conductive substrate. etc. Not.
  • the "adapter” used in the present invention examples include biotin, streptavidin or avidin, and combinations thereof, antigens, antibodies, and combinations thereof, preferably biotin, streptavidin or avidin, and combinations thereof. etc.
  • the adapter is not a nucleic acid such as an oligonucleotide or nucleotide, biotin, streptavidin or avidin, and combinations thereof, an antigen, an antibody, and a combination thereof, such as Spacer 9, Spacer 12, Spacer 18, Spacer C3, etc. It is not a compound having an amino group or a carboxyl group, such as a spacer.
  • the adapter does not include nucleic acids such as oligonucleotides or nucleotides.
  • streptavidin or avidin is immobilized directly to a solid phase.
  • streptavidin or avidin is not directly immobilized on a solid phase.
  • streptavidin or avidin is immobilized to the solid phase via a (second) spacer.
  • spacer examples of the "spacer” used in the present invention include nucleic acids such as oligonucleotides and nucleotides, compounds having an amino group or carboxyl group such as spacers such as Spacer 9, Spacer 12, Spacer 18, and Spacer C3, etc., and are preferably is 5'-Amino-Modifier C12 (12-(4-Monomethoxytritylamino)dodecyl-1-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite), etc.
  • nucleic acids such as oligonucleotides and nucleotides
  • compounds having an amino group or carboxyl group such as Spacer 9, Spacer 12, Spacer 18, and Spacer C3, etc.
  • spacers such as Spacer 9, Spacer 12, Spacer 18, and Spacer C3, etc.
  • 5'-Amino-Modifier C12 (12-(4-Monomethoxytritylamino)dodecyl-1
  • the compound that has an amino group is an example of a spacer.
  • the spacer is not a nucleic acid such as an oligonucleotide or a nucleotide, is not biotin, is not a compound having an amino group or a carboxyl group, such as spacers such as Spacer 9, Spacer 12, Spacer 18, Spacer C3, etc.
  • the spacer does not include a nucleic acid such as an oligonucleotide or nucleotide.
  • the (first) spacer is immobilized directly to the solid phase. Furthermore, in another embodiment, the (first) spacer is not directly immobilized on the solid phase. For example, in one such embodiment, the (first) spacer is immobilized to the solid phase via biotin, streptavidin or avidin, and combinations thereof.
  • the base length of the oligonucleotide is 4mer to 130mer, 5mer to 90mer, 7mer to 50mer, 10mer to 40mer, 15mer to 30mer, or 4mer, 5mer, 6mer, 7mer, 8mer, 9mer, 10mer, 11mer, 12mer, 13mer, 14mer, 15mer, 16mer, 17mer, 18mer, 19mer, 20mer, 21mer, 22mer, 23mer, 24mer, 25mer, 26mer, 27mer, 28mer, 29mer, 30mer, 31mer, 32mer, 33mer, 34mer, 35mer, 36mer, 37mer, 38mer, 39mer, 40mer, 41mer, 42mer, 43mer, 44mer, 45mer, 46mer, 47mer, 48mer, 49mer, 50mer, 51mer, 52mer, 53mer, 54mer, 55mer, 56mer, 57mer, 58mer, 59mer, 60mer, 61mer, 62mer, 63mer, 64mer, 65mer, 66mer
  • the "tag” included in the assist probe includes a polyA sequence, a polyT sequence, a polyU sequence, a poly(T/U) sequence, a polyG sequence, a polyC sequence, and any specific sequence or Nucleic acids consisting of these can be mentioned.
  • the base length of the nucleic acid tag is 5mer to 115mer, 10mer to 110mer, 15mer to 105mer, 20mer to 100mer, 25mer to 95mer, 30mer to 90mer, 35mer to 85mer, 40mer to 80mer, 45mer to 75mer.
  • the tag or label does not include a nucleic acid such as an oligonucleotide or nucleotide.
  • Suitable examples of the "label" included in the assist probe include radioactive isotopes, biotin, digoxigenin, fluorescent substances, luminescent substances, and dyes. Specifically, radioisotopes such as 125 I and 32 P, luminescent/chromogenic substances such as digoxigenin and acridinium ester, luminescent substances such as dioxetane, and fluorescent substances such as 4-methylumbelliferyl phosphate are used. Examples include alkaline phosphatase and biotin for utilizing fluorescent, luminescent, and chromogenic substances bound to avidin.
  • the label may be included in another nucleic acid molecule that hybridizes to the nucleic acid tag included in the assist probe.
  • the "label" included in the assist probe is not a radioactive isotope, biotin, digoxigenin, fluorescent substance, luminescent substance, dye, or the like. Particularly when using biotin, streptavidin or avidin, and combinations thereof as adapters, in one embodiment the "label" included in the assist probe is not biotin.
  • a solid phase, tag, or label is "adjacent,””immobilized,” or “linked” to a nucleotide at the 5' end or 3' end of a nucleic acid probe, it primarily refers to the solid phase or tag. Or it means that the label is directly attached to the nucleotide. For example, if a solid phase or tag or label is attached to the nucleotide through some molecule, then the molecule itself can be considered a solid phase or tag or label; It can be considered to form part of a tag or sign.
  • the solid phase may be attached to the nucleic acid probe via an adapter or spacer.
  • metabolites refer to the 3' end and/or Or, it refers to an oligonucleotide lacking at least one nucleotide from the 5' end.
  • the metabolite of the target oligonucleotide is missing one or more nucleotides from the 3' end, and the sequence of the "nucleic acid probe" included in the capture probe is the nucleotide at the 3' end of the target oligonucleotide.
  • the sequence of the "nucleic acid probe" included in the assist probe is complementary to a sequence other than the partial sequence of the target oligonucleotide.
  • the solid phase included in the capture probe is adjacent to the nucleotide at the 5' end of the nucleic acid probe included in the capture probe
  • the tag or label included in the assist probe is adjacent to the nucleotide at the 3' end of the nucleic acid probe included in the assist probe. adjacent.
  • the metabolite of the target oligonucleotide is missing one or more nucleotides from the 5' end
  • the sequence of the "nucleic acid probe" included in the capture probe is It is complementary to a partial sequence of the target oligonucleotide containing nucleotides
  • the sequence of the "nucleic acid probe" included in the assist probe is complementary to a sequence other than the partial sequence of the target oligonucleotide.
  • the solid phase included in the capture probe is adjacent to the nucleotide at the 3' end of the nucleic acid probe included in the capture probe
  • the tag or label included in the assist probe is adjacent to the nucleotide at the 5' end of the nucleic acid probe included in the assist probe. adjacent.
  • the "nucleic acid probe" included in the capture probe may be referred to as the "first nucleic acid probe” and the “nucleic acid probe” included in the assist probe may be referred to as the "second nucleic acid probe.” be.
  • the first nucleic acid probe included in the capture probe and the second nucleic acid probe included in the assist probe may be adjacent to each other (without a gap) when hybridized to the target oligonucleotide; 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, (with gaps of 52, 53, 54, 55, 56, 57, 58, 59, or 60 nucleotides).
  • the first nucleic acid probe included in the capture probe and the second nucleic acid probe included in the assist probe have 1 to 21 nucleotides, 1 to 16 nucleotides, when hybridized to the target oligonucleotide. Not adjacent with gaps of nucleotides, 1 to 11 nucleotides, or 1 to 7 nucleotides.
  • Another aspect of the case where there is a gap between the first nucleic acid probe included in the capture probe and the second nucleic acid probe included in the assist probe is that the first nucleic acid probe included in the capture probe and the second nucleic acid probe included in the assist probe Blocking probes that flank each of the second nucleic acid probes and hybridize to gap sites on the target oligonucleotide may be used. It will be understood by those skilled in the art that in such embodiments, there may be a gap between the first nucleic acid probe and the blocking probe and/or between the second nucleic acid probe and the blocking probe.
  • nucleic acid probe contained in a capture probe is "complementary" to a sequence on the 3' side (5' side) of a target oligonucleotide, it is preferably a sequence that includes the nucleotides at the 3' end (5' end) of the target oligonucleotide. This means that the sequence of the nucleic acid probe is completely complementary to the nucleotide sequence of the nucleic acid probe. The length of this fully complementary sequence is preferably the same as the base length of the nucleic acid probe contained in the capture probe.
  • the nucleic acid probe has an additional nucleotide at the 5' end (3' end) in addition to the part that is completely complementary to the 3' side (5' side) sequence of the target oligonucleotide. be able to. It will be readily appreciated that there is no partner on the target oligonucleotide with which to form a pair or mismatch for the additional nucleotide.
  • the additional nucleotides can also be considered to constitute part or all of the solid phase or adapter or spacer adjacent to the nucleotide at the 5' end (3' end) of the nucleic acid probe.
  • one skilled in the art can introduce artificial mutations into the sequence of a nucleic acid probe, provided that the nucleic acid probe can bind preferentially to the target oligonucleotide compared to metabolites. be understood. Replace the words in parentheses as appropriate.
  • nucleic acid probe contained in the assist probe is said to be "complementary" to the 5'(3') sequence of the target oligonucleotide, it is preferably a continuous sequence that includes the 5'(3') nucleotides of the target oligonucleotide.
  • sequence of the nucleic acid probe is completely complementary to the nucleotide sequence of the nucleic acid probe.
  • the length of this completely complementary sequence is preferably the same as the base length of the nucleic acid probe contained in the assist probe.
  • the nucleic acid probe has an additional nucleotide at the 3' end (5' end) in addition to the part that is completely complementary to the 5' side (3' side) sequence of the target oligonucleotide. be able to. It will be readily appreciated that there is no partner on the target oligonucleotide with which to form a pair or mismatch for the additional nucleotide.
  • the additional nucleotides can also be considered to constitute part or all of the tag adjacent to the nucleotide at the 3' end (5' end) of the nucleic acid probe. It will also be understood by those skilled in the art that in one embodiment, artificial mutations can be introduced into the sequence of the nucleic acid probe. Replace the words in parentheses as appropriate.
  • Target nucleic acid PT-1 was used as the target nucleic acid to be measured.
  • metabolite model nucleic acids of the target nucleic acid a nucleic acid PT-1-3n-1 with one base deleted at the 3' end and a nucleic acid PT-1-5n-1 with one base deleted at the 5' end were used.
  • Nucleic acid was synthesized by Japan Gene Research Institute (HPLC purification grade). The above target nucleic acid is completely S-modified (phosphorothioate), similar to the general structure of antisense nucleic acids, which are one of the nucleic acid medicines, and PT-1 is Each base is replaced with LNA.
  • PT-1-5n-1 has 2 bases from the 5' end and 2 bases from the 3' end. Three bases have been replaced with LNA. Both PT-1, PT-1-3n-1, and PT-1-5n-1 were adjusted to 2 ng/ml using Nuclease free water containing 0.01% Tween20. In addition, blank samples not containing PT-1, PT-1-3n-1, and PT-1-5n-1 were also prepared.
  • ⁇ Base sequence of PT-1 5'- A(L) ⁇ G(L) ⁇ A(L) ⁇ G ⁇ C ⁇ T ⁇ G ⁇ A ⁇ C ⁇ T ⁇ T ⁇ G ⁇ A ⁇ T(L) ⁇ G(L) ⁇ 5( L)-3' (base part is SEQ ID NO: 1)
  • base part is SEQ ID NO: 1
  • base part is SEQ ID NO.
  • a nucleic acid probe CP-7m-5N with a base sequence complementary to the 3' side of PT-1 was added to the carrier MicroPlex TM Microspheres (Luminex, product number: LC10015-01).
  • a capture probe was prepared by attaching via NH 2 modification at the 5' end (5'CP-LB).
  • a nucleic acid probe CP-7m-3N with a complementary base sequence to the 5' side of PT-1 was added to Luminex's MicroPlex TM Microspheres (Region No.: 15, Product Number: LC10015-01).
  • a capture probe was prepared by attachment via NH2 modification at the 3' end (3'CP-LB).
  • Target nucleic acid PT-1' was used as the target nucleic acid to be measured.
  • a nucleic acid PT-1'-3n-1 with one base deleted at the 3' end was used.
  • Nucleic acid was synthesized by Japan Gene Research Institute (HPLC purification grade).
  • the above target nucleic acid is completely S-modified (phosphorothioate), similar to the general structure of antisense nucleic acids, which are one of the nucleic acid medicines, and PT-1' is formed from the 5' and 3' ends. Three bases each are replaced with LNA.
  • PT-1'-3n-1 3 bases from the 5' end and 2 bases from the 3' end were substituted with LNA. Both PT-1' and PT-1'-3n-1 were adjusted to 1 ng/ml using Nuclease free water containing 0.01% Tween20. In addition, a blank sample containing no PT-1' or PT-1'-3n-1 was also prepared.
  • Table 2 shows the cross-reactivity when measuring models of target nucleic acids and target nucleic acid metabolites at the chain lengths of the capture probe (hereinafter referred to as CP) and the assist probe (hereinafter referred to as AP).
  • CP capture probe
  • AP assist probe
  • Target nucleic acid The target nucleic acid to be measured and the metabolite model nucleic acids of the target nucleic acid were the PT-1' and PT- 1'-3n-1 was used. Both PT-1' and PT-1'-3n-1 were adjusted to 20 ng/ml using Nuclease free water containing 0.01% Tween20. In addition, a blank sample containing no PT-1' and PT-1'-3n-1 was also prepared.
  • Table 3 shows the cross-reactivity when measuring the target nucleic acid and metabolite model of the target nucleic acid using the PALSAR method and the conventional method that does not use the PALSAR method.
  • the measurement results are shown in Figure 4.
  • the signal amplification method as shown in FIG. 4, when the PALSAR method was used, the signal value MFI was 27,037. On the other hand, with the conventional method, the MFI was 208, and the PALSAR method was able to detect a signal approximately 130 times higher than the conventional method.
  • Example 4 Consideration of quantification (1) Target nucleic acid PT-1 and PT-1-3n-1 used in Example 1 were used as the target nucleic acid to be measured and the metabolite model nucleic acids of the target nucleic acid. Both PT-1 and PT-1-3n-1 were adjusted to 0.008, 0.020, 0.050, 0.1, 0.2, 0.4, and 0.8 ng/ml using Nuclease free water containing 0.01% Tween20. A blank sample containing no PT-1 or PT-1-3n-1 was also prepared.
  • Target nucleic acid PT3 was used as the target nucleic acid to be measured.
  • a nucleic acid PT3-3n-1 with one base deleted at the 3' end was used.
  • Nucleic acid was synthesized by Japan Gene Research Institute (HPLC purification grade).
  • the above target nucleic acid is completely S-modified (phosphorothioate), similar to the general structure of antisense nucleic acids, which are one of the nucleic acid medicines, and PT3 has three bases each from the 5' and 3' ends.
  • PT3-3n-1 3 bases from the 5' end and 2 bases from the 3' end were replaced with LNA. Both PT3 and PT3-3n-1 were adjusted to 1 or 10 ng/ml* using Nuclease free water containing 0.01% Tween20 (*When using a CP chain length of 5 to 10 mer, 10 ng of target nucleic acid was used) /mL, if using a CP chain length of 11mer or more, add 1ng/mL of target nucleic acid). In addition, a blank sample containing no PT3 or PT3-3n-1 was also prepared.
  • ⁇ PT3 base sequence 5'-G(L) ⁇ A(L) ⁇ G(L) ⁇ C ⁇ T ⁇ G ⁇ A ⁇ C ⁇ T ⁇ T ⁇ A ⁇ C ⁇ A ⁇ G ⁇ A ⁇ G ⁇ A ⁇ C ⁇ T ⁇ T ⁇ G ⁇ A ⁇ T(L) ⁇ G(L) ⁇ 5(L) -3' (base part is SEQ ID NO. 30)
  • Base part is SEQ ID NO. 30
  • Base part is SEQ ID NO. 30
  • MicroPlexTM Microspheres (Luminex, product number: LC10015-01), which is a carrier, Nucleic acid probes with different chain lengths that have complementary base sequences to the 3' side of PT3 CP-5m-5N, CP-6m-5N2, CP-7m-5N3, CP-8m-5N2, CP-9m-5N , CP-10m-5N, CP-11m-5N2, CP-12m-5N, CP-13m-5N, CP-14m-5N, CP-15m-5N, respectively, via 5'-end NH2 modification.
  • the capture probe was prepared by: ⁇ Base sequence of CP-5m-5N> 5'-(NH 2 )G(L)5(L)A(L)T(L)5(L)-3' (base part is SEQ ID NO: 13) ⁇ Base sequence of CP-6m-5N2> 5'-(NH 2 )G(L)CAT(L)CA(L)-3' (base part is SEQ ID NO: 32) ⁇ Base sequence of CP-7m-5N3> 5'-(NH 2 )G(L)CA(L)T(L)5(L)AA(L)-3' (base part is SEQ ID NO: 33) ⁇ Base sequence of CP-8m-5N2> 5'-(NH 2 ) G(L)CATCAAG(L)-3' (base part is SEQ ID NO: 34) ⁇ Base sequence of CP-9m-5N> 5'-(NH 2 )GCATCAAGT-3' (base part is SEQ ID NO: 17) ⁇ Base sequence of
  • Table 5 shows the results of metabolite discrimination when the target nucleic acid had a binding region that was not recognized by CP and AP.
  • Gap(mer) indicates the number of bases in the target nucleic acid region that is not recognized by CP and AP ( Figure 7).
  • cross-reactivity was less than 1% for CP chain lengths of 5mer, 6mer, 7mer, 8mer, 9mer, 10mer, and 11mer.
  • the chain lengths of the Gap region of the target nucleic acid that are not recognized by CP and AP are 10mer, 9mer, 8mer, 7mer, 6mer, 5mer, and 4mer, respectively. It was shown that it is possible to significantly suppress cross-reactivity, as in the case without it.
  • Cross-reactivity (%) [metabolite model nucleic acid (PS-BG)] / [target nucleic acid (PS -BG)] x 100
  • Example 6 Verification of the case where the target nucleic acid has a binding region that is not recognized by CP and AP-2 1.
  • Materials and Methods (1) Target Nucleic Acid As in Example 5, PT3 was used as the target nucleic acid to be measured, and the nucleic acid PT3-3n-1 with one base deleted at the 3' end was used as the metabolite model nucleic acid of the target nucleic acid. .
  • Nucleic acid was synthesized by Japan Gene Research Institute (HPLC purification grade). The above target nucleic acid is completely S-modified (phosphorothioate), similar to the general structure of antisense nucleic acids, which are one of the nucleic acid medicines, and PT3 has three bases each from the 5' and 3' ends.
  • PT3-3n-1 has been replaced by LNA. Furthermore, for PT3-3n-1, 3 bases from the 5' end and 2 bases from the 3' end were replaced with LNA. Both PT3 and PT3-3n-1 were adjusted to 1 ng/ml using nuclease free water containing 0.01% Tween20. In addition, a blank sample containing no PT3 or PT3-3n-1 was also prepared.
  • Results Table 6 shows the results of metabolite discrimination when the target nucleic acid had a binding region that was not recognized by CP and AP.
  • Gap(mer) indicates the number of bases in the target nucleic acid region that is not recognized by CP and AP ( Figure 8).
  • cross-reactivity was less than 1% for all AP chain lengths of 4mer, 5mer, 7mer, 10mer, 13mer, and 16mer.
  • the chain lengths of the Gap region of the target nucleic acid that are not recognized by CP and AP are 12mer, 11mer, 9mer, 6mer, 3mer, and 0mer, respectively. It was shown that cross-reactivity can be significantly suppressed even when APs are adjacent.
  • PK/PD pharmacokinetic/pharmacodynamic

Abstract

従来の測定法と比較して、簡便で、より高感度かつ特異性及び定量性に優れたオリゴヌクレオチドの測定法を提供する。また無傷の標的オリゴヌクレオチド(未変化体)とその代謝産物との区別をし、未変化体のみを検出可能な特異性に優れたオリゴヌクレオチドの測定法を提供する。 捕捉プローブとアシストプローブを使用するハイブリダイゼーション法において、一定範囲の短い塩基長の捕捉プローブ及びアシストプローブを使用し、更に核酸医薬の代謝物におけるヌクレオチドの欠損部位と捕捉プローブを特定の位置関係でハイブリダイゼーションさせることで、試料中の標的オリゴヌクレオチドの検出はもちろん、核酸医薬の代謝物との区別も可能になる。

Description

プローブを使用したオリゴヌクレオチドの検出方法
 本発明は、高感度かつ特異性及び定量性に優れたオリゴヌクレオチドの検出、または定量方法に関するものである。
 核酸医薬は、配列特異的な遺伝子サイレンシングを引き起こすことから、遺伝子疾患や難治性疾患を始めとする、今まで治療が困難であった様々な疾患に対する新規治療薬として、近年大きな注目を集めている(非特許文献1、Ando 2012)。
 医薬品開発の探索段階における薬物動態・薬力学(PK/PD)スクリーニング試験において、非臨床段階における安全性試験、薬理試験及び薬物動態試験において、並びに、臨床段階において、薬物が投与された動物あるいはヒト生体試料中の薬物濃度が測定される。また、新医薬品として承認を受ける際、厚生労働省令で定められたガイドラインに従い、生体試料中の薬物濃度に関するデータを取得し、安全性及び薬物動態に関する資料を提出する必要がある。
 Andoらは、核酸医薬をポジトロン放出核種で標識することで、生体内での挙動を非侵襲的かつリアルタイムに3次元解析することを報告している(非特許文献1、Ando 2012)。また、Healeyらは、stem-loop RT-PCR法(非特許文献3、Chen 2005)を用いて、0.01pg/μLの定量下限を達成したことを報告している(非特許文献2、Healey 2014)。
 しかし、近年、人工核酸及びデリバリー材料の開発により、低用量での治療が可能になってきた。その結果、生体試料中の薬物濃度が以前より低値になり、これらの低濃度の薬物を検出するために、より高感度な測定系が必要とされるようになってきた。更に、厚生労働省令で定められたガイドラインに従うためには、測定系は、操作者に依存しない高い定量性を有する必要があることから、半定量法であるPCR法での測定は、これらの低濃度の薬物を検出する目的に、不向きであった。
 また、従来の測定系は、核酸医薬に使用されるオリゴヌクレオチドが代謝され、5'又は3'末端から分解された場合、測定対象である代謝により5'又は3'末端から分解されていない無傷の(以下、単に「無傷」ということがある)オリゴヌクレオチドと区別できず、正確な薬物濃度を測定できないという問題があった。
 測定対象である無傷のオリゴヌクレオチドとその代謝物を区別し、生物活性を有する核酸医薬を特異的に測定するために、Yuらはハイブリダイゼーション・ライゲーションELISA法を開発した(非特許文献4、Yu 2002)。当該方法においては、測定対象であるオリゴヌクレオチドに相補的な配列を含む「鋳型」オリゴヌクレオチドと「ライゲーション・プローブ」を使用する。当該「鋳型」オリゴヌクレオチドは、前記相補的な配列の5'末端のヌクレオチドに隣接する9merの追加ヌクレオチドを有し、3'末端にビオチンを有する。前記「ライゲーション・プローブ」は、当該9merの追加ヌクレオチドに相補的な配列を有する9merのオリゴヌクレオチドであり、5'末端にリン酸を有し、3'末端にジゴキシゲニンを有する。従って、測定対象であるオリゴヌクレオチドが無傷の場合には、鋳型オリゴヌクレオチドの上で、無傷のオリゴヌクレオチドとライゲーション・プローブとが、間隙なくハイブリダイズすることになる。このハイブリダイゼーションの生成物をリガーゼで処理することにより、無傷のオリゴヌクレオチドとライゲーション・プローブが連結される。一方で、測定対象であるオリゴヌクレオチドが代謝されて3'末端側のヌクレオチドが欠損している場合には、この連結は起こらない。前記のライゲーション生成物をビオチンを利用して固相に結合し、未反応のライゲーション・プローブを洗浄して除去し、固定された当該ライゲーション生成物の3'末端のジゴキシゲニンをELISA法により検出する(非特許文献4、Yu 2002の図1参照)。
 Weiらは、ハイブリダイゼーション・ライゲーションELISA法の特異性を向上させるために、リガーゼ処理の後にS1ヌクレアーゼ処理を行うことを開示している(非特許文献5、Wei 2006)。
 しかし、ハイブリダイゼーション・ライゲーションELISA法は、測定対象であるオリゴヌクレオチドの配列を考慮して、最適なライゲーション・プローブの配列を設計する必要があるので、煩雑かつマルチプレックス化には不向きであった。
 ハイブリダイゼーション・ライゲーションELISA法の上記の課題を解決するために、大森らは、S1ヌクレアーゼ等を用いて標的オリゴヌクレオチドの代謝物に由来する生成物を分解及び除去し、残存する無傷の標的オリゴヌクレオチドに由来する生成物を測定する方法を開発した(特許文献1)。当該方法においては、測定対象である標的オリゴヌクレオチドを相補的な核酸プローブ(3'-標的配列の相補的配列-5')とハイブリダイズさせ、あるいは、測定対象である標的オリゴヌクレオチドにポリAなどの任意の塩基(第1のポリヌクレオチド)を付加してこれと相補的な核酸プローブ(3'-標的オリゴヌクレオチドの相補的配列+第1のポリヌクレオチドの相補的配列-5')とハイブリダイズさせ、S1ヌクレアーゼなどの一本鎖特異的ヌクレアーゼを用いて不完全なハイブリダイゼーション生成物を分解及び除去し、残存する完全なハイブリダイゼーション生成物に含まれる核酸プローブを測定する。
 大森らの方法は、ハイブリダイゼーション・ライゲーションELISA法などの従来法と比較してより高感度かつ特異性及び定量性に優れたオリゴヌクレオチドの測定法であるが、S1ヌクレアーゼなどの一本鎖特異的ヌクレアーゼを用いる点で煩雑であり、追加のインキュベーション時間が掛かる点で不利であった。
 さらに、厚生労働省による「医薬品の臨床試験及び製造販売承認申請のための非臨床安全性試験の実施 についてのガイダンス」において、代謝物の交差反応性が10%を超えた場合、毒性試験が必要とされている。上記にあるように、代謝物の交差反応性を10%以下で測定できることは、医薬品開発において重要な基準であるが、ハイブリダイゼーション・ライゲーションELISA法等のハイブリダイゼーションを基盤とした従来法においては、依然として、代謝物の交差反応性は高く、交差反応性を安定して10%以下となるよう抑制して検出することは困難であった。
 医薬品開発における、上記の高い要求を満たし、かつ、汎用性の高いオリゴヌクレオチドの検出又は定量方法を開発するために、本発明者らは、簡便で、高感度かつ定量性及び代謝物判別能に優れたオリゴヌクレオチドの検出又は定量方法を開発し、本発明を完成した。
日本国特許第6718032号 国際公開WO2013/172305号パンフレット 特許第4902674号 国際公開WO2007/037282号パンフレット
Ando H, Yonenaga N, Asai T, Hatanaka K, Koide H, Tsuzuku T, Harada N, Tsukada H, Oku N. [In vivo imaging of liposomal small interfering RNA (siRNA) trafficking by positron emission tomography]. Yakugaku Zasshi. 2012;132(12):1373-81. Review. Healey GD, Lockridge JA, Zinnen S, Hopkin JM, Richards I, Walker W. Development of pre-clinical models for evaluating the therapeutic potential of candidate siRNA targeting STAT6. PLoS One. 2014 Feb 27;9(2):e90338. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005 Nov 27;33(20):e179. Yu RZ, Baker B, Chappell A, Geary RS, Cheung E, Levin AA. Development of an ultrasensitive noncompetitive hybridization-ligation enzyme-linked immunosorbent assay for the determination of phosphorothioate oligodeoxynucleotide in plasma. Anal Biochem. 2002 May 1;304(1):19-25. Wei X, Dai G, Marcucci G, Liu Z, Hoyt D, Blum W, Chan KK. A specific picomolar hybridization-based ELISA assay for the determination of phosphorothioate oligonucleotides in plasma and cellular matrices. Pharm Res. 2006 Jun;23(6):1251-64.
 従来のシグナル検出法(Hybridization法、Ligation法等Ligand Binding Assay、qPCR)では、測定対象となる標的オリゴヌクレオチドの配列の一部が欠失したオリゴヌクレオチド、特に5’側または3’側が欠失したオリゴヌクレオチド(代謝産物など)と無傷の標的オリゴヌクレオチド(未変化体)の区別がつかず、代謝産物と未変化体の両方を測ってしまうという課題があった。また、当該課題を解決したYuらの方法や大森らの方法も、試料の酵素処理等が必要であり、簡便さの点で課題があった。
 一方で、液体クロマトグラフィー質量分析計(LC-MS)やHPLC-UV法は代謝物と無傷の標的オリゴヌクレオチドを区別して測定することが可能であるが、感度が不足するという難点があった。
 本発明が解決しようとする課題は、従来の測定法と比較して、簡便で、より高感度かつ特異性及び定量性に優れたオリゴヌクレオチドの測定法を提供することである。
 また、本発明が解決しようとする課題は、前記の未変化体と代謝産物との区別をし、未変化体のみを検出可能な特異性に優れたオリゴヌクレオチドの測定法を提供することである。
 抗薬物抗体の測定方法として、捕獲薬物抗体とトレーサー薬物抗体を使用する二重抗原架橋イムノアッセイ法が知られている(特許文献3)。当該方法においては、試料中に含まれるアナライト(抗薬物抗体)に対して、捕獲薬物抗体とトレーサー薬物抗体が特異的に結合することにより、捕獲薬物抗体-アナライト-トレーサー薬物抗体の三量体が形成される。捕獲薬物抗体を固相に結合して遊離のトレーサー薬物抗体を除去したうえで、トレーサー薬物抗体に含まれる標識に由来するシグナルを検出することによって、試料中のアナライトの量に比例したシグナルを得ることが出来る。
 本発明者らは、試料中の標的オリゴヌクレオチド、ひいては核酸医薬の測定方法として、捕捉プローブとアシストプローブを使用するハイブリダイゼーション法(特許文献4参照)を検討した(以下、便宜上、CP-AP法と呼ぶことがある)。CP-AP法においては、捕捉プローブに含まれる第1の核酸プローブとアシストプローブに含まれる第2の核酸プローブが、試料中に含まれる核酸医薬(標的オリゴヌクレオチド)に対して、特異的にハイブリダイズすることにより、捕捉プローブ-核酸医薬-アシストプローブの三量体が形成される(図1参照)。一般的にPCR法のプライマー鎖長がそうであるように、ハイブリダイゼーションを基盤とするシグナル検出法におけるプローブ鎖長においても、プローブと標的オリゴヌクレオチドとのハイブリダイゼーション効率を考慮し、プローブ鎖長は、15mer以上で設計することがほとんどである。実際、特許文献4の実施例において、標的分析物はApoE由来の配列を有する120merのオリゴヌクレオチド(配列番号3)であり、捕捉プローブは61merのオリゴヌクレオチド(配列番号4)であり、アシストプローブは21merのオリゴヌクレオチド及び59merのタグ配列からなるオリゴヌクレオチド(配列番号5)であった。また、特許文献4においては、標的分析物とその代謝物との区別は課題として認識されておらず、その結果、当然ながら、標的分析物と比較した代謝物の欠損部位とプローブの位置関係については検討されていない。
 本発明者らは、CP-AP法によるオリゴヌクレオチドひいては、核酸医薬の測定を実現するために鋭意検討し、通常では考えられない一定範囲の短い塩基長の捕捉プローブ及びアシストプローブを使用し、更に核酸医薬の代謝物におけるヌクレオチドの欠損部位と捕捉プローブを特定の位置関係でハイブリダイゼーションさせることで、試料中の核酸医薬(標的オリゴヌクレオチド)の検出はもちろん、驚くべきことに、核酸医薬の代謝物との区別も可能になることを見出した。本発明者らは、更に、本発明を用いることで、核酸医薬の代謝物の交差反応性を驚くほど低く抑制できることを見出した。
 以上より、本発明は以下の構成を有する。
 [実施態様1]
 試料中の標的オリゴヌクレオチドを、ハイブリダイゼーションの原理で捕捉プローブとアシストプローブとを組み合わせて測定する方法であり、且つ、全長配列を保持する標的オリゴヌクレオチドと、その代謝物とを区別して測定する方法であって、
 前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
 前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
 第1の核酸プローブのヌクレオチドのうち固相に対して最も近位のヌクレオチドは、標的オリゴヌクレオチドの3'末端又は5'末端のヌクレオチドと塩基対を形成し、
 前記代謝物においては、前記3'末端又は5'末端のヌクレオチドを含む連続する1以上のヌクレオチドが欠損しており、
 第1の核酸プローブは、標的オリゴヌクレオチドの前記代謝物では欠損しているヌクレオチドを含む部分にハイブリダイズすることができ、
 第2の核酸プローブは、標的オリゴヌクレオチドの前記部分以外の部分にハイブリダイズすることができ、
 捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブは複合体を形成する、
 方法。
 [実施態様2]
 試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定する場合には、捕捉プローブに含まれる第1の核酸プローブは、5'末端のヌクレオチドを介して固相に固定化されている、実施態様1に記載の方法。
 [実施態様3]
 試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定する場合には、捕捉プローブに含まれる第1の核酸プローブは、3'末端のヌクレオチドを介して固相に固定化されている、実施態様1に記載の方法。
 [実施態様4]
 以下の工程を含む、試料中の標的オリゴヌクレオチドを、その3'末端又は5'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する方法:
 (i)標的オリゴヌクレオチド又はその3'末端若しくは5'末端から1以上のヌクレオチドが欠損した代謝物を含む試料に、標的オリゴヌクレオチドを捕捉するための捕捉プローブと、標的オリゴヌクレオチドを検出するためのアシストプローブを接触させ、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの複合体を形成させる工程、
 ここで、
 前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
 前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
 第1の核酸プローブの配列は標的オリゴヌクレオチドの部分配列に相補的であり、当該部分配列は代謝物においては欠損しているヌクレオチドを含み、
 第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、且つ、
 固相は第1の核酸プローブの末端のヌクレオチドに結合しており、当該末端のヌクレオチドは、標的オリゴヌクレオチドと第1の核酸プローブがハイブリダイズした場合に、代謝物においては欠損している標的オリゴヌクレオチドの末端のヌクレオチドと塩基対を形成する; 及び
 (ii)前記複合体を検出することにより、試料中の標的オリゴヌクレオチドを検出する工程。
 [実施態様5]
 試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する場合には、第1の核酸プローブはその5’末端のヌクレオチドを介して固相に固定化されており、第1の核酸プローブの配列は標的オリゴヌクレオチドの3'末端を含む配列と相補的である、実施態様4に記載の方法。
 [実施態様6]
 試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する場合には、第1の核酸プローブはその3’ 末端のヌクレオチドを介して固相に固定化されており、第1の核酸プローブの配列は標的オリゴヌクレオチドの5'末端を含む配列と相補的である、実施態様4に記載の方法。
 [実施態様7]
 以下の工程を含む、試料中の標的オリゴヌクレオチドを検出する方法:
 (i)試料に、標的オリゴヌクレオチドを捕捉するための捕捉プローブと、標的オリゴヌクレオチドを検出するためのアシストプローブを接触させ、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの複合体を形成させる工程、
 ここで、
 前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
 前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
 第1の核酸プローブの配列は標的オリゴヌクレオチドの末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、
 第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、且つ、
 固相は第1の核酸プローブの末端のヌクレオチドに結合しており、第1の核酸プローブの当該末端のヌクレオチドは、標的オリゴヌクレオチドと第1の核酸プローブがハイブリダイズした場合に、標的オリゴヌクレオチドの前記末端のヌクレオチドと塩基対を形成する; 及び
 (ii)前記複合体を検出することにより、試料中の標的オリゴヌクレオチドを検出する工程。
 [実施態様8]
 第1の核酸プローブの配列は、標的オリゴヌクレオチドの3'末端のヌクレオチドを含む標的オリゴヌクレオチドの3'側部分配列と相補的であり、第2の核酸プローブの配列は、標的オリゴヌクレオチドの前記3'側部分配列以外の配列と相補的であり、且つ、固相は第1の核酸プローブの5'末端のヌクレオチドに結合している、実施態様7に記載の方法。
 [実施態様9]
 第1の核酸プローブの配列は、標的オリゴヌクレオチドの5'末端のヌクレオチドを含む標的オリゴヌクレオチドの5'側部分配列と相補的であり、第2の核酸プローブの配列は、標的オリゴヌクレオチドの前記5'側部分配列以外の配列と相補的であり、且つ、固相は第1の核酸プローブの3'末端のヌクレオチドに結合している、実施態様7又は8に記載の方法。
 [実施態様10]
 前記捕捉プローブに含まれる第1の核酸プローブは、5塩基長、6塩基長、7塩基長、8塩基長、9塩基長、10塩基長、又は11塩基長である、実施態様1~9の何れかに記載の方法。
 [実施態様11]
 前記アシストプローブに含まれる第2の核酸プローブは、4塩基長、5塩基長、6塩基長、7塩基長、8塩基長、9塩基長、10塩基長、11塩基長、12塩基長、13塩基長、14塩基長、15塩基長、16塩基長、17塩基長、18塩基長、19塩基長、20塩基長、21塩基長、22塩基長、23塩基長、24塩基長又は25塩基長である、実施態様1~10の何れかに記載の方法: 但し、一態様において、前記捕捉プローブに含まれる第1の核酸プローブが11塩基長の場合は、前記アシストプローブに含まれる第2の核酸プローブは4塩基長ではない。
 [実施態様12]
 前記捕捉プローブが第1の核酸プローブと固相の間にアダプター又はスペーサーを含む、実施態様1~11の何れかに記載の方法。
 [実施態様13]
 以下の工程を更に含み、
 (i)前記複合体に対し、互いにハイブリダイズ可能な相補的塩基配列領域を有する自己集合可能な一対のシグナル増幅用プローブを添加し、前記複合体と結合したプローブポリマーを形成させる工程;及び
 (ii)前記プローブポリマーを検出する工程;
 前記アシストプローブは、前記自己集合可能な一対のシグナル増幅用プローブのうち1つのシグナル増幅用プローブの一部又は全てと相補的な塩基配列を有するタグを含むことを特徴とする、
 実施態様1~12の何れかに記載の方法。
 [実施態様14]
 前記自己集合可能な一対のシグナル増幅用プローブの少なくとも一方が、ポリT配列を含む、実施態様13に記載の方法。
 [実施態様15]
 前記自己集合可能な一対のシグナル増幅用プローブの少なくとも1つが標識物質で標識されていることを特徴とする、実施態様13又は14に記載の方法。
 [実施態様16]
 前記自己集合可能な一対のシグナル増幅用プローブが、第1のシグナル増幅用プローブと第2のシグナル増幅用プローブとからなり、
 前記第1のシグナル増幅用プローブが3箇所以上の核酸領域を含み、且つ5’末端側から順に少なくとも核酸領域X、核酸領域Y、及び核酸領域Z若しくはポリT配列を含む核酸領域Zを含む核酸プローブであり、
 前記第2のシグナル増幅用プローブが3箇所以上の核酸領域を含み、且つ5’末端側から順に少なくとも前記核酸領域Xに相補的な核酸領域X’、前記核酸領域Yに相補的な核酸領域Y’、及び前記核酸領域Zに相補的な核酸領域Z’ 若しくはポリA配列を含む核酸領域Z’を含む核酸プローブであることを特徴とする、
 実施態様13~15の何れかに記載の方法。
 [実施態様17]
 捕捉プローブ、アシストプローブ、及び互いにハイブリダイズ可能な相補的塩基配列領域を有し自己集合によるプローブポリマーの形成が可能な一対のシグナル増幅用プローブを含む、標的オリゴヌクレオチドの検出に用いられる検出用キットであって、
 前記捕捉プローブは、固相と、当該固相に固定化された第1の核酸プローブとを含み、
 前記アシストプローブは、前記一対のシグナル増幅用プローブ中の1つのシグナル増幅用プローブの一部又は全てと相補的な塩基配列を有するタグと、当該タグに連結された第2の核酸プローブとを含み、
 前記第1の核酸プローブの配列は標的オリゴヌクレオチドの末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、
 前記第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、
 且つ、
 固相は第1の核酸プローブの末端のヌクレオチドに結合しており、前記第1の核酸プローブの当該末端のヌクレオチドは、標的オリゴヌクレオチドと前記第1の核酸プローブがハイブリダイズした場合に、標的オリゴヌクレオチドの前記末端のヌクレオチドと塩基対を形成することを特徴とする、
 検出用キット。
 [実施態様18]
 前記第1の核酸プローブが、第1の核酸プローブと固相の間にアダプター又はスペーサーを含むことを特徴とする、実施態様17に記載の検出用キット。
 [実施態様19]
 試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定するための検出用キットであって、前記捕捉プローブに含まれる第1の核酸プローブは、その5'末端のヌクレオチドを介して固相に固定化されている、実施態様17又は18に記載の検出用キット。
 [実施態様20]
 試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定するための検出用キットであって、前記捕捉プローブに含まれる第1の核酸プローブは、その3'末端のヌクレオチドを介して固相に固定化されている、実施態様17又は18に記載の検出用キット。
 [実施態様21]
 前記一対のシグナル増幅用プローブの少なくとも1つが標識物質で標識されていることを特徴とする、実施態様17~20の何れかに記載の検出用キット。
 [実施態様22]
 前記一対のシグナル増幅用プローブが第1のシグナル増幅用プローブと第2のシグナル増幅用プローブとからなり、
 前記第1のシグナル増幅用プローブが5’末端側から順に少なくとも核酸領域X、核酸領域Y、及び核酸領域Z若しくはポリT配列を含む核酸領域Zを含む核酸プローブであり、
 前記第2のシグナル増幅用プローブが5’末端側から順に少なくとも前記核酸領域Xに相補的な核酸領域X’、前記核酸領域Yに相補的な核酸領域Y’、及び前記核酸領域Zに相補的な核酸領域Z’ 若しくはポリA配列を含む核酸領域Z’を含む核酸プローブであることを特徴とする、
 実施態様17~21の何れかに記載の検出用キット。
 本発明により、酵素等を用いず、プローブ同士のハイブリダイゼーションのみの工程にて、簡便で、高感度かつ特異性及び定量性に優れたオリゴヌクレオチドの検出または定量を行うことができる。また、測定対象である標的オリゴヌクレオチドの5’側または3’側が欠失したオリゴヌクレオチド代謝産物と未変化体との区別をし、代謝物の交差反応性がほとんどなく、未変化体のみを検出可能な特異性及び定量性に優れたオリゴヌクレオチドの検出方法または定量方法を提供することができる。
捕捉プローブとアシストプローブを使用するハイブリダイゼーション法(CP-AP法)の原理を示す図である。 LNA及びDNAの構成要素の構造を示す図である。 配向性の異なる捕捉プローブの交差反応性を示す図である。 シグナル増幅方法としてPALSAR法を用いた場合と従来法を用いた場合の交差反応性を示す図である。 標的核酸の定量結果を示す図である。 自己集合可能な一対のプローブを用いたシグナル増幅(PALSAR法)の原理を示す模式図である。 捕捉プローブ(CP)及びアシストプローブ(AP)により認識されない結合領域が標的核酸にある場合の模式図である(AP鎖長を固定した場合)。 捕捉プローブ(CP)及びアシストプローブ(AP)により認識されない結合領域が標的核酸にある場合の模式図である(CP鎖長を固定した場合)。
 (試料)
 本発明の方法に使用する「試料」は、ヒト、サル、イヌ、ブタ、ラット、モルモット、又はマウスの全血、血清、血漿、リンパ液、尿、唾液、涙液、汗、胃液、膵液、胆汁、胸水、関節腔液、脳脊髄液、髄液、骨髄液などの体液若しくは肝臓、腎臓、肺、心臓などの組織等である。好ましくは、試料は、ヒト、サル、イヌ、ブタ、ラット、モルモット、又はマウス、好ましくは、ヒトの全血、血清、血漿、又は尿である。更に好ましくは、試料は、標的オリゴヌクレオチドを含む医薬を投与されたヒト、サル、イヌ、ブタ、ラット、モルモット、又はマウス、好ましくは、ヒトの全血、血清、血漿、又は尿である。
 (標的オリゴヌクレオチド)
 本明細書において、「標的オリゴヌクレオチド」という用語は、測定対象である無傷のオリゴヌクレオチド(無傷の標的オリゴヌクレオチド/未変化体)を意味する。即ち、「標的オリゴヌクレオチド」という用語には、これと区別すべき代謝物は含まれない。本明細書において、「標的オリゴヌクレオチド」という用語は、核酸プローブと特異的なハイブリッドを形成できるものであれば、DNA又はRNAの何れでも良く、一本鎖又は二本鎖の何れでも良く、化学修飾されていても良い。化学修飾としては、ホスホロチオエート修飾(S化)、2'-F修飾、2'-O-Methyl(2'-OMe)修飾、2'-O-Methoxyethyl(2'-MOE)修飾、モルフォリノ修飾、LNA修飾、BNACOC修飾、BNANC修飾、ENA修飾、cEt BNA修飾などが挙げられる。上記、標的オリゴヌクレオチドが二本鎖の場合は、一本鎖にして本発明に使用される。標的オリゴヌクレオチドの塩基長は、限定されるものではないが、好ましくは、12mer、13mer、14mer、15mer、16mer、17mer、18mer、19mer、20mer、21mer、22mer、23mer、24mer、25mer、26mer、27mer、28mer、29mer、又は30merである。
 (捕捉プローブ)
 本発明に使用する「捕捉プローブ」は、標的オリゴヌクレオチドを捕捉するためのプローブであり、核酸プローブと、前記核酸プローブの3'末端又は5'末端のヌクレオチドに隣接する固相とを含む。
 (アシストプローブ)
 本発明に使用する「アシストプローブ」は、標的オリゴヌクレオチドを検出するためのプローブであり、核酸プローブと、前記核酸プローブの5'末端又は3'末端のヌクレオチドに隣接するタグ又は標識とを含む。
 (捕捉プローブ及びアシストプローブに含まれる核酸プローブ - 構成するヌクレオチドについて)
 捕捉プローブ及びアシストプローブに含まれる核酸プローブは、デオキシリボヌクレオチド又はリボヌクレオチドからなるが、本発明の一態様において、それぞれ独立に、0個、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、又は11個のロックド核酸(LNA)を含む(図2)。核酸プローブが5merの塩基長を有する場合、当該核酸プローブは、好ましくは5個のロックド核酸(LNA)を含み、核酸プローブが6mer乃至11merの塩基長を有する場合、当該核酸プローブは、好ましくは0個、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、又は11個のロックド核酸(LNA)を含む。
 (核酸プローブ - 塩基長について)
 捕捉プローブに含まれる核酸プローブは、一態様において、5mer、6mer、7mer、8mer、9mer、10mer、又は11merの塩基長を有する。
 アシストプローブに含まれる核酸プローブは、一態様において、4mer、5mer、6mer、7mer、8mer、9mer、10mer、11mer、12mer、13mer、14mer、15mer、16mer、17mer、18mer、19mer、20mer、21mer、22mer、23mer、24mer又は25merの塩基長を有する。アシストプローブに含まれる核酸プローブは、別の態様において、4mer、5mer、6mer、7mer、8mer、9mer、10mer、11mer、12mer、13mer、14mer、15mer、又は16merの塩基長を有する。
 但し、一態様において、捕捉プローブに含まれる核酸プローブが11merの塩基長を有し、かつ、アシストプローブに含まれる核酸プローブが4merの塩基長を有する態様は本発明に含まれない。一態様において、捕捉プローブに含まれる核酸プローブが10merの塩基長を有し、かつ、アシストプローブに含まれる核酸プローブが4merの塩基長を有する態様は本発明に含まれる。別の一態様において、捕捉プローブに含まれる核酸プローブが10merの塩基長を有し、かつ、アシストプローブに含まれる核酸プローブが4merの塩基長を有する態様は本発明に含まれない。
 (接触)
 本明細書において、「接触」させる、あるいは、「接触」させる工程という用語は、ある物質と他の物質との間で、共有結合、イオン結合、金属結合、非共有結合などの化学結合を形成できるように、これらの物質を互いに近傍に置くことを意味する。本発明の一態様においては、ある物質と他の物質を「接触させる」とは、ある物質を含む溶液と他の物質を含む溶液を混合することを意味する。本発明においては、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブを接触させることにより、これらの複合体を形成させる。一態様において、試料に、捕捉プローブと、アシストプローブとを接触させる工程は、試料、捕捉プローブ、及びアシストプローブを含む混合物を、標的オリゴヌクレオチドと、捕捉プローブに含まれる核酸プローブとの融解温度(Tm)と比較して+2℃~-10℃、+1℃~-9℃、0℃~-8℃、-1℃~-7℃、-2℃~-6℃、又は-3℃~-5℃、あるいは、+10℃、+9℃、+8℃、+7℃、+6℃、+5℃、+4℃、+3℃、+2℃、+1℃、0℃、-1℃、-2℃、-3℃、-4℃、-5℃、-6℃、-7℃、-8℃、-9℃、又は-10℃の温度で一定時間保温することで行われる。例えば、Tmが50℃の場合、Tmと比較して+2℃~-10℃とは52℃~40℃を意味する。保温時間は、一態様において、10秒~4分、20秒~3分、又は30秒~2分、あるいは、10秒、20秒、30秒、40秒、50秒、60秒、70秒、80秒、90秒、100秒、110秒、120秒、130秒、140秒、150秒、160秒、170秒、又は180秒である。
 (捕捉)
 本発明において、捕捉プローブが標的オリゴヌクレオチドを「捕捉」するとは、第一義的には、捕捉プローブに含まれる核酸プローブと標的オリゴヌクレオチドとがハイブリダイズすることを意味する。一態様において、捕捉プローブが標的オリゴヌクレオチドを「捕捉」するとは、標的オリゴヌクレオチドが、捕捉プローブに含まれる核酸プローブを介して、捕捉プローブに含まれる固相に対して又はアダプター若しくはスペーサーが結合する固相に対して間接的に結合することを意味する。本発明において、捕捉プローブが、標的オリゴヌクレオチドを直接的に捕捉し、更に、標的オリゴヌクレオチドを介してアシストプローブを間接的に捕捉することにより、試料中の標的オリゴヌクレオチドの量に比例したシグナルをアシストプローブから得ることができる。
 (ハイブリダイゼーション/ハイブリダイズ)
 本明細書において、標的オリゴヌクレオチドに対して捕捉プローブ又はアシストプローブに含まれる核酸プローブがハイブリダイズするとは、特定の塩基配列を有する一本鎖標的オリゴヌクレオチドに対して、当該配列の一部と相補的な配列を有する一本鎖核酸プローブが塩基対形成を通じて結合し、二本鎖核酸分子を形成することを意味する。
 (複合体)
 本明細書において、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの「複合体」を形成させるというときは、捕捉プローブに含まれる核酸プローブと標的オリゴヌクレオチドの一部が特異的にハイブリダイズし、且つ、アシストプローブに含まれる核酸プローブと標的オリゴヌクレオチドの他の一部が特異的にハイブリダイズした三量体を形成させることを意味する。ここで、核酸プローブと標的オリゴヌクレオチドの一部が特異的にハイブリダイズするとは、タグを除き、核酸プローブに含まれる全ての塩基が標的オリゴヌクレオチドの塩基とペアを形成することを意味する。一態様において、標的オリゴヌクレオチドに含まれる全ての塩基は、捕捉プローブに含まれる核酸プローブの塩基又はアシストプローブに含まれる核酸プローブの塩基とペアを形成する。
 (除去)
 捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの複合体を検出する際に、遊離のアシストプローブに由来するシグナルが前記検出の妨げとなる場合には、遊離のアシストプローブを除去することが好ましい。例えば、捕捉プローブに含まれる固相、あるいは、捕捉プローブに含まれるアダプター又はスペーサーを介して結合している固相を洗浄することにより、遊離のアシストプローブを除去することが出来る。固相を洗浄するためには、固相が懸濁されている反応液を遠心分離器にかけたり、濾過したりすることで反応液の液相を分離すればよい。また、固相が磁性を有する場合には、磁石を用いて固相を回収することも出来る。固相の洗浄は必要に応じて複数回行っても良い。
 (検出)
 標的オリゴヌクレオチドを「検出」するために、アシストプローブに含まれるタグ又は標識、あるいは、タグを介して結合された標識を利用することができる。また、捕捉プローブに含まれる固相が蛍光などのシグナルを発することができる場合には、当該シグナルを利用することも出来る。標識又は固相からのシグナルは、物理的又は化学的に検出可能なシグナルであれば、どのようなシグナルでも良いが、ハイスループットを実現するためには光学的に検出可能なシグナルが好ましい。
(自己集合:PALSAR法)
 複数の第1のシグナル増幅用プローブが、第2のシグナル増幅用プローブとのハイブリダイゼーションによりプローブポリマーを形成した状態、及び、複数の第2のシグナル増幅用プローブが、第1のシグナル増幅用プローブとのハイブリダイゼーションによりプローブポリマーを形成した状態を意味する。
(自己集合可能な一対のシグナル増幅用プローブ)
 本発明の方法に使用する「自己集合可能」な一対のシグナル増幅用プローブは、第1のシグナル増幅用プローブと第2のシグナル増幅用プローブが互いにハイブリダイズ可能な相補的塩基配列領域を有し、自己集合反応によるプローブポリマーの形成が可能なオリゴヌクレオチドをいう。ここで、「ハイブリダイズ可能」とは、一態様においては、当該相補的塩基配列領域において完全に相補的であることを意味する。
 自己集合可能な一対のプローブにはあらかじめ検出のための標識物質で標識しておくことも可能である。好ましくは、前記第1又は第2のシグナル増幅用プローブのうち少なくとも一方は、標識物質により標識されている。そのような標識物質として、放射性同位元素、ビオチン、ジゴキシゲニン、蛍光物質、発光物質又は色素等が好適な例として挙げられる。具体的には、125Iや32P等のラジオアイソトープ、ジゴキシゲニンやアクリジニウム・エステル等の発光・発色物質、ジオキセタン等の発光物質や4-メチルウンベリフェリルリン酸等の蛍光物質を利用するためのアルカリフォスファターゼ、アビジンに結合した蛍光・発光・発色物質等を利用するためのビオチン等が挙げられる。また、蛍光共鳴エネルギー転移(FRET)を利用するためのドナー蛍光色素とアクセプター蛍光色素を付加させておき、標的オリゴヌクレオチドを検出することも可能である。
 一態様において、当該標識物質はビオチンであり、当該オリゴヌクレオチドの標識は、5’末端又は3’末端をビオチン化することにより行われる。当該標識物質がビオチンの場合、標識物質に特異的に結合する物質はストレプトアビジン又はアビジンである。一態様において、当該標識物質はビオチンではなく、標識物質に特異的に結合する物質はストレプトアビジン又はアビジンではない。
 本発明における標的オリゴヌクレオチドと捕捉プローブ及びアシストプローブのハイブリダイゼーション生成物を含む複合体に、第1及び第2のシグナル増幅用プローブからなる自己集合可能な一対のプローブを接触させて、第1及び第2のシグナル増幅用プローブからなるプローブポリマーと複合体を結合させ検出を行う場合がある(図6)。
 一態様において、上記で使用するアシストプローブは、第1及び第2のシグナル増幅用プローブからなる自己集合可能な一対のプローブの一方と結合可能なタグを含み、標的オリゴヌクレオチドと前記プローブポリマーの結合をアシストする役割を有する。アシストプローブの第一の態様は前記第1又は第2のオリゴヌクレオチドのうち少なくとも一方の全配列又は部分配列に対して相補的な配列からなるタグ及び標的オリゴヌクレオチドの部分配列に対して相補的な配列を含むプローブである。
 (固相)
 本明細書において、「固相」という用語の例としては、不溶性の微粒子、マイクロビーズ、蛍光微粒子、磁気粒子、マイクロプレート、マイクロアレイ、スライドガラス、電気伝導性基板等の基板等が挙げられる。
 本発明の一態様においては「固相」は蛍光微粒子であり、別の一態様においては蛍光ビーズであり、更に別の一態様においては、表面に蛍光物質を有するビーズである。本発明に使用する、「表面に蛍光物質を有するビーズ」としては、蛍光物質を有するビーズであれば、特に限定されず、例えば、Luminex社のMicroPlexTM Microspheresが好適に使用することができる。1種類のビーズを用いることも、多種類のビーズを用いることもできる。カラーコード化された複数種類のビーズを使用すれば、本発明のオリゴヌクレオチドの定量方法も容易にマルチプレックス化できる。
 本発明の一態様においては「固相」はマイクロプレートである。本発明に使用するマイクロプレートの材質としては、ポリスチレン、ポリプロピレン、ポリカーボネート、環状オレフィンコポリマーが挙げられるが、これらに限定されない。本発明の一態様においてマイクロプレートは、ビオチンコート済みプレート、プロテインA、G、A/G、及び/又はLコート済みプレート、抗GST抗体コート済みプレート、グルタチオン、ニッケル、及び/又は銅コート済みプレート、アミン及び/又はスルフヒドリル結合プレート、カルボキシル化プレート、ストレプトアビジンコート済みプレート等のコート済みプレートである。
 一態様において、固相は不溶性の微粒子ではなく、マイクロビーズではなく、蛍光微粒子ではなく、磁気粒子ではなく、マイクロプレートではなく、マイクロアレイではなく、スライドガラスではなく、又は電気伝導性基板等の基板等ではない。
 (アダプター)
 本発明に使用する「アダプター」としては、例えば、ビオチン、ストレプトアビジン又はアビジン、及びこれらの組合せ、抗原、抗体、及びこれらの組合せが挙げられ、好ましくはビオチン、ストレプトアビジン又はアビジン、及びこれらの組合せ等である。一態様において、アダプターはオリゴヌクレオチドやヌクレオチド等の核酸ではなく、ビオチン、ストレプトアビジン又はアビジン、及びこれらの組合せ、抗原、抗体、及びこれらの組合せではなく、Spacer 9、Spacer 12、Spacer18、Spacer C3等のスペーサー等のアミノ基若しくはカルボキシル基を有する化合物等ではない。別の一態様において、アダプターはオリゴヌクレオチドやヌクレオチド等の核酸を含まない。更に、一態様において、ストレプトアビジン又はアビジンは直接固相に固定されている。また、別の一態様においてストレプトアビジン又はアビジンは直接固相に固定されていない。例えば、当該別の一態様において、ストレプトアビジン又はアビジンは(第2の)スペーサーを介して固相に固定されている。
 (スペーサー)
 本発明に使用する「スペーサー」としては、例えば、オリゴヌクレオチドやヌクレオチド等の核酸、Spacer 9、Spacer 12、Spacer18、Spacer C3等のスペーサー等のアミノ基若しくはカルボキシル基を有する化合物等が挙げられ、好ましくは5'-Amino-Modifier C12 (12-(4-Monomethoxytritylamino)dodecyl-1-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite)等である。例えば、ビーズ表面にカルボキシル基を有し、アミノ基の化合物を付加した核酸プローブが、アミノ基を介してビーズ表面のカルボキシル基と結合する態様は、アミノ基を有する化合物がスペーサーの例となる。一態様において、スペーサーはオリゴヌクレオチドやヌクレオチド等の核酸ではなく、ビオチンではなく、Spacer 9、Spacer 12、Spacer18、Spacer C3等のスペーサー等のアミノ基若しくはカルボキシル基を有する化合物等ではない。別の一態様において、スペーサーはオリゴヌクレオチドやヌクレオチド等の核酸を含まない。更に、一態様において、(第1の)スペーサーは直接固相に固定されている。また、別の一態様において(第1の)スペーサーは直接固相に固定されていない。例えば、当該別の一態様において、(第1の)スペーサーはビオチン、ストレプトアビジン又はアビジン、及びこれらの組合せを介して固相に固定されている。
 スペーサーがオリゴヌクレオチドである場合、オリゴヌクレオチドの塩基長は、4mer以上130mer以下、5mer以上90mer以下、7mer以上50mer以下、10mer以上40mer以下、15mer以上30mer以下、あるいは、4mer、5mer、6mer、7mer、8mer、9mer、10mer、11mer、12mer、13mer、14mer、15mer、16mer、17mer、18mer、19mer、20mer、21mer、22mer、23mer、24mer、25mer、26mer、27mer、28mer、29mer、30mer、31mer、32mer、33mer、34mer、35mer、36mer、37mer、38mer、39mer、40mer、41mer、42mer、43mer、44mer、45mer、46mer、47mer、48mer、49mer、50mer、51mer、52mer、53mer、54mer、55mer、56mer、57mer、58mer、59mer、60mer、61mer、62mer、63mer、64mer、65mer、66mer、67mer、68mer、69mer、70mer、71mer、72mer、73mer、74mer、75mer、76mer、77mer、78mer、79mer、80mer、81mer、82mer、83mer、84mer、85mer、86mer、87mer、88mer、89mer、90mer、91mer、92mer、93mer、94mer、95mer、96mer、97mer、98mer、99mer、100mer、101mer、102mer、103mer、104mer、105mer、106mer、107mer、108mer、109mer、110mer、111mer、112mer、113mer、114mer、115mer、116mer、117mer、118mer、119mer、120mer、121mer、122mer、123mer、124mer、125mer、126mer、127mer、128mer、129mer、又は130merである。
 (タグ又は標識)
 アシストプローブに含まれる「タグ」としては、ポリA配列、ポリT配列、ポリU配列、ポリ(T/U)配列、ポリG配列、及びポリC配列、並びに任意の特異的な配列を含む又はこれらからなる核酸が挙げられる。核酸タグの塩基長は、5mer以上115mer以下、10mer以上110mer以下、15mer以上105mer以下、20mer以上100mer以下、25mer以上95mer以下、30mer以上90mer以下、35mer以上85mer以下、40mer以上80mer以下、45mer以上75mer以下、50mer以上70mer以下、又は55mer以上65mer以下、あるいは、5mer、6mer、7mer、8mer、9mer、10mer、11mer、12mer、13mer、14mer、15mer、16mer、17mer、18mer、19mer、20mer、21mer、22mer、23mer、24mer、25mer、26mer、27mer、28mer、29mer、30mer、31mer、32mer、33mer、34mer、35mer、36mer、37mer、38mer、39mer、40mer、41mer、42mer、43mer、44mer、45mer、46mer、47mer、48mer、49mer、50mer、51mer、52mer、53mer、54mer、55mer、56mer、57mer、58mer、59mer、60mer、61mer、62mer、63mer、64mer、65mer、66mer、67mer、68mer、69mer、70mer、71mer、72mer、73mer、74mer、75mer、76mer、77mer、78mer、79mer、80mer、81mer、82mer、83mer、84mer、85mer、86mer、87mer、88mer、89mer、90mer、91mer、92mer、93mer、94mer、95mer、96mer、97mer、98mer、99mer、100mer、101mer、102mer、103mer、104mer、105mer、106mer、107mer、108mer、109mer、110mer、111mer、112mer、113mer、114mer、又は115merである。一態様において、タグ又は標識はオリゴヌクレオチドやヌクレオチド等の核酸を含まない。アシストプローブに含まれる「標識」としては、放射性同位元素、ビオチン、ジゴキシゲニン、蛍光物質、発光物質又は色素等が好適な例として挙げられる。具体的には、125Iや32P等のラジオアイソトープ、ジゴキシゲニンやアクリジニウム・エステル等の発光・発色物質、ジオキセタン等の発光物質や4-メチルウンベリフェリルリン酸等の蛍光物質を利用するためのアルカリフォスファターゼ、アビジンに結合した蛍光・発光・発色物質等を利用するためのビオチン等が挙げられる。また、蛍光共鳴エネルギー転移(FRET)を利用するためのドナー蛍光色素とアクセプター蛍光色素を付加させておき、標的オリゴヌクレオチドを検出することも可能である。一態様において、標識は、アシストプローブに含まれる前記の核酸タグにハイブリダイズする別の核酸分子に含まれていても良い。一態様において、アシストプローブに含まれる「標識」は、放射性同位元素、ビオチン、ジゴキシゲニン、蛍光物質、発光物質又は色素等ではない。特に、アダプターとしてビオチン、ストレプトアビジン又はアビジン、及びこれらの組合せを使用する場合、一態様において、アシストプローブに含まれる「標識」はビオチンではない。
 (隣接)
 核酸プローブの5’末端又は3’末端のヌクレオチドに固相又はタグ又は標識が「隣接」する、「固定化」される、或いは「連結」するとは、第一義的には、固相又はタグ又は標識が当該ヌクレオチドに直接結合していることを意味する。例えば、固相又はタグ又は標識が何らかの分子を介して当該ヌクレオチドに結合している場合には、当該分子自体を固相又はタグ又は標識と考えることができ、あるいは、当該分子自体が固相又はタグ又は標識の一部を構成すると考えることができる。固相は、アダプター又はスペーサーを介して核酸プローブに結合しても良い。
 (核酸プローブ - 標的オリゴヌクレオチド及びその代謝物との関係について)
 本発明において代謝物とは、標的オリゴヌクレオチドにおいて3’末端及び/
又は5’末端から少なくとも1以上のヌクレオチドが欠損しているオリゴヌクレオチドをいう。
 本発明の一態様において、標的オリゴヌクレオチドの代謝物は3’末端から1以上のヌクレオチドが欠損しており、捕捉プローブに含まれる「核酸プローブ」の配列は、標的オリゴヌクレオチドの3’末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、アシストプローブに含まれる「核酸プローブ」の配列は、標的オリゴヌクレオチドの前記部分配列以外の配列と相補的である。当該態様において、捕捉プローブが含む固相は、捕捉プローブが含む核酸プローブの5’末端のヌクレオチドに隣接し、アシストプローブが含むタグ又は標識は、アシストプローブが含む核酸プローブの3’末端のヌクレオチドに隣接する。
 本発明の別の態様において、標的オリゴヌクレオチドの代謝物は5’末端から1以上のヌクレオチドが欠損しており、捕捉プローブに含まれる「核酸プローブ」の配列は、標的オリゴヌクレオチドの5’末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、アシストプローブに含まれる「核酸プローブ」の配列は、標的オリゴヌクレオチドの前記部分配列以外の配列と相補的である。当該態様において、捕捉プローブが含む固相は、捕捉プローブが含む核酸プローブの3’末端のヌクレオチドに隣接し、アシストプローブが含むタグ又は標識は、アシストプローブが含む核酸プローブの5’末端のヌクレオチドに隣接する。
 なお、本明細書において、便宜上、捕捉プローブに含まれる「核酸プローブ」を「第1の核酸プローブ」と呼び、アシストプローブに含まれる「核酸プローブ」を「第2の核酸プローブ」と呼ぶことがある。
 捕捉プローブに含まれる第1の核酸プローブと、アシストプローブに含まれる第2の核酸プローブとは、標的オリゴヌクレオチドにハイブリダイズした際に、互いに(ギャップ無く)隣接していてもよく、(1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、又は60ヌクレオチドのギャップを伴って)隣接していなくても良い。本発明の一態様において、捕捉プローブに含まれる第1の核酸プローブと、アシストプローブに含まれる第2の核酸プローブとは、標的オリゴヌクレオチドにハイブリダイズした際に、1~21ヌクレオチド、1~16ヌクレオチド、1~11ヌクレオチド、又は1~7ヌクレオチド、のギャップを伴って隣接していない。
 捕捉プローブに含まれる第1の核酸プローブと、アシストプローブに含まれる第2の核酸プローブがギャップを伴う場合のその他の態様として、捕捉プローブに含まれる第1の核酸プローブと、アシストプローブに含まれる第2の核酸プローブのそれぞれに隣接し、標的オリゴヌクレオチドのギャップ部位にハイブリダイズするブロッキングプローブを使用してもよい。当該態様において、第1の核酸プローブとブロッキングプローブの間および/または第2の核酸プローブとブロッキングプローブの間にギャップがあっても良いことは、当業者に理解されるであろう。
 (相補的 - 捕捉プローブについて)
 捕捉プローブに含まれる核酸プローブが標的オリゴヌクレオチドの3’側(5'側)の配列と「相補的」とは、好ましくは、標的オリゴヌクレオチドの3’末端(5’末端)のヌクレオチドを含む連続するヌクレオチドの配列に対して、当該核酸プローブの配列が完全に相補的であることを意味する。この完全に相補的な配列の長さは、好ましくは、捕捉プローブに含まれる核酸プローブの塩基長と同じである。但し、一態様において、当該核酸プローブは、標的オリゴヌクレオチドの3’側(5’側)の配列と完全に相補的な部分に加えて、5’末端(3’末端)に追加のヌクレオチドを有することができる。当該追加のヌクレオチドについて、ペア又はミスマッチを形成すべき相手が標的オリゴヌクレオチド上に存在しないことは容易に理解されよう。当該追加のヌクレオチドは、核酸プローブの5’末端(3’末端)のヌクレオチドに隣接する固相又はアダプター又はスペーサーの一部又は全部を構成すると考えることも出来る。また、一態様において、当該核酸プローブが、代謝物と比較して標的オリゴヌクレオチドに対して優先的に結合できることを条件として、核酸プローブの配列に人為的な変異を導入しうることは当業者に理解されよう。括弧内は適宜読み替える。
 (相補的 - アシストプローブについて)
 アシストプローブに含まれる核酸プローブが標的オリゴヌクレオチドの5’側(3'側)の配列と「相補的」とは、好ましくは、標的オリゴヌクレオチドの5’末端(3’末端)のヌクレオチドを含む連続するヌクレオチドの配列に対して、当該核酸プローブの配列が完全に相補的であることを意味する。この完全に相補的な配列の長さは、好ましくは、アシストプローブに含まれる核酸プローブの塩基長と同じである。但し、一態様において、当該核酸プローブは、標的オリゴヌクレオチドの5’側(3’側)の配列と完全に相補的な部分に加えて、3’末端(5’末端)に追加のヌクレオチドを有することができる。当該追加のヌクレオチドについて、ペア又はミスマッチを形成すべき相手が標的オリゴヌクレオチド上に存在しないことは容易に理解されよう。当該追加のヌクレオチドは、核酸プローブの3’末端(5’末端)のヌクレオチドに隣接するタグの一部又は全部を構成すると考えることも出来る。また、一態様において、核酸プローブの配列に人為的な変異を導入しうることは当業者に理解されよう。括弧内は適宜読み替える。
 [実施例1] 捕捉プローブの配向性についての検討
 1. 材料及び方法
 (1)標的核酸
 測定対象の標的核酸としてPT-1を用いた。標的核酸の代謝物モデル核酸として、3‘末端が1塩基欠損した核酸PT-1-3n-1、5’末端が1塩基欠損した核酸PT-1-5n-1を用いた。核酸は日本遺伝子研究所社に合成を依頼した(HPLC精製グレード)。上記の標的核酸は、核酸医薬の1つであるアンチセンス核酸の一般的な構造と同様、完全S化(ホスホロチオエート化、Phosphorothioate)されており、PT-1は5’末端および3’末端から3塩基ずつがLNAに置換されている。また、PT-1-3n-1については5’末端から3塩基、3’末端から2塩基がLNAに置換されており、PT-1-5n-1は5’末端から2塩基、3’末端から3塩基がLNAに置換されている。 PT-1、PT-1-3n-1、PT-1-5n-1ともに、0.01% Tween20 を含むNuclease free waterを用いて、2ng/mlに調製して用いた。また、 PT-1、PT-1-3n-1、PT-1-5n-1を含まないブランクサンプルも用意した。
 〈PT-1の塩基配列〉
 5’- A(L)^G(L)^A(L)^G^C^T^G^A^C^T^T^G^A^T(L)^G(L)^5(L)-3’(塩基部分は配列番号1)
 〈PT-1-3n-1の塩基配列〉
 5’- A(L)^G(L)^A(L)^G^C^T^G^A^C^T^T^G^A^T(L)^G(L)-3’(塩基部分は配列番号2)
 〈PT-1-5n-1の塩基配列〉
 5’- G(L)^A(L)^G^C^T^G^A^C^T^T^G^A^T(L)^G(L)^5(L)-3’(塩基部分は配列番号3)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換、^=ホスホロチオエート化されていることを示す。
 (2)捕捉プローブの調製
 担体であるMicroPlexTMMicrospheres(Luminex社、製品番号: LC10015-01)に、PT-1の3’側に対して相補的な塩基配列を持つ核酸プローブCP-7m-5Nを5’末端のNH2修飾を介して結合させることにより捕捉プローブを調製した(5’CP-LB)。同様に、Luminex社のMicroPlexTM Microspheres(Region No.: 15、製品番号: LC10015-01)に、PT-1の5’側に対して相補的な塩基配列を持つ核酸プローブCP-7m-3Nを3’末端のNH2修飾を介して結合させることにより捕捉プローブを調製した(3’CP-LB)。
 〈CP-7m-5Nの塩基配列〉
 5’-(NH2)-G(L)CATCAA(L)-3’(塩基部分は配列番号4)
 〈CP-7m-3Nの塩基配列〉
 5’-5(L)AGCTCT(L)-(NH2)-3’(塩基部分は配列番号5)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (3)捕捉プローブへの標的核酸の捕捉 (1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で1時間反応させた。
 (3-1)1st Hybridization反応液の組成
 上記(2)で担体へ固定した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10×supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)5μL、RNase Free water 2.85μL、100 fmol/ml アシストプローブ(PT-1の5’側に対して相補的な塩基配列の3’末端にポリA鎖を付加した塩基配列を持つAP-9m、またはPT-1の3’側に対して相補的な塩基配列の5’末端にポリA鎖を付加した塩基配列を持つAP-9m-5A) 1μL
 〈AP-9mの塩基配列〉
 5’- G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)T(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号6)
 〈AP-9m-5Aの塩基配列〉
 5’-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA G(L)5(L)A(L)T(L)5(L)A(L)A(L)G(L)T(L) -3’
 (塩基部分は配列番号7)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (4)PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLにPALSAR反応液を15μL加えて計50μLとし、25℃で1時間反応させた。本実施例1に使用する自己集合可能な一対のプローブ(シグナル増幅用プローブともいう)の配列は、5’末端がビオチンで標識された以下のHCP-1及びHCP-2である。
 〈HCP-1の塩基配列〉
 5’-(Biotin)-CAACAATCAGGACGATACCGATGAAGTTTTTTTTTTTTTTTTTTTT-3’(塩基部分は配列番号8)
 〈HCP-2の塩基配列〉
 5’-(Biotin)-GTCCTGATTGTTGCTTCATCGGTATCAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号9)
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10×supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5)蛍光検出
 PALSAR反応終了後の反応液を1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。
 その後、検出試薬[SA-PE (Streptavidin-R-Phycoerythrin、Prozyme社製) 5μg/mL] を50μL加えて25℃の遮光下で10分間静置した後、1xPBS-TPで2 回洗浄した。その後、1xPBS-TPを75μL加えて、Luminex System (Luminex社製)でビーズ及びSA-PEコンジュゲートの蛍光を測定し、標的核酸及び、代謝物モデル核酸のシグナルを検出した。
 (6)結果
 捕捉プローブ(以下、CP)配向性についての測定結果を図3、交差反応性を表1に示した。図3a)に示すように、CPの5’末端を担体粒子へ固定した5’CP-LBを用いた場合、標的核酸PT-1の代謝物モデルである5’末端が1塩基欠損した代謝物モデルPT-1-5n-1では、シグナルが検出されているが、3’末端が1塩基欠損した代謝物モデルPT-1-3n-1においては、ほとんどシグナルが上昇せず、交差反応していないことがわかる。一方、
 図3b)に示すように、CPの3’末端を担体粒子へ固定した3’CP-LBを用いた場合、標的核酸PT-1の代謝物モデルである3’末端が1塩基欠損した代謝物モデルPT-1-3n-1では、シグナルが検出されているが、5’末端が1塩基欠損した代謝物モデルPT-1-5n-1においては、ほとんどシグナルが上昇せず、交差反応していないことがわかる。
 以上より、CPの配向性を定めることにより、代謝物モデルPT-1-3n-1及び、PT-1-5n-1を判別することが可能であることが示された。また、その交差反応性は、表1に示すように、 5’CP-LBを用いた場合、代謝物モデルPT-1-3n-1の交差反応性は1%未満となり、 一方、3’CP-LBを用いた場合、代謝物モデルPT-1-5n-1の交差反応性は1%未満となり、本発明法による代謝物判別能が良好であることが示された。
Figure JPOXMLDOC01-appb-T000001
 交差反応性(%) = [代謝物モデル (MFI-BG)] / [標的核酸(MFI-BG)] x 100
 [実施例2]捕捉プローブおよびアシストプローブの塩基長についての検討
 1. 材料及び方法
 (1)標的核酸
 測定対象の標的核酸としてPT-1’を用いた。標的核酸の代謝物モデル核酸として、3’末端が1塩基欠損した核酸PT-1’-3n-1を用いた。核酸は日本遺伝子研究所社に合成を依頼した(HPLC精製グレード)。上記の標的核酸は、核酸医薬の1つであるアンチセンス核酸の一般的な構造と同様、完全S化(ホスホロチオエート化、Phosphorothioate)されており、PT-1’は5’末端および3’末端から3塩基ずつがLNAに置換されている。また、PT-1’-3n-1については5’末端から3塩基、3’末端から2塩基がLNAに置換されている。PT-1’、PT-1’-3n-1ともに0.01% Tween20 を含むNuclease free waterを用いて、1ng/mlに調製して用いた。また、PT-1’、PT-1’-3n-1を含まないブランクサンプルも用意した。
 〈PT-1’の塩基配列〉
 5’- T(L)^G(L)^A(L)^G^C^T^G^A^C^T^T^G^A^T(L)^G(L)^5(L)-3’(塩基部分は配列番号10)
 〈PT-1’-3n-1の塩基配列〉
 5’- T(L)^G(L)^A(L)^G^C^T^G^A^C^T^T^G^A^T(L)^G(L)-3’(塩基部分は配列番号11)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換、^=ホスホロチオエート化されていることを示す。
 (2)捕捉プローブの調製
 担体であるMicroPlexTMMicrospheres(Luminex社、製品番号: LC10015-01)に、
 PT-1’の3’側に対して相補的な4mer、5mer、6mer、7mer、8mer、9mer、10mer、11merの塩基長を持つ各捕捉プローブCP-4m-5N、CP-5m-5N、CP-6m-5N、CP-7m-5N2、CP-8m-5N、CP-9m-5N、CP-10m-5N、又は、CP-11m-5Nをそれぞれの5’末端のNH2修飾を介して結合させることにより捕捉プローブを調製した。
 〈CP-4m-5Nの塩基配列〉
 5’-(NH2)-G(L)5(L)A(L)T(L)-3’(塩基部分は配列番号12)
 〈CP-5m-5Nの塩基配列〉
 5’-(NH2)-G(L)5(L)A(L)T(L)5(L)-3’(塩基部分は配列番号13)
 〈CP-6m-5Nの塩基配列〉
 5’-(NH2)-G(L)CA(L)T(L)CA(L)-3’(塩基部分は配列番号14)
 〈CP-7m-5N2の塩基配列〉
 5’-(NH2)-G(L)CAT(L)CAA(L)-3’(塩基部分は配列番号15)
 〈CP-8m-5Nの塩基配列〉
 5’-(NH2)-GCATCAAG-3’(塩基部分は配列番号16)
 〈CP-9m-5Nの塩基配列〉
 5’-(NH2)-GCATCAAGT-3’(塩基部分は配列番号17)
 〈CP-10m-5Nの塩基配列〉
 5’-(NH2)-GCATCAAGTC-3’(塩基部分は配列番号18)
 〈CP-11m-5Nの塩基配列〉
 5’-(NH2)-GCATCAAGTCA-3’(塩基部分は配列番号19)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (3)捕捉プローブへの標的核酸の捕捉(1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で1時間反応させた。
 (3-1)1st Hybridization反応液の組成
 上記(2)で調製した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10×supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)[40% PEG8000 2.2μL、RNase Free water 2.8μL] 5μL、RNase Free water 2.85μL、100 fmol/mlアシストプローブ(ポリA鎖を付加したAP-4m、AP-5m、AP-6m、AP-7m、AP-8m、AP-9m2、AP-10mまたはAP-11m) 1μL
 〈AP-4mの塩基配列〉
 5’- G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号20)
 〈AP-5mの塩基配列〉
 5’-A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号21)
 〈AP-6mの塩基配列〉
 5’- 5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号22)
 〈AP-7mの塩基配列〉
 5’- T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号23)
 〈AP-8mの塩基配列〉
 5’- G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号24)
 〈AP-9m2の塩基配列〉
 5’- A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号25)
 〈AP-10mの塩基配列〉
 5’-A(L)A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号26)
 〈AP-11mの塩基配列〉
 5’-5(L)A(L)A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号27)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (4)PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLに、PALSAR反応液を15μL加え、計50μLとし、25℃で1時間反応させた。シグナル増幅用プローブは、実施例1と同じものを用いた。
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10x supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5)蛍光検出
 PALSAR反応終了後の反応液を1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。
 その後、検出試薬[SA-PE (Streptavidin-R-Phycoerythrin、Prozyme社製) 5μg/mL] を50μL加え、25℃の遮光下で10分間静置した後、1xPBS-TPで2 回洗浄した。その後1xPBS-TPを75μL加え、Luminex System (Luminex社製)でビーズ及びSA-PEコンジュゲートの蛍光を測定し、標的核酸及び、代謝物モデル核酸のシグナルを検出した。
 (6)結果
 捕捉プローブ(以下、CP)及び、アシストプローブ(以下、AP)の鎖長における、標的核酸および標的核酸の代謝物のモデルを測定した際の交差反応性を表2に示した。CP及びAPの鎖長が5mer、6mer、7mer、8mer、9mer、又は10merとすることで、 3’末端が1塩基欠損した代謝物モデルにおける交差反応性を1%未満にて判別することが可能であった。一方、比較例1に示すように、CPの鎖長が11merかつAPの鎖長が4merの場合には、代謝物判別能が著しく低下することが示された。また、比較例2に示すように、CPの鎖長が4merの場合には、標的核酸または代謝物の検出自体をできないことが示された。
Figure JPOXMLDOC01-appb-T000002
交差反応性(%) = [代謝物モデル (MFI-BG)] / [標的核酸(MFI-BG)] x 100
 [実施例3]シグナル増幅法についての検討
 1. 材料及び方法
 (1)標的核酸
 測定対象の標的核酸および標的核酸の代謝物モデル核酸は、実施例2に使用したPT-1’及び、PT-1’-3n-1を用いた。PT-1’、PT-1’-3n-1ともに、0.01% Tween20 を含むNuclease free waterを用いて、20ng/mlに調製して用いた。また、PT-1’およびPT-1’-3n-1を含まないブランクサンプルも用意した。
 (2)捕捉プローブの調製
 担体であるMicroPlexTMMicrospheres(Luminex社、製品番号: LC10015-01)に、
 PT-1’の3’側に対して相補的な塩基配列を持つ核酸プローブCP-7m-5N2を5’末端のNH2修飾を介して結合させることにより捕捉プローブを調製した。
 〈CP-7m-5N2の塩基配列〉
 5’-(NH2)-G(L)CAT(L)CAA(L)-3’(塩基部分は配列番号15)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (3)捕捉プローブへの標的核酸の捕捉(1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で1時間反応させた。
 (3-1)1st Hybridization反応液の組成
 上記(2)で調製した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10×supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)[40% PEG8000 2.2μL、RNase Free water 2.8μL] 5μL、RNase Free water 2.85μL、100 fmol/mlアシストプローブ(ポリA鎖を付加したAP-8m(PALSAR法用)、又は、3’末端をBiotinしたAP-8m-3B (従来法用))1μL
 〈AP-8mの塩基配列〉
 5’- G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号24)
 〈AP-8m-3Bの塩基配列〉
 5’- G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)-(Biotin)-3’
 (塩基部分は配列番号28)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (4)PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLに、PALSAR反応液を15μL加えて、計50μLとし、25℃で1時間反応させた。シグナル増幅用プローブは、実施例1と同じものを用いた。アシストプローブにAP-8m-3Bを用いた場合(従来法)は上記のPALSAR反応を行わず、(5)蛍光検出を実施した。
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10×supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5)蛍光検出
 反応終了後の反応液を1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。
 その後、検出試薬[SA-PE (Streptavidin-R-Phycoerythrin、Prozyme社製) 5μg/mL] を50μL加え、25℃の遮光下で10分間静置した後、1xPBS-TPで2 回洗浄した。その後1xPBS-TPを75μL加え、Luminex System (Luminex社製)でビーズ及びSA-PEコンジュゲートの蛍光を測定し、標的核酸及び、代謝物モデル核酸のシグナルを検出した。
 (6)結果
 シグナル増幅方法について、PALSAR法を用いた場合、及び、PALSAR法を用いない従来法にて、標的核酸及び、標的核酸の代謝物モデルを測定した場合の交差反応性を表3、測定結果を図4に示した。シグナル増幅方法に関して、図4に示すように、PALSAR法を用いた場合、そのシグナル値MFI は、27,037であった。一方、従来法では、MFI 208であり、PALSAR法の方が従来法よりも、シグナルを約130倍高く検出することができた。一方で、ブランク(0ng/ml)の値で補正すると、表3に示すように、PALSAR法、従来法のどちらの場合においても、 3’末端が1塩基欠損した代謝物モデル核酸を交差反応性1%未満にて判別することが可能であった。本発明法を用いることで、シグナル増幅方法に関わらず、代謝物の判別が可能であることが示された。
Figure JPOXMLDOC01-appb-T000003
 交差反応性(%) = [代謝物モデル (MFI-BG)] / [標的核酸(MFI-BG)] x 100
 [実施例4] 定量についての検討
 (1)標的核酸
 測定対象の標的核酸および標的核酸の代謝物モデル核酸は、実施例1に使用したPT-1、PT-1-3n-1を用いた。PT-1、PT-1-3n-1ともに、0.01% Tween20 を含むNuclease free waterを用いて、0.008、0.020、0.050、0.1、0.2、0.4、0.8ng/mlに調製して用いた。また、PT-1およびPT-1-3n-1を含まないブランクサンプルも用意した。
 (2)捕捉プローブの調製
 担体であるMicroPlexTMMicrospheres(Luminex社、製品番号: LC10015-01)に、PT-1の3’側に対して相補的な塩基配列を持つ核酸プローブCP-9m-5N2の5’末端のNH2修飾を介して結合させた捕捉プローブを調製した。
 〈CP-9m-5N2の塩基配列〉
 5’-(NH2)-G(L)CATCAAGT(L)-3’(塩基部分は配列番号29)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (3)捕捉プローブへの標的核酸の捕捉(1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で1時間反応させた。
 (3-1)1st Hybridization反応液の組成
 上記(2)で調製した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10x supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)[40% PEG8000 2.2μL、RNase Free water 2.8μL] 5μL、RNase Free water 2.85μL、100 fmol/ml アシストプローブ (ポリA鎖を付加したAP-6m) 1μL
 〈AP-6mの塩基配列〉
 5’- 5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号22)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (4)PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLに、PALSAR反応液を15μL加え、計50μLとし、25℃で1時間反応させた。シグナル増幅用プローブは、実施例1と同じものを用いた。
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10×supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5)蛍光検出
 PALSAR反応終了後の反応液を1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。
 その後、検出試薬[SA-PE (Streptavidin-R-Phycoerythrin、Prozyme社製) 5μg/mL] を50μL加え、25℃の遮光下で10分間静置した後、1xPBS-TPで2 回洗浄した。その後1xPBS-TPを75μL加え、Luminex System (Luminex社製)でビーズ及びSA-PEコンジュゲートの蛍光を測定し、標的核酸及び、代謝物モデル核酸のシグナルを検出した。
 (6)結果
 本発明方法による標的核酸の定量結果を図5、各濃度における代謝物モデル核酸の交差反応性を表4に示した。図5より、試料中の標的核酸の濃度に依存したシグナルが得られた。また、標的核酸濃度とシグナルの相関係数(r)は、0.9988であり、高い相関が得られた。さらに、表4より、代謝物モデル核酸における交差反応性は、いずれの濃度においても1%未満で判別することが可能であった。
Figure JPOXMLDOC01-appb-T000004
交差反応性(%) = [代謝物モデル (MFI-BG)] / [標的核酸(MFI-BG)] x 100
 [実施例5] CPとAPにより認識されない結合領域が標的核酸にある場合についての検証-1
 1. 材料及び方法
 (1) 標的核酸
 測定対象の標的核酸としてPT3を用いた。標的核酸の代謝物モデル核酸として、3‘末端が1塩基欠損した核酸PT3-3n-1を用いた。核酸は日本遺伝子研究所社に合成を依頼した(HPLC精製グレード)。上記の標的核酸は、核酸医薬の1つであるアンチセンス核酸の一般的な構造と同様、完全S化(ホスホロチオエート化、Phosphorothioate)されており、PT3は5’末端および3’末端から3塩基ずつがLNAに置換されている。また、PT3-3n-1については5’末端から3塩基、3’末端から2塩基がLNAに置換されている。 PT3、PT3-3n-1、ともに、0.01% Tween20 を含むNuclease free waterを用いて、1あるいは10ng/ml*に調製して用いた(*CP鎖長5~10merを用いた場合は標的核酸10ng/mL、CP鎖長11mer以上を用いた場合は標的核酸1ng/mLを添加)。また、 PT3及びPT3-3n-1を含まないブランクサンプルも用意した。
 〈PT3の塩基配列〉
 5’-G(L)^A(L)^G(L)^C^T^G^A^C^T^T^A^C^A^G^A^G^A^C^T^T^G^A^T(L)^G(L)^5(L) -3’(塩基部分は配列番号30)
 〈PT3-3n-1の塩基配列〉
 5’- G(L)^A(L)^G(L)^C^T^G^A^C^T^T^A^C^A^G^A^G^A^C^T^T^G^A^T(L)^G(L) -3’(塩基部分は配列番号31)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換、^=ホスホロチオエート化されていることを示す。
 (2) 捕捉プローブの調製
 担体であるMicroPlexTM Microspheres(Luminex社、製品番号: LC10015-01)に、
 PT3の3’側に対して相補的な塩基配列を持つ鎖長の異なる核酸プローブCP-5m-5N、CP-6m-5N2、CP-7m-5N3、CP-8m-5N2、CP-9m-5N、CP-10m-5N、CP-11m-5N2、CP-12m-5N、CP-13m-5N、CP-14m-5N、CP-15m-5Nを5’末端のNH2修飾を介してそれぞれ結合させることにより捕捉プローブを調整した。
 〈CP-5m-5Nの塩基配列〉
 5’-(NH2)G(L)5(L)A(L)T(L)5(L)-3’(塩基部分は配列番号13)
 〈CP-6m-5N2の塩基配列〉
 5’-(NH2)G(L)CAT(L)CA(L)-3’(塩基部分は配列番号32)
 〈CP-7m-5N3の塩基配列〉
 5’-(NH2)G(L)CA(L)T(L)5(L)AA(L)-3’(塩基部分は配列番号33)
 〈CP-8m-5N2の塩基配列〉
 5’-(NH2) G(L)CATCAAG(L)-3’(塩基部分は配列番号34)
 〈CP-9m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGT-3’(塩基部分は配列番号17)
 〈CP-10m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGTC-3’(塩基部分は配列番号18)
 〈CP-11m-5N2の塩基配列〉
 5’-(NH2)GCATCAAGTCG-3’(塩基部分は配列番号35)
 〈CP-12m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGTCGC-3’(塩基部分は配列番号36)
 〈CP-13m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGTCGCT-3’(塩基部分は配列番号37)
 〈CP-14m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGTCGCTG-3’(塩基部分は配列番号38)
 〈CP-15m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGTCGCTGT-3’(塩基部分は配列番号39)
 ※(L)=LNA、5=5-Methyl-Cytosineに置換されていることを示す。
 (3)捕捉プローブへの標的核酸の捕捉(1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で16時間反応させた。
 (3-1)1stHybridization反応液の組成
 上記(2)で担体へ固相した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10×supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)5μL、RNase Free water 2.85μL、100 fmol/ml アシストプローブ(PT3の5’側に対して相補的な塩基配列を持つポリA鎖を付加したAP-10m) 1μL
 〈AP-10mの塩基配列〉
 5’-A(L)A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号26)
 (4) PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLにPALSAR反応液を15μL加えて計50μLとし、25℃で1時間反応させた。自己集合可能な一対のプローブ(シグナル増幅用プローブともいう)の配列は、5’末端がビオチンで標識された以下のHCP-1及びHCP-2である。
 〈HCP-1の塩基配列〉
 5’-(Biotin)-CAACAATCAGGACGATACCGATGAAGTTTTTTTTTTTTTTTTTTTT-3’(塩基部分は配列番号8)
 〈HCP-2の塩基配列〉
 5’-(Biotin)-GTCCTGATTGTTGCTTCATCGGTATCAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号9)
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10x supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5) 検出
 PALSAR反応終了後、1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。検出試薬(SAPE ;Streptavidin-R-Phycoerythrin, Prozyme社/製造番号:PJ31S-1) 5μg/mLを50μL加えて25℃の遮光下で60分間静置後、1xPBS-TPで2 回洗浄した。その後、1xPBS-TPを75μL加えて、Luminex System (Luminex社) を用いて、標的核酸及び代謝物モデル核酸のpositive signal値(PS)及びbackground値(BG)を測定した。
 2. 結果
 CP及びAPにより認識されない結合領域が標的核酸にある場合に代謝物判別を行った際の結果を表5に示した。Gap(mer)は、CP及びAPに認識されない標的核酸領域の塩基数を示している(図7)。表5に示すように、CP鎖長が5mer、6mer、7mer、8mer、9mer、10mer、11merにおいて、交差反応性は1%未満を示した。この場合のCP及びAPにより認識されない標的核酸のGap領域の鎖長はそれぞれ10mer、9mer、8mer、7mer、6mer、5mer、4merとなるが、このようにGap領域がある場合においても、Gap領域がない場合同様、交差反応性を大幅に抑制することが可能であることが示された。一方、CP鎖長が12mer以上になると、その交差反応性は、CP鎖長12merでは47%、13merでは94%、14mer及び15merにおいては100%となり、交差反応性は上昇し、代謝物判別能が大幅に低下することが示された。
Figure JPOXMLDOC01-appb-T000005
 交差反応性(%)=[代謝物モデル核酸(PS-BG)] / [標的核酸(PS -BG)] x 100
 [実施例6] CPとAPにより認識されない結合領域が標的核酸にある場合についての検証-2
 1. 材料及び方法
 (1) 標的核酸
 実施例5同様、測定対象の標的核酸としてPT3及び、標的核酸の代謝物モデル核酸として、3‘末端が1塩基欠損した核酸PT3-3n-1を用いた。核酸は日本遺伝子研究所社に合成を依頼した(HPLC精製グレード)。上記の標的核酸は、核酸医薬の1つであるアンチセンス核酸の一般的な構造と同様、完全S化(ホスホロチオエート化、Phosphorothioate)されており、PT3は5’末端および3’末端から3塩基ずつがLNAに置換されている。また、PT3-3n-1については5’末端から3塩基、3’末端から2塩基がLNAに置換されている。 PT3、PT3-3n-1、ともに、0.01% Tween20 を含むNuclease free waterを用いて、1ng/mlに調製して用いた。また、 PT3及びPT3-3n-1を含まないブランクサンプルも用意した。
 (2) 捕捉プローブの調製
 担体であるMicroPlexTM Microspheres(Luminex社、製品番号: LC10015-01)に、
 PT3の3’側に対して相補的な塩基配列を持つ鎖長の異なる核酸プローブCP-9m-5Nを5’末端のNH2修飾を介して結合させることにより捕捉プローブを調整した。
 〈CP-9m-5Nの塩基配列〉
 5’-(NH2)GCATCAAGT-3’(塩基部分は配列番号17)
 (3)捕捉プローブへの標的核酸の捕捉(1st Hybridization反応)
 標的核酸、標的核酸の代謝物モデル核酸またはブランクサンプル10μLに1st Hybridization反応液を25μL加えて計35μLとし、25℃で16時間反応させた。
 (3-1)1stHybridization反応液の組成
 上記(2)で担体へ固相した捕捉プローブ0.4μL(800個)、5M TMAC(テトラメチルアンモニウムクロリド)10.5μL、10× supplement[500mM Tris-HCl(pH8.0)、40mM EDTA(pH8.0)、8.0% N-ラウロイルサルコシンナトリウム] 5.25μL、17.5% PEG8000(ポリエチレングリコール)5μL、RNase Free water 2.85μL、100 fmol/ml アシストプローブ(PT3の5’側に対して相補的な塩基配列を持つポリA鎖を付加した各AP:AP-4m、AP-5m、AP-7m、AP-10m、AP-13m、AP-16m) 1μL
 〈AP-4mの塩基配列〉
 5’-G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号20)
 〈AP-5mの塩基配列〉
 5’-A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号21)
 〈AP-7mの塩基配列〉
 5’-T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号23)
 〈AP-10mの塩基配列〉
 5’-A(L)A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’(塩基部分は配列番号26)
 〈AP-13mの塩基配列〉
 5’-T(L)G(L)T(L)A(L)A(L)G(L)T(L)5(L)A(L)G(L)5(L)T(L)5(L)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号40)
 〈AP-16mの塩基配列〉
 5’-CGCTGTAAGTCAGCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’
 (塩基部分は配列番号41)
 (4) PALSAR反応によるシグナル増幅
 1st Hybridization反応後の反応液35μLにPALSAR反応液を15μL加えて計50μLとし、25℃で1時間反応させた。自己集合可能な一対のプローブ(シグナル増幅用プローブともいう)の配列は、実施例5と同様、5’末端がビオチンで標識されたHCP-1(配列番号8)及びHCP-2(配列番号9)である。
 (4-1)PALSAR反応液の組成
 Nuclease-Free Water 4.6μL、5M TMAC 4.5μL、10x supplement [500 mM Tris-HCl(pH8.0)、40 mM EDTA(pH8.0)、8% N-ラウロイルサルコシンナトリウム] 2.75μL、20pmol/μL HCP-1 1.75μL、20pmol/μL HCP-2 1.4μL
 (5) 検出
 PALSAR反応終了後、1xPBS-TP [1xPBS [137mM Sodium Chloride、8.1mM Disodium Phosphate、2.68mM Potassium Chloride、1.47mM Potassium Dihydrogenphosphate]、0.02% Tween20、1.5 ppm ProClin300]で1回洗浄した。検出試薬(SAPE ;Streptavidin-R-Phycoerythrin, Prozyme社/製造番号:PJ31S-1) 5μg/mLを50μL加えて25℃の遮光下で60分間静置後、1xPBS-TPで2 回洗浄した。その後、1xPBS-TPを75μL加えて、Luminex System (Luminex社) を用いて、標的核酸及び代謝物モデル核酸のpositive signal値(PS)及びbackground値(BG)を測定した。
 2. 結果
 CP及びAPにより認識されない結合領域が標的核酸にある場合に代謝物判別を行った際の結果を表6に示した。Gap(mer)は、CP及びAPに認識されない標的核酸領域の塩基数を示している(図8)。表6に示すように、AP鎖長が4mer、5mer、7mer、10mer、13mer、16merのすべての鎖長において交差反応性は1%未満を示した。この場合のCP及びAPにより認識されない標的核酸のGap領域の鎖長はそれぞれ12mer、11mer、9mer、6mer、3mer、0merとなるが、このようにGap領域がある場合、あるいはGap領域がなくCPとAPが隣接している場合においても、交差反応性を大幅に抑制することが可能であることが示された。一方、AP鎖長が3mer以下は、そもそもオリゴマーとして合成することが難しいため検討はしていないが、プローブ鎖長が短いと標的特異性が低下すること、あるいは、短すぎて標的配列に結合できず、positive signalを検出することがそもそもできないであろうことは同業者には容易に想像できるであろう。以上より、APに関して、CPの標的配列結合領域以外の領域に結合できればよく、鎖長に関しても結合できる長さであれば、本発明の代謝物判別能になんら問題のないことが示された。
Figure JPOXMLDOC01-appb-T000006
 交差反応性(%)=[代謝物モデル核酸(PS-BG)] / [標的核酸(PS -BG)] x 100
 本発明の測定法を用いることにより、医薬品開発の探索段階における薬物動態・薬力学(PK/PD)スクリーニング試験、非臨床段階における安全性試験、薬理試験及び薬物動態試験、臨床段階において、薬物が投与された動物あるいはヒト生体試料中の薬物濃度を代謝物に影響されずに正確に測定することが出来る。

Claims (21)

  1.  試料中の標的オリゴヌクレオチドを、ハイブリダイゼーションの原理で捕捉プローブとアシストプローブとを組み合わせて測定する方法であり、且つ、全長配列を保持する標的オリゴヌクレオチドと、その代謝物とを区別して測定する方法であって、
     前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
     前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
     第1の核酸プローブのヌクレオチドのうち固相に対して最も近位のヌクレオチドは、標的オリゴヌクレオチドの3'末端又は5'末端のヌクレオチドと塩基対を形成し、
     前記代謝物においては、前記3'末端又は5'末端のヌクレオチドを含む連続する1以上のヌクレオチドが欠損しており、
     第1の核酸プローブは、標的オリゴヌクレオチドの前記代謝物では欠損しているヌクレオチドを含む部分にハイブリダイズすることができ、
     第2の核酸プローブは、標的オリゴヌクレオチドの前記部分以外の部分にハイブリダイズすることができ、
     捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブは複合体を形成する、
     方法。
  2.  試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定する場合には、捕捉プローブに含まれる第1の核酸プローブは、5'末端のヌクレオチドを介して固相に固定化されている、請求項1に記載の方法。
  3.  試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定する場合には、捕捉プローブに含まれる第1の核酸プローブは、3'末端のヌクレオチドを介して固相に固定化されている、請求項1に記載の方法。
  4.  以下の工程を含む、試料中の標的オリゴヌクレオチドを、その3'末端又は5'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する方法:
     (i)標的オリゴヌクレオチド又はその3'末端若しくは5'末端から1以上のヌクレオチドが欠損した代謝物を含む試料に、標的オリゴヌクレオチドを捕捉するための捕捉プローブと、標的オリゴヌクレオチドを検出するためのアシストプローブを接触させ、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの複合体を形成させる工程、
     ここで、
     前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
     前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
     第1の核酸プローブの配列は標的オリゴヌクレオチドの部分配列に相補的であり、当該部分配列は代謝物においては欠損しているヌクレオチドを含み、
     第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、且つ、
     固相は第1の核酸プローブの末端のヌクレオチドに結合しており、当該末端のヌクレオチドは、標的オリゴヌクレオチドと第1の核酸プローブがハイブリダイズした場合に、代謝物においては欠損している標的オリゴヌクレオチドの末端のヌクレオチドと塩基対を形成する; 及び
     (ii)前記複合体を検出することにより、試料中の標的オリゴヌクレオチドを検出する工程。
  5.  試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する場合には、第1の核酸プローブはその5’末端のヌクレオチドを介して固相に固定化されており、第1の核酸プローブの配列は標的オリゴヌクレオチドの3'末端を含む配列と相補的である、請求項4に記載の方法。
  6.  試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して検出する場合には、第1の核酸プローブはその3’ 末端のヌクレオチドを介して固相に固定化されており、第1の核酸プローブの配列は標的オリゴヌクレオチドの5'末端を含む配列と相補的である、請求項4に記載の方法。
  7.  以下の工程を含む、試料中の標的オリゴヌクレオチドを検出する方法:
     (i)試料に、標的オリゴヌクレオチドを捕捉するための捕捉プローブと、標的オリゴヌクレオチドを検出するためのアシストプローブを接触させ、捕捉プローブ、標的オリゴヌクレオチド、及びアシストプローブの複合体を形成させる工程、
     ここで、
     前記捕捉プローブは固相と、当該固相に固定化された第1の核酸プローブとを含み、
     前記アシストプローブはタグ又は標識と、当該タグ又は標識に連結された第2の核酸プローブとを含み、
     第1の核酸プローブの配列は標的オリゴヌクレオチドの末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、
     第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、且つ、
     固相は第1の核酸プローブの末端のヌクレオチドに結合しており、第1の核酸プローブの当該末端のヌクレオチドは、標的オリゴヌクレオチドと第1の核酸プローブがハイブリダイズした場合に、標的オリゴヌクレオチドの前記末端のヌクレオチドと塩基対を形成する; 及び
     (ii)前記複合体を検出することにより、試料中の標的オリゴヌクレオチドを検出する工程。
  8.  第1の核酸プローブの配列は、標的オリゴヌクレオチドの3'末端のヌクレオチドを含む標的オリゴヌクレオチドの3'側部分配列と相補的であり、第2の核酸プローブの配列は、標的オリゴヌクレオチドの前記3'側部分配列以外の配列と相補的であり、且つ、固相は第1の核酸プローブの5'末端のヌクレオチドに結合している、請求項7に記載の方法。
  9.  第1の核酸プローブの配列は、標的オリゴヌクレオチドの5'末端のヌクレオチドを含む標的オリゴヌクレオチドの5'側部分配列と相補的であり、第2の核酸プローブの配列は、標的オリゴヌクレオチドの前記5'側部分配列以外の配列と相補的であり、且つ、固相は第1の核酸プローブの3'末端のヌクレオチドに結合している、請求項7又は8に記載の方法。
  10.  前記捕捉プローブに含まれる第1の核酸プローブは、5塩基長、6塩基長、7塩基長、8塩基長、9塩基長、10塩基長、又は11塩基長である、請求項1~9の何れかに記載の方法。
  11.  前記捕捉プローブが第1の核酸プローブと固相の間にアダプター又はスペーサーを含む、請求項1~10の何れかに記載の方法。
  12.  以下の工程を更に含み、
     (i)前記複合体に対し、互いにハイブリダイズ可能な相補的塩基配列領域を有する自己集合可能な一対のシグナル増幅用プローブを添加し、前記複合体と結合したプローブポリマーを形成させる工程;及び
     (ii)前記プローブポリマーを検出する工程;
     前記アシストプローブは、前記自己集合可能な一対のシグナル増幅用プローブのうち1つのシグナル増幅用プローブの一部又は全てと相補的な塩基配列を有するタグを含むことを特徴とする、
     請求項1~11の何れかに記載の方法。
  13.  前記自己集合可能な一対のシグナル増幅用プローブの少なくとも一方が、ポリT配列を含む、請求項12に記載の方法。
  14.  前記自己集合可能な一対のシグナル増幅用プローブの少なくとも1つが標識物質で標識されていることを特徴とする、請求項12又は13に記載の方法。
  15.  前記自己集合可能な一対のシグナル増幅用プローブが、第1のシグナル増幅用プローブと第2のシグナル増幅用プローブとからなり、
     前記第1のシグナル増幅用プローブが3箇所以上の核酸領域を含み、且つ5’末端側から順に少なくとも核酸領域X、核酸領域Y、及び核酸領域Z若しくはポリT配列を含む核酸領域Zを含む核酸プローブであり、
     前記第2のシグナル増幅用プローブが3箇所以上の核酸領域を含み、且つ5’末端側から順に少なくとも前記核酸領域Xに相補的な核酸領域X’、前記核酸領域Yに相補的な核酸領域Y’、及び前記核酸領域Zに相補的な核酸領域Z’ 若しくはポリA配列を含む核酸領域Z’を含む核酸プローブであることを特徴とする、
     請求項12~14の何れかに記載の方法。
  16.  捕捉プローブ、アシストプローブ、及び互いにハイブリダイズ可能な相補的塩基配列領域を有し自己集合によるプローブポリマーの形成が可能な一対のシグナル増幅用プローブを含む、標的オリゴヌクレオチドの検出に用いられる検出用キットであって、
     前記捕捉プローブは、固相と、当該固相に固定化された第1の核酸プローブとを含み、
     前記アシストプローブは、前記一対のシグナル増幅用プローブ中の1つのシグナル増幅用プローブの一部又は全てと相補的な塩基配列を有するタグと、当該タグに連結された第2の核酸プローブとを含み
     前記第1の核酸プローブの配列は標的オリゴヌクレオチドの末端のヌクレオチドを含む標的オリゴヌクレオチドの部分配列と相補的であり、
     前記第2の核酸プローブの配列は標的オリゴヌクレオチドの前記部分配列以外の配列と相補的であり、
     且つ、
     固相は第1の核酸プローブの末端のヌクレオチドに結合しており、前記第1の核酸プローブの当該末端のヌクレオチドは、標的オリゴヌクレオチドと前記第1の核酸プローブがハイブリダイズした場合に、標的オリゴヌクレオチドの前記末端のヌクレオチドと塩基対を形成することを特徴とする、
     検出用キット。
  17.  前記第1の核酸プローブが、第1の核酸プローブと固相の間にアダプター又はスペーサーを含むことを特徴とする、請求項16に記載の検出用キット。
  18.  試料中の標的オリゴヌクレオチドを、その3'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定するための検出用キットであって、前記捕捉プローブに含まれる第1の核酸プローブは、その5'末端のヌクレオチドを介して固相に固定化されている、請求項16又は17に記載の検出用キット。
  19.  試料中の標的オリゴヌクレオチドを、その5'末端から1以上のヌクレオチドが欠損した代謝物と区別して測定するための検出用キットであって、前記捕捉プローブに含まれる第1の核酸プローブは、その3'末端のヌクレオチドを介して固相に固定化されている、請求項16又は17に記載の検出用キット。
  20.  前記一対のシグナル増幅用プローブの少なくとも1つが標識物質で標識されていることを特徴とする、請求項16~19の何れかに記載の検出用キット。
  21.  前記一対のシグナル増幅用プローブが第1のシグナル増幅用プローブと第2のシグナル増幅用プローブとからなり、
     前記第1のシグナル増幅用プローブが5’末端側から順に少なくとも核酸領域X、核酸領域Y、及び核酸領域Z若しくはポリT配列を含む核酸領域Zを含む核酸プローブであり、
     前記第2のシグナル増幅用プローブが5’末端側から順に少なくとも前記核酸領域Xに相補的な核酸領域X’、前記核酸領域Yに相補的な核酸領域Y’、及び前記核酸領域Zに相補的な核酸領域Z’ 若しくはポリA配列を含む核酸領域Z’を含む核酸プローブであることを特徴とする、
     請求項16~20の何れかに記載の検出用キット。
PCT/JP2023/008243 2022-03-08 2023-03-06 プローブを使用したオリゴヌクレオチドの検出方法 WO2023171598A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035004A JP7127224B1 (ja) 2022-03-08 2022-03-08 プローブを使用したオリゴヌクレオチドの検出方法
JP2022-035004 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171598A1 true WO2023171598A1 (ja) 2023-09-14

Family

ID=83059870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008243 WO2023171598A1 (ja) 2022-03-08 2023-03-06 プローブを使用したオリゴヌクレオチドの検出方法

Country Status (2)

Country Link
JP (1) JP7127224B1 (ja)
WO (1) WO2023171598A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058008A1 (ja) * 2022-09-12 2024-03-21 積水メディカル株式会社 プローブを使用したオリゴヌクレオチドの検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018491A1 (en) * 2000-10-26 2004-01-29 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
WO2021095829A1 (ja) * 2019-11-14 2021-05-20 積水メディカル株式会社 オリゴヌクレオチドの検出又は定量方法
WO2021153709A1 (ja) * 2020-01-31 2021-08-05 積水メディカル株式会社 核酸の検出又は定量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018491A1 (en) * 2000-10-26 2004-01-29 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
WO2021095829A1 (ja) * 2019-11-14 2021-05-20 積水メディカル株式会社 オリゴヌクレオチドの検出又は定量方法
WO2021153709A1 (ja) * 2020-01-31 2021-08-05 積水メディカル株式会社 核酸の検出又は定量方法

Also Published As

Publication number Publication date
JP7127224B1 (ja) 2022-08-29
JP2023130617A (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
US20190241938A1 (en) Compositions and Methods for Analyte Detection
JP6995250B2 (ja) 核酸の検出又は定量方法
WO2023171598A1 (ja) プローブを使用したオリゴヌクレオチドの検出方法
KR20150139582A (ko) 나노파티클-지원 신호 증폭을 이용한 rna 마이크로칩 검출
JP6718032B1 (ja) オリゴヌクレオチドの検出、または定量方法
WO2024058008A1 (ja) プローブを使用したオリゴヌクレオチドの検出方法
WO2022210066A1 (ja) 抗薬物抗体測定方法
JP7469761B2 (ja) 交差反応性を抑制したオリゴヌクレオチドの検出方法
WO2023171599A1 (ja) 交差反応性を抑制したオリゴヌクレオチドの検出方法
US20200318159A1 (en) Reagents and methods for blocking non-specific interactions with nucleic acids
WO2023204045A1 (ja) 超高感度アナライト測定方法
JP7161173B2 (ja) siRNAの定量方法
US20220170074A1 (en) Detection assay for protein-polynucleotide conjugates
AU2019408917A1 (en) Aptamer against Irinotecan
CA3121228A1 (en) Aptamers against imatinib
US20240150817A1 (en) Crispr-mediated cleavage of oligonucleotide-detectable marker conjugates for detection of target analytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766774

Country of ref document: EP

Kind code of ref document: A1