WO2023171398A1 - Image inspecting device, machine learning device, image inspecting method, and image inspecting program - Google Patents

Image inspecting device, machine learning device, image inspecting method, and image inspecting program Download PDF

Info

Publication number
WO2023171398A1
WO2023171398A1 PCT/JP2023/006565 JP2023006565W WO2023171398A1 WO 2023171398 A1 WO2023171398 A1 WO 2023171398A1 JP 2023006565 W JP2023006565 W JP 2023006565W WO 2023171398 A1 WO2023171398 A1 WO 2023171398A1
Authority
WO
WIPO (PCT)
Prior art keywords
damage
inspection
image
degree
unit
Prior art date
Application number
PCT/JP2023/006565
Other languages
French (fr)
Japanese (ja)
Inventor
基文 福井
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023171398A1 publication Critical patent/WO2023171398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to an image inspection device for an object to be inspected.
  • Patent Document 1 discloses a technique for inspecting a civil engineering structure for damage based on an inspection image thereof.
  • Conventional image inspection equipment can automatically detect damage such as cracks on the wall of the object to be inspected, but it is up to a small number of experienced workers to determine whether each detected damage requires repair or maintenance. It was done by etc.
  • the present invention has been made in view of these circumstances, and it is an object of the present invention to provide an image inspection apparatus and the like that can efficiently diagnose damage to an object to be inspected.
  • an image inspection apparatus includes an inspection image acquisition unit that acquires an inspection image of an inspection target object, and a damage identification unit that identifies damage to the inspection target object in the inspection image. and a damage degree output unit that outputs the degree of damage to the inspection object based on a damage degree model that outputs the degree of damage based on the input damage image.
  • the damage degree model into which the inspection image of the object to be inspected is input outputs the degree of damage to the object. Can be diagnosed.
  • Another aspect of the present invention is a machine learning device.
  • This device uses machine learning using training data that includes a set of damage to the inspection object identified in the inspection image taken of the inspection object and the degree of damage assigned to the damage.
  • the system includes a machine learning unit that generates a damage degree model that outputs the degree of damage for the damage that occurs.
  • Yet another aspect of the present invention is an image inspection method.
  • This method consists of an inspection image acquisition step of acquiring an inspection image of the inspection object, a damage identification step of identifying damage to the inspection object in the inspection image, and outputting the degree of damage based on the input damage image. and a damage degree output step of outputting a damage degree regarding damage to the inspection object based on the damage degree model.
  • the present invention also encompasses any combination of the above components and the conversion of these expressions into methods, devices, systems, recording media, computer programs, etc.
  • FIG. 2 is a partially cutaway perspective view showing a water pipe wall in a furnace of a boiler.
  • FIG. 2 is a side view schematically showing an in-coke oven observation device.
  • FIG. 2 is a diagram schematically showing the inside of a coke oven.
  • FIG. 2 is a functional block diagram of an image inspection device.
  • 3 schematically shows test image data stored in the test image storage unit. Damage-related information stored in a damage-related information storage unit is schematically shown.
  • Fig. 3 schematically shows changes in the degree of damage over time. An example of a screen of a display device is shown.
  • the image inspection apparatus and the like of the present invention can be used to inspect any object to be inspected. Therefore, although the object to be inspected is not particularly limited, in this embodiment, an example in which the water tube wall of a boiler furnace or the furnace wall of a coke oven is the object to be inspected will be mainly described. Other examples of the inspection target will be described later.
  • FIG 1 shows the overall configuration of a power generation facility equipped with a CFB (Circulating Fluidized Bed) boiler. Note that instead of the CFB boiler, any other combustion equipment such as a BFB (Bubbling Fluidized Bed) boiler or a rotary kiln may be provided in the power generation equipment.
  • CFB Circulating Fluidized Bed
  • a CFB boiler includes a combustion section 1 that supplies and burns a fuel such as fossil fuel such as coal into a furnace 11 in which a fluidized material such as silica sand flows, and a steam generator that generates steam from water using the heat generated in the combustion section 1.
  • the generation part 2 the fluidized material circulation part 3 as a circulation part that collects the fluidized material that has come out of the furnace 11 and returns it into the furnace 11, and the water supplied to the steam generation part 2, which is generated in the steam generation part 2.
  • a heat transfer section 4 heats the steam generated by the combustion section 1 using high-temperature exhaust gas, an exhaust treatment device 5 separates and collects soot and dust in the exhaust from the heat transfer section 4, and the exhaust treatment device 5 cleans the steam.
  • a chimney 6 is provided for discharging the oxidized exhaust gas into the atmosphere.
  • the combustion section 1 includes a furnace 11 as a combustion chamber.
  • the furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom in order to increase the density of solid fuel such as coal or fluid material and enable efficient combustion.
  • the area indicated by "A" at the bottom of the furnace 11 indicates a fluidized bed (also called a fluidized bed or sand bed) formed by a high-density fluidized material.
  • a fluidized bed also called a fluidized bed or sand bed
  • powdered, particulate, or lumpy fluidized materials such as silica sand are fluidized by fluidized fluid supplied from the bottom of the furnace 11 .
  • the solid fuel such as coal put into the fluidized bed A is efficiently combusted by repeatedly contacting the high-temperature fluidized material while being stirred within the fluidized bed A.
  • a perforated plate (also called a dispersion plate) 121 is provided at the bottom of the furnace 11 as a fluid permeable portion made of a porous material that allows gas to permeate therethrough.
  • the wind box 122 which is a space directly under the perforated plate 121, supplies flowing fluid supplied from the first blower 71 as an air blower via the first flow rate control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section.
  • the gas supplied to the bottom of the furnace 11 by the wind box 122 is used to flow the fluidized material to form the fluidized bed A, and to burn the fuel in the fluidized bed A or the freeboard B.
  • a second blower 72 provided in addition to the first blower 71 is an exhaust treatment device for promoting fuel combustion in the freeboard B and suppressing the generation of harmful substances such as dioxins and carbon monoxide due to incomplete combustion. 5 is supplied into the freeboard B via the second flow control valve 72A. In this way, the first blower 71 and the second blower 72 circulate at least a portion of the exhaust gas containing carbon dioxide generated by combustion in the furnace 11 from the exhaust treatment device 5 to the furnace 11 .
  • an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided.
  • the external circulation mechanism 13 includes an extraction pipe 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluid material in the fluidized bed A, and controls opening and closing of the extraction pipe 131 to control the flow rate of the fluid material, that is, the extraction pipe. 131, a fluid material conveyor 133 such as a bucket conveyor that conveys the fluid material extracted by the extraction pipe 131 upward, and a fluid material conveyor 133 corresponding to the upper part of the fluidized bed A.
  • a fluid material silo 134 provided on the outer periphery of the furnace 11 receives the fluid material conveyed by the fluid material conveyor 133, and a fluid material re-injection section 135 that reinjects the fluid material stored in the fluid material silo 134 into the furnace 11. Be prepared.
  • the furnace wall which is a side wall of the furnace 11, includes a material supply section 14 that supplies fuel and other materials into the furnace 11, and a fluid material supply section 15 that supplies a fluid material for forming the fluidized bed A into the furnace 11.
  • a starting unit 16 for starting the CFB boiler is provided.
  • the material supply section 14 includes a funnel-shaped hopper 141 that stores materials, a crushing section 142 that crushes the material discharged from the bottom of the hopper 141 into particles, and supplies the material crushed by the crushing section 142 into the furnace 11.
  • a feeder 143 is provided.
  • the material supply unit 14 supplies carbon-containing fuel containing carbon into the furnace 11 .
  • Carbon-containing fuels are not particularly limited, and include, for example, various types of coal such as anthracite, bituminous coal, and brown coal, biomass fuel, sludge, and waste wood. These carbon-containing fuels generate carbon dioxide when burned in the furnace 11. However, biomass fuel is a carbon-neutral fuel with little or no net carbon dioxide emissions.
  • the crushing unit 142 in the material supply unit 14 crushes the material into particles before being supplied to the furnace 11 . The required amount of the granular material crushed by the crushing section 142 is fed into the furnace 11 by a feeder 143 whose rotation speed can be controlled.
  • the fluid supply unit 15 that supplies the fluid for forming the fluidized bed A includes a funnel-shaped fluid hopper 151 that stores the fluid and the fluid that is discharged from the bottom of the fluid hopper 151 into the furnace 11.
  • a fluid material feeder 152 is provided. By controlling the rotation speed of the fluid material feeder 152, a required amount of fluid material is fed into the furnace 11.
  • the starting section 16 that starts the CFB boiler includes a starting fuel storage section 161, a starting fuel control valve 162, and a starting burner 163.
  • the startup fuel storage section 161 stores heavy oil as carbon-containing fuel.
  • the starting fuel control valve 162 controls the amount of heavy oil supplied from the starting fuel storage section 161 to the starting burner 163. Specifically, the startup fuel control valve 162 is opened when the CFB boiler is started, and the heavy oil stored in the startup fuel storage section 161 is supplied to the startup burner 163.
  • the starting burner 163 heats the fluidized material in the fluidized bed A with flame generated by combustion of heavy oil supplied from the starting fuel control valve 162 .
  • the starting burner 163 Since the starting burner 163 is provided to be inclined downward, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. In this way, the starting burner 163 heats the sand-like fluidized bed A from above, so it is also called an over-sand burner.
  • starting fuel control is performed.
  • the valve 162 is closed and the supply of heavy oil to the starting burner 163 is stopped.
  • fuel supplied from the material supply section 14 is burned in the high-temperature furnace 11.
  • the combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be explained.
  • the steam generation unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, and a water pipe 23 that guides water in the drum 21 into the high-temperature furnace 11 and heats it.
  • a steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler. The steam output from the steam pipe 24 rotates the steam turbine of the generator 25, so that the power generation equipment generates electricity.
  • the water supply pipe 22 constitutes an economizer that preheats the water supply by meandering through the heat transfer section 4 through which the high temperature exhaust gas from the combustion section 1 passes, and the steam pipe 24 constitutes a heat transfer section through which the high temperature exhaust gas from the combustion section 1 passes. 4 constitutes a superheater that superheats steam.
  • the fluid material circulation unit 3 includes a cyclone 31 that separates and collects granular fluid material from the exhaust gas discharged from the upper part of the furnace 11, and a seal pot 32 that returns the fluid material collected by the cyclone 31 into the furnace 11. Equipped with The cyclone 31 is a cyclone-type powder separator having a substantially cylindrical upper part and a substantially conical lower part, and generates an airflow that descends spirally along the inner wall. The granular fluidized material contained in the exhaust gas from the furnace 11 comes into contact with the inner wall of the cyclone 31 when descending spirally along the airflow and is collected.
  • a seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent unburned gas, etc. from flowing back from the furnace 11 to the cyclone 31.
  • the granular fluidized material filled in the seal pot 32 is gradually returned to the furnace 11 as it is pushed out by the weight of the fluidized material newly collected by the cyclone 31.
  • the exhaust treatment device 5 separates and collects soot and dust in the exhaust from the heat transfer section 4.
  • FIG. 2 is a partially cutaway perspective view showing a water pipe wall 80 that constitutes the inner wall of a furnace 11 such as a CFB boiler or a BFB boiler, which is an example of an object to be inspected.
  • the water tube wall 80 of the furnace 11 is composed of a plurality of pipes 82 extending in the vertical direction and fins 84 connecting each adjacent pipe 82. Water, other liquids, and their vapors pass through each pipe 82 . Since the water tube wall 80 faces the high-temperature furnace 11, it may be damaged by heat. Furthermore, there is a possibility that fuel such as coal or ash burned in the furnace 11 collides with or adheres to the water pipe wall 80, leading to damage.
  • a camera 30 (not shown in FIG. 2) as a photographing device for photographing an inspection image of the water tube wall 80 of the furnace 11 is a moving body that moves the camera 30, for example, a slide mechanism such as the extrusion device 200 shown in FIG. , attached to a drone, robot, elevator, etc. that can move along the water pipe wall 80.
  • the camera 30 continuously photographs the furnace wall 91 while moving along the water pipe wall 80 inside the furnace 11 together with the moving body.
  • the camera 30 may be a still camera that continuously takes still images, or a video camera that takes moving images.
  • FIG. 3 is a side view schematically showing an in-furnace observation device in which the image inspection device of this embodiment is used.
  • This furnace interior observation device is used to observe the inside of a coke oven carbonization chamber (hereinafter also simply referred to as a coke oven).
  • FIG. 4 is a diagram schematically showing the inside of the coke oven.
  • the coke oven 90 is a narrow oven with a pair of brick oven walls 91 facing each other.
  • Each oven wall 91 extends from an oven inlet 92 on one side of the coke oven 90 to an oven outlet 93 on the other side, and has a total length of, for example, more than ten meters.
  • the distance between the opposing furnace walls 91 is, for example, several tens of centimeters.
  • the height from the bottom 95 to the ceiling 94 of the coke oven 90 is, for example, several meters.
  • the extrusion device 200 shown in FIG. 3 repeatedly moves back and forth within the coke oven 90. On the outward journey, the extrusion device 200 is inserted into the coke oven 90 from the oven inlet 92 and pushes out the coke C generated by carbonization in the coke oven 90 to the oven outlet 93. On the return trip, the extrusion device 200 returns inside the coke oven 90 from the oven outlet 93 to the oven inlet 92.
  • the extrusion device 200 includes a push plate 210 and a beam 220, and the beam 220 connects the push plate 210 to a drive device (not shown). This driving device allows the push plate 210 to move between the furnace inlet 92 and the furnace outlet 93 of the coke oven 90. Since the push plate 210 has substantially the same cross-sectional shape as the coke oven 90, the movement of the push plate 210 pushes the coke C toward the oven outlet 93.
  • a camera 30 as a photographing device for photographing an inspection image is attached to an extrusion device 200 as a movable body for moving the camera 30, and moves together with the extrusion device 200 within the coke oven 90 between the furnace inlet 92 and the furnace outlet 93.
  • the furnace wall 91 is continuously photographed.
  • the camera 30 may be a still camera that continuously takes still images, or a video camera that takes moving images.
  • the camera 30 is attached to the back surface of the push plate 210 (the right side in FIG. 3) or to a support stand (not shown) installed behind the push plate 210.
  • the camera 30 may include two cameras attached to the left and right furnace walls 91, respectively, and captures front-view images of the left and right furnace walls 91. In order to photograph the entire left and right furnace walls 91, the two cameras may photograph while changing the angle in the vertical direction. Note that the camera 30 may be mounted so as to face in the opposite direction (to the right in FIG. 3) to the direction in which the coke C is extruded by the extrusion device 200 so that the view is not obstructed by the push plate 210 or the coke C. The camera 30 in this case is installed directly facing the furnace inlet 92 and can take perspective images of the furnace walls 91 on both the left and right sides. As a heat measure to protect the camera 30 from the high-temperature environment (eg, 1000° C. or higher) inside the coke oven 90, the camera 30 may be housed in a heat-resistant housing or a cooling box, for example.
  • a heat-resistant housing or a cooling box for example.
  • FIG. 5 is a functional block diagram of the image inspection apparatus 300 according to this embodiment.
  • the image inspection apparatus 300 includes an inspection image acquisition section 310, a damage identification section 320, a damage position acquisition section 331, a damage related information acquisition section 332, a damage degree output section 340, a machine learning section 350, and a damage degree prediction section. 360 and a maintenance necessity determining section 370.
  • These functional blocks are realized through the collaboration of hardware resources such as the computer's central processing unit, memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them. . Regardless of the type of computer or installation location, each of the above functional blocks may be realized using the hardware resources of a single computer, or may be realized by combining hardware resources distributed across multiple computers. .
  • the camera 30 and the inspection image storage unit 301 include an image input unit that inputs an inspection image of the water tube wall 80 of the furnace 11 and the furnace wall 91 of the coke oven, which are the inspected surfaces of the inspection object, into the image inspection apparatus 300.
  • the display device 40 displays the processing contents of the image inspection device 300 and the like.
  • the operation unit 50 is configured with an input device such as a touch panel integrated with the display device 40 or a keyboard and a mouse separate from the display device 40, and generates various control information for the image inspection apparatus 300 in response to user operations.
  • the computer may be programmed to autonomously perform some or all of the operations performed by the operation unit 50.
  • the inspection image storage unit 301 stores a group of inspection images of the water pipe wall 80 and the furnace wall 91 taken by the camera 30.
  • the inspection image storage section 301 may be the built-in memory of the camera 30, or may be a general-purpose removable medium such as a memory card. Alternatively, storage outside the boiler or outside the coke oven 90 that can communicate with the camera 30 by wire or wirelessly may be used.
  • the image inspection apparatus 300 performs various processes described below on the inspection image group stored in the inspection image storage unit 301.
  • the camera 30 and the image inspection device 300 can communicate by wire or wirelessly, and if the image inspection device 300 can acquire and process the inspection images taken by the camera 30 in real time, all the inspection images may not be There is no need to store it in the storage unit 301, and the inspection image storage unit 301 can be unnecessary or have a small capacity.
  • FIG. 6 schematically shows the test image data stored in the test image storage unit 301.
  • Inspection image data 42 photographed by the camera 30 is stored in the inspection image storage unit 301 together with metadata such as damage degree data 43, photographing date and time, and photographing position, which will be described later.
  • the damage level data 43 includes various types of damage 431 to 433 identified by a damage identification unit 320 (described later) in the inspection image data 42, and at least two levels of damage imparted to each damage 431 to 433 by a damage level output unit 340 (described later). Show degree.
  • the photographing date and time is the date and time (date and/or time) when the inspection image was photographed by the camera 30, and the photographing position is the position of the inspection image photographed by the camera 30.
  • the photographing position acquisition unit 331 may include a position measured by a positioning sensor mounted on a camera, an altitude measured by an altimeter, an attitude or direction measured by an inertial sensor, etc.
  • the imaged position or imaged part of the inspection object is derived directly or indirectly based on the imaged area.
  • (100, 100, 100) are the three-dimensional coordinates of the photographed position in the inspection object.
  • information that can identify the photographed inspection object for example, information such as "the right oven wall of the Y carbonization chamber in the X coke oven" is added to the inspection image. It may be stored in the inspection image storage unit 301 as metadata of the data 42.
  • an image of the oven wall 91 of the coke oven 90 is shown schematically as an example of an inspection image for convenience, but the explanation regarding these will be given to other inspection objects, especially in the furnace 11 of the boiler. It can be similarly applied to image inspection of the water tube wall 80.
  • the inspection image acquisition unit 310 acquires an inspection image of the object to be inspected from the camera 30 or the inspection image storage unit 301.
  • the inspection image acquisition unit 310 acquires an inspection image from the inspection image storage unit 301
  • the user uses the inspection image specifying unit 51 in the operation unit 50 to specify the date and time of the inspection image to be acquired, the shooting position, the location of the image taken, etc.
  • Various conditions (metadata as shown in FIG. 6) regarding the inspection image of the inspection object etc. can be specified.
  • the test image acquisition unit 310 searches the test image storage unit 301 for a test image that matches the conditions specified by the test image specifying unit 51, and selects part or all of the one or more pieces of test image data 42 that are found. It is acquired from the inspection image storage unit 301 along with the metadata (FIG. 6).
  • the damage identification unit 320 uses a known image inspection technique to identify damage to the inspection object in the inspection image acquired by the inspection image acquisition unit 310.
  • Damages, defects, and abnormalities occurring in the oven wall 91 of the coke oven 90 include cracks and holes in the oven wall 91, spalling where the oven wall 91 breaks due to distortion due to rapid heating or cooling, Examples include adhesion of carbon derived from coal, which is a raw material for coke, to the furnace wall 91 and deterioration of the joints of bricks forming the furnace wall 91.
  • damage, defects, and abnormalities occurring in the water tube wall 80 in the furnace 11 of the boiler, which serves as the inspection surface of the inspection object include damage caused by the heat of the high-temperature furnace 11 and damage caused by combustion in the furnace 11, as described above. Examples include damage caused by collision or adhesion of fuel such as coal or ash, and damage from within the pipe 82 due to water or steam that becomes high pressure in a high temperature environment.
  • the damage identified by the damage identification unit 320 (damages 431 to 433 in FIG. 6, etc.) is converted into metadata (damage degree The data 43) are stored in the inspection image storage unit 301.
  • the damage position acquisition unit 331 acquires the position of the damage on the inspection object identified by the damage identification unit 320.
  • the position and orientation of the camera 30 when an inspection image including damage to the inspection target is taken by a position sensor or an inertial sensor that measures the position and orientation (direction) of the moving body on which the camera 30 is mounted or the camera 30 itself. can be recognized.
  • the moving body that moves the camera 30 may be a sliding mechanism such as the extrusion device 200 shown in FIG. 3, or a circulating fluidized bed (CFB) boiler, a fluidized bed (BFB) boiler, etc. Drones, robots, etc.
  • the drone, robot, elevator, etc. or the camera 30 itself is equipped with a positioning sensor such as a GPS (Global Positioning System), an altimeter, an inertial sensor, etc., the measurement results can be used to identify the location of damage.
  • GPS Global Positioning System
  • the camera 30 uses a positioning sensor such as a GPS, an inertial sensor, etc. installed in a mobile device such as a smartphone used by the user.
  • the position of damage on the photographed inspection object may be identified.
  • the position or region of the inspection object photographed by the camera 30 may be identified by comparing the two-dimensional or three-dimensional inspection image photographed by the camera 30 with the known structure of the inspection object.
  • the position data or orientation data of these inspection images such as the absolute position measured by a positioning sensor such as GPS, the absolute altitude measured by an altimeter, the attitude measured by an inertial sensor, and the inspection target It is preferable that the relative position in the inspection object, the region on the inspection object, etc. be stored in the inspection image storage unit 301 together with the inspection image data 42 as metadata of the inspection image data 42 ("imaging position" in FIG. 6).
  • the damage-related information acquisition unit 332 acquires information related to damage to the inspection object specified by the damage identification unit 320 from the damage-related information storage unit 302.
  • the related information stored in the damage-related information storage unit 302 includes the repair history of the damage to the inspection object identified by the damage identification unit 320, the location on the inspection object of the damage to the inspection object identified by the damage identification unit 320 (Fig. 6 ), the damage level output by the damage level output unit 340 in the past for damage similar to the damage to the inspection target identified by the damage identification unit 320, and the damage level that has caused past incidents and serious accidents. and/or information regarding the damage caused.
  • the damage-related information storage section 302 will be described below as a separate storage section from the inspection image storage section 301, but since these stores mutually overlapping information or data, it is best to configure them as an integrated storage section. preferable.
  • FIG. 7 schematically shows damage-related information stored in the damage-related information storage section 302.
  • the damage-related information may include part or all of the inspection image data 42 and metadata "damage degree data” (43), "photography date and time”, and "photography position” stored in the inspection image storage unit 301 in FIG. 6.
  • the damage-related information includes a repair history 44 of the damages 431 to 433 identified by the damage degree data 43 and an incident history 45 of the damages 431 to 433 identified by the damage degree data 43. But that's fine.
  • the repair history 44 includes past repair reports and maintenance reports (hereinafter collectively referred to as repair reports) for the damage 431 to 433 specified by the damage degree data 43 and/or the photographed site of the inspection image data 42.
  • the repair report is an electronic document that records the details of repairs and maintenance performed in the past on the photographed site of the inspection image data 42, and the results of observations such as damage at that time, etc., for each implementation date.
  • the repair report may be freely written in a free format, or the contents may be selected or input for each predetermined item. In the case of free description, for example, "The crack was 10 cm long and 2 mm wide in 2019, but has grown to 12 cm long and 2 mm wide in 2020. However, the urgency and severity at this point is low.
  • Each item included in the repair report may be classified in advance according to predetermined criteria.
  • the fourth vector element of the "corner” and the fifth vector element of the "top of the fireproof wall” are set to "1", and the remaining vector elements are set to "0", so that the above free description In the example, the position "upper corner of the fireproof wall" is expressed.
  • the incident history 45 includes reports (hereinafter collectively referred to as incident reports) regarding past incidents and serious accidents of the damage 431 to 433 identified by the damage degree data 43 and/or the part photographed in the inspection image data 42.
  • the incident report is an electronic document that records the details of incidents and serious accidents that occurred in the past in the photographed part of the inspection image data 42, by date of occurrence.
  • the incident report may be freely written in a free format, or the contents may be selected or input for each predetermined item. In the case of free writing, for example, "On April 30, 2003, a part of the bricks collapsed from the cracks formed in the bricks and joints on the right furnace wall of the coke chamber Y in the coke oven X.” The contents are recorded in the incident report.
  • the location of the incident occurrence (in the free description example above, "the right furnace wall of the Y coking chamber in the X coke oven") can be classified in the same way as the position vector P, and the incident occurrence time (the In the free description example, "2003") can be classified in the same way as the repair time vector M above, and the type of damage that caused the incident (in the free description example above, "crack part”) can be classified as the above damage type. It can be classified in the same way as the vector D, and the degree of damage at the time of the damage that caused the incident can be classified in the same way as the damage degree vector S described above.
  • incident level vector I defined as (incident level 5, incident level 4, incident level 3, incident level 2, incident level 1) t .
  • incident history 45 in what position and part of the object to be inspected, what type of damage is likely to become severe or serious, and in the worst case, what level of risk will the incident develop? I can recognize whether something is there or not.
  • repair history 44 and the incident history 45 together, it is possible to make suggestions such as when and what kind of repair should be performed to effectively prevent incidents and serious accidents from occurring regarding identified damage. You can also get
  • the damage-related information acquisition unit 332 extracts information related to damage to the inspection object specified by the damage identification unit 320. For example, the past damage level (damage level data 43) of the damage itself identified by the damage identification unit 320, past repair history 44, and past incident history 45 are extracted by the damage-related information acquisition unit 332 as damage-related information. . In addition, the damage-related information acquisition unit 332 extracts repair history 44 and incident history 45 of other damages that are similar to the damage identified by the damage identification unit 320 in terms of object to be inspected, location, type, degree of damage, etc. as damage-related information. can.
  • the damage degree output unit 340 which will be described next, can diagnose the "damage degree" with high accuracy.
  • the degree of damage may be expressed as the severity, degree of progression, degree of danger, seriousness, etc. of the damage.
  • the degree of damage may vary depending on where it is formed. For example, based on the incident history 45 (Fig. 7) of various past damages, it is possible to obtain the knowledge that a specific type of damage formed in a specific part of the object to be inspected is likely to become severe and lead to a serious accident.
  • the damage level output The portion 340 imparts a higher degree of damage to cracks formed at corners than to cracks formed outside corners. Additionally, damage that has a long elapsed time since the last or most recent repair that can be recognized from the repair history 44 ( Figure 7) is generally given a high damage rating, and damage that has a short time that has elapsed since the last or most recent repair is generally given a low damage rating. Damage level is given.
  • the damage level output unit 340 divides the damage of the inspection object identified by the damage identification unit 320 into at least two stages (specifically outputs the degree of damage, for example, in 5 stages from “1" to "5" or continuous numerical values).
  • the damage level model 351 is generated by a machine learning unit 350 that constitutes a machine learning device.
  • the machine learning unit 350 identifies damage to the inspection object identified in the inspection image taken of the inspection object, and damage that has been added (labeled) artificially or through a labeling tool or an annotation tool.
  • a damage degree model 351 is generated by machine learning in a neural network or the like using exhaustive training data including a set of degrees.
  • the training data for the machine learning unit 350 to generate the damage degree model 351 is, for example, the corresponding damage degree (“1” and “2” in the example of FIG. 6, respectively) for each damage 431, 432, and 433 in FIG. , "1").
  • the training data includes some or all of the data stored in the inspection image storage unit 301 shown in FIG.
  • the damage level output unit 340 or the damage level model 351 can output not only the inspection image data 42 acquired by the inspection image acquisition unit 310 and the damage data (431 to 433) specified by the damage identification unit 320, but also the inspection image storage unit 301 and/or other available data stored in the damage-related information storage unit 302, the degree of damage of each damage (431 to 433) can be diagnosed with high accuracy.
  • the damage level output unit 340 or the damage level model 351 includes the inspection image data 42 acquired by the inspection image acquisition unit 310 and the damages 431 to 433 acquired by the damage position acquisition unit 331. Damage identification is performed based on various information or data such as the location of the damage 431 to 433 (FIG. 7) acquired by the damage-related information acquisition unit 332 (“shooting position” in FIG. 6 and/or FIG. 7),
  • the unit 320 outputs, for example, a five-level damage degree for the damage 431 to 433 on the inspection object specified.
  • the damage degree output by the damage degree output unit 340 for each damage 431 to 433 is reflected in the damage degree data 43 in the inspection image storage unit 301 (FIG. 6) and/or the damage related information storage unit 302 (FIG. 7).
  • the damage level prediction unit 360 calculates the predicted date and time at the future date specified by the predicted date and time designation unit 52 in the operation unit 50 based on the damage level of the damage 431 to 433 of the inspection object outputted in the past by the damage level output unit 340.
  • the degree of damage of the damage 431 to 433 is predicted.
  • the damage degree output unit 340 outputs the damage degree "1" ⁇ "2" ⁇ "2" at the past date and time T 1 ⁇ T 2 ⁇ T 3 for the same damage. It is assumed that there is In this figure, dotted circles represent five levels of damage levels output by the damage level output unit 340 at each date and time T 1 , T 2 , and T 3 .
  • the damage level output unit 340 or the damage level model 351 actually calculates the damage level below the decimal point, and this information is used to predict the damage level in the damage level prediction unit 360. used.
  • the damage level prediction unit 360 is configured to calculate the predicted date and time specified by the predicted date and time designation unit 52 based on the change over time in the damage level (black circle) calculated by the damage level output unit 340 at past dates and times T 1 , T 2 , and T 3 .
  • the degree of damage of the damage at the predicted future date and time TP is predicted.
  • a known statistical method such as an autoregressive integrated moving average (ARIMA) model can be used.
  • ARIMA autoregressive integrated moving average
  • the damage level prediction unit 360 predicts the damage level of the damage at the predicted date and time TP to be "5" (the most serious of the five levels).
  • the damage degree prediction section 360 refers to changes over time in the degree of damage (damage degree data 43) for other similar injuries recorded in the inspection image storage section 301 and/or the damage related information storage section 302. Then, the future transition of the degree of damage to be predicted may be predicted.
  • the maintenance necessity determination unit 370 determines whether or not maintenance is required for the inspection target object based on the degree of damage 431 to 433 of the inspection target object output by the damage level output unit 340. For example, if a maintenance implementation standard is set such that maintenance is to be performed when the damage level reaches "4" for the damage to be determined, if the damage level output by the damage level output section 340 is "3" or lower, If the maintenance necessity determination section 370 determines that maintenance is not necessary, and the damage degree output by the damage degree output section 340 is "4" or more, the maintenance necessity determination section 370 determines that maintenance is necessary. Further, the maintenance implementation standard may be set based on the degree and area of damage.
  • the maintenance necessity determining unit 370 may present a future date on which maintenance should be performed. In the example of FIG. 8, the maintenance necessity determining unit 370 presents the date and time when the damage level of the damage to be determined will reach “4” by the damage level predicting unit 360 as the recommended maintenance date and time TM .
  • FIG. 9 shows an example screen of the display device 40.
  • inspection image data 42 (FIG. 6) as an inspection object is displayed.
  • the accompanying information display area 41 below displays various information accompanying the examination image data 42 stored in the examination image storage section 301 and/or the damage-related information storage section 302, specifically, the date and time of photographing, The location, repair history 44, incident history 45, etc. are displayed.
  • the inspection image storage section 301 and/or the damage-related information storage section 302 are connected to the display device 40, the inspection image storage section 301 and/or the damage-related information storage section 302 are Any information stored in the related information storage unit 302 can be displayed.
  • inspection image data and damage degree data (43) obtained when a portion of the inspection object that is the same as or overlapping with the inspection image data 42 was photographed in the past are displayed together with the date and time of photographing. Based on changes in damage level data over time, it is possible to understand at a glance the degree of severity and progression of each injury (i.e., changes in damage level over time). In this way, the image inspection apparatus 300 or the damage degree output unit 340 outputs the damage degree output in the past at the position of damage on the inspection object (in FIG. 9, the damage degree data in the past data display area 46 (omitted).
  • the operation unit 50 can select information to be considered when the damage level output unit 340 or the damage level model 351 outputs the level of damage included in the inspection image data 42.
  • check boxes are provided for two pieces of information: "location” and "repair time.” If the "Position" checkbox is checked by the operation unit 50, the damage level output unit 340 or the damage level model 351 outputs the damage level of the damage included in the inspection image data 42. For example, consider the "imaging position" in FIG. 6 and/or FIG. 7. For example, the degree of damage of the damage in the inspection image data 42 is output in consideration of the incident history 45 of other damages whose positions are similar to the damage in the inspection image data 42 identified by the damage identification unit 320.
  • the damage level output unit 340 or the damage level model 351 outputs the damage level of the damage included in the inspection image data 42.
  • the last or latest repair time of the damage included in the repair history 44 (FIG. 7) is considered. That is, the degree of damage is output taking into consideration not only the external characteristics of the damage that can be ascertained from the inspection image data 42, but also the contents of past repairs or maintenance for the damage.
  • the damage level output unit 340 or the damage level model 351 When the execution button 55 is pressed using the operation unit 50 with necessary information selected in the usage information selection area 53, the damage level output unit 340 or the damage level model 351 outputs the damage level data 43 (FIGS. 6 and 6) for the inspection image data 42. /or data similar to that in FIG. 7) is generated and displayed. Thereby, each damage included in the inspection image data 42 of the inspection target and the degree of damage can be grasped at a glance. Note that the damage degree data 43 may display a difference from the most recent (in the example of FIG. 9, the latest data in January 2021 in the past data display area 46) damage degree data.
  • necessary information for the damage degree prediction section 360 to predict the degree of damage included in the inspection image data 42 at a future date can be input using the operation section 50.
  • "ARIMA" autoregressive integrated moving average
  • the future prediction date and time T P Figure 8
  • “2023/1” is input in the “forecast time” column by the prediction date and time specifying unit 52.
  • the damage degree (43) at the current or shooting date and time (January 15, 2022 in the example of FIG. 9) and the damage degree (47) at a future date are determined.
  • a plurality of prediction dates and times may be input in the "prediction time" column, and the damage degree prediction unit 360 may predict and display a plurality of damage degree data 47 at the plurality of prediction dates and times. .
  • the display device displays changes in the degree of damage over time from the past to the future as shown in FIG. 8, and recommended maintenance dates and times TM . 40 may be displayed.
  • the image save button 56 provided at the bottom of the screen in FIG.
  • the information updated on the screen is stored in the inspection image storage section 301 (FIG. 6) and/or the damage-related information storage section 302 (FIG. 7).
  • the repair flag 57 is pressed using the operation unit 50, a finding that early repair is necessary is recorded for the part of the inspection object photographed using the inspection image data 42 ("photographing position" in FIG. 9).
  • the organization and personnel in charge of repairs are notified.
  • the boiler and the coke oven 90 were exemplified as the objects to be inspected by the image inspection apparatus 300, but the objects to be inspected are not limited thereto.
  • the inspection target may be various industrial machines such as construction machinery (including boilers and coke ovens), social infrastructure such as bridges, various industrial structures such as environmental plants and water treatment facilities, or other industrial equipment.
  • the surface to be inspected may be an internal or external surface of such industrial equipment.
  • a camera that takes a group of images of the surface to be inspected can be attached to a moving body of any configuration that can move along the surface to be inspected.
  • the camera may be attached to a flying object such as a so-called drone.
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • a processor, ROM, RAM, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the present invention relates to an image inspection device for an object to be inspected.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

An image inspecting device 300 comprises: an inspection image acquiring unit 310 for acquiring an inspection image obtained by imaging an inspection target object; a damage identifying unit 320 for identifying damage of the inspection target object in the inspection image; and a damage degree output unit 340 for outputting a degree of damage relating to the damage of the inspection target object, on the basis of a damage degree model 351 for outputting a degree of damage on the basis of an input image of damage. The machine learning device is provided with a machine learning unit 350 which employs machine learning to generate the damage degree model 351 for outputting the degree of damage relating to the damage included in the input inspection image, the machine learning being based on training data including sets comprising damage of the inspection target object, the damage being identified in the inspection image obtained by imaging the inspection target object, and the degree of damage assigned to the damage.

Description

画像検査装置、機械学習装置、画像検査方法、画像検査プログラムImage inspection equipment, machine learning equipment, image inspection methods, image inspection programs
 本発明は検査対象物の画像検査装置等に関する。 The present invention relates to an image inspection device for an object to be inspected.
 検査対象物を検査する際、検査対象物を撮影した検査画像を利用する技術が知られている。例えば、特許文献1は、土木構造物を検査対象物として、その検査画像に基づいて損傷を検査する技術を開示する。 When inspecting an object to be inspected, a technique is known that uses an inspection image taken of the object to be inspected. For example, Patent Document 1 discloses a technique for inspecting a civil engineering structure for damage based on an inspection image thereof.
特開2016-21725号公報Japanese Patent Application Publication No. 2016-21725
 従来の画像検査装置では、検査対象物の壁面のひび等の損傷を自動的に検出できるが、検出された各損傷についての補修やメンテナンスの要否の判断は、少数の経験が豊富な作業員等によって行われていた。 Conventional image inspection equipment can automatically detect damage such as cracks on the wall of the object to be inspected, but it is up to a small number of experienced workers to determine whether each detected damage requires repair or maintenance. It was done by etc.
 本発明はこうした状況に鑑みてなされたものであり、効率的に検査対象物の損傷を診断できる画像検査装置等を提供することを目的とする。 The present invention has been made in view of these circumstances, and it is an object of the present invention to provide an image inspection apparatus and the like that can efficiently diagnose damage to an object to be inspected.
 上記課題を解決するために、本発明のある態様の画像検査装置は、検査対象物を撮影した検査画像を取得する検査画像取得部と、検査画像において検査対象物の損傷を特定する損傷特定部と、入力された損傷の画像に基づいて損傷度を出力する損傷度モデルに基づいて、検査対象物の損傷について損傷度を出力する損傷度出力部と、を備える。 In order to solve the above problems, an image inspection apparatus according to an aspect of the present invention includes an inspection image acquisition unit that acquires an inspection image of an inspection target object, and a damage identification unit that identifies damage to the inspection target object in the inspection image. and a damage degree output unit that outputs the degree of damage to the inspection object based on a damage degree model that outputs the degree of damage based on the input damage image.
 この態様では、検査対象物の検査画像が入力された損傷度モデルが、当該検査対象物の損傷についての損傷度を出力するため、経験が豊富な作業員等に頼らずに効率的に損傷を診断できる。 In this aspect, the damage degree model into which the inspection image of the object to be inspected is input outputs the degree of damage to the object. Can be diagnosed.
 本発明の別の態様は、機械学習装置である。この装置は、検査対象物を撮影した検査画像において特定された当該検査対象物の損傷と、当該損傷について付与された損傷度の組を含む訓練データによる機械学習によって、入力される検査画像に含まれる損傷について損傷度を出力する損傷度モデルを生成する機械学習部を備える。 Another aspect of the present invention is a machine learning device. This device uses machine learning using training data that includes a set of damage to the inspection object identified in the inspection image taken of the inspection object and the degree of damage assigned to the damage. The system includes a machine learning unit that generates a damage degree model that outputs the degree of damage for the damage that occurs.
 本発明の更に別の態様は、画像検査方法である。この方法は、検査対象物を撮影した検査画像を取得する検査画像取得ステップと、検査画像において検査対象物の損傷を特定する損傷特定ステップと、入力された損傷の画像に基づいて損傷度を出力する損傷度モデルに基づいて、検査対象物の損傷について損傷度を出力する損傷度出力ステップと、を備える。 Yet another aspect of the present invention is an image inspection method. This method consists of an inspection image acquisition step of acquiring an inspection image of the inspection object, a damage identification step of identifying damage to the inspection object in the inspection image, and outputting the degree of damage based on the input damage image. and a damage degree output step of outputting a damage degree regarding damage to the inspection object based on the damage degree model.
 なお、以上の構成要素の任意の組合せや、これらの表現を方法、装置、システム、記録媒体、コンピュータプログラム等に変換したものも、本発明に包含される。 It should be noted that the present invention also encompasses any combination of the above components and the conversion of these expressions into methods, devices, systems, recording media, computer programs, etc.
 本発明によれば、効率的に検査対象物の損傷を診断できる。 According to the present invention, damage to an object to be inspected can be diagnosed efficiently.
CFBボイラを備える発電設備の全体的な構成を示す。The overall configuration of a power generation facility equipped with a CFB boiler is shown. ボイラの火炉における水管壁を示す一部破断斜視図である。FIG. 2 is a partially cutaway perspective view showing a water pipe wall in a furnace of a boiler. コークス炉の炉内観察装置を模式的に示す側面図である。FIG. 2 is a side view schematically showing an in-coke oven observation device. コークス炉の内部を模式的に示す図である。FIG. 2 is a diagram schematically showing the inside of a coke oven. 画像検査装置の機能ブロック図である。FIG. 2 is a functional block diagram of an image inspection device. 検査画像格納部に格納される検査画像データを模式的に示す。3 schematically shows test image data stored in the test image storage unit. 損傷関連情報格納部に格納される損傷関連情報を模式的に示す。Damage-related information stored in a damage-related information storage unit is schematically shown. 損傷の損傷度の経時的な変化を模式的に示す。Fig. 3 schematically shows changes in the degree of damage over time. 表示装置の画面例を示す。An example of a screen of a display device is shown.
 以下では、図面を参照しながら、本発明を実施するための形態(以下では実施形態ともいう)について詳細に説明する。説明および/または図面においては、同一または同等の構成要素、部材、処理等に同一の符号を付して重複する説明を省略する。図示される各部の縮尺や形状は、説明の簡易化のために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記載される全ての特徴やそれらの組合せは、必ずしも本発明の本質的なものであるとは限らない。 Hereinafter, modes for carrying out the present invention (hereinafter also referred to as embodiments) will be described in detail with reference to the drawings. In the description and/or drawings, the same or equivalent components, members, processes, etc. are denoted by the same reference numerals, and redundant description will be omitted. The scales and shapes of the parts shown in the drawings are set for convenience to simplify the explanation, and should not be interpreted in a limited manner unless otherwise stated. The embodiments are illustrative and do not limit the scope of the present invention. Not all features or combinations thereof described in the embodiments are necessarily essential to the present invention.
 本発明の画像検査装置等は、任意の検査対象物の検査に利用できる。従って、検査対象物が特に限定されるものではないが、本実施形態ではボイラの火炉の水管壁やコークス炉の炉壁を検査対象物とする例を中心に説明する。検査対象物の他の例については後述する。 The image inspection apparatus and the like of the present invention can be used to inspect any object to be inspected. Therefore, although the object to be inspected is not particularly limited, in this embodiment, an example in which the water tube wall of a boiler furnace or the furnace wall of a coke oven is the object to be inspected will be mainly described. Other examples of the inspection target will be described later.
 図1は、CFB(Circulating Fluidized Bed:循環流動層)ボイラを備える発電設備の全体的な構成を示す。なお、CFBボイラの代わりにBFB(Bubbling Fluidized Bed:気泡型流動床)ボイラやロータリーキルン等の他の任意の燃焼設備を発電設備に設けてもよい。 Figure 1 shows the overall configuration of a power generation facility equipped with a CFB (Circulating Fluidized Bed) boiler. Note that instead of the CFB boiler, any other combustion equipment such as a BFB (Bubbling Fluidized Bed) boiler or a rotary kiln may be provided in the power generation equipment.
 CFBボイラは、珪砂等の流動材が流動する火炉11内に石炭等の化石燃料等の燃料を供給して燃焼させる燃焼部1と、燃焼部1で発生した熱によって水から蒸気を発生させる蒸気発生部2と、火炉11外に出た流動材を捕集して火炉11内に戻す循環部としての流動材循環部3と、蒸気発生部2に供給される水、蒸気発生部2で発生する蒸気を燃焼部1の高温の排気によって加熱する伝熱部4と、伝熱部4からの排気中の煤や粉塵を分離して捕集する排気処理装置5と、排気処理装置5によって清浄化された排気を大気に放出する煙突6を備える。 A CFB boiler includes a combustion section 1 that supplies and burns a fuel such as fossil fuel such as coal into a furnace 11 in which a fluidized material such as silica sand flows, and a steam generator that generates steam from water using the heat generated in the combustion section 1. The generation part 2, the fluidized material circulation part 3 as a circulation part that collects the fluidized material that has come out of the furnace 11 and returns it into the furnace 11, and the water supplied to the steam generation part 2, which is generated in the steam generation part 2. A heat transfer section 4 heats the steam generated by the combustion section 1 using high-temperature exhaust gas, an exhaust treatment device 5 separates and collects soot and dust in the exhaust from the heat transfer section 4, and the exhaust treatment device 5 cleans the steam. A chimney 6 is provided for discharging the oxidized exhaust gas into the atmosphere.
 燃焼部1は燃焼室としての火炉11を備える。火炉11は鉛直方向に長尺の筒状であり、石炭等の固形燃料や流動材の密度を高めて効率的な燃焼を可能とするため底部が先細り形状となっている。火炉11の底部の「A」で示される領域は、高密度の流動材によって形成される流動層(流動床や砂層とも呼ばれる)を示す。流動層Aでは、珪砂等の粉末状、粒子状、塊状の流動材が、火炉11の底部から供給される流動流体によって流動している。流動層Aに投入された石炭等の固形燃料は、流動層A内で撹拌されるように高温の流動材と繰り返し接触することで効率的に燃焼される。 The combustion section 1 includes a furnace 11 as a combustion chamber. The furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom in order to increase the density of solid fuel such as coal or fluid material and enable efficient combustion. The area indicated by "A" at the bottom of the furnace 11 indicates a fluidized bed (also called a fluidized bed or sand bed) formed by a high-density fluidized material. In the fluidized bed A, powdered, particulate, or lumpy fluidized materials such as silica sand are fluidized by fluidized fluid supplied from the bottom of the furnace 11 . The solid fuel such as coal put into the fluidized bed A is efficiently combusted by repeatedly contacting the high-temperature fluidized material while being stirred within the fluidized bed A.
 火炉11の底部には、ガスを透過させる多孔質材料で構成された流体透過部としての多孔板(分散板とも呼ばれる)121が設けられる。多孔板121の直下の空間である風箱122は、送風機としての第1ブロワ71から第1流量制御バルブ71Aを介して供給される流動流体を、多孔板121を介して火炉11内に供給する流動流体供給部を構成する。風箱122によって火炉11の底部に供給されたガスは、流動材を流動させて流動層Aを形成すると共に、流動層AまたはフリーボードBにおける燃料の燃焼に使われる。 A perforated plate (also called a dispersion plate) 121 is provided at the bottom of the furnace 11 as a fluid permeable portion made of a porous material that allows gas to permeate therethrough. The wind box 122, which is a space directly under the perforated plate 121, supplies flowing fluid supplied from the first blower 71 as an air blower via the first flow rate control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section. The gas supplied to the bottom of the furnace 11 by the wind box 122 is used to flow the fluidized material to form the fluidized bed A, and to burn the fuel in the fluidized bed A or the freeboard B.
 第1ブロワ71に加えて設けられる第2ブロワ72は、フリーボードBにおける燃料の燃焼を促進して不完全燃焼によるダイオキシンや一酸化炭素等の有害物質の発生を抑制するために、排気処理装置5からの二酸化炭素を含む排気を第2流量制御バルブ72Aを介してフリーボードB内に供給する。このように、第1ブロワ71および第2ブロワ72は、火炉11における燃焼によって発生した二酸化炭素を含む排気の少なくとも一部を排気処理装置5から火炉11に環流させる。 A second blower 72 provided in addition to the first blower 71 is an exhaust treatment device for promoting fuel combustion in the freeboard B and suppressing the generation of harmful substances such as dioxins and carbon monoxide due to incomplete combustion. 5 is supplied into the freeboard B via the second flow control valve 72A. In this way, the first blower 71 and the second blower 72 circulate at least a portion of the exhaust gas containing carbon dioxide generated by combustion in the furnace 11 from the exhaust treatment device 5 to the furnace 11 .
 流動層Aにおける流動材を循環させるために、火炉11外の循環経路を有する外部循環機構13が設けられる。外部循環機構13は、火炉11の底部に連通して流動層Aにおける流動材の一部を抜き出し可能な抜出管131と、抜出管131を開閉制御して流動材の流量すなわち抜出管131による流動材の抜き出し量を調節可能な開閉弁132と、抜出管131で抜き出された流動材を上方に搬送するバケットコンベア等の流動材コンベア133と、流動層Aの上部に対応する火炉11の外周に設けられ流動材コンベア133によって搬送された流動材を受け入れる流動材サイロ134と、流動材サイロ134に貯蔵された流動材を火炉11内に再投入する流動材再投入部135を備える。 In order to circulate the fluidized material in the fluidized bed A, an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided. The external circulation mechanism 13 includes an extraction pipe 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluid material in the fluidized bed A, and controls opening and closing of the extraction pipe 131 to control the flow rate of the fluid material, that is, the extraction pipe. 131, a fluid material conveyor 133 such as a bucket conveyor that conveys the fluid material extracted by the extraction pipe 131 upward, and a fluid material conveyor 133 corresponding to the upper part of the fluidized bed A. A fluid material silo 134 provided on the outer periphery of the furnace 11 receives the fluid material conveyed by the fluid material conveyor 133, and a fluid material re-injection section 135 that reinjects the fluid material stored in the fluid material silo 134 into the furnace 11. Be prepared.
 火炉11の側壁である炉壁には、燃料その他の材料を火炉11内に供給する材料供給部14と、流動層Aを形成するための流動材を火炉11内に供給する流動材供給部15と、CFBボイラを起動する起動部16が設けられる。材料供給部14は、材料を貯留する漏斗状のホッパ141と、ホッパ141の底部から排出された材料を粒状に粉砕する粉砕部142と、粉砕部142で粉砕された材料を火炉11内に供給するフィーダ143を備える。 The furnace wall, which is a side wall of the furnace 11, includes a material supply section 14 that supplies fuel and other materials into the furnace 11, and a fluid material supply section 15 that supplies a fluid material for forming the fluidized bed A into the furnace 11. A starting unit 16 for starting the CFB boiler is provided. The material supply section 14 includes a funnel-shaped hopper 141 that stores materials, a crushing section 142 that crushes the material discharged from the bottom of the hopper 141 into particles, and supplies the material crushed by the crushing section 142 into the furnace 11. A feeder 143 is provided.
 材料供給部14は、炭素を含有する炭素含有燃料を火炉11内に供給する。炭素含有燃料は特に限定されるものではないが、例えば、無煙炭、瀝青炭、褐炭等の各種の石炭、バイオマス燃料、スラッジ、廃材が挙げられる。これらの炭素含有燃料は火炉11での燃焼時に二酸化炭素を発生させる。但し、バイオマス燃料は正味の二酸化炭素排出量が少ないまたは零のカーボンニュートラルな燃料である。材料供給部14における粉砕部142は、火炉11に供給される前の材料を粒状に粉砕する。粉砕部142で粉砕された粒状の材料は、回転数を制御可能なフィーダ143によって必要量が火炉11内に投入される。 The material supply unit 14 supplies carbon-containing fuel containing carbon into the furnace 11 . Carbon-containing fuels are not particularly limited, and include, for example, various types of coal such as anthracite, bituminous coal, and brown coal, biomass fuel, sludge, and waste wood. These carbon-containing fuels generate carbon dioxide when burned in the furnace 11. However, biomass fuel is a carbon-neutral fuel with little or no net carbon dioxide emissions. The crushing unit 142 in the material supply unit 14 crushes the material into particles before being supplied to the furnace 11 . The required amount of the granular material crushed by the crushing section 142 is fed into the furnace 11 by a feeder 143 whose rotation speed can be controlled.
 流動層Aを形成するための流動材を供給する流動材供給部15は、流動材を貯留する漏斗状の流動材ホッパ151と、流動材ホッパ151の底部から排出される流動材を火炉11内に供給する流動材フィーダ152を備える。流動材フィーダ152の回転数を制御することで、必要量の流動材が火炉11内に投入される。 The fluid supply unit 15 that supplies the fluid for forming the fluidized bed A includes a funnel-shaped fluid hopper 151 that stores the fluid and the fluid that is discharged from the bottom of the fluid hopper 151 into the furnace 11. A fluid material feeder 152 is provided. By controlling the rotation speed of the fluid material feeder 152, a required amount of fluid material is fed into the furnace 11.
 CFBボイラを起動する起動部16は、起動燃料貯留部161と、起動燃料制御バルブ162と、起動バーナ163を備える。起動燃料貯留部161は、炭素含有燃料としての重油を貯留する。起動燃料制御バルブ162は、起動燃料貯留部161から起動バーナ163への重油の供給量を制御する。具体的には、起動燃料制御バルブ162はCFBボイラの起動時に開状態となり、起動燃料貯留部161に貯留された重油を起動バーナ163に供給する。起動バーナ163は、起動燃料制御バルブ162から供給された重油の燃焼による炎で流動層Aにおける流動材を加熱する。起動バーナ163は下方に傾斜して設けられるため、流動材によって形成される流動層Aの表面が直接加熱され、流動層Aおよび火炉11内が効率的に昇温する。このように起動バーナ163は砂状の流動層Aを上方から加熱するため砂上バーナとも呼ばれる。 The starting section 16 that starts the CFB boiler includes a starting fuel storage section 161, a starting fuel control valve 162, and a starting burner 163. The startup fuel storage section 161 stores heavy oil as carbon-containing fuel. The starting fuel control valve 162 controls the amount of heavy oil supplied from the starting fuel storage section 161 to the starting burner 163. Specifically, the startup fuel control valve 162 is opened when the CFB boiler is started, and the heavy oil stored in the startup fuel storage section 161 is supplied to the startup burner 163. The starting burner 163 heats the fluidized material in the fluidized bed A with flame generated by combustion of heavy oil supplied from the starting fuel control valve 162 . Since the starting burner 163 is provided to be inclined downward, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. In this way, the starting burner 163 heats the sand-like fluidized bed A from above, so it is also called an over-sand burner.
 流動層Aおよび火炉11内が十分に昇温したCFBボイラの起動後、具体的には流動層Aにおいて材料供給部14から供給された燃料または材料の燃焼が可能となった後、起動燃料制御バルブ162は閉状態となって起動バーナ163への重油の供給を停止する。以降の通常運転状態では、材料供給部14から供給される燃料が高温の火炉11内で燃焼される。 After starting the CFB boiler in which the temperature inside the fluidized bed A and the furnace 11 has risen sufficiently, specifically, after it becomes possible to burn the fuel or material supplied from the material supply section 14 in the fluidized bed A, starting fuel control is performed. The valve 162 is closed and the supply of heavy oil to the starting burner 163 is stopped. In the subsequent normal operating state, fuel supplied from the material supply section 14 is burned in the high-temperature furnace 11.
 以上、CFBボイラの燃焼部1について詳細に説明した。続いて、CFBボイラの燃焼部1以外の構成を説明する。蒸気発生部2は、蒸気を発生させる水を貯留するドラム21と、ドラム21に水を供給する給水管22と、ドラム21内の水を高温の火炉11内に導いて加熱する水管23と、水管23で加熱された水から発生した蒸気をCFBボイラの出力としてドラム21から排出する蒸気管24を備える。蒸気管24から出力された蒸気によって発電機25の蒸気タービンが回転することで発電設備が発電する。給水管22は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで給水を予熱する節炭器を構成し、蒸気管24は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで蒸気を過熱する過熱器を構成する。 The combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be explained. The steam generation unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, and a water pipe 23 that guides water in the drum 21 into the high-temperature furnace 11 and heats it. A steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler. The steam output from the steam pipe 24 rotates the steam turbine of the generator 25, so that the power generation equipment generates electricity. The water supply pipe 22 constitutes an economizer that preheats the water supply by meandering through the heat transfer section 4 through which the high temperature exhaust gas from the combustion section 1 passes, and the steam pipe 24 constitutes a heat transfer section through which the high temperature exhaust gas from the combustion section 1 passes. 4 constitutes a superheater that superheats steam.
 流動材循環部3は、火炉11の上部から排出された排気から粒状の流動材を分離して捕集するサイクロン31と、サイクロン31で捕集された流動材を火炉11内に戻すシールポット32を備える。サイクロン31は、上部が略円筒状および下部が略円錐状に形成されたサイクロン式粉体分離器であり、内壁に沿って螺旋状に降下する気流を発生させる。火炉11からの排気に含まれる粒状の流動材は、気流に沿って螺旋状に降下する際にサイクロン31の内壁に接触して落下することで捕集される。 The fluid material circulation unit 3 includes a cyclone 31 that separates and collects granular fluid material from the exhaust gas discharged from the upper part of the furnace 11, and a seal pot 32 that returns the fluid material collected by the cyclone 31 into the furnace 11. Equipped with The cyclone 31 is a cyclone-type powder separator having a substantially cylindrical upper part and a substantially conical lower part, and generates an airflow that descends spirally along the inner wall. The granular fluidized material contained in the exhaust gas from the furnace 11 comes into contact with the inner wall of the cyclone 31 when descending spirally along the airflow and is collected.
 サイクロン31の下方に設けられるシールポット32は流動材で充填されており、火炉11からサイクロン31への未燃ガス等の逆流を防止する。シールポット32に充填された粒状の流動材は、サイクロン31が新たに捕集する流動材の重みによって押し出される形で、徐々に火炉11内に戻される。排気処理装置5は、伝熱部4からの排気中の煤や粉塵を分離して捕集する。 A seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent unburned gas, etc. from flowing back from the furnace 11 to the cyclone 31. The granular fluidized material filled in the seal pot 32 is gradually returned to the furnace 11 as it is pushed out by the weight of the fluidized material newly collected by the cyclone 31. The exhaust treatment device 5 separates and collects soot and dust in the exhaust from the heat transfer section 4.
 図2は、検査対象物の一例であるCFBボイラやBFBボイラ等の火炉11における内壁を構成する水管壁80を示す一部破断斜視図である。火炉11の水管壁80は、鉛直方向に延びる複数のパイプ82と、隣接する各パイプ82の間を連結するフィン84によって構成される。各パイプ82には、水その他の液体や、それらの蒸気が通っている。水管壁80は高温の火炉11に面しているため、熱によって損傷を受ける可能性がある。また、火炉11内で燃焼された石炭等の燃料や灰等が、水管壁80に衝突または付着することで損傷に繋がる可能性もある。更に、高温環境下で高圧になったパイプ82内の水や水蒸気が、パイプ82内から水管壁80を損傷させる可能性もある。後述するように、本実施形態に係る画像検査装置300によれば、このような水管壁80における損傷を効率的に診断できる。 FIG. 2 is a partially cutaway perspective view showing a water pipe wall 80 that constitutes the inner wall of a furnace 11 such as a CFB boiler or a BFB boiler, which is an example of an object to be inspected. The water tube wall 80 of the furnace 11 is composed of a plurality of pipes 82 extending in the vertical direction and fins 84 connecting each adjacent pipe 82. Water, other liquids, and their vapors pass through each pipe 82 . Since the water tube wall 80 faces the high-temperature furnace 11, it may be damaged by heat. Furthermore, there is a possibility that fuel such as coal or ash burned in the furnace 11 collides with or adheres to the water pipe wall 80, leading to damage. Furthermore, there is a possibility that water or steam inside the pipe 82 that becomes high-pressure in a high-temperature environment may damage the water pipe wall 80 from within the pipe 82 . As described later, according to the image inspection apparatus 300 according to the present embodiment, such damage in the water pipe wall 80 can be efficiently diagnosed.
 火炉11の水管壁80の検査画像を撮影する撮影装置としてのカメラ30(図2では不図示)は、カメラ30を移動させる移動体、例えば、図3に示す押出装置200のようなスライド機構、水管壁80に沿って移動可能なドローン、ロボット、昇降機等に取り付けられる。カメラ30は、移動体と共に火炉11内を水管壁80に沿って移動しながら連続的に炉壁91を撮影する。カメラ30は、静止画を連続的に撮影するスチルカメラでもよいし、動画を撮影するビデオカメラでもよい。 A camera 30 (not shown in FIG. 2) as a photographing device for photographing an inspection image of the water tube wall 80 of the furnace 11 is a moving body that moves the camera 30, for example, a slide mechanism such as the extrusion device 200 shown in FIG. , attached to a drone, robot, elevator, etc. that can move along the water pipe wall 80. The camera 30 continuously photographs the furnace wall 91 while moving along the water pipe wall 80 inside the furnace 11 together with the moving body. The camera 30 may be a still camera that continuously takes still images, or a video camera that takes moving images.
 図3は、本実施形態の画像検査装置が用いられる炉内観察装置を模式的に示す側面図である。この炉内観察装置は、コークス炉の炭化室(以下では単にコークス炉ともいう)の内部を観察するために使用される。図4は、コークス炉の内部を模式的に示す図である。 FIG. 3 is a side view schematically showing an in-furnace observation device in which the image inspection device of this embodiment is used. This furnace interior observation device is used to observe the inside of a coke oven carbonization chamber (hereinafter also simply referred to as a coke oven). FIG. 4 is a diagram schematically showing the inside of the coke oven.
 コークス炉90は、一対のレンガ造りの炉壁91が互いに対向して設けられた狭窄な炉である。各炉壁91は、コークス炉90の一方側の炉入口92から他方側の炉出口93に延び、その全長は例えば十数メートルに及ぶ。対向する炉壁91の間隔は、例えば数十センチメートルである。コークス炉90の底95から天井94までの高さは、例えば数メートルである。 The coke oven 90 is a narrow oven with a pair of brick oven walls 91 facing each other. Each oven wall 91 extends from an oven inlet 92 on one side of the coke oven 90 to an oven outlet 93 on the other side, and has a total length of, for example, more than ten meters. The distance between the opposing furnace walls 91 is, for example, several tens of centimeters. The height from the bottom 95 to the ceiling 94 of the coke oven 90 is, for example, several meters.
 図3に示される押出装置200は、コークス炉90内を反復的に往復移動する。往路において、押出装置200は、コークス炉90内に炉入口92から挿入され、コークス炉90内の乾留によって生成されたコークスCを炉出口93へと押し出す。復路において、押出装置200は、コークス炉90内を炉出口93から炉入口92へ戻る。押出装置200は押板210とビーム220を備え、ビーム220が押板210を図示しない駆動装置に接続する。この駆動装置によって、押板210がコークス炉90の炉入口92と炉出口93の間を移動できる。押板210がコークス炉90と略同じ断面形状をしているため、押板210の移動によってコークスCが炉出口93に向かって押し出される。 The extrusion device 200 shown in FIG. 3 repeatedly moves back and forth within the coke oven 90. On the outward journey, the extrusion device 200 is inserted into the coke oven 90 from the oven inlet 92 and pushes out the coke C generated by carbonization in the coke oven 90 to the oven outlet 93. On the return trip, the extrusion device 200 returns inside the coke oven 90 from the oven outlet 93 to the oven inlet 92. The extrusion device 200 includes a push plate 210 and a beam 220, and the beam 220 connects the push plate 210 to a drive device (not shown). This driving device allows the push plate 210 to move between the furnace inlet 92 and the furnace outlet 93 of the coke oven 90. Since the push plate 210 has substantially the same cross-sectional shape as the coke oven 90, the movement of the push plate 210 pushes the coke C toward the oven outlet 93.
 検査画像を撮影する撮影装置としてのカメラ30は、カメラ30を移動させる移動体としての押出装置200に取り付けられ、コークス炉90内を炉入口92と炉出口93の間で押出装置200と共に移動しながら連続的に炉壁91を撮影する。カメラ30は、静止画を連続的に撮影するスチルカメラでもよいし、動画を撮影するビデオカメラでもよい。カメラ30は、押板210の背面(図3における右側の面)または押板210の後方に設置される不図示の支持台に取り付けられる。 A camera 30 as a photographing device for photographing an inspection image is attached to an extrusion device 200 as a movable body for moving the camera 30, and moves together with the extrusion device 200 within the coke oven 90 between the furnace inlet 92 and the furnace outlet 93. The furnace wall 91 is continuously photographed. The camera 30 may be a still camera that continuously takes still images, or a video camera that takes moving images. The camera 30 is attached to the back surface of the push plate 210 (the right side in FIG. 3) or to a support stand (not shown) installed behind the push plate 210.
 カメラ30は、左右の炉壁91それぞれに向けて取り付けられる二つのカメラを含んでもよく、左右両側の炉壁91の正面視画像を撮影する。左右の炉壁91全体を撮影するために、二つのカメラは上下方向に角度を変化させながら撮影してもよい。なお、カメラ30は、押板210やコークスCに視界を阻まれないように、押出装置200によるコークスCの押出方向と逆方向(図3の右方向)を向くように取り付けられてもよい。この場合のカメラ30は炉入口92に正対して設置され、左右両側の炉壁91を斜視画像として撮影できる。コークス炉90内の高温環境(たとえば1000℃以上)からカメラ30を保護するための熱対策として、例えば耐熱ハウジングまたは冷却ボックスにカメラ30を収納してもよい。 The camera 30 may include two cameras attached to the left and right furnace walls 91, respectively, and captures front-view images of the left and right furnace walls 91. In order to photograph the entire left and right furnace walls 91, the two cameras may photograph while changing the angle in the vertical direction. Note that the camera 30 may be mounted so as to face in the opposite direction (to the right in FIG. 3) to the direction in which the coke C is extruded by the extrusion device 200 so that the view is not obstructed by the push plate 210 or the coke C. The camera 30 in this case is installed directly facing the furnace inlet 92 and can take perspective images of the furnace walls 91 on both the left and right sides. As a heat measure to protect the camera 30 from the high-temperature environment (eg, 1000° C. or higher) inside the coke oven 90, the camera 30 may be housed in a heat-resistant housing or a cooling box, for example.
 図5は、本実施形態に係る画像検査装置300の機能ブロック図である。画像検査装置300は、検査画像取得部310と、損傷特定部320と、損傷位置取得部331と、損傷関連情報取得部332と、損傷度出力部340と、機械学習部350と、損傷度予測部360と、メンテナンス要否判定部370を備える。これらの機能ブロックは、コンピュータの中央演算処理装置、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。 FIG. 5 is a functional block diagram of the image inspection apparatus 300 according to this embodiment. The image inspection apparatus 300 includes an inspection image acquisition section 310, a damage identification section 320, a damage position acquisition section 331, a damage related information acquisition section 332, a damage degree output section 340, a machine learning section 350, and a damage degree prediction section. 360 and a maintenance necessity determining section 370. These functional blocks are realized through the collaboration of hardware resources such as the computer's central processing unit, memory, input devices, output devices, and peripheral devices connected to the computer, and the software that is executed using them. . Regardless of the type of computer or installation location, each of the above functional blocks may be realized using the hardware resources of a single computer, or may be realized by combining hardware resources distributed across multiple computers. .
 カメラ30および検査画像格納部301は、検査対象物の被検査面としての火炉11の水管壁80やコークス炉の炉壁91を撮影した検査画像を画像検査装置300に入力する画像入力部を構成する。表示装置40は、画像検査装置300の処理内容等を表示する。操作部50は、表示装置40と一体のタッチパネルや表示装置40と別体のキーボードやマウス等の入力デバイスで構成され、ユーザの操作に応じて画像検査装置300に対する各種の制御情報を生成する。操作部50による操作の一部または全部をコンピュータが自律的に行うようにプログラミングしてもよい。 The camera 30 and the inspection image storage unit 301 include an image input unit that inputs an inspection image of the water tube wall 80 of the furnace 11 and the furnace wall 91 of the coke oven, which are the inspected surfaces of the inspection object, into the image inspection apparatus 300. Configure. The display device 40 displays the processing contents of the image inspection device 300 and the like. The operation unit 50 is configured with an input device such as a touch panel integrated with the display device 40 or a keyboard and a mouse separate from the display device 40, and generates various control information for the image inspection apparatus 300 in response to user operations. The computer may be programmed to autonomously perform some or all of the operations performed by the operation unit 50.
 検査画像格納部301は、カメラ30が撮影した水管壁80や炉壁91の検査画像群を保存する。検査画像格納部301は、カメラ30の内蔵メモリでもよいし、メモリーカード等の汎用のリムーバブルメディアでもよい。また、有線または無線でカメラ30と通信可能なボイラ外やコークス炉90外のストレージでもよい。画像検査装置300は、検査画像格納部301に保存された検査画像群に対して、後述する各処理を実行する。ここで、カメラ30と画像検査装置300が有線または無線で通信可能で、画像検査装置300がカメラ30の撮影した検査画像をリアルタイムで取得して処理できる場合は、必ずしも全ての検査画像を検査画像格納部301に保存する必要はなく、検査画像格納部301は不要または小容量とできる。 The inspection image storage unit 301 stores a group of inspection images of the water pipe wall 80 and the furnace wall 91 taken by the camera 30. The inspection image storage section 301 may be the built-in memory of the camera 30, or may be a general-purpose removable medium such as a memory card. Alternatively, storage outside the boiler or outside the coke oven 90 that can communicate with the camera 30 by wire or wirelessly may be used. The image inspection apparatus 300 performs various processes described below on the inspection image group stored in the inspection image storage unit 301. Here, if the camera 30 and the image inspection device 300 can communicate by wire or wirelessly, and if the image inspection device 300 can acquire and process the inspection images taken by the camera 30 in real time, all the inspection images may not be There is no need to store it in the storage unit 301, and the inspection image storage unit 301 can be unnecessary or have a small capacity.
 図6は、検査画像格納部301に格納される検査画像データを模式的に示す。カメラ30が撮影した検査画像データ42は、後述する損傷度データ43、撮影日時、撮影位置等のメタデータと共に検査画像格納部301に格納される。損傷度データ43は、検査画像データ42において後述する損傷特定部320が特定した各種の損傷431~433と、当該各損傷431~433について後述する損傷度出力部340が付与した少なくとも2段階の損傷度を示す。撮影日時は検査画像がカメラ30によって撮影された日時(日付および/または時刻)であり、撮影位置はカメラ30によって撮影された検査画像の位置である。撮影位置の具体例については損傷位置取得部331に関して後述するが、例えば、カメラ等に搭載される測位センサで測定された位置、高度計で測定された高度、慣性センサで測定された姿勢や方向等に基づいて、直接的または間接的に導出される検査対象物における被撮影位置または被撮影部位である。図示の例における(100, 100, 100)は、検査対象物における被撮影位置の三次元座標である。なお、これらのメタデータに加えてまたは代えて、撮影された検査対象物を特定可能な情報(例えば「第Xコークス炉における第Y炭化室の右側の炉壁」等の情報)を、検査画像データ42のメタデータとして検査画像格納部301に格納してもよい。なお、本図および後続の図では、検査画像の例としてコークス炉90の炉壁91の画像を便宜的かつ模式的に示すが、これらに関する説明は他の検査対象物、特にボイラの火炉11における水管壁80の画像検査にも同様に適用できる。 FIG. 6 schematically shows the test image data stored in the test image storage unit 301. Inspection image data 42 photographed by the camera 30 is stored in the inspection image storage unit 301 together with metadata such as damage degree data 43, photographing date and time, and photographing position, which will be described later. The damage level data 43 includes various types of damage 431 to 433 identified by a damage identification unit 320 (described later) in the inspection image data 42, and at least two levels of damage imparted to each damage 431 to 433 by a damage level output unit 340 (described later). Show degree. The photographing date and time is the date and time (date and/or time) when the inspection image was photographed by the camera 30, and the photographing position is the position of the inspection image photographed by the camera 30. A specific example of the photographing position will be described later regarding the damage position acquisition unit 331, but for example, it may include a position measured by a positioning sensor mounted on a camera, an altitude measured by an altimeter, an attitude or direction measured by an inertial sensor, etc. The imaged position or imaged part of the inspection object is derived directly or indirectly based on the imaged area. In the illustrated example, (100, 100, 100) are the three-dimensional coordinates of the photographed position in the inspection object. In addition to or in place of these metadata, information that can identify the photographed inspection object (for example, information such as "the right oven wall of the Y carbonization chamber in the X coke oven") is added to the inspection image. It may be stored in the inspection image storage unit 301 as metadata of the data 42. Note that in this figure and subsequent figures, an image of the oven wall 91 of the coke oven 90 is shown schematically as an example of an inspection image for convenience, but the explanation regarding these will be given to other inspection objects, especially in the furnace 11 of the boiler. It can be similarly applied to image inspection of the water tube wall 80.
 検査画像取得部310は、カメラ30または検査画像格納部301から、検査対象物を撮影した検査画像を取得する。ここで、検査画像取得部310が検査画像格納部301から検査画像を取得する場合、ユーザは操作部50における検査画像指定部51によって、取得すべき検査画像の撮影日時、撮影位置、撮影された検査対象物等の検査画像に関する各種の条件(図6に示されるようなメタデータ)を指定できる。この場合、検査画像取得部310は、検査画像指定部51によって指定された条件に合致する検査画像を検査画像格納部301において検索し、ヒットした一または複数の検査画像データ42を一部または全部のメタデータ(図6)と共に検査画像格納部301から取得する。 The inspection image acquisition unit 310 acquires an inspection image of the object to be inspected from the camera 30 or the inspection image storage unit 301. Here, when the inspection image acquisition unit 310 acquires an inspection image from the inspection image storage unit 301, the user uses the inspection image specifying unit 51 in the operation unit 50 to specify the date and time of the inspection image to be acquired, the shooting position, the location of the image taken, etc. Various conditions (metadata as shown in FIG. 6) regarding the inspection image of the inspection object etc. can be specified. In this case, the test image acquisition unit 310 searches the test image storage unit 301 for a test image that matches the conditions specified by the test image specifying unit 51, and selects part or all of the one or more pieces of test image data 42 that are found. It is acquired from the inspection image storage unit 301 along with the metadata (FIG. 6).
 損傷特定部320は、公知の画像検査技術を利用して、検査画像取得部310が取得した検査画像において検査対象物の損傷を特定する。検査対象物の被検査面としてのコークス炉90の炉壁91に生じる損傷、欠陥、異常としては、炉壁91のひびや穴、急熱や急冷による歪みで炉壁91が破壊するスポーリング、コークスの原料の石炭に由来するカーボンの炉壁91への付着、炉壁91を構成するレンガの目地の劣化が例示される。また、検査対象物の被検査面としてのボイラの火炉11における水管壁80に生じる損傷、欠陥、異常としては、前述したように、高温の火炉11の熱による損傷、火炉11内で燃焼された石炭等の燃料や灰等が衝突または付着することによる損傷、高温環境下で高圧になった水や水蒸気によるパイプ82内からの損傷が例示される。損傷特定部320によって特定された損傷(図6における損傷431~433等)は、後述する損傷度出力部340の処理を経た後または前に、検査対象の検査画像データ42のメタデータ(損傷度データ43)として検査画像格納部301に格納される。 The damage identification unit 320 uses a known image inspection technique to identify damage to the inspection object in the inspection image acquired by the inspection image acquisition unit 310. Damages, defects, and abnormalities occurring in the oven wall 91 of the coke oven 90, which serves as the surface to be inspected, include cracks and holes in the oven wall 91, spalling where the oven wall 91 breaks due to distortion due to rapid heating or cooling, Examples include adhesion of carbon derived from coal, which is a raw material for coke, to the furnace wall 91 and deterioration of the joints of bricks forming the furnace wall 91. In addition, damage, defects, and abnormalities occurring in the water tube wall 80 in the furnace 11 of the boiler, which serves as the inspection surface of the inspection object, include damage caused by the heat of the high-temperature furnace 11 and damage caused by combustion in the furnace 11, as described above. Examples include damage caused by collision or adhesion of fuel such as coal or ash, and damage from within the pipe 82 due to water or steam that becomes high pressure in a high temperature environment. The damage identified by the damage identification unit 320 (damages 431 to 433 in FIG. 6, etc.) is converted into metadata (damage degree The data 43) are stored in the inspection image storage unit 301.
 損傷位置取得部331は、損傷特定部320が特定した検査対象物の損傷の位置を取得する。例えば、カメラ30が搭載される移動体やカメラ30自体の位置や姿勢(方向)を測定する位置センサや慣性センサによって、検査対象の損傷を含む検査画像を撮影した際のカメラ30の位置や姿勢を認識できる。カメラ30を移動させる移動体は、図3に示した押出装置200のようなスライド機構でもよいし、循環流動層(CFB: Circulating Fluidized Bed)ボイラや流動床(BFB:Bubbling Fluidized Bed)ボイラ等のボイラの水管や煙管の内壁または外壁、建物の外壁や内壁、その他の産業機械、産業構造物、産業設備の高所等における検査対象部位をカメラ30で撮影するために利用されるドローン、ロボット、昇降機等でもよい。ドローン、ロボット、昇降機等またはカメラ30自体に、GPS(Global Positioning System)等による測位センサ、高度計、慣性センサ等が搭載されている場合には、その測定結果を損傷の位置の特定に利用できる。 The damage position acquisition unit 331 acquires the position of the damage on the inspection object identified by the damage identification unit 320. For example, the position and orientation of the camera 30 when an inspection image including damage to the inspection target is taken by a position sensor or an inertial sensor that measures the position and orientation (direction) of the moving body on which the camera 30 is mounted or the camera 30 itself. can be recognized. The moving body that moves the camera 30 may be a sliding mechanism such as the extrusion device 200 shown in FIG. 3, or a circulating fluidized bed (CFB) boiler, a fluidized bed (BFB) boiler, etc. Drones, robots, etc. that are used to photograph inspection target parts such as the inner or outer walls of boiler water pipes and smoke pipes, the outer and inner walls of buildings, other industrial machines, industrial structures, and high places of industrial equipment with the camera 30, It may be an elevator, etc. If the drone, robot, elevator, etc. or the camera 30 itself is equipped with a positioning sensor such as a GPS (Global Positioning System), an altimeter, an inertial sensor, etc., the measurement results can be used to identify the location of damage.
 また、ユーザ(人)がカメラ30で検査対象物を撮影する場合、当該ユーザが使用するスマートフォン等の携帯機器に搭載されているGPS等による測位センサや慣性センサ等を利用して、カメラ30が撮影した検査対象物の損傷の位置を特定してもよい。更に、カメラ30が撮影した二次元または三次元の検査画像を検査対象物の既知の構造と対比することで、カメラ30によって撮影された検査対象物の位置または部位を特定してもよい。なお、これらの検査画像の位置データまたは姿勢データ、例えば、GPS等による測位センサで測定された絶対的な位置、高度計で測定された絶対的な高度、慣性センサで測定された姿勢、検査対象物における相対的な位置、検査対象物における部位等は、検査画像データ42のメタデータ(図6における「撮影位置」)として検査画像格納部301に検査画像データ42と共に格納されるのが好ましい。 In addition, when a user (person) photographs an object to be inspected with the camera 30, the camera 30 uses a positioning sensor such as a GPS, an inertial sensor, etc. installed in a mobile device such as a smartphone used by the user. The position of damage on the photographed inspection object may be identified. Furthermore, the position or region of the inspection object photographed by the camera 30 may be identified by comparing the two-dimensional or three-dimensional inspection image photographed by the camera 30 with the known structure of the inspection object. In addition, the position data or orientation data of these inspection images, such as the absolute position measured by a positioning sensor such as GPS, the absolute altitude measured by an altimeter, the attitude measured by an inertial sensor, and the inspection target It is preferable that the relative position in the inspection object, the region on the inspection object, etc. be stored in the inspection image storage unit 301 together with the inspection image data 42 as metadata of the inspection image data 42 ("imaging position" in FIG. 6).
 損傷関連情報取得部332は、損傷特定部320が特定した検査対象物の損傷の関連情報を損傷関連情報格納部302から取得する。損傷関連情報格納部302が格納する関連情報は、損傷特定部320が特定した検査対象物の損傷の補修履歴、損傷特定部320が特定した検査対象物の損傷の検査対象物における部位(図6における「撮影位置」に対応する)、損傷特定部320が特定した検査対象物の損傷に類似する損傷について過去に損傷度出力部340が出力した損傷度、過去のインシデントや重大事故の原因となった損傷に関する情報、の少なくともいずれかを含む。以下では便宜的に損傷関連情報格納部302を検査画像格納部301と別体の格納部として説明するが、これらは互いに重複する情報またはデータを格納するため一体的な格納部として構成するのが好ましい。 The damage-related information acquisition unit 332 acquires information related to damage to the inspection object specified by the damage identification unit 320 from the damage-related information storage unit 302. The related information stored in the damage-related information storage unit 302 includes the repair history of the damage to the inspection object identified by the damage identification unit 320, the location on the inspection object of the damage to the inspection object identified by the damage identification unit 320 (Fig. 6 ), the damage level output by the damage level output unit 340 in the past for damage similar to the damage to the inspection target identified by the damage identification unit 320, and the damage level that has caused past incidents and serious accidents. and/or information regarding the damage caused. For convenience, the damage-related information storage section 302 will be described below as a separate storage section from the inspection image storage section 301, but since these stores mutually overlapping information or data, it is best to configure them as an integrated storage section. preferable.
 図7は、損傷関連情報格納部302に格納される損傷関連情報を模式的に示す。損傷関連情報は、図6の検査画像格納部301に格納される検査画像データ42およびメタデータ「損傷度データ」(43)「撮影日時」「撮影位置」の一部または全部を含んでもよい。これらのデータに加えてまたは代えて、損傷関連情報は、損傷度データ43で特定された損傷431~433の補修履歴44、損傷度データ43で特定された損傷431~433のインシデント履歴45を含んでもよい。 FIG. 7 schematically shows damage-related information stored in the damage-related information storage section 302. The damage-related information may include part or all of the inspection image data 42 and metadata "damage degree data" (43), "photography date and time", and "photography position" stored in the inspection image storage unit 301 in FIG. 6. In addition to or in place of these data, the damage-related information includes a repair history 44 of the damages 431 to 433 identified by the damage degree data 43 and an incident history 45 of the damages 431 to 433 identified by the damage degree data 43. But that's fine.
 補修履歴44は、損傷度データ43で特定された損傷431~433および/または検査画像データ42の被撮影部位の過去の補修レポートやメンテナンスレポート(以下では補修レポートと総称する)を含む。補修レポートは、検査画像データ42の被撮影部位について過去に実施された補修やメンテナンスの内容や、その際の損傷等の観察結果等を実施日毎に記録した電子文書である。補修レポートはフリーフォーマットで自由記述されてもよいし、所定項目毎に内容を選択または入力可能とされていてもよい。自由記述の場合、例えば「2019年には長さ10cm、幅2mmだったクラックが、2020年には長さ12cm、幅2mmに成長している。しかし、この時点における緊急性や重大性は低いと判断して、補修対象とはせずに要観察処分とした。このクラックは耐火壁の上部のコーナーに位置し、2015年に一度補修が行われている。」等の内容が補修レポートに記録される。このような自由記述から必要な損傷関連情報を抽出できるように、自然言語処理(NLP: Natural Language Processing)等を通じてデータの分類や意味付けを予め行っておくのが好ましい。 The repair history 44 includes past repair reports and maintenance reports (hereinafter collectively referred to as repair reports) for the damage 431 to 433 specified by the damage degree data 43 and/or the photographed site of the inspection image data 42. The repair report is an electronic document that records the details of repairs and maintenance performed in the past on the photographed site of the inspection image data 42, and the results of observations such as damage at that time, etc., for each implementation date. The repair report may be freely written in a free format, or the contents may be selected or input for each predetermined item. In the case of free description, for example, "The crack was 10 cm long and 2 mm wide in 2019, but has grown to 12 cm long and 2 mm wide in 2020. However, the urgency and severity at this point is low. Therefore, it was determined that the crack was not subject to repair, but required observation.This crack is located at the upper corner of the fireproof wall, and was repaired once in 2015,'' etc. in the repair report. recorded. In order to be able to extract necessary damage-related information from such free descriptions, it is preferable to classify and give meaning to the data in advance through Natural Language Processing (NLP) or the like.
 補修レポートに含まれる各項目は、所定の基準によって予め分類されていてもよい。例えば、検査画像データ42の被撮影部位および/または損傷431~433の位置(上記の自由記述例では「耐火壁の上部のコーナー」)は、(天井部,左側面,右側面,角部,耐火壁上部,・・・)、と定義された位置ベクトルPにおいて、P=(0,0,0,1,1,・・・)、と分類される。ここで、「角部」の4番目のベクトル要素と「耐火壁上部」の5番目のベクトル要素が「1」とされ、残りのベクトル要素が「0」とされることで、上記の自由記述例における「耐火壁の上部のコーナー」という位置が表現されている。同様に、過去の補修時期(上記の自由記述例では「2015年」)は、(10年以上前に補修,10-9年前に補修,9-8年前に補修,8-7年前に補修,・・・)、と定義された補修時期ベクトルMにおいて、8.5年前に補修が行われた場合は、M=(0,0,0,1,0,・・・)、と表現される。また、損傷度データ43で特定された各損傷431~433について、損傷の類型(上記の自由記述例では「クラック」)を、(ひび,穴,スポーリング,異物の付着,目地の劣化,・・・)、と定義された損傷類型ベクトルDによって分類してもよいし、損傷度出力部340が出力した例えば5段階の損傷度を、(損傷度5,損傷度4,損傷度3,損傷度2,損傷度1)、と定義された損傷度ベクトルSによって分類してもよい。 Each item included in the repair report may be classified in advance according to predetermined criteria. For example, the positions of the imaged parts and/or damages 431 to 433 in the inspection image data 42 (in the free description example above, "the upper corner of the fireproof wall") are (ceiling, left side, right side, corner, In the position vector P defined as fireproof wall upper part,...) t , it is classified as P=(0,0,0,1,1,...) t . Here, the fourth vector element of the "corner" and the fifth vector element of the "top of the fireproof wall" are set to "1", and the remaining vector elements are set to "0", so that the above free description In the example, the position "upper corner of the fireproof wall" is expressed. Similarly, past repair times ("2015" in the free description example above) are (repaired more than 10 years ago, repaired 10-9 years ago, repaired 9-8 years ago, 8-7 years ago). In the repair time vector M defined as 8.5 years ago, M = (0, 0, 0, 1 , 0,...) t , It is expressed as In addition, for each damage 431 to 433 identified in the damage degree data 43, the type of damage ("cracks" in the free description example above) is defined as (cracks, holes, spalling, adhesion of foreign matter, deterioration of joints, etc.). . It may be classified according to a damage degree vector S defined as damage degree 2, damage degree 1) t .
 インシデント履歴45は、損傷度データ43で特定された損傷431~433および/または検査画像データ42の被撮影部位の過去のインシデントや重大事故に関するレポート(以下ではインシデントレポートと総称する)を含む。インシデントレポートは、検査画像データ42の被撮影部位において過去に発生したインシデントや重大事故の内容等を発生日毎に記録した電子文書である。インシデントレポートはフリーフォーマットで自由記述されてもよいし、所定項目毎に内容を選択または入力可能とされていてもよい。自由記述の場合、例えば「2003年4月30日に第Xコークス炉における第Y炭化室の右側の炉壁のレンガおよび目地に形成されたクラック部分からレンガの一部が崩落した。」等の内容がインシデントレポートに記録される。前述の補修レポートと同様にインシデントレポートについても、このような自由記述から必要な損傷関連情報を抽出できるように自然言語処理等を通じてデータの分類や意味付けを予め行っておくのが好ましく、インシデントレポートに含まれる各項目は所定の基準によって予め分類されていてもよい。 The incident history 45 includes reports (hereinafter collectively referred to as incident reports) regarding past incidents and serious accidents of the damage 431 to 433 identified by the damage degree data 43 and/or the part photographed in the inspection image data 42. The incident report is an electronic document that records the details of incidents and serious accidents that occurred in the past in the photographed part of the inspection image data 42, by date of occurrence. The incident report may be freely written in a free format, or the contents may be selected or input for each predetermined item. In the case of free writing, for example, "On April 30, 2003, a part of the bricks collapsed from the cracks formed in the bricks and joints on the right furnace wall of the coke chamber Y in the coke oven X." The contents are recorded in the incident report. Similar to the repair report mentioned above, it is preferable to classify and give meaning to the data in advance through natural language processing etc. so that necessary damage-related information can be extracted from such free descriptions for incident reports. Each item included in the list may be classified in advance according to predetermined criteria.
 例えば、インシデントの発生位置(上記の自由記述例では「第Xコークス炉における第Y炭化室の右側の炉壁」)は、上記の位置ベクトルPと同様に分類でき、インシデントの発生時期(上記の自由記述例では「2003年」)は、上記の補修時期ベクトルMと同様に分類でき、インシデントの原因となった損傷の類型(上記の自由記述例では「クラック部分」)は、上記の損傷類型ベクトルDと同様に分類でき、インシデントの原因となった損傷の当時の損傷度は、上記の損傷度ベクトルSと同様に分類できる。また、インシデントの例えば5段階のレベルを、(インシデントレベル5,インシデントレベル4,インシデントレベル3,インシデントレベル2,インシデントレベル1)、と定義されたインシデントレベルベクトルIによって分類してもよい。このようなインシデント履歴45によれば、検査対象物のどのような位置や部位で、どのような類型の損傷が重症化または深刻化しやすく、最悪の場合どのようなレベルのインシデントに発展するリスクがあるか等を認識できる。また、補修履歴44とインシデント履歴45を併せて参照することで、特定された損傷についてどのようなタイミングでどのような補修を行えばインシデントや重大事故の発生を効果的に防止できるか等の示唆も得られる。 For example, the location of the incident occurrence (in the free description example above, "the right furnace wall of the Y coking chamber in the X coke oven") can be classified in the same way as the position vector P, and the incident occurrence time (the In the free description example, "2003") can be classified in the same way as the repair time vector M above, and the type of damage that caused the incident (in the free description example above, "crack part") can be classified as the above damage type. It can be classified in the same way as the vector D, and the degree of damage at the time of the damage that caused the incident can be classified in the same way as the damage degree vector S described above. Further, for example, five levels of incidents may be classified by an incident level vector I defined as (incident level 5, incident level 4, incident level 3, incident level 2, incident level 1) t . According to such incident history 45, in what position and part of the object to be inspected, what type of damage is likely to become severe or serious, and in the worst case, what level of risk will the incident develop? I can recognize whether something is there or not. In addition, by referring to the repair history 44 and the incident history 45 together, it is possible to make suggestions such as when and what kind of repair should be performed to effectively prevent incidents and serious accidents from occurring regarding identified damage. You can also get
 以上のような損傷関連情報格納部302に保存された損傷関連情報のうち、損傷関連情報取得部332は、損傷特定部320が特定した検査対象物の損傷の関連情報を抽出する。例えば、損傷特定部320が特定した損傷自体の過去の損傷度(損傷度データ43)、過去の補修履歴44、過去のインシデント履歴45が、損傷関連情報として損傷関連情報取得部332によって抽出される。また、損傷特定部320が特定した損傷と検査対象物、位置、類型、損傷度等が類似する他の損傷の補修履歴44やインシデント履歴45も、損傷関連情報取得部332が損傷関連情報として抽出できる。このように他の類似損傷における補修履歴44やインシデント履歴45も参照することで、損傷特定部320が特定した検査対象物の損傷について、補修の要否、インシデントや重大事故に発展するリスク、換言すれば「損傷の損傷度」を次に述べる損傷度出力部340が高精度に診断できる。 Among the damage-related information stored in the damage-related information storage unit 302 as described above, the damage-related information acquisition unit 332 extracts information related to damage to the inspection object specified by the damage identification unit 320. For example, the past damage level (damage level data 43) of the damage itself identified by the damage identification unit 320, past repair history 44, and past incident history 45 are extracted by the damage-related information acquisition unit 332 as damage-related information. . In addition, the damage-related information acquisition unit 332 extracts repair history 44 and incident history 45 of other damages that are similar to the damage identified by the damage identification unit 320 in terms of object to be inspected, location, type, degree of damage, etc. as damage-related information. can. In this way, by also referring to the repair history 44 and incident history 45 for other similar damages, it is possible to determine whether the damage to the inspection object identified by the damage identification unit 320 requires repair, the risk of developing into an incident or serious accident, and other information. Then, the damage degree output unit 340, which will be described next, can diagnose the "damage degree" with high accuracy.
 なお、損傷の損傷度は、損傷の重症度、進行度、危険度、深刻度等と言い換えてもよい。ここで、全く同じ大きさと形状の損傷(例えばクラック)であっても、それが形成される場所によって損傷度が異なりうる。例えば、過去の様々な損傷のインシデント履歴45(図7)に基づいて、検査対象物の特定の部位に形成される特定の類型の損傷が重症化して重大事故に発展しやすいという知見が得られている場合、具体的には、水管壁80や炉壁91の角部(コーナー)に形成されるクラックが重症化して重大事故に発展しやすいという知見が得られている場合、損傷度出力部340は角部に形成されているクラックに対して角部以外に形成されているクラックよりも高い損傷度を付与する。また、補修履歴44(図7)から認識できる最後または最新の補修からの経過時間が長い損傷には概して高い損傷度が付与され、最後または最新の補修からの経過時間が短い損傷には概して低い損傷度が付与される。 Note that the degree of damage may be expressed as the severity, degree of progression, degree of danger, seriousness, etc. of the damage. Here, even if damage (for example, a crack) has the same size and shape, the degree of damage may vary depending on where it is formed. For example, based on the incident history 45 (Fig. 7) of various past damages, it is possible to obtain the knowledge that a specific type of damage formed in a specific part of the object to be inspected is likely to become severe and lead to a serious accident. Specifically, if it is known that cracks formed at the corners of the water pipe wall 80 or the furnace wall 91 are likely to become severe and lead to a serious accident, the damage level output The portion 340 imparts a higher degree of damage to cracks formed at corners than to cracks formed outside corners. Additionally, damage that has a long elapsed time since the last or most recent repair that can be recognized from the repair history 44 (Figure 7) is generally given a high damage rating, and damage that has a short time that has elapsed since the last or most recent repair is generally given a low damage rating. Damage level is given.
 損傷度出力部340は、入力された損傷の画像に基づいて損傷度を出力する損傷度モデル351に基づいて、損傷特定部320が特定した検査対象物の損傷について、少なくとも2段階(具体的には例えば「1」~「5」の5段階または連続数値)の損傷度を出力する。損傷度モデル351は、機械学習装置を構成する機械学習部350によって生成される。機械学習部350は、検査対象物を撮影した検査画像において特定された当該検査対象物の損傷と、当該損傷について人為的に、または、ラベリングツールやアノテーションツールを通じて付与された(ラベリングされた)損傷度の組を含む網羅的な訓練データによるニューラルネットワーク等における機械学習によって損傷度モデル351を生成する。 The damage level output unit 340 divides the damage of the inspection object identified by the damage identification unit 320 into at least two stages (specifically outputs the degree of damage, for example, in 5 stages from "1" to "5" or continuous numerical values). The damage level model 351 is generated by a machine learning unit 350 that constitutes a machine learning device. The machine learning unit 350 identifies damage to the inspection object identified in the inspection image taken of the inspection object, and damage that has been added (labeled) artificially or through a labeling tool or an annotation tool. A damage degree model 351 is generated by machine learning in a neural network or the like using exhaustive training data including a set of degrees.
 機械学習部350が損傷度モデル351を生成するための訓練データは、例えば、図6における各損傷431、432、433について、対応する損傷度(図6の例ではそれぞれ「1」、「2」、「1」)をラベリングしたものである。ここで、訓練データは、図6に示される検査画像格納部301に格納される一部または全部のデータ「検査画像データ42」「損傷度データ43」「撮影日時」「撮影位置」、および/または、図7に示される損傷関連情報格納部302に格納される一部または全部のデータ「検査画像データ42」「損傷度データ43」「撮影日時」「撮影位置」「補修履歴44」「インシデント履歴45」が、各損傷431、432、433に対してラベリングされたものとするのが好ましい。これによって、損傷度出力部340または損傷度モデル351は、検査画像取得部310が取得した検査画像データ42および損傷特定部320が特定した損傷データ(431~433)だけでなく、検査画像格納部301および/または損傷関連情報格納部302に保存されている他の利用可能なデータも総合的に考慮して、各損傷(431~433)の損傷度を高精度に診断できる。 The training data for the machine learning unit 350 to generate the damage degree model 351 is, for example, the corresponding damage degree (“1” and “2” in the example of FIG. 6, respectively) for each damage 431, 432, and 433 in FIG. , "1"). Here, the training data includes some or all of the data stored in the inspection image storage unit 301 shown in FIG. Alternatively, some or all of the data stored in the damage-related information storage unit 302 shown in FIG. It is preferable that each damage 431, 432, and 433 be labeled in the "history 45". As a result, the damage level output unit 340 or the damage level model 351 can output not only the inspection image data 42 acquired by the inspection image acquisition unit 310 and the damage data (431 to 433) specified by the damage identification unit 320, but also the inspection image storage unit 301 and/or other available data stored in the damage-related information storage unit 302, the degree of damage of each damage (431 to 433) can be diagnosed with high accuracy.
 特に、図5に模式的に示されるように、損傷度出力部340または損傷度モデル351は、検査画像取得部310が取得した検査画像データ42、損傷位置取得部331が取得した損傷431~433の位置(図6および/または図7における「撮影位置」)、損傷関連情報取得部332が取得した損傷431~433の関連情報(図7)等の各種の情報またはデータに基づいて、損傷特定部320が特定した検査対象物の損傷431~433について例えば5段階の損傷度を出力する。損傷度出力部340が各損傷431~433について出力した損傷度は、検査画像格納部301(図6)および/または損傷関連情報格納部302(図7)における損傷度データ43に反映される。 In particular, as schematically shown in FIG. 5, the damage level output unit 340 or the damage level model 351 includes the inspection image data 42 acquired by the inspection image acquisition unit 310 and the damages 431 to 433 acquired by the damage position acquisition unit 331. Damage identification is performed based on various information or data such as the location of the damage 431 to 433 (FIG. 7) acquired by the damage-related information acquisition unit 332 (“shooting position” in FIG. 6 and/or FIG. 7), The unit 320 outputs, for example, a five-level damage degree for the damage 431 to 433 on the inspection object specified. The damage degree output by the damage degree output unit 340 for each damage 431 to 433 is reflected in the damage degree data 43 in the inspection image storage unit 301 (FIG. 6) and/or the damage related information storage unit 302 (FIG. 7).
 損傷度予測部360は、損傷度出力部340が過去に出力した検査対象物の損傷431~433についての損傷度に基づいて、操作部50における予測日時指定部52によって指定された将来の日付における当該損傷431~433の損傷度を予測する。図8に模式的に示されるように、同一の損傷について過去の日時T→T→Tにおける損傷度「1」→「2」→「2」が損傷度出力部340によって出力されているものとする。この図において、点線の丸は各日時T、T、Tにおいて損傷度出力部340が出力した5段階の損傷度を表す。しかし、黒い丸で示されるように、損傷度出力部340または損傷度モデル351は実際には小数点以下の損傷度を算出しており、損傷度予測部360における損傷度の予測にはこの情報が使用される。 The damage level prediction unit 360 calculates the predicted date and time at the future date specified by the predicted date and time designation unit 52 in the operation unit 50 based on the damage level of the damage 431 to 433 of the inspection object outputted in the past by the damage level output unit 340. The degree of damage of the damage 431 to 433 is predicted. As schematically shown in FIG. 8, the damage degree output unit 340 outputs the damage degree "1" → "2" → "2" at the past date and time T 1 → T 2 → T 3 for the same damage. It is assumed that there is In this figure, dotted circles represent five levels of damage levels output by the damage level output unit 340 at each date and time T 1 , T 2 , and T 3 . However, as shown by the black circle, the damage level output unit 340 or the damage level model 351 actually calculates the damage level below the decimal point, and this information is used to predict the damage level in the damage level prediction unit 360. used.
 損傷度予測部360は、損傷度出力部340が過去の日時T、T、Tに算出した損傷度(黒い丸)の経時的な変化に基づいて、予測日時指定部52によって指定された将来の予測日時Tにおける当該損傷の損傷度を予測する。この予測においては、自己回帰和分移動平均(ARIMA: AutoRegressive Integrated Moving Average)モデル等の公知の統計的手法を利用できる。図8の例において損傷度予測部360は、予測日時Tにおける損傷の損傷度を(5段階の中で最も深刻な)「5」と予測する。なお、損傷度予測部360は、検査画像格納部301および/または損傷関連情報格納部302に記録されている他の類似損傷における損傷度(損傷度データ43)の経時的な変化を参照することで、予測対象の損傷の損傷度の将来における推移を予測してもよい。 The damage level prediction unit 360 is configured to calculate the predicted date and time specified by the predicted date and time designation unit 52 based on the change over time in the damage level (black circle) calculated by the damage level output unit 340 at past dates and times T 1 , T 2 , and T 3 . The degree of damage of the damage at the predicted future date and time TP is predicted. In this prediction, a known statistical method such as an autoregressive integrated moving average (ARIMA) model can be used. In the example of FIG. 8, the damage level prediction unit 360 predicts the damage level of the damage at the predicted date and time TP to be "5" (the most serious of the five levels). Note that the damage degree prediction section 360 refers to changes over time in the degree of damage (damage degree data 43) for other similar injuries recorded in the inspection image storage section 301 and/or the damage related information storage section 302. Then, the future transition of the degree of damage to be predicted may be predicted.
 メンテナンス要否判定部370は、損傷度出力部340が出力した検査対象物の損傷431~433についての損傷度に基づいて、検査対象物のメンテナンス要否を判定する。例えば、判定対象の損傷については損傷度が「4」になるとメンテナンスを実施するというメンテナンス実施基準が設定されている場合、損傷度出力部340が出力した損傷度が「3」以下である場合はメンテナンス要否判定部370がメンテナンス不要と判定し、損傷度出力部340が出力した損傷度が「4」以上である場合はメンテナンス要否判定部370がメンテナンス必要と判定する。また、メンテナンス実施基準は、損傷の損傷度と面積に基づいて設定されてもよい。例えば、損傷度「2」以上の損傷の面積や面積増加率が所定の閾値を超えた場合に、メンテナンスが必要と判定されてもよい。なお、メンテナンス要否判定部370は、メンテナンスを実施すべき将来の日付を提示してもよい。図8の例においてメンテナンス要否判定部370は、損傷度予測部360によって判定対象の損傷の損傷度が「4」に到達すると予測された日時を、メンテナンス推奨日時Tとして提示する。 The maintenance necessity determination unit 370 determines whether or not maintenance is required for the inspection target object based on the degree of damage 431 to 433 of the inspection target object output by the damage level output unit 340. For example, if a maintenance implementation standard is set such that maintenance is to be performed when the damage level reaches "4" for the damage to be determined, if the damage level output by the damage level output section 340 is "3" or lower, If the maintenance necessity determination section 370 determines that maintenance is not necessary, and the damage degree output by the damage degree output section 340 is "4" or more, the maintenance necessity determination section 370 determines that maintenance is necessary. Further, the maintenance implementation standard may be set based on the degree and area of damage. For example, when the area or area increase rate of damage with a damage level of "2" or higher exceeds a predetermined threshold value, it may be determined that maintenance is necessary. Note that the maintenance necessity determining unit 370 may present a future date on which maintenance should be performed. In the example of FIG. 8, the maintenance necessity determining unit 370 presents the date and time when the damage level of the damage to be determined will reach “4” by the damage level predicting unit 360 as the recommended maintenance date and time TM .
 図9は、表示装置40の画面例を示す。左上には、検査対象としての検査画像データ42(図6)が表示される。その下の付随情報表示領域41には、検査画像格納部301および/または損傷関連情報格納部302に保存されている検査画像データ42に付随する各種の情報、具体的には、撮影日時、撮影位置、補修履歴44、インシデント履歴45等が表示される。なお、図5における図示は省略するが、検査画像格納部301および/または損傷関連情報格納部302は表示装置40に接続されているため、表示装置40には検査画像格納部301および/または損傷関連情報格納部302に保存されている任意の情報を表示できる。過去データ表示領域46には、検査画像データ42と同じまたは重複する検査対象物の部分を過去に撮影した際の検査画像データや損傷度データ(43)が撮影日時と共に表示される。損傷度データの現在に至るまでの経時的な変化から、各損傷の重症化や進行の具合(すなわち損傷度の経時的な変化)を一目で把握できる。このように、画像検査装置300または損傷度出力部340は、検査対象物の損傷の位置において過去に出力した損傷度(図9では、過去データ表示領域46の損傷度データにおいて、具体的な損傷度の図示を省略した)を表示する。 FIG. 9 shows an example screen of the display device 40. In the upper left corner, inspection image data 42 (FIG. 6) as an inspection object is displayed. The accompanying information display area 41 below displays various information accompanying the examination image data 42 stored in the examination image storage section 301 and/or the damage-related information storage section 302, specifically, the date and time of photographing, The location, repair history 44, incident history 45, etc. are displayed. Although not shown in FIG. 5, since the inspection image storage section 301 and/or the damage-related information storage section 302 are connected to the display device 40, the inspection image storage section 301 and/or the damage-related information storage section 302 are Any information stored in the related information storage unit 302 can be displayed. In the past data display area 46, inspection image data and damage degree data (43) obtained when a portion of the inspection object that is the same as or overlapping with the inspection image data 42 was photographed in the past are displayed together with the date and time of photographing. Based on changes in damage level data over time, it is possible to understand at a glance the degree of severity and progression of each injury (i.e., changes in damage level over time). In this way, the image inspection apparatus 300 or the damage degree output unit 340 outputs the damage degree output in the past at the position of damage on the inspection object (in FIG. 9, the damage degree data in the past data display area 46 (omitted).
 使用情報選択領域53では、損傷度出力部340または損傷度モデル351が、検査画像データ42に含まれる損傷の損傷度を出力する際に考慮する情報を、操作部50によって選択できる。図示の例では、「位置」と「補修時期」の二つの情報についてチェックボックスが設けられている。「位置」のチェックボックスに操作部50によってチェックが入っている場合、損傷度出力部340または損傷度モデル351は、検査画像データ42に含まれる損傷の損傷度を出力する際に損傷の位置、例えば、図6および/または図7における「撮影位置」を考慮する。例えば、損傷特定部320が特定した検査画像データ42における損傷と位置が類似する他の損傷のインシデント履歴45等も考慮されて、検査画像データ42における損傷の損傷度が出力される。また、「補修時期」のチェックボックスに操作部50によってチェックが入っている場合、損傷度出力部340または損傷度モデル351は、検査画像データ42に含まれる損傷の損傷度を出力する際に、補修履歴44(図7)に含まれる当該損傷の最後または最新の補修時期を考慮する。すなわち、検査画像データ42から把握できる損傷の外形的な特徴だけでなく、当該損傷に対する過去の補修またはメンテナンスの内容も考慮されて損傷度が出力される。 In the usage information selection area 53, the operation unit 50 can select information to be considered when the damage level output unit 340 or the damage level model 351 outputs the level of damage included in the inspection image data 42. In the illustrated example, check boxes are provided for two pieces of information: "location" and "repair time." If the "Position" checkbox is checked by the operation unit 50, the damage level output unit 340 or the damage level model 351 outputs the damage level of the damage included in the inspection image data 42. For example, consider the "imaging position" in FIG. 6 and/or FIG. 7. For example, the degree of damage of the damage in the inspection image data 42 is output in consideration of the incident history 45 of other damages whose positions are similar to the damage in the inspection image data 42 identified by the damage identification unit 320. In addition, if the “Repair time” checkbox is checked by the operation unit 50, the damage level output unit 340 or the damage level model 351 outputs the damage level of the damage included in the inspection image data 42. The last or latest repair time of the damage included in the repair history 44 (FIG. 7) is considered. That is, the degree of damage is output taking into consideration not only the external characteristics of the damage that can be ascertained from the inspection image data 42, but also the contents of past repairs or maintenance for the damage.
 使用情報選択領域53において必要な情報が選択された状態で操作部50によって実行ボタン55を押下すると、損傷度出力部340または損傷度モデル351が検査画像データ42について損傷度データ43(図6および/または図7と同様のデータ)を生成して表示する。これによって、検査対象の検査画像データ42に含まれる各損傷とその損傷度を一目で把握できる。なお、損傷度データ43は、直近(図9の例では、過去データ表示領域46において最新の2021年1月)の損傷度データとの差異を表示するものでもよい。 When the execution button 55 is pressed using the operation unit 50 with necessary information selected in the usage information selection area 53, the damage level output unit 340 or the damage level model 351 outputs the damage level data 43 (FIGS. 6 and 6) for the inspection image data 42. /or data similar to that in FIG. 7) is generated and displayed. Thereby, each damage included in the inspection image data 42 of the inspection target and the degree of damage can be grasped at a glance. Note that the damage degree data 43 may display a difference from the most recent (in the example of FIG. 9, the latest data in January 2021 in the past data display area 46) damage degree data.
 予測情報指定領域54では、損傷度予測部360が検査画像データ42に含まれる損傷の将来の日付における損傷度を予測する際の必要情報を操作部50によって入力できる。図示の例では、予測に利用される統計的手法としての「予測モデル」の欄に「ARIMA」(自己回帰和分移動平均)が入力されており、将来の予測日時T(図8)としての「予測時期」の欄に「2023/1」が予測日時指定部52によって入力されている。予測情報指定領域54に必要な情報が入力された状態で操作部50によって実行ボタン55を押下すると、損傷度予測部360が検査画像データ42について将来の日付(図9の例では2023年1月)における損傷度データ47を予測して表示する。これによって、検査対象の検査画像データ42に含まれる各損傷の、現在または撮影日時(図9の例では2022年1月15日)の損傷度(43)と、将来の日付の損傷度(47)を対比しながら一目で把握できる。なお、「予測時期」の欄には複数の予測日時を入力できるようにしてもよく、損傷度予測部360が当該複数の予測日時における複数の損傷度データ47を予測して表示してもよい。 In the prediction information designation area 54, necessary information for the damage degree prediction section 360 to predict the degree of damage included in the inspection image data 42 at a future date can be input using the operation section 50. In the illustrated example, "ARIMA" (autoregressive integrated moving average) is entered in the "Prediction Model" column as the statistical method used for prediction, and the future prediction date and time T P (Figure 8) is entered. “2023/1” is input in the “forecast time” column by the prediction date and time specifying unit 52. When the execution button 55 is pressed on the operation unit 50 with the necessary information entered in the prediction information specification area 54, the damage degree prediction unit 360 selects a future date (in the example of FIG. 9, January 2023) for the inspection image data 42. ) is predicted and displayed. As a result, for each damage included in the inspection image data 42 of the inspection target, the damage degree (43) at the current or shooting date and time (January 15, 2022 in the example of FIG. 9) and the damage degree (47) at a future date are determined. ) can be understood at a glance by comparing them. Note that a plurality of prediction dates and times may be input in the "prediction time" column, and the damage degree prediction unit 360 may predict and display a plurality of damage degree data 47 at the plurality of prediction dates and times. .
 なお、損傷度予測部360が予測した損傷度データ47に加えてまたは代えて、図8で示したような損傷度の過去から将来に亘る経時的な変化や、メンテナンス推奨日時Tを表示装置40に表示してもよい。図9の画面の下部に設けられる画像保存ボタン56を操作部50によって押下すると、画面上で生成された現在または撮影日時における損傷度データ43および/または将来の日付における損傷度データ47、その他の画面上で更新された情報が、検査画像格納部301(図6)および/または損傷関連情報格納部302(図7)に保存される。また、補修フラグ57を操作部50によって押下すると、検査画像データ42で撮影された検査対象物の部位(図9における「撮影位置」)について、早期の補修が必要であるとの所見が記録されると共に、補修を担当する組織や人員に報知される。 In addition to or in place of the damage degree data 47 predicted by the damage degree prediction unit 360, the display device displays changes in the degree of damage over time from the past to the future as shown in FIG. 8, and recommended maintenance dates and times TM . 40 may be displayed. When the image save button 56 provided at the bottom of the screen in FIG. The information updated on the screen is stored in the inspection image storage section 301 (FIG. 6) and/or the damage-related information storage section 302 (FIG. 7). Further, when the repair flag 57 is pressed using the operation unit 50, a finding that early repair is necessary is recorded for the part of the inspection object photographed using the inspection image data 42 ("photographing position" in FIG. 9). In addition, the organization and personnel in charge of repairs are notified.
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. Those skilled in the art will understand that the embodiments are merely illustrative, and that various modifications can be made to the combinations of the constituent elements and processing processes, and that such modifications are also within the scope of the present invention.
 前述の実施形態では、画像検査装置300の検査対象物としてボイラとコークス炉90を例示したが、検査対象物はこれに限定されない。例えば、検査対象物は、建設機械等の各種の産業機械(ボイラとコークス炉を含む)、橋梁等の社会インフラ、環境プラントや水処理施設等各種の産業構造物、またはその他の産業設備でもよく、被検査面は、このような産業設備の内部または外部の被検査面でもよい。また、これらの被検査面の画像群を撮影するカメラは、被検査面に沿って移動可能な任意の構成の移動体に取り付けることができる。例えば、カメラはいわゆるドローン等の飛行体に取り付けてもよい。 In the embodiment described above, the boiler and the coke oven 90 were exemplified as the objects to be inspected by the image inspection apparatus 300, but the objects to be inspected are not limited thereto. For example, the inspection target may be various industrial machines such as construction machinery (including boilers and coke ovens), social infrastructure such as bridges, various industrial structures such as environmental plants and water treatment facilities, or other industrial equipment. The surface to be inspected may be an internal or external surface of such industrial equipment. Further, a camera that takes a group of images of the surface to be inspected can be attached to a moving body of any configuration that can move along the surface to be inspected. For example, the camera may be attached to a flying object such as a so-called drone.
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. A processor, ROM, RAM, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本発明は検査対象物の画像検査装置等に関する。 The present invention relates to an image inspection device for an object to be inspected.
 11 火炉、30 カメラ、40 表示装置、42 検査画像データ、43 損傷度データ、44 補修履歴、45 インシデント履歴、46 過去データ表示領域、47 損傷度データ、50 操作部、80 水管壁、90 コークス炉、91 炉壁、200 押出装置、300 画像検査装置、301 検査画像格納部、302 損傷関連情報格納部、310 検査画像取得部、320 損傷特定部、331 損傷位置取得部、332 損傷関連情報取得部、340 損傷度出力部、350 機械学習部、351 損傷度モデル、360 損傷度予測部、370 メンテナンス要否判定部。 11 Furnace, 30 Camera, 40 Display device, 42 Inspection image data, 43 Damage data, 44 Repair history, 45 Incident history, 46 Past data display area, 47 Damage data, 50 Operation unit, 80 Water pipe wall, 90 Coke Furnace, 91 Furnace wall, 200 Extrusion device, 300 Image inspection device, 301 Inspection image storage unit, 302 Damage related information storage unit, 310 Inspection image acquisition unit, 320 Damage identification unit, 331 Damage position acquisition unit, 332 Damage related information acquisition 340 damage level output unit, 350 machine learning unit, 351 damage level model, 360 damage level prediction unit, 370 maintenance necessity determination unit.

Claims (10)

  1.  検査対象物を撮影した検査画像を取得する検査画像取得部と、
     前記検査画像において前記検査対象物の損傷を特定する損傷特定部と、
     入力された損傷の画像に基づいて損傷度を出力する損傷度モデルに基づいて、前記検査対象物の損傷について損傷度を出力する損傷度出力部と、
     を備える画像検査装置。
    an inspection image acquisition unit that acquires an inspection image of the inspection object;
    a damage identification unit that identifies damage to the inspection object in the inspection image;
    a damage degree output unit that outputs a degree of damage to the inspection object based on a damage degree model that outputs a degree of damage based on an input damage image;
    An image inspection device comprising:
  2.  前記検査対象物の損傷の位置を取得する損傷位置取得部を更に備え、
     前記損傷度モデルは、入力された損傷の画像および位置に基づいて損傷度を出力する、
     請求項1に記載の画像検査装置。
    further comprising a damage position acquisition unit that acquires the position of damage on the inspection object,
    The damage degree model outputs a damage degree based on the input damage image and position.
    The image inspection device according to claim 1.
  3.  前記検査対象物の損傷の関連情報を取得する損傷関連情報取得部を更に備え、
     前記損傷度モデルは、入力された損傷の画像および関連情報に基づいて損傷度を出力する、
     請求項1または2に記載の画像検査装置。
    further comprising a damage-related information acquisition unit that acquires information related to damage to the inspection object,
    The damage degree model outputs a damage degree based on the input damage image and related information.
    The image inspection apparatus according to claim 1 or 2.
  4.  前記損傷の関連情報は、当該損傷の補修履歴、当該損傷の前記検査対象物における部位、当該損傷に類似する損傷について過去に前記損傷度出力部が出力した損傷度、過去のインシデントの原因となった損傷に関する情報、の少なくともいずれかを含む、請求項3に記載の画像検査装置。 The information related to the damage includes the repair history of the damage, the location of the damage on the object to be inspected, the degree of damage output by the damage level output unit in the past for damage similar to the damage, and the cause of past incidents. 4. The image inspection apparatus according to claim 3, wherein the image inspection apparatus includes at least one of information regarding damaged damage.
  5.  前記損傷度出力部が過去に出力した前記検査対象物の損傷についての損傷度に基づいて、入力された将来の日付における当該損傷の損傷度を予測する損傷度予測部を更に備える、請求項1から4のいずれかに記載の画像検査装置。 1 . The damage level prediction unit further comprises a damage level prediction unit that predicts the damage level of the damage at an input future date based on the damage level of the damage to the inspection object outputted in the past by the damage level output unit. 10 . 5. The image inspection device according to any one of 4 to 4.
  6.  前記損傷度出力部が出力した前記検査対象物の損傷についての損傷度に基づいて、前記検査対象物のメンテナンス要否を判定するメンテナンス要否判定部を更に備える、請求項1から5のいずれかに記載の画像検査装置。 Any one of claims 1 to 5, further comprising a maintenance necessity determination unit that determines whether or not maintenance of the inspection target is required based on the degree of damage to the inspection target outputted by the damage level output unit. The image inspection device described in .
  7.  前記損傷度出力部は、前記検査対象物の損傷の位置において過去に出力した損傷度を表示する、請求項1から6のいずれかに記載の画像検査装置。 The image inspection apparatus according to any one of claims 1 to 6, wherein the damage degree output unit displays a damage degree outputted in the past at a position of damage on the inspection object.
  8.  検査対象物を撮影した検査画像において特定された当該検査対象物の損傷と、当該損傷について付与された損傷度の組を含む訓練データによる機械学習によって、入力される検査画像に含まれる損傷について損傷度を出力する損傷度モデルを生成する機械学習部を備える機械学習装置。 Damage included in the input inspection image is determined by machine learning using training data that includes a set of damage to the inspection target identified in the inspection image taken of the inspection target and a damage degree assigned for the damage. A machine learning device that includes a machine learning unit that generates a damage degree model that outputs a degree of damage.
  9.  検査対象物を撮影した検査画像を取得する検査画像取得ステップと、
     前記検査画像において前記検査対象物の損傷を特定する損傷特定ステップと、
     入力された損傷の画像に基づいて損傷度を出力する損傷度モデルに基づいて、前記検査対象物の損傷について損傷度を出力する損傷度出力ステップと、
     を備える画像検査方法。
    an inspection image acquisition step of acquiring an inspection image of the inspection object;
    a damage identification step of identifying damage to the inspection object in the inspection image;
    a damage degree output step of outputting a damage degree regarding damage to the inspection object based on a damage degree model that outputs a damage degree based on an input damage image;
    An image inspection method comprising:
  10.  検査対象物を撮影した検査画像を取得する検査画像取得ステップと、
     前記検査画像において前記検査対象物の損傷を特定する損傷特定ステップと、
     入力された損傷の画像に基づいて損傷度を出力する損傷度モデルに基づいて、前記検査対象物の損傷について損傷度を出力する損傷度出力ステップと、
     をコンピュータに実行させる画像検査プログラム。
    an inspection image acquisition step of acquiring an inspection image of the inspection object;
    a damage identification step of identifying damage to the inspection object in the inspection image;
    a damage degree output step of outputting a damage degree regarding damage to the inspection object based on a damage degree model that outputs a damage degree based on an input damage image;
    An image inspection program that causes a computer to execute
PCT/JP2023/006565 2022-03-07 2023-02-22 Image inspecting device, machine learning device, image inspecting method, and image inspecting program WO2023171398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034429 2022-03-07
JP2022-034429 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171398A1 true WO2023171398A1 (en) 2023-09-14

Family

ID=87935024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006565 WO2023171398A1 (en) 2022-03-07 2023-02-22 Image inspecting device, machine learning device, image inspecting method, and image inspecting program

Country Status (2)

Country Link
TW (1) TW202336704A (en)
WO (1) WO2023171398A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110278A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Information processing device and information processing method
WO2019163329A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Image processing device and image processing method
US20200394784A1 (en) * 2019-06-17 2020-12-17 RecognAIse Technologies Inc. Artificial intelligence-based process and system for visual inspection of infrastructure
JP2021165888A (en) * 2020-04-06 2021-10-14 キヤノン株式会社 Information processing apparatus, information processing method of information processing apparatus, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110278A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Information processing device and information processing method
WO2019163329A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Image processing device and image processing method
US20200394784A1 (en) * 2019-06-17 2020-12-17 RecognAIse Technologies Inc. Artificial intelligence-based process and system for visual inspection of infrastructure
JP2021165888A (en) * 2020-04-06 2021-10-14 キヤノン株式会社 Information processing apparatus, information processing method of information processing apparatus, and program

Also Published As

Publication number Publication date
TW202336704A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US10920977B2 (en) System and method for diagnosing and controlling incineration facility and solid fuel boiler and managing life cycle of facility through heat exchange and design program and operation mode analysis of operator
JP7001568B2 (en) Ash melting temperature estimation device and ash melting temperature estimation method
Skrifvars et al. The fouling behavior of rice husk ash in fluidized-bed combustion. 2. Pilot-scale and full-scale measurements
WO2023171398A1 (en) Image inspecting device, machine learning device, image inspecting method, and image inspecting program
US20080308128A1 (en) Automated system for waterwall cleaning and inspection
CN117529628A (en) Control device for incinerator equipment
US20150000573A1 (en) Method for controlling a combustion and/or gasification device
WO2019116652A1 (en) Combustion furnace combustion condition determination device, combustion condition determination method, and combustion system
WO2023171293A1 (en) Image inspection device, machine learning device, image inspection method, and image inspection program
TW202323728A (en) Control apparatus
Lundmark et al. CFD based ash deposition prediction in a BFBC firing mixtures of peat and forest residue
JP7308016B2 (en) Waste quality estimation system and method, and waste storage facility
JP6673800B2 (en) Exhaust gas control apparatus and exhaust gas control method for gasification and melting furnace plant
JP7445058B1 (en) Combustion equipment system and combustion control method
JP2024092588A (en) Structure determination device, structure determination method, structure determination program, and flight photography system
JP6673799B2 (en) Exhaust gas control apparatus and exhaust gas control method for gasification and melting furnace plant
JP7478297B1 (en) Information processing system, information processing method, learning system, and learning method
TW202421966A (en) Landslide detection system and landslide detection method
Grishyn et al. The Coal Quality CICS that Increases the Wear Resistance of Heat Exchanger Tubes
JP2021173496A (en) Waste supply abnormality detection method, waste supply control method, waste supply abnormality detection device and waste supply control device
Salmi Developing computer vision-based soft sensor for municipal solid waste burning grate boiler: A practical application for flame front and area detection
WO2023222228A1 (en) Method of and control system for monitoring a process of circulation of solid material in a circulating fluidized bed reactor
JP2022168717A (en) Prediction device, prediction method, prediction program, facility controller, facility control method, and control program
JP2024079907A (en) Combustion control method for a garbage incinerator and combustion control device for a garbage incinerator
Hosseini Rahdar A Bayesian Approach to The Assessment of Fuel Composition Variability Effects on Grate-bed Biomass Combustion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766576

Country of ref document: EP

Kind code of ref document: A1