WO2023171322A1 - Damage investigation system, information processing device, terminal, damage investigation method, and program - Google Patents

Damage investigation system, information processing device, terminal, damage investigation method, and program Download PDF

Info

Publication number
WO2023171322A1
WO2023171322A1 PCT/JP2023/005724 JP2023005724W WO2023171322A1 WO 2023171322 A1 WO2023171322 A1 WO 2023171322A1 JP 2023005724 W JP2023005724 W JP 2023005724W WO 2023171322 A1 WO2023171322 A1 WO 2023171322A1
Authority
WO
WIPO (PCT)
Prior art keywords
investigation
range
survey
information
terminal
Prior art date
Application number
PCT/JP2023/005724
Other languages
French (fr)
Japanese (ja)
Inventor
郷太 渡部
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023171322A1 publication Critical patent/WO2023171322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present invention relates to a damage investigation system, an information processing device, a terminal, a damage investigation method, and a program, and particularly to a damage investigation system, information processing device, and terminal that display an investigation work range and an already investigated area when investigating a structure. , damage investigation methods, and programs.
  • Patent Document 1 proposes a technology that assists even those who do not have the knowledge to judge the extent of damage to disaster-stricken objects in a disaster-stricken area to collect information necessary to determine the extent of damage to disaster-stricken objects.
  • Patent Document 1 describes that advice regarding photography is displayed on the screen of a mobile terminal device held by a user as one of the aids for damage identification investigation. By following the advice and taking photographs, the investigator can collect the information necessary to determine the extent of the damage.
  • the investigation work range is calculated based on the outer circumferential shape information of the structure, and the calculated investigation work range is displayed. Further, based on the position information where the investigation is estimated to have been conducted, a surveyed range in which the survey work has been performed is specified among the survey work ranges. As a result, in this embodiment, failure to detect damage to the structure to be investigated can be suppressed, and the investigation can be conducted efficiently.
  • the damage investigation system includes a terminal that moves with the investigation when a structure is investigated, and a server device having a database, and the location information is acquired from the terminal.
  • the processor includes a first processor provided in the server device and a second processor provided in the terminal, and the first processor is configured to at least respond to a transmission request that includes information specifying an investigation target. Accordingly, the second processor reads the outer circumferential shape information from the database and identifies at least the surveyed range.
  • the server device stores neighborhood information that is information about other structures around the structure in a database
  • the first processor transmits the neighborhood information to the terminal when transmitting the outer circumferential shape information.
  • the second processor receives neighborhood information from the server device, calculates an investigation work range that is not subject to the structure investigation based on the outer circumferential shape information and the neighborhood information, and displays the investigation work range.
  • the second processor specifies the survey work range as a surveyed range if the terminal stays in the survey work range for a time equal to or longer than a second threshold based on the position information of the terminal.
  • the terminal acquires direction information indicating the direction of the terminal, and the second processor specifies the survey work range as the surveyed range based on the direction information of the terminal.
  • the investigation work scope includes an overlapping investigation work scope having multiple targets of investigation
  • the second processor determines the overlapping investigation work scope as a surveyed scope when the investigation is performed on all of the plurality of targets. Identify.
  • the second processor displays the survey work range and the surveyed range in two or three dimensions.
  • An information processing apparatus is an information processing apparatus that moves with the investigation when inspecting a structure and includes a database and a processor that stores information on the outer circumferential shape of the structure. reads the outer circumferential shape information from the database, calculates the survey work range of the structure survey based on the outer circumference shape information, and calculates at least the survey work range of the survey work range based on the position information where the survey is estimated to have been carried out. Specify the surveyed range where the survey was conducted, and display the survey work scope and the surveyed range.
  • a damage investigation method that is another aspect of the present invention includes the steps of: reading out circumferential shape information of a structure to be investigated from a database; and calculating an investigation work range for investigating the structure based on the circumferential shape information. , at least a step of identifying a surveyed range in which a survey has been conducted among the survey work range, and a step of displaying the survey work range and the surveyed range, based on the location information where the survey is estimated to have been conducted. include.
  • an investigation work range is calculated based on information on the outer circumferential shape of a structure, the calculated investigation work range is displayed, and the investigation work range is calculated based on position information where the investigation is estimated to have been performed. Since the surveyed range in which the survey work has been performed is specified among the ranges, failure to detect damage to the structure that is the target of the survey is suppressed, and the survey can be conducted efficiently.
  • FIG. 1 is a schematic diagram showing a configuration example of a damage investigation system of the present invention.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the server device.
  • FIG. 3 is a diagram showing an example of a storage configuration of outer circumferential shape information stored in a database.
  • FIG. 4 is a diagram illustrating a specific example of map information stored in the database.
  • FIG. 5 is a functional block diagram showing functions realized by the first processor.
  • FIG. 6 is a diagram showing an example of the hardware configuration of a terminal.
  • FIG. 7 is a functional block diagram showing functions realized by the second processor.
  • FIG. 8 is a diagram showing an example of a user interface displayed on the display section of the terminal when starting an investigation.
  • FIG. 8 is a diagram showing an example of a user interface displayed on the display section of the terminal when starting an investigation.
  • FIG. 17 is a diagram showing another example of specifying a researched range by the researched range specifying unit.
  • FIG. 18 is a diagram illustrating another example of specifying a researched range by the researched range specifying unit.
  • FIG. 19 is a diagram showing another example of specifying a researched range by the researched range specifying unit.
  • FIG. 20 is a diagram illustrating another example of specifying the investigated range by the investigated range specifying unit.
  • FIG. 21 is a diagram illustrating another example of specifying a researched range by the researched range specifying unit.
  • FIG. 22 is a diagram illustrating a two-dimensional investigation work range into which a house is divided.
  • FIG. 23 is a diagram illustrating a three-dimensional investigation work range into which a house is divided.
  • the damage investigation system 1 includes a server device 10 including a database 11 and a terminal 100.
  • the damage investigation system 1 includes a processor, and the processor realizes each function.
  • the processor of the damage investigation system 1 includes a first processor 12 (see FIG. 2) included in the server device 10 and a second processor 112 (see FIG. 6) included in the terminal 100.
  • the damage investigation system 1 including two terminals 100 is described, but the damage investigation system 1 can include one or more terminals 100.
  • the server device 10 is installed in a remote location different from the place where the survey is conducted, and transmits the requested survey preparation information to the terminal 100 in response to a request from the terminal 100 to transmit survey preparation information.
  • the network NW may use wireless communication using any frequency band, or may use any wired type of communication.
  • the network NW may combine wireless and wired forms of communication, and the network NW may use any communication standard.
  • the server device 10 functions as a management server for conducting investigations.
  • the server device 10 has a database 11 that stores circumferential shape information CO (vertex data indicating the apex of the house in latitude and longitude) of the house to be investigated in association with a house ID (identification). Based on the house ID, the server device 10 provides the outer circumferential shape information CO of the house corresponding to the house ID to the terminal 100 via the network NW. Further, the server device 10 may receive the results of the investigation conducted by the investigator from the terminal 100 and store them in the database 11.
  • CO circumferential shape information
  • the server device 10 includes a database 11, a first processor 12, a communication interface 14, and a computer readable medium 16.
  • the database 11 is stored in an auxiliary storage device.
  • the database 11 stores data including outer circumferential shape information CO and map information MP.
  • the outer circumferential shape information CO is composed of vertex data indicating the outer circumferential shape of the house to be investigated, and the vertex data is expressed by longitude and latitude coordinates indicating the position of the vertex.
  • Map information MP includes neighborhood information and topographical information.
  • the neighborhood information is information CO on the outer periphery of houses surrounding the house to be investigated.
  • the topographical information is information regarding the topography around the house that is the object of investigation, and includes positional information of places around the house that are inaccessible to investigators, such as mountains, rivers, cliffs, oceans, and lakes.
  • a house ID is given to each house as an identification code for identifying each house.
  • the database 11 stores the house ID and the apex data of the house, which is the outer circumferential shape information CO, in association with each other.
  • the vertex data consists of longitude and latitude coordinates of the vertex of the house.
  • the outer circumferential shape information CO of the house IDs " ⁇ " and " ⁇ ” is shown, and information on other house IDs is omitted. ing.
  • the vertex data that is the outer circumferential shape information CO of the house ID " ⁇ expressed.
  • the vertex data that is the outer circumference shape information CO of the house ID " ⁇ ” is composed of the first to fourth vertices, and the first to fourth vertices are the longitude and latitude coordinates. expressed.
  • the outer circumferential shape of the house is represented by four vertices as the outer circumferential shape information CO, but the outer circumferential shape information CO is not limited to four vertices, and may represent the outer circumferential shape of the house. It can be made up of multiple vertices.
  • FIG. 4 is a diagram illustrating a specific example of map information MP stored in the database 11.
  • FIG. 5 is a functional block diagram showing the functions realized by the first processor 12.
  • the first processor 12 constitutes an information request receiving section 12A and an information transmitting section 12B.
  • the information transmitting unit 12B transmits survey preparation information to the terminal 100 in response to the survey preparation information transmission request.
  • the information transmitter 12B reads the outer circumference shape information CO corresponding to the house ID included in the received survey preparation information transmission request from the database 11, and sends the read outer circumference shape information CO to the terminal 100 that sent the transmission request. Send.
  • the map information MP is stored in the database 11, the information transmitting unit 12B also transmits the map information MP corresponding to the outer circumferential shape information CO to be transmitted.
  • the computer-readable medium 16 includes a memory that is a main storage device and a storage that is an auxiliary storage device.
  • the computer readable medium 16 may be, for example, a semiconductor memory, a hard disk drive (HDD) device, a solid state drive (SSD) device, or a combination of these.
  • the computer readable medium 16 stores various programs and data including an image processing program and a display control program.
  • the server device 10 functions as a management server, and provides the outer circumferential shape information CO and map information MP of the house to be investigated to the terminal 100 via the network NW.
  • the terminal 100 is carried by the investigator during the investigation.
  • the investigator conducts the investigation while checking the investigation work range and the researched range displayed on the display unit 120 (FIG. 6) of the terminal 100. Therefore, the investigator can conduct the investigation while being guided by the investigation work range and the researched range displayed on the display unit 120.
  • a research support application program is installed on the terminal 100, and various processes are performed by executing the research support application program.
  • the terminal 100 also outputs information on the position and orientation of the terminal itself, and the surveyed range of the survey work range is specified based on the output position and orientation information.
  • the terminal 100 includes a second processor 112, a computer readable medium (memory) 116, a communication interface 114, a camera 134, a display section 120, and a position information output section 140.
  • the second processor 112 is composed of a CPU (Central Processing Unit). Further, the second processor 112 may include a GPU (Graphics Processing Unit). The second processor 112 is connected to a computer readable medium 116 , a communication interface 114 , a camera 134 , a display 120 , and a location information output 140 via a bus 113 . The second processor 112 can implement various functions by executing a dedicated program (research support application program) stored in the computer-readable medium 116.
  • a dedicated program search support application program
  • FIG. 7 is a functional block diagram showing the functions realized by the second processor 112.
  • FIG. 8 is a diagram showing an example of a user interface displayed on the display unit 120 of the terminal 100 when starting an investigation.
  • the terminal 100 executes the research support application program, and the display control unit 112E displays a user interface 121 as shown in FIG. 8 on the display unit 120.
  • the user interface 121 shows the team in charge of the investigation (see reference numeral 121A). Further, the user interface 121 shows the survey implementation date (see reference numeral 121B). The user interface 121 also shows an investigator who conducts the investigation (see reference numeral 121C). Further, the user interface 121 displays a map of the house to be investigated (see reference numeral 121D). The user interface 121 also includes a list of surveyed houses (see reference numeral 121F). The surveyed house list shows detailed information such as the structure, building type, and address of each house. Further, the survey house list has a survey start button S for each house. When investigating a house, the investigator taps the investigation start button S of the corresponding house and inputs the house ID of the house to be investigated. Thereby, the terminal 100 acquires the house ID of the house to be surveyed, and the information request transmitting unit 112A transmits a request for transmitting survey preparation information corresponding to the house ID to the server device 10.
  • the user interface 121 is displayed on the display unit 120 of the terminal 100, a house to be investigated is selected, and the house ID is accepted.
  • the investigator can accurately and easily input the house ID into the terminal 100, and can reliably acquire the investigation preparation information of the house to be investigated.
  • the information receiving unit 112B receives survey preparation information from the server device 10. Specifically, the information receiving unit 112B receives the outer circumferential shape information CO or the outer circumferential shape information CO and the map information MP transmitted by the server device 10 via the communication interface 114.
  • the outer circumferential shape information CO received by the information receiving unit 112B is the outer circumferential shape information CO corresponding to the house ID of the house to be investigated specified by the investigator.
  • the survey work range calculation unit 112C calculates the survey work range for the survey of the house to be surveyed, based on the outer circumferential shape information CO received by the information receiving unit 112B.
  • the investigation work range calculation unit 112C calculates the range to be investigated from the apex data of the outer circumference shape included in the outer circumference shape information CO. Specifically, the survey work range calculation unit 112C calculates the survey work range along a side (corresponding to a wall of a house) formed by connecting adjacent vertices.
  • the surveyed range specifying unit 112D identifies the surveyed range in which the survey has been conducted within the survey work range based on the location information where the survey is estimated to have been conducted. Specifically, the surveyed range identifying unit 112D identifies the surveyed range of the survey work range based on information output from the location information output unit 140 of the terminal 100. When the terminal 100 is located within the investigation work range, the investigator carrying the terminal 100 is also located within the investigation work range, and when the investigator is located within the investigation work range, the investigator is at that position. It can be assumed that an investigation is being conducted. Therefore, the surveyed range identification unit 112D can identify the surveyed range based on the location information of the terminal 100.
  • the communication interface 114 is a communication unit that performs wireless communication or wired communication.
  • the display unit 120 is composed of a display and displays information possessed by the terminal 100.
  • the display section 120 displays the investigation work range calculated by the investigation work range calculation section 112C under the control of the display control section 112E.
  • the display unit 120 displays the surveyed range specified by the surveyed range specifying unit 112D under the control of the display control unit 112E.
  • the display section 120 includes a touch panel and also functions as an input section.
  • the position information output unit 140 outputs information regarding the position and orientation of the terminal 100.
  • the position information output unit 140 includes a GPS (Global Positioning System) receiver 122, an atmospheric pressure sensor 124, an acceleration sensor 126, a gyro sensor 128, a timer 130, and a counter 132.
  • GPS Global Positioning System
  • the GPS receiver 122 acquires location information including the longitude and latitude of the terminal 100.
  • the terminal 100 can acquire the position of the terminal 100 based on the position information acquired by the GPS receiver 122.
  • Atmospheric pressure sensor 124 detects the atmospheric pressure at terminal 100 .
  • the terminal 100 can obtain the altitude of the terminal 100 based on the atmospheric pressure detected using the atmospheric pressure sensor 124.
  • the timer 130 can measure a predetermined time. For example, the timer 130 measures the time the terminal 100 stays in the survey work range.
  • the counter 132 can count the number of times the terminal 100 performs a predetermined operation. For example, the counter 132 counts the number of times the terminal 100 enters the investigation work range.
  • the position information output unit 140 includes the GPS receiver 122, the atmospheric pressure sensor 124, the acceleration sensor 126, the gyro sensor 128, the timer 130, and the counter 132. It is not limited. As will be explained later, there is no particular limitation as long as information that allows the investigator to specify what has been investigated within the scope of the investigation work can be obtained. Further, in the case shown in FIG. 6, the terminal 100 including the camera 134 has been described, but the present invention is not limited to this. If photographing is not particularly required during the investigation, it is also possible to use the terminal 100 without the camera 134.
  • the damage investigation method is performed by the processor of the damage investigation system executing a program, and specifically, the first processor 12 of the server device 10 and the second processor of the terminal 100 included in the damage investigation system 1. This is done by the processor 112 executing a dedicated program.
  • FIG. 9 is a flow diagram showing a damage investigation method using the damage investigation system 1.
  • the investigator identifies the house to be investigated and inputs the house ID into the terminal 100 (step S10). Thereafter, the information request transmitter 112A of the terminal 100 transmits a request to transmit survey preparation information including the input house ID to the server device 10 (step S11: second transmitting step).
  • the terminal 100 displays the survey work range and the surveyed range on the display unit 120 by the display control unit 112E (step S17: display step).
  • the investigator conducts the investigation covering the investigation work range while referring to the investigation work range and the researched range displayed on the display unit 120 of the terminal 100.
  • the investigator inputs the investigation results (for example, damage identification results) via the input section of the terminal 100, and the terminal 100 receives the investigation results (step S18).
  • the terminal 100 transmits the received survey results, survey work range, and surveyed range to the server device 10 via the communication interface 114 (step S19).
  • the investigation work range is calculated based on the outer circumferential shape information CO of the house to be investigated, and the calculated investigation work range is displayed. Further, based on the position information of the terminal 100, a surveyed range in which the survey has been performed is specified within the survey work range. As a result, by using the damage investigation system 1, the investigator can suppress failure to detect damage to the structure to be investigated and conduct the investigation efficiently.
  • the investigation results conducted by the investigator are recorded in the database 11 along with the investigation work range and the investigation completed range. Therefore, since the investigation results, the investigation work scope, and the investigation completed range are recorded in association with each other, a third party can efficiently judge the sufficiency of the investigation results.
  • step S10 to step S20 are described as a series of steps, but the application of the present invention is not limited to this.
  • the OPT process steps S11 to S14 shown in FIG. It may be possible to start an investigation.
  • the terminal 100 temporarily stores the outer circumferential shape information CO and the map information MP in the computer readable medium (memory) 116.
  • the server device 10 transmits the outer circumferential shape information CO (step S13) in response to the request for transmission of survey preparation information transmitted from the terminal 100 (step S11).
  • the server device 10 may send the investigation work range.
  • the server device 10 reads the outer circumferential shape information CO corresponding to the request for transmission of investigation preparation information from the database 11, calculates the investigation work range based on the outer circumference shape information CO, and transfers the calculated investigation work range to the terminal 100. You may also send it to
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, multiple FPGAs, or a combination of a CPU and FPGA). It's okay. Further, the plurality of processing units may be configured with one processor. As an example of configuring multiple processing units with one processor, first, one processor is configured with a combination of one or more CPUs and software, as typified by computers such as clients and servers. There is a form in which a processor functions as multiple processing units. Second, there are processors that use a single IC (Integrated Circuit) chip to implement the functions of the entire system, including multiple processing units, as typified by System On Chip (SoC). be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
  • SoC System On Chip
  • circuitry that is a combination of circuit elements such as semiconductor elements.
  • FIG. 11 is a diagram showing another example of the investigation work range calculated by the investigation work range calculation unit 112C. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • the information receiving unit 112B of the terminal 100 receives the outer circumferential shape information CO and map information MP of the house 150 that is the object of investigation.
  • the investigation work range calculation unit 112C calculates the investigation work range 152 and the non-investigation target range 162 based on the outer circumferential shape information CO and the map information MP.
  • the map information MP includes neighborhood information that is information on structures near the house 150. In the case shown in FIG. 11, vertex data 164A to 164D of a house 160 are included in the map information MP as neighborhood information.
  • the survey work range calculation unit 112C calculates a range where the interval between the vertex data 154A and 154C of the house 150 and the vertex data 164B and 164D of the house 160 is a predetermined distance or less as the non-survey target range 162. do.
  • the reason why the investigation work area 152 and the non-investigation target range 162 were excluded as a trail (for example, it was excluded because it is close to a neighboring residence, etc.) be associated and recorded. This allows a third party to efficiently judge the sufficiency of the investigation results.
  • FIG. 12 is a diagram showing another example of the investigation work range calculated by the investigation work range calculation unit 112C. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • the investigation work range calculation unit 112C also calculates the non-investigation target range 162.
  • the information receiving unit 112B of the terminal 100 receives the outer circumferential shape information CO and map information MP of the house 150 that is the object of investigation.
  • the investigation work range calculation unit 112C calculates the investigation work range 152 and the non-investigation target range 162 based on the outer circumferential shape information CO and the map information MP.
  • the map information MP includes topographic information that is information about the topography in the vicinity of the house 150. In the case shown in FIG. 12, the position information of the river 170 is included in the map information MP as topographic information.
  • the information receiving unit 112B of the terminal 100 acquires the peripheral shape information CO of the house 150 and at the same time acquires the map information MP around the house 150.
  • the investigation work range calculation unit 112C of the terminal 100 calculates an area where the house 150 to be investigated is adjacent to a place where it is difficult to enter and conduct an investigation at a predetermined distance or less, as an area other than the investigation target area 162.
  • the calculated survey work range 152 and survey non-target range 162 are displayed on the display unit 120 of the terminal 100 by the display control unit 112E.
  • the investigator can conduct the investigation while checking the investigation work range 152 and the non-investigation target range 162, and can avoid entering the non-investigation target range 162, so that the investigation can be conducted safely. can.
  • the reason why it is excluded as a trail (for example, it is excluded from the survey because it is adjacent to a river, etc.) may be associated and stored. This allows a third party to efficiently judge the sufficiency of the investigation results.
  • FIG. 13 is a diagram illustrating the setting of the width L of the investigation work range.
  • the width L of the investigation work range can be set relatively narrow. For example, if the object of investigation is a one-story house, the width L of the investigation work range is set to 2.5 m to 3 m.
  • the structure itself that is the object of the investigation is tall, so it is necessary to conduct the investigation from a position slightly distant from the structure. Therefore, it is necessary to set a wide range of scope of investigation work.
  • the width L of the investigation work range is set to 10 m.
  • the width of the investigation work range is set to 5 m.
  • the survey work range calculation unit 112C can set the width L of the survey work range according to the height and structure of the structure to be surveyed. . Thereby, the investigation work range calculation unit 112C can calculate an investigation work range that allows more accurate investigation.
  • FIG. 14 is a diagram illustrating a case where the width L of the investigation work range is arbitrarily set by the investigator.
  • FIG. 14 shows a user interface 182 displayed on the display unit 120 of the terminal 100. Note that the user interface 182 is displayed on the display unit 120 by the display control unit 112E by executing the application program.
  • the surveyor actually goes to the location of the house 178 and inputs the width L of the survey work range into the input area 176 for the width L of the survey work range on the user interface 182.
  • the surveyor actually goes to the location of the house 178 and inputs the width L of the survey work range, and the survey work range calculation unit 112C calculates the survey work range 180 based on the input width L of the survey work range. be able to.
  • the survey work range calculation unit 112C can set the width L of the survey work range based on input from the investigator. Thereby, the investigation work range calculation unit 112C can calculate the investigation work range in accordance with the actual investigation site.
  • the surveyed range specifying unit 112D of the terminal 100 identifies the surveyed range in the survey work range based on the location information of the terminal 100.
  • a specific example of the surveyed range specified by the surveyed range specifying unit 112D will be described below. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 15 is a diagram illustrating an example of identifying a surveyed range by the surveyed range specifying unit 112D.
  • the surveyed range specifying unit 112D identifies the survey work range 152 in which the terminal 100 stayed for a predetermined time (second threshold) or more as the surveyed range 200. If the terminal 100 stays in the investigation work range 152 for a predetermined time or longer, it can be estimated that the investigator stayed in the investigation work range and conducted the investigation. Therefore, when the terminal 100 stays in the survey work range 152 for a predetermined time or more, the surveyed range identification unit 112D identifies the range as the surveyed range 200.
  • the surveyed range specifying unit 112D determines whether the terminal 100 is staying in the survey work range 152 based on the position information of the GPS receiver 122 of the position information output unit 140 of the terminal 100 and the time information output from the timer 130. Measure the time spent. Then, when the terminal 100 stays for a predetermined time or longer, the surveyed range specifying unit 112D identifies the survey work range 152 as the surveyed range 200. For example, when the terminal 100 stays in the survey work range 152 for one minute or more, the surveyed range specifying unit 112D identifies the survey work range as the surveyed range.
  • the surveyed range specifying unit 112D identifies the surveyed range 200 when the terminal 100 stays in the survey work range 152 for a predetermined period of time or more, so it is not possible to accurately identify the surveyed range. can.
  • the surveyed range identifying unit 112D identifies the survey work range 152 in which the terminal 100 has stayed a predetermined number of times (third threshold) or more as the surveyed range 200. If the terminal 100 stays in the investigation work range 152 a predetermined number of times or more, it can be estimated that the investigator stayed in the investigation work range 152 and conducted the investigation. Therefore, when the terminal 100 stays in the survey work range 152 a predetermined number of times or more, the surveyed range identification unit 112D identifies the range as the surveyed range 200.
  • the surveyed range specifying unit 112D determines whether the terminal 100 stays in the survey work range 152 based on the position information of the GPS receiver 122 of the position information output unit 140 of the terminal 100 and the number of times information output from the counter 132. Measure the number of times. Then, when the terminal 100 has stayed a predetermined number of times or more, the surveyed range identifying unit 112D identifies the survey work range as the surveyed range. For example, if the terminal 100 has stayed in the research work range three or more times, the researched range identification unit 112D identifies the research work range as the researched range.
  • FIG. 17 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D.
  • the surveyed range specifying unit 112D investigates the survey work range corresponding to the wall. specified as the completed range 200 (see reference numeral 182).
  • FIG. 18 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D. Note that the illustrated camera 134 is provided on the front or back surface of the terminal 100.
  • the surveyed range specifying unit 112D converts the survey work range 152 corresponding to the wall into the surveyed range 200. Specify as. If the wall of the house 150 is photographed by the camera 134, it can be presumed that an investigator is conducting an investigation. Therefore, the surveyed range identification unit 112D uses information output from the GPS receiver 122, acceleration sensor 126, and gyro sensor 128 of the location information output unit 140 of the terminal 100 to direct the camera of the terminal 100 toward the wall of the house 150. When a photograph is taken with the camera facing the wall 134, the survey work range 152 corresponding to the wall is specified as the surveyed range 200.
  • the surveyed range identification unit 112D determines the survey work range 152 corresponding to the wall as the surveyed range 200. Therefore, the surveyed range 200 can be accurately specified.
  • FIGS. 19 and 20 are diagrams showing other examples of specifying the investigated range by the investigated range specifying unit 112D.
  • the surveyed range specifying unit 112D determines that for the survey work range that has been calculated redundantly based on a plurality of different wall surfaces of the house 150a that is the survey target, all the walls from which the survey work range is calculated are It is presumed that the investigation has been carried out, and the scope of the investigation is determined.
  • the investigation work range calculation unit 112C calculates the investigation work range 152 for the house 150a.
  • the investigation work range calculation unit 112C calculates an overlapping investigation work range 152a due to walls 206 and walls 208 of the house 150a.
  • FIG. 20 is a diagram illustrating the identification of the surveyed range of the duplicate survey work range 152a.
  • the surveyed range specifying unit 112D as explained with reference to FIG. , identify the surveyed range.
  • the orientation vector V of the terminal 100 points toward the wall 206 for a predetermined period of time or more. Therefore, the surveyed range specifying unit 112D specifies that the survey of the wall 206 has been completed in the duplicate survey work range 152a. However, the surveyed range specifying unit 112D has not yet completed the survey of the wall 208 in the redundant survey work range 152a, so it has not yet specified the redundant survey work range 152a as a surveyed range.
  • the orientation vector V of the terminal 100 points toward the wall 208 for a predetermined period of time or more. Therefore, the surveyed range specifying unit 112D determines that the survey of the wall 208 has been completed in the duplicate survey work range 152a.
  • the surveyed range identifying unit 112D determines that the wall 206 and the wall 208 have been surveyed, and therefore identifies the duplicate survey work range 152a as the surveyed range 200a.
  • the investigated range specifying unit 112D converts the overlap investigation work range 152a into the investigated range. 200a. Thereby, the surveyed range specifying unit 112D can accurately specify the surveyed range 200a.
  • FIG. 21 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D.
  • the surveyed range specifying unit 112D to be identified as not subject to investigation.
  • the house 150 is investigated, and when the survey of the surveyed area 200 is completed, the investigator determines the degree of damage to the house 150 as "total destruction.”
  • total destruction indicates the degree of damage that has been sustained the most in the damage recognition investigation, and is a case where no further investigation of the house 150 is necessary.
  • the investigated range specifying unit 112D identifies the remaining investigation work range as the non-investigated range 220. Thereby, the investigator does not have to continue the investigation after the damage has been determined, and can conduct a more efficient investigation.
  • the investigator when recording the investigation results in the server device 10, it is associated with the location that is outside the investigation target range 220, and records that the location has been determined to be completely destroyed and is therefore excluded from the investigation target. This allows a third party to efficiently judge the sufficiency of the investigation results.
  • the survey work range is set to surround the outer periphery of the house to be surveyed. Then, the investigator sequentially conducts the investigation along the investigation work range displayed on the display unit 120 of the terminal 100, and the investigated range identification unit 112D identifies the researched range within the investigation work range.
  • the surveyed range identifying unit 112D can accurately identify the surveyed range because the survey work range is divided into predetermined sizes. Therefore, it is preferable that the investigation work range calculation unit 112C divides the calculated investigation work range. For example, the survey work range calculation unit 112C divides the survey work range into squares with sides of 2.5 m or cubes with sides of 2.5 m.
  • one side should be within an area of several meters (for example, 2.5 m). It is preferable to separate the
  • FIG. 22 is a diagram illustrating a two-dimensional survey work range 152 into which the house 150 is divided. Note that this investigation work range 152 is also displayed on the display unit 120 of the terminal 100.
  • the investigation work range 152 is divided into squares with T on each side.
  • the terminal 100 stores and manages, on the computer-readable medium 116, the latitude and longitude coordinates of each vertex forming a square into which the survey work range 152 is divided.
  • the surveyed range specifying unit 112D identifies the surveyed range for each divided square.
  • the divided investigation work range U1 is an uninvestigated research work range 152, and is, for example, a range in which there is no stay history of the terminal 100.
  • the divided investigation work range U2 is the research work range 152 in which the investigation has progressed to an intermediate stage, and is, for example, a range in which there is a stay history (staying time) of the terminal 100 but is less than a threshold value (second threshold value).
  • the divided investigation work range U3 is a researched range in which the research has been completed, and is, for example, a range in which the stay history of the terminal 100 is equal to or greater than a threshold value (second threshold value).
  • the investigation work ranges U1 to U3 are displayed on the display unit 120 in different colors and display formats.
  • the investigation work ranges U1 to U3 are displayed in different colors such as red, light red, and white in the order of investigation work range U1, investigation work range U2, and investigation work range U3.
  • the surveyor can conduct the survey with higher accuracy.
  • the display mode in stages according to the degree of completion of the investigation, the investigator can easily check the degree of progress of the investigation.
  • FIG. 23 is a diagram illustrating a three-dimensional survey work range 152 into which the house 150 is divided. Note that this investigation work range 152 is also displayed on the display unit 120 of the terminal 100.
  • the surveyed range specifying unit 112D obtains the current position and altitude of the terminal 100 from the GPS receiver 122 and the atmospheric pressure sensor 124, for example. Then, the surveyed range specifying unit 112D searches whether the current position and altitude of the terminal 100 are included in any cube of the survey work range 152 divided into cubes. If a cube containing the location and altitude of the terminal 100 is detected, the surveyed range specifying unit 112D stores the investigator's identifier, the time of entry into the cube, the number of times of entry into the cube, as information associated with the cube. Record the total time spent in the cube. For example, in the case shown in FIG.
  • the surveyed range identification unit 112D determines the orientation of the surveyor in the horizontal plane based on the information output from the acceleration sensor 126 and the gyro sensor 128, in order to determine whether the stay inside the cube is due to survey work. (The direction of the compass) may be calculated and counted as the number of times and stay time only when facing the wall.
  • the investigator may photograph the wall of the house 150 that is the subject of investigation using the camera 134 of the terminal 100.
  • the surveyed range specifying unit 112D photographs the damage when the photographing direction of the camera 134, which is calculated from the information output from the acceleration sensor 126 and the gyro sensor 128, is facing any wall of the house 150. It is determined that the Then, a cube is searched based on the position and altitude of the terminal 100 at the time of photographing, and the photographing time and photographed image are associated with the searched cube as information indicating that the photographing action has occurred, and the data is stored in the computer-readable medium 116.
  • the survey work range 152 is divided into cubes and displayed, and the surveyed range identification unit 112D indicates the survey work range 152 divided into cubes. Identify the range of
  • FIG. 25 is a diagram showing the investigation work range inside the house 150. Note that the illustrated investigation work range is displayed on the display unit 120 of the terminal 100.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the information processing device 102 including the database 11. Note that the same reference numerals are given to the parts already described in FIG. 6, and the description thereof will be omitted.
  • the investigator When conducting an investigation, the investigator carries the information processing device 102 with him.
  • the information processing device 102 displays the survey work range and the surveyed range on the display unit 120, and the investigator can conduct the survey while checking the survey work range and the survey completed range displayed on the display unit 120.
  • the information processing device 102 includes a second processor 112, a computer readable medium 116, a communication interface 114, a camera 134, a display section 120, a position information output section 140, and a database 11.
  • the database 11 stores outer circumferential shape information CO and map information MP.
  • the information processing device 102 receives a request to read outer circumferential shape information CO associated with the house ID of the house to be investigated, based on input from the investigator. Thereafter, the information processing device 102 reads the outer circumferential shape information CO related to the house ID from the internal database 11 based on the read request. Thereafter, an investigation work range is calculated based on the read outer circumferential shape information CO. Thereby, the information processing device 102 can acquire the outer circumferential shape information CO and calculate the investigation work range even in a situation where communication via the network NW is impossible.
  • the investigation work range is calculated based on the outer circumferential shape information CO of the house to be investigated, and the calculated investigation work range is displayed. Further, based on the position information of the information processing device 102, a surveyed range within the survey work range in which the survey has been performed is specified. Thereby, by using the information processing device 102, the investigator can suppress failure to detect damage to the structure that is the object of investigation, and can conduct the investigation efficiently.
  • ⁇ Type of damage> The investigation described above (damage identification investigation) is performed by detecting various types of damage. Examples of types of damage are shown below. Note that the damage detected in the investigation performed according to the present invention is not limited to those exemplified below.
  • roof damage examples include shifting, damage, falling, unevenness, and peeling of roofing materials, and damage to roof frames.
  • Examples of damage to the exterior wall include peeling of the finishing material, lifting, cracking, shifting, falling off, and lifting of nails.
  • Examples of foundation damage include cracking, peeling, breakage, local destruction, unevenness, movement, washing away, and overturning.
  • Examples of damage to columns include breakage, chipping, splitting of upper and lower ends, displacement of column and beam joints, detachment, breakage, movement, local buckling, and elongation of anchor bolts.
  • Examples of damage to load-bearing walls include shifting of boards, floating of boards, floating of nails, broken boards, damage to edges, shifting of panels, cracks, peeling and bending of plywood, and damage to frame materials.
  • Examples of floor damage include damage to floorboards, displacement of pillars or foundations from foundations, falling off, displacement of bundles and bundled stones, falling of joists and joists, creation of gaps between walls and floors, lifting of floors, and subsidence.
  • Examples of damage to the inner wall include joint cuts, shifts, peeling, cracks, falling off, and floating.
  • Examples of damage to the ceiling include gaps, floating, unevenness, sagging, distortion, and falling of ceiling panels.
  • Examples of damage to fittings include difficulty/impossibility to open/close, deformation, breakage, broken glass, and broken stile.
  • Examples of equipment damage include damage to the main body, broken pipes, and disconnected pipes.

Abstract

Provided are a damage investigation system, an information processing device, a terminal, a damage investigation method, and a program whereby it is possible to suppress detection omissions of damage to a structure to be investigated, and efficiently perform an investigation. The damage investigation system (1) comprises: a database in which outer peripheral shape information of a structure is stored for use in investigating the structure; and a processor. The processor reads the outer peripheral shape information from the database, calculates, on the basis of the outer peripheral shape information, an investigation work range for investigating the structure, identifies, on the basis of information on a position where it is estimated that the investigation has been conducted, at least an investigation-completed range that has been investigated from among the investigation work range, and displays the investigation work range and the investigation-completed range.

Description

被害調査システム、情報処理装置、端末、被害調査方法、及びプログラムDamage investigation system, information processing device, terminal, damage investigation method, and program
 本発明は、被害調査システム、情報処理装置、端末、被害調査方法、及びプログラムに関し、特に構造物の調査を行う際に調査作業範囲及び調査済み範囲を表示する被害調査システム、情報処理装置、端末、被害調査方法、及びプログラムに関する。 The present invention relates to a damage investigation system, an information processing device, a terminal, a damage investigation method, and a program, and particularly to a damage investigation system, information processing device, and terminal that display an investigation work range and an already investigated area when investigating a structure. , damage investigation methods, and programs.
 従来、災害時の家屋の被害認定調査を行う調査員を補助する技術が提案されている。 Conventionally, technologies have been proposed to assist investigators who conduct damage assessment surveys of houses during disasters.
 例えば、特許文献1では、被災物の被害の程度を判定できる知識を持たない者でも、被災地域において被災物の被害の程度を認定するために必要な情報の収集を補助する技術が提案されている。例えば特許文献1では、被害認定調査の補助の一つとして、ユーザが保持する携帯端末装置の画面に、写真撮影に関する助言が表示されることが記載されている。調査員は、その助言に沿って写真撮影をすることにより、被害の程度を認定するために必要な情報の収集を行うことができる。 For example, Patent Document 1 proposes a technology that assists even those who do not have the knowledge to judge the extent of damage to disaster-stricken objects in a disaster-stricken area to collect information necessary to determine the extent of damage to disaster-stricken objects. There is. For example, Patent Document 1 describes that advice regarding photography is displayed on the screen of a mobile terminal device held by a user as one of the aids for damage identification investigation. By following the advice and taking photographs, the investigator can collect the information necessary to determine the extent of the damage.
特開2018-165906号公報Japanese Patent Application Publication No. 2018-165906
 ここで、上述した特許文献1に記載された技術では、被害認定調査の程度を判定すべき損傷は調査員が自力で検出する必要がある。調査員が損傷を見落としてしまうと、見落とされた損傷は被害認定の計算対象にならないため、正確な被害認定調査の結果が得られない。特に、増改築された家屋や離れを持つ家屋などは、調査員でも調査すべき範囲が分かりにくい場合が多く、調査員は、調査すべき範囲(調査作業範囲)を網羅して調査することなく調査を終えてしまう可能性がある。したがって、正確な被害認定調査の結果を得るために、調査員が調査対象に対して網羅的に調査行うことを補助することが必要とされている。 Here, in the technique described in Patent Document 1 mentioned above, it is necessary for the investigator to detect the damage on his/her own to determine the extent of the damage recognition investigation. If the surveyor overlooks damage, the overlooked damage will not be included in damage determination calculations, and accurate results of the damage determination investigation will not be obtained. In particular, in the case of houses that have been extended or renovated or have detached houses, it is often difficult for even the surveyor to understand the scope of the survey, and the surveyor does not cover the scope of the survey (investigation work scope). There is a possibility that the investigation will be completed. Therefore, in order to obtain accurate results of a damage assessment investigation, it is necessary to assist the investigator in comprehensively investigating the subject of investigation.
 ここで、被害認定調査における損傷は、調査員が適切に調査作業範囲に到達することさえできれば、調査員は目視により比較的容易に検出することが可能である。したがって、調査作業範囲を網羅的に到達するように調査員を誘導することが重要となる。 Here, damage during a damage identification investigation can be relatively easily detected by the investigator visually, as long as the investigator can reach the investigation work area appropriately. Therefore, it is important to guide investigators to comprehensively cover the scope of investigation work.
 一方で、調査対象を網羅するように調査済みの箇所の撮影画像を取得して並べることにより、調査が網羅的に行われたことを示す手法も考えられる。しかしながら、この手法では、損傷が検出されていない箇所の撮影も行う必要があり、効率的な調査の実施を行うことができない。 On the other hand, it is also possible to show that the survey has been carried out comprehensively by acquiring and arranging photographic images of surveyed locations so as to cover the survey target. However, with this method, it is necessary to also photograph areas where no damage has been detected, making it impossible to conduct an efficient investigation.
 本発明はこのような事情に鑑みてなされたもので、その目的は、調査の対象である構造物の損傷の検出漏れを抑制し、効率的に調査を行うことができる被害調査システム、情報処理装置、端末、被害調査方法、及びプログラムを提供することである。 The present invention has been made in view of these circumstances, and its purpose is to provide a damage investigation system and information processing system that can suppress the failure to detect damage to a structure that is the subject of an investigation and efficiently conduct an investigation. The aim is to provide equipment, terminals, damage investigation methods, and programs.
 上記目的を達成するための、本発明の一の態様である被害調査システムは、構造物の調査を行う、構造物の外周形状情報を記憶するデータベース及びプロセッサを備える被害調査システムであって、プロセッサは、データベースから外周形状情報を読み出し、外周形状情報に基づいて、構造物の調査の調査作業範囲を算出し、調査が行われたと推定される位置情報に基づいて、少なくとも、調査作業範囲のうち調査が行われた調査済み範囲を特定し、調査作業範囲及び調査済み範囲を表示する。 A damage investigation system that is one aspect of the present invention for achieving the above object is a damage investigation system that conducts an investigation of a structure and includes a database that stores information on the outer circumferential shape of the structure and a processor. reads the outer circumferential shape information from the database, calculates the survey work range of the structure survey based on the outer circumference shape information, and calculates at least the survey work range of the survey work range based on the position information where the survey is estimated to have been carried out. Specify the surveyed range where the survey was conducted, and display the survey work scope and the surveyed range.
 本態様によれば、構造物の外周形状情報に基づいて調査作業範囲が算出され、算出された調査作業範囲が表示される。また、調査が行われたと推定される位置情報に基づいて、調査作業範囲のうち調査作業が行われた調査済み範囲が特定される。これにより、本態様は、調査の対象である構造物の損傷の検出漏れを抑制し、効率的に調査を行うことができる。 According to this aspect, the investigation work range is calculated based on the outer circumferential shape information of the structure, and the calculated investigation work range is displayed. Further, based on the position information where the investigation is estimated to have been conducted, a surveyed range in which the survey work has been performed is specified among the survey work ranges. As a result, in this embodiment, failure to detect damage to the structure to be investigated can be suppressed, and the investigation can be conducted efficiently.
 好ましくは、被害調査システムは、構造物の調査を行う場合に調査に伴って移動する端末と、データベースを有するサーバ装置と含み、位置情報は、端末から取得される。 Preferably, the damage investigation system includes a terminal that moves with the investigation when a structure is investigated, and a server device having a database, and the location information is acquired from the terminal.
 好ましくは、プロセッサは、サーバ装置に備えられる第1のプロセッサと、端末に備えられる第2のプロセッサとで構成され、第1のプロセッサは、少なくとも、調査の対象を特定する情報を含む送信要求に応じてデータベースから外周形状情報を読み出し、第2のプロセッサは、少なくとも、調査済み範囲を特定する。 Preferably, the processor includes a first processor provided in the server device and a second processor provided in the terminal, and the first processor is configured to at least respond to a transmission request that includes information specifying an investigation target. Accordingly, the second processor reads the outer circumferential shape information from the database and identifies at least the surveyed range.
 好ましくは、第1のプロセッサは、端末から送信要求を受信し、端末に外周形状情報を送信し、第2のプロセッサは、送信要求をサーバ装置に送信し、サーバ装置から外周形状情報を受信し、外周形状情報に基づいて、調査作業範囲を算出し、調査作業範囲及び調査済み範囲を表示する。 Preferably, the first processor receives a transmission request from the terminal and transmits the peripheral shape information to the terminal, and the second processor transmits the transmission request to the server device and receives the peripheral shape information from the server device. , calculates the survey work range based on the outer circumferential shape information, and displays the survey work range and the surveyed range.
 好ましくは、サーバ装置は、データベースに構造物の周辺の他の構造物の情報である近隣情報を記憶し、第1のプロセッサは、外周形状情報を送信する場合に、近隣情報を端末に送信し、第2のプロセッサは、サーバ装置から近隣情報を受信し、外周形状情報及び近隣情報に基づいて、構造物の調査の対象外である調査作業範囲を算出し、調査作業範囲を表示する。 Preferably, the server device stores neighborhood information that is information about other structures around the structure in a database, and the first processor transmits the neighborhood information to the terminal when transmitting the outer circumferential shape information. , the second processor receives neighborhood information from the server device, calculates an investigation work range that is not subject to the structure investigation based on the outer circumferential shape information and the neighborhood information, and displays the investigation work range.
 好ましくは、サーバ装置は、データベースに構造物の周辺の地形情報を記憶し、第1のプロセッサは、外周形状情報を送信する場合に、地形情報を端末に送信し、第2のプロセッサは、サーバ装置から地形情報を受信し、外周形状情報及び地形情報に基づいて、構造物の調査の対象外である調査作業範囲を算出し、調査作業範囲を表示する。 Preferably, the server device stores topographical information around the structure in a database, the first processor transmits the topographical information to the terminal when transmitting the outer circumferential shape information, and the second processor stores the topographical information around the structure in the database, and the second processor Topographical information is received from the device, and based on the outer circumferential shape information and topographical information, an investigation work range that is not subject to structure investigation is calculated, and the survey work range is displayed.
 好ましくは、第2のプロセッサは、調査の調査結果の入力を受け付け、調査結果の入力が第1の閾値以上である場合には、調査が行われていない調査作業範囲を特定し、特定された調査作業範囲が調査の対象外であることを表示する。 Preferably, the second processor receives input of the investigation results of the investigation, and if the input of the investigation results is equal to or greater than a first threshold, the second processor identifies an investigation work area in which no investigation has been conducted, and specifies the identified investigation work area. Indicates that the scope of investigation work is not subject to investigation.
 好ましくは、第2のプロセッサは、端末の位置情報に基づいて、端末が調査作業範囲に第2の閾値以上の時間滞在した場合には、調査作業範囲を調査済み範囲として特定する。 Preferably, the second processor specifies the survey work range as a surveyed range if the terminal stays in the survey work range for a time equal to or longer than a second threshold based on the position information of the terminal.
 好ましくは、第2のプロセッサは、端末の位置情報に基づいて、端末が調査作業範囲に第3の閾値以上の回数滞在した場合には、調査作業範囲を調査済み範囲として特定する。 Preferably, the second processor identifies the survey work range as a surveyed range if the terminal has stayed in the survey work range a number of times equal to or more than a third threshold based on the terminal's location information.
 好ましくは、端末は、端末の方向を示す方向情報を取得し、第2のプロセッサは、端末の方向情報に基づいて、調査作業範囲を調査済み範囲として特定する。 Preferably, the terminal acquires direction information indicating the direction of the terminal, and the second processor specifies the survey work range as the surveyed range based on the direction information of the terminal.
 好ましくは、調査作業範囲は、調査の複数の対象を有する重複調査作業範囲を含み、第2のプロセッサは、複数の対象の全てに関して調査を行った場合に、重複調査作業範囲を調査済み範囲として特定する。 Preferably, the investigation work scope includes an overlapping investigation work scope having multiple targets of investigation, and the second processor determines the overlapping investigation work scope as a surveyed scope when the investigation is performed on all of the plurality of targets. Identify.
 好ましくは、端末はカメラを有し、第2のプロセッサは、カメラにより撮影された調査の対象に対応する調査作業範囲を、調査済み範囲として特定する。 Preferably, the terminal has a camera, and the second processor specifies the survey work range corresponding to the survey target photographed by the camera as the surveyed range.
 好ましくは、第2のプロセッサは、調査作業範囲及び調査済み範囲を2次元又は3次元で表示する。 Preferably, the second processor displays the survey work range and the surveyed range in two or three dimensions.
 好ましくは、第2のプロセッサは、調査作業範囲及び調査済み範囲を複数の立方体により3次元で表示する。 Preferably, the second processor displays the survey work range and the surveyed range in three dimensions using a plurality of cubes.
 本発明の他の態様である情報処理装置は、構造物の調査を行う場合に調査に伴って移動し、構造物の外周形状情報を記憶するデータベース及びプロセッサを備える情報処理装置であって、プロセッサは、外周形状情報をデータベースから読み出し、外周形状情報に基づいて、構造物の調査の調査作業範囲を算出し、調査が行われたと推定される位置情報に基づいて、少なくとも、調査作業範囲のうち調査が行われた調査済み範囲を特定し、調査作業範囲及び調査済み範囲を表示する。 An information processing apparatus according to another aspect of the present invention is an information processing apparatus that moves with the investigation when inspecting a structure and includes a database and a processor that stores information on the outer circumferential shape of the structure. reads the outer circumferential shape information from the database, calculates the survey work range of the structure survey based on the outer circumference shape information, and calculates at least the survey work range of the survey work range based on the position information where the survey is estimated to have been carried out. Specify the surveyed range where the survey was conducted, and display the survey work scope and the surveyed range.
 本発明の他の態様である端末は、構造物の調査を行う場合に調査に伴って移動し、構造物の外周形状情報を記憶するメモリ及びプロセッサを備える端末であって、プロセッサは、外周形状情報をメモリから読み出し、外周形状情報に基づいて、構造物の調査の調査作業範囲を算出し、端末の位置情報に基づいて、少なくとも、調査作業範囲のうち調査が行われた調査済み範囲を特定し、調査作業範囲及び調査済み範囲を表示する。 Another aspect of the present invention is a terminal that moves along with the investigation when a structure is investigated, and includes a memory and a processor that stores information on the outer circumference shape of the structure. Reads the information from the memory, calculates the survey work range for the structure survey based on the outer circumference shape information, and identifies at least the surveyed range in which the survey has been performed based on the location information of the terminal. and display the survey work scope and surveyed scope.
 好ましくは、外周形状情報を記憶するデータベースを有するサーバ装置と通信可能であり、プロセッサは、調査の対象を特定した外周形状情報の送信要求をサーバ装置に送信し、サーバ装置から外周形状情報を受信する。 Preferably, the processor is capable of communicating with a server device having a database that stores outer circumferential shape information, and the processor transmits a request to send outer circumferential shape information specifying an investigation target to the server device, and receives outer circumferential shape information from the server device. do.
 本発明の他の態様である被害調査方法は、データベースから調査対象となる構造物の外周形状情報を読み出す工程と、外周形状情報に基づいて、構造物の調査の調査作業範囲を算出する工程と、調査が行われたと推定される位置情報に基づいて、少なくとも、調査作業範囲のうち調査が行われた調査済み範囲を特定する工程と、調査作業範囲及び調査済み範囲を表示する工程と、を含む。 A damage investigation method that is another aspect of the present invention includes the steps of: reading out circumferential shape information of a structure to be investigated from a database; and calculating an investigation work range for investigating the structure based on the circumferential shape information. , at least a step of identifying a surveyed range in which a survey has been conducted among the survey work range, and a step of displaying the survey work range and the surveyed range, based on the location information where the survey is estimated to have been conducted. include.
 本発明の他の態様であるプログラムは、データベースから調査対象となる構造物の外周形状情報を読み出す工程と、外周形状情報に基づいて、構造物の調査の調査作業範囲を算出する工程と、調査が行われたと推定される位置情報に基づいて、少なくとも、調査作業範囲のうち調査が行われた調査済み範囲を特定する工程と、調査作業範囲及び調査済み範囲を表示する工程と、を実行させる。 A program that is another aspect of the present invention includes a step of reading outer circumferential shape information of a structure to be investigated from a database, a step of calculating an investigation work range for an investigation of the structure based on the outer circumferential shape information, and a step of Based on the location information where it is estimated that the survey has been carried out, at least the step of specifying the surveyed range in which the survey has been conducted among the survey work range, and the step of displaying the survey work range and the surveyed range are executed. .
 本発明によれば、構造物の外周形状情報に基づいて調査作業範囲が算出され、算出された調査作業範囲が表示され、また、調査が行われたと推定される位置情報に基づいて、調査作業範囲のうち調査作業が行われた調査済み範囲が特定されるので、調査の対象である構造物の損傷の検出漏れが抑制され、効率的に調査を行うことができる。 According to the present invention, an investigation work range is calculated based on information on the outer circumferential shape of a structure, the calculated investigation work range is displayed, and the investigation work range is calculated based on position information where the investigation is estimated to have been performed. Since the surveyed range in which the survey work has been performed is specified among the ranges, failure to detect damage to the structure that is the target of the survey is suppressed, and the survey can be conducted efficiently.
図1は、本発明の被害調査システムの構成例を示す概略図である。FIG. 1 is a schematic diagram showing a configuration example of a damage investigation system of the present invention. 図2は、サーバ装置のハードウェアの構成例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of the server device. 図3は、データベースに記憶される外周形状情報の記憶構成例を示す図である。FIG. 3 is a diagram showing an example of a storage configuration of outer circumferential shape information stored in a database. 図4は、データベースに記憶される地図情報の具体例を説明する図である。FIG. 4 is a diagram illustrating a specific example of map information stored in the database. 図5は、第1のプロセッサが実現する機能を示す機能ブロック図である。FIG. 5 is a functional block diagram showing functions realized by the first processor. 図6は、端末のハードウェア構成例を示す図である。FIG. 6 is a diagram showing an example of the hardware configuration of a terminal. 図7は、第2のプロセッサが実現する機能を示す機能ブロック図である。FIG. 7 is a functional block diagram showing functions realized by the second processor. 図8は、端末の表示部に表示される、調査を開始する際のユーザーインターフェイスの一例を示す図である。FIG. 8 is a diagram showing an example of a user interface displayed on the display section of the terminal when starting an investigation. 図9は、被害調査システムを使用した被害調査方法を示すフロー図である。FIG. 9 is a flow diagram showing a damage investigation method using the damage investigation system. 図10は、調査作業範囲の一例を示す図である。FIG. 10 is a diagram showing an example of an investigation work range. 図11は、調査作業範囲の他の例を示す図である。FIG. 11 is a diagram showing another example of the investigation work range. 図12は、調査作業範囲の他の例を示す図である。FIG. 12 is a diagram showing another example of the investigation work range. 図13は、調査作業範囲の幅Lの設定に関して、説明する図である。FIG. 13 is a diagram illustrating the setting of the width L of the investigation work range. 図14は、調査員によって、調査作業範囲の幅Lを任意に設定する場合を説明する図である。FIG. 14 is a diagram illustrating a case where the width L of the investigation work range is arbitrarily set by the investigator. 図15は、調査済み範囲特定部での調査済み範囲の特定の一例を示す図である。FIG. 15 is a diagram illustrating an example of specifying a researched range by the researched range specifying unit. 図16は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 16 is a diagram illustrating another example of specifying a researched range by the researched range specifying unit. 図17は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 17 is a diagram showing another example of specifying a researched range by the researched range specifying unit. 図18は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 18 is a diagram illustrating another example of specifying a researched range by the researched range specifying unit. 図19は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 19 is a diagram showing another example of specifying a researched range by the researched range specifying unit. 図20は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 20 is a diagram illustrating another example of specifying the investigated range by the investigated range specifying unit. 図21は、調査済み範囲特定部での調査済み範囲の特定の他の例を示す図である。FIG. 21 is a diagram illustrating another example of specifying a researched range by the researched range specifying unit. 図22は、家屋の分割された2次元の調査作業範囲を説明する図である。FIG. 22 is a diagram illustrating a two-dimensional investigation work range into which a house is divided. 図23は、家屋の分割された3次元の調査作業範囲を説明する図である。FIG. 23 is a diagram illustrating a three-dimensional investigation work range into which a house is divided. 図24は、端末が滞在した立方体に関連付けて記録される情報を示す図である。FIG. 24 is a diagram showing information recorded in association with the cube in which the terminal stayed. 図25は、家屋の内部の調査作業範囲を示す図である。FIG. 25 is a diagram showing an investigation work range inside a house. 図26は、データベースを備える情報処理装置のハードウェア構成例を示す図である。FIG. 26 is a diagram illustrating an example of a hardware configuration of an information processing device including a database.
 以下、添付図面にしたがって本発明に係る被害調査システム、情報処理装置、端末、被害調査方法、及びプログラムの好ましい実施の形態について説明する。なお、以下の説明では、本発明を住家被害認定調査に適用した場合を主に説明を行う。しかしながら、本発明は住家被害認定調査への適用に限定されるものではない。本発明は、構造物に発生する損傷に関して調査(又は点検)を行う場合に広く適用され得る。また、以下の説明では、住家被害認定調査を単に調査として記載する。 Hereinafter, preferred embodiments of the damage investigation system, information processing device, terminal, damage investigation method, and program according to the present invention will be described with reference to the accompanying drawings. In addition, in the following explanation, the case where the present invention is applied to residential damage identification investigation will be mainly explained. However, the present invention is not limited to application to residential damage determination investigations. INDUSTRIAL APPLICATION This invention can be widely applied when investigating (or inspecting) damage occurring in a structure. In addition, in the following explanation, the residential damage recognition investigation will simply be described as an investigation.
 <被害調査システム>
 本発明の一の実施形態である被害調査システムに関して説明する。
<Damage investigation system>
A damage investigation system that is one embodiment of the present invention will be described.
 図1は、本発明の被害調査システムの構成例を示す概略図である。 FIG. 1 is a schematic diagram showing a configuration example of a damage investigation system of the present invention.
 被害調査システム1は、データベース11を含むサーバ装置10と、端末100と含む。被害調査システム1は、プロセッサを備え、そのプロセッサにより各機能を実現する。例えば、被害調査システム1のプロセッサは、サーバ装置10が備える第1のプロセッサ12(図2参照)及び端末100が備える第2のプロセッサ112(図6参照)で構成される。なお、図1に示した場合では、2つの端末100を含む被害調査システム1が記載されているが、被害調査システム1は単数又は複数の端末100を含むことが可能である。 The damage investigation system 1 includes a server device 10 including a database 11 and a terminal 100. The damage investigation system 1 includes a processor, and the processor realizes each function. For example, the processor of the damage investigation system 1 includes a first processor 12 (see FIG. 2) included in the server device 10 and a second processor 112 (see FIG. 6) included in the terminal 100. In the case shown in FIG. 1, the damage investigation system 1 including two terminals 100 is described, but the damage investigation system 1 can include one or more terminals 100.
 サーバ装置10と端末100とは、インターネットなどのネットワークNWに接続しており、サーバ装置10と端末100は相互に通信が可能である。 The server device 10 and the terminal 100 are connected to a network NW such as the Internet, and the server device 10 and the terminal 100 can communicate with each other.
 災害時などに調査を行う調査員は、端末100を携帯して調査を行う。サーバ装置10は、調査を行う場所とは異なる遠隔地に設置されており、端末100の調査準備情報の送信要求に応じて、要求された調査準備情報を端末100に送信する。 Investigators conducting investigations during disasters carry the terminal 100 with them. The server device 10 is installed in a remote location different from the place where the survey is conducted, and transmits the requested survey preparation information to the terminal 100 in response to a request from the terminal 100 to transmit survey preparation information.
 端末100は表示部(例えばディスプレイ)120を備えており、調査員は、調査を行う間は常に端末100を携帯しており、端末100の表示部120に表示される調査作業範囲及び調査済み範囲などの情報を確認しながら調査を行うことができる。 The terminal 100 is equipped with a display unit (for example, a display) 120, and the investigator always carries the terminal 100 while conducting an investigation, and the survey work range and surveyed range displayed on the display unit 120 of the terminal 100 You can conduct an investigation while checking information such as.
 なお、ネットワークNWは、任意の周波数帯域が使用される無線通信を使用してもよいし、任意の有線形式の通信を使用してもよい。ネットワークNWは無線形式の通信と有線形式の通信とを組み合わせてもよく、ネットワークNWは、任意の通信規格を使用し得る。 Note that the network NW may use wireless communication using any frequency band, or may use any wired type of communication. The network NW may combine wireless and wired forms of communication, and the network NW may use any communication standard.
 <サーバ装置>
 次に、被害調査システム1に含まれるサーバ装置10に関して説明する。
<Server device>
Next, the server device 10 included in the damage investigation system 1 will be explained.
 サーバ装置10は、調査を行う上での管理サーバとして機能する。サーバ装置10は、調査対象の家屋の外周形状情報CO(家屋の頂点を緯度経度で示す頂点データ)を、家屋ID(Identification:識別子)と関連付けて記憶しているデータベース11を有する。サーバ装置10は、家屋IDに基づいて家屋IDに対応する家屋の外周形状情報COを、ネットワークNWを介して端末100に提供する。また、サーバ装置10は、調査員が行った調査結果を端末100から受信し、データベース11に記憶させていてもよい。 The server device 10 functions as a management server for conducting investigations. The server device 10 has a database 11 that stores circumferential shape information CO (vertex data indicating the apex of the house in latitude and longitude) of the house to be investigated in association with a house ID (identification). Based on the house ID, the server device 10 provides the outer circumferential shape information CO of the house corresponding to the house ID to the terminal 100 via the network NW. Further, the server device 10 may receive the results of the investigation conducted by the investigator from the terminal 100 and store them in the database 11.
 図2は、サーバ装置10のハードウェアの構成例を示す図である。 FIG. 2 is a diagram showing an example of the hardware configuration of the server device 10.
 サーバ装置10は、データベース11、第1のプロセッサ12、通信インターフェイス14、コンピュータ可読媒体16を備える。 The server device 10 includes a database 11, a first processor 12, a communication interface 14, and a computer readable medium 16.
 データベース11は、補助記憶装置に記憶されている。データベース11は外周形状情報CO及び地図情報MPを含むデータを記憶する。外周形状情報COは、調査対象である家屋の外周形状を示す頂点データで構成されており、頂点データはその頂点の位置を示す経度及び緯度の座標で表される。地図情報MPは、近隣情報及び地形情報を含む。近隣情報は、調査対象である家屋の周辺の家屋の外周形状情報COである。また、地形情報は、調査対象である家屋の周辺の地形に関する情報であり、家屋の周辺の山、川、崖、海、湖など調査員が立ち入ることができない場所の位置情報が含まれる。 The database 11 is stored in an auxiliary storage device. The database 11 stores data including outer circumferential shape information CO and map information MP. The outer circumferential shape information CO is composed of vertex data indicating the outer circumferential shape of the house to be investigated, and the vertex data is expressed by longitude and latitude coordinates indicating the position of the vertex. Map information MP includes neighborhood information and topographical information. The neighborhood information is information CO on the outer periphery of houses surrounding the house to be investigated. Furthermore, the topographical information is information regarding the topography around the house that is the object of investigation, and includes positional information of places around the house that are inaccessible to investigators, such as mountains, rivers, cliffs, oceans, and lakes.
 図3は、データベース11に記憶される外周形状情報COの記憶構成例を示す図である。 FIG. 3 is a diagram showing an example of the storage configuration of the outer circumferential shape information CO stored in the database 11.
 家屋には、各家屋を識別する識別符号としての家屋IDが付与される。そしてデータベース11には、家屋IDと外周形状情報COである家屋の頂点データとが関連付けて記憶されている。頂点データは家屋の頂点の経度及び緯度の座標で構成される。なお、図3に示した例では、家屋ID「○○××△△」及び「△△△△△△」の外周形状情報COが示されており、他の家屋IDの情報に関しては省略している。 A house ID is given to each house as an identification code for identifying each house. The database 11 stores the house ID and the apex data of the house, which is the outer circumferential shape information CO, in association with each other. The vertex data consists of longitude and latitude coordinates of the vertex of the house. In the example shown in FIG. 3, the outer circumferential shape information CO of the house IDs "○○××△△" and "△△△△△△" is shown, and information on other house IDs is omitted. ing.
 例えば、家屋ID「○○××△△」の外周形状情報COである頂点データは、第1頂点~第4頂点で構成されており、第1頂点~第4頂点は経度及び緯度の座標で表される。また、家屋ID「△△△△△△」の外周形状情報COである頂点データは、第1頂点~第4頂点で構成されており、第1頂点~第4頂点は経度及び緯度の座標で表される。なお、上述した例では、外周形状情報COとして家屋の外周形状を4つの頂点で表した場合について説明したが、外周形状情報COは4つの頂点には限定されなく、家屋の外周形状を表すことができる複数の頂点で構成され得る。 For example, the vertex data that is the outer circumferential shape information CO of the house ID "○○ expressed. In addition, the vertex data that is the outer circumference shape information CO of the house ID "△△△△△△" is composed of the first to fourth vertices, and the first to fourth vertices are the longitude and latitude coordinates. expressed. In addition, in the above example, a case was explained in which the outer circumferential shape of the house is represented by four vertices as the outer circumferential shape information CO, but the outer circumferential shape information CO is not limited to four vertices, and may represent the outer circumferential shape of the house. It can be made up of multiple vertices.
 図4は、データベース11に記憶される地図情報MPの具体例を説明する図である。 FIG. 4 is a diagram illustrating a specific example of map information MP stored in the database 11.
 図4に示される地図情報MPは、近隣情報であり、調査対象である家屋の周辺の他の構造物の外周形状情報COを有する。図3で説明を行った、家屋ID「○○××△△」は符号18で示される4つの頂点データであり、家屋ID「△△△△△△」は符号20で示される4つの頂点データである。このように地図情報MPの近隣情報は、所定の地域の家屋群の外周形状情報COで構成される。なお、このような外周形状情報CO(頂点データ)を含む地図情報MPは、日本国の場合、例えば、国土地理院が提供する基盤地図情報より取得することが可能である。あるいはまた、このような地図情報MPは、オープンストリートマップ(OpenStreetMap)のデータベースから取得することも可能である。 The map information MP shown in FIG. 4 is neighborhood information, and has outer circumferential shape information CO of other structures around the house to be investigated. The house ID “○○××△△” explained in FIG. It is data. In this way, the neighborhood information of the map information MP is composed of the outer circumferential shape information CO of a group of houses in a predetermined area. Note that in the case of Japan, map information MP including such outer circumferential shape information CO (vertex data) can be obtained from basic map information provided by the Geospatial Information Authority of Japan, for example. Alternatively, such map information MP can also be obtained from the OpenStreetMap database.
 図2に戻って、第1のプロセッサ12は、CPU(Central Processing Unit)で構成される。また、第1のプロセッサ12は、GPU(Graphics Processing Unit)を含んで構成されてもよい。第1のプロセッサ12は、バス13を介してコンピュータ可読媒体16、通信インターフェイス14と接続される。第1のプロセッサ12は、コンピュータ可読媒体16に記憶されている専用のプログラムを実行することにより、様々な機能を実現することができる。 Returning to FIG. 2, the first processor 12 is composed of a CPU (Central Processing Unit). Further, the first processor 12 may include a GPU (Graphics Processing Unit). The first processor 12 is connected via a bus 13 to a computer readable medium 16 and a communication interface 14 . The first processor 12 can implement various functions by executing a dedicated program stored in the computer readable medium 16.
 図5は、第1のプロセッサ12が実現する機能を示す機能ブロック図である。 FIG. 5 is a functional block diagram showing the functions realized by the first processor 12.
 第1のプロセッサ12は、情報要求受信部12A及び情報送信部12Bを構成する。 The first processor 12 constitutes an information request receiving section 12A and an information transmitting section 12B.
 情報要求受信部12Aは、端末100から調査準備情報の送信要求を受信する。ここで調査準備情報とは、調査対象の家屋の調査の為の情報であり、例えば調査対象の家屋の外周形状情報CO、または調査対象の家屋の外周形状情報COから算出され調査作業範囲である。したがって、調査準備情報の送信要求には、調査の対象である家屋を特定する家屋IDが含まれ、その家屋IDに対応する外周形状情報COまたは調査作業範囲が、送信要求に応じて送信される。具体的には、先ず調査員は、調査対象である家屋IDを端末100に入力する。そして、端末100は、例えば入力された家屋IDを含む調査準備情報の送信要求をサーバ装置10に送信する。サーバ装置10は、端末100から調査準備情報の送信要求を受信する。 The information request receiving unit 12A receives a request to send investigation preparation information from the terminal 100. Here, the survey preparation information is information for the survey of the house to be surveyed, for example, the outer circumferential shape information CO of the house to be investigated, or the survey work range calculated from the outer circumferential shape information CO of the house to be investigated. . Therefore, the request to send survey preparation information includes a house ID that identifies the house that is the target of the survey, and the outer circumferential shape information CO or survey work range corresponding to the house ID is transmitted in response to the request. . Specifically, first, the investigator inputs the ID of the house to be investigated into the terminal 100. Then, the terminal 100 transmits, for example, a request for transmission of survey preparation information including the input house ID to the server device 10. The server device 10 receives a request to send investigation preparation information from the terminal 100.
 情報送信部12Bは、調査準備情報の送信要求に応じて、端末100に調査準備情報を送信する。例えば、情報送信部12Bは、受信した調査準備情報の送信要求に含まれる家屋IDに対応する外周形状情報COをデータベース11から読み出し、読み出した外周形状情報COを、送信要求を送付した端末100に送信する。なお、情報送信部12Bは、データベース11に地図情報MPが記憶されている場合には、送信する外周形状情報COに対応する地図情報MPも合わせて送信する。 The information transmitting unit 12B transmits survey preparation information to the terminal 100 in response to the survey preparation information transmission request. For example, the information transmitter 12B reads the outer circumference shape information CO corresponding to the house ID included in the received survey preparation information transmission request from the database 11, and sends the read outer circumference shape information CO to the terminal 100 that sent the transmission request. Send. Note that, when the map information MP is stored in the database 11, the information transmitting unit 12B also transmits the map information MP corresponding to the outer circumferential shape information CO to be transmitted.
 図2に戻って、コンピュータ可読媒体16は、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体16は、例えば、半導体メモリ、ハードディスク(HDD:Hard Disk Drive)装置、若しくはソリッドステートドライブ(SSD:Solid State Drive)装置又はこれらの複数の組み合わせであってよい。コンピュータ可読媒体16には、画像処理プログラム及び表示制御プログラムを含む各種のプログラム及びデータ等が記憶される。 Returning to FIG. 2, the computer-readable medium 16 includes a memory that is a main storage device and a storage that is an auxiliary storage device. The computer readable medium 16 may be, for example, a semiconductor memory, a hard disk drive (HDD) device, a solid state drive (SSD) device, or a combination of these. The computer readable medium 16 stores various programs and data including an image processing program and a display control program.
 通信インターフェイス14は、端末100との無線又は有線通信を行う通信部である。 The communication interface 14 is a communication unit that performs wireless or wired communication with the terminal 100.
 以上で説明したように、サーバ装置10は、管理サーバとして機能し、調査対象である家屋の外周形状情報COや地図情報MPを、ネットワークNWを介して端末100に提供する。 As explained above, the server device 10 functions as a management server, and provides the outer circumferential shape information CO and map information MP of the house to be investigated to the terminal 100 via the network NW.
 <端末>
 次に、被害調査システム1に含まれる端末100に関して説明する。
<Terminal>
Next, the terminal 100 included in the damage investigation system 1 will be explained.
 端末100は、調査員が調査時に携帯しながら調査を行う。調査員は、端末100の表示部120(図6)に表示される調査作業範囲及び調査済み範囲を確認しながら調査を行う。したがって、調査員は、表示部120に表示された調査作業範囲及び調査済み範囲に誘導されて調査を行うことができる。端末100には、調査支援アプリケーションプログラムがインストールされており、調査支援アプリケーションプログラムを実行することにより各種の処理が行われる。また端末100は、端末自体の位置及び姿勢の情報を出力し、出力された位置及び姿勢の情報に基づいて調査作業範囲のうちの調査済み範囲が特定される。 The terminal 100 is carried by the investigator during the investigation. The investigator conducts the investigation while checking the investigation work range and the researched range displayed on the display unit 120 (FIG. 6) of the terminal 100. Therefore, the investigator can conduct the investigation while being guided by the investigation work range and the researched range displayed on the display unit 120. A research support application program is installed on the terminal 100, and various processes are performed by executing the research support application program. The terminal 100 also outputs information on the position and orientation of the terminal itself, and the surveyed range of the survey work range is specified based on the output position and orientation information.
 図6は、端末100のハードウェア構成例を示す図である。 FIG. 6 is a diagram showing an example of the hardware configuration of the terminal 100.
 端末100は、第2のプロセッサ112、コンピュータ可読媒体(メモリ)116、通信インターフェイス114、カメラ134、表示部120、及び位置情報出力部140を備える。 The terminal 100 includes a second processor 112, a computer readable medium (memory) 116, a communication interface 114, a camera 134, a display section 120, and a position information output section 140.
 第2のプロセッサ112は、CPU(Central Processing Unit)で構成される。また、第2のプロセッサ112は、GPU(Graphics Processing Unit)を含んで構成されてもよい。第2のプロセッサ112は、バス113を介してコンピュータ可読媒体116、通信インターフェイス114、カメラ134、表示部120、及び位置情報出力部140に接続される。第2のプロセッサ112は、コンピュータ可読媒体116に記憶されている専用のプログラム(調査支援アプリケーションプログラム)を実行することにより、様々な機能を実現することができる。 The second processor 112 is composed of a CPU (Central Processing Unit). Further, the second processor 112 may include a GPU (Graphics Processing Unit). The second processor 112 is connected to a computer readable medium 116 , a communication interface 114 , a camera 134 , a display 120 , and a location information output 140 via a bus 113 . The second processor 112 can implement various functions by executing a dedicated program (research support application program) stored in the computer-readable medium 116.
 図7は、第2のプロセッサ112が実現する機能を示す機能ブロック図である。 FIG. 7 is a functional block diagram showing the functions realized by the second processor 112.
 第2のプロセッサ112は、情報要求送信部112A、情報受信部112B、調査作業範囲算出部112C、調査済み範囲特定部112D、及び表示制御部112Eを有する。 The second processor 112 includes an information request transmitting section 112A, an information receiving section 112B, an investigation work range calculation section 112C, an investigated range identification section 112D, and a display control section 112E.
 情報要求送信部112Aは、調査準備情報の送信要求をサーバ装置10に送信する。具体的には、調査員は、調査を開始する際に端末100の入力部により調査対象である家屋IDを入力する。なお、端末100では、表示部120はタッチパネルで構成されており入力部としても機能する。情報要求送信部112Aは、入力された家屋IDに対応する調査準備情報の送信要求を、通信インターフェイス114を介して送信する。 The information request transmitter 112A transmits a request to transmit investigation preparation information to the server device 10. Specifically, when starting the survey, the surveyor inputs the ID of the house to be surveyed using the input unit of the terminal 100. Note that in the terminal 100, the display section 120 is configured with a touch panel and also functions as an input section. The information request transmitter 112A transmits a request to transmit survey preparation information corresponding to the input house ID via the communication interface 114.
 図8は、端末100の表示部120に表示される、調査を開始する際のユーザーインターフェイスの一例を示す図である。 FIG. 8 is a diagram showing an example of a user interface displayed on the display unit 120 of the terminal 100 when starting an investigation.
 端末100は、調査支援アプリケーションプログラムを実行し、表示制御部112Eにより、図8に示すようなユーザーインターフェイス121が表示部120に表示される。 The terminal 100 executes the research support application program, and the display control unit 112E displays a user interface 121 as shown in FIG. 8 on the display unit 120.
 ユーザーインターフェイス121には、調査を担当する班(符号121Aを参照)が示されている。また、ユーザーインターフェイス121には、調査実施日(符号121Bを参照)が示されている。また、ユーザーインターフェイス121には、調査を実施する調査員が示されている(符号121Cを参照)。また、ユーザーインターフェイス121には、調査を行う家屋の地図表示(符号121Dを参照)が行われている。また、ユーザーインターフェイス121は、調査家屋リスト(符号121Fを参照)を有する。調査家屋リストは、各家屋の構造、建物種別、住所などの詳細情報が示されている。また、調査家屋リストは、家屋毎に調査開始ボタンSを有する。調査員は、家屋の調査を行う場合には、対応する家屋の調査開始ボタンSをタップし、調査対象の家屋の家屋IDを入力する。これにより、端末100は、調査対象である家屋の家屋IDを取得し、情報要求送信部112Aはその家屋IDに対応する調査準備情報の送信要求をサーバ装置10に送信する。 The user interface 121 shows the team in charge of the investigation (see reference numeral 121A). Further, the user interface 121 shows the survey implementation date (see reference numeral 121B). The user interface 121 also shows an investigator who conducts the investigation (see reference numeral 121C). Further, the user interface 121 displays a map of the house to be investigated (see reference numeral 121D). The user interface 121 also includes a list of surveyed houses (see reference numeral 121F). The surveyed house list shows detailed information such as the structure, building type, and address of each house. Further, the survey house list has a survey start button S for each house. When investigating a house, the investigator taps the investigation start button S of the corresponding house and inputs the house ID of the house to be investigated. Thereby, the terminal 100 acquires the house ID of the house to be surveyed, and the information request transmitting unit 112A transmits a request for transmitting survey preparation information corresponding to the house ID to the server device 10.
 このように本例では、端末100の表示部120にユーザーインターフェイス121を表示させて、調査対象である家屋を選択して家屋IDを受け付ける。これにより、調査員は、正確且つ容易に家屋IDを端末100に入力することができ、調査対象である家屋の調査準備情報を確実に取得することができる。 As described above, in this example, the user interface 121 is displayed on the display unit 120 of the terminal 100, a house to be investigated is selected, and the house ID is accepted. Thereby, the investigator can accurately and easily input the house ID into the terminal 100, and can reliably acquire the investigation preparation information of the house to be investigated.
 図7に戻って、情報受信部112Bは、サーバ装置10から調査準備情報を受信する。具体的には、情報受信部112Bは、通信インターフェイス114を介して、サーバ装置10が送信した外周形状情報CO、又は外周形状情報CO及び地図情報MPを受信する。なお、情報受信部112Bが受信する外周形状情報COは、調査員が指定した調査対象の家屋の家屋IDに対応する外周形状情報COである。 Returning to FIG. 7, the information receiving unit 112B receives survey preparation information from the server device 10. Specifically, the information receiving unit 112B receives the outer circumferential shape information CO or the outer circumferential shape information CO and the map information MP transmitted by the server device 10 via the communication interface 114. The outer circumferential shape information CO received by the information receiving unit 112B is the outer circumferential shape information CO corresponding to the house ID of the house to be investigated specified by the investigator.
 調査作業範囲算出部112Cは、情報受信部112Bが受信した外周形状情報COに基づいて、調査対象である家屋の調査の調査作業範囲を算出する。調査作業範囲算出部112Cは、外周形状情報COに含まれる外周形状の頂点データから、調査すべき範囲を計算する。具体的には、調査作業範囲算出部112Cは、隣接する頂点を結んで構成される辺(家屋の壁に相当)に沿って、調査作業範囲を算出する。 The survey work range calculation unit 112C calculates the survey work range for the survey of the house to be surveyed, based on the outer circumferential shape information CO received by the information receiving unit 112B. The investigation work range calculation unit 112C calculates the range to be investigated from the apex data of the outer circumference shape included in the outer circumference shape information CO. Specifically, the survey work range calculation unit 112C calculates the survey work range along a side (corresponding to a wall of a house) formed by connecting adjacent vertices.
 調査済み範囲特定部112Dは、調査が行われたと推定される位置情報に基づいて、調査作業範囲のうち調査が行われた調査済み範囲を特定する。具体的には、調査済み範囲特定部112Dは、端末100の位置情報出力部140から出力される情報に基づいて、調査作業範囲のうち調査済み範囲の特定を行う。端末100が調査作業範囲に位置する場合には、端末100を携帯している調査員も調査作業範囲に位置することとなり、調査員が調査作業範囲に位置する場合には調査員はその位置で調査を行っていると推定することができる。したがって、調査済み範囲特定部112Dは、端末100の位置情報に基づいて、調査済み範囲を特定することができる。 The surveyed range specifying unit 112D identifies the surveyed range in which the survey has been conducted within the survey work range based on the location information where the survey is estimated to have been conducted. Specifically, the surveyed range identifying unit 112D identifies the surveyed range of the survey work range based on information output from the location information output unit 140 of the terminal 100. When the terminal 100 is located within the investigation work range, the investigator carrying the terminal 100 is also located within the investigation work range, and when the investigator is located within the investigation work range, the investigator is at that position. It can be assumed that an investigation is being conducted. Therefore, the surveyed range identification unit 112D can identify the surveyed range based on the location information of the terminal 100.
 表示制御部112Eは、調査を行う上で調査員が必要とする様々な情報を表示することができる。例えば、表示制御部112Eは、調査作業範囲及び調査済み範囲を表示する。このように、調査員が携帯する端末100の表示部120に調査作業範囲及び調査済み範囲を表示することにより、調査員は、調査対象である家屋の調査作業範囲を、網羅的に調査を行うことができる。 The display control unit 112E can display various information needed by the investigator in conducting the investigation. For example, the display control unit 112E displays the survey work range and the surveyed range. In this way, by displaying the survey work range and the surveyed range on the display unit 120 of the terminal 100 carried by the surveyor, the surveyor can comprehensively survey the survey work range of the house to be surveyed. be able to.
 図6に戻って、コンピュータ可読媒体116は、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体116は、例えば、半導体メモリ、ハードディスク(HDD:Hard Disk Drive)装置、若しくはソリッドステートドライブ(SSD:Solid State Drive)装置又はこれらの複数の組み合わせであってよい。 Returning to FIG. 6, the computer-readable medium 116 includes a memory that is a main storage device and a storage that is an auxiliary storage device. Computer-readable medium 116 may be, for example, a semiconductor memory, a hard disk drive (HDD) device, a solid state drive (SSD) device, or a combination of these.
 通信インターフェイス114は、無線通信又は有線通信を行う通信部である。 The communication interface 114 is a communication unit that performs wireless communication or wired communication.
 カメラ134は、調査員の操作により被写体の撮影画像を取得する。例えば、カメラ134は、調査対象である家屋の外壁や損傷などの撮影画像を取得する。 The camera 134 acquires a photographed image of the subject through the operation of the investigator. For example, the camera 134 captures images of the exterior walls and damage of the house being investigated.
 表示部120は、ディスプレイで構成され、端末100が有する情報を表示する。例えば、表示部120は、調査作業範囲算出部112Cで算出された調査作業範囲を表示制御部112Eの制御により表示する。また、表示部120は、調査済み範囲特定部112Dで特定された調査済み範囲を表示制御部112Eの制御により表示する。また、表示部120はタッチパネルを備え、入力部としても機能する。 The display unit 120 is composed of a display and displays information possessed by the terminal 100. For example, the display section 120 displays the investigation work range calculated by the investigation work range calculation section 112C under the control of the display control section 112E. Further, the display unit 120 displays the surveyed range specified by the surveyed range specifying unit 112D under the control of the display control unit 112E. Further, the display section 120 includes a touch panel and also functions as an input section.
 位置情報出力部140は、端末100の位置及び姿勢に関する情報を出力する。位置情報出力部140は、GPS(Global Positioning System)受信機122、気圧センサ124、加速度センサ126、ジャイロセンサ128、タイマ130、及びカウンタ132を備える。 The position information output unit 140 outputs information regarding the position and orientation of the terminal 100. The position information output unit 140 includes a GPS (Global Positioning System) receiver 122, an atmospheric pressure sensor 124, an acceleration sensor 126, a gyro sensor 128, a timer 130, and a counter 132.
 GPS受信機122は、端末100の経度及び緯度を含む位置情報を取得する。端末100はGPS受信機122により取得する位置情報に基づいて、端末100の位置を取得することができる。気圧センサ124は、端末100における気圧を検出する。端末100は、気圧センサ124を用いて検出した気圧に基づき、端末100の高度を取得することができる。 The GPS receiver 122 acquires location information including the longitude and latitude of the terminal 100. The terminal 100 can acquire the position of the terminal 100 based on the position information acquired by the GPS receiver 122. Atmospheric pressure sensor 124 detects the atmospheric pressure at terminal 100 . The terminal 100 can obtain the altitude of the terminal 100 based on the atmospheric pressure detected using the atmospheric pressure sensor 124.
 加速度センサ126は、端末100の傾き、平行移動、速度、変位を検出することできる。ジャイロセンサ128は、ロール軸についての回転角度を表すロール角、ピッチ軸についての回転角度を表すピッチ角及びヨー軸についての回転角度を表すヨー角を検出する。端末100は、加速度センサ126及びジャイロセンサ128を用いて端末100の姿勢情報を取得する。 The acceleration sensor 126 can detect the tilt, parallel movement, speed, and displacement of the terminal 100. The gyro sensor 128 detects a roll angle representing a rotation angle about the roll axis, a pitch angle representing a rotation angle about the pitch axis, and a yaw angle representing a rotation angle about the yaw axis. The terminal 100 uses the acceleration sensor 126 and the gyro sensor 128 to obtain attitude information of the terminal 100.
 タイマ130は、所定の時間を計測することできる。例えばタイマ130は、端末100の調査作業範囲の滞在時間を計測する。 The timer 130 can measure a predetermined time. For example, the timer 130 measures the time the terminal 100 stays in the survey work range.
 カウンタ132は、端末100の所定の動作などの回数をカウントすることができる。例えばカウンタ132は、端末100が調査作業範囲に入った回数をカウントする。 The counter 132 can count the number of times the terminal 100 performs a predetermined operation. For example, the counter 132 counts the number of times the terminal 100 enters the investigation work range.
 なお、図6に示した場合では、位置情報出力部140は、GPS受信機122、気圧センサ124、加速度センサ126、ジャイロセンサ128、タイマ130、及びカウンタ132を備える例について説明したが、これに限定されるものではない。後で説明するように、調査作業範囲において調査員が調査したことを特定することができる情報を取得することができれば特に限定されない。また、図6に示した場合では、カメラ134を備える端末100に関して説明をしたが、これに限定されるものではない。調査において特に撮影を必要としない場合には、カメラ134を備えない端末100を用いることも可能である。 In the case shown in FIG. 6, an example has been described in which the position information output unit 140 includes the GPS receiver 122, the atmospheric pressure sensor 124, the acceleration sensor 126, the gyro sensor 128, the timer 130, and the counter 132. It is not limited. As will be explained later, there is no particular limitation as long as information that allows the investigator to specify what has been investigated within the scope of the investigation work can be obtained. Further, in the case shown in FIG. 6, the terminal 100 including the camera 134 has been described, but the present invention is not limited to this. If photographing is not particularly required during the investigation, it is also possible to use the terminal 100 without the camera 134.
 <被害調査方法>
 次に、被害調査システム1を使用した被害調査方法に関して説明する。なお、被害調査方法は、被害調査システムのプロセッサがプログラムを実行することにより行われ、具体的には、被害調査システム1に含まれるサーバ装置10の第1のプロセッサ12及び端末100の第2のプロセッサ112が専用のプログラムを実行することにより行われる。
<Damage investigation method>
Next, a damage investigation method using the damage investigation system 1 will be explained. The damage investigation method is performed by the processor of the damage investigation system executing a program, and specifically, the first processor 12 of the server device 10 and the second processor of the terminal 100 included in the damage investigation system 1. This is done by the processor 112 executing a dedicated program.
 図9は、被害調査システム1を使用した被害調査方法を示すフロー図である。 FIG. 9 is a flow diagram showing a damage investigation method using the damage investigation system 1.
 先ず、調査員は調査対象である家屋を特定し、家屋IDを端末100に入力する(ステップS10)。その後、端末100の情報要求送信部112Aは、入力された家屋IDを含む調査準備情報の送信要求をサーバ装置10に送信する(ステップS11:第2の送信工程)。 First, the investigator identifies the house to be investigated and inputs the house ID into the terminal 100 (step S10). Thereafter, the information request transmitter 112A of the terminal 100 transmits a request to transmit survey preparation information including the input house ID to the server device 10 (step S11: second transmitting step).
 サーバ装置10は、通信インターフェイス14を介して情報要求受信部12Aにより送信されてきた調査準備情報の送信要求を受信する(ステップS12:第1の受信工程)。その後、サーバ装置10は、情報送信部12Bにより、データベース11から調査準備情報の送信要求に対応する外周形状情報COを読み出し、通信インターフェイス14を介して、端末100に送信する(ステップS13:第1の送信工程)。なお、この場合にデータベース11に地図情報MPが記憶されている場合には、地図情報MPも合わせて端末100に送信してもよい。 The server device 10 receives the request to send survey preparation information sent by the information request receiving unit 12A via the communication interface 14 (step S12: first receiving step). After that, the server device 10 uses the information transmitting unit 12B to read the outer circumferential shape information CO corresponding to the request for transmitting survey preparation information from the database 11, and transmits it to the terminal 100 via the communication interface 14 (step S13: the first transmission process). In this case, if the map information MP is stored in the database 11, the map information MP may also be transmitted to the terminal 100.
 端末100は、サーバ装置10から送信されてきた外周形状情報COを、通信インターフェイス114を介して、情報受信部112Bにより受信する(ステップS14:第2の受信工程)。その後、端末100は、調査作業範囲算出部112Cにより、取得した外周形状情報COに基づいて調査作業範囲を算出する(ステップS15:算出工程)。調査員は端末100を携帯し、表示部120に表示された調査作業範囲を参照しながら調査を行う。調査員が調査を行っている際に端末100は、位置情報出力部140から位置情報を取得する。端末100は、位置情報出力部140で出力される端末100の位置情報に基づいて、調査済み範囲特定部112Dにより、調査作業範囲のうち調査が行われた調査済み範囲を特定する(ステップS16:特定工程)。その後、端末100は、表示制御部112Eにより、表示部120に調査作業範囲及び調査済み範囲を表示する(ステップS17:表示工程)。調査員は、端末100の表示部120に表示された調査作業範囲及び調査済み範囲を参照しながら、調査作業範囲を網羅して調査を行う。その後、調査員は端末100の入力部を介して調査結果(例えば被害認定結果)を入力し、端末100は調査結果を受け付ける(ステップS18)。そして、端末100は、受け付けた調査結果、調査作業範囲、及び調査済み範囲を、通信インターフェイス114を介してサーバ装置10に送信する(ステップS19)。 The terminal 100 receives the outer circumferential shape information CO transmitted from the server device 10 by the information receiving unit 112B via the communication interface 114 (step S14: second receiving step). Thereafter, the terminal 100 uses the investigation work range calculation unit 112C to calculate the investigation work range based on the acquired outer circumferential shape information CO (step S15: calculation step). The investigator carries the terminal 100 and conducts the investigation while referring to the investigation work range displayed on the display unit 120. When an investigator is conducting an investigation, the terminal 100 acquires location information from the location information output unit 140. Based on the location information of the terminal 100 outputted by the location information output unit 140, the terminal 100 uses the investigated range identification unit 112D to identify the investigated range in which the investigation has been performed within the investigation work range (step S16: specific process). Thereafter, the terminal 100 displays the survey work range and the surveyed range on the display unit 120 by the display control unit 112E (step S17: display step). The investigator conducts the investigation covering the investigation work range while referring to the investigation work range and the researched range displayed on the display unit 120 of the terminal 100. Thereafter, the investigator inputs the investigation results (for example, damage identification results) via the input section of the terminal 100, and the terminal 100 receives the investigation results (step S18). Then, the terminal 100 transmits the received survey results, survey work range, and surveyed range to the server device 10 via the communication interface 114 (step S19).
 サーバ装置10は、通信インターフェイス14を介して、調査結果、調査作業範囲、及び調査済み範囲を受け付け、この調査結果、調査作業範囲、及び調査済み範囲を調査対象となった家屋IDと関連付けてデータベース11に記録する(ステップS20)。 The server device 10 receives the survey results, the survey work range, and the surveyed range via the communication interface 14, and stores the survey results, survey work range, and survey completed range in a database by associating them with the ID of the house to be surveyed. 11 (step S20).
 以上で説明したように、上述した被害調査システム1では、調査対象である家屋の外周形状情報COに基づいて調査作業範囲が算出され、算出された調査作業範囲が表示される。また、端末100の位置情報に基づいて、調査作業範囲のうち調査が行われた調査済み範囲が特定される。これにより、被害調査システム1を利用することにより調査員は、調査の対象である構造物の損傷の検出漏れを抑制し、効率的に調査を行うことができる。 As explained above, in the damage investigation system 1 described above, the investigation work range is calculated based on the outer circumferential shape information CO of the house to be investigated, and the calculated investigation work range is displayed. Further, based on the position information of the terminal 100, a surveyed range in which the survey has been performed is specified within the survey work range. As a result, by using the damage investigation system 1, the investigator can suppress failure to detect damage to the structure to be investigated and conduct the investigation efficiently.
 また、被害調査システム1では、調査員が行った調査結果が調査作業範囲及び調査済み範囲と共に、データベース11に記録される。したがって、調査結果と調査作業範囲及び調査済み範囲とが関連付けて記録されるため、第三者が調査結果の十分性を効率的に判断することができる。 Furthermore, in the damage investigation system 1, the investigation results conducted by the investigator are recorded in the database 11 along with the investigation work range and the investigation completed range. Therefore, since the investigation results, the investigation work scope, and the investigation completed range are recorded in association with each other, a third party can efficiently judge the sufficiency of the investigation results.
 なお、上述した説明では、ステップS10からステップS20の工程を一連の工程として説明を行ったが、本発明の適用はこれに限定されない。例えば、図9中に示したOPTの工程(ステップS11からステップS14の工程)を予め(例えば、被災した地域に行く前)に行い、調査を行う地域に到着したらサーバ装置10と通信することなく調査を開始できるようにしても良い。なお、この場合には、端末100はコンピュータ可読媒体(メモリ)116に、一旦、外周形状情報CO及び地図情報MPを記憶させておく。 Note that in the above description, the steps from step S10 to step S20 are described as a series of steps, but the application of the present invention is not limited to this. For example, the OPT process (steps S11 to S14) shown in FIG. It may be possible to start an investigation. In this case, the terminal 100 temporarily stores the outer circumferential shape information CO and the map information MP in the computer readable medium (memory) 116.
 また、上述した説明では、端末100から送信される調査準備情報の送信要求(ステップS11)に対して、サーバ装置10は、外周形状情報COを送信する(ステップS13)態様に関して説明したが、本発明の適用はこれに限定されない。例えば、端末100から送信される調査準備情報の送信要求に対して、サーバ装置10は、調査作業範囲を送信してもよい。この場合、サーバ装置10では、調査準備情報の送信要求に対応する外周形状情報COをデータベース11から読み出し、その外周形状情報COに基づいて調査作業範囲を算出し、算出した調査作業範囲を端末100に送信してもよい。 Furthermore, in the above description, the server device 10 transmits the outer circumferential shape information CO (step S13) in response to the request for transmission of survey preparation information transmitted from the terminal 100 (step S11). Application of the invention is not limited to this. For example, in response to a request to send investigation preparation information sent from the terminal 100, the server device 10 may send the investigation work range. In this case, the server device 10 reads the outer circumferential shape information CO corresponding to the request for transmission of investigation preparation information from the database 11, calculates the investigation work range based on the outer circumference shape information CO, and transfers the calculated investigation work range to the terminal 100. You may also send it to
 上記実施形態において、各種の処理を実行する処理部(第1のプロセッサ12及び第2のプロセッサ112)(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。 In the above embodiment, the hardware structure of the processing unit (the first processor 12 and the second processor 112) that executes various processes includes the following various processors. be. Various types of processors include CPUs (Central Processing Units) and FPGAs (Field Programmable Gate Arrays), which are general-purpose processors that execute software (programs) and function as various processing units.The circuit configuration can be changed after manufacturing. This includes programmable logic devices (PLDs), which are processors, and dedicated electric circuits, which are processors with circuit configurations specifically designed to execute specific processes, such as ASICs (Application Specific Integrated Circuits). It will be done.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, multiple FPGAs, or a combination of a CPU and FPGA). It's okay. Further, the plurality of processing units may be configured with one processor. As an example of configuring multiple processing units with one processor, first, one processor is configured with a combination of one or more CPUs and software, as typified by computers such as clients and servers. There is a form in which a processor functions as multiple processing units. Second, there are processors that use a single IC (Integrated Circuit) chip to implement the functions of the entire system, including multiple processing units, as typified by System On Chip (SoC). be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware structure of these various processors is, more specifically, an electric circuit (circuitry) that is a combination of circuit elements such as semiconductor elements.
 上述の各構成及び機能は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。例えば、上述の処理ステップ(処理手順)をコンピュータに実行させるプログラム、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体(非一時的記録媒体)、或いはそのようなプログラムをインストール可能なコンピュータに対しても本発明を適用することが可能である。 Each of the configurations and functions described above can be realized as appropriate using any hardware, software, or a combination of both. For example, a program that causes a computer to execute the above-mentioned processing steps (processing procedures), a computer-readable recording medium (non-temporary recording medium) that records such a program, or a computer that can install such a program. It is possible to apply the present invention to any case.
 <調査作業範囲の算出>
 次に、端末100の調査作業範囲算出部112Cにより算出される調査作業範囲について詳しく説明を行う。
<Calculation of investigation work scope>
Next, the investigation work range calculated by the investigation work range calculation unit 112C of the terminal 100 will be explained in detail.
 調査作業範囲算出部112Cは、外周形状情報COに含まれる頂点データから、調査すべき範囲を算出する。調査作業範囲算出部112Cは、頂点データにおける隣接する頂点を結んで構成される辺(家屋の壁に相当)から、所定の幅L(図10参照)を有する、調査作業範囲を算出する。以下に、調査作業範囲算出部112Cで算出される調査作業範囲の例について説明する。また、以下で説明する調査作業範囲算出部112Cで算出された調査作業範囲は、表示制御部112Eにより端末100の表示部120に表示される。 The investigation work range calculation unit 112C calculates the range to be investigated from the vertex data included in the outer circumferential shape information CO. The investigation work range calculation unit 112C calculates an investigation work range having a predetermined width L (see FIG. 10) from sides (corresponding to walls of a house) formed by connecting adjacent vertices in the vertex data. An example of the investigation work range calculated by the investigation work range calculation unit 112C will be described below. Further, the investigation work range calculated by the investigation work range calculation unit 112C, which will be described below, is displayed on the display unit 120 of the terminal 100 by the display control unit 112E.
 図10は、調査作業範囲算出部112Cが算出した調査作業範囲の一例を示す図である。 FIG. 10 is a diagram showing an example of the investigation work range calculated by the investigation work range calculation unit 112C.
 図10には、家屋150の調査作業範囲152が示されている。家屋150の外周形状情報COに含まれる頂点データは、頂点データ154A、頂点データ154B、頂点データ154C、頂点データ154Dである。なお、頂点データ154A~154Dは、四角形の家屋の4頂点の経度及び緯度の座標で構成される。調査作業範囲算出部112Cは、頂点データ154A~154Dのうち隣接する頂点を結んで構成される辺から幅Lを有する調査作業範囲152を算出する。家屋150の調査を行う場合には、調査員は、この調査作業範囲152に入って調査を行うことにより、家屋150の調査を網羅的に行うことができ、家屋150の損傷の検出漏れを抑制された調査の実施を行うことができる。 FIG. 10 shows an investigation work area 152 of a house 150. The vertex data included in the outer circumferential shape information CO of the house 150 is vertex data 154A, vertex data 154B, vertex data 154C, and vertex data 154D. Note that the vertex data 154A to 154D are composed of longitude and latitude coordinates of four vertices of a rectangular house. The investigation work range calculation unit 112C calculates an investigation work range 152 having a width L from sides formed by connecting adjacent vertices among the vertex data 154A to 154D. When investigating the house 150, the inspector enters the investigation work area 152 and conducts the investigation, thereby being able to comprehensively investigate the house 150 and suppressing failure to detect damage to the house 150. A survey can be carried out.
 図11は、調査作業範囲算出部112Cが算出した調査作業範囲の他の例を示す図である。なお、図10で既に説明を行った箇所は同じ符号を付し説明は省略する。 FIG. 11 is a diagram showing another example of the investigation work range calculated by the investigation work range calculation unit 112C. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
 本例では、家屋150が隣の家屋160と隣接している場合の調査作業範囲の算出に関して説明する。このように、調査対象である家屋150が他の構造物と隣接している場合には、調査作業範囲算出部112Cは、調査対象外範囲162をも算出する。 In this example, calculation of the survey work range when the house 150 is adjacent to the neighboring house 160 will be explained. In this way, when the house 150 to be investigated is adjacent to another structure, the investigation work range calculation unit 112C also calculates the non-investigation target range 162.
 端末100の情報受信部112Bは、調査対象である家屋150の外周形状情報CO及び地図情報MPを受信する。調査作業範囲算出部112Cは、外周形状情報CO及び地図情報MPに基づき、調査作業範囲152及び調査対象外範囲162を算出する。ここで、地図情報MPには、家屋150の近隣の構造物の情報である近隣情報が含まれている。図11に示す場合には、家屋160の頂点データ164A~164Dが近隣情報として地図情報MPに含まれている。そして、調査作業範囲算出部112Cは、家屋150の頂点データ154A及び頂点データ154Cと、家屋160の頂点データ164B及び164Dとの間隔が所定の距離以下である範囲を、調査対象外範囲162として算出する。 The information receiving unit 112B of the terminal 100 receives the outer circumferential shape information CO and map information MP of the house 150 that is the object of investigation. The investigation work range calculation unit 112C calculates the investigation work range 152 and the non-investigation target range 162 based on the outer circumferential shape information CO and the map information MP. Here, the map information MP includes neighborhood information that is information on structures near the house 150. In the case shown in FIG. 11, vertex data 164A to 164D of a house 160 are included in the map information MP as neighborhood information. Then, the survey work range calculation unit 112C calculates a range where the interval between the vertex data 154A and 154C of the house 150 and the vertex data 164B and 164D of the house 160 is a predetermined distance or less as the non-survey target range 162. do.
 このように、端末100の情報受信部112Bは、家屋150の外周形状情報COを取得するのと同時に、家屋150の周辺の地図情報MPも取得する。そして端末100の調査作業範囲算出部112Cは、調査対象となる家屋150と近隣の構造物との間隔が所定の距離以下で隣接している範囲を、調査対象外範囲162として算出する。そして、算出された調査作業範囲152及び調査対象外範囲162は、表示制御部112Eにより、端末100の表示部120に表示される。これにより、調査員は、調査作業範囲152及び調査対象外範囲162を確認しながら調査を行うことができ、調査対象外範囲162に立ち入ることを避けることができるので、安全に調査を行うことができる。 In this way, the information receiving unit 112B of the terminal 100 acquires the peripheral shape information CO of the house 150 and at the same time acquires the map information MP around the house 150. Then, the investigation work range calculation unit 112C of the terminal 100 calculates, as the non-investigation target range 162, a range where the house 150 to be investigated and neighboring structures are adjacent to each other at a predetermined distance or less. Then, the calculated survey work range 152 and survey non-target range 162 are displayed on the display unit 120 of the terminal 100 by the display control unit 112E. As a result, the investigator can conduct the investigation while checking the investigation work range 152 and the non-investigation target range 162, and can avoid entering the non-investigation target range 162, so that the investigation can be conducted safely. can.
 なお、調査結果と共に、調査作業範囲152及び調査対象外範囲162をデータベース11に記録する場合には、証跡として対象外となった理由(例えば、近隣住宅と近接する為に対象外とする等)を関連付けて記録する。これにより、第三者が調査結果の十分性を効率的に判断することができる。 In addition, when recording the investigation work range 152 and the non-investigation target range 162 in the database 11 along with the investigation results, the reason why the investigation work area 152 and the non-investigation target range 162 were excluded as a trail (for example, it was excluded because it is close to a neighboring residence, etc.) be associated and recorded. This allows a third party to efficiently judge the sufficiency of the investigation results.
 図12は、調査作業範囲算出部112Cが算出した調査作業範囲の他の例を示す図である。なお、図10で既に説明を行った箇所は同じ符号を付し説明は省略する。 FIG. 12 is a diagram showing another example of the investigation work range calculated by the investigation work range calculation unit 112C. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
 本例では、家屋150が川170と隣接している場合の調査作業範囲の算出に関して説明する。このように、調査対象である家屋150が地形的に立ち入って調査することが困難な場所に隣接している場合には、調査作業範囲算出部112Cは、調査対象外範囲162も算出する。 In this example, calculation of the survey work range when the house 150 is adjacent to the river 170 will be explained. In this way, when the house 150 to be investigated is adjacent to a place that is topographically difficult to enter and investigate, the investigation work range calculation unit 112C also calculates the non-investigation target range 162.
 端末100の情報受信部112Bは、調査対象である家屋150の外周形状情報CO及び地図情報MPを受信する。調査作業範囲算出部112Cは、外周形状情報CO及び地図情報MPに基づき、調査作業範囲152及び調査対象外範囲162を算出する。ここで、地図情報MPには、家屋150の近隣の地形の情報である地形情報が含まれている。図12に示す場合には、川170の位置情報が地形情報として地図情報MPに含まれている。そして、調査作業範囲算出部112Cは、家屋150の頂点データ154A及び頂点データ154Cと川170との間隔が所定の距離以下である範囲を、調査対象外範囲162と算出する。 The information receiving unit 112B of the terminal 100 receives the outer circumferential shape information CO and map information MP of the house 150 that is the object of investigation. The investigation work range calculation unit 112C calculates the investigation work range 152 and the non-investigation target range 162 based on the outer circumferential shape information CO and the map information MP. Here, the map information MP includes topographic information that is information about the topography in the vicinity of the house 150. In the case shown in FIG. 12, the position information of the river 170 is included in the map information MP as topographic information. Then, the survey work range calculation unit 112C calculates a range where the interval between the vertex data 154A and the vertex data 154C of the house 150 and the river 170 is a predetermined distance or less as the non-survey target range 162.
 このように、端末100の情報受信部112Bは、家屋150の外周形状情報COを取得するのと同時に、家屋150の周辺の地図情報MPも取得する。そして端末100の調査作業範囲算出部112Cは、調査対象となる家屋150と立ち入って調査を行うことが困難な箇所との間隔が所定の距離以下で隣接している範囲を、調査対象外範囲162として算出する。そして、算出された調査作業範囲152及び調査対象外範囲162は、表示制御部112Eにより、端末100の表示部120に表示される。これにより、調査員は、調査作業範囲152及び調査対象外範囲162を確認しながら調査を行うことができ、調査対象外範囲162に立ち入ることを避けることができるので、安全に調査を行うことができる。 In this way, the information receiving unit 112B of the terminal 100 acquires the peripheral shape information CO of the house 150 and at the same time acquires the map information MP around the house 150. Then, the investigation work range calculation unit 112C of the terminal 100 calculates an area where the house 150 to be investigated is adjacent to a place where it is difficult to enter and conduct an investigation at a predetermined distance or less, as an area other than the investigation target area 162. Calculated as Then, the calculated survey work range 152 and survey non-target range 162 are displayed on the display unit 120 of the terminal 100 by the display control unit 112E. As a result, the investigator can conduct the investigation while checking the investigation work range 152 and the non-investigation target range 162, and can avoid entering the non-investigation target range 162, so that the investigation can be conducted safely. can.
 なお、調査対象外範囲162を表示する場合には、証跡として対象外となった理由(たとえば、川と隣接している為調査対象外とする等)を関連付けて記憶させてもよい。これにより、第三者が調査結果の十分性を効率的に判断することができる。 Note that when displaying the survey excluded range 162, the reason why it is excluded as a trail (for example, it is excluded from the survey because it is adjacent to a river, etc.) may be associated and stored. This allows a third party to efficiently judge the sufficiency of the investigation results.
 次に、調査作業範囲を算出する場合の幅Lの設定に関して説明する。 Next, the setting of the width L when calculating the investigation work range will be explained.
 調査作業範囲算出部112Cは、調査作業範囲の算出する場合に、調査作業範囲算出部112Cは、構造物(隣接する頂点を結んだ線:家屋の外壁に対応)から所定の幅を持たせて調査作業範囲を設定する。 When calculating the survey work range, the survey work range calculation unit 112C calculates a predetermined width from the structure (line connecting adjacent vertices: corresponds to the outer wall of the house). Establish the scope of investigation work.
 上述した例(図10、図11、図12)では、家屋150から幅L離れた範囲で調査作業範囲152が算出される例について説明した。調査作業範囲算出部112Cは、様々な幅Lの調査作業範囲を算出することができる。 In the example described above (FIGS. 10, 11, and 12), the investigation work range 152 is calculated in a range separated by the width L from the house 150. The investigation work range calculation unit 112C can calculate investigation work ranges with various widths L.
 図13は、調査作業範囲の幅Lの設定に関して、説明する図である。 FIG. 13 is a diagram illustrating the setting of the width L of the investigation work range.
 符号171では、調査対象の構造物が平屋タイプの家屋に関して、調査作業範囲を算出する場合に設定される幅に関して説明する図である。 Reference numeral 171 is a diagram illustrating the width that is set when calculating the survey work range for a one-story house whose structure is to be surveyed.
 平屋タイプの家屋の場合には、調査対象である家屋自体の高さがそれほど高くない。したがって、調査作業範囲の幅Lは、比較的狭く設定することが可能である。例えば、調査対象が平屋タイプの家屋の場合には、調査作業範囲の幅Lは2.5m~3mと設定する。 In the case of a one-story type house, the height of the house itself that is the subject of the survey is not very high. Therefore, the width L of the investigation work range can be set relatively narrow. For example, if the object of investigation is a one-story house, the width L of the investigation work range is set to 2.5 m to 3 m.
 符号172では、調査対象の構造物が高階建築(例えばビル)に関して、調査作業範囲を算出する場合に設定される幅Lに関して説明する図である。 Reference numeral 172 is a diagram illustrating the width L that is set when calculating the survey work range when the structure to be surveyed is a high-story building (for example, a building).
 高階建築の場合には、調査対象である構造物自体の高さがあり、構造物から少し離れた位置から調査を行う必要がある。したがって、調査作業範囲の幅の範囲を広く設定する必要がある。例えば、調査対象が高階建築である場合には、調査作業範囲の幅Lは10mと設定する。 In the case of a high-story building, the structure itself that is the object of the investigation is tall, so it is necessary to conduct the investigation from a position slightly distant from the structure. Therefore, it is necessary to set a wide range of scope of investigation work. For example, when the object of investigation is a high-story building, the width L of the investigation work range is set to 10 m.
 符号173では、ラーメン構造の構造物に関して、調査作業範囲を算出する場合に設定される幅に関して説明する図である。 Reference numeral 173 is a diagram illustrating the width that is set when calculating the survey work range for a rigid frame structure.
 ラーメン構造の構造物の場合には、1階部分の外観調査作業が無く、2階以上部分の外観の調査を行う必要がある。したがって、調査作業範囲の幅を広く設定する必要がある。例えば、調査対象がラーメン構造の構造物の場合には、調査作業範囲の幅は5mと設定する。 In the case of a rigid frame structure, there is no need to inspect the appearance of the first floor, but it is necessary to investigate the appearance of the second and higher floors. Therefore, it is necessary to set a wide scope of research work. For example, if the object of investigation is a rigid frame structure, the width of the investigation work range is set to 5 m.
 以上で説明したように、調査作業範囲算出部112Cは調査作業範囲を算出する場合には、調査対象である構造物の高さや構造に応じて、調査作業範囲の幅Lを設定することができる。これにより、調査作業範囲算出部112Cは、より正確な調査を行うことができる調査作業範囲を算出することができる。 As explained above, when calculating the survey work range, the survey work range calculation unit 112C can set the width L of the survey work range according to the height and structure of the structure to be surveyed. . Thereby, the investigation work range calculation unit 112C can calculate an investigation work range that allows more accurate investigation.
 図14は、調査員によって、調査作業範囲の幅Lを任意に設定する場合を説明する図である。 FIG. 14 is a diagram illustrating a case where the width L of the investigation work range is arbitrarily set by the investigator.
 調査員が、実際に調査現場に行き、現地の状況を確認した後に調査作業範囲の幅Lを設定する場合など、調査員が調査作業範囲の幅を任意に設定することがある。 There are cases where the investigator sets the width of the investigation work range arbitrarily, such as when the investigator actually goes to the investigation site and sets the width L of the investigation work range after confirming the on-site situation.
 図14では、端末100の表示部120に表示されるユーザーインターフェイス182を示す。なお、ユーザーインターフェイス182は、アプリケーションプログラムを実行することにより表示制御部112Eにより表示部120に表示される。 FIG. 14 shows a user interface 182 displayed on the display unit 120 of the terminal 100. Note that the user interface 182 is displayed on the display unit 120 by the display control unit 112E by executing the application program.
 調査員は、実際に家屋178の場所に行きユーザーインターフェイス182の調査作業範囲の幅Lの入力箇所176に、調査作業範囲の幅Lの入力を行う。調査員が実際に家屋178の場所に行き、調査作業範囲の幅Lを入力し、調査作業範囲算出部112Cは、入力された調査作業範囲の幅Lに基づいて、調査作業範囲180を算出することができる。 The surveyor actually goes to the location of the house 178 and inputs the width L of the survey work range into the input area 176 for the width L of the survey work range on the user interface 182. The surveyor actually goes to the location of the house 178 and inputs the width L of the survey work range, and the survey work range calculation unit 112C calculates the survey work range 180 based on the input width L of the survey work range. be able to.
 以上で説明したように、調査作業範囲算出部112Cは調査作業範囲を算出する場合には、調査員の入力に基づいて調査作業範囲の幅Lを設定することができる。これにより、調査作業範囲算出部112Cは、実際の調査現場に沿った調査作業範囲の算出を行うことができる。 As explained above, when calculating the survey work range, the survey work range calculation unit 112C can set the width L of the survey work range based on input from the investigator. Thereby, the investigation work range calculation unit 112C can calculate the investigation work range in accordance with the actual investigation site.
 <調査済み範囲の特定>
 次に、調査済み範囲特定部112Dで行われる調査済み範囲の特定に関して説明する。
<Identification of surveyed range>
Next, the identification of the researched range performed by the researched range identification unit 112D will be described.
 端末100の調査済み範囲特定部112Dは、端末100の位置情報に基づいて、調査作業範囲における調査済み範囲を特定する。以下に、調査済み範囲特定部112Dで特定される調査済み範囲の具体例に関して説明する。なお、図10で既に説明を行った箇所は同じ符号を付し説明は省略する。 The surveyed range specifying unit 112D of the terminal 100 identifies the surveyed range in the survey work range based on the location information of the terminal 100. A specific example of the surveyed range specified by the surveyed range specifying unit 112D will be described below. Note that the parts already described in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted.
 図15は、調査済み範囲特定部112Dでの調査済み範囲の特定の一例を示す図である。 FIG. 15 is a diagram illustrating an example of identifying a surveyed range by the surveyed range specifying unit 112D.
 本例の場合には、調査済み範囲特定部112Dは、所定時間(第2の閾値)以上の時間で端末100が滞在した調査作業範囲152を調査済み範囲200として特定する。端末100が所定時間以上調査作業範囲152に滞在した場合には、調査員が調査作業範囲に滞在して調査を行ったと推定することができる。したがって、調査済み範囲特定部112Dは、端末100が所定時間以上調査作業範囲152に滞在した場合には、その範囲を調査済み範囲200として特定する。具体的には、調査済み範囲特定部112Dは、端末100の位置情報出力部140のGPS受信機122の位置情報及びタイマ130から出力される時間情報により、調査作業範囲152に端末100が滞在している時間を計測する。そして、調査済み範囲特定部112Dは、端末100が所定の時間以上滞在した場合には、その調査作業範囲152を調査済み範囲200として特定する。例えば、調査済み範囲特定部112Dは、端末100が調査作業範囲152に1分以上滞在した場合には、その調査作業範囲を調査済み範囲として特定する。 In the case of this example, the surveyed range specifying unit 112D identifies the survey work range 152 in which the terminal 100 stayed for a predetermined time (second threshold) or more as the surveyed range 200. If the terminal 100 stays in the investigation work range 152 for a predetermined time or longer, it can be estimated that the investigator stayed in the investigation work range and conducted the investigation. Therefore, when the terminal 100 stays in the survey work range 152 for a predetermined time or more, the surveyed range identification unit 112D identifies the range as the surveyed range 200. Specifically, the surveyed range specifying unit 112D determines whether the terminal 100 is staying in the survey work range 152 based on the position information of the GPS receiver 122 of the position information output unit 140 of the terminal 100 and the time information output from the timer 130. Measure the time spent. Then, when the terminal 100 stays for a predetermined time or longer, the surveyed range specifying unit 112D identifies the survey work range 152 as the surveyed range 200. For example, when the terminal 100 stays in the survey work range 152 for one minute or more, the surveyed range specifying unit 112D identifies the survey work range as the surveyed range.
 このように、調査済み範囲特定部112Dは、端末100が調査作業範囲152に所定の時間以上滞在したことにより、調査済み範囲200の特定を行うので、正確な調査済み範囲の特定を行うことができる。 In this way, the surveyed range specifying unit 112D identifies the surveyed range 200 when the terminal 100 stays in the survey work range 152 for a predetermined period of time or more, so it is not possible to accurately identify the surveyed range. can.
 図16は、調査済み範囲特定部112Dでの調査済み範囲の特定の他の例を示す図である。 FIG. 16 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D.
 本例の場合には、調査済み範囲特定部112Dは、所定回数(第3の閾値)以上で端末100が滞在した調査作業範囲152を調査済み範囲200として特定する。端末100が所定回数以上、調査作業範囲152に滞在した場合には、調査員が調査作業範囲152に滞在して調査を行ったと推定することができる。したがって、調査済み範囲特定部112Dは、端末100が調査作業範囲152に所定回数以上滞在した場合には、その範囲を調査済み範囲200として特定する。具体的には、調査済み範囲特定部112Dは、端末100の位置情報出力部140のGPS受信機122の位置情報及びカウンタ132から出力される回数情報により、調査作業範囲152に端末100が滞在している回数を計測する。そして、調査済み範囲特定部112Dは、端末100が所定の回数以上滞在した場合には、その調査作業範囲を調査済み範囲として特定する。例えば、調査済み範囲特定部112Dは、端末100が調査作業範囲に3回以上滞在した場合には、その調査作業範囲を調査済み範囲として特定する。 In the case of this example, the surveyed range identifying unit 112D identifies the survey work range 152 in which the terminal 100 has stayed a predetermined number of times (third threshold) or more as the surveyed range 200. If the terminal 100 stays in the investigation work range 152 a predetermined number of times or more, it can be estimated that the investigator stayed in the investigation work range 152 and conducted the investigation. Therefore, when the terminal 100 stays in the survey work range 152 a predetermined number of times or more, the surveyed range identification unit 112D identifies the range as the surveyed range 200. Specifically, the surveyed range specifying unit 112D determines whether the terminal 100 stays in the survey work range 152 based on the position information of the GPS receiver 122 of the position information output unit 140 of the terminal 100 and the number of times information output from the counter 132. Measure the number of times. Then, when the terminal 100 has stayed a predetermined number of times or more, the surveyed range identifying unit 112D identifies the survey work range as the surveyed range. For example, if the terminal 100 has stayed in the research work range three or more times, the researched range identification unit 112D identifies the research work range as the researched range.
 このように、調査済み範囲特定部112Dは、端末100が調査作業範囲152に所定の回数以上滞在したことにより、調査済み範囲200の特定を行うので、正確な調査済み範囲の特定を行うことができる。 In this way, the surveyed range specifying unit 112D identifies the surveyed range 200 when the terminal 100 has stayed in the survey work range 152 a predetermined number of times or more, so it is not possible to accurately identify the surveyed range. can.
 図17は、調査済み範囲特定部112Dでの調査済み範囲の特定の他の例を示す図である。 FIG. 17 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D.
 本例の場合には、調査済み範囲特定部112Dは、端末100の向きが調査対象である家屋150の壁の方向を所定時間以上向いている場合に、その壁に対応する調査作業範囲を調査済み範囲200として特定する(符号182を参照)。 In the case of this example, when the terminal 100 faces the wall of the house 150 to be investigated for a predetermined period of time or more, the surveyed range specifying unit 112D investigates the survey work range corresponding to the wall. specified as the completed range 200 (see reference numeral 182).
 調査済み範囲特定部112Dは、端末100の位置情報出力部140における加速度センサ126及びジャイロセンサ128により、端末100の向きベクトル(方向情報)Vを取得する。調査員は調査時は端末100を携帯して調査を行っている為に、端末100の向きベクトルVと調査員INSの向きは等しいと推定することができ、端末100の向きベクトル(方向情報)Vが家屋150の壁の方向を所定時間以上向いている場合には、その壁に対応する調査作業範囲152を調査済み範囲200とする。具体的には、調査済み範囲特定部112Dは、符号184で示すように、端末100の向きベクトルVが家屋150の壁の辺に交差している状態の場合が所定時間以上継続した場合に、調査済み範囲を特定する。 The surveyed range specifying unit 112D obtains the orientation vector (direction information) V of the terminal 100 using the acceleration sensor 126 and the gyro sensor 128 in the position information output unit 140 of the terminal 100. Since the investigator carries the terminal 100 with him during the investigation, it can be estimated that the orientation vector V of the terminal 100 and the orientation of the investigator INS are equal, and the orientation vector of the terminal 100 (direction information) If V faces the wall of the house 150 for a predetermined period of time or more, the survey work range 152 corresponding to the wall is set as the surveyed range 200. Specifically, as indicated by reference numeral 184, if the direction vector V of the terminal 100 continues to intersect with the side of the wall of the house 150 for a predetermined period of time or more, the surveyed range specifying unit 112D determines whether Identify the surveyed area.
 このように、調査済み範囲特定部112Dは、端末100が家屋150の壁の方向を所定の時間以上向いていることにより、調査済み範囲の特定を行うので、正確な調査済み範囲200の特定を行うことができる。 In this way, the surveyed range specifying unit 112D identifies the surveyed range when the terminal 100 faces the wall of the house 150 for a predetermined period of time or more, so it is possible to accurately identify the surveyed range 200. It can be carried out.
 図18は、調査済み範囲特定部112Dでの調査済み範囲の特定の他の例を示す図である。なお、図示されるカメラ134は端末100の表面又は背面に設けられている。 FIG. 18 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D. Note that the illustrated camera 134 is provided on the front or back surface of the terminal 100.
 本例の場合には、調査済み範囲特定部112Dは、カメラ134を家屋150の壁の方向へ向けて撮影が行われた場合に、その壁に対応する調査作業範囲152を調査行為済み範囲200として特定する。カメラ134により家屋150の壁が撮影された場合には、調査員が調査を行っていると推定することができる。したがって、調査済み範囲特定部112Dは、端末100の位置情報出力部140のGPS受信機122、加速度センサ126、及びジャイロセンサ128から出力される情報により、家屋150の壁の方向に端末100のカメラ134を向けて写真撮影が行われた場合には、その壁に対応する調査作業範囲152を調査済み範囲200として特定する。 In the case of this example, when the camera 134 is directed toward the wall of the house 150 and a photograph is taken, the surveyed range specifying unit 112D converts the survey work range 152 corresponding to the wall into the surveyed range 200. Specify as. If the wall of the house 150 is photographed by the camera 134, it can be presumed that an investigator is conducting an investigation. Therefore, the surveyed range identification unit 112D uses information output from the GPS receiver 122, acceleration sensor 126, and gyro sensor 128 of the location information output unit 140 of the terminal 100 to direct the camera of the terminal 100 toward the wall of the house 150. When a photograph is taken with the camera facing the wall 134, the survey work range 152 corresponding to the wall is specified as the surveyed range 200.
 このように、調査済み範囲特定部112Dは、調査対象である家屋150の壁が、端末100のカメラ134により撮影された場合には、その壁に対応する調査作業範囲152を調査済み範囲200として特定するので、正確な調査済み範囲200の特定を行うことができる。 In this way, when the wall of the house 150 to be investigated is photographed by the camera 134 of the terminal 100, the surveyed range identification unit 112D determines the survey work range 152 corresponding to the wall as the surveyed range 200. Therefore, the surveyed range 200 can be accurately specified.
 図19及び図20は、調査済み範囲特定部112Dでの調査済み範囲の特定の他の例を示す図である。 FIGS. 19 and 20 are diagrams showing other examples of specifying the investigated range by the investigated range specifying unit 112D.
 本例の場合には、調査済み範囲特定部112Dは、調査対象である家屋150aの複数の異なる壁面により重複して算出された調査作業範囲については、調査作業範囲を算出する元の全ての壁に対し調査行為を行ったと推定して、調査行為済み範囲を特定する。 In the case of this example, the surveyed range specifying unit 112D determines that for the survey work range that has been calculated redundantly based on a plurality of different wall surfaces of the house 150a that is the survey target, all the walls from which the survey work range is calculated are It is presumed that the investigation has been carried out, and the scope of the investigation is determined.
 図19に示す場合には、調査作業範囲算出部112Cは、家屋150aに対して調査作業範囲152を算出する。調査作業範囲算出部112Cは、家屋150aの壁206及び壁208による重複調査作業範囲152aを算出する。 In the case shown in FIG. 19, the investigation work range calculation unit 112C calculates the investigation work range 152 for the house 150a. The investigation work range calculation unit 112C calculates an overlapping investigation work range 152a due to walls 206 and walls 208 of the house 150a.
 図20は、重複調査作業範囲152aの調査済み範囲の特定に関して説明する図である。なお、以下で説明する場合では、調査済み範囲特定部112Dは、図17で説明を行ったように、端末100の向きベクトルVが調査対象の家屋の壁に所定の時間以上向いている場合に、調査済み範囲を特定する。 FIG. 20 is a diagram illustrating the identification of the surveyed range of the duplicate survey work range 152a. In addition, in the case described below, the surveyed range specifying unit 112D, as explained with reference to FIG. , identify the surveyed range.
 符号210で示された場合では、端末100の向きベクトルVは、壁206の方向を所定の時間以上向いている。したがって、調査済み範囲特定部112Dは、重複調査作業範囲152aにおいて壁206の調査は完了したと特定する。しかしながら、調査済み範囲特定部112Dは、未だ重複調査作業範囲152aにおいて壁208の調査が完了していないので、重複調査作業範囲152aを調査済み範囲としては未だ特定していない。 In the case indicated by reference numeral 210, the orientation vector V of the terminal 100 points toward the wall 206 for a predetermined period of time or more. Therefore, the surveyed range specifying unit 112D specifies that the survey of the wall 206 has been completed in the duplicate survey work range 152a. However, the surveyed range specifying unit 112D has not yet completed the survey of the wall 208 in the redundant survey work range 152a, so it has not yet specified the redundant survey work range 152a as a surveyed range.
 符号212で示された場合では、端末100の向きベクトルVは、壁208の方向を所定の時間以上向いている。したがって、調査済み範囲特定部112Dは、重複調査作業範囲152aにおいて壁208の調査は完了したと特定する。 In the case indicated by reference numeral 212, the orientation vector V of the terminal 100 points toward the wall 208 for a predetermined period of time or more. Therefore, the surveyed range specifying unit 112D determines that the survey of the wall 208 has been completed in the duplicate survey work range 152a.
 符号214で示された場合では、調査済み範囲特定部112Dは、壁206及び壁208に関して調査が行われたと判定したので、重複調査作業範囲152aを調査済み範囲200aとして特定する。 In the case indicated by reference numeral 214, the surveyed range identifying unit 112D determines that the wall 206 and the wall 208 have been surveyed, and therefore identifies the duplicate survey work range 152a as the surveyed range 200a.
 このように、調査済み範囲特定部112Dは、重複調査作業範囲152aに関しては、重複調査作業範囲152aが算出された調査対象の全てに関して調査が完了した場合に、重複調査作業範囲152aを調査済み範囲200aとして特定する。これにより、調査済み範囲特定部112Dは、正確に調査済み範囲200aの特定を行うことができる。 In this way, regarding the duplicate investigation work range 152a, when the investigation is completed for all of the investigation targets for which the duplicate investigation work range 152a has been calculated, the investigated range specifying unit 112D converts the overlap investigation work range 152a into the investigated range. 200a. Thereby, the surveyed range specifying unit 112D can accurately specify the surveyed range 200a.
 図21は、調査済み範囲特定部112Dでの調査済み範囲の特定の他の例を示す図である。 FIG. 21 is a diagram showing another example of specifying the investigated range by the investigated range specifying unit 112D.
 本例の場合には、調査員が調査作業範囲を全て調査する前に、調査対象の家屋の被害程度が「全壊」と確定した場合に、調査済み範囲特定部112Dは、残りの調査作業範囲を調査対象外として特定する。 In this example, if the degree of damage to the house to be investigated is determined to be "completely destroyed" before the surveyor has investigated the entire survey work range, the surveyed range specifying unit 112D to be identified as not subject to investigation.
 符号216で示す場合では、家屋150に関しての調査が行われ、調査済み範囲200の調査が完了した時点で、調査員は家屋150の被害の程度を「全壊」として確定する。ここで「全壊」とは、被害認定調査において最も被害を受けた程度を示し、これ以上家屋150の調査は必要でない場合である。 In the case indicated by reference numeral 216, the house 150 is investigated, and when the survey of the surveyed area 200 is completed, the investigator determines the degree of damage to the house 150 as "total destruction." Here, "completely destroyed" indicates the degree of damage that has been sustained the most in the damage recognition investigation, and is a case where no further investigation of the house 150 is necessary.
 符号218に示すように、調査員が端末100に調査結果を全壊と入力した場合には、調査済み範囲特定部112Dにより、残りの未調査の調査作業範囲152は調査の対象外である調査対象外範囲220として特定される。 As shown by reference numeral 218, when the investigator inputs the investigation result as "completely destroyed" into the terminal 100, the investigation completed area identification unit 112D determines that the remaining investigation work area 152 that has not yet been investigated is an investigation target that is not subject to investigation. It is specified as the outer range 220.
 このように、調査済み範囲特定部112Dは、調査の途中においても被害の程度が「全壊」と確定した場合には、残りの調査作業範囲を調査対象外範囲220として特定する。これにより、調査員は、被害の認定が確定した後に調査を続行しなくても良く、より効率的な調査を行うことができる。なお、サーバ装置10において調査結果を記録する場合には、調査対象外範囲220となった箇所に関連づけて、全壊と確定したために調査対象外となったことを記録する。これにより、第三者が調査結果に対する十分性を効率的に判断することができる。 In this way, if the extent of damage is determined to be "total destruction" even during the investigation, the investigated range specifying unit 112D identifies the remaining investigation work range as the non-investigated range 220. Thereby, the investigator does not have to continue the investigation after the damage has been determined, and can conduct a more efficient investigation. Note that when recording the investigation results in the server device 10, it is associated with the location that is outside the investigation target range 220, and records that the location has been determined to be completely destroyed and is therefore excluded from the investigation target. This allows a third party to efficiently judge the sufficiency of the investigation results.
 また、上述した例では、被害認定調査において調査結果が全壊の場合の例について説明をしたが、本発明の適用はこれに限定されない。例えば、以後の調査の継続が必要とされない調査結果(第1の閾値以上の調査結果)が入力された場合には、上記で説明したように未調査である調査作業範囲を調査対象外範囲として特定してもよい。 Furthermore, in the example described above, an example was explained in which the result of the damage determination investigation was a complete destruction, but the application of the present invention is not limited to this. For example, if a survey result that does not require the continuation of a subsequent survey is input (a survey result that is equal to or higher than the first threshold), the scope of the survey work that has not yet been surveyed is treated as a non-survey scope as explained above. May be specified.
 <調査作業範囲の分割>
 次に、調査作業範囲の分割に関して説明する。上述したように、調査作業範囲は、調査対象である家屋の外周を囲むように設定される。そして、調査員は、端末100の表示部120に表示された調査作業範囲に沿って順次調査を行い、調査済み範囲特定部112Dは調査作業範囲のうちの調査済み範囲を特定していく。この場合に、調査済み範囲特定部112Dは、調査作業範囲が所定の大きさに分割されていることにより、精度良く調査済み範囲を特定することがきる。したがって、調査作業範囲算出部112Cは、算出した調査作業範囲を分割することが好ましい。例えば、調査作業範囲算出部112Cは、1辺2.5mの正方形、又は1辺2.5mの立方体により調査作業範囲を分割する。なお、調査した範囲を精密に把握するためには、正方形及び立方体の辺は小さい方が良いが、GPS機能の誤差と処理性能を考慮して1辺を数メートル(たとえば2.5m)の範囲で区切ることが好ましい。
<Dividing the scope of investigation work>
Next, the division of the survey work scope will be explained. As described above, the survey work range is set to surround the outer periphery of the house to be surveyed. Then, the investigator sequentially conducts the investigation along the investigation work range displayed on the display unit 120 of the terminal 100, and the investigated range identification unit 112D identifies the researched range within the investigation work range. In this case, the surveyed range identifying unit 112D can accurately identify the surveyed range because the survey work range is divided into predetermined sizes. Therefore, it is preferable that the investigation work range calculation unit 112C divides the calculated investigation work range. For example, the survey work range calculation unit 112C divides the survey work range into squares with sides of 2.5 m or cubes with sides of 2.5 m. In addition, in order to accurately understand the surveyed area, it is better to have smaller sides of squares and cubes, but considering the error and processing performance of the GPS function, one side should be within an area of several meters (for example, 2.5 m). It is preferable to separate the
 図22は、家屋150の分割された2次元の調査作業範囲152を説明する図である。なお、この調査作業範囲152は、端末100の表示部120にも表示される。 FIG. 22 is a diagram illustrating a two-dimensional survey work range 152 into which the house 150 is divided. Note that this investigation work range 152 is also displayed on the display unit 120 of the terminal 100.
 図22に示す場合では、調査作業範囲152は1辺がTの正方形に分割されている。調査作業範囲算出部112Cは、調査作業範囲152を算出する際に、予め設定される大きさ(1辺=T)の正方形に調査作業範囲152を分割する。なお、端末100は、調査作業範囲152を分割した正方形を構成する各頂点の緯度経度座標をコンピュータ可読媒体116上で記憶及び管理する。 In the case shown in FIG. 22, the investigation work range 152 is divided into squares with T on each side. When calculating the survey work range 152, the survey work range calculation unit 112C divides the survey work range 152 into squares of a preset size (one side=T). Note that the terminal 100 stores and manages, on the computer-readable medium 116, the latitude and longitude coordinates of each vertex forming a square into which the survey work range 152 is divided.
 調査済み範囲特定部112Dは、分割した正方形毎に調査済み範囲を特定する。分割された調査作業範囲U1は、未調査の調査作業範囲152であり、例えば端末100の滞在履歴が無い範囲である。また、分割された調査作業範囲U2は、調査が途中段階まで進んだ調査作業範囲152であり、例えば端末100の滞在履歴(滞在時間)があるものの閾値(第2の閾値)未満の範囲である。また、分割された調査作業範囲U3は、調査が完了した調査済み範囲であり、例えば端末100の滞在履歴が閾値(第2の閾値)以上の範囲である。なお、調査作業範囲U1~U3は、それぞれ異なる色、表示形態で表示部120に表示される。例えば、調査作業範囲U1~U3は、調査作業範囲U1、調査作業範囲U2、調査作業範囲U3の順に、赤、薄い赤、白色と色を変えて表示される。このように、調査作業範囲152を正方形に分割し、分割された正方形毎に調査済み範囲を特定することにより、調査員はより精度よく調査を行うことができる。また、図22で示したように、調査の完了程度に応じて段階的に表示態様を変えることにより、調査員は容易に調査の進行程度を確認することができる。 The surveyed range specifying unit 112D identifies the surveyed range for each divided square. The divided investigation work range U1 is an uninvestigated research work range 152, and is, for example, a range in which there is no stay history of the terminal 100. Furthermore, the divided investigation work range U2 is the research work range 152 in which the investigation has progressed to an intermediate stage, and is, for example, a range in which there is a stay history (staying time) of the terminal 100 but is less than a threshold value (second threshold value). . Furthermore, the divided investigation work range U3 is a researched range in which the research has been completed, and is, for example, a range in which the stay history of the terminal 100 is equal to or greater than a threshold value (second threshold value). Note that the investigation work ranges U1 to U3 are displayed on the display unit 120 in different colors and display formats. For example, the investigation work ranges U1 to U3 are displayed in different colors such as red, light red, and white in the order of investigation work range U1, investigation work range U2, and investigation work range U3. In this way, by dividing the survey work range 152 into squares and identifying the surveyed range for each divided square, the surveyor can conduct the survey with higher accuracy. Further, as shown in FIG. 22, by changing the display mode in stages according to the degree of completion of the investigation, the investigator can easily check the degree of progress of the investigation.
 図23は、家屋150の分割された3次元の調査作業範囲152を説明する図である。なお、この調査作業範囲152は、端末100の表示部120にも表示される。 FIG. 23 is a diagram illustrating a three-dimensional survey work range 152 into which the house 150 is divided. Note that this investigation work range 152 is also displayed on the display unit 120 of the terminal 100.
 図23に示す場合では、調査作業範囲152は1辺がTの立方体に分割されている。調査作業範囲算出部112Cは、調査作業範囲152を算出する際に、予め設定されている大きさ(1辺=T)の立方体に調査作業範囲152を分割する。調査作業範囲152を分割する立方体の各々には、分割IDが付されている。図23に示した場合では、分割ID「123456789_123456789A」~「123456789_123456789C」が例示として示されている。なお、端末100は、調査作業範囲152を分割した立方体を構成する各頂点の緯度経度座標をコンピュータ可読媒体116上で記憶及び管理する。 In the case shown in FIG. 23, the investigation work range 152 is divided into cubes with one side of T. When calculating the survey work range 152, the survey work range calculation unit 112C divides the survey work range 152 into cubes of a preset size (one side=T). A division ID is attached to each cube that divides the investigation work range 152. In the case shown in FIG. 23, division IDs "123456789_123456789A" to "123456789_123456789C" are shown as an example. Note that the terminal 100 stores and manages, on the computer-readable medium 116, the latitude and longitude coordinates of each vertex forming a cube into which the survey work range 152 is divided.
 調査作業範囲が3次元で算出した場合には、調査済み範囲特定部112Dは、例えばGPS受信機122と気圧センサ124から端末100の現在の位置及び高度を取得する。そして、調査済み範囲特定部112Dは、立方体に分割された調査作業範囲152のいずれかの立方体に、端末100の現在の位置及び高度が含まれるか検索する。調査済み範囲特定部112Dは、端末100の位置及び高度を含む立方体が検出できた場合には、その立方体に関連付けた情報として、調査員の識別子、立方体に入った時刻、立方体へ入った回数、立方体に滞在した総時間等を記録する。例えば図24に示す場合には、調査員を識別子する情報(1班 InspectorRay)、総滞在時間(inspector-TotalStayTime)、調査員立ち入りタイムスタンプ(inspector-EnterTimestamp)、調査員現在滞在時間(inspector-CurrentStayTime)が分割IDと関連付けられて記憶されている。そして、調査済み範囲特定部112Dは、立方体内への滞在が調査の作業によるものであるかを特定するために、加速度センサ126、ジャイロセンサ128から出力される情報から調査員の水平面での向き(コンパスの向き)を計算し、壁の方向を向いている場合のみ、回数及び滞在時間としてカウントしても良い。 When the survey work range is calculated in three dimensions, the surveyed range specifying unit 112D obtains the current position and altitude of the terminal 100 from the GPS receiver 122 and the atmospheric pressure sensor 124, for example. Then, the surveyed range specifying unit 112D searches whether the current position and altitude of the terminal 100 are included in any cube of the survey work range 152 divided into cubes. If a cube containing the location and altitude of the terminal 100 is detected, the surveyed range specifying unit 112D stores the investigator's identifier, the time of entry into the cube, the number of times of entry into the cube, as information associated with the cube. Record the total time spent in the cube. For example, in the case shown in FIG. 24, information that identifies the investigator (1st team InspectorRay), total stay time (inspector-TotalStayTime), inspector entry time stamp (inspector-EnterTimestamp), investigator current stay time (inspector-CurrentStayTime) ) are stored in association with the division ID. Then, the surveyed range identification unit 112D determines the orientation of the surveyor in the horizontal plane based on the information output from the acceleration sensor 126 and the gyro sensor 128, in order to determine whether the stay inside the cube is due to survey work. (The direction of the compass) may be calculated and counted as the number of times and stay time only when facing the wall.
 また、調査員は、調査対象である家屋150の壁に損傷を発見した場合には、端末100のカメラ134で調査対象である家屋150の壁を撮影しても良い。この場合、調査済み範囲特定部112Dは、加速度センサ126及びジャイロセンサ128から出力される情報から算出されるカメラ134の撮影方向が家屋150のいずれかの壁を向いている場合に、損傷を撮影したものと判断する。そして、撮影をした際の端末100の位置及び高度から立方体を検索し、検索された立方体に対し、撮影行為が発生したことを示す情報として撮影時間及び撮影画像を関連付けて、コンピュータ可読媒体116に記憶する。 Furthermore, if the investigator finds damage to the wall of the house 150 that is the subject of investigation, the investigator may photograph the wall of the house 150 that is the subject of investigation using the camera 134 of the terminal 100. In this case, the surveyed range specifying unit 112D photographs the damage when the photographing direction of the camera 134, which is calculated from the information output from the acceleration sensor 126 and the gyro sensor 128, is facing any wall of the house 150. It is determined that the Then, a cube is searched based on the position and altitude of the terminal 100 at the time of photographing, and the photographing time and photographed image are associated with the searched cube as information indicating that the photographing action has occurred, and the data is stored in the computer-readable medium 116. Remember.
 このように、調査作業範囲を3次元で示した場合には、調査作業範囲152を立方体に分割して表示し、調査済み範囲特定部112Dは立方体に分割された調査作業範囲152ごとに調査済みの範囲を特定する。 In this way, when the survey work range is shown in three dimensions, the survey work range 152 is divided into cubes and displayed, and the surveyed range identification unit 112D indicates the survey work range 152 divided into cubes. Identify the range of
 <他の調査の例>
 上述した例では、家屋の外観による被害認定調査の例に関して説明を行った。しかしながら、本発明の適用は、家屋の外観の被害認定調査には限られない。例えば、家屋内の被害認定調査を行う場合にも適用が可能である。
<Examples of other surveys>
In the example described above, an example of damage identification investigation based on the appearance of a house was explained. However, the application of the present invention is not limited to damage assessment investigation on the exterior of a house. For example, it can be applied to the case of conducting a damage determination investigation inside a house.
 図25は、家屋150の内部の調査作業範囲を示す図である。なお、図示される調査作業範囲は、端末100の表示部120に表示される。 FIG. 25 is a diagram showing the investigation work range inside the house 150. Note that the illustrated investigation work range is displayed on the display unit 120 of the terminal 100.
 家屋150の内部の被害認定調査を行う場合には、調査作業範囲153に沿って調査員は調査を行う。これにより、調査員は、網羅的に調査作業範囲を調査することができる。 When conducting a damage determination investigation inside the house 150, the investigator conducts the investigation along the investigation work scope 153. This allows the investigator to comprehensively investigate the scope of the investigation work.
 <情報処理装置の例>
 上述した例では、被害調査システム1に関して説明を行った。しかしながら、本発明は、他の実施形態でも実施可能である。例えば、データベース11を備える情報処理装置102(端末)によっても本発明は実施可能である。
<Example of information processing device>
In the above example, the damage investigation system 1 was explained. However, the invention can be practiced with other embodiments. For example, the present invention can also be implemented by the information processing device 102 (terminal) that includes the database 11.
 図26は、データベース11を備える情報処理装置102のハードウェア構成例を示す図である。なお、図6で既に説明を行った箇所は同じ符号を付し説明は省略する。 FIG. 26 is a diagram showing an example of the hardware configuration of the information processing device 102 including the database 11. Note that the same reference numerals are given to the parts already described in FIG. 6, and the description thereof will be omitted.
 調査員は、調査を行う場合には情報処理装置102を携帯して調査を行う。情報処理装置102は、表示部120に調査作業範囲及び調査済み範囲を表示し、調査員は表示部120に表示された調査作業範囲及び調査済み範囲を確認しながら調査を行うことができる。 When conducting an investigation, the investigator carries the information processing device 102 with him. The information processing device 102 displays the survey work range and the surveyed range on the display unit 120, and the investigator can conduct the survey while checking the survey work range and the survey completed range displayed on the display unit 120.
 情報処理装置102は、第2のプロセッサ112、コンピュータ可読媒体116、通信インターフェイス114、カメラ134、表示部120、位置情報出力部140及びデータベース11を備える。なお、データベース11には、外周形状情報CO及び地図情報MPが記憶されている。 The information processing device 102 includes a second processor 112, a computer readable medium 116, a communication interface 114, a camera 134, a display section 120, a position information output section 140, and a database 11. Note that the database 11 stores outer circumferential shape information CO and map information MP.
 情報処理装置102は、調査員の入力により、調査対象である家屋の家屋IDに関連付けられる外周形状情報COの読出要求を受け付ける。その後、情報処理装置102は、読出要求に基づいて、家屋IDに関連する外周形状情報COを内部のデータベース11から読み出す。その後、読み出した外周形状情報COに基づいて、調査作業範囲が算出される。これにより、情報処理装置102は、ネットワークNWを介して通信が不可能な状況であっても、外周形状情報COを取得することができ、調査作業範囲を算出することができる。 The information processing device 102 receives a request to read outer circumferential shape information CO associated with the house ID of the house to be investigated, based on input from the investigator. Thereafter, the information processing device 102 reads the outer circumferential shape information CO related to the house ID from the internal database 11 based on the read request. Thereafter, an investigation work range is calculated based on the read outer circumferential shape information CO. Thereby, the information processing device 102 can acquire the outer circumferential shape information CO and calculate the investigation work range even in a situation where communication via the network NW is impossible.
 以上で説明したように、上述した情報処理装置102では、調査対象である家屋の外周形状情報COに基づいて調査作業範囲が算出され、算出された調査作業範囲が表示される。また、情報処理装置102の位置情報に基づいて、調査作業範囲のうち調査が行われた調査済み範囲が特定される。これにより、情報処理装置102を利用することにより調査員は、調査の対象である構造物の損傷の検出漏れを抑制し、効率的に調査を行うことができる。 As explained above, in the information processing device 102 described above, the investigation work range is calculated based on the outer circumferential shape information CO of the house to be investigated, and the calculated investigation work range is displayed. Further, based on the position information of the information processing device 102, a surveyed range within the survey work range in which the survey has been performed is specified. Thereby, by using the information processing device 102, the investigator can suppress failure to detect damage to the structure that is the object of investigation, and can conduct the investigation efficiently.
 <損傷の種別>
 上記で説明した調査(被害認定調査)は、様々な損傷を検出することにより行われる。以下に、損傷の種別について例示する。なお、本発明によって行われる調査で検出される損傷は以下に例示するものには限られない。
<Type of damage>
The investigation described above (damage identification investigation) is performed by detecting various types of damage. Examples of types of damage are shown below. Note that the damage detected in the investigation performed according to the present invention is not limited to those exemplified below.
 屋根の損傷は、葺材のずれ、破損、落下、不陸、はがれ、小屋組の破損が例示される。外壁の損傷は、仕上材の剥離、浮き、ひび割れ、ずれ、脱落、釘の浮きが例示される。基礎の損傷は、ひび割れ、剥落、破断、局部破壊、不陸、移動、流失、転倒が例示される。柱の損傷は、折損、欠損、上下端の割り裂け、柱梁仕口のずれ、脱却、破損、移動、局部座屈、アンカーボルトの伸びが例示される。耐力壁の損傷は、ボードのずれ、浮き、釘の浮き、ボードの破断、胴縁の傷み、パネルのずれ、ひび割れ、合板のはがれ、湾曲、枠材の破損が例示される。床の損傷は、床板の破損、柱又は土台と基礎のずれ、脱落、束と束石のずれ、大引・根太の落下、壁と床との隙間の発生、床の浮き上がり、沈下が例示される。内壁の損傷は、目地切れ、ずれ、剥離、ひび割れ、脱落、浮きが例示される。天井の損傷は、天井板の隙間、浮き、不陸、垂れ下がり、歪み、脱落が例示される。建具の損傷は、開閉困難・不能、変形、破損、ガラスの破損、かまちの破損が例示される。設備の損傷は、本体の損壊、配管の折損、はずれが例示される。 Examples of roof damage include shifting, damage, falling, unevenness, and peeling of roofing materials, and damage to roof frames. Examples of damage to the exterior wall include peeling of the finishing material, lifting, cracking, shifting, falling off, and lifting of nails. Examples of foundation damage include cracking, peeling, breakage, local destruction, unevenness, movement, washing away, and overturning. Examples of damage to columns include breakage, chipping, splitting of upper and lower ends, displacement of column and beam joints, detachment, breakage, movement, local buckling, and elongation of anchor bolts. Examples of damage to load-bearing walls include shifting of boards, floating of boards, floating of nails, broken boards, damage to edges, shifting of panels, cracks, peeling and bending of plywood, and damage to frame materials. Examples of floor damage include damage to floorboards, displacement of pillars or foundations from foundations, falling off, displacement of bundles and bundled stones, falling of joists and joists, creation of gaps between walls and floors, lifting of floors, and subsidence. Ru. Examples of damage to the inner wall include joint cuts, shifts, peeling, cracks, falling off, and floating. Examples of damage to the ceiling include gaps, floating, unevenness, sagging, distortion, and falling of ceiling panels. Examples of damage to fittings include difficulty/impossibility to open/close, deformation, breakage, broken glass, and broken stile. Examples of equipment damage include damage to the main body, broken pipes, and disconnected pipes.
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 Although examples of the present invention have been described above, it goes without saying that the present invention is not limited to the embodiments described above, and that various modifications can be made without departing from the spirit of the present invention.
1    :被害調査システム
10   :サーバ装置
11   :データベース
12   :第1のプロセッサ
12A  :情報要求受信部
12B  :情報送信部
13   :バス
14   :通信インターフェイス
16   :コンピュータ可読媒体
100  :端末
102  :情報処理装置
112  :第2のプロセッサ
112A :情報要求送信部
112B :情報受信部
112C :調査作業範囲算出部
112D :範囲特定部
112E :表示制御部
113  :バス
114  :通信インターフェイス
116  :コンピュータ可読媒体
120  :表示部
122  :GPS受信機
124  :気圧センサ
126  :加速度センサ
128  :ジャイロセンサ
130  :タイマ
132  :カウンタ
134  :カメラ
140  :位置情報出力部
1: Damage investigation system 10: Server device 11: Database 12: First processor 12A: Information request receiving section 12B: Information transmitting section 13: Bus 14: Communication interface 16: Computer readable medium 100: Terminal 102: Information processing device 112 : Second processor 112A : Information request transmitter 112B : Information receiver 112C : Investigation work range calculation part 112D : Range identification part 112E : Display control part 113 : Bus 114 : Communication interface 116 : Computer-readable medium 120 : Display part 122 : GPS receiver 124 : Barometric pressure sensor 126 : Acceleration sensor 128 : Gyro sensor 130 : Timer 132 : Counter 134 : Camera 140 : Position information output section

Claims (20)

  1.  構造物の調査を行う、前記構造物の外周形状情報を記憶するデータベース及びプロセッサを備える被害調査システムであって、
     前記プロセッサは、
     前記データベースから前記外周形状情報を読み出し、
     前記外周形状情報に基づいて、前記構造物の前記調査の調査作業範囲を算出し、
     前記調査が行われたと推定される位置情報に基づいて、少なくとも、前記調査作業範囲のうち前記調査が行われた調査済み範囲を特定し、
     前記調査作業範囲及び前記調査済み範囲を表示する、
     被害調査システム。
    A damage investigation system that conducts an investigation of a structure and includes a database and a processor that stores information on the outer circumferential shape of the structure,
    The processor includes:
    reading the outer circumferential shape information from the database;
    Calculating the survey work range of the survey of the structure based on the outer circumferential shape information,
    Based on the location information where the survey is estimated to have been conducted, at least specifying a surveyed range in which the survey has been conducted among the survey work range;
    displaying the survey work range and the surveyed range;
    Damage investigation system.
  2.  前記被害調査システムは、前記構造物の前記調査を行う場合に前記調査に伴って移動する端末と、前記データベースを有するサーバ装置と含み、
     前記位置情報は、前記端末から取得される請求項1に記載の被害調査システム。
    The damage investigation system includes a terminal that moves along with the investigation when conducting the investigation of the structure, and a server device having the database,
    The damage investigation system according to claim 1, wherein the location information is obtained from the terminal.
  3.  前記プロセッサは、前記サーバ装置に備えられる第1のプロセッサと、前記端末に備えられる第2のプロセッサとで構成され、
     前記第1のプロセッサは、少なくとも、前記調査の対象を特定する情報を含む送信要求に応じて前記データベースから前記外周形状情報を読み出し、
     前記第2のプロセッサは、少なくとも、前記調査済み範囲を特定する、
     請求項2に記載の被害調査システム。
    The processor includes a first processor provided in the server device and a second processor provided in the terminal,
    The first processor reads the outer circumferential shape information from the database in response to a transmission request that includes at least information that specifies the object of the investigation;
    The second processor at least identifies the surveyed range.
    The damage investigation system according to claim 2.
  4.  前記第1のプロセッサは、
     前記端末から前記送信要求を受信し、
     前記端末に前記外周形状情報を送信し、
     前記第2のプロセッサは、
     前記送信要求を前記サーバ装置に送信し、
     前記サーバ装置から前記外周形状情報を受信し、
     前記外周形状情報に基づいて、前記調査作業範囲を算出し、
     前記調査作業範囲及び前記調査済み範囲を表示する、
     請求項3に記載の被害調査システム。
    The first processor is
    receiving the transmission request from the terminal;
    transmitting the outer circumferential shape information to the terminal;
    The second processor is
    transmitting the transmission request to the server device;
    receiving the outer circumferential shape information from the server device;
    Calculating the survey work range based on the outer circumferential shape information,
    displaying the survey work range and the surveyed range;
    The damage investigation system according to claim 3.
  5.  前記サーバ装置は、前記データベースに前記構造物の周辺の他の構造物の情報である近隣情報を記憶し、
     前記第1のプロセッサは、
     前記外周形状情報を送信する場合に、前記近隣情報を前記端末に送信し、
     前記第2のプロセッサは、
     前記サーバ装置から前記近隣情報を受信し、
     前記外周形状情報及び前記近隣情報に基づいて、前記構造物の前記調査の対象外である調査作業範囲を算出し、
     前記調査作業範囲を表示する、請求項4に記載の被害調査システム。
    The server device stores neighborhood information that is information about other structures around the structure in the database,
    The first processor is
    When transmitting the outer circumferential shape information, transmitting the neighborhood information to the terminal;
    The second processor is
    receiving the neighborhood information from the server device;
    calculating an investigation work range that is outside the scope of the investigation of the structure based on the outer circumferential shape information and the neighborhood information;
    The damage investigation system according to claim 4, which displays the investigation work range.
  6.  前記サーバ装置は、前記データベースに前記構造物の周辺の地形情報を記憶し、
     前記第1のプロセッサは、
     前記外周形状情報を送信する場合に、前記地形情報を前記端末に送信し、
     前記第2のプロセッサは、
     前記サーバ装置から前記地形情報を受信し、
     前記外周形状情報及び前記地形情報に基づいて、前記構造物の前記調査の対象外である調査作業範囲を算出し、
     前記調査作業範囲を表示する、請求項4又は5に記載の被害調査システム。
    The server device stores topographical information around the structure in the database,
    The first processor is
    When transmitting the outer circumferential shape information, transmitting the topographical information to the terminal,
    The second processor is
    receiving the topographical information from the server device;
    Based on the outer circumferential shape information and the topographical information, calculate a survey work range that is not subject to the survey of the structure;
    The damage investigation system according to claim 4 or 5, wherein the investigation work range is displayed.
  7.  前記第2のプロセッサは、
     前記調査の調査結果の入力を受け付け、
     前記調査結果の入力が第1の閾値以上である場合には、前記調査が行われていない前記調査作業範囲を特定し、
     特定された前記調査作業範囲が前記調査の対象外であることを表示する請求項4から6のいずれか1項に記載の被害調査システム。
    The second processor is
    Accepting input of the survey results of the said survey,
    If the input of the survey results is equal to or higher than a first threshold, specifying the survey work range where the survey has not been conducted;
    The damage investigation system according to any one of claims 4 to 6, which displays that the identified investigation work range is outside the scope of the investigation.
  8.  前記第2のプロセッサは、
     前記端末の前記位置情報に基づいて、前記端末が前記調査作業範囲に第2の閾値以上の時間滞在した場合には、前記調査作業範囲を前記調査済み範囲として特定する請求項4から7のいずれか1項に記載の被害調査システム。
    The second processor is
    Any one of claims 4 to 7, wherein, based on the location information of the terminal, if the terminal stays in the survey work range for a time equal to or longer than a second threshold, the survey work range is specified as the surveyed range. or the damage investigation system described in paragraph 1.
  9.  前記第2のプロセッサは、
     前記端末の前記位置情報に基づいて、前記端末が前記調査作業範囲に第3の閾値以上の回数滞在した場合には、前記調査作業範囲を前記調査済み範囲として特定する請求項4から8のいずれか1項に記載の被害調査システム。
    The second processor is
    Any one of claims 4 to 8, wherein, based on the location information of the terminal, if the terminal has stayed in the survey work range a number of times equal to or more than a third threshold, the survey work range is specified as the surveyed range. or the damage investigation system described in paragraph 1.
  10.  前記端末は、前記端末の方向を示す方向情報を取得し、
     前記第2のプロセッサは、
     前記端末の前記方向情報に基づいて、前記調査作業範囲を前記調査済み範囲として特定する請求項4から9のいずれか1項に記載の被害調査システム。
    The terminal obtains direction information indicating the direction of the terminal,
    The second processor is
    The damage investigation system according to any one of claims 4 to 9, wherein the investigation work range is specified as the investigated range based on the direction information of the terminal.
  11.  前記調査作業範囲は、前記調査の複数の対象を有する重複調査作業範囲を含み、
     前記第2のプロセッサは、前記複数の対象の全てに関して前記調査を行った場合に、前記重複調査作業範囲を前記調査済み範囲として特定する請求項4から10のいずれか1項に記載の被害調査システム。
    The scope of investigation work includes an overlapping scope of investigation work having multiple targets of the investigation,
    The damage investigation according to any one of claims 4 to 10, wherein the second processor specifies the overlapped investigation work range as the investigated range when the investigation is performed on all of the plurality of targets. system.
  12.  前記端末はカメラを有し、
     前記第2のプロセッサは、
     前記カメラにより撮影された前記調査の対象に対応する前記調査作業範囲を、前記調査済み範囲として特定する請求項4から11のいずれか1項に記載の被害調査システム。
    the terminal has a camera;
    The second processor is
    The damage investigation system according to any one of claims 4 to 11, wherein the investigation work range corresponding to the investigation target photographed by the camera is specified as the investigated range.
  13.  前記第2のプロセッサは、前記調査作業範囲及び前記調査済み範囲を2次元又は3次元で表示する請求項4から12のいずれか1項に記載の被害調査システム。 The damage investigation system according to any one of claims 4 to 12, wherein the second processor displays the investigation work range and the investigated range in two dimensions or three dimensions.
  14.  前記第2のプロセッサは、前記調査作業範囲及び前記調査済み範囲を複数の立方体により3次元で表示する請求項4から12のいずれか1項に記載の被害調査システム。 The damage investigation system according to any one of claims 4 to 12, wherein the second processor displays the investigation work range and the investigated range in three dimensions using a plurality of cubes.
  15.  構造物の調査を行う場合に前記調査に伴って移動し、前記構造物の外周形状情報を記憶するデータベース及びプロセッサを備える情報処理装置であって、
     前記プロセッサは、
     前記外周形状情報を前記データベースから読み出し、
     前記外周形状情報に基づいて、前記構造物の前記調査の調査作業範囲を算出し、
     前記調査が行われたと推定される位置情報に基づいて、少なくとも、前記調査作業範囲のうち前記調査が行われた調査済み範囲を特定し、
     前記調査作業範囲及び前記調査済み範囲を表示する、
     情報処理装置。
    An information processing device including a database and a processor that moves along with the investigation when investigating a structure and stores information on the outer circumferential shape of the structure,
    The processor includes:
    reading the outer circumferential shape information from the database;
    Calculating the survey work range of the survey of the structure based on the outer circumferential shape information,
    Based on the location information where the survey is estimated to have been conducted, at least specifying a surveyed range in which the survey has been conducted among the survey work range;
    displaying the survey work range and the surveyed range;
    Information processing device.
  16.  構造物の調査を行う場合に前記調査に伴って移動し、前記構造物の外周形状情報を記憶するメモリ及びプロセッサを備える端末であって、
     前記プロセッサは、
     前記外周形状情報を前記メモリから読み出し、
     前記外周形状情報に基づいて、前記構造物の前記調査の調査作業範囲を算出し、
     前記端末の位置情報に基づいて、少なくとも、前記調査作業範囲のうち前記調査が行われた調査済み範囲を特定し、
     前記調査作業範囲及び前記調査済み範囲を表示する、
     端末。
    A terminal that moves with the investigation when investigating a structure and includes a memory and a processor that stores information on the outer circumferential shape of the structure,
    The processor includes:
    reading the outer circumferential shape information from the memory;
    Calculating the survey work range of the survey of the structure based on the outer circumferential shape information,
    Based on the location information of the terminal, at least specifying a surveyed range in which the survey has been conducted among the survey work range;
    displaying the survey work range and the surveyed range;
    terminal.
  17.  前記外周形状情報を記憶するデータベースを有するサーバ装置と通信可能であり、
     前記プロセッサは、
     前記調査の対象を特定した前記外周形状情報の送信要求を前記サーバ装置に送信し、
     前記サーバ装置から前記外周形状情報を受信する、
     請求項16に記載の端末。
    capable of communicating with a server device having a database that stores the outer circumferential shape information;
    The processor includes:
    Sending a request to send the outer circumferential shape information specifying the object of the investigation to the server device;
    receiving the outer circumferential shape information from the server device;
    17. The terminal according to claim 16.
  18.  データベースから調査対象となる構造物の外周形状情報を読み出す工程と、
     前記外周形状情報に基づいて、前記構造物の調査の調査作業範囲を算出する工程と、
     前記調査が行われたと推定される位置情報に基づいて、少なくとも、前記調査作業範囲のうち前記調査が行われた調査済み範囲を特定する工程と、
     前記調査作業範囲及び前記調査済み範囲を表示する工程と、
     を含む被害調査方法。
    a step of reading out peripheral shape information of a structure to be investigated from a database;
    calculating a survey work range for surveying the structure based on the outer peripheral shape information;
    a step of identifying at least a surveyed range in which the survey has been conducted among the survey work range based on location information where the survey is estimated to have been conducted;
    displaying the survey work range and the surveyed range;
    Damage investigation methods including.
  19.  データベースから調査対象となる構造物の外周形状情報を読み出す工程と、
     前記外周形状情報に基づいて、前記構造物の調査の調査作業範囲を算出する工程と、
     前記調査が行われたと推定される位置情報に基づいて、少なくとも、前記調査作業範囲のうち前記調査が行われた調査済み範囲を特定する工程と、
     前記調査作業範囲及び前記調査済み範囲を表示する工程と、
     を実行させるプログラム。
    a step of reading out peripheral shape information of a structure to be investigated from a database;
    calculating a survey work range for surveying the structure based on the outer peripheral shape information;
    a step of identifying at least a surveyed range in which the survey has been conducted among the survey work range based on location information where the survey is estimated to have been conducted;
    displaying the survey work range and the surveyed range;
    A program to run.
  20.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項19に記載のプログラムが記録された記録媒体。 A non-transitory computer-readable recording medium, on which the program according to claim 19 is recorded.
PCT/JP2023/005724 2022-03-07 2023-02-17 Damage investigation system, information processing device, terminal, damage investigation method, and program WO2023171322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034380 2022-03-07
JP2022-034380 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171322A1 true WO2023171322A1 (en) 2023-09-14

Family

ID=87936832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005724 WO2023171322A1 (en) 2022-03-07 2023-02-17 Damage investigation system, information processing device, terminal, damage investigation method, and program

Country Status (1)

Country Link
WO (1) WO2023171322A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026848A (en) * 2010-07-22 2012-02-09 Ohbayashi Corp Disaster information collection system
JP3206847U (en) * 2016-07-27 2016-10-06 株式会社総合鑑定調査 Real estate information update system
JP2018165906A (en) * 2017-03-28 2018-10-25 国立大学法人 東京大学 Damage investigation system and method of application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026848A (en) * 2010-07-22 2012-02-09 Ohbayashi Corp Disaster information collection system
JP3206847U (en) * 2016-07-27 2016-10-06 株式会社総合鑑定調査 Real estate information update system
JP2018165906A (en) * 2017-03-28 2018-10-25 国立大学法人 東京大学 Damage investigation system and method of application thereof

Similar Documents

Publication Publication Date Title
Zhu et al. Comparison of optical sensor-based spatial data collection techniques for civil infrastructure modeling
JP6284240B2 (en) Structure information provision system
JP5340543B2 (en) System for judging the soundness of temporary structures
JP7065477B2 (en) Disaster situation judgment system and disaster judgment flight system
US11615588B2 (en) Georeferencing a generated floorplan and generating structural models
Dai et al. Photogrammetry assisted measurement of interstory drift for rapid post-disaster building damage reconnaissance
KR20120020303A (en) Apparatus for providing building structure information and displaying building structure using argumented reality and method for maintenance of building structure using the same
JP2016090547A (en) Crack information collection device and server apparatus to collect crack information
Wei et al. High-speed multi-camera 3D DIC measurement of the deformation of cassette structure with large shaking table
Marzouk Using 3D laser scanning to analyze heritage structures: The case study of egyptian palace
US20230281737A1 (en) Property measurement with automated document production
Arias et al. 3D modeling and section properties of ancient irregular timber structures by means of digital photogrammetry
JP6886670B2 (en) Construction site terminals, construction site systems, and programs
Aghababaei et al. Full-scale shake table test damage data collection using terrestrial laser-scanning techniques
EP3640895A1 (en) Smart city management and navigation tool
CN108957507A (en) Fuel gas pipeline leakage method of disposal based on augmented reality
WO2023171322A1 (en) Damage investigation system, information processing device, terminal, damage investigation method, and program
KR102238193B1 (en) Method and server for managing construction information and maintenance information based on augmented reality
Alicandro et al. UAV photogrammetry for resilience management in reconstruction plan of urban historical centres after seismic events. A case study
JP5186641B2 (en) Work support device and work support program
CN104978476A (en) Method for carrying out on-site supplementary survey of indoor map by smartphone
JP2003329440A (en) Ground displacement positioning system
Zhu et al. Comparison of civil infrastructure optical-based spatial data acquisition techniques
JP4362042B2 (en) Flood hazard map generation method and system
WO2023047859A1 (en) Information processing device, method and program, and image data structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766501

Country of ref document: EP

Kind code of ref document: A1