WO2023171255A1 - Yaw rate calibration device - Google Patents

Yaw rate calibration device Download PDF

Info

Publication number
WO2023171255A1
WO2023171255A1 PCT/JP2023/004967 JP2023004967W WO2023171255A1 WO 2023171255 A1 WO2023171255 A1 WO 2023171255A1 JP 2023004967 W JP2023004967 W JP 2023004967W WO 2023171255 A1 WO2023171255 A1 WO 2023171255A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw rate
zero point
calibration
rate sensor
steering torque
Prior art date
Application number
PCT/JP2023/004967
Other languages
French (fr)
Japanese (ja)
Inventor
駿甫 佃
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Publication of WO2023171255A1 publication Critical patent/WO2023171255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • One aspect of the present invention relates to a yaw rate calibration device.
  • Patent Document 1 describes a steering control device that prevents a vehicle from deviating from the road by applying a steering assist torque to a steering means according to the deviation between an actual yaw rate and a reference yaw rate.
  • the actual yaw rate is detected by a yaw rate sensor.
  • the yaw rate sensor has the property that its zero point drifts due to changes in temperature, the passage of time, and the like. For this reason, conventionally, the zero point of the yaw rate sensor has been calibrated using the value of the yaw rate sensor when the vehicle is stopped as a reference.
  • one aspect of the present invention is to provide a yaw rate calibration device that can easily calibrate the zero point of a yaw rate sensor.
  • a yaw rate calibration device includes a lateral position acquisition unit that acquires the lateral position of the vehicle with respect to a target travel position of a travel lane in which the vehicle travels, and a driver steering torque that acquires the driver steering torque input by the driver.
  • an acquisition unit, and a zero point calibration unit that calibrates the zero point of the yaw rate sensor, and the zero point calibration unit is based on the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit. calibrate the zero point of the yaw rate sensor.
  • the zero point of the yaw rate sensor is calibrated based on the lateral position acquired by the lateral position acquisition section and the driver steering torque acquired by the driver steering torque acquisition section.
  • the zero point of the yaw rate sensor can be automatically calibrated, making it easy to calibrate the zero point of the yaw rate sensor. I can do it.
  • the vehicle may further include a steering control unit that performs steering control of the vehicle so that the vehicle travels at the target travel position.
  • the steering control section performs steering control of the vehicle so that the vehicle travels at the target travel position, so it is possible to appropriately calibrate the zero point of the yaw rate sensor.
  • the zero point calibration unit calculates the relationship between the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit, such that the relationship between the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit is determined by the lateral position and driver steering torque when the zero point of the yaw rate sensor is not drifting. If the relationship between the lateral position and driver steering torque differs from the relationship between May be calibrated. When the zero point of the yaw rate sensor is not drifting, the relationship between the lateral position of the vehicle and the driver steering torque is a predetermined relationship.
  • this yaw rate calibration device if the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position and the driver steering torque when the zero point of the yaw rate sensor is not drifting, The zero point of the yaw rate sensor is calibrated in such a direction that the relationship between the yaw rate sensor and the yaw rate sensor approaches the relationship between the lateral position and the driver steering torque when the zero point of the yaw rate sensor is not drifting. This allows the zero point of the yaw rate sensor to be properly calibrated.
  • the zero point calibration unit may calibrate the zero point of the yaw rate sensor in the direction of the driver steering torque when the direction of the lateral position with respect to the target traveling position is different from the direction of the driver steering torque. If the direction of the lateral position with respect to the target driving position differs from the direction of the driver steering torque, the vehicle is traveling at a position offset from the target driving position due to the drift of the zero point of the yaw rate sensor, and the driver is moving at a position offset from the target driving position. It is thought that the vehicle is trying to return to its running position.
  • this yaw rate calibration device when the direction of the lateral position relative to the target traveling position and the direction of the driver steering torque are different, the zero point of the yaw rate sensor is calibrated in the direction of the driver steering torque, so that the yaw rate sensor can be adjusted appropriately.
  • the zero point can be calibrated.
  • the zero point calibration unit moves the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position exceeds the threshold distance of either the left or right and the driver steering torque exceeds the threshold torque of either the left or right. May be calibrated. If the lateral position exceeds the threshold distance on either the left or right side, and the driver steering torque exceeds the threshold torque on either the left or right side, the vehicle will be offset from the target driving position due to the drift of the zero point of the yaw rate sensor. It is considered that the driver is trying to return the vehicle to the target travel position.
  • the zero point of the yaw rate sensor is set to the driver steering torque.
  • the zero point of the yaw rate sensor can be appropriately calibrated.
  • the zero point calibration unit calibrates the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position is located in a central region that does not exceed the left and right threshold distance and the driver steering torque exceeds the left and right threshold torque. It's okay. If the lateral position is located in the center region where the left and right threshold distances are not exceeded, and the driver steering torque exceeds the left and right threshold torques, the position where the vehicle is offset from the target driving position due to the drift of the zero point of the yaw rate sensor It is considered that the driver is returning the vehicle to the target travel position because the vehicle is about to travel.
  • this yaw rate calibration device sets the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position is located in the center region that does not exceed the left and right threshold distances, and when the driver steering torque exceeds the left and right threshold torques.
  • the zero point of the yaw rate sensor can be appropriately calibrated.
  • the zero point calibration unit moves the zero point of the yaw rate sensor in the direction of the lateral position with respect to the target traveling position when the lateral position exceeds the threshold distance of either the left or right and the driver steering torque does not exceed the left or right threshold torque. May be calibrated. If the lateral position exceeds either the left or right threshold distance, and the driver steering torque does not exceed the left or right threshold torque, the drift of the zero point of the yaw rate sensor will determine the position where the vehicle is offset from the target driving position. Although the vehicle is traveling, it is considered that the driver is not aware that the vehicle is traveling at a position offset from the target travel position.
  • the zero point of the yaw rate sensor is set to the lateral position relative to the target travel position.
  • the zero point of the yaw rate sensor can be appropriately calibrated.
  • the zero point calibration section is based on the average value of the plurality of lateral positions acquired by the lateral position acquisition section at the first set time and the average value of the plurality of driver steering torques acquired at the second set time by the driver steering torque acquisition section.
  • the zero point of the yaw rate sensor may be calibrated.
  • the lateral position acquisition unit and the driver steering torque acquisition unit are used. Even if a sudden disturbance is input to the part, it is possible to suppress the deterioration of the accuracy of calibration.
  • the zero point calibration unit may calibrate the zero point of the yaw rate sensor in stages.
  • this yaw rate calibration device by calibrating the zero point of the yaw rate sensor in stages, changes in vehicle behavior due to calibration can be made gradual.
  • the vehicle may further include a curvature acquisition unit that acquires the curvature of the driving lane, and the zero point calibration unit may change a calibration value for calibrating the zero point of the yaw rate sensor according to the curvature acquired by the curvature acquisition unit.
  • the target travel position can be calculated with high accuracy by acquiring the curvature of the travel lane with the curvature acquisition unit.
  • the curvature acquisition unit may incorrectly recognize the curvature due to an error in the installation position in the vehicle. Further, such misrecognition can vary greatly depending on the curvature of the driving lane.
  • this yaw rate calibration device by changing the calibration value for calibrating the zero point of the yaw rate sensor according to the curvature acquired by the curvature acquisition unit, it is possible to suppress the decrease in calibration accuracy due to misrecognition by the curvature acquisition unit. can.
  • the zero point calibration section sets the calibration value as the first calibration value, and sets the curvature that is in the straight line area as the first right threshold.
  • the calibration value is varied from the first calibration value to the second calibration value, and then when the curvature exceeds the second right threshold curvature, which is closer to zero than the first right threshold curvature, the calibration value is changed to the second calibration value.
  • the calibration value is changed from the first calibration value to the third calibration value, and then the curvature changes to the first left threshold.
  • the calibration value may be varied from the third calibration value to the first calibration value upon exceeding a second left threshold curvature that is closer to zero than the curvature.
  • this yaw rate calibration device by providing a hysteresis characteristic to the relationship between the curvature and the calibration value, it is possible to suppress frequent fluctuations in the calibration value.
  • the zero point calibration section does not need to calibrate the zero point of the yaw rate sensor until a set time has elapsed after calibrating the zero point of the yaw rate sensor. It takes a certain amount of time after the zero point of the yaw rate sensor is calibrated until the vehicle reaches the target travel position. Therefore, if the zero point of the yaw rate sensor is further calibrated after the zero point of the yaw rate sensor is calibrated and before the vehicle reaches the target travel position, the zero point of the yaw rate sensor may not be properly calibrated.
  • the zero point of the yaw rate sensor since the zero point of the yaw rate sensor is not calibrated until a set time has elapsed after the zero point of the yaw rate sensor is calibrated, the zero point of the yaw rate sensor can be appropriately calibrated.
  • the zero point of the yaw rate sensor can be easily calibrated.
  • FIG. 1 is a schematic diagram showing a yaw rate calibration device according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a situation where a vehicle is traveling in a travel lane.
  • FIG. 3 is a schematic diagram for explaining an example of the direction of driver steering torque input to the steering wheel.
  • FIG. 4 is a schematic diagram showing an example of a situation where a vehicle is traveling on a curved travel lane.
  • FIG. 5 is a table showing an example of the relationship between lateral position and driver steering torque.
  • FIG. 6 is a graph showing an example of the relationship between time and calibration amount.
  • FIG. 7 is a table showing an example of the relationship between the curvature of the driving lane and the calibration value.
  • FIG. 8 is a flowchart showing an example of the processing operation of the yaw rate calibration device.
  • FIG. 1 is a schematic diagram showing a yaw rate calibration device 1 according to an embodiment.
  • a yaw rate calibration device 1 according to the present embodiment is a device that is mounted on a vehicle 2 and calibrates the zero point of a yaw rate sensor 3 mounted on the vehicle 2.
  • the yaw rate calibration device 1 is, for example, an electronic control unit (ECU) that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the yaw rate calibration device 1 executes various controls by, for example, loading a program stored in a ROM into a RAM and executing it with a CPU.
  • the yaw rate calibration device 1 may be composed of a single electronic control unit or a plurality of electronic control units.
  • the yaw rate calibration device 1 includes a steering control section 11, a lateral position acquisition section 12, a driver steering torque acquisition section 13, a curvature acquisition section 14, and a zero point calibration section 15.
  • FIG. 2 is a schematic diagram showing an example of a situation where the vehicle 2 is traveling in the travel lane TL.
  • the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP.
  • the steering control unit 11 performs steering control of the vehicle 2 by driving and controlling a steering actuator (not shown) that applies steering torque to the steering wheel 4 (see FIG. 3). That is, the steering control of the vehicle 2 is performed by driving and controlling the steering actuator.
  • the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels in the target travel position TP of the travel lane TL.
  • the target travel position TP is a position in the lane width direction of the travel lane TL, for example, the center of the travel lane TL in the lane width direction.
  • the method of steering control of the vehicle 2 is not particularly limited.
  • the steering control unit 11 performs steering control of the vehicle 2 by applying a signal to the steering wheel 4 based on the difference between the target yaw rate necessary for the vehicle 2 to travel at a predetermined position in the travel lane TL and the current yaw rate of the vehicle 2.
  • the steering actuator may be driven and controlled by calculating the steering torque that corresponds to the calculated steering torque.
  • the lateral position acquisition unit 12 acquires the lateral position LP of the vehicle 2 with respect to the target travel position TP of the travel lane TL in which the vehicle 2 travels.
  • the lateral position LP of the vehicle 2 is the position of the vehicle 2 relative to the target travel position TP in the lane width direction of the travel lane TL.
  • the position of the vehicle 2 can be, for example, the center of gravity of the vehicle 2.
  • the lateral position acquisition unit 12 extracts the marking line (white line) of the driving lane TL from an image captured by a camera (not shown), and determines the position of the vehicle 2 based on the positional relationship between the extracted marking line and the vehicle 2. Get the position of.
  • the lateral position acquisition unit 12 also acquires a target travel position TP, which serves as a reference for steering control of the vehicle 2, from the steering control unit 11. Then, the lateral position acquisition unit 12 acquires the lateral position LP of the vehicle 2 based on the position of the vehicle 2 and the target travel position TP. For example, the lateral position acquisition unit 12 sets the lateral position LP on the right side to be a minus value with respect to the target traveling position TP, and sets the lateral position LP on the left side as a positive value with respect to the target traveling position TP.
  • the driver steering torque acquisition unit 13 acquires the driver steering torque input by the driver.
  • a steering torque that is a combination of the control steering torque input by the steering actuator and the driver steering torque input to the steering wheel 4 by the driver to steer the vehicle 2 is input to the steering wheel 4 .
  • the controlled steering torque is a torque that is input to the steering wheel 4 by a steering actuator whose drive is controlled by the steering control section 11 .
  • the control steering torque can be calculated from the control value of the steering control section 11.
  • the steering torque can be calculated by a torque sensor connected directly or indirectly to the steering wheel 4. Therefore, the driver steering torque acquisition unit 13 acquires the torque obtained by subtracting the control steering torque from the steering torque as the driver steering torque.
  • the driver steering torque acquired by the driver steering torque acquisition unit 13 is not the actual torque that the driver inputs to the steering wheel 4 to steer the vehicle 2, but the actual torque that the driver inputs to the steering wheel 4 to steer the vehicle 2. is the estimated torque (estimated value of driver steering torque). However, if it is possible to directly obtain the driver steering torque, the driver steering torque may be directly obtained instead of the estimated value.
  • FIG. 3 is a schematic diagram for explaining an example of the direction of driver steering torque input to the steering wheel 4. As shown in FIG. As shown in FIG. 3, the driver steering torque acquisition unit 13 sets, for example, the driver steering torque in the right steering direction (right turning direction) as a positive value, and the driver steering torque in the left steering direction (left turning direction) as a negative value. .
  • the curvature acquisition unit 14 acquires the curvature of the travel lane TL.
  • the curvature acquisition unit 14, for example, extracts the marking line (white line) of the driving lane TL from the image captured by the camera, calculates a reference line passing through the center of the driving lane TL in the lane width direction from the extracted marking line,
  • the curvature of the travel lane TL is obtained by calculating the curvature of the calculated reference line.
  • the curvature of the travel lane TL is used, for example, to calculate a target yaw rate that is a reference for steering control of the vehicle 2 by the steering control unit 11.
  • the curvature acquisition unit 14 sets the curvature of the right-curving driving lane TL to a minus value, and sets the curvature of the left-curving driving lane TL to a positive value.
  • the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3.
  • the yaw rate sensor 3 is a sensor that detects the yaw rate of the vehicle 2.
  • the yaw rate detected by the yaw rate sensor 3 is used, for example, for steering control by the steering control unit 11.
  • the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 based on the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13.
  • FIG. 4 is a schematic diagram showing an example of a situation where the vehicle 2 is traveling in a curved travel lane TL.
  • the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP
  • the vehicle 2 travels along the target travel position TP.
  • the zero point of the yaw rate sensor 3 is drifting, the vehicle 2 travels at a position offset from the target travel position TP.
  • the vehicle 2 will travel at a position to the left of the target travel position TP, and the zero point of the yaw rate sensor 3 will drift toward the right turning side. , the vehicle 2 travels at a position to the right of the target travel position TP.
  • the zero point calibration unit 15 determines that the relationship between the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13 is lateral when the zero point of the yaw rate sensor 3 is not drifting.
  • the relationship between the position LP and the driver steering torque is different, the relationship between the lateral position LP and the driver steering torque approaches the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting. calibrate the zero point of the yaw rate sensor 3 in the direction.
  • the vehicle 2 may travel at a position offset from the target travel position TP due to the drift of the zero point of the yaw rate sensor 3. It is considered that the driver is trying to return the vehicle to the target travel position TP. Therefore, if the direction of the lateral position LP with respect to the target traveling position TP is different from the direction of the driver steering torque, the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 in the direction of the driver steering torque.
  • the zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
  • the zero point calibration unit 15 sets the zero point of the yaw rate sensor 3 to the driver when the lateral position LP exceeds the threshold distance of either the left or right and the driver steering torque exceeds the other threshold torque of the left or right. Calibrate in the direction of steering torque.
  • the zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
  • the drift of the zero point of the yaw rate sensor 3 causes the vehicle 2 to It is considered that the vehicle is traveling at a position offset from the target traveling position TP, and the driver is trying to return the vehicle to the target traveling position TP. Therefore, if the lateral position LP is located in the central region that does not exceed the left and right threshold distances, and the driver steering torque exceeds the left and right threshold torques, the zero point calibration unit 15 adjusts the zero point of the yaw rate sensor 3 to the driver steering torque.
  • the zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
  • the zero point of the yaw rate sensor 3 drifts and the vehicle 2 is moved to the target traveling position.
  • the vehicle is traveling at a position offset from the target travel position TP, it is considered that the driver is not aware that the vehicle is traveling at a position offset from the target travel position TP. Therefore, if the lateral position LP exceeds either the left or right threshold distance and the driver steering torque does not exceed the left or right threshold torque, the zero point calibration unit 15 changes the zero point of the yaw rate sensor 3 to the target travel position TP. Calibrate in the direction of the lateral position LP with respect to.
  • the calibration direction of the zero point of this yaw rate sensor 3 is the turning direction corresponding to the lateral position LP with respect to the target traveling position TP. For example, when the lateral position LP is located to the right of the target travel position TP, the zero point of the yaw rate sensor 3 is calibrated in the right turning direction.
  • FIG. 5 is a table showing an example of the relationship between lateral position LP and driver steering torque.
  • the lateral position LP is divided into three regions: a left region, a center region, and a right region.
  • the left area is an area where the lateral position LP exceeds the left threshold distance, that is, an area where the lateral position LP is located to the left of the left threshold distance.
  • the central area is an area where the lateral position LP does not exceed the left and right threshold distances.
  • the right area is an area where the lateral position LP exceeds the right threshold distance, that is, an area where the lateral position LP is located to the right of the right threshold distance.
  • the left threshold distance is a predetermined distance located to the left of the target travel position TP, and can be set to +0.2 m, for example.
  • the right threshold distance is a predetermined distance located to the right of the target travel position TP, and can be set to -0.2 m, for example.
  • the driver steering torque is divided into three regions: a left steering region, a no-steering region, and a right steering region.
  • the left steering region is a region where the driver steering torque exceeds the left threshold torque, that is, a region where the driver steering torque is larger in the left steering direction than the left threshold torque.
  • the no-steering region is a region in which the driver steering torque does not exceed the left and right threshold torques.
  • the right steering region is a region where the driver steering torque exceeds the right threshold torque, that is, a region where the driver steering torque is larger in the right steering direction than the right threshold torque.
  • the left threshold torque is a torque that causes the driver steering torque to be in the left steering direction, and can be set to -0.2 Nm, for example.
  • the right threshold torque is a torque that causes the driver steering torque to be in the right steering direction, and can be set to +0.2 Nm, for example.
  • the relationship between the lateral position LP and the target traveling position TP is as indicated by the cross in FIG.
  • the relationship is one of the following: "region”, “center region - non-steering region”, and "right side region - right steering region”.
  • the relationship between the lateral position LP and the target traveling position TP is as indicated by the circle in FIG.
  • the relationship is one of the following: ⁇ area - right steering area'', ⁇ center area - left steering area'', ⁇ center area - right steering area'', ⁇ right area - non-steering area'', and ⁇ left area - non-steering area''.
  • the vehicle 2 When the relationship is "right side area - no-steering area", the vehicle 2 is traveling on the right side of the target traveling position TP, but the driver is not aware that the vehicle 2 is traveling on the right side of the target traveling position TP. This is considered to be a situation where the driver is not aware of this, or because the driver wants to drive the vehicle 2 to the right of the target driving position TP, the driver is not inputting driver steering torque to the steering wheel 4, or is inputting almost no driver steering torque. It will be done.
  • the relationship is "left side area - no-steering area”
  • the driver is unaware that the vehicle 2 is traveling on the left side of the target traveling position TP, or the vehicle 2 is traveling on the left side of the target traveling position TP. Although the vehicle is traveling on the left side, the driver wants the vehicle 2 to travel to the left of the target travel position TP, so it is assumed that the driver is not inputting driver steering torque to the steering wheel 4 or is inputting almost no driver steering torque. It will be done.
  • the zero point calibration unit 15 determines that the relationship between the lateral position LP and the target travel position TP is "right side area - left steering area” and "left side area - right steering area” as indicated by the circle in FIG. , "center area - left steering area”, “center area - right steering area”, “right side area - no steering area”, and “left area - no steering area”, the yaw rate sensor 3 Calibrate the zero point of
  • the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the driver steering torque.
  • the relationship between the lateral position LP and the target travel position TP is "left side area - right steering area”
  • the zero point of the yaw rate sensor 3 is calibrated to the right turning direction corresponding to the direction of the driver steering torque.
  • the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the driver steering torque.
  • the zero point of the yaw rate sensor 3 is calibrated to the right turning direction corresponding to the direction of the driver steering torque.
  • the zero point of the yaw rate sensor 3 is set in the right turning direction corresponding to the direction of the lateral position LP with respect to the target travel position TP. Calibrate.
  • the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the lateral position LP with respect to the target travel position TP. do.
  • the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor based on one lateral position LP acquired immediately before by the lateral position acquisition unit 12 and one driver steering torque acquired immediately before by the driver steering torque acquisition unit 13. However, the average value of the plurality of lateral positions LP acquired by the lateral position acquisition unit 12 during the first set time and the average value of the multiple driver steering torques acquired by the driver steering torque acquisition unit 13 during the second set time It is preferable to calibrate the zero point of the yaw rate sensor based on this.
  • the zero point calibration unit 15 sets the average value of the plurality of lateral positions LP acquired by the lateral position acquisition unit 12 during the first set time as the lateral position LP acquired by the lateral position acquisition unit 12, and also It is preferable to calibrate the zero point of the yaw rate sensor 3 by using the average value of the plurality of driver steering torques acquired by the acquisition unit 13 during the second set time as the driver steering torque acquired by the driver steering torque acquisition unit 13.
  • the first setting time and the second setting time are not particularly limited, but are preferably the first setting time and the second setting time immediately before the zero point calibration section 15 calibrates the zero point of the yaw rate sensor. . .
  • the first set time and the second set time may be the same or different.
  • the first set time and the second set time can each be 10 seconds.
  • FIG. 6 is a graph showing an example of the relationship between time and calibration amount.
  • the calibration amount is an integrated value obtained by integrating the calibration values obtained by calibrating the zero point of the yaw rate sensor 3 from the start of the calibration of the zero point of the yaw rate sensor 3 to the end of the calibration of the zero point of the yaw rate sensor 3.
  • the zero point calibration unit 15 may calibrate the zero point of the yaw rate sensor 3 all at once, but it is preferable to calibrate the zero point of the yaw rate sensor 3 in stages as shown in FIG. That is, it is preferable that the zero point calibration section 15 calibrates the zero point of the yaw rate sensor 3 for each predetermined calibration value.
  • the calibration value for calibrating the zero point of the yaw rate sensor 3 in stages is not particularly limited, and may be a fixed value or a variable value.
  • the fixed value can be, for example, 0.002 [rad/s].
  • the calibration value may be varied depending on, for example, the curvature of the travel lane TL. That is, the zero point calibration unit 15 may calibrate the zero point of the yaw rate sensor 3 using a calibration value that varies depending on the curvature of the travel lane TL and the like.
  • the curvature of the travel lane TL can be acquired by the curvature acquisition unit 14.
  • FIG. 7 is a table showing an example of the relationship between the curvature of the travel lane TL and the calibration value.
  • the calibration value is set as the first calibration value.
  • the calibration value is changed from the first calibration value to the second calibration value, and then the curvature of the driving lane TL exceeds the first right threshold curvature.
  • a second right threshold curvature which is closer to zero than the curvature, is exceeded, the calibration value is varied from the second calibration value to the first calibration value.
  • the calibration value is changed from the first calibration value to the third calibration value, and then the curvature of the driving lane TL exceeds the first left threshold curvature.
  • the calibration value is changed from the third calibration value to the first calibration value.
  • the first right threshold curvature, the second right threshold curvature, the first left threshold curvature, and the second left threshold curvature are not particularly limited.
  • the first calibration value, the second calibration value, and the third calibration value are not particularly limited.
  • the zero point calibration unit 15 may continuously calibrate the zero point of the yaw rate sensor 3, but after calibrating the zero point of the yaw rate sensor 3 until the vehicle 2 reaches the target traveling position TP, It will take some time. Therefore, as shown in FIG. 6, it is preferable not to calibrate the zero point of the yaw rate sensor 3 until a set time has elapsed after the zero point of the yaw rate sensor 3 is calibrated. That is, the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 at set time intervals.
  • the set time is not particularly limited, and can be set to, for example, 10 seconds.
  • FIG. 8 is a flowchart showing an example of the processing operation of the yaw rate calibration device 1.
  • the yaw rate calibration device 1 acquires the lateral position LP and driver steering torque (step S1).
  • the curvature of the travel lane TL may also be acquired.
  • the yaw rate calibration device 1 determines whether it is necessary to calibrate the zero point of the yaw rate sensor 3 (step S2).
  • step S2 the relationship between the lateral position LP and the driver steering torque is determined by referring to the table in FIG. If the relationship is different from the above, it is determined that the zero point of the yaw rate sensor 3 needs to be calibrated. If it is determined that there is no need to calibrate the zero point of the yaw rate sensor 3 (step S2: NO), the yaw rate calibration device 1 once ends the process and repeats the process from step S1 again after the set time has elapsed.
  • step S2 YES
  • the yaw rate calibration device 1 adjusts the yaw rate sensor 3 based on the lateral position LP and driver steering torque acquired in step S1.
  • the zero point is calibrated (step S3).
  • step S3 the relationship between the lateral position LP and the driver steering torque is determined by referring to the table in FIG.
  • the zero point of the yaw rate sensor 3 is calibrated in a direction that approaches the relationship.
  • the yaw rate calibration device 1 once ends the process, and after the set time has elapsed, repeats the process again from step S1.
  • the lateral position of the vehicle and the driver's steering are adjusted depending on when the zero point of the yaw rate sensor is drifting and when the zero point of the yaw rate sensor is not drifting. Since the relationship with torque is different, the zero point of the yaw rate sensor 3 is calibrated based on the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13. As a result, there is no need to stop the vehicle 2 to calibrate the zero point of the yaw rate sensor 3, and the zero point of the yaw rate sensor 3 can be automatically calibrated. can be calibrated.
  • the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP, so that the zero point of the yaw rate sensor 3 can be appropriately calibrated. .
  • this yaw rate calibration device 1 if the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting, the lateral position LP The zero point of the yaw rate sensor 3 is calibrated so that the relationship between the lateral position LP and the driver steering torque approaches the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting. Thereby, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
  • this yaw rate calibration device 1 when the direction of the lateral position LP with respect to the target traveling position TP is different from the direction of the driver steering torque, the zero point of the yaw rate sensor 3 is calibrated in the direction of the driver steering torque, so that the yaw rate sensor 3 can be properly adjusted.
  • the zero point of the yaw rate sensor 3 can be calibrated.
  • this yaw rate calibration device 1 when the lateral position LP exceeds the threshold distance of either the left or right, and the driver steering torque exceeds the threshold torque of either the left or right, the zero point of the yaw rate sensor 3 is adjusted. By calibrating in the direction of the driver steering torque, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
  • this yaw rate calibration device 1 when the lateral position LP is located in the central region that does not exceed the left and right threshold distances, and the driver steering torque exceeds the left and right threshold torques, the zero point of the yaw rate sensor 3 is set to the driver's steering. By calibrating in the torque direction, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
  • the zero point of the yaw rate sensor 3 is set to the target traveling position.
  • the zero point of the yaw rate sensor 3 can be appropriately calibrated.
  • this yaw rate calibration device in order to calibrate the zero point of the yaw rate sensor 3 based on the average value of the lateral position LP in the first set time and the average value of the driver steering torque in the second set time, even if a sudden disturbance is input to the driver steering torque acquisition section 12 and the driver steering torque acquisition section 13, it is possible to suppress a decrease in the accuracy of calibration.
  • this yaw rate calibration device by calibrating the zero point of the yaw rate sensor 3 in stages, changes in the behavior of the vehicle 2 due to calibration can be made gradual.
  • the target travel position TP can be calculated with high accuracy by acquiring the curvature of the travel lane TL using the curvature acquisition unit 14.
  • the curvature acquisition unit 14 may misrecognize the curvature due to an error in the installation position in the vehicle 2 or the like. Furthermore, such misrecognition can vary greatly depending on the curvature of the travel lane TL. Therefore, in this yaw rate calibration device 1, by changing the calibration value for calibrating the zero point of the yaw rate sensor 3 according to the curvature acquired by the curvature acquisition unit 14, the decrease in calibration accuracy due to misrecognition by the curvature acquisition unit 14 is prevented. Can be suppressed.
  • this yaw rate calibration device by providing a hysteresis characteristic to the relationship between the curvature and the calibration value, it is possible to suppress frequent fluctuations in the calibration value.
  • the zero point of the yaw rate sensor 3 is not calibrated until a set time has elapsed after the zero point of the yaw rate sensor 3 is calibrated, so the zero point of the yaw rate sensor 3 must be appropriately calibrated. I can do it.
  • one aspect of the present invention is not limited to the above embodiment, and may be modified or modified without changing the gist of each claim. May be applied to things.
  • SYMBOLS 1 Yaw rate calibration device, 2... Vehicle, 3... Yaw rate sensor, 4... Steering, 11... Steering control section, 12... Lateral position acquisition section, 13... Driver steering torque acquisition section, 14... Curvature acquisition section, 15... Zero point Calibration section, LP...Lateral position, TL...Travel lane, TP...Target travel position.

Abstract

Provided is a yaw rate calibration device comprising: a lateral position acquisition unit that acquires a lateral position of a vehicle with respect to a target travel position of a travel lane in which the vehicle travels; a driver steering torque acquisition unit that acquires a driver steering torque inputted by a driver; and a zero-point calibration unit that calibrates the zero point of a yaw rate sensor, wherein the zero-point calibration unit calibrates the zero point of the yaw rate sensor on the basis of the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit.

Description

ヨーレート較正装置Yaw rate calibration device
 本発明の一側面は、ヨーレート較正装置に関する。 One aspect of the present invention relates to a yaw rate calibration device.
 特許文献1には、実ヨーレートと基準ヨーレートとの偏差に応じた操舵アシストトルクを操舵手段に与えることで、車両の道路逸脱を防止する操舵制御装置が記載されている。 Patent Document 1 describes a steering control device that prevents a vehicle from deviating from the road by applying a steering assist torque to a steering means according to the deviation between an actual yaw rate and a reference yaw rate.
特開平08―263794号公報Japanese Patent Application Publication No. 08-263794
 特許文献1に記載された操舵制御装置では、実ヨーレートをヨーレートセンサで検出している。ヨーレートセンサは、温度変化や時間経過等の影響でゼロ点がドリフトする性質を有する。このため、従来は、停車時のヨーレートセンサの値を基準として、ヨーレートセンサのゼロ点を較正していた。 In the steering control device described in Patent Document 1, the actual yaw rate is detected by a yaw rate sensor. The yaw rate sensor has the property that its zero point drifts due to changes in temperature, the passage of time, and the like. For this reason, conventionally, the zero point of the yaw rate sensor has been calibrated using the value of the yaw rate sensor when the vehicle is stopped as a reference.
 しかしながら、ゼロ点を較正するために車両を停止させる必要があるため、必ずしも簡便なものとは言えなかった。 However, since it is necessary to stop the vehicle in order to calibrate the zero point, it is not necessarily convenient.
 そこで、本発明の一側面は、簡便にヨーレートセンサのゼロ点を較正することができるヨーレート較正装置を提供することを課題とする。 Therefore, one aspect of the present invention is to provide a yaw rate calibration device that can easily calibrate the zero point of a yaw rate sensor.
 本発明の一側面に係るヨーレート較正装置は、車両が走行する走行車線の目標走行位置に対する車両の横位置を取得する横位置取得部と、ドライバにより入力されたドライバ操舵トルクを取得するドライバ操舵トルク取得部と、ヨーレートセンサのゼロ点を較正するゼロ点較正部と、を備え、ゼロ点較正部は、横位置取得部が取得した横位置及びドライバ操舵トルク取得部が取得したドライバ操舵トルクに基づいて、ヨーレートセンサのゼロ点を較正する。 A yaw rate calibration device according to one aspect of the present invention includes a lateral position acquisition unit that acquires the lateral position of the vehicle with respect to a target travel position of a travel lane in which the vehicle travels, and a driver steering torque that acquires the driver steering torque input by the driver. an acquisition unit, and a zero point calibration unit that calibrates the zero point of the yaw rate sensor, and the zero point calibration unit is based on the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit. calibrate the zero point of the yaw rate sensor.
 ヨーレートセンサのゼロ点がドリフトしているときとヨーレートセンサのゼロ点がドリフトしていないときとで、車両の横位置とドライバ操舵トルクとの関係が異なる。そこで、このヨーレート較正装置では、横位置取得部が取得した横位置及びドライバ操舵トルク取得部が取得したドライバ操舵トルクに基づいてヨーレートセンサのゼロ点を較正する。これにより、ヨーレートセンサのゼロ点を較正するために車両を停車させる必要がなく、また、自動的にヨーレートセンサのゼロ点を較正することもできるため、簡便にヨーレートセンサのゼロ点を較正することができる。 The relationship between the lateral position of the vehicle and the driver steering torque is different when the zero point of the yaw rate sensor is drifting and when the zero point of the yaw rate sensor is not drifting. Therefore, in this yaw rate calibration device, the zero point of the yaw rate sensor is calibrated based on the lateral position acquired by the lateral position acquisition section and the driver steering torque acquired by the driver steering torque acquisition section. As a result, there is no need to stop the vehicle to calibrate the zero point of the yaw rate sensor, and the zero point of the yaw rate sensor can be automatically calibrated, making it easy to calibrate the zero point of the yaw rate sensor. I can do it.
 車両が目標走行位置を走行するように車両の操舵制御を行う操舵制御部を更に備えてもよい。このヨーレート較正装置では、操舵制御部が、車両が目標走行位置を走行するように車両の操舵制御を行うため、適切にヨーレートセンサのゼロ点を較正することができる。 The vehicle may further include a steering control unit that performs steering control of the vehicle so that the vehicle travels at the target travel position. In this yaw rate calibration device, the steering control section performs steering control of the vehicle so that the vehicle travels at the target travel position, so it is possible to appropriately calibrate the zero point of the yaw rate sensor.
 ゼロ点較正部は、横位置取得部が取得した横位置とドライバ操舵トルク取得部が取得したドライバ操舵トルクとの関係が、ヨーレートセンサのゼロ点がドリフトしていない場合の横位置とドライバ操舵トルクとの関係と異なる場合、横位置とドライバ操舵トルクとの関係が、ヨーレートセンサのゼロ点がドリフトしていない場合の横位置とドライバ操舵トルクとの関係に近づく方向に、ヨーレートセンサのゼロ点を較正してもよい。ヨーレートセンサのゼロ点がドリフトしていない場合、車両の横位置とドライバ操舵トルクとの関係は所定の関係となる。そこで、このヨーレート較正装置では、横位置とドライバ操舵トルクとの関係が、ヨーレートセンサのゼロ点がドリフトしていない場合の横位置とドライバ操舵トルクとの関係と異なる場合、横位置とドライバ操舵トルクとの関係が、ヨーレートセンサのゼロ点がドリフトしていない場合の横位置とドライバ操舵トルクとの関係に近づく方向に、ヨーレートセンサのゼロ点を較正する。これにより、適切にヨーレートセンサのゼロ点を較正することができる。 The zero point calibration unit calculates the relationship between the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit, such that the relationship between the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit is determined by the lateral position and driver steering torque when the zero point of the yaw rate sensor is not drifting. If the relationship between the lateral position and driver steering torque differs from the relationship between May be calibrated. When the zero point of the yaw rate sensor is not drifting, the relationship between the lateral position of the vehicle and the driver steering torque is a predetermined relationship. Therefore, in this yaw rate calibration device, if the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position and the driver steering torque when the zero point of the yaw rate sensor is not drifting, The zero point of the yaw rate sensor is calibrated in such a direction that the relationship between the yaw rate sensor and the yaw rate sensor approaches the relationship between the lateral position and the driver steering torque when the zero point of the yaw rate sensor is not drifting. This allows the zero point of the yaw rate sensor to be properly calibrated.
 ゼロ点較正部は、目標走行位置に対する横位置の方向とドライバ操舵トルクの方向とが異なる場合、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正してもよい。目標走行位置に対する横位置の方向とドライバ操舵トルクの方向とが異なる場合は、ヨーレートセンサのゼロ点のドリフトにより車両が目標走行位置に対してオフセットした位置を走行しており、ドライバがこれを目標走行位置に戻そうとしている状態であると考えられる。そこで、このヨーレート較正装置では、目標走行位置に対する横位置の方向とドライバ操舵トルクの方向とが異なる場合に、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサのゼロ点を較正することができる。 The zero point calibration unit may calibrate the zero point of the yaw rate sensor in the direction of the driver steering torque when the direction of the lateral position with respect to the target traveling position is different from the direction of the driver steering torque. If the direction of the lateral position with respect to the target driving position differs from the direction of the driver steering torque, the vehicle is traveling at a position offset from the target driving position due to the drift of the zero point of the yaw rate sensor, and the driver is moving at a position offset from the target driving position. It is thought that the vehicle is trying to return to its running position. Therefore, in this yaw rate calibration device, when the direction of the lateral position relative to the target traveling position and the direction of the driver steering torque are different, the zero point of the yaw rate sensor is calibrated in the direction of the driver steering torque, so that the yaw rate sensor can be adjusted appropriately. The zero point can be calibrated.
 ゼロ点較正部は、横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正してもよい。横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合は、ヨーレートセンサのゼロ点のドリフトにより車両が目標走行位置に対してオフセットした位置を走行しており、ドライバがこれを目標走行位置に戻そうとしている状態であると考えられる。そこで、このヨーレート較正装置では、横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合に、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサのゼロ点を較正することができる。 The zero point calibration unit moves the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position exceeds the threshold distance of either the left or right and the driver steering torque exceeds the threshold torque of either the left or right. May be calibrated. If the lateral position exceeds the threshold distance on either the left or right side, and the driver steering torque exceeds the threshold torque on either the left or right side, the vehicle will be offset from the target driving position due to the drift of the zero point of the yaw rate sensor. It is considered that the driver is trying to return the vehicle to the target travel position. Therefore, in this yaw rate calibration device, when the lateral position exceeds the threshold distance of either the left or right, and the driver steering torque exceeds the threshold torque of either the left or right, the zero point of the yaw rate sensor is set to the driver steering torque. By calibrating in the direction of , the zero point of the yaw rate sensor can be appropriately calibrated.
 ゼロ点較正部は、横位置が左右の閾値距離を超えない中央領域に位置し、且つ、ドライバ操舵トルクが左右の閾値トルクを超える場合、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正してもよい。横位置が左右の閾値距離を超えない中央領域に位置し、且つ、ドライバ操舵トルクが左右の閾値トルクを超える場合は、ヨーレートセンサのゼロ点のドリフトにより車両が目標走行位置に対してオフセットした位置を走行しようとするため、ドライバがこれを目標走行位置に戻している状態であると考えられる。そこで、このヨーレート較正装置では、横位置が左右の閾値距離を超えない中央領域に位置し、且つ、ドライバ操舵トルクが左右の閾値トルクを超える場合に、ヨーレートセンサのゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサのゼロ点を較正することができる。 The zero point calibration unit calibrates the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position is located in a central region that does not exceed the left and right threshold distance and the driver steering torque exceeds the left and right threshold torque. It's okay. If the lateral position is located in the center region where the left and right threshold distances are not exceeded, and the driver steering torque exceeds the left and right threshold torques, the position where the vehicle is offset from the target driving position due to the drift of the zero point of the yaw rate sensor It is considered that the driver is returning the vehicle to the target travel position because the vehicle is about to travel. Therefore, this yaw rate calibration device sets the zero point of the yaw rate sensor in the direction of the driver steering torque when the lateral position is located in the center region that does not exceed the left and right threshold distances, and when the driver steering torque exceeds the left and right threshold torques. By calibrating the yaw rate sensor, the zero point of the yaw rate sensor can be appropriately calibrated.
 ゼロ点較正部は、横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合、ヨーレートセンサのゼロ点を目標走行位置に対する横位置の方向に較正してもよい。横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合は、ヨーレートセンサのゼロ点のドリフトにより車両が目標走行位置に対してオフセットした位置を走行しているが、ドライバが目標走行位置からオフセットした位置を走行していることに気付いていない状態であると考えられる。そこで、このヨーレート較正装置では、横位置が左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合に、ヨーレートセンサのゼロ点を目標走行位置に対する横位置の方向に較正することで、適切にヨーレートセンサのゼロ点を較正することができる。 The zero point calibration unit moves the zero point of the yaw rate sensor in the direction of the lateral position with respect to the target traveling position when the lateral position exceeds the threshold distance of either the left or right and the driver steering torque does not exceed the left or right threshold torque. May be calibrated. If the lateral position exceeds either the left or right threshold distance, and the driver steering torque does not exceed the left or right threshold torque, the drift of the zero point of the yaw rate sensor will determine the position where the vehicle is offset from the target driving position. Although the vehicle is traveling, it is considered that the driver is not aware that the vehicle is traveling at a position offset from the target travel position. Therefore, in this yaw rate calibration device, when the lateral position exceeds either the left or right threshold distance and the driver steering torque does not exceed the left or right threshold torque, the zero point of the yaw rate sensor is set to the lateral position relative to the target travel position. By calibrating in the direction of , the zero point of the yaw rate sensor can be appropriately calibrated.
 ゼロ点較正部は、横位置取得部が第一設定時間に取得した複数の横位置の平均値及びドライバ操舵トルク取得部が第二設定時間に取得した複数のドライバ操舵トルクの平均値に基づいて、ヨーレートセンサのゼロ点を較正してもよい。このヨーレート較正装置では、横位置の第一設定時間における平均値及びドライバ操舵トルクの第二設定時間における平均値に基づいてヨーレートセンサのゼロ点を較正するため、横位置取得部及びドライバ操舵トルク取得部に突発的な外乱が入力しても、較正の精度が低下するのを抑制することができる。 The zero point calibration section is based on the average value of the plurality of lateral positions acquired by the lateral position acquisition section at the first set time and the average value of the plurality of driver steering torques acquired at the second set time by the driver steering torque acquisition section. , the zero point of the yaw rate sensor may be calibrated. In this yaw rate calibration device, in order to calibrate the zero point of the yaw rate sensor based on the average value of the lateral position in the first setting time and the average value of the driver steering torque in the second setting time, the lateral position acquisition unit and the driver steering torque acquisition unit are used. Even if a sudden disturbance is input to the part, it is possible to suppress the deterioration of the accuracy of calibration.
 ゼロ点較正部は、ヨーレートセンサのゼロ点を段階的に較正してもよい。このヨーレート較正装置では、ヨーレートセンサのゼロ点を段階的に較正することで、較正による車両の挙動変化を緩やかにするすることができる。 The zero point calibration unit may calibrate the zero point of the yaw rate sensor in stages. In this yaw rate calibration device, by calibrating the zero point of the yaw rate sensor in stages, changes in vehicle behavior due to calibration can be made gradual.
 走行車線の曲率を取得する曲率取得部を更に備え、ゼロ点較正部は、曲率取得部が取得した曲率に応じて、ヨーレートセンサのゼロ点を較正する較正値を変えてもよい。このヨーレート較正装置では、曲率取得部で走行車線の曲率を取得することで、目標走行位置を高精度に算出することができる。一方、曲率取得部は、車両における設置位置の誤差等により曲率を誤認識する可能性がある。また、このような誤認識は、走行車線の曲率によっても大きく変わり得る。そこで、このヨーレート較正装置では、曲率取得部が取得した曲率に応じてヨーレートセンサのゼロ点を較正する較正値を変えることで、曲率取得部の誤認識に伴う較正精度の低下を抑制することができる。 The vehicle may further include a curvature acquisition unit that acquires the curvature of the driving lane, and the zero point calibration unit may change a calibration value for calibrating the zero point of the yaw rate sensor according to the curvature acquired by the curvature acquisition unit. In this yaw rate calibration device, the target travel position can be calculated with high accuracy by acquiring the curvature of the travel lane with the curvature acquisition unit. On the other hand, the curvature acquisition unit may incorrectly recognize the curvature due to an error in the installation position in the vehicle. Further, such misrecognition can vary greatly depending on the curvature of the driving lane. Therefore, in this yaw rate calibration device, by changing the calibration value for calibrating the zero point of the yaw rate sensor according to the curvature acquired by the curvature acquisition unit, it is possible to suppress the decrease in calibration accuracy due to misrecognition by the curvature acquisition unit. can.
 ゼロ点較正部は、曲率が第一右閾値曲率と第一左閾値曲率との間の直線領域にある場合は、較正値を第一較正値とし、直線領域にあった曲率が第一右閾値曲率を超えると、較正値を第一較正値から第二較正値に変動させ、その後、曲率が第一右閾値曲率よりもゼロに近い第二右閾値曲率を超えると、較正値を第二較正値から第一較正値に変動させ、直線領域にあった曲率が第二右閾値曲率を超えると、較正値を第一較正値から第三較正値に変動させ、その後、曲率が第一左閾値曲率よりもゼロに近い第二左閾値曲率を超えると、較正値を第三較正値から第一較正値に変動させてもよい。このヨーレート較正装置では、曲率と較正値との関係にヒステリシス特性を持たせることで、較正値が頻繁に変動することを抑制することができる。 When the curvature is in a straight line area between the first right threshold curvature and the first left threshold curvature, the zero point calibration section sets the calibration value as the first calibration value, and sets the curvature that is in the straight line area as the first right threshold. When the curvature is exceeded, the calibration value is varied from the first calibration value to the second calibration value, and then when the curvature exceeds the second right threshold curvature, which is closer to zero than the first right threshold curvature, the calibration value is changed to the second calibration value. When the curvature in the straight line area exceeds the second right threshold curvature, the calibration value is changed from the first calibration value to the third calibration value, and then the curvature changes to the first left threshold. The calibration value may be varied from the third calibration value to the first calibration value upon exceeding a second left threshold curvature that is closer to zero than the curvature. In this yaw rate calibration device, by providing a hysteresis characteristic to the relationship between the curvature and the calibration value, it is possible to suppress frequent fluctuations in the calibration value.
 ゼロ点較正部は、ヨーレートセンサのゼロ点を較正してから設定時間を経過するまではヨーレートセンサのゼロ点を較正しなくてもよい。ヨーレートセンサのゼロ点を較正してから車両が目標走行位置に到達するまでは、ある程度の時間を要する。このため、ヨーレートセンサのゼロ点を較正してから車両が目標走行位置に到達するまでの間に更にヨーレートセンサのゼロ点を較正すると、ヨーレートセンサのゼロ点を適切に較正できない可能性がある。そこで、このヨーレート較正装置では、ヨーレートセンサのゼロ点を較正してから設定時間を経過するまではヨーレートセンサのゼロ点を較正しないため、ヨーレートセンサのゼロ点を適切に較正することができる。 The zero point calibration section does not need to calibrate the zero point of the yaw rate sensor until a set time has elapsed after calibrating the zero point of the yaw rate sensor. It takes a certain amount of time after the zero point of the yaw rate sensor is calibrated until the vehicle reaches the target travel position. Therefore, if the zero point of the yaw rate sensor is further calibrated after the zero point of the yaw rate sensor is calibrated and before the vehicle reaches the target travel position, the zero point of the yaw rate sensor may not be properly calibrated. Therefore, in this yaw rate calibration device, since the zero point of the yaw rate sensor is not calibrated until a set time has elapsed after the zero point of the yaw rate sensor is calibrated, the zero point of the yaw rate sensor can be appropriately calibrated.
 本発明の一側面によれば、簡便にヨーレートセンサのゼロ点を較正することができる。 According to one aspect of the present invention, the zero point of the yaw rate sensor can be easily calibrated.
図1は、実施形態に係るヨーレート較正装置を示す模式図である。FIG. 1 is a schematic diagram showing a yaw rate calibration device according to an embodiment. 図2は、車両が走行車線を走行している状況の一例を示す模式図である。FIG. 2 is a schematic diagram illustrating an example of a situation where a vehicle is traveling in a travel lane. 図3は、ステアリングに入力されるドライバ操舵トルクの向きの一例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an example of the direction of driver steering torque input to the steering wheel. 図4は、車両がカーブの走行車線を走行している状況の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a situation where a vehicle is traveling on a curved travel lane. 図5は、横位置とドライバ操舵トルクとの関係の一例を示す表である。FIG. 5 is a table showing an example of the relationship between lateral position and driver steering torque. 図6は、時間と較正量との関係の一例を示すグラフである。FIG. 6 is a graph showing an example of the relationship between time and calibration amount. 図7は、走行車線の曲率と較正値との関係の一例を示した表である。FIG. 7 is a table showing an example of the relationship between the curvature of the driving lane and the calibration value. 図8は、ヨーレート較正装置の処理動作の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the processing operation of the yaw rate calibration device.
 以下、本発明の一側面の実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments of one aspect of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements are given the same reference numerals and redundant description will be omitted.
 図1は、実施形態に係るヨーレート較正装置1を示す模式図である。図1に示すように、本実施形態に係るヨーレート較正装置1は、車両2に搭載されて、車両2に搭載されたヨーレートセンサ3のゼロ点を較正する装置である。ヨーレート較正装置1は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する電子制御ユニット(ECU:Electronic Control Unit)である。ヨーレート較正装置1では、例えば、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、各種の制御を実行する。ヨーレート較正装置1は、単一の電子制御ユニットにより構成されていてもよく、複数の電子制御ユニットにより構成されていてもよい。 FIG. 1 is a schematic diagram showing a yaw rate calibration device 1 according to an embodiment. As shown in FIG. 1, a yaw rate calibration device 1 according to the present embodiment is a device that is mounted on a vehicle 2 and calibrates the zero point of a yaw rate sensor 3 mounted on the vehicle 2. The yaw rate calibration device 1 is, for example, an electronic control unit (ECU) that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The yaw rate calibration device 1 executes various controls by, for example, loading a program stored in a ROM into a RAM and executing it with a CPU. The yaw rate calibration device 1 may be composed of a single electronic control unit or a plurality of electronic control units.
 ヨーレート較正装置1は、操舵制御部11と、横位置取得部12と、ドライバ操舵トルク取得部13と、曲率取得部14と、ゼロ点較正部15と、を備える。 The yaw rate calibration device 1 includes a steering control section 11, a lateral position acquisition section 12, a driver steering torque acquisition section 13, a curvature acquisition section 14, and a zero point calibration section 15.
 図2は、車両2が走行車線TLを走行している状況の一例を示す模式図である。図1及び図2に示すように、操舵制御部11は、車両2が目標走行位置TPを走行するように車両2の操舵制御を行う。操舵制御部11は、ステアリング4(図3参照)に操舵トルクを付与する操舵アクチュエータ(不図示)を駆動制御することにより、車両2の操舵制御を行う。つまり、車両2の操舵制御は、操舵アクチュエータを駆動制御することにより行う。そして、操舵制御部11は、車両2が走行車線TLの目標走行位置TPを走行するように、車両2の操舵制御を行う。目標走行位置TPは、走行車線TLの車線幅方向における位置であり、例えば、走行車線TLの車線幅方向における中央である。車両2の操舵制御の手法は、特に限定されるものではない。例えば、操舵制御部11は、車両2の操舵制御として、車両2が走行車線TLの所定位置を走行するために必要な目標ヨーレートと車両2の現在のヨーレートとの差分に基づいてステアリング4に付与する操舵トルクを算出し、この算出した操舵トルクに対応する駆動量で操舵アクチュエータを駆動制御することにより行ってもよい。 FIG. 2 is a schematic diagram showing an example of a situation where the vehicle 2 is traveling in the travel lane TL. As shown in FIGS. 1 and 2, the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP. The steering control unit 11 performs steering control of the vehicle 2 by driving and controlling a steering actuator (not shown) that applies steering torque to the steering wheel 4 (see FIG. 3). That is, the steering control of the vehicle 2 is performed by driving and controlling the steering actuator. Then, the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels in the target travel position TP of the travel lane TL. The target travel position TP is a position in the lane width direction of the travel lane TL, for example, the center of the travel lane TL in the lane width direction. The method of steering control of the vehicle 2 is not particularly limited. For example, the steering control unit 11 performs steering control of the vehicle 2 by applying a signal to the steering wheel 4 based on the difference between the target yaw rate necessary for the vehicle 2 to travel at a predetermined position in the travel lane TL and the current yaw rate of the vehicle 2. Alternatively, the steering actuator may be driven and controlled by calculating the steering torque that corresponds to the calculated steering torque.
 横位置取得部12は、車両2が走行する走行車線TLの目標走行位置TPに対する車両2の横位置LPを取得する。車両2の横位置LPは、走行車線TLの車線幅方向における、目標走行位置TPに対する車両2の位置である。車両2の位置としては、例えば、車両2の重心位置とすることができる。横位置取得部12は、例えば、カメラ(不図示)によって撮像された画像から走行車線TLの区画線(白線)を抽出し、抽出した区画線と車両2との位置関係に基づいて、車両2の位置を取得する。また、横位置取得部12は、操舵制御部11から、車両2の操舵制御の基準となる目標走行位置TPを取得する。そして、横位置取得部12は、車両2の位置と目標走行位置TPとに基づいて、車両2の横位置LPを取得する。横位置取得部12は、例えば、目標走行位置TPに対して右側の横位置LPをマイナスとし、目標走行位置TPに対して左側の横位置LPをプラスとする。 The lateral position acquisition unit 12 acquires the lateral position LP of the vehicle 2 with respect to the target travel position TP of the travel lane TL in which the vehicle 2 travels. The lateral position LP of the vehicle 2 is the position of the vehicle 2 relative to the target travel position TP in the lane width direction of the travel lane TL. The position of the vehicle 2 can be, for example, the center of gravity of the vehicle 2. For example, the lateral position acquisition unit 12 extracts the marking line (white line) of the driving lane TL from an image captured by a camera (not shown), and determines the position of the vehicle 2 based on the positional relationship between the extracted marking line and the vehicle 2. Get the position of. The lateral position acquisition unit 12 also acquires a target travel position TP, which serves as a reference for steering control of the vehicle 2, from the steering control unit 11. Then, the lateral position acquisition unit 12 acquires the lateral position LP of the vehicle 2 based on the position of the vehicle 2 and the target travel position TP. For example, the lateral position acquisition unit 12 sets the lateral position LP on the right side to be a minus value with respect to the target traveling position TP, and sets the lateral position LP on the left side as a positive value with respect to the target traveling position TP.
 ドライバ操舵トルク取得部13は、ドライバにより入力されたドライバ操舵トルクを取得する。ステアリング4には、操舵アクチュエータにより入力される制御操舵トルクと、ドライバが車両2を操舵するためにステアリング4に入力したドライバ操舵トルクと、を合わせた操舵トルクが入力される。制御操舵トルクは、操舵制御部11により駆動制御された操舵アクチュエータがステアリング4に入力するトルクである。制御操舵トルクは、操舵制御部11の制御値から算出することができる。操舵トルクは、ステアリング4に直接的又は間接的に接続されたトルクセンサにより算出することができる。そこで、ドライバ操舵トルク取得部13は、操舵トルクから制御操舵トルクを減算したトルクを、ドライバ操舵トルクとして取得する。つまり、ドライバ操舵トルク取得部13が取得するドライバ操舵トルクは、ドライバが車両2を操舵するためにステアリング4に入力した実際のトルクではなく、ドライバが車両2を操舵するためにステアリング4に入力したと推定されるトルク(ドライバ操舵トルクの推定値)である。但し、ドライバ操舵トルクを直接的に取得することが可能であれば、推定値ではなく、直接的にドライバ操舵トルクを取得してもよい。図3は、ステアリング4に入力されるドライバ操舵トルクの向きの一例を説明するための模式図である。図3に示すように、ドライバ操舵トルク取得部13は、例えば、右操舵方向(右旋回方向)のドライバ操舵トルクをプラスとし、左操舵方向(左旋回方向)のドライバ操舵トルクをマイナスとする。 The driver steering torque acquisition unit 13 acquires the driver steering torque input by the driver. A steering torque that is a combination of the control steering torque input by the steering actuator and the driver steering torque input to the steering wheel 4 by the driver to steer the vehicle 2 is input to the steering wheel 4 . The controlled steering torque is a torque that is input to the steering wheel 4 by a steering actuator whose drive is controlled by the steering control section 11 . The control steering torque can be calculated from the control value of the steering control section 11. The steering torque can be calculated by a torque sensor connected directly or indirectly to the steering wheel 4. Therefore, the driver steering torque acquisition unit 13 acquires the torque obtained by subtracting the control steering torque from the steering torque as the driver steering torque. In other words, the driver steering torque acquired by the driver steering torque acquisition unit 13 is not the actual torque that the driver inputs to the steering wheel 4 to steer the vehicle 2, but the actual torque that the driver inputs to the steering wheel 4 to steer the vehicle 2. is the estimated torque (estimated value of driver steering torque). However, if it is possible to directly obtain the driver steering torque, the driver steering torque may be directly obtained instead of the estimated value. FIG. 3 is a schematic diagram for explaining an example of the direction of driver steering torque input to the steering wheel 4. As shown in FIG. As shown in FIG. 3, the driver steering torque acquisition unit 13 sets, for example, the driver steering torque in the right steering direction (right turning direction) as a positive value, and the driver steering torque in the left steering direction (left turning direction) as a negative value. .
 図1及び図2に示すように、曲率取得部14は、走行車線TLの曲率を取得する。曲率取得部14は、例えば、カメラによって撮像された画像から走行車線TLの区画線(白線)を抽出し、抽出した区画線から走行車線TLの車線幅方向における中央を通る基準線を算出し、算出した基準線の曲率を算出することで、走行車線TLの曲率を取得する。走行車線TLの曲率は、例えば、操舵制御部11による車両2の操舵制御の基準となる目標ヨーレートの算出に用いられる。曲率取得部14は、例えば、右カーブの走行車線TLの曲率をマイナスとし、左カーブの走行車線TLの曲率をプラスとする。 As shown in FIGS. 1 and 2, the curvature acquisition unit 14 acquires the curvature of the travel lane TL. The curvature acquisition unit 14, for example, extracts the marking line (white line) of the driving lane TL from the image captured by the camera, calculates a reference line passing through the center of the driving lane TL in the lane width direction from the extracted marking line, The curvature of the travel lane TL is obtained by calculating the curvature of the calculated reference line. The curvature of the travel lane TL is used, for example, to calculate a target yaw rate that is a reference for steering control of the vehicle 2 by the steering control unit 11. For example, the curvature acquisition unit 14 sets the curvature of the right-curving driving lane TL to a minus value, and sets the curvature of the left-curving driving lane TL to a positive value.
 ゼロ点較正部15は、ヨーレートセンサ3のゼロ点を較正する。ヨーレートセンサ3は、車両2のヨーレートを検出するセンサである。ヨーレートセンサ3で検出されたヨーレートは、例えば、操舵制御部11による操舵制御に用いられる。ゼロ点較正部15は、横位置取得部12が取得した横位置LP及びドライバ操舵トルク取得部13が取得したドライバ操舵トルクに基づいて、ヨーレートセンサ3のゼロ点を較正する。 The zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3. The yaw rate sensor 3 is a sensor that detects the yaw rate of the vehicle 2. The yaw rate detected by the yaw rate sensor 3 is used, for example, for steering control by the steering control unit 11. The zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 based on the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13.
 図4は、車両2がカーブの走行車線TLを走行している状況の一例を示す模式図である。図4に示すように、操舵制御部11が、車両2が目標走行位置TPを走行するように車両2の操舵制御を行う場合、ヨーレートセンサ3のゼロ点がドリフトしていないと、車両2は目標走行位置TPに沿って走行する。しかしながら、ヨーレートセンサ3のゼロ点がドリフトしていると、車両2は目標走行位置TPからオフセットした位置を走行する。例えば、ヨーレートセンサ3のゼロ点が左旋回側にドリフトしていると、車両2は、目標走行位置TPよりも左側の位置を走行し、ヨーレートセンサ3のゼロ点が右旋回側にドリフトしていると、車両2は、目標走行位置TPよりも右側の位置を走行する。 FIG. 4 is a schematic diagram showing an example of a situation where the vehicle 2 is traveling in a curved travel lane TL. As shown in FIG. 4, when the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP, if the zero point of the yaw rate sensor 3 does not drift, the vehicle 2 The vehicle travels along the target travel position TP. However, if the zero point of the yaw rate sensor 3 is drifting, the vehicle 2 travels at a position offset from the target travel position TP. For example, if the zero point of the yaw rate sensor 3 is drifting toward the left turning side, the vehicle 2 will travel at a position to the left of the target travel position TP, and the zero point of the yaw rate sensor 3 will drift toward the right turning side. , the vehicle 2 travels at a position to the right of the target travel position TP.
 ゼロ点較正部15は、横位置取得部12が取得した横位置LPとドライバ操舵トルク取得部13が取得したドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係と異なる場合、横位置LPとドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係に近づく方向に、ヨーレートセンサ3のゼロ点を較正する。 The zero point calibration unit 15 determines that the relationship between the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13 is lateral when the zero point of the yaw rate sensor 3 is not drifting. When the relationship between the position LP and the driver steering torque is different, the relationship between the lateral position LP and the driver steering torque approaches the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting. calibrate the zero point of the yaw rate sensor 3 in the direction.
 例えば、目標走行位置TPに対する横位置LPの方向とドライバ操舵トルクの方向とが異なる場合は、ヨーレートセンサ3のゼロ点のドリフトにより車両2が目標走行位置TPに対してオフセットした位置を走行しており、ドライバがこれを目標走行位置TPに戻そうとしている状態であると考えられる。そこで、ゼロ点較正部15は、目標走行位置TPに対する横位置LPの方向とドライバ操舵トルクの方向とが異なる場合、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正する。このヨーレートセンサ3のゼロ点の較正方向は、ドライバ操舵トルクの方向に対応する旋回方向である。例えば、ドライバ操舵トルクが右操舵方向である場合は、ヨーレートセンサ3のゼロ点を右旋回方向に較正する。 For example, if the direction of the lateral position LP with respect to the target travel position TP is different from the direction of the driver steering torque, the vehicle 2 may travel at a position offset from the target travel position TP due to the drift of the zero point of the yaw rate sensor 3. It is considered that the driver is trying to return the vehicle to the target travel position TP. Therefore, if the direction of the lateral position LP with respect to the target traveling position TP is different from the direction of the driver steering torque, the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 in the direction of the driver steering torque. The zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
 また、例えば、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合は、ヨーレートセンサ3のゼロ点のドリフトにより車両2が目標走行位置TPに対してオフセットした位置を走行しており、ドライバがこれを目標走行位置TPに戻そうとしている状態であると考えられる。そこで、ゼロ点較正部15は、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正する。このヨーレートセンサ3のゼロ点の較正方向は、ドライバ操舵トルクの方向に対応する旋回方向である。例えば、ドライバ操舵トルクが右操舵方向である場合は、ヨーレートセンサ3のゼロ点を右旋回方向に較正する。 Further, for example, if the lateral position LP exceeds the threshold distance of either the left or right, and the driver steering torque exceeds the threshold torque of the other left or right, the drift of the zero point of the yaw rate sensor 3 causes the vehicle 2 to It is considered that the vehicle is traveling at a position offset from the target traveling position TP, and the driver is trying to return the vehicle to the target traveling position TP. Therefore, the zero point calibration unit 15 sets the zero point of the yaw rate sensor 3 to the driver when the lateral position LP exceeds the threshold distance of either the left or right and the driver steering torque exceeds the other threshold torque of the left or right. Calibrate in the direction of steering torque. The zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
 また、例えば、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合は、ヨーレートセンサ3のゼロ点のドリフトにより車両2が目標走行位置TPに対してオフセットした位置を走行しており、ドライバがこれを目標走行位置TPに戻そうとしている状態であると考えられる。そこで、ゼロ点較正部15は、横位置LPが左右の閾値距離を超えない中央領域に位置し、且つ、ドライバ操舵トルクが左右の閾値トルクを超える場合、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正する。このヨーレートセンサ3のゼロ点の較正方向は、ドライバ操舵トルクの方向に対応する旋回方向である。例えば、ドライバ操舵トルクが右操舵方向である場合は、ヨーレートセンサ3のゼロ点を右旋回方向に較正する。 Further, for example, if the lateral position LP exceeds the threshold distance of either the left or right, and the driver steering torque exceeds the threshold torque of the other left or right, the drift of the zero point of the yaw rate sensor 3 causes the vehicle 2 to It is considered that the vehicle is traveling at a position offset from the target traveling position TP, and the driver is trying to return the vehicle to the target traveling position TP. Therefore, if the lateral position LP is located in the central region that does not exceed the left and right threshold distances, and the driver steering torque exceeds the left and right threshold torques, the zero point calibration unit 15 adjusts the zero point of the yaw rate sensor 3 to the driver steering torque. Calibrate in the direction of The zero point calibration direction of this yaw rate sensor 3 is the turning direction corresponding to the direction of driver steering torque. For example, when the driver steering torque is in the right steering direction, the zero point of the yaw rate sensor 3 is calibrated to the right turning direction.
 また、例えば、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合は、ヨーレートセンサ3のゼロ点のドリフトにより車両2が目標走行位置TPに対してオフセットした位置を走行しているが、ドライバが目標走行位置TPからオフセットした位置を走行していることに気付いていない状態であると考えられる。そこで、ゼロ点較正部15は、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合、ヨーレートセンサ3のゼロ点を目標走行位置TPに対する横位置LPの方向に較正する。このヨーレートセンサ3のゼロ点の較正方向は、目標走行位置TPに対する横位置LPに対応する旋回方向である。例えば、横位置LPが目標走行位置TPの右側に位置する場合は、ヨーレートセンサ3のゼロ点を右旋回方向に較正する。 Further, for example, if the lateral position LP exceeds the threshold distance of either the left or right, and the driver steering torque does not exceed the left or right threshold torque, the zero point of the yaw rate sensor 3 drifts and the vehicle 2 is moved to the target traveling position. Although the vehicle is traveling at a position offset from the target travel position TP, it is considered that the driver is not aware that the vehicle is traveling at a position offset from the target travel position TP. Therefore, if the lateral position LP exceeds either the left or right threshold distance and the driver steering torque does not exceed the left or right threshold torque, the zero point calibration unit 15 changes the zero point of the yaw rate sensor 3 to the target travel position TP. Calibrate in the direction of the lateral position LP with respect to. The calibration direction of the zero point of this yaw rate sensor 3 is the turning direction corresponding to the lateral position LP with respect to the target traveling position TP. For example, when the lateral position LP is located to the right of the target travel position TP, the zero point of the yaw rate sensor 3 is calibrated in the right turning direction.
 図5は、横位置LPとドライバ操舵トルクとの関係の一例を示す表である。図5では、横位置LPを、左側領域、中央領域、及び右側領域の三領域に分けている。左側領域は、横位置LPが左の閾値距離を超える領域、つまり、横位置LPが左の閾値距離よりも左側に位置する領域である。中央領域は、横位置LPが左右の閾値距離を超えない領域である。右側領域は、横位置LPが右の閾値距離を超える領域、つまり、横位置LPが右の閾値距離よりも右側に位置する領域である。左の閾値距離は、目標走行位置TPの左側に位置する所定の距離であり、例えば、+0.2mとすることができる。右の閾値距離は、目標走行位置TPの右に位置する所定の距離であり、例えば、-0.2mとすることができる。 FIG. 5 is a table showing an example of the relationship between lateral position LP and driver steering torque. In FIG. 5, the lateral position LP is divided into three regions: a left region, a center region, and a right region. The left area is an area where the lateral position LP exceeds the left threshold distance, that is, an area where the lateral position LP is located to the left of the left threshold distance. The central area is an area where the lateral position LP does not exceed the left and right threshold distances. The right area is an area where the lateral position LP exceeds the right threshold distance, that is, an area where the lateral position LP is located to the right of the right threshold distance. The left threshold distance is a predetermined distance located to the left of the target travel position TP, and can be set to +0.2 m, for example. The right threshold distance is a predetermined distance located to the right of the target travel position TP, and can be set to -0.2 m, for example.
 また、図5では、ドライバ操舵トルクを、左操舵領域、無操舵領域、及び、右操舵領域の三領域に分けている。左操舵領域は、ドライバ操舵トルクが左の閾値トルクを超える領域、つまり、ドライバ操舵トルクが左の閾値トルクよりも左操舵方向に大きい領域である。無操舵領域は、ドライバ操舵トルクが左右の閾値トルクを超えない領域である。右操舵領域は、ドライバ操舵トルクが右の閾値トルクを超える領域、つまり、ドライバ操舵トルクが右の閾値トルクよりも右操舵方向に大きい領域である。左の閾値トルクは、ドライバ操舵トルクが左操舵方向となるトルクであり、例えば、-0.2Nmとすることができる。右の閾値トルクは、ドライバ操舵トルクが右操舵方向となるトルクであり、例えば、+0.2Nmとすることができる。 Furthermore, in FIG. 5, the driver steering torque is divided into three regions: a left steering region, a no-steering region, and a right steering region. The left steering region is a region where the driver steering torque exceeds the left threshold torque, that is, a region where the driver steering torque is larger in the left steering direction than the left threshold torque. The no-steering region is a region in which the driver steering torque does not exceed the left and right threshold torques. The right steering region is a region where the driver steering torque exceeds the right threshold torque, that is, a region where the driver steering torque is larger in the right steering direction than the right threshold torque. The left threshold torque is a torque that causes the driver steering torque to be in the left steering direction, and can be set to -0.2 Nm, for example. The right threshold torque is a torque that causes the driver steering torque to be in the right steering direction, and can be set to +0.2 Nm, for example.
 図5に示すように、ヨーレートセンサ3のゼロ点がドリフトしていない場合、横位置LPと目標走行位置TPとの関係は、図5で×印を付したように、「左側領域-左操舵領域」、「中央領域-無操舵領域」、及び「右側領域-右操舵領域」の何れかの関係となる。 As shown in FIG. 5, when the zero point of the yaw rate sensor 3 is not drifting, the relationship between the lateral position LP and the target traveling position TP is as indicated by the cross in FIG. The relationship is one of the following: "region", "center region - non-steering region", and "right side region - right steering region".
 「左側領域-左操舵領域」の関係にあるときは、ドライバが目標走行位置TPよりも左側に車両2を走行させたいため、ドライバがステアリング4に左操舵方向のドライバ操舵トルクを入力している状況であると考えられる。「中央領域-無操舵領域」の関係にあるときは、ドライバが目標走行位置TP又は目標走行位置TP付近で車両2を走行させたいため、ドライバがステアリング4にドライバ操舵トルクを入力していない又は殆ど入力していない状況であると考えられる。「右側領域-右操舵領域」の関係にあるときは、ドライバが目標走行位置TPよりも右側に車両2を走行させたいため、ドライバがステアリング4に右操舵方向のドライバ操舵トルクを入力している状況であると考えられる。 When the relationship is "left side area - left steering area," the driver wants to drive the vehicle 2 to the left of the target driving position TP, so the driver inputs driver steering torque in the left steering direction to the steering wheel 4. This is considered to be the situation. When the relationship is "center area - no-steering area", the driver is not inputting driver steering torque to the steering wheel 4 because the driver wants to drive the vehicle 2 at or near the target driving position TP, or It is thought that the situation is such that almost no input is made. When the relationship is "right side area - right steering area", the driver wants to drive the vehicle 2 to the right side of the target driving position TP, so the driver inputs driver steering torque in the right steering direction to the steering wheel 4. This is considered to be the situation.
 一方、ヨーレートセンサ3のゼロ点がドリフトしている場合、横位置LPと目標走行位置TPとの関係は、図5で〇印を付したように、「右側領域-左操舵領域」、「左側領域-右操舵領域」、「中央領域-左操舵領域」、「中央領域-右操舵領域」、「右側領域-無操舵領域」、及び「左側領域-無操舵領域」の何れかの関係となる。 On the other hand, when the zero point of the yaw rate sensor 3 is drifting, the relationship between the lateral position LP and the target traveling position TP is as indicated by the circle in FIG. The relationship is one of the following: ``area - right steering area'', ``center area - left steering area'', ``center area - right steering area'', ``right area - non-steering area'', and ``left area - non-steering area''. .
 「右側領域-左操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも大きく右側を走行していたため、ドライバがステアリング4に左操舵方向のドライバ操舵トルクを入力して、車両2を目標走行位置TPに戻そうとしている状況であると考えられる。「左側領域-右操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも大きく左側を走行していたため、ドライバがステアリング4に右操舵方向のドライバ操舵トルクを入力して、車両2を目標走行位置TPに戻そうとしている状況であると考えられる。 When the relationship is "right side area - left steering area," the vehicle 2 was traveling on the right side far more than the target driving position TP, so the driver inputs driver steering torque in the left steering direction to the steering wheel 4, and the vehicle It is considered that the current situation is that the vehicle is trying to return the vehicle to the target travel position TP. When the relationship is "left side area - right steering area," the vehicle 2 was traveling on the left side of the target driving position TP, so the driver inputs driver steering torque in the right steering direction to the steering wheel 4, and the vehicle It is considered that the current situation is that the vehicle is trying to return the vehicle to the target travel position TP.
 「中央領域-左操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも右側を走行しようとするため、ドライバがステアリング4に左操舵方向のドライバ操舵トルクを入力して、車両2を目標走行位置TPに戻そうとしている状況であると考えられる。「中央領域-右操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも左側を走行しようとするため、ドライバがステアリング4に右操舵方向のドライバ操舵トルクを入力して、車両2を目標走行位置TPに戻そうとしている状況であると考えられる。 When the relationship is "center area - left steering area", the vehicle 2 tries to run on the right side of the target driving position TP, so the driver inputs driver steering torque in the left steering direction to the steering wheel 4, and the vehicle It is considered that the current situation is that the vehicle is trying to return the vehicle to the target travel position TP. When the relationship is "center area - right steering area", the vehicle 2 tries to travel to the left of the target travel position TP, so the driver inputs driver steering torque in the right steering direction to the steering wheel 4, and the vehicle It is considered that the current situation is that the vehicle is trying to return the vehicle to the target travel position TP.
 「右側領域-無操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも右側を走行しているが、車両2が目標走行位置TPよりも右側を走行していることをドライバが気づいていない状況、又は、ドライバが目標走行位置TPよりも右側に車両2を走行させたいため、ドライバがステアリング4にドライバ操舵トルクを入力していない又は殆ど入力していない状況であると考えられる。「左側領域-無操舵領域」の関係にあるときは、車両2が目標走行位置TPよりも左側を走行していることをドライバが気づいていない状況、又は、車両2が目標走行位置TPよりも左側を走行しているが、ドライバが目標走行位置TPよりも左側に車両2を走行させたいため、ドライバがステアリング4にドライバ操舵トルクを入力していない又は殆ど入力していない状況であると考えられる。 When the relationship is "right side area - no-steering area", the vehicle 2 is traveling on the right side of the target traveling position TP, but the driver is not aware that the vehicle 2 is traveling on the right side of the target traveling position TP. This is considered to be a situation where the driver is not aware of this, or because the driver wants to drive the vehicle 2 to the right of the target driving position TP, the driver is not inputting driver steering torque to the steering wheel 4, or is inputting almost no driver steering torque. It will be done. When the relationship is "left side area - no-steering area", the driver is unaware that the vehicle 2 is traveling on the left side of the target traveling position TP, or the vehicle 2 is traveling on the left side of the target traveling position TP. Although the vehicle is traveling on the left side, the driver wants the vehicle 2 to travel to the left of the target travel position TP, so it is assumed that the driver is not inputting driver steering torque to the steering wheel 4 or is inputting almost no driver steering torque. It will be done.
 そこで、ゼロ点較正部15は、横位置LPと目標走行位置TPとの関係が、図5で〇印を付したように、「右側領域-左操舵領域」、「左側領域-右操舵領域」、「中央領域-左操舵領域」、「中央領域-右操舵領域」、「右側領域-無操舵領域」、及び「左側領域-無操舵領域」の何れかの関係となる場合に、ヨーレートセンサ3のゼロ点を較正する。 Therefore, the zero point calibration unit 15 determines that the relationship between the lateral position LP and the target travel position TP is "right side area - left steering area" and "left side area - right steering area" as indicated by the circle in FIG. , "center area - left steering area", "center area - right steering area", "right side area - no steering area", and "left area - no steering area", the yaw rate sensor 3 Calibrate the zero point of
 横位置LPと目標走行位置TPとの関係が「右側領域-左操舵領域」である場合、ヨーレートセンサ3のゼロ点を、ドライバ操舵トルクの方向に対応する左旋回方向に較正する。横位置LPと目標走行位置TPとの関係が「左側領域-右操舵領域」である場合、ヨーレートセンサ3のゼロ点を、ドライバ操舵トルクの方向に対応する右旋回方向に較正する。 If the relationship between the lateral position LP and the target travel position TP is "right side region - left steering region", the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the driver steering torque. When the relationship between the lateral position LP and the target travel position TP is "left side area - right steering area", the zero point of the yaw rate sensor 3 is calibrated to the right turning direction corresponding to the direction of the driver steering torque.
 横位置LPと目標走行位置TPとの関係が「中央領域-左操舵領域」である場合、ヨーレートセンサ3のゼロ点を、ドライバ操舵トルクの方向に対応する左旋回方向に較正する。横位置LPと目標走行位置TPとの関係が「中央領域-右操舵領域」である場合、ヨーレートセンサ3のゼロ点を、ドライバ操舵トルクの方向に対応する右旋回方向に較正する。 If the relationship between the lateral position LP and the target travel position TP is "center region - left steering region", the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the driver steering torque. When the relationship between the lateral position LP and the target travel position TP is "center region - right steering region", the zero point of the yaw rate sensor 3 is calibrated to the right turning direction corresponding to the direction of the driver steering torque.
 横位置LPと目標走行位置TPとの関係が「右側領域-無操舵領域」である場合、ヨーレートセンサ3のゼロ点を、目標走行位置TPに対する横位置LPの方向に対応する右旋回方向に較正する。横位置LPと目標走行位置TPとの関係が「左側領域-無操舵領域」である場合、ヨーレートセンサ3のゼロ点を、目標走行位置TPに対する横位置LPの方向に対応する左旋回方向に較正する。 When the relationship between the lateral position LP and the target travel position TP is "right side area - no steering area", the zero point of the yaw rate sensor 3 is set in the right turning direction corresponding to the direction of the lateral position LP with respect to the target travel position TP. Calibrate. When the relationship between the lateral position LP and the target travel position TP is "left side area - no steering area", the zero point of the yaw rate sensor 3 is calibrated to the left turning direction corresponding to the direction of the lateral position LP with respect to the target travel position TP. do.
 ゼロ点較正部15は、横位置取得部12が直前に取得した一つの横位置LP及びドライバ操舵トルク取得部13が直前に取得した一つのドライバ操舵トルクに基づいてヨーレートセンサのゼロ点を較正してもよいが、横位置取得部12が第一設定時間に取得した複数の横位置LPの平均値及びドライバ操舵トルク取得部13が第二設定時間に取得した複数のドライバ操舵トルクの平均値に基づいて、ヨーレートセンサのゼロ点を較正することが好ましい。つまり、ゼロ点較正部15は、横位置取得部12が第一設定時間に取得した複数の横位置LPの平均値を、横位置取得部12が取得した横位置LPとするとともに、ドライバ操舵トルク取得部13が第二設定時間に取得した複数のドライバ操舵トルクの平均値をドライバ操舵トルク取得部13が取得したドライバ操舵トルクとして、上記のヨーレートセンサ3のゼロ点の較正を行うことが好ましい。第一設定時間及び第二設定時間は、特に限定されるものではないが、ゼロ点較正部15がヨーレートセンサのゼロ点を較正する直前の第一設定時間及び第二設定時間であることが好ましい。。また、第一設定時間と第二設定時間とは、同じであってもよく、異なっていてもよい。例えば、第一設定時間及び第二設定時間は、それぞれ10秒とすることができる。 The zero point calibration unit 15 calibrates the zero point of the yaw rate sensor based on one lateral position LP acquired immediately before by the lateral position acquisition unit 12 and one driver steering torque acquired immediately before by the driver steering torque acquisition unit 13. However, the average value of the plurality of lateral positions LP acquired by the lateral position acquisition unit 12 during the first set time and the average value of the multiple driver steering torques acquired by the driver steering torque acquisition unit 13 during the second set time It is preferable to calibrate the zero point of the yaw rate sensor based on this. That is, the zero point calibration unit 15 sets the average value of the plurality of lateral positions LP acquired by the lateral position acquisition unit 12 during the first set time as the lateral position LP acquired by the lateral position acquisition unit 12, and also It is preferable to calibrate the zero point of the yaw rate sensor 3 by using the average value of the plurality of driver steering torques acquired by the acquisition unit 13 during the second set time as the driver steering torque acquired by the driver steering torque acquisition unit 13. The first setting time and the second setting time are not particularly limited, but are preferably the first setting time and the second setting time immediately before the zero point calibration section 15 calibrates the zero point of the yaw rate sensor. . . Further, the first set time and the second set time may be the same or different. For example, the first set time and the second set time can each be 10 seconds.
 図6は、時間と較正量との関係の一例を示すグラフである。較正量は、ヨーレートセンサ3のゼロ点の較正を始めてからヨーレートセンサ3のゼロ点の較正が終わるまで、ヨーレートセンサ3のゼロ点を較正した較正値を積算した積算値である。ゼロ点較正部15は、ヨーレートセンサ3のゼロ点を較正する際は、一気に較正してもよいが、図6に示すように、ヨーレートセンサ3のゼロ点を段階的に較正することが好ましい。つまり、ゼロ点較正部15は、所定の較正値毎に、ヨーレートセンサ3のゼロ点を較正することが好ましい。 FIG. 6 is a graph showing an example of the relationship between time and calibration amount. The calibration amount is an integrated value obtained by integrating the calibration values obtained by calibrating the zero point of the yaw rate sensor 3 from the start of the calibration of the zero point of the yaw rate sensor 3 to the end of the calibration of the zero point of the yaw rate sensor 3. When calibrating the zero point of the yaw rate sensor 3, the zero point calibration unit 15 may calibrate the zero point of the yaw rate sensor 3 all at once, but it is preferable to calibrate the zero point of the yaw rate sensor 3 in stages as shown in FIG. That is, it is preferable that the zero point calibration section 15 calibrates the zero point of the yaw rate sensor 3 for each predetermined calibration value.
 ヨーレートセンサ3のゼロ点を段階的に較正する較正値は、特に限定されるものではなく、固定値としてもよく、変動値としてもよい。較正値を固定値とする場合、固定値は、例えば、0.002[rad/s]とすることができる。較正値を変動値とする場合、較正値は、例えば、走行車線TLの曲率により変動させてもよい。つまり、ゼロ点較正部15は、走行車線TLの曲率等に応じて変動する較正値によりヨーレートセンサ3のゼロ点を較正してもよい。走行車線TLの曲率は、曲率取得部14により取得することができる。 The calibration value for calibrating the zero point of the yaw rate sensor 3 in stages is not particularly limited, and may be a fixed value or a variable value. When the calibration value is a fixed value, the fixed value can be, for example, 0.002 [rad/s]. When the calibration value is a variable value, the calibration value may be varied depending on, for example, the curvature of the travel lane TL. That is, the zero point calibration unit 15 may calibrate the zero point of the yaw rate sensor 3 using a calibration value that varies depending on the curvature of the travel lane TL and the like. The curvature of the travel lane TL can be acquired by the curvature acquisition unit 14.
 走行車線TLの曲率に応じて較正値を変動させる場合、曲率と較正値とを一対一で対応させてもよいが、図7に示すように、ヒステリシス特性を持たせてもよい。図7は、走行車線TLの曲率と較正値との関係の一例を示した表である。図7では、走行車線TLの曲率が第一右閾値曲率と第一左閾値曲率との間の直線領域にある場合は、較正値を第一較正値とする。そして、直線領域にあった走行車線TLの曲率が第一右閾値曲率を超えると、較正値を第一較正値から第二較正値に変動させ、その後、走行車線TLの曲率が第一右閾値曲率よりもゼロに近い第二右閾値曲率を超えると、較正値を第二較正値から第一較正値に変動させる。また、直線領域にあった走行車線TLの曲率が第一左閾値曲率を超えると、較正値を第一較正値から第三較正値に変動させ、その後、走行車線TLの曲率が第一左閾値曲率よりもゼロに近い第二左閾値曲率を超えると、較正値を第三較正値から第一較正値に変動させる。第一右閾値曲率、第二右閾値曲率、第一左閾値曲率、及び第二左閾値曲率は、特に限定されるものではない。また、第一較正値、第二較正値、及び第三較正値は、特に限定されるものではない。 When varying the calibration value according to the curvature of the travel lane TL, the curvature and the calibration value may correspond one-to-one, but as shown in FIG. 7, a hysteresis characteristic may be provided. FIG. 7 is a table showing an example of the relationship between the curvature of the travel lane TL and the calibration value. In FIG. 7, when the curvature of the driving lane TL is in a straight line region between the first right threshold curvature and the first left threshold curvature, the calibration value is set as the first calibration value. When the curvature of the driving lane TL in the straight line region exceeds the first right threshold curvature, the calibration value is changed from the first calibration value to the second calibration value, and then the curvature of the driving lane TL exceeds the first right threshold curvature. When a second right threshold curvature, which is closer to zero than the curvature, is exceeded, the calibration value is varied from the second calibration value to the first calibration value. Further, when the curvature of the driving lane TL in the straight region exceeds the first left threshold curvature, the calibration value is changed from the first calibration value to the third calibration value, and then the curvature of the driving lane TL exceeds the first left threshold curvature. When a second left threshold curvature, which is closer to zero than the curvature, is exceeded, the calibration value is changed from the third calibration value to the first calibration value. The first right threshold curvature, the second right threshold curvature, the first left threshold curvature, and the second left threshold curvature are not particularly limited. Moreover, the first calibration value, the second calibration value, and the third calibration value are not particularly limited.
 また、ゼロ点較正部15は、ヨーレートセンサ3のゼロ点を連続的に較正してもよいが、ヨーレートセンサ3のゼロ点を較正してから車両2が目標走行位置TPに到達するまでは、ある程度の時間を要する。このため、図6に示すように、ヨーレートセンサ3のゼロ点を較正してから設定時間を経過するまではヨーレートセンサ3のゼロ点を較正しないことが好ましい。つまり、ゼロ点較正部15は、設定時間間隔で、ヨーレートセンサ3のゼロ点を較正する。設定時間は、特に限定されるものではなく、例えば、10秒とすることができる。 Further, the zero point calibration unit 15 may continuously calibrate the zero point of the yaw rate sensor 3, but after calibrating the zero point of the yaw rate sensor 3 until the vehicle 2 reaches the target traveling position TP, It will take some time. Therefore, as shown in FIG. 6, it is preferable not to calibrate the zero point of the yaw rate sensor 3 until a set time has elapsed after the zero point of the yaw rate sensor 3 is calibrated. That is, the zero point calibration unit 15 calibrates the zero point of the yaw rate sensor 3 at set time intervals. The set time is not particularly limited, and can be set to, for example, 10 seconds.
 次に、図8を参照して、ヨーレート較正装置1の処理動作の一例について説明する。図8は、ヨーレート較正装置1の処理動作の一例を示すフローチャートである。 Next, an example of the processing operation of the yaw rate calibration device 1 will be described with reference to FIG. 8. FIG. 8 is a flowchart showing an example of the processing operation of the yaw rate calibration device 1.
 図8に示すように、ヨーレート較正装置1は、横位置LP及びドライバ操舵トルクを取得する(ステップS1)。ステップS1では、更に走行車線TLの曲率を取得してもよい。 As shown in FIG. 8, the yaw rate calibration device 1 acquires the lateral position LP and driver steering torque (step S1). In step S1, the curvature of the travel lane TL may also be acquired.
 次に、ヨーレート較正装置1は、ヨーレートセンサ3のゼロ点を較正する必要があるかを判定する(ステップS2)。ステップS2では、例えば、図5の表を参照する等して、横位置LPとドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係と異なる場合に、ヨーレートセンサ3のゼロ点を較正する必要があると判定する。ヨーレートセンサ3のゼロ点を較正する必要がないと判定した場合(ステップS2:NO)、ヨーレート較正装置1は、一旦処理を終了して、設定時間経過後に、再度ステップS1から処理を繰り返す。 Next, the yaw rate calibration device 1 determines whether it is necessary to calibrate the zero point of the yaw rate sensor 3 (step S2). In step S2, the relationship between the lateral position LP and the driver steering torque is determined by referring to the table in FIG. If the relationship is different from the above, it is determined that the zero point of the yaw rate sensor 3 needs to be calibrated. If it is determined that there is no need to calibrate the zero point of the yaw rate sensor 3 (step S2: NO), the yaw rate calibration device 1 once ends the process and repeats the process from step S1 again after the set time has elapsed.
 一方、ヨーレートセンサ3のゼロ点を較正する必要があると判定した場合(ステップS2:YES)、ヨーレート較正装置1は、ステップS1で取得した横位置LP及びドライバ操舵トルクに基づいてヨーレートセンサ3のゼロ点を較正する(ステップS3)。ステップS3では、例えば、図5の表を参照する等して、横位置LPとドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係に近づく方向に、ヨーレートセンサ3のゼロ点を較正する。その後、ヨーレート較正装置1は、一旦処理を終了して、設定時間経過後に、再度ステップS1から処理を繰り返す。 On the other hand, if it is determined that the zero point of the yaw rate sensor 3 needs to be calibrated (step S2: YES), the yaw rate calibration device 1 adjusts the yaw rate sensor 3 based on the lateral position LP and driver steering torque acquired in step S1. The zero point is calibrated (step S3). In step S3, the relationship between the lateral position LP and the driver steering torque is determined by referring to the table in FIG. The zero point of the yaw rate sensor 3 is calibrated in a direction that approaches the relationship. Thereafter, the yaw rate calibration device 1 once ends the process, and after the set time has elapsed, repeats the process again from step S1.
 以上説明したように、本実施形態に係るヨーレート較正装置1では、ヨーレートセンサのゼロ点がドリフトしているときとヨーレートセンサのゼロ点がドリフトしていないときとで、車両の横位置とドライバ操舵トルクとの関係が異なることから、横位置取得部12が取得した横位置LP及びドライバ操舵トルク取得部13が取得したドライバ操舵トルクに基づいてヨーレートセンサ3のゼロ点を較正する。これにより、ヨーレートセンサ3のゼロ点を較正するために車両2を停車させる必要がなく、また、自動的にヨーレートセンサ3のゼロ点を較正することもできるため、簡便にヨーレートセンサ3のゼロ点を較正することができる。 As explained above, in the yaw rate calibration device 1 according to the present embodiment, the lateral position of the vehicle and the driver's steering are adjusted depending on when the zero point of the yaw rate sensor is drifting and when the zero point of the yaw rate sensor is not drifting. Since the relationship with torque is different, the zero point of the yaw rate sensor 3 is calibrated based on the lateral position LP acquired by the lateral position acquisition unit 12 and the driver steering torque acquired by the driver steering torque acquisition unit 13. As a result, there is no need to stop the vehicle 2 to calibrate the zero point of the yaw rate sensor 3, and the zero point of the yaw rate sensor 3 can be automatically calibrated. can be calibrated.
 また、このヨーレート較正装置1では、操舵制御部11が、車両2が目標走行位置TPを走行するように車両2の操舵制御を行うため、適切にヨーレートセンサ3のゼロ点を較正することができる。 Furthermore, in this yaw rate calibration device 1, the steering control unit 11 performs steering control of the vehicle 2 so that the vehicle 2 travels at the target travel position TP, so that the zero point of the yaw rate sensor 3 can be appropriately calibrated. .
 また、このヨーレート較正装置1では、横位置とドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係と異なる場合、横位置LPとドライバ操舵トルクとの関係が、ヨーレートセンサ3のゼロ点がドリフトしていない場合の横位置LPとドライバ操舵トルクとの関係に近づく方向に、ヨーレートセンサ3のゼロ点を較正する。これにより、適切にヨーレートセンサ3のゼロ点を較正することができる。 Furthermore, in this yaw rate calibration device 1, if the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting, the lateral position LP The zero point of the yaw rate sensor 3 is calibrated so that the relationship between the lateral position LP and the driver steering torque approaches the relationship between the lateral position LP and the driver steering torque when the zero point of the yaw rate sensor 3 is not drifting. Thereby, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
 また、このヨーレート較正装置1では、目標走行位置TPに対する横位置LPの方向とドライバ操舵トルクの方向とが異なる場合に、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサ3のゼロ点を較正することができる。 Furthermore, in this yaw rate calibration device 1, when the direction of the lateral position LP with respect to the target traveling position TP is different from the direction of the driver steering torque, the zero point of the yaw rate sensor 3 is calibrated in the direction of the driver steering torque, so that the yaw rate sensor 3 can be properly adjusted. The zero point of the yaw rate sensor 3 can be calibrated.
 また、このヨーレート較正装置1では、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合に、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサ3のゼロ点を較正することができる。 In addition, in this yaw rate calibration device 1, when the lateral position LP exceeds the threshold distance of either the left or right, and the driver steering torque exceeds the threshold torque of either the left or right, the zero point of the yaw rate sensor 3 is adjusted. By calibrating in the direction of the driver steering torque, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
 また、このヨーレート較正装置1では、横位置LPが左右の閾値距離を超えない中央領域に位置し、且つ、ドライバ操舵トルクが左右の閾値トルクを超える場合に、ヨーレートセンサ3のゼロ点をドライバ操舵トルクの方向に較正することで、適切にヨーレートセンサ3のゼロ点を較正することができる。 Furthermore, in this yaw rate calibration device 1, when the lateral position LP is located in the central region that does not exceed the left and right threshold distances, and the driver steering torque exceeds the left and right threshold torques, the zero point of the yaw rate sensor 3 is set to the driver's steering. By calibrating in the torque direction, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
 また、このヨーレート較正装置1では、横位置LPが左右の何れか一方の閾値距離を超え、且つ、ドライバ操舵トルクが左右の閾値トルクを超えない場合に、ヨーレートセンサ3のゼロ点を目標走行位置TPに対する横位置LPの方向に較正することで、適切にヨーレートセンサ3のゼロ点を較正することができる。 In addition, in this yaw rate calibration device 1, when the lateral position LP exceeds the threshold distance of either the left or right and the driver steering torque does not exceed the left or right threshold torque, the zero point of the yaw rate sensor 3 is set to the target traveling position. By calibrating in the direction of the lateral position LP with respect to TP, the zero point of the yaw rate sensor 3 can be appropriately calibrated.
 また、このヨーレート較正装置1では、横位置LPの第一設定時間における平均値及びドライバ操舵トルクの第二設定時間における平均値に基づいてヨーレートセンサ3のゼロ点を較正するため、横位置取得部12及びドライバ操舵トルク取得部13に突発的な外乱が入力しても、較正の精度が低下するのを抑制することができる。 In addition, in this yaw rate calibration device 1, in order to calibrate the zero point of the yaw rate sensor 3 based on the average value of the lateral position LP in the first set time and the average value of the driver steering torque in the second set time, Even if a sudden disturbance is input to the driver steering torque acquisition section 12 and the driver steering torque acquisition section 13, it is possible to suppress a decrease in the accuracy of calibration.
 また、このヨーレート較正装置1では、ヨーレートセンサ3のゼロ点を段階的に較正することで、較正による車両2の挙動変化を緩やかにすることができる。 Furthermore, in this yaw rate calibration device 1, by calibrating the zero point of the yaw rate sensor 3 in stages, changes in the behavior of the vehicle 2 due to calibration can be made gradual.
 また、このヨーレート較正装置1では、曲率取得部14で走行車線TLの曲率を取得することで、目標走行位置TPを高精度に算出することができる。一方、曲率取得部14は、車両2における設置位置の誤差等により曲率を誤認識する可能性がある。また、このような誤認識は、走行車線TLの曲率によっても大きく変わり得る。そこで、このヨーレート較正装置1では、曲率取得部14が取得した曲率に応じてヨーレートセンサ3のゼロ点を較正する較正値を変えることで、曲率取得部14の誤認識に伴う較正精度の低下を抑制することができる。 Furthermore, in this yaw rate calibration device 1, the target travel position TP can be calculated with high accuracy by acquiring the curvature of the travel lane TL using the curvature acquisition unit 14. On the other hand, the curvature acquisition unit 14 may misrecognize the curvature due to an error in the installation position in the vehicle 2 or the like. Furthermore, such misrecognition can vary greatly depending on the curvature of the travel lane TL. Therefore, in this yaw rate calibration device 1, by changing the calibration value for calibrating the zero point of the yaw rate sensor 3 according to the curvature acquired by the curvature acquisition unit 14, the decrease in calibration accuracy due to misrecognition by the curvature acquisition unit 14 is prevented. Can be suppressed.
 また、このヨーレート較正装置1では、曲率と較正値との関係にヒステリシス特性を持たせることで、較正値が頻繁に変動することを抑制することができる。 Furthermore, in this yaw rate calibration device 1, by providing a hysteresis characteristic to the relationship between the curvature and the calibration value, it is possible to suppress frequent fluctuations in the calibration value.
 また、このヨーレート較正装置1では、ヨーレートセンサ3のゼロ点を較正してから設定時間を経過するまではヨーレートセンサ3のゼロ点を較正しないため、ヨーレートセンサ3のゼロ点を適切に較正することができる。 Furthermore, in this yaw rate calibration device 1, the zero point of the yaw rate sensor 3 is not calibrated until a set time has elapsed after the zero point of the yaw rate sensor 3 is calibrated, so the zero point of the yaw rate sensor 3 must be appropriately calibrated. I can do it.
 以上、本発明の一側面の実施形態について説明したが、本発明の一側面は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。 Although the embodiment of one aspect of the present invention has been described above, one aspect of the present invention is not limited to the above embodiment, and may be modified or modified without changing the gist of each claim. May be applied to things.
 1…ヨーレート較正装置、2…車両、3…ヨーレートセンサ、4…ステアリング、11…操舵制御部、12…横位置取得部、13…ドライバ操舵トルク取得部、14…曲率取得部、15…ゼロ点較正部、LP…横位置、TL…走行車線、TP…目標走行位置。 DESCRIPTION OF SYMBOLS 1... Yaw rate calibration device, 2... Vehicle, 3... Yaw rate sensor, 4... Steering, 11... Steering control section, 12... Lateral position acquisition section, 13... Driver steering torque acquisition section, 14... Curvature acquisition section, 15... Zero point Calibration section, LP...Lateral position, TL...Travel lane, TP...Target travel position.

Claims (12)

  1.  車両が走行する走行車線の目標走行位置に対する前記車両の横位置を取得する横位置取得部と、
     ドライバにより入力されたドライバ操舵トルクを取得するドライバ操舵トルク取得部と、
     ヨーレートセンサのゼロ点を較正するゼロ点較正部と、を備え、
     前記ゼロ点較正部は、前記横位置取得部が取得した前記横位置及び前記ドライバ操舵トルク取得部が取得した前記ドライバ操舵トルクに基づいて、前記ヨーレートセンサの前記ゼロ点を較正する、
    ヨーレート較正装置。
    a lateral position acquisition unit that acquires a lateral position of the vehicle with respect to a target travel position of a travel lane in which the vehicle is traveling;
    a driver steering torque acquisition unit that acquires the driver steering torque input by the driver;
    A zero point calibration section that calibrates the zero point of the yaw rate sensor,
    The zero point calibration unit calibrates the zero point of the yaw rate sensor based on the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit.
    Yaw rate calibration device.
  2.  前記車両が目標走行位置を走行するように前記車両の操舵制御を行う操舵制御部を更に備える、
    請求項1に記載のヨーレート較正装置。
    further comprising a steering control unit that performs steering control of the vehicle so that the vehicle travels at a target travel position;
    The yaw rate calibration device according to claim 1.
  3.  前記ゼロ点較正部は、前記横位置取得部が取得した前記横位置と前記ドライバ操舵トルク取得部が取得した前記ドライバ操舵トルクとの関係が、前記ヨーレートセンサの前記ゼロ点がドリフトしていない場合の前記横位置と前記ドライバ操舵トルクとの関係と異なる場合、前記横位置と前記ドライバ操舵トルクとの関係が、前記ヨーレートセンサの前記ゼロ点がドリフトしていない場合の前記横位置と前記ドライバ操舵トルクとの関係に近づく方向に、前記ヨーレートセンサのゼロ点を較正する、
    請求項1又は2に記載のヨーレート較正装置。
    The zero point calibration unit calculates a relationship between the lateral position acquired by the lateral position acquisition unit and the driver steering torque acquired by the driver steering torque acquisition unit when the zero point of the yaw rate sensor does not drift. If the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position and the driver steering torque, the relationship between the lateral position and the driver steering torque is different from the relationship between the lateral position and the driver steering when the zero point of the yaw rate sensor is not drifting. calibrating the zero point of the yaw rate sensor in a direction that approaches a relationship with torque;
    The yaw rate calibration device according to claim 1 or 2.
  4.  前記ゼロ点較正部は、前記目標走行位置に対する前記横位置の方向と前記ドライバ操舵トルクの方向とが異なる場合、前記ヨーレートセンサの前記ゼロ点を前記ドライバ操舵トルクの方向に較正する、
    請求項1~3の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit calibrates the zero point of the yaw rate sensor in the direction of the driver steering torque when the direction of the lateral position with respect to the target traveling position is different from the direction of the driver steering torque.
    The yaw rate calibration device according to any one of claims 1 to 3.
  5.  前記ゼロ点較正部は、前記横位置が左右の何れか一方の閾値距離を超え、且つ、前記ドライバ操舵トルクが左右の何れか他方の閾値トルクを超える場合、前記ヨーレートセンサの前記ゼロ点を前記ドライバ操舵トルクの方向に較正する、
    請求項1~4の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit adjusts the zero point of the yaw rate sensor to Calibrate in the direction of driver steering torque,
    The yaw rate calibration device according to any one of claims 1 to 4.
  6.  前記ゼロ点較正部は、前記横位置が左右の閾値距離を超えない中央領域に位置し、且つ、前記ドライバ操舵トルクが左右の閾値トルクを超える場合、前記ヨーレートセンサの前記ゼロ点を前記ドライバ操舵トルクの方向に較正する、
    請求項1~5の何れか一項3に記載のヨーレート較正装置。
    The zero point calibration unit adjusts the zero point of the yaw rate sensor to the zero point of the yaw rate sensor when the lateral position is located in a central region that does not exceed a left and right threshold distance, and the driver steering torque exceeds a left and right threshold torque. Calibrate in the direction of torque,
    The yaw rate calibration device according to any one of claims 1 to 5.
  7.  前記ゼロ点較正部は、前記横位置が左右の何れか一方の閾値距離を超え、且つ、前記ドライバ操舵トルクが左右の閾値トルクを超えない場合、前記ヨーレートセンサの前記ゼロ点を前記目標走行位置に対する前記横位置の方向に較正する、
    請求項1~6の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit adjusts the zero point of the yaw rate sensor to the target travel position when the lateral position exceeds a threshold distance of either the left or right and the driver steering torque does not exceed the left or right threshold torque. calibrating in the direction of said lateral position relative to;
    A yaw rate calibration device according to any one of claims 1 to 6.
  8.  前記ゼロ点較正部は、前記横位置取得部が第一設定時間に取得した複数の前記横位置の平均値及び前記ドライバ操舵トルク取得部が第二設定時間に取得した複数の前記ドライバ操舵トルクの平均値に基づいて、前記ヨーレートセンサの前記ゼロ点を較正する、
    請求項1~7の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit calculates an average value of the plurality of lateral positions acquired by the lateral position acquisition unit at a first set time and an average value of the plurality of driver steering torques acquired by the driver steering torque acquisition unit at a second set time. calibrating the zero point of the yaw rate sensor based on an average value;
    A yaw rate calibration device according to any one of claims 1 to 7.
  9.  前記ゼロ点較正部は、前記ヨーレートセンサの前記ゼロ点を段階的に較正する、
    請求項1~8の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit calibrates the zero point of the yaw rate sensor in stages.
    A yaw rate calibration device according to any one of claims 1 to 8.
  10.  前記走行車線の曲率を取得する曲率取得部を更に備え、
     前記ゼロ点較正部は、前記曲率取得部が取得した前記曲率に応じて、前記ヨーレートセンサの前記ゼロ点を較正する較正値を変える、
    請求項1~9の何れか一項に記載のヨーレート較正装置。
    Further comprising a curvature acquisition unit that acquires the curvature of the driving lane,
    The zero point calibration unit changes a calibration value for calibrating the zero point of the yaw rate sensor according to the curvature acquired by the curvature acquisition unit.
    A yaw rate calibration device according to any one of claims 1 to 9.
  11.  前記ゼロ点較正部は、
      前記曲率が第一右閾値曲率と第一左閾値曲率との間の直線領域にある場合は、前記較正値を第一較正値とし、
      前記直線領域にあった前記曲率が前記第一右閾値曲率を超えると、前記較正値を前記第一較正値から第二較正値に変動させ、その後、前記曲率が前記第一右閾値曲率よりもゼロに近い第二右閾値曲率を超えると、前記較正値を前記第二較正値から前記第一較正値に変動させ、
      前記直線領域にあった前記曲率が前記第二右閾値曲率を超えると、前記較正値を前記第一較正値から第三較正値に変動させ、その後、前記曲率が前記第一左閾値曲率よりもゼロに近い第二左閾値曲率を超えると、前記較正値を前記第三較正値から前記第一較正値に変動させる、
    請求項10に記載のヨーレート較正装置。
    The zero point calibration section includes:
    When the curvature is in a linear region between a first right threshold curvature and a first left threshold curvature, the calibration value is a first calibration value,
    When the curvature in the straight line area exceeds the first right threshold curvature, the calibration value is varied from the first calibration value to a second calibration value, and then the curvature is greater than the first right threshold curvature. When a second right threshold curvature close to zero is exceeded, the calibration value is varied from the second calibration value to the first calibration value;
    When the curvature in the straight line area exceeds the second right threshold curvature, the calibration value is changed from the first calibration value to a third calibration value, and then the curvature is greater than the first left threshold curvature. changing the calibration value from the third calibration value to the first calibration value when a second left threshold curvature close to zero is exceeded;
    The yaw rate calibration device according to claim 10.
  12.  前記ゼロ点較正部は、前記ヨーレートセンサの前記ゼロ点を較正してから設定時間を経過するまでは前記ヨーレートセンサの前記ゼロ点を較正しない、
    請求項1~11の何れか一項に記載のヨーレート較正装置。
    The zero point calibration unit does not calibrate the zero point of the yaw rate sensor until a set time has elapsed after calibrating the zero point of the yaw rate sensor.
    A yaw rate calibration device according to any one of claims 1 to 11.
PCT/JP2023/004967 2022-03-11 2023-02-14 Yaw rate calibration device WO2023171255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038003 2022-03-11
JP2022038003A JP2023132591A (en) 2022-03-11 2022-03-11 Yaw rate calibration device

Publications (1)

Publication Number Publication Date
WO2023171255A1 true WO2023171255A1 (en) 2023-09-14

Family

ID=87936758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004967 WO2023171255A1 (en) 2022-03-11 2023-02-14 Yaw rate calibration device

Country Status (2)

Country Link
JP (1) JP2023132591A (en)
WO (1) WO2023171255A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018381A (en) * 2011-07-12 2013-01-31 Jtekt Corp Electric power steering device
JP2014169055A (en) * 2013-03-05 2014-09-18 Advics Co Ltd Steering angle zero point correction device
WO2016208440A1 (en) * 2015-06-26 2016-12-29 株式会社デンソー Output correction device for sensor
JP2018122731A (en) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 Steering support device of vehicle
JP2019066318A (en) * 2017-09-29 2019-04-25 株式会社アドヴィックス Electronic equipment of vehicle
JP2019142288A (en) * 2018-02-16 2019-08-29 本田技研工業株式会社 Vehicle control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018381A (en) * 2011-07-12 2013-01-31 Jtekt Corp Electric power steering device
JP2014169055A (en) * 2013-03-05 2014-09-18 Advics Co Ltd Steering angle zero point correction device
WO2016208440A1 (en) * 2015-06-26 2016-12-29 株式会社デンソー Output correction device for sensor
JP2018122731A (en) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 Steering support device of vehicle
JP2019066318A (en) * 2017-09-29 2019-04-25 株式会社アドヴィックス Electronic equipment of vehicle
JP2019142288A (en) * 2018-02-16 2019-08-29 本田技研工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP2023132591A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
CN107640151B (en) Apparatus and method for determining a change in wheel alignment
JP3649119B2 (en) Lane Keep Assist Control Device
EP1954546B1 (en) Driving assistance system and driving assistance method
US10040480B1 (en) Lane keeping traveling support apparatus
US10167013B2 (en) Driving support device for vehicle including an electric power steering control that generates a steering assist torque
US9211911B2 (en) Method for steering assistance during an emergency maneuver
US9802645B2 (en) Steering reaction force control apparatus for vehicle
US6886656B2 (en) Electric power steering apparatus
US10814906B2 (en) Method for operating a power steering system
US8670905B2 (en) Vehicle stability control method and system
JP5050417B2 (en) Vehicle steering control device
US10392019B2 (en) Vehicle controller
JP2008525263A (en) Method for maneuvering vehicle in parking area and parking assist device
US20100185363A1 (en) Method and device for the control of a driver assistance system
US11718341B2 (en) Vehicle driver assistance system
US11560174B2 (en) Automatic steering control device
JP7028115B2 (en) Vehicle steering support device
EP3789271B1 (en) Control device and steering device
US11603131B2 (en) Control device and turning device
JP3714269B2 (en) Automatic steering device
EP1136344A2 (en) Vehicle front/rear wheel angle controlling system and its controlling method
WO2023171255A1 (en) Yaw rate calibration device
US11840255B2 (en) Method for partially or fully autonomously guiding a motor vehicle
JP7268990B2 (en) Vehicle automatic steering controller
JP3168758B2 (en) Detection yaw rate correction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766435

Country of ref document: EP

Kind code of ref document: A1