WO2023171155A1 - Resin composition for sealant film, sealant film, multilayered film, and method for producing sealant film - Google Patents

Resin composition for sealant film, sealant film, multilayered film, and method for producing sealant film Download PDF

Info

Publication number
WO2023171155A1
WO2023171155A1 PCT/JP2023/001862 JP2023001862W WO2023171155A1 WO 2023171155 A1 WO2023171155 A1 WO 2023171155A1 JP 2023001862 W JP2023001862 W JP 2023001862W WO 2023171155 A1 WO2023171155 A1 WO 2023171155A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
propylene
resin composition
less
Prior art date
Application number
PCT/JP2023/001862
Other languages
French (fr)
Japanese (ja)
Inventor
輝 神阪
健介 大西
直 井上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023171155A1 publication Critical patent/WO2023171155A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a resin composition for a sealant film, a sealant film containing the resin composition for a sealant film, a multilayer film comprising the sealant film, and a method for producing a sealant film using the resin composition for a sealant film. .
  • films used for various packaging materials have a structure in which a biaxially stretched polyethylene terephthalate (PET) film is used as a base film, and a polypropylene (PP) unstretched film is laminated on the base film as a sealant film.
  • PET polyethylene terephthalate
  • PP polypropylene
  • a polypropylene biaxially stretched film has inferior heat resistance compared to a polyethylene terephthalate biaxially stretched film.
  • sealant films are used that can be heat-sealed at low temperatures without melting the base film, which is a biaxially stretched polypropylene film.
  • Patent Document 1 describes a composition comprising 65 to 75% by weight of a propylene polymer (A) and 35 to 25% by weight of a propylene-ethylene random copolymer (B),
  • the copolymer (B) has an intrinsic viscosity of 3.0 to 4.5 dl/g, and the ratio of the intrinsic viscosity of the copolymer (B) to the intrinsic viscosity of the polymer (A) is 1.9 to 4.5 dl/g. 2.6, and a resin composition having an n-hexane extraction amount of 3.0% by weight or less has been proposed.
  • packaging bags formed using a sealant film are sometimes subjected to sterilization treatment by heating to a temperature of 120° C. or higher while food is housed in the packaging bag, for example, in applications for retort food packaging. be.
  • the sealant film formed using the resin composition described in Patent Document 1 is heated to a temperature of 120° C. or higher, there is a possibility that the sealant films may fuse together. Therefore, there is a demand for a sealant film that is excellent in the ability to prevent sealant films from fusing together (hereinafter also referred to as "retort fusing resistance”) in such a temperature range.
  • the present invention has been made in view of the above circumstances, and provides a resin composition for sealant film, which makes it possible to obtain a sealant film with relatively excellent retort fusion resistance, and a resin composition for sealant film.
  • An object of the present invention is to provide a sealant film containing the present invention, a multilayer film including the sealant film, and a method for producing a sealant film using the resin composition for a sealant film.
  • the resin composition for sealant film according to the present invention is A propylene polymer (1) containing 98% by mass or more of structural units derived from propylene; More than 40% by mass and less than 90% by mass of structural units derived from propylene, and more than 10% by mass and less than 60% by mass of structural units derived from at least one selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms.
  • the sealant film according to the present invention contains the above resin composition for sealant film.
  • the multilayer film according to the present invention includes the above sealant film as a sealant layer.
  • the method for manufacturing a sealant film according to the present invention includes: A melt-kneading step of melt-kneading the above resin composition for sealant film, an extrusion step of extruding the melt-kneaded composition; A film forming step of forming the extruded composition into a film having a thickness of 5 ⁇ m or more and 200 ⁇ m or less is included.
  • a resin composition for a sealant film capable of obtaining a sealant film having relatively excellent retort fusion resistance, a sealant film containing the resin composition for a sealant film, and a multilayer film comprising the sealant film.
  • a film and a method for producing a sealant film using the resin composition for sealant film can be provided.
  • the resin composition for a sealant film according to the present embodiment contains a propylene polymer (1), a propylene copolymer (2), and a ⁇ crystal nucleating agent. Further, the resin composition for sealant film may contain a propylene copolymer (3) from the viewpoint of having excellent heat seal strength at low temperatures. Furthermore, the resin composition for sealant film may contain an ethylene copolymer from the viewpoint of having better retort fusion resistance.
  • the propylene polymer (1) contains 98% by mass or more of structural units derived from propylene.
  • the content of structural units derived from propylene in the propylene polymer (1) is preferably 99% by mass or more and 100% by mass or less, and more preferably 100% by mass. That is, the propylene polymer (1) may be a propylene homopolymer.
  • the propylene polymer (1) may contain a structural unit derived from at least one member selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms.
  • the content of structural units derived from at least one selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms in the propylene polymer (1) is preferably 2% by mass or less, more preferably is from 0% by mass to 1% by mass.
  • the propylene copolymer (2) contains more than 40% by mass and less than 90% by mass of structural units derived from propylene and at least one member selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms. More than 10% by mass and less than 60% by mass of structural units.
  • the content of structural units derived from propylene in the propylene copolymer (2) is preferably more than 50% by mass and less than 90% by mass, more preferably more than 50% by mass and not more than 80% by mass, and even more preferably It is 60% by mass or more and 80% by mass or less. Further, the content of structural units derived from at least one selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms is preferably more than 10% by mass and less than 50% by mass, more preferably 20% by mass. The content is at least 20% by mass and less than 50% by mass, more preferably at least 20% by mass and at most 40% by mass.
  • the structural units derived from propylene are more than 50% by mass and less than 90% by mass, and the structural units derived from ethylene. More than 10% by mass and less than 50% by mass.
  • Examples of the ⁇ -olefin having 4 to 12 carbon atoms in the propylene polymer (1) and the propylene copolymer (2) include 1-butene, 1-hexene, and 1-octene, preferably It is 1-butene.
  • the structural unit derived from an ⁇ -olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of ⁇ -olefin alone or a structural unit derived from two or more types of ⁇ -olefin. good.
  • Examples of the method for producing the propylene polymer (1) and the propylene copolymer (2) include a method in which raw materials such as propylene and ethylene are polymerized using a Ziegler-Natta catalyst, a metallocene catalyst, or the like.
  • the propylene polymer (1) and propylene copolymer (2) can be polymerized in an inert solvent such as hexane, heptane, toluene, or xylene, or in liquid propylene or ethylene. , a method in which a catalyst is added to gaseous propylene or ethylene and polymerization is carried out in a gas phase, or a method in which a combination of these is polymerized.
  • the method for producing the propylene polymer (1) and the propylene copolymer (2) preferably involves producing the propylene polymer (1) in the substantial absence of an inert solvent. At least one kind selected from the group consisting of propylene, ethylene, and an ⁇ -olefin having 4 to 12 carbon atoms in the gas phase in the presence of the propylene polymer (1).
  • a second step is performed in which a propylene-based copolymer (2) is produced by polymerizing the above, and a propylene-based multi-stage polymer is obtained.
  • the propylene-based multistage polymer is a propylene-based polymer composition containing a propylene-based polymer (1) component and a propylene-based copolymer (2) component.
  • the method for adjusting the ethylene content of the propylene polymer (1) and propylene copolymer (2) is to add a molecular weight regulator such as hydrogen gas or a metal compound and ethylene to each step during polymerization.
  • a molecular weight regulator such as hydrogen gas or a metal compound and ethylene
  • Examples include methods of adding in a certain amount, and methods of adjusting temperature, pressure, etc. during polymerization.
  • the production ratio of propylene polymer (1) and propylene copolymer (2) is determined by the polymerization time in the first and second steps, the size of the polymerization tank, the amount of polymer retained in the polymerization tank, and the polymerization temperature. , polymerization pressure, etc. If necessary, drying may be performed at a temperature below the melting temperature of polypropylene in order to remove residual solvent of polypropylene and ultra-low molecular weight oligomers produced as by-products during production. Examples of the drying method include methods described in JP-A-55-75410 and Japanese Patent No. 2565753.
  • the melt flow rate (MFR) of the propylene-based multistage polymer obtained in the second step, measured at a temperature of 230°C and a load of 2.16 kg, is preferably from the viewpoint of improving the processability and hygiene of the film. is 0.001 g/10 minutes or more and 10 g/10 minutes or less, more preferably 0.01 g/10 minutes or more and 10 g/10 minutes or less, and even more preferably 0.01 g/10 minutes or more and 5 g/10 minutes or less. be. Further, even in a propylene polymer composition containing a propylene multistage polymer and other components, the MFR can be made to be in the same range as the above-mentioned propylene multistage polymer. Note that MFR is measured by method A specified in JIS K7210-1.
  • the propylene-based copolymer (3) contains structural units derived from propylene in an amount of 90% by mass or more and less than 98% by mass, and derived from at least one member selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms. More than 2% by mass and not more than 10% by mass of structural units.
  • the content of structural units derived from propylene in the propylene copolymer (3) is preferably 94% by mass or more and less than 98% by mass, more preferably 94% by mass or more and 97% by mass or less. Further, the content of structural units derived from at least one selected from the group consisting of ethylene and ⁇ -olefins having 4 to 12 carbon atoms in the propylene copolymer (3) is preferably more than 2% by mass and 6% by mass. % or less, more preferably 3% by mass or more and 6% by mass or less.
  • Examples of the ⁇ -olefin having 4 to 12 carbon atoms include 1-butene, 1-hexene, and 1-octene, with 1-butene being preferred.
  • the structural unit derived from an ⁇ -olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of ⁇ -olefin alone or a structural unit derived from two or more types of ⁇ -olefin. good.
  • the propylene copolymer (3) may be produced using a heterogeneous catalyst or may be produced using a homogeneous catalyst (for example, a metallocene catalyst).
  • the melt flow rate (MFR) of the propylene copolymer (3) measured at a temperature of 230°C and a load of 2.16 kg is preferably 1 g/10 minutes or more and 10 g/10 minutes or less, more preferably 1 g/10 minutes. It is 8 g/10 minutes or more, more preferably 2 g/10 minutes or more and 5 g/10 minutes or less. Furthermore, even in a propylene polymer composition containing the propylene copolymer (3) and other components, it is possible to set the MFR to the same range as the above-mentioned propylene copolymer (3). can. Note that MFR is measured by method A specified in JIS K7210-1.
  • the melting point of the propylene copolymer (3) measured by differential scanning calorimetry is preferably 120°C or more and 165°C or less, more preferably 120°C or more and 150°C or less, and even more preferably is 125°C or more and 150°C or less.
  • the ethylene copolymer contains structural units derived from ethylene in an amount of 60% by mass to 98% by mass, and structural units derived from ⁇ -olefins having 4 to 12 carbon atoms in a content of 2% by mass to 40% by mass, including.
  • the content of structural units derived from ethylene in the ethylene copolymer is preferably 70% by mass or more and 95% by mass or less, more preferably 75% by mass or more and 95% by mass or less, and even more preferably 80% by mass.
  • the content is 95% by mass or less.
  • the content of structural units derived from ⁇ -olefins having 4 to 12 carbon atoms in the ethylene copolymer is preferably 5% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 25% by mass. % or less, more preferably 5% by mass or more and 20% by mass or less.
  • Examples of ⁇ -olefins having 4 to 12 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene. , 4-methyl-1-hexene, etc., and 1-hexene is preferable from the viewpoint of increasing heat sealing strength.
  • the ⁇ -olefin having 4 to 12 carbon atoms is preferably an ⁇ -olefin having 4 to 8 carbon atoms.
  • the structural unit derived from an ⁇ -olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of ⁇ -olefin alone or a structural unit derived from two or more types of ⁇ -olefin. good.
  • the density of the ethylene copolymer is preferably 850 kg/m 3 or more and 950 kg/m 3 or less, more preferably 850 kg/m 3 or more and 930 kg/m 3 or less, and even more preferably 880 kg/m 3 or more and 930 kg/m 3 or less. m 3 or less.
  • the density of the ethylene copolymer is 850 kg/m 3 or more, a film with excellent rigidity can be obtained, and when the density is 950 kg/m 3 or less, a film with excellent impact resistance at low temperatures can be obtained. Obtainable.
  • the density can be within the same range as the density of the above-mentioned ethylene copolymer.
  • the density of the ethylene copolymer is measured according to JIS K6922-1.
  • the melt flow rate (MFR) of the ethylene copolymer measured at a temperature of 190° C. and a load of 2.16 kg is preferably 0.1 g/10 minutes or more and 50 g/10 minutes or less, more preferably 0.1 g/10 minutes or less. It is 10 minutes or more and 10 g/10 minutes or less, more preferably 1 g/10 minutes or more and 5 g/10 minutes or less. Furthermore, even in an ethylene polymer composition containing an ethylene copolymer and other components, the MFR can be made within the same range as the above-mentioned ethylene copolymer. Note that MFR is measured by method A specified in JIS K7210-1.
  • the molecular weight distribution of the ethylene copolymer is preferably 1 or more and 5 or less, more preferably 1 or more and 4 or less, and still more preferably 2 or more and 4 or less.
  • molecular weight distribution of the ethylene copolymer is 1 or more, extrusion load is reduced and processability is improved. Further, by setting the molecular weight distribution of the ethylene copolymer to 5 or less, a film having excellent impact resistance at low temperatures can be obtained.
  • “molecular weight distribution” refers to the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/ Mn).
  • ethylene and ⁇ -olefin are copolymerized using a metallocene catalyst, and the density of the ethylene copolymer is made to be 850 kg/m 3 or more.
  • a method for reducing the weight to 950 kg/m 3 or less can be mentioned.
  • Ethylene-based copolymers can be produced using, for example, metallocene catalysts.
  • a metallocene catalyst is, for example, a catalyst for olefin polymerization using a transition metal compound having a group having a cyclopentadiene type anion skeleton (hereinafter sometimes referred to as a "metallocene transition metal compound").
  • the metallocene transition metal compound is, for example, a compound of the formula MLaXna (where M is a transition metal atom of Group 4 of the periodic table of elements or a lanthanide series; L is a group having a cyclopentadiene type anion skeleton or a hetero A group containing atoms, at least one of which has a cyclopentadiene type anion skeleton. Plural Ls may be crosslinked with each other.
  • X is a halogen atom, a hydrogen atom, or a group having 1 to 20 carbon atoms. It is a hydrocarbon group.N represents the valence of a transition metal atom, and a is an integer satisfying 0 ⁇ a ⁇ n).
  • Examples of the metallocene transition metal compound represented by the above formula include bis(1,3-n-butylmethylcyclopentadienyl)zirconium dichloride, bis(1,3-n-propylmethylcyclopentadienyl) Zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(1,3-dimethylcyclopentadienyl)zirconium dichloride, bis(1,3-diethylcyclopentadienyl)zirconium dichloride, ethylene bis(indenyl) ) zirconium dichloride, ethylenebis(4-methyl-1-indenyl)zirconium dichloride, ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and the like.
  • the metallocene transition metal compound described above is preferably used in contact with an activation promoter.
  • the activation co-catalyst include an alumoxane compound and an activation co-catalyst formed by using a combination of an organoaluminum compound and a boron compound such as trityl borate or anilinium borate. Further, it may be used in combination with a particulate carrier including an inorganic carrier such as SiO 2 or Al 2 O 3 or an organic carrier such as a polymer such as ethylene or styrene.
  • a ⁇ -crystal nucleating agent refers to a compound that can form a ⁇ -crystal, which is a hexagonal crystal structure, in a propylene polymer.
  • the ⁇ -crystal nucleating agent various conventionally known ⁇ -crystal nucleating agents can be used.
  • amide compounds such as N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide, N,N'-dicyclohexyl terephthalamide, N,N'-diphenylhexanediamide, tetraoxaspiro compounds, quinacridone, Quinacridones represented by quinacridone quinone, iron oxide with nanoscale size, calcium pimelate, potassium 1,2-hydroxystearate, magnesium benzoate or succinate, carboxylic acids represented by magnesium phthalate, etc.
  • alkaline or alkaline earth metal salts aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate, diesters or triesters of di- or tribasic carboxylic acids, phthalocyanine blue, etc.
  • Commercially available products of N,N'-dicyclohexyl-2,6-naphthalenedicarboxyamide include, for example, NU-100 (manufactured by Shin Nippon Chemical Co., Ltd.).
  • the concentration of the ⁇ -crystal nucleating agent is preferably 100 mass ppm or more and 3000 mass ppm or less, more preferably 300 mass ppm or more and 2000 mass ppm or less, and still more preferably 300 mass ppm or more and 3000 mass ppm or less.
  • the content ranges from 500 ppm to 1500 ppm by mass, particularly preferably from 500 ppm to 1500 ppm by mass.
  • the resin composition for sealant film according to the present embodiment may contain additives and other resins as necessary.
  • additives include antioxidants, neutralizers, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, adhesives, antifogging agents, antiblocking agents, melt flow rate regulators, and the like.
  • antioxidants include phenolic antioxidants, phosphorous antioxidants, sulfur-based antioxidants, etc., which have both a phenol-based antioxidant mechanism and a phosphorus-based antioxidant mechanism in one molecule. Complex type antioxidants having units can also be used.
  • Examples of other resins include elastomers such as styrene-butadiene-styrene copolymer and styrene copolymer rubber obtained by hydrogenating styrene-isoprene-styrene copolymer.
  • the content of the propylene polymer (1) is preferably set to 100 parts by mass in total of the content of the polymers contained in the resin composition. 50 parts by mass or more and 95 parts by mass or less, more preferably 50 parts by mass or more and less than 89 parts by mass, even more preferably 60 parts by mass or more and less than 89 parts by mass, particularly preferably 60 parts by mass or more and less than 80 parts by mass. It is. Further, the content of the propylene copolymer (2) is preferably 5 parts by mass or more and 50 parts by mass or less with respect to a total of 100 parts by mass of the polymers contained in the resin composition. , more preferably more than 11 parts by weight and not more than 50 parts by weight, still more preferably more than 11 parts by weight and not more than 40 parts by weight, particularly preferably not less than 20 parts by weight and not more than 40 parts by weight.
  • the total content of polymers contained in the resin composition is Preferably, the content of the propylene polymer (1) is 50 parts by mass or more and 95 parts by mass or less, and the content of the propylene copolymer (2) is 5 parts by mass or more with respect to 100 parts by mass. 50 parts by mass or less, more preferably, the content of the propylene polymer (1) is 50 parts by mass or more and less than 89 parts by mass, and the content of the propylene copolymer (2) is 11 parts by mass. More than 50 parts by mass or less.
  • the propylene-based copolymer (3) is The content of the polymer (1) is preferably 10 parts by mass or more and 78 parts by mass or less, more preferably 10 parts by mass or more and 70 parts by mass or less, and even more preferably 20 parts by mass or more and 60 parts by mass or less. , particularly preferably 20 parts by mass or more and 50 parts by mass or less, and the content of the propylene copolymer (2) is preferably 2 parts by mass or more and 40 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass.
  • the content of the propylene copolymer (3) is preferably 20 parts by weight. parts to 80 parts by mass, more preferably 20 parts to 70 parts by mass, still more preferably 30 parts to 70 parts by mass, particularly preferably 35 parts to 65 parts by mass. .
  • a polymer contained in the resin composition from the viewpoint of excellent retort fusion resistance and heat sealing strength at low temperatures, it is preferable to use a polymer contained in the resin composition.
  • the content of the propylene polymer (1) is 10 parts by mass or more and 78 parts by mass or less, and the content of the propylene copolymer (2) is 2 parts by mass or more with respect to the total content of 100 parts by mass.
  • the content of the propylene copolymer (3) is 20 parts by mass or more and 80 parts by mass or less.
  • the propylene-based polymer ( The content of 1) is preferably 35 parts by mass or more and 75 parts by mass or less, more preferably 40 parts by mass or more and 75 parts by mass or less, still more preferably 40 parts by mass or more and 70 parts by mass or less, and particularly preferably is 45 parts by mass or more and 70 parts by mass or less, and the content of the propylene copolymer (2) is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 5 parts by mass or more and 45 parts by mass or less.
  • the content of the ethylene copolymer is preferably 10 parts by mass or more and 45 parts by mass or less, particularly preferably 10 parts by mass or more and 40 parts by mass or less, and the content of the ethylene copolymer is preferably 2 parts by mass or more and 30 parts by mass or less. It is more preferably 5 parts by mass or more and 30 parts by mass or less, still more preferably 10 parts by mass or more and 30 parts by mass or less, particularly preferably 15 parts by mass or more and 30 parts by mass or less.
  • the resin composition for a sealant film according to the present embodiment from the viewpoint of excellent retort fusion resistance and excellent bag breakage resistance, the resin composition preferably contains a polymer contained in the resin composition.
  • the content of propylene polymer (1) is 35 parts by mass or more and 75 parts by mass or less, and the content of propylene copolymer (2) is 5 parts by mass or more and 50 parts by mass.
  • the content of the ethylene copolymer is 2 parts by mass or more and 30 parts by mass or less.
  • the sealant film according to this embodiment contains the above resin composition for sealant film.
  • the thickness of the sealant film is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the multilayer film according to this embodiment includes the above sealant film as a sealant layer.
  • the thickness of the multilayer film is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the multilayer film includes, for example, packaging applications for foods, textiles, miscellaneous goods, and the like.
  • the multilayer film is preferably a multilayer film used for retort food packaging.
  • the multilayer film may also be used as a material for forming packaging bags.
  • the multilayer film can be produced by laminating the sealant film as a sealant layer with a base layer.
  • Examples of the method for laminating the base material layer and the sealant layer include known film manufacturing methods such as the T-die method and the tubular method, with the T-die method being preferred.
  • the method for producing a sealant film according to the present embodiment includes a melt-kneading step of melt-kneading the resin composition for sealant film, an extrusion step of extruding the melt-kneaded composition, and a step of extruding the extruded composition to a thickness of 5 ⁇ m or more.
  • a film forming step of forming a film to a thickness of 200 ⁇ m or less is included.
  • the propylene polymer (1), the propylene copolymer (2), the ⁇ -crystal nucleating agent, and if necessary, the propylene copolymer (3) and the ethylene copolymer The mixture, additives and other resins are melt-kneaded.
  • a propylene multistage polymer obtained by polymerization in multiple stages may be used as the propylene polymer (1) and the propylene copolymer (2).
  • the melt-kneading can be carried out using conventionally known methods and equipment.
  • the above-mentioned materials may be mixed using a mixing device such as a Henschel mixer, a ribbon blender, or a tumble mixer, and then melt-kneaded.
  • a mixing device such as a Henschel mixer, a ribbon blender, or a tumble mixer
  • melt-kneaded after obtaining a homogeneous mixture by continuously feeding each of the above materials at a fixed rate using a quantitative feeder, the mixture is transferred to a single screw or two or more screw extruder, a Banbury mixer, etc. , a method of melt-kneading using a roll-type kneader or the like.
  • the resin temperature during melt-kneading is preferably 190°C or higher and 320°C or lower, more preferably 210°C or higher and 280°C or lower.
  • the melt-kneaded composition is extruded from a T-die using an extruder.
  • the extrusion temperature can be, for example, 190°C or higher and 320°C or lower. Note that the extrusion temperature is the temperature of the T-die itself.
  • the composition extruded from a T-die is cooled and solidified while being wound up with a chill roll to form a film to a predetermined thickness.
  • the cooling temperature can be, for example, 20° C. or higher and 140° C. or lower.
  • the resin composition for sealant film, the sealant film, the multilayer film, and the method for manufacturing the sealant film according to the present embodiment are not limited to the above embodiments, and various methods may be used without departing from the gist of the present invention. can be changed.
  • the content of structural units derived from ethylene contained in the propylene-ethylene copolymer was measured by 13 C-NMR.
  • the propylene polymer composition was determined.
  • the content of the propylene-ethylene copolymer contained and the content of structural units derived from ethylene contained in the propylene-ethylene copolymer in the propylene-based polymer composition were determined.
  • the content of structural units derived from ethylene contained in the ethylene copolymer was measured by 13 C-NMR. Specifically, based on the 13 C-NMR spectrum of the ethylene polymer composition measured under the following conditions, the ethylene copolymer composition was determined based on Randall's method (Rev. Macromol. The content of structural units derived from ethylene contained in the coalescence was determined.
  • a sample was prepared by uniformly dissolving approximately 250 mg of the propylene polymer composition or ethylene polymer composition in 2.5 mL of solvent in a 10 mm ⁇ test tube, and the 13 C-NMR spectrum of the sample was measured under the following conditions. Measured below.
  • melt flow rate (MFR, unit: g/10 minutes) The melt flow rate was measured at a temperature of 230° C. or 190° C. and a load of 2.16 kg according to method A specified in JIS K7210-1.
  • Heat seal strength (unit: N/15mm) A multilayer film was used in which a sealant film, a 7 ⁇ m thick aluminum foil, and a 12 ⁇ m thick polyethylene terephthalate film were laminated in the stated order by a dry lamination method. Using a heat sealer manufactured by Toyo Tester Kogyo Co., Ltd., fold the multilayer film in half with the sealant film on the inside, and then fold the ends opposite the folded position in the direction in which the folded position extends under the following conditions. It was heat-sealed in a strip along the .
  • ⁇ Seal bar Double-sided flat surface heating ⁇ Seal temperature: 170°C ⁇ Seal pressure: 1.0kg/ cm2 ⁇ Sealing time: 1.0sec ⁇ Seal width: 10mm Then, a test piece with a width of 15 mm was cut out in a direction perpendicular to the seal width direction, and heat treated in an oven at 120° C. for 30 minutes. Thereafter, the heat seal strength of the test piece was measured using a tensile tester (Tensilon manufactured by Orientec) under conditions of a peel angle of 90° and a tensile speed of 200 mm/min.
  • a tensile tester Teensilon manufactured by Orientec
  • Retort fusion resistance evaluation (unit: N/12cm 2 ) After the measurement surfaces of two 100 mm x 30 mm sealant films were placed on top of each other, a weight of 500 g with a ground contact area of 40 mm x 30 mm was placed on the film, and the film was heat-treated in an oven at 120° C. for 30 minutes. The resulting laminate of two sealant films was left in an atmosphere at a temperature of 23° C. and a humidity of 50% for 30 minutes or more, and then the shear peeling force was measured at a tensile rate of 200 mm/min.
  • Propylene polymer composition C In the first step, propylene is polymerized in the gas phase using a Ziegler-Natta type catalyst, and in the second step, propylene and ethylene are copolymerized in the gas phase to produce propylene homopolymer C-1. and propylene-ethylene copolymer C-2 was obtained.
  • Propylene polymer composition D Using a Ziegler-Natta type catalyst, propylene is polymerized in the gas phase in the first step, and propylene and ethylene are copolymerized in the gas phase in the second step to produce propylene homopolymer D-1.
  • a propylene polymer composition D was obtained, which consisted of the following: and propylene-ethylene copolymer D-2.
  • Propylene polymer composition G Propylene and ethylene were copolymerized in the gas phase using a Ziegler-Natta type catalyst to obtain propylene-ethylene copolymer G. Based on 100 parts by mass of the obtained propylene-ethylene copolymer G, 0.05 parts by mass of calcium stearate, 0.2 parts by mass of Irganox 1010 (manufactured by BASF), and 0.05 parts by mass of Irgafos 168 (manufactured by BASF).
  • pellet-shaped propylene polymer composition G has a content of structural units derived from ethylene in the propylene-ethylene copolymer G of 5.9% by mass, and a melt flow rate measured at 230°C. It was 3.5g/10 minutes.
  • Ethylene polymer composition H As the ethylene polymer composition H, Sumikasen E FV205 (ethylene-1-hexene copolymer composition, manufactured by Sumitomo Chemical Co., Ltd.) was used. Ethylene-based polymer composition H has an ethylene-1-hexene copolymer content of 99.9% by mass, and a content of ethylene-derived structural units in the ethylene-1-hexene copolymer of 93% by mass. %, the content of structural units derived from 1-hexene was 7% by mass, the melt flow rate measured at 190° C. was 2.2 g/10 minutes, and the density was 921 kg/m 3 .
  • Example 1 Resin composition 1
  • propylene polymer composition A For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.03 parts by mass of NU-100 ( ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 1.
  • NU-100 ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.
  • the obtained resin composition 1 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total of 100 parts by mass of the content of polymers contained in resin composition 1, and propylene -
  • the content of ethylene copolymer A-2 is 22 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%
  • the flow rate was 2.4 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • Resin composition 1 was melt-kneaded at a resin temperature of 280° C. using a 50 mm T-die film forming device (V-50-F600 type film forming device manufactured by Tanabe Plastics Co., Ltd., equipped with a 400 mm width T-die) and extruded from the T-die. .
  • the mixture was cooled and solidified while being wound around a chill roll having a cooling temperature of 80° C. to obtain a sealant film having a thickness of 70 ⁇ m.
  • Retort fusion resistance was evaluated using the obtained sealant film.
  • a heat seal strength evaluation was performed on a multilayer film produced using the obtained sealant film. The results are shown in Table 2.
  • Example 2 Resin composition 2
  • propylene polymer composition A For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) 0.05 parts by mass and 0.1 parts by mass of NU-100 ( ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 2.
  • NU-100 ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.
  • the resulting resin composition 2 has a propylene homopolymer A-1 content of 77 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 2, and propylene -
  • the content of ethylene copolymer A-2 is 23 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%
  • the flow rate was 2.5 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that Resin Composition 2 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 3 Resin composition 3
  • propylene polymer composition A For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.2 parts by mass of NU-100 ( ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 3. Ta.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • NU-100 ⁇ crystal nucleating agent
  • the resulting resin composition 3 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total of 100 parts by mass of the content of polymers contained in resin composition 3, and propylene -
  • the content of ethylene copolymer A-2 is 22 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%
  • the flow rate was 2.3 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 3 was used, and its properties were evaluated. The results are shown in Table 2.
  • Resin composition 4 was obtained by pellet blending 50% by mass of resin composition 3 and 50% by mass of propylene polymer composition G. The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 4 was used, and its properties were evaluated. The results are shown in Table 2.
  • Resin composition 5 was obtained by pellet blending 80% by mass of resin composition 2 and 20% by mass of ethylene polymer composition H. The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 5 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 6 Resin composition 6
  • propylene polymer composition B For 100 parts by mass of propylene polymer composition B, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of NU-100 ( ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 6. Ta.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • NU-100 ⁇ crystal nucleating agent
  • the resulting resin composition 6 has a propylene homopolymer B-1 content of 84 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 6, and propylene -
  • the content of ethylene copolymer B-2 is 16 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer B-2 is 55% by mass
  • the flow rate was 22 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 6 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 7 Resin composition 7
  • propylene polymer composition C For 100 parts by mass of propylene polymer composition C, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of NU-100 ( ⁇ crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 7. Ta.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • NU-100 ⁇ crystal nucleating agent
  • the resulting resin composition 7 has a propylene homopolymer C-1 content of 80 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 7, and propylene -
  • the content of the ethylene copolymer C-2 is 20 parts by mass
  • the content of structural units derived from ethylene in the propylene-ethylene copolymer C-2 is 51% by mass
  • the flow rate was 6.5 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 7 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 8 Resin composition 8
  • a pellet-shaped resin composition 8 was obtained.
  • the obtained resin composition 8 has a content of propylene homopolymer D-1 and a content of propylene homopolymer E based on a total of 100 parts by mass of the polymer content contained in resin composition 8.
  • the total amount is 89 parts by mass
  • the content of propylene-ethylene copolymer D-2 is 11 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer D-2 is 39 parts by mass. % by mass
  • the melt flow rate measured at 230°C was 2.7 g/10 minutes. The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 8 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 9 Resin composition 9
  • propylene polymer composition A For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.03 parts by mass of TMB-5 ( ⁇ crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 9. Obtained.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • TMB-5 ⁇ crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry
  • the resulting resin composition 9 has a propylene homopolymer A-1 content of 78 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 9, and propylene -
  • the content of ethylene copolymer A-2 is 22 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%
  • the flow rate was 2.4 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition 9 was used, and its properties were evaluated. The results are shown in Table 2.
  • Example 10 Resin composition 10
  • propylene polymer composition A For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of TMB-5 ( ⁇ crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry) were mixed in a Henschel mixer, and melt extrusion was performed to obtain pellet-shaped resin composition 10. Obtained.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • TMB-5 ⁇ crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry
  • the resulting resin composition 10 has a propylene homopolymer A-1 content of 78 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 10, and propylene homopolymer A-1.
  • the content of ethylene copolymer A-2 is 22 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%
  • the flow rate was 2.4 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that Resin Composition 10 was used, and its properties were evaluated. The results are shown in Table 2.
  • Resin composition C1 For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) 0.05 parts by mass were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition C1.
  • hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • Irganox 1010 manufactured by BASF Corporation
  • Irgafos 168 manufactured by BASF Corporation
  • the obtained resin composition C1 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total content of 100 parts by mass of polymers contained in the resin composition C1, and propylene -
  • the content of ethylene copolymer A-2 is 22 parts by mass
  • the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 35% by mass
  • the flow rate was 2.3 g/10 minutes.
  • Table 1 The results are shown in Table 1.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition C1 was used, and its properties were evaluated. The results are shown in Table 2.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition C2 was used, and its properties were evaluated. The results are shown in Table 2.
  • a sealant film was produced in the same manner as in Example 1, except that resin composition C3 was used, and its properties were evaluated. The results are shown in Table 2.
  • the resin compositions of each example that satisfy all the constituent requirements of the present invention can provide a sealant film with relatively excellent retort fusion resistance. Further, the resin compositions of each example can provide a sealant film with excellent heat seal strength at low temperatures.
  • the resin composition of Comparative Example 1 does not contain a ⁇ -crystal nucleating agent, the retort fusion resistance and heat seal strength at low temperatures of the film obtained using the resin composition are poor. Since the resin composition of Comparative Example 2 does not contain the propylene copolymer (2) and the ⁇ -crystal nucleating agent, the retort fusion resistance of the film obtained using the resin composition and the low temperature stability are Heat seal strength is poor. Since the resin composition of Comparative Example 3 does not contain the propylene copolymer (2), the retort fusion resistance of the film obtained using the resin composition is poor.
  • the resin composition for a sealant film of the present invention can be used for a sealant film that has relatively excellent retort fusion resistance, and has high applicability for applications such as retort packaging materials equipped with the sealant film.

Abstract

The problem addressed is to provide a resin composition for a sealant film capable of yielding a sealant film having relatively excellent retort adhesion resistance, a sealant film containing said resin composition for a sealant film, a multilayered film equipped with said sealant film, and a method for producing a sealant film using the resin composition for a sealant film. The resin composition for a sealant film according to the present invention contains: a propylene polymer (1) containing 98 mass% or more of structural units derived from propylene; a propylene copolymer (2) containing from more than 40 mass% to less than 90 mass% of structural units derived from propylene and from more than 10 mass% to less than 60 mass% of structural units derived from at least one selected from the group consisting of ethylene and C4-12 α-olefins; and a β crystal nucleating agent.

Description

シーラントフィルム用樹脂組成物、シーラントフィルム、多層フィルム、および、シーラントフィルムの製造方法Resin composition for sealant film, sealant film, multilayer film, and method for producing sealant film
 本発明は、シーラントフィルム用樹脂組成物、該シーラントフィルム用樹脂組成物を含有するシーラントフィルム、該シーラントフィルムを備える多層フィルム、および、前記シーラントフィルム用樹脂組成物を用いたシーラントフィルムの製造方法に関する。 The present invention relates to a resin composition for a sealant film, a sealant film containing the resin composition for a sealant film, a multilayer film comprising the sealant film, and a method for producing a sealant film using the resin composition for a sealant film. .
 従来、例えば各種包装材料に用いられるフィルムとしては、ポリエチレンテレフタレート(PET)系二軸延伸フィルムを基材フィルムとし、該基材フィルムに、ポリプロピレン(PP)系無延伸フィルムをシーラントフィルムとして積層した構成のものが知られている。かかる構成のフィルムは、シーラントフィルムを内側にして収容空間を形成するようにヒートシールすることで、包装袋を形成する。 Conventionally, films used for various packaging materials, for example, have a structure in which a biaxially stretched polyethylene terephthalate (PET) film is used as a base film, and a polypropylene (PP) unstretched film is laminated on the base film as a sealant film. are known. A film having such a structure is heat-sealed with the sealant film on the inside to form a storage space, thereby forming a packaging bag.
 近年、この種のフィルムに対してもリサイクルの要望が高まっており、モノマテリアル化が求められている。具体的には、ポリプロピレンで構成されるシーラントフィルムと同系種のポリプロピレン系二軸延伸フィルムを基材フィルムとして採用することが好適とされている。 In recent years, there has been an increasing demand for recycling of this type of film, and there is a need for it to be made into a monomaterial. Specifically, it is considered suitable to employ, as the base film, a polypropylene biaxially stretched film that is similar to the sealant film made of polypropylene.
 ところが、ポリプロピレン系二軸延伸フィルムは、ポリエチレンテレフタレート系二軸延伸フィルムと比較して、耐熱性が劣る。このため、ポリプロピレン系二軸延伸フィルムである基材フィルムを融解させることなく、低温でヒートシール可能なシーラントフィルムが用いられている。 However, a polypropylene biaxially stretched film has inferior heat resistance compared to a polyethylene terephthalate biaxially stretched film. For this reason, sealant films are used that can be heat-sealed at low temperatures without melting the base film, which is a biaxially stretched polypropylene film.
 シーラントフィルムに用いられる樹脂組成物として、例えば、特許文献1には、プロピレン系重合体(A)65~75重量%とプロピレン-エチレンランダム共重合体(B)35~25重量%とからなり、前記共重合体(B)の極限粘度が3.0~4.5dl/gであり、前記重合体(A)の極限粘度に対する前記共重合体(B)の極限粘度の比が1.9~2.6であり、n-ヘキサン抽出量が3.0重量%以下である樹脂組成物が提案されている。 As a resin composition used for a sealant film, for example, Patent Document 1 describes a composition comprising 65 to 75% by weight of a propylene polymer (A) and 35 to 25% by weight of a propylene-ethylene random copolymer (B), The copolymer (B) has an intrinsic viscosity of 3.0 to 4.5 dl/g, and the ratio of the intrinsic viscosity of the copolymer (B) to the intrinsic viscosity of the polymer (A) is 1.9 to 4.5 dl/g. 2.6, and a resin composition having an n-hexane extraction amount of 3.0% by weight or less has been proposed.
特開2013-209635号公報JP2013-209635A
 ところで、シーラントフィルムを用いて形成された包装袋は、例えば、レトルト食品包装の用途において、該包装袋に食品が収容された状態で、120℃以上の温度に加熱して殺菌処理を行う場合がある。しかしながら、特許文献1に記載の樹脂組成物を用いて形成されたシーラントフィルムは、120℃以上の温度に加熱すると該シーラントフィルム同士が融着する虞がある。そのため、このような温度域においてシーラントフィルム同士の融着を防ぐ性能(以下では、「耐レトルト融着性」とも記す。)に優れたシーラントフィルムが要望されている。 By the way, packaging bags formed using a sealant film are sometimes subjected to sterilization treatment by heating to a temperature of 120° C. or higher while food is housed in the packaging bag, for example, in applications for retort food packaging. be. However, when the sealant film formed using the resin composition described in Patent Document 1 is heated to a temperature of 120° C. or higher, there is a possibility that the sealant films may fuse together. Therefore, there is a demand for a sealant film that is excellent in the ability to prevent sealant films from fusing together (hereinafter also referred to as "retort fusing resistance") in such a temperature range.
 本発明は、このような事情に鑑みてなされたものであり、耐レトルト融着性に比較的優れたシーラントフィルムを得ることが可能なシーラントフィルム用樹脂組成物、該シーラントフィルム用樹脂組成物を含有するシーラントフィルム、該シーラントフィルムを備える多層フィルム、および、前記シーラントフィルム用樹脂組成物を用いたシーラントフィルムの製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides a resin composition for sealant film, which makes it possible to obtain a sealant film with relatively excellent retort fusion resistance, and a resin composition for sealant film. An object of the present invention is to provide a sealant film containing the present invention, a multilayer film including the sealant film, and a method for producing a sealant film using the resin composition for a sealant film.
 本発明に係るシーラントフィルム用樹脂組成物は、
 プロピレンに由来する構造単位を98質量%以上含むプロピレン系重合体(1)と、
 プロピレンに由来する構造単位を40質量%超90質量%未満と、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を10質量%超60質量%未満と、を含むプロピレン系共重合体(2)と、
 β晶核剤と、
 を含有する。
The resin composition for sealant film according to the present invention is
A propylene polymer (1) containing 98% by mass or more of structural units derived from propylene;
More than 40% by mass and less than 90% by mass of structural units derived from propylene, and more than 10% by mass and less than 60% by mass of structural units derived from at least one selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms. A propylene copolymer (2) containing less than %,
β-crystal nucleating agent,
Contains.
 本発明に係るシーラントフィルムは、上記のシーラントフィルム用樹脂組成物を含有する。 The sealant film according to the present invention contains the above resin composition for sealant film.
 本発明に係る多層フィルムは、上記のシーラントフィルムをシーラント層として備える。 The multilayer film according to the present invention includes the above sealant film as a sealant layer.
 本発明に係るシーラントフィルムの製造方法は、
 上記のシーラントフィルム用樹脂組成物を溶融混練する溶融混練工程と、
 溶融混練された組成物を押し出す押出工程と、
 押し出された組成物を厚さ5μm以上200μm以下に製膜する製膜工程と、を含む。
The method for manufacturing a sealant film according to the present invention includes:
A melt-kneading step of melt-kneading the above resin composition for sealant film,
an extrusion step of extruding the melt-kneaded composition;
A film forming step of forming the extruded composition into a film having a thickness of 5 μm or more and 200 μm or less is included.
 本発明によれば、耐レトルト融着性に比較的優れたシーラントフィルムを得ることが可能なシーラントフィルム用樹脂組成物、該シーラントフィルム用樹脂組成物を含有するシーラントフィルム、該シーラントフィルムを備える多層フィルム、および、前記シーラントフィルム用樹脂組成物を用いたシーラントフィルムの製造方法を提供することができる。 According to the present invention, there is provided a resin composition for a sealant film capable of obtaining a sealant film having relatively excellent retort fusion resistance, a sealant film containing the resin composition for a sealant film, and a multilayer film comprising the sealant film. A film and a method for producing a sealant film using the resin composition for sealant film can be provided.
 以下、本発明の実施形態について説明するが、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
 <シーラントフィルム用樹脂組成物>
 本実施形態に係るシーラントフィルム用樹脂組成物は、プロピレン系重合体(1)と、プロピレン系共重合体(2)と、β晶核剤と、を含有する。また、前記シーラントフィルム用樹脂組成物は、低温でのヒートシール強度に優れるという観点から、プロピレン系共重合体(3)を含有してもよい。さらに、前記シーラントフィルム用樹脂組成物は、耐レトルト融着性により優れるという観点から、エチレン系共重合体を含有してもよい。
<Resin composition for sealant film>
The resin composition for a sealant film according to the present embodiment contains a propylene polymer (1), a propylene copolymer (2), and a β crystal nucleating agent. Further, the resin composition for sealant film may contain a propylene copolymer (3) from the viewpoint of having excellent heat seal strength at low temperatures. Furthermore, the resin composition for sealant film may contain an ethylene copolymer from the viewpoint of having better retort fusion resistance.
 プロピレン系重合体(1)は、プロピレンに由来する構造単位を98質量%以上含む。プロピレン系重合体(1)におけるプロピレンに由来する構造単位の含有量は、好ましくは99質量%以上100質量%以下であり、より好ましくは100質量%である。すなわち、プロピレン系重合体(1)は、プロピレン単独重合体であってもよい。 The propylene polymer (1) contains 98% by mass or more of structural units derived from propylene. The content of structural units derived from propylene in the propylene polymer (1) is preferably 99% by mass or more and 100% by mass or less, and more preferably 100% by mass. That is, the propylene polymer (1) may be a propylene homopolymer.
 プロピレン系重合体(1)は、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を含んでいてもよい。プロピレン系重合体(1)におけるエチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位の含有量は、好ましくは2質量%以下であり、より好ましくは0質量%以上1質量%以下である。 The propylene polymer (1) may contain a structural unit derived from at least one member selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms. The content of structural units derived from at least one selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms in the propylene polymer (1) is preferably 2% by mass or less, more preferably is from 0% by mass to 1% by mass.
 プロピレン系共重合体(2)は、プロピレンに由来する構造単位を40質量%超90質量%未満と、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を10質量%超60質量%未満と、を含む。 The propylene copolymer (2) contains more than 40% by mass and less than 90% by mass of structural units derived from propylene and at least one member selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms. More than 10% by mass and less than 60% by mass of structural units.
 プロピレン系共重合体(2)におけるプロピレンに由来する構造単位の含有量は、好ましくは50質量%超90質量%未満であり、より好ましくは50質量%超80質量%以下であり、さらに好ましくは60質量%以上80質量%以下である。また、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位の含有量は、好ましくは10質量%超50質量%未満であり、より好ましくは20質量%以上50質量%未満であり、さらに好ましくは20質量%以上40質量%以下である。 The content of structural units derived from propylene in the propylene copolymer (2) is preferably more than 50% by mass and less than 90% by mass, more preferably more than 50% by mass and not more than 80% by mass, and even more preferably It is 60% by mass or more and 80% by mass or less. Further, the content of structural units derived from at least one selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms is preferably more than 10% by mass and less than 50% by mass, more preferably 20% by mass. The content is at least 20% by mass and less than 50% by mass, more preferably at least 20% by mass and at most 40% by mass.
 プロピレン系共重合体(2)の一態様として、低温でのヒートシール強度に優れる観点から、好ましくは、プロピレンに由来する構造単位を50質量%超90質量%未満と、エチレンに由来する構造単位を10質量%超50質量%未満と、を含む。 As one embodiment of the propylene-based copolymer (2), from the viewpoint of excellent heat sealing strength at low temperatures, preferably the structural units derived from propylene are more than 50% by mass and less than 90% by mass, and the structural units derived from ethylene. More than 10% by mass and less than 50% by mass.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)における炭素原子数4~12のα-オレフィンとしては、例えば、1-ブテン、1-ヘキセン、1-オクテンなどが挙げられ、好ましくは1-ブテンである。炭素原子数4~12のα-オレフィンに由来する構造単位は、1種単独のα-オレフィンに由来する構造単位であっても、2種以上のα-オレフィンに由来する構造単位であってもよい。 Examples of the α-olefin having 4 to 12 carbon atoms in the propylene polymer (1) and the propylene copolymer (2) include 1-butene, 1-hexene, and 1-octene, preferably It is 1-butene. The structural unit derived from an α-olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of α-olefin alone or a structural unit derived from two or more types of α-olefin. good.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)の製造方法としては、チーグラー・ナッタ触媒や、メタロセン触媒などを用いて、原料であるプロピレンやエチレンなどを重合させる方法が挙げられる。 Examples of the method for producing the propylene polymer (1) and the propylene copolymer (2) include a method in which raw materials such as propylene and ethylene are polymerized using a Ziegler-Natta catalyst, a metallocene catalyst, or the like.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)の重合方法としては、ヘキサン、ヘプタン、トルエン、キシレンなどの不活性溶剤中で重合する方法、液状のプロピレンやエチレン中で重合する方法、気体であるプロピレンやエチレン中に触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法が挙げられる。 The propylene polymer (1) and propylene copolymer (2) can be polymerized in an inert solvent such as hexane, heptane, toluene, or xylene, or in liquid propylene or ethylene. , a method in which a catalyst is added to gaseous propylene or ethylene and polymerization is carried out in a gas phase, or a method in which a combination of these is polymerized.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)の製造方法は、生産性の観点から、好ましくは、実質的に不活性溶剤の不存在下で、プロピレン系重合体(1)を生成する第一工程を行い、次いで、該プロピレン系重合体(1)の存在下、気相中で、プロピレンとエチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種とを重合して、プロピレン系共重合体(2)を生成する第二工程を行い、プロピレン系多段重合体を得る方法である。プロピレン系多段重合体は、プロピレン系重合体(1)成分およびプロピレン系共重合体(2)成分を含むプロピレン系重合体組成物である。 From the viewpoint of productivity, the method for producing the propylene polymer (1) and the propylene copolymer (2) preferably involves producing the propylene polymer (1) in the substantial absence of an inert solvent. At least one kind selected from the group consisting of propylene, ethylene, and an α-olefin having 4 to 12 carbon atoms in the gas phase in the presence of the propylene polymer (1). In this method, a second step is performed in which a propylene-based copolymer (2) is produced by polymerizing the above, and a propylene-based multi-stage polymer is obtained. The propylene-based multistage polymer is a propylene-based polymer composition containing a propylene-based polymer (1) component and a propylene-based copolymer (2) component.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)の、エチレン含有量の調整方法としては、重合時の各工程で、水素ガスや金属化合物などの分子量調節剤およびエチレンを、それぞれ適切な量で加える方法、重合時の温度・圧力などを調節する方法が挙げられる。 The method for adjusting the ethylene content of the propylene polymer (1) and propylene copolymer (2) is to add a molecular weight regulator such as hydrogen gas or a metal compound and ethylene to each step during polymerization. Examples include methods of adding in a certain amount, and methods of adjusting temperature, pressure, etc. during polymerization.
 プロピレン系重合体(1)およびプロピレン系共重合体(2)の生成割合は、第一工程および第二工程における重合時間、重合槽の大きさ、重合槽中の重合体の保持量、重合温度、重合圧力などにより制御することができる。必要に応じて、ポリプロピレンの残留溶媒や製造時に副生する超低分子量のオリゴマーなどを除去するために、ポリプロピレンが融解する温度以下の温度で乾燥を行ってもよい。乾燥方法としては、例えば、特開昭55-75410号、特許第2565753号公報に記載された方法などが挙げられる。 The production ratio of propylene polymer (1) and propylene copolymer (2) is determined by the polymerization time in the first and second steps, the size of the polymerization tank, the amount of polymer retained in the polymerization tank, and the polymerization temperature. , polymerization pressure, etc. If necessary, drying may be performed at a temperature below the melting temperature of polypropylene in order to remove residual solvent of polypropylene and ultra-low molecular weight oligomers produced as by-products during production. Examples of the drying method include methods described in JP-A-55-75410 and Japanese Patent No. 2565753.
 前記第二工程で得られるプロピレン系多段重合体の温度230℃、荷重2.16kgで測定されるメルトフローレート(MFR)としては、フィルムの加工性や衛生性を良好にするという観点から、好ましくは0.001g/10分以上10g/10分以下であり、より好ましくは0.01g/10分以上10g/10分以下であり、さらに好ましくは0.01g/10分以上5g/10分以下である。また、プロピレン系多段重合体と、それ以外の他の成分と、を含むプロピレン系重合体組成物においても、上述のプロピレン系多段重合体のMFRと同範囲にすることができる。なお、MFRは、JIS K7210-1に規定されたA法により測定される。 The melt flow rate (MFR) of the propylene-based multistage polymer obtained in the second step, measured at a temperature of 230°C and a load of 2.16 kg, is preferably from the viewpoint of improving the processability and hygiene of the film. is 0.001 g/10 minutes or more and 10 g/10 minutes or less, more preferably 0.01 g/10 minutes or more and 10 g/10 minutes or less, and even more preferably 0.01 g/10 minutes or more and 5 g/10 minutes or less. be. Further, even in a propylene polymer composition containing a propylene multistage polymer and other components, the MFR can be made to be in the same range as the above-mentioned propylene multistage polymer. Note that MFR is measured by method A specified in JIS K7210-1.
 プロピレン系共重合体(3)は、プロピレンに由来する構造単位を90質量%以上98質量%未満と、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を2質量%超10質量%以下と、を含む。 The propylene-based copolymer (3) contains structural units derived from propylene in an amount of 90% by mass or more and less than 98% by mass, and derived from at least one member selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms. More than 2% by mass and not more than 10% by mass of structural units.
 プロピレン系共重合体(3)におけるプロピレンに由来する構造単位の含有量は、好ましくは94質量%以上98質量%未満であり、より好ましくは94質量%以上97質量%以下である。また、プロピレン系共重合体(3)におけるエチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位の含有量は、好ましくは2質量%超6質量%以下であり、より好ましくは3質量%以上6質量%以下である。 The content of structural units derived from propylene in the propylene copolymer (3) is preferably 94% by mass or more and less than 98% by mass, more preferably 94% by mass or more and 97% by mass or less. Further, the content of structural units derived from at least one selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms in the propylene copolymer (3) is preferably more than 2% by mass and 6% by mass. % or less, more preferably 3% by mass or more and 6% by mass or less.
 炭素原子数4~12のα-オレフィンとしては、例えば、1-ブテン、1-ヘキセン、1-オクテンなどが挙げられ、好ましくは1-ブテンである。炭素原子数4~12のα-オレフィンに由来する構造単位は、1種単独のα-オレフィンに由来する構造単位であっても、2種以上のα-オレフィンに由来する構造単位であってもよい。 Examples of the α-olefin having 4 to 12 carbon atoms include 1-butene, 1-hexene, and 1-octene, with 1-butene being preferred. The structural unit derived from an α-olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of α-olefin alone or a structural unit derived from two or more types of α-olefin. good.
 プロピレン系共重合体(3)は、不均一系触媒を用いて製造されたものであってもよく、均一系触媒(例えば、メタロセン触媒など)を用いて製造されたものであってもよい。 The propylene copolymer (3) may be produced using a heterogeneous catalyst or may be produced using a homogeneous catalyst (for example, a metallocene catalyst).
 プロピレン系共重合体(3)の温度230℃、荷重2.16kgで測定されるメルトフローレート(MFR)は、好ましくは1g/10分以上10g/10分以下であり、より好ましくは1g/10分以上8g/10分以下であり、さらに好ましくは2g/10分以上5g/10分以下である。また、プロピレン系共重合体(3)と、それ以外の他の成分と、を含むプロピレン系重合体組成物においても、上述のプロピレン系共重合体(3)のMFRと同範囲にすることができる。なお、MFRは、JIS K7210-1に規定されたA法により測定される。 The melt flow rate (MFR) of the propylene copolymer (3) measured at a temperature of 230°C and a load of 2.16 kg is preferably 1 g/10 minutes or more and 10 g/10 minutes or less, more preferably 1 g/10 minutes. It is 8 g/10 minutes or more, more preferably 2 g/10 minutes or more and 5 g/10 minutes or less. Furthermore, even in a propylene polymer composition containing the propylene copolymer (3) and other components, it is possible to set the MFR to the same range as the above-mentioned propylene copolymer (3). can. Note that MFR is measured by method A specified in JIS K7210-1.
 また、プロピレン系共重合体(3)の示差走査熱量測定(DSC)により測定される融点は、好ましくは120℃以上165℃以下であり、より好ましくは120℃以上150℃以下であり、さらに好ましくは125℃以上150℃以下である。 Further, the melting point of the propylene copolymer (3) measured by differential scanning calorimetry (DSC) is preferably 120°C or more and 165°C or less, more preferably 120°C or more and 150°C or less, and even more preferably is 125°C or more and 150°C or less.
 エチレン系共重合体は、エチレンに由来する構造単位を60質量%以上98質量%以下と、炭素原子数4~12のα-オレフィンに由来する構造単位を2質量%以上40質量%以下と、を含む。 The ethylene copolymer contains structural units derived from ethylene in an amount of 60% by mass to 98% by mass, and structural units derived from α-olefins having 4 to 12 carbon atoms in a content of 2% by mass to 40% by mass, including.
 エチレン系共重合体におけるエチレンに由来する構造単位の含有量は、好ましくは70質量%以上95質量%以下であり、より好ましくは75質量%以上95質量%以下であり、さらに好ましくは80質量%以上95質量%以下である。また、エチレン系共重合体における炭素原子数4~12のα-オレフィンに由来する構造単位の含有量は、好ましくは5質量%以上30質量%以下であり、より好ましくは5質量%以上25質量%以下であり、さらに好ましくは5質量%以上20質量%以下である。 The content of structural units derived from ethylene in the ethylene copolymer is preferably 70% by mass or more and 95% by mass or less, more preferably 75% by mass or more and 95% by mass or less, and even more preferably 80% by mass. The content is 95% by mass or less. The content of structural units derived from α-olefins having 4 to 12 carbon atoms in the ethylene copolymer is preferably 5% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 25% by mass. % or less, more preferably 5% by mass or more and 20% by mass or less.
 炭素原子数4~12のα-オレフィンとしては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセンなどが挙げられ、ヒートシール強度を高める観点から、好ましくは1-ヘキセンである。炭素原子数4~12のα-オレフィンは、好ましくは炭素原子数4~8のα-オレフィンである。炭素原子数4~12のα-オレフィンに由来する構造単位は、1種単独のα-オレフィンに由来する構造単位であっても、2種以上のα-オレフィンに由来する構造単位であってもよい。 Examples of α-olefins having 4 to 12 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene. , 4-methyl-1-hexene, etc., and 1-hexene is preferable from the viewpoint of increasing heat sealing strength. The α-olefin having 4 to 12 carbon atoms is preferably an α-olefin having 4 to 8 carbon atoms. The structural unit derived from an α-olefin having 4 to 12 carbon atoms may be a structural unit derived from one type of α-olefin alone or a structural unit derived from two or more types of α-olefin. good.
 エチレン系共重合体の密度は、好ましくは850kg/m以上950kg/m以下であり、より好ましくは850kg/m以上930kg/m以下であり、さらに好ましくは880kg/m以上930kg/m以下ある。エチレン系共重合体の密度が850kg/m以上であることにより、剛性に優れたフィルムを得ることができ、950kg/m以下であることにより、低温での耐衝撃性に優れたフィルムを得ることができる。また、エチレン系共重合体と、それ以外の他の成分と、を含むエチレン系重合体組成物においても、上述のエチレン系共重合体の密度と同範囲にすることができる。なお、エチレン系共重合体の密度は、JIS K6922-1に従って測定される。 The density of the ethylene copolymer is preferably 850 kg/m 3 or more and 950 kg/m 3 or less, more preferably 850 kg/m 3 or more and 930 kg/m 3 or less, and even more preferably 880 kg/m 3 or more and 930 kg/m 3 or less. m 3 or less. When the density of the ethylene copolymer is 850 kg/m 3 or more, a film with excellent rigidity can be obtained, and when the density is 950 kg/m 3 or less, a film with excellent impact resistance at low temperatures can be obtained. Obtainable. Further, even in an ethylene polymer composition containing an ethylene copolymer and other components, the density can be within the same range as the density of the above-mentioned ethylene copolymer. Note that the density of the ethylene copolymer is measured according to JIS K6922-1.
 エチレン系共重合体の温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)は、好ましくは0.1g/10分以上50g/10分以下であり、より好ましくは0.1g/10分以上10g/10分以下であり、さらに好ましくは1g/10分以上5g/10分以下である。また、エチレン系共重合体と、それ以外の他の成分と、を含むエチレン系重合体組成物においても、上述のエチレン系共重合体のMFRと同範囲にすることができる。なお、MFRは、JIS K7210-1に規定されたA法により測定される。 The melt flow rate (MFR) of the ethylene copolymer measured at a temperature of 190° C. and a load of 2.16 kg is preferably 0.1 g/10 minutes or more and 50 g/10 minutes or less, more preferably 0.1 g/10 minutes or less. It is 10 minutes or more and 10 g/10 minutes or less, more preferably 1 g/10 minutes or more and 5 g/10 minutes or less. Furthermore, even in an ethylene polymer composition containing an ethylene copolymer and other components, the MFR can be made within the same range as the above-mentioned ethylene copolymer. Note that MFR is measured by method A specified in JIS K7210-1.
 エチレン系共重合体の分子量分布は、好ましくは1以上5以下であり、より好ましくは1以上4以下であり、さらに好ましくは2以上4以下である。エチレン系共重合体の分子量分布が1以上であることにより、押出負荷が低減され、加工性が良好となる。また、エチレン系共重合体の分子量分布が5以下であることにより、低温での耐衝撃性に優れたフィルムを得ることができる。なお、「分子量分布」とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と記載することがある。)により測定される重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)である。 The molecular weight distribution of the ethylene copolymer is preferably 1 or more and 5 or less, more preferably 1 or more and 4 or less, and still more preferably 2 or more and 4 or less. When the molecular weight distribution of the ethylene copolymer is 1 or more, extrusion load is reduced and processability is improved. Further, by setting the molecular weight distribution of the ethylene copolymer to 5 or less, a film having excellent impact resistance at low temperatures can be obtained. Note that "molecular weight distribution" refers to the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/ Mn).
 エチレン系共重合体の分子量分布を上記の範囲とする方法としては、例えば、メタロセン触媒を用いて、エチレンとα-オレフィンを共重合して、エチレン系共重合体の密度を850kg/m以上950kg/m以下とする方法が挙げられる。 As a method for making the molecular weight distribution of the ethylene copolymer within the above range, for example, ethylene and α-olefin are copolymerized using a metallocene catalyst, and the density of the ethylene copolymer is made to be 850 kg/m 3 or more. A method for reducing the weight to 950 kg/m 3 or less can be mentioned.
 エチレン系共重合体は、例えば、メタロセン触媒を用いて製造することができる。メタロセン触媒は、例えば、シクロペンタジエン形アニオン骨格を有する基を持つ遷移金属化合物(以下、「メタロセン系遷移金属化合物」と記載することがある。)を用いてなるオレフィン重合用触媒である。 Ethylene-based copolymers can be produced using, for example, metallocene catalysts. A metallocene catalyst is, for example, a catalyst for olefin polymerization using a transition metal compound having a group having a cyclopentadiene type anion skeleton (hereinafter sometimes referred to as a "metallocene transition metal compound").
 メタロセン系遷移金属化合物は、例えば、式 MLaXn-a(式中、Mは元素の周期律表の第4族またはランタナイド系列の遷移金属原子である。Lはシクロペンタジエン形アニオン骨格を有する基またはヘテロ原子を含有する基であり、少なくとも一つはシクロペンタジエン形アニオン骨格を有する基である。複数のLは互いに架橋していてもよい。Xはハロゲン原子、水素原子または炭素原子数1~20の炭化水素基である。nは遷移金属原子の原子価を表し、aは0<a≦nを満足する整数である)で表される化合物が挙げられる。 The metallocene transition metal compound is, for example, a compound of the formula MLaXna (where M is a transition metal atom of Group 4 of the periodic table of elements or a lanthanide series; L is a group having a cyclopentadiene type anion skeleton or a hetero A group containing atoms, at least one of which has a cyclopentadiene type anion skeleton. Plural Ls may be crosslinked with each other. X is a halogen atom, a hydrogen atom, or a group having 1 to 20 carbon atoms. It is a hydrocarbon group.N represents the valence of a transition metal atom, and a is an integer satisfying 0<a≦n).
 上記の式で表されるメタロセン系遷移金属化合物としては、例えば、ビス(1,3-n-ブチルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-n-プロピルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジエチルシクロペンタジエニル)ジルコニウムジクロリド、エチレンビス(インデニル)ジルコニウムジクロリド、エチレンビス(4-メチル-1-インデニル)ジルコニウムジクロリド、エチレンビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロリドなどが挙げられる。 Examples of the metallocene transition metal compound represented by the above formula include bis(1,3-n-butylmethylcyclopentadienyl)zirconium dichloride, bis(1,3-n-propylmethylcyclopentadienyl) Zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(1,3-dimethylcyclopentadienyl)zirconium dichloride, bis(1,3-diethylcyclopentadienyl)zirconium dichloride, ethylene bis(indenyl) ) zirconium dichloride, ethylenebis(4-methyl-1-indenyl)zirconium dichloride, ethylenebis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and the like.
 上記のメタロセン系遷移金属化合物は、活性化助触媒と接触させて用いることが好ましい。活性化助触媒としては、例えば、アルモキサン化合物や、有機アルミニウム化合物とトリチルボレート、アニリニウムボレートなどのホウ素化合物とを併用してなる活性化助触媒が挙げられる。また、SiO、Alなどの無機担体、エチレン、スチレンなどの重合体などの有機担体を含む粒子状担体と組み合わせて用いても良い。 The metallocene transition metal compound described above is preferably used in contact with an activation promoter. Examples of the activation co-catalyst include an alumoxane compound and an activation co-catalyst formed by using a combination of an organoaluminum compound and a boron compound such as trityl borate or anilinium borate. Further, it may be used in combination with a particulate carrier including an inorganic carrier such as SiO 2 or Al 2 O 3 or an organic carrier such as a polymer such as ethylene or styrene.
 β晶核剤とは、プロピレン系重合体に六方晶構造であるβ晶を形成させることができる化合物をいう。β晶核剤としては、従来公知の種々のβ晶核剤を利用することができる。例えば、N,N'-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N'-ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミドなどに代表されるアミド化合物、テトラオキサスピロ化合物、キナクリドン、キナクリドンキノンなどに代表されるキナクリドン類、ナノスケールのサイズを有する酸化鉄、ピメリン酸カルシウム、1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩、ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物、二もしくは三塩基カルボン酸のジエステル類もしくはトリエステル類、フタロシアニンブルーなどに代表されるフタロシアニン系顔料、有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物、環状リン化合物とマグネシウム化合物からなる組成物などが挙げられ、これらのうちの1種類または2種類以上を混合して用いても良い。上記のβ晶核剤の中でも、耐レトルト融着性に優れる観点から、好ましくはアミド化合物のN,N'-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N'-ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミドであり、より好ましくはN,N'-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドである。N,N'-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドの市販品としては、例えば、NU-100(新日本理化株式会社製)などが挙げられる。 A β-crystal nucleating agent refers to a compound that can form a β-crystal, which is a hexagonal crystal structure, in a propylene polymer. As the β-crystal nucleating agent, various conventionally known β-crystal nucleating agents can be used. For example, amide compounds such as N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide, N,N'-dicyclohexyl terephthalamide, N,N'-diphenylhexanediamide, tetraoxaspiro compounds, quinacridone, Quinacridones represented by quinacridone quinone, iron oxide with nanoscale size, calcium pimelate, potassium 1,2-hydroxystearate, magnesium benzoate or succinate, carboxylic acids represented by magnesium phthalate, etc. alkaline or alkaline earth metal salts, aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate, diesters or triesters of di- or tribasic carboxylic acids, phthalocyanine blue, etc. A composition consisting of a phthalocyanine pigment, a two-component compound consisting of component A, which is an organic dibasic acid, and component B, which is an oxide, hydroxide, or salt of a Group IIA metal of the periodic table, a cyclic phosphorus compound, and a magnesium compound. Among them, one type or a mixture of two or more types may be used. Among the above β-crystal nucleating agents, from the viewpoint of excellent retort fusion resistance, the amide compounds N,N'-dicyclohexyl-2,6-naphthalenedicarboxyamide, N,N'-dicyclohexyl terephthalamide, N , N'-diphenylhexanediamide, and more preferably N,N'-dicyclohexyl-2,6-naphthalene dicarboxyamide. Commercially available products of N,N'-dicyclohexyl-2,6-naphthalenedicarboxyamide include, for example, NU-100 (manufactured by Shin Nippon Chemical Co., Ltd.).
 β晶核剤の濃度は、耐レトルト融着性に優れるという観点から、好ましくは100質量ppm以上3000質量ppm以下であり、より好ましくは300質量ppm以上2000質量ppm以下であり、さらに好ましくは300質量ppm以上1500質量ppm以下であり、特に好ましくは500質量ppm以上1500質量ppm以下である。 From the viewpoint of excellent retort fusion resistance, the concentration of the β-crystal nucleating agent is preferably 100 mass ppm or more and 3000 mass ppm or less, more preferably 300 mass ppm or more and 2000 mass ppm or less, and still more preferably 300 mass ppm or more and 3000 mass ppm or less. The content ranges from 500 ppm to 1500 ppm by mass, particularly preferably from 500 ppm to 1500 ppm by mass.
 本実施形態に係るシーラントフィルム用樹脂組成物は、必要に応じて、添加剤やその他の樹脂を含有してもよい。添加剤としては、例えば、酸化防止剤、中和剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、粘着剤、防曇剤、アンチブロッキング剤、メルトフローレート調整剤などが挙げられる。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、1分子中にフェノール系の酸化防止機構とリン系の酸化防止機構とを併せ持つユニットを有する複合型の酸化防止剤も用いることができる。その他の樹脂としては、例えば、スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体を水添したスチレン系共重合体ゴムなどのエラストマーが挙げられる。 The resin composition for sealant film according to the present embodiment may contain additives and other resins as necessary. Examples of additives include antioxidants, neutralizers, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, adhesives, antifogging agents, antiblocking agents, melt flow rate regulators, and the like. Examples of antioxidants include phenolic antioxidants, phosphorous antioxidants, sulfur-based antioxidants, etc., which have both a phenol-based antioxidant mechanism and a phosphorus-based antioxidant mechanism in one molecule. Complex type antioxidants having units can also be used. Examples of other resins include elastomers such as styrene-butadiene-styrene copolymer and styrene copolymer rubber obtained by hydrogenating styrene-isoprene-styrene copolymer.
 本実施形態に係るシーラントフィルム用樹脂組成物は、前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系重合体(1)の含有量が、好ましくは50質量部以上95質量部以下であり、より好ましくは50質量部以上89質量部未満であり、さらに好ましくは60質量部以上89質量部未満であり、特に好ましくは60質量部以上80質量部以下である。また、前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系共重合体(2)の含有量が、好ましくは5質量部以上50質量部以下であり、より好ましくは11質量部超50質量部以下であり、さらに好ましくは11質量部超40質量部以下であり、特に好ましくは20質量部以上40質量部以下である。 In the resin composition for a sealant film according to the present embodiment, the content of the propylene polymer (1) is preferably set to 100 parts by mass in total of the content of the polymers contained in the resin composition. 50 parts by mass or more and 95 parts by mass or less, more preferably 50 parts by mass or more and less than 89 parts by mass, even more preferably 60 parts by mass or more and less than 89 parts by mass, particularly preferably 60 parts by mass or more and less than 80 parts by mass. It is. Further, the content of the propylene copolymer (2) is preferably 5 parts by mass or more and 50 parts by mass or less with respect to a total of 100 parts by mass of the polymers contained in the resin composition. , more preferably more than 11 parts by weight and not more than 50 parts by weight, still more preferably more than 11 parts by weight and not more than 40 parts by weight, particularly preferably not less than 20 parts by weight and not more than 40 parts by weight.
 本実施形態に係るシーラントフィルム用樹脂組成物の一態様として、耐レトルト融着性により優れ、耐破袋性に優れるという観点から、該樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、好ましくは、前記プロピレン系重合体(1)の含有量が50質量部以上95質量部以下であり、前記プロピレン系共重合体(2)の含有量が5質量部以上50質量部以下であり、より好ましくは、前記プロピレン系重合体(1)の含有量が50質量部以上89質量部未満であり、前記プロピレン系共重合体(2)の含有量が11質量部超50質量部以下である。 As one aspect of the resin composition for a sealant film according to the present embodiment, from the viewpoint of having excellent retort fusion resistance and excellent bag breakage resistance, the total content of polymers contained in the resin composition is Preferably, the content of the propylene polymer (1) is 50 parts by mass or more and 95 parts by mass or less, and the content of the propylene copolymer (2) is 5 parts by mass or more with respect to 100 parts by mass. 50 parts by mass or less, more preferably, the content of the propylene polymer (1) is 50 parts by mass or more and less than 89 parts by mass, and the content of the propylene copolymer (2) is 11 parts by mass. More than 50 parts by mass or less.
 本実施形態に係るシーラントフィルム用樹脂組成物がプロピレン系共重合体(3)を含有する場合、前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系重合体(1)の含有量が、好ましくは10質量部以上78質量部以下であり、より好ましくは10質量部以上70質量部以下であり、さらに好ましくは20質量部以上60質量部以下であり、特に好ましくは20質量部以上50質量部以下であり、プロピレン系共重合体(2)の含有量が、好ましくは2質量部以上40質量部以下であり、より好ましくは5質量部以上40質量部以下であり、さらに好ましくは5質量部以上35質量部以下であり、特に好ましくは5質量部以上30質量部以下であり、プロピレン系共重合体(3)の含有量が、好ましくは20質量部以上80質量部以下であり、より好ましくは20質量部以上70質量部以下であり、さらに好ましくは30質量部以上70質量部以下であり、特に好ましくは35質量部以上65質量部以下である。本実施形態に係るシーラントフィルム用樹脂組成物の一態様として、耐レトルト融着性により優れ、低温でのヒートシール強度に優れるという観点から、好ましくは、該樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系重合体(1)の含有量が10質量部以上78質量部以下であり、プロピレン系共重合体(2)の含有量が2質量部以上40質量部以下であり、プロピレン系共重合体(3)の含有量が20質量部以上80質量部以下である。 When the resin composition for a sealant film according to the present embodiment contains a propylene-based copolymer (3), the propylene-based copolymer (3) is The content of the polymer (1) is preferably 10 parts by mass or more and 78 parts by mass or less, more preferably 10 parts by mass or more and 70 parts by mass or less, and even more preferably 20 parts by mass or more and 60 parts by mass or less. , particularly preferably 20 parts by mass or more and 50 parts by mass or less, and the content of the propylene copolymer (2) is preferably 2 parts by mass or more and 40 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass. parts by weight or less, more preferably 5 parts by weight or more and 35 parts by weight or less, particularly preferably 5 parts by weight or more and 30 parts by weight or less, and the content of the propylene copolymer (3) is preferably 20 parts by weight. parts to 80 parts by mass, more preferably 20 parts to 70 parts by mass, still more preferably 30 parts to 70 parts by mass, particularly preferably 35 parts to 65 parts by mass. . As one aspect of the resin composition for a sealant film according to the present embodiment, from the viewpoint of excellent retort fusion resistance and heat sealing strength at low temperatures, it is preferable to use a polymer contained in the resin composition. The content of the propylene polymer (1) is 10 parts by mass or more and 78 parts by mass or less, and the content of the propylene copolymer (2) is 2 parts by mass or more with respect to the total content of 100 parts by mass. The content of the propylene copolymer (3) is 20 parts by mass or more and 80 parts by mass or less.
 本実施形態に係るシーラントフィルム用樹脂組成物がエチレン系共重合体を含有する場合、該樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系重合体(1)の含有量が、好ましくは35質量部以上75質量部以下であり、より好ましくは40質量部以上75質量部以下であり、さらに好ましくは40質量部以上70質量部以下であり、特に好ましくは45質量部以上70質量部以下であり、プロピレン系共重合体(2)の含有量が、好ましくは5質量部以上50質量部以下であり、より好ましくは5質量部以上45質量部以下であり、さらに好ましくは10質量部以上45質量部以下であり、特に好ましくは10質量部以上40質量部以下であり、エチレン系共重合体の含有量が、好ましくは2質量部以上30質量部以下であり、より好ましくは5質量部以上30質量部以下であり、さらに好ましくは10質量部以上30質量部以下であり、特に好ましくは15質量部以上30質量部以下である。本実施形態に係るシーラントフィルム用樹脂組成物の一態様として、耐レトルト融着性により優れ、耐破袋性に優れるという観点から、好ましくは、該樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、プロピレン系重合体(1)の含有量が35質量部以上75質量部以下であり、プロピレン系共重合体(2)の含有量が5質量部以上50質量部以下であり、エチレン系共重合体の含有量が2質量部以上30質量部以下である。 When the resin composition for a sealant film according to the present embodiment contains an ethylene-based copolymer, the propylene-based polymer ( The content of 1) is preferably 35 parts by mass or more and 75 parts by mass or less, more preferably 40 parts by mass or more and 75 parts by mass or less, still more preferably 40 parts by mass or more and 70 parts by mass or less, and particularly preferably is 45 parts by mass or more and 70 parts by mass or less, and the content of the propylene copolymer (2) is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 5 parts by mass or more and 45 parts by mass or less. The content of the ethylene copolymer is preferably 10 parts by mass or more and 45 parts by mass or less, particularly preferably 10 parts by mass or more and 40 parts by mass or less, and the content of the ethylene copolymer is preferably 2 parts by mass or more and 30 parts by mass or less. It is more preferably 5 parts by mass or more and 30 parts by mass or less, still more preferably 10 parts by mass or more and 30 parts by mass or less, particularly preferably 15 parts by mass or more and 30 parts by mass or less. As one aspect of the resin composition for a sealant film according to the present embodiment, from the viewpoint of excellent retort fusion resistance and excellent bag breakage resistance, the resin composition preferably contains a polymer contained in the resin composition. With respect to a total of 100 parts by mass, the content of propylene polymer (1) is 35 parts by mass or more and 75 parts by mass or less, and the content of propylene copolymer (2) is 5 parts by mass or more and 50 parts by mass. The content of the ethylene copolymer is 2 parts by mass or more and 30 parts by mass or less.
 <シーラントフィルム>
 本実施形態に係るシーラントフィルムは、上記のシーラントフィルム用樹脂組成物を含有する。
<Sealant film>
The sealant film according to this embodiment contains the above resin composition for sealant film.
 前記シーラントフィルムの厚さは、好ましくは5μm以上200μm以下であり、より好ましくは30μm以上150μm以下である。 The thickness of the sealant film is preferably 5 μm or more and 200 μm or less, more preferably 30 μm or more and 150 μm or less.
 <多層フィルム>
 本実施形態に係る多層フィルムは、上記シーラントフィルムをシーラント層として備える。
<Multilayer film>
The multilayer film according to this embodiment includes the above sealant film as a sealant layer.
 前記多層フィルムの厚さは、好ましくは5μm以上500μm以下であり、より好ましくは30μm以上150μm以下である。 The thickness of the multilayer film is preferably 5 μm or more and 500 μm or less, more preferably 30 μm or more and 150 μm or less.
 前記多層フィルムの用途としては、例えば、食品、繊維、雑貨などの包装用途が挙げられる。前記多層フィルムは、好ましくは、レトルト食品包装に用いられる多層フィルムである。また、多層フィルムは、包装袋を形成する材料として用いられてもよい。 Applications of the multilayer film include, for example, packaging applications for foods, textiles, miscellaneous goods, and the like. The multilayer film is preferably a multilayer film used for retort food packaging. The multilayer film may also be used as a material for forming packaging bags.
 前記多層フィルムは、上記シーラントフィルムをシーラント層として、基材層と積層することにより製造することができる。基材層とシーラント層とを積層する方法としては、例えば、Tダイ法、チューブラー法などの公知のフィルム製造方法が挙げられ、好ましくはTダイ法である。 The multilayer film can be produced by laminating the sealant film as a sealant layer with a base layer. Examples of the method for laminating the base material layer and the sealant layer include known film manufacturing methods such as the T-die method and the tubular method, with the T-die method being preferred.
 <シーラントフィルムの製造方法>
 本実施形態に係るシーラントフィルムの製造方法は、上記シーラントフィルム用樹脂組成物を溶融混練する溶融混練工程と、溶融混練された組成物を押し出す押出工程と、押し出された組成物を厚さ5μm以上200μm以下に製膜する製膜工程と、を含む。
<Method for manufacturing sealant film>
The method for producing a sealant film according to the present embodiment includes a melt-kneading step of melt-kneading the resin composition for sealant film, an extrusion step of extruding the melt-kneaded composition, and a step of extruding the extruded composition to a thickness of 5 μm or more. A film forming step of forming a film to a thickness of 200 μm or less is included.
 前記溶融混練工程では、プロピレン系重合体(1)と、プロピレン系共重合体(2)と、β晶核剤と、必要に応じて、プロピレン系共重合体(3)と、エチレン系共重合体と、添加剤やその他の樹脂と、を溶融混練する。なお、プロピレン系重合体(1)およびプロピレン系共重合体(2)としては、多段階で重合して得られたプロピレン系多段重合体を用いてもよい。 In the melt-kneading step, the propylene polymer (1), the propylene copolymer (2), the β-crystal nucleating agent, and if necessary, the propylene copolymer (3) and the ethylene copolymer The mixture, additives and other resins are melt-kneaded. Note that as the propylene polymer (1) and the propylene copolymer (2), a propylene multistage polymer obtained by polymerization in multiple stages may be used.
 溶融混練を行う方法としては、従来公知の方法および装置を用いて行うことができる。例えば、上記の各材料を、ヘンシェルミキサー、リボンブレンダー、タンブルミキサーなどの混合装置を用いて混合した後、溶融混練する方法が挙げられる。また、定量供給機を用いて、一定の割合で上記の各材料をそれぞれ連続的に供給することによって均質な混合物を得た後、該混合物を、単軸または二軸以上の押出機、バンバリーミキサー、ロール式混練機などを用いて、溶融混練する方法が挙げられる。 The melt-kneading can be carried out using conventionally known methods and equipment. For example, the above-mentioned materials may be mixed using a mixing device such as a Henschel mixer, a ribbon blender, or a tumble mixer, and then melt-kneaded. In addition, after obtaining a homogeneous mixture by continuously feeding each of the above materials at a fixed rate using a quantitative feeder, the mixture is transferred to a single screw or two or more screw extruder, a Banbury mixer, etc. , a method of melt-kneading using a roll-type kneader or the like.
 溶融混練時の樹脂温度は、好ましくは190℃以上320℃以下であり、より好ましくは210℃以上280℃以下である。 The resin temperature during melt-kneading is preferably 190°C or higher and 320°C or lower, more preferably 210°C or higher and 280°C or lower.
 前記押出工程では、例えば、溶融混練された組成物を、押出機を用いてTダイより押し出す。押出温度は、例えば、190℃以上320℃以下とすることができる。なお、押出温度は、Tダイ自体の温度である。 In the extrusion step, for example, the melt-kneaded composition is extruded from a T-die using an extruder. The extrusion temperature can be, for example, 190°C or higher and 320°C or lower. Note that the extrusion temperature is the temperature of the T-die itself.
 前記製膜工程では、例えば、Tダイから押し出された組成物を、チルロールで巻き取りながら冷却固化させ、所定の厚さに製膜する。冷却温度は、例えば、20℃以上140℃以下とすることができる。 In the film forming step, for example, the composition extruded from a T-die is cooled and solidified while being wound up with a chill roll to form a film to a predetermined thickness. The cooling temperature can be, for example, 20° C. or higher and 140° C. or lower.
 なお、本実施形態に係るシーラントフィルム用樹脂組成物、シーラントフィルム、多層フィルム、および、シーラントフィルムの製造方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Note that the resin composition for sealant film, the sealant film, the multilayer film, and the method for manufacturing the sealant film according to the present embodiment are not limited to the above embodiments, and various methods may be used without departing from the gist of the present invention. can be changed.
 以下、実施例および比較例を用いて本発明をさらに具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 実施例および比較例における各項目の測定値は、下記の方法で測定した。 The measured values for each item in the Examples and Comparative Examples were measured by the following method.
(1)13C-NMR
 プロピレン系重合体組成物に含有されるプロピレン単独重合体およびプロピレン-エチレン共重合体の含有量は、13C-NMRにより測定した。
(1) 13C -NMR
The content of propylene homopolymer and propylene-ethylene copolymer contained in the propylene-based polymer composition was measured by 13 C-NMR.
 プロピレン系重合体組成物において、プロピレン-エチレン共重合体に含まれるエチレンに由来する構造単位の含有量は、13C-NMRにより測定した。 In the propylene polymer composition, the content of structural units derived from ethylene contained in the propylene-ethylene copolymer was measured by 13 C-NMR.
 具体的には、下記の条件で測定したプロピレン系重合体組成物の13C-NMRスペクトルから、Kakugoらの報告(Macromolecules 1982,15,1150-1152)に基づいて、プロピレン系重合体組成物に含有されるプロピレン-エチレン共重合体の含有量と、プロピレン系重合体組成物においてプロピレン-エチレン共重合体に含まれるエチレンに由来する構造単位の含有量を求めた。 Specifically, from the 13 C-NMR spectrum of the propylene polymer composition measured under the following conditions, based on the report by Kakugo et al. (Macromolecules 1982, 15, 1150-1152), the propylene polymer composition The content of the propylene-ethylene copolymer contained and the content of structural units derived from ethylene contained in the propylene-ethylene copolymer in the propylene-based polymer composition were determined.
 エチレン系重合体組成物において、エチレン系共重合体に含まれるエチレンに由来する構造単位の含有量は、13C-NMRにより測定した。具体的には、下記の条件で測定したエチレン系重合体組成物の13C-NMRスペクトルから、Randallの方法(Rev.Macromol.Chem.Phys.,C29(2&3)に基づいて、エチレン系共重合体に含まれるエチレンに由来する構造単位の含有量を求めた。 In the ethylene polymer composition, the content of structural units derived from ethylene contained in the ethylene copolymer was measured by 13 C-NMR. Specifically, based on the 13 C-NMR spectrum of the ethylene polymer composition measured under the following conditions, the ethylene copolymer composition was determined based on Randall's method (Rev. Macromol. The content of structural units derived from ethylene contained in the coalescence was determined.
 10mmφの試験管中で約250mgのプロピレン系重合体組成物またはエチレン系重合体組成物を溶媒2.5mLに均一に溶解させて試料を調整し、その試料の13C―NMRスペクトルを下記の条件下で測定した。

 ・機種:Bruker AVANCE600
 ・プローブ:10mmクライオプローブ
 ・測定方法:プロトンデカップリング法
 ・測定温度:135℃
 ・測定溶媒:1,2-ジクロロベンゼン/テトラクロロエタン-d2=85/15
 ・パルス繰り返し時間:4秒
 ・パルス幅:45°
 ・積算回数:256回
 ・磁場強度:600MHz
A sample was prepared by uniformly dissolving approximately 250 mg of the propylene polymer composition or ethylene polymer composition in 2.5 mL of solvent in a 10 mmφ test tube, and the 13 C-NMR spectrum of the sample was measured under the following conditions. Measured below.

・Model: Bruker AVANCE600
・Probe: 10mm cryoprobe ・Measurement method: Proton decoupling method ・Measurement temperature: 135℃
・Measurement solvent: 1,2-dichlorobenzene/tetrachloroethane-d2=85/15
・Pulse repetition time: 4 seconds ・Pulse width: 45°
・Number of integration: 256 times ・Magnetic field strength: 600MHz
(2)メルトフローレート(MFR、単位:g/10分)
 メルトフローレートは、JIS K7210-1に規定されたA法に従って、温度230℃または190℃、荷重2.16kgで測定した。
(2) Melt flow rate (MFR, unit: g/10 minutes)
The melt flow rate was measured at a temperature of 230° C. or 190° C. and a load of 2.16 kg according to method A specified in JIS K7210-1.
(3)密度(単位:kg/m
 エチレン系重合体組成物の密度は、JIS K6922-1に従って測定した。
(3) Density (unit: kg/m 3 )
The density of the ethylene polymer composition was measured according to JIS K6922-1.
(4)ヒートシール強度(単位:N/15mm)
 シーラントフィルムと、厚さ7μmのアルミ箔と、厚さ12μmのポリエチレンテレフタラートフィルムとを、この記載の順でドライラミネート法により積層した多層フィルムを用いた。東洋テスター工業株式会社製ヒートシーラーを使用して、多層フィルムをシーラントフィルムが内側となるように二つに折り返し、折り返し位置と対向する側の端部同士を、下記条件で、折り返し位置の延びる方向に沿って、帯状にヒートシールした。

 ・シールバー:平面両面加熱
 ・シール温度:170℃
 ・シール圧力:1.0kg/cm
 ・シール時間:1.0sec
 ・シール幅:10mm

 そして、シール幅方向に対して直角方向に15mm幅の試験片を切り出し、120℃のオーブン内で30分間熱処理した。その後、引張試験機(オリエンテック製テンシロン)を使用して、剥離角90°、引張速度200mm/minの条件で試験片のヒートシール強度を測定した。
(4) Heat seal strength (unit: N/15mm)
A multilayer film was used in which a sealant film, a 7 μm thick aluminum foil, and a 12 μm thick polyethylene terephthalate film were laminated in the stated order by a dry lamination method. Using a heat sealer manufactured by Toyo Tester Kogyo Co., Ltd., fold the multilayer film in half with the sealant film on the inside, and then fold the ends opposite the folded position in the direction in which the folded position extends under the following conditions. It was heat-sealed in a strip along the .

・Seal bar: Double-sided flat surface heating ・Seal temperature: 170℃
・Seal pressure: 1.0kg/ cm2
・Sealing time: 1.0sec
・Seal width: 10mm

Then, a test piece with a width of 15 mm was cut out in a direction perpendicular to the seal width direction, and heat treated in an oven at 120° C. for 30 minutes. Thereafter, the heat seal strength of the test piece was measured using a tensile tester (Tensilon manufactured by Orientec) under conditions of a peel angle of 90° and a tensile speed of 200 mm/min.
(5)耐レトルト融着性評価(単位:N/12cm
 100mm×30mmのシーラントフィルム2枚の測定面同士を重ね合わせた後、接地面積40mm×30mmで重量500gの錘をのせ、120℃のオーブン内で30分間熱処理した。得られたシーラントフィルム2枚の積層体を、温度23℃、湿度50%の雰囲気下に30分以上放置した後、200mm/分の引張速度で剪断剥離力を測定した。
(5) Retort fusion resistance evaluation (unit: N/12cm 2 )
After the measurement surfaces of two 100 mm x 30 mm sealant films were placed on top of each other, a weight of 500 g with a ground contact area of 40 mm x 30 mm was placed on the film, and the film was heat-treated in an oven at 120° C. for 30 minutes. The resulting laminate of two sealant films was left in an atmosphere at a temperature of 23° C. and a humidity of 50% for 30 minutes or more, and then the shear peeling force was measured at a tensile rate of 200 mm/min.
 実施例および比較例で用いた各成分は以下の通りである。 The components used in the Examples and Comparative Examples are as follows.
[プロピレン系重合体組成物A]
 チーグラー・ナッタ型触媒を用いて、第一工程では、気相中でプロピレンを重合し、次いで、第二工程では、気相中でプロピレンとエチレンとを共重合し、プロピレン単独重合体A-1とプロピレン-エチレン共重合体A-2とからなるプロピレン系重合体組成物Aを得た。
[Propylene polymer composition A]
Using a Ziegler-Natta type catalyst, in the first step, propylene is polymerized in the gas phase, and in the second step, propylene and ethylene are copolymerized in the gas phase to produce propylene homopolymer A-1. and propylene-ethylene copolymer A-2 was obtained.
[プロピレン系重合体組成物B]
 チーグラー・ナッタ型触媒を用いて、第一工程では、気相中でプロピレンを重合し、次いで、第二工程では、気相中でプロピレンとエチレンとを共重合し、プロピレン単独重合体B-1とプロピレン-エチレン共重合体B-2とからなるプロピレン系重合体組成物Bを得た。
[Propylene polymer composition B]
Using a Ziegler-Natta type catalyst, propylene is polymerized in the gas phase in the first step, and propylene and ethylene are copolymerized in the gas phase in the second step to produce propylene homopolymer B-1. and propylene-ethylene copolymer B-2 was obtained.
[プロピレン系重合体組成物C]
 チーグラー・ナッタ型触媒を用いて、第一工程では、気相中でプロピレンを重合し、次いで、第二工程では、気相中でプロピレンとエチレンとを共重合し、プロピレン単独重合体C-1とプロピレン-エチレン共重合体C-2とからなるプロピレン系重合体組成物Cを得た。
[Propylene polymer composition C]
In the first step, propylene is polymerized in the gas phase using a Ziegler-Natta type catalyst, and in the second step, propylene and ethylene are copolymerized in the gas phase to produce propylene homopolymer C-1. and propylene-ethylene copolymer C-2 was obtained.
[プロピレン系重合体組成物D]
 チーグラー・ナッタ型触媒を用いて、第一工程では、気相中でプロピレンを重合し、次いで、第二工程では、気相中でプロピレンとエチレンとを共重合し、プロピレン単独重合体D-1とプロピレン-エチレン共重合体D-2とからなるプロピレン系重合体組成物Dを得た。
[Propylene polymer composition D]
Using a Ziegler-Natta type catalyst, propylene is polymerized in the gas phase in the first step, and propylene and ethylene are copolymerized in the gas phase in the second step to produce propylene homopolymer D-1. A propylene polymer composition D was obtained, which consisted of the following: and propylene-ethylene copolymer D-2.
[プロピレン単独重合体E]
 チーグラー・ナッタ型触媒を用いて、プロピレンを重合し、プロピレン単独重合体Eを得た。
[Propylene homopolymer E]
Propylene was polymerized using a Ziegler-Natta type catalyst to obtain propylene homopolymer E.
[プロピレン単独重合体F]
 チーグラー・ナッタ型触媒を用いて、プロピレンを重合し、プロピレン単独重合体Fを得た。
[Propylene homopolymer F]
Propylene was polymerized using a Ziegler-Natta type catalyst to obtain a propylene homopolymer F.
[プロピレン系重合体組成物G]
 チーグラー・ナッタ型触媒を用いて、気相中でプロピレンとエチレンとを共重合し、プロピレン-エチレン共重合体Gを得た。
 得られたプロピレン-エチレン共重合体G 100質量部に対して、ステアリン酸カルシウム0.05質量部、イルガノックス1010(BASF社製)0.2質量部、イルガフォス168(BASF社製)0.05質量部、および、メルトフローレート調整剤として2,5-ジメチル-2,5ジ(ターシャリ-ブチルパーオキシ)ヘキサン適量をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状のプロピレン系重合体組成物Gを得た。得られたペレット状のプロピレン系重合体組成物Gは、プロピレン-エチレン共重合体Gにおけるエチレンに由来する構造単位の含有量が5.9質量%であり、230℃で測定したメルトフローレートが3.5g/10分であった。
[Propylene polymer composition G]
Propylene and ethylene were copolymerized in the gas phase using a Ziegler-Natta type catalyst to obtain propylene-ethylene copolymer G.
Based on 100 parts by mass of the obtained propylene-ethylene copolymer G, 0.05 parts by mass of calcium stearate, 0.2 parts by mass of Irganox 1010 (manufactured by BASF), and 0.05 parts by mass of Irgafos 168 (manufactured by BASF). and an appropriate amount of 2,5-dimethyl-2,5-di(tertiary-butylperoxy)hexane as a melt flow rate regulator were mixed in a Henschel mixer, followed by melt extrusion to obtain a pellet-like propylene polymer composition. I got item G. The resulting pellet-shaped propylene polymer composition G has a content of structural units derived from ethylene in the propylene-ethylene copolymer G of 5.9% by mass, and a melt flow rate measured at 230°C. It was 3.5g/10 minutes.
[エチレン系重合体組成物H]
 エチレン系重合体組成物Hとして、スミカセンE FV205(エチレン-1-ヘキセン共重合体組成物、住友化学株式会社製)を用いた。エチレン系重合体組成物Hは、エチレン-1-ヘキセン共重合体の含有量が99.9質量%であり、エチレン-1-ヘキセン共重合体におけるエチレンに由来する構造単位の含有量が93質量%であり、1-ヘキセンに由来する構造単位の含有量が7質量%であり、190℃で測定したメルトフローレートが2.2g/10分であり、密度が921kg/mであった。
[Ethylene polymer composition H]
As the ethylene polymer composition H, Sumikasen E FV205 (ethylene-1-hexene copolymer composition, manufactured by Sumitomo Chemical Co., Ltd.) was used. Ethylene-based polymer composition H has an ethylene-1-hexene copolymer content of 99.9% by mass, and a content of ethylene-derived structural units in the ethylene-1-hexene copolymer of 93% by mass. %, the content of structural units derived from 1-hexene was 7% by mass, the melt flow rate measured at 190° C. was 2.2 g/10 minutes, and the density was 921 kg/m 3 .
[実施例1:樹脂組成物1]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.03質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物1を得た。得られた樹脂組成物1は、樹脂組成物1中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が78質量部であり、プロピレン-エチレン共重合体A-2の含有量が22質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が34質量%であり、230℃で測定したメルトフローレートが2.4g/10分であった。結果を表1に示す。
[Example 1: Resin composition 1]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.03 parts by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 1. Ta. The obtained resin composition 1 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total of 100 parts by mass of the content of polymers contained in resin composition 1, and propylene - The content of ethylene copolymer A-2 is 22 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%, and the melt measured at 230 ° C. The flow rate was 2.4 g/10 minutes. The results are shown in Table 1.
 50mmTダイ製膜装置(田辺プラスチックス社製V-50-F600型フィルム成型装置、400mm幅Tダイ付き)を用いて、樹脂組成物1を樹脂温度280℃で溶融混練し、Tダイより押し出した。次いで、冷却温度80℃のチルロール(冷却ロール)で巻き取りながら冷却固化させ、厚さ70μmのシーラントフィルムを得た。得られたシーラントフィルムを用いて耐レトルト融着性評価を行った。また、得られたシーラントフィルムを用いて作製した多層フィルムに対して、ヒートシール強度評価を行った。結果を表2に示す。 Resin composition 1 was melt-kneaded at a resin temperature of 280° C. using a 50 mm T-die film forming device (V-50-F600 type film forming device manufactured by Tanabe Plastics Co., Ltd., equipped with a 400 mm width T-die) and extruded from the T-die. . Next, the mixture was cooled and solidified while being wound around a chill roll having a cooling temperature of 80° C. to obtain a sealant film having a thickness of 70 μm. Retort fusion resistance was evaluated using the obtained sealant film. In addition, a heat seal strength evaluation was performed on a multilayer film produced using the obtained sealant film. The results are shown in Table 2.
[実施例2:樹脂組成物2]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物2を得た。得られた樹脂組成物2は、樹脂組成物2中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が77質量部であり、プロピレン-エチレン共重合体A-2の含有量が23質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が34質量%であり、230℃で測定したメルトフローレートが2.5g/10分であった。結果を表1に示す。
[Example 2: Resin composition 2]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) 0.05 parts by mass and 0.1 parts by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 2. Ta. The resulting resin composition 2 has a propylene homopolymer A-1 content of 77 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 2, and propylene - The content of ethylene copolymer A-2 is 23 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%, and the melt measured at 230 ° C. The flow rate was 2.5 g/10 minutes. The results are shown in Table 1.
 樹脂組成物2を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that Resin Composition 2 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例3:樹脂組成物3]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.2質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物3を得た。得られた樹脂組成物3は、樹脂組成物3中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が78質量部であり、プロピレン-エチレン共重合体A-2の含有量が22質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が34質量%であり、230℃で測定したメルトフローレートが2.3g/10分であった。結果を表1に示す。
[Example 3: Resin composition 3]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.2 parts by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 3. Ta. The resulting resin composition 3 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total of 100 parts by mass of the content of polymers contained in resin composition 3, and propylene - The content of ethylene copolymer A-2 is 22 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%, and the melt measured at 230 ° C. The flow rate was 2.3 g/10 minutes. The results are shown in Table 1.
 樹脂組成物3を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 3 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例4:樹脂組成物4]
 樹脂組成物3 50質量%とプロピレン系重合体組成物G 50質量%とをペレットブレンドして、樹脂組成物4を得た。結果を表1に示す。
[Example 4: Resin composition 4]
Resin composition 4 was obtained by pellet blending 50% by mass of resin composition 3 and 50% by mass of propylene polymer composition G. The results are shown in Table 1.
 樹脂組成物4を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 4 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例5:樹脂組成物5]
 樹脂組成物2 80質量%とエチレン系重合体組成物H 20質量%とをペレットブレンドして、樹脂組成物5を得た。結果を表1に示す。
[Example 5: Resin composition 5]
Resin composition 5 was obtained by pellet blending 80% by mass of resin composition 2 and 20% by mass of ethylene polymer composition H. The results are shown in Table 1.
 樹脂組成物5を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 5 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例6:樹脂組成物6]
 プロピレン系重合体組成物B 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物6を得た。得られた樹脂組成物6は、樹脂組成物6中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体B-1の含有量が84質量部であり、プロピレン-エチレン共重合体B-2の含有量が16質量部であり、プロピレン-エチレン共重合体B-2におけるエチレンに由来する構造単位の含有量が55質量%であり、230℃で測定したメルトフローレートが22g/10分であった。結果を表1に示す。
[Example 6: Resin composition 6]
For 100 parts by mass of propylene polymer composition B, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 6. Ta. The resulting resin composition 6 has a propylene homopolymer B-1 content of 84 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 6, and propylene - The content of ethylene copolymer B-2 is 16 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer B-2 is 55% by mass, and the melt measured at 230 ° C. The flow rate was 22 g/10 minutes. The results are shown in Table 1.
 樹脂組成物6を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 6 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例7:樹脂組成物7]
 プロピレン系重合体組成物C 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物7を得た。得られた樹脂組成物7は、樹脂組成物7中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体C-1の含有量が80質量部であり、プロピレン-エチレン共重合体C-2の含有量が20質量部であり、プロピレン-エチレン共重合体C-2におけるエチレンに由来する構造単位の含有量が51質量%であり、230℃で測定したメルトフローレートが6.5g/10分であった。結果を表1に示す。
[Example 7: Resin composition 7]
For 100 parts by mass of propylene polymer composition C, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 7. Ta. The resulting resin composition 7 has a propylene homopolymer C-1 content of 80 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 7, and propylene - The content of the ethylene copolymer C-2 is 20 parts by mass, the content of structural units derived from ethylene in the propylene-ethylene copolymer C-2 is 51% by mass, and the melt measured at 230 ° C. The flow rate was 6.5 g/10 minutes. The results are shown in Table 1.
 樹脂組成物7を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 7 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例8:樹脂組成物8]
 プロピレン系重合体組成物D 55質量部とプロピレン単独重合体E 45質量部とに対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物8を得た。得られた樹脂組成物8は、樹脂組成物8中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体D-1の含有量とプロピレン単独重合体Eの含有量の合計が89質量部であり、プロピレン-エチレン共重合体D-2の含有量が11質量部であり、プロピレン-エチレン共重合体D-2におけるエチレンに由来する構造単位の含有量が39質量%であり、230℃で測定したメルトフローレートが2.7g/10分であった。結果を表1に示す。
[Example 8: Resin composition 8]
For 55 parts by mass of propylene polymer composition D and 45 parts by mass of propylene homopolymer E, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.) and 0.01 part by mass of Irganox 1010 (manufactured by BASF). After mixing 1 part by mass of Irgafos 168 (manufactured by BASF), 0.05 parts by mass of NU-100 (beta crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) in a Henschel mixer, melt extrusion was performed. A pellet-shaped resin composition 8 was obtained. The obtained resin composition 8 has a content of propylene homopolymer D-1 and a content of propylene homopolymer E based on a total of 100 parts by mass of the polymer content contained in resin composition 8. The total amount is 89 parts by mass, the content of propylene-ethylene copolymer D-2 is 11 parts by mass, and the content of structural units derived from ethylene in propylene-ethylene copolymer D-2 is 39 parts by mass. % by mass, and the melt flow rate measured at 230°C was 2.7 g/10 minutes. The results are shown in Table 1.
 樹脂組成物8を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 8 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例9:樹脂組成物9]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、TMB-5(β晶核剤、Shanxi Provincial Institute of Chemical Industry製)0.03質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物9を得た。得られた樹脂組成物9は、樹脂組成物9中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が78質量部であり、プロピレン-エチレン共重合体A-2の含有量が22質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が34質量%であり、230℃で測定したメルトフローレートが2.4g/10分であった。結果を表1に示す。
[Example 9: Resin composition 9]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.03 parts by mass of TMB-5 (β crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition 9. Obtained. The resulting resin composition 9 has a propylene homopolymer A-1 content of 78 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 9, and propylene - The content of ethylene copolymer A-2 is 22 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%, and the melt measured at 230 ° C. The flow rate was 2.4 g/10 minutes. The results are shown in Table 1.
 樹脂組成物9を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition 9 was used, and its properties were evaluated. The results are shown in Table 2.
[実施例10:樹脂組成物10]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、TMB-5(β晶核剤、Shanxi Provincial Institute of Chemical Industry製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物10を得た。得られた樹脂組成物10は、樹脂組成物10中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が78質量部であり、プロピレン-エチレン共重合体A-2の含有量が22質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が34質量%であり、230℃で測定したメルトフローレートが2.4g/10分であった。結果を表1に示す。
[Example 10: Resin composition 10]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) and 0.1 part by mass of TMB-5 (β crystal nucleating agent, manufactured by Shanxi Provincial Institute of Chemical Industry) were mixed in a Henschel mixer, and melt extrusion was performed to obtain pellet-shaped resin composition 10. Obtained. The resulting resin composition 10 has a propylene homopolymer A-1 content of 78 parts by mass based on a total of 100 parts by mass of the polymers contained in the resin composition 10, and propylene homopolymer A-1. - The content of ethylene copolymer A-2 is 22 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 34 mass%, and the melt measured at 230 ° C. The flow rate was 2.4 g/10 minutes. The results are shown in Table 1.
 樹脂組成物10を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that Resin Composition 10 was used, and its properties were evaluated. The results are shown in Table 2.
[比較例1:樹脂組成物C1]
 プロピレン系重合体組成物A 100質量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物C1を得た。得られた樹脂組成物C1は、樹脂組成物C1中に含有される重合体の含有量の合計100質量部に対して、プロピレン単独重合体A-1の含有量が78質量部であり、プロピレン-エチレン共重合体A-2の含有量が22質量部であり、プロピレン-エチレン共重合体A-2におけるエチレンに由来する構造単位の含有量が35質量%であり、230℃で測定したメルトフローレートが2.3g/10分であった。結果を表1に示す。
[Comparative Example 1: Resin composition C1]
For 100 parts by mass of propylene polymer composition A, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), Irgafos 168 (manufactured by BASF Corporation) ) 0.05 parts by mass were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition C1. The obtained resin composition C1 has a content of propylene homopolymer A-1 of 78 parts by mass with respect to a total content of 100 parts by mass of polymers contained in the resin composition C1, and propylene - The content of ethylene copolymer A-2 is 22 parts by mass, the content of structural units derived from ethylene in propylene-ethylene copolymer A-2 is 35% by mass, and the melt measured at 230 ° C. The flow rate was 2.3 g/10 minutes. The results are shown in Table 1.
 樹脂組成物C1を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition C1 was used, and its properties were evaluated. The results are shown in Table 2.
[比較例2:樹脂組成物C2]
 プロピレン単独重合体F 100重量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物C2を得た。得られた樹脂組成物C2の230℃で測定したメルトフローレートは3.1g/10分であった。結果を表1に示す。
[Comparative Example 2: Resin composition C2]
For 100 parts by weight of propylene homopolymer F, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), 0.0 parts by mass of Irgafos 168 (manufactured by BASF Corporation) After mixing 0.05 parts by mass using a Henschel mixer, melt extrusion was performed to obtain pellet-shaped resin composition C2. The melt flow rate of the resulting resin composition C2 measured at 230°C was 3.1 g/10 minutes. The results are shown in Table 1.
 樹脂組成物C2を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition C2 was used, and its properties were evaluated. The results are shown in Table 2.
[比較例3:樹脂組成物C3]
 プロピレン単独重合体F 100重量部に対して、ハイドロタルサイト(協和化学工業社製)0.01質量部、イルガノックス1010(BASF社製)0.1質量部、イルガフォス168(BASF社製)0.05質量部、NU-100(β晶核剤、新日本理化株式会社製)0.1質量部をヘンシェルミキサーで混合した後、溶融押出を行ってペレット状の樹脂組成物C3を得た。得られた樹脂組成物C3の230℃で測定したメルトフローレートは3.2g/10分であった。結果を表1に示す。
[Comparative Example 3: Resin composition C3]
For 100 parts by weight of propylene homopolymer F, 0.01 part by mass of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd.), 0.1 part by mass of Irganox 1010 (manufactured by BASF Corporation), 0.0 parts by mass of Irgafos 168 (manufactured by BASF Corporation) 0.05 parts by mass and 0.1 parts by mass of NU-100 (β crystal nucleating agent, manufactured by New Japan Chemical Co., Ltd.) were mixed in a Henschel mixer, and then melt extruded to obtain pellet-shaped resin composition C3. The melt flow rate of the resulting resin composition C3 measured at 230°C was 3.2 g/10 minutes. The results are shown in Table 1.
 樹脂組成物C3を用いた以外は、実施例1と同様にして、シーラントフィルムを作製し、その特性を評価した。結果を表2に示す。 A sealant film was produced in the same manner as in Example 1, except that resin composition C3 was used, and its properties were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から分かるように、本発明の構成要件をすべて満たす各実施例の樹脂組成物は、耐レトルト融着性に比較的優れたシーラントフィルムを得ることができる。また、各実施例の樹脂組成物は、低温でのヒートシール強度に優れたシーラントフィルムを得ることができる。 As can be seen from the results in Table 2, the resin compositions of each example that satisfy all the constituent requirements of the present invention can provide a sealant film with relatively excellent retort fusion resistance. Further, the resin compositions of each example can provide a sealant film with excellent heat seal strength at low temperatures.
 一方、比較例1の樹脂組成物は、β晶核剤を含有しないため、該樹脂組成物を用いて得られたフィルムの耐レトルト融着性、および、低温でのヒートシール強度が劣る。比較例2の樹脂組成物は、プロピレン系共重合体(2)およびβ晶核剤を含有しないため、該樹脂組成物を用いて得られたフィルムの耐レトルト融着性、および、低温でのヒートシール強度が劣る。比較例3の樹脂組成物は、プロピレン系共重合体(2)を含有しないため、該樹脂組成物を用いて得られたフィルムの耐レトルト融着性が劣る。 On the other hand, since the resin composition of Comparative Example 1 does not contain a β-crystal nucleating agent, the retort fusion resistance and heat seal strength at low temperatures of the film obtained using the resin composition are poor. Since the resin composition of Comparative Example 2 does not contain the propylene copolymer (2) and the β-crystal nucleating agent, the retort fusion resistance of the film obtained using the resin composition and the low temperature stability are Heat seal strength is poor. Since the resin composition of Comparative Example 3 does not contain the propylene copolymer (2), the retort fusion resistance of the film obtained using the resin composition is poor.
 本発明のシーラントフィルム用樹脂組成物は、耐レトルト融着性に比較的優れたシーラントフィルムに利用することができ、そのシーラントフィルムを備えるレトルト包装材の用途などに、高い利用可能性を有する。 The resin composition for a sealant film of the present invention can be used for a sealant film that has relatively excellent retort fusion resistance, and has high applicability for applications such as retort packaging materials equipped with the sealant film.

Claims (13)

  1.  プロピレンに由来する構造単位を98質量%以上含むプロピレン系重合体(1)と、
     プロピレンに由来する構造単位を40質量%超90質量%未満と、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を10質量%超60質量%未満と、を含むプロピレン系共重合体(2)と、
     β晶核剤と、
     を含有する、シーラントフィルム用樹脂組成物。
    A propylene polymer (1) containing 98% by mass or more of structural units derived from propylene;
    More than 40% by mass and less than 90% by mass of structural units derived from propylene, and more than 10% by mass and less than 60% by mass of structural units derived from at least one selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms. A propylene copolymer (2) containing less than %,
    β-crystal nucleating agent,
    A resin composition for sealant film containing.
  2.  前記プロピレン系共重合体(2)が、プロピレンに由来する構造単位を50質量%超90質量%未満と、エチレンに由来する構造単位を10質量%超50質量%未満と、を含む、請求項1に記載のシーラントフィルム用樹脂組成物。 Claim wherein the propylene-based copolymer (2) contains more than 50% by mass and less than 90% by mass of structural units derived from propylene, and more than 10% by mass and less than 50% by mass of structural units derived from ethylene. 1. The resin composition for sealant film according to 1.
  3.  さらに、プロピレンに由来する構造単位を90質量%以上98質量%未満と、エチレンおよび炭素原子数4~12のα-オレフィンからなる群から選ばれる少なくとも1種に由来する構造単位を2質量%超10質量%以下と、を含むプロピレン系共重合体(3)を含有する、請求項1または2に記載のシーラントフィルム用樹脂組成物。 Furthermore, the content of structural units derived from propylene is 90% by mass or more and less than 98% by mass, and the content of structural units derived from at least one kind selected from the group consisting of ethylene and α-olefins having 4 to 12 carbon atoms is more than 2% by mass. The resin composition for a sealant film according to claim 1 or 2, comprising a propylene copolymer (3) containing 10% by mass or less.
  4.  さらに、エチレンに由来する構造単位を60質量%以上98質量%以下と、炭素原子数4~12のα-オレフィンに由来する構造単位を2質量%以上40質量%以下と、を含むエチレン系共重合体を含有する、請求項1~3のいずれか一項に記載のシーラントフィルム用樹脂組成物。 Furthermore, ethylene-based compounds containing 60% by mass or more and 98% by mass of structural units derived from ethylene and 2% by mass or more and 40% by mass or less of structural units derived from α-olefins having 4 to 12 carbon atoms The resin composition for sealant film according to any one of claims 1 to 3, which contains a polymer.
  5.  前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、
     前記プロピレン系重合体(1)の含有量が50質量部以上95質量部以下であり、
     前記プロピレン系共重合体(2)の含有量が5質量部以上50質量部以下である、請求項1~4のいずれか一項に記載のシーラントフィルム用樹脂組成物。
    With respect to a total of 100 parts by mass of the polymer content contained in the resin composition,
    The content of the propylene polymer (1) is 50 parts by mass or more and 95 parts by mass or less,
    The resin composition for a sealant film according to any one of claims 1 to 4, wherein the content of the propylene copolymer (2) is 5 parts by mass or more and 50 parts by mass or less.
  6.  前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、
     前記プロピレン系重合体(1)の含有量が50質量部以上89質量部未満であり、
     前記プロピレン系共重合体(2)の含有量が11質量部超50質量部以下である、請求項5に記載のシーラントフィルム用樹脂組成物。
    With respect to a total of 100 parts by mass of the polymer content contained in the resin composition,
    The content of the propylene polymer (1) is 50 parts by mass or more and less than 89 parts by mass,
    The resin composition for a sealant film according to claim 5, wherein the content of the propylene copolymer (2) is more than 11 parts by mass and 50 parts by mass or less.
  7.  前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、
     前記プロピレン系重合体(1)の含有量が10質量部以上78質量部以下であり、
     前記プロピレン系共重合体(2)の含有量が2質量部以上40質量部以下であり、
     前記プロピレン系共重合体(3)の含有量が20質量部以上80質量部以下である、請求項3に記載のシーラントフィルム用樹脂組成物。
    With respect to a total of 100 parts by mass of the polymer content contained in the resin composition,
    The content of the propylene polymer (1) is 10 parts by mass or more and 78 parts by mass or less,
    The content of the propylene copolymer (2) is 2 parts by mass or more and 40 parts by mass or less,
    The resin composition for a sealant film according to claim 3, wherein the content of the propylene copolymer (3) is 20 parts by mass or more and 80 parts by mass or less.
  8.  前記樹脂組成物中に含有される重合体の含有量の合計100質量部に対して、
     前記プロピレン系重合体(1)の含有量が35質量部以上75質量部以下であり、
     前記プロピレン系共重合体(2)の含有量が5質量部以上50質量部以下であり、
     前記エチレン系共重合体の含有量が2質量部以上30質量部以下である、請求項4に記載のシーラントフィルム用樹脂組成物。
    With respect to a total of 100 parts by mass of the polymer content contained in the resin composition,
    The content of the propylene polymer (1) is 35 parts by mass or more and 75 parts by mass or less,
    The content of the propylene copolymer (2) is 5 parts by mass or more and 50 parts by mass or less,
    The resin composition for a sealant film according to claim 4, wherein the content of the ethylene copolymer is 2 parts by mass or more and 30 parts by mass or less.
  9.  前記β晶核剤の濃度が100質量ppm以上3000質量ppm以下である、請求項1~8のいずれか一項に記載のシーラントフィルム用樹脂組成物。 The resin composition for a sealant film according to any one of claims 1 to 8, wherein the concentration of the β crystal nucleating agent is 100 mass ppm or more and 3000 mass ppm or less.
  10.  請求項1~9のいずれか一項に記載のシーラントフィルム用樹脂組成物を含有するシーラントフィルム。 A sealant film containing the resin composition for sealant film according to any one of claims 1 to 9.
  11.  厚さが5μm以上200μm以下である、請求項10に記載のシーラントフィルム。 The sealant film according to claim 10, having a thickness of 5 μm or more and 200 μm or less.
  12.  請求項10または11に記載のシーラントフィルムをシーラント層として備える多層フィルム。 A multilayer film comprising the sealant film according to claim 10 or 11 as a sealant layer.
  13.  請求項1~9のいずれか一項に記載のシーラントフィルム用樹脂組成物を溶融混練する溶融混練工程と、
     溶融混練された組成物を押し出す押出工程と、
     押し出された組成物を厚さ5μm以上200μm以下に製膜する製膜工程と、を含む、シーラントフィルムの製造方法。
    A melt-kneading step of melt-kneading the resin composition for sealant film according to any one of claims 1 to 9,
    an extrusion step of extruding the melt-kneaded composition;
    A method for producing a sealant film, comprising a film forming step of forming an extruded composition into a film having a thickness of 5 μm or more and 200 μm or less.
PCT/JP2023/001862 2022-03-09 2023-01-23 Resin composition for sealant film, sealant film, multilayered film, and method for producing sealant film WO2023171155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036179 2022-03-09
JP2022036179 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171155A1 true WO2023171155A1 (en) 2023-09-14

Family

ID=87936700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001862 WO2023171155A1 (en) 2022-03-09 2023-01-23 Resin composition for sealant film, sealant film, multilayered film, and method for producing sealant film

Country Status (1)

Country Link
WO (1) WO2023171155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255191A (en) * 2007-04-03 2008-10-23 Sumitomo Chemical Co Ltd Polypropylene resin composition for foaming and foam-molded article made therefrom
JP2013209635A (en) * 2012-02-28 2013-10-10 Sumitomo Chemical Co Ltd Polypropylene based resin, film made from the same and method for manufacturing polypropylene based resin
JP2015203065A (en) * 2014-04-14 2015-11-16 日本ポリプロ株式会社 Thermoformed product composed of propylene resin composition
JP2017036386A (en) * 2015-08-10 2017-02-16 日本ポリプロ株式会社 Method for using polypropylene resin composition for deformation recovery structure and deformation recovery structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255191A (en) * 2007-04-03 2008-10-23 Sumitomo Chemical Co Ltd Polypropylene resin composition for foaming and foam-molded article made therefrom
JP2013209635A (en) * 2012-02-28 2013-10-10 Sumitomo Chemical Co Ltd Polypropylene based resin, film made from the same and method for manufacturing polypropylene based resin
JP2015203065A (en) * 2014-04-14 2015-11-16 日本ポリプロ株式会社 Thermoformed product composed of propylene resin composition
JP2017036386A (en) * 2015-08-10 2017-02-16 日本ポリプロ株式会社 Method for using polypropylene resin composition for deformation recovery structure and deformation recovery structure

Similar Documents

Publication Publication Date Title
JP5063357B2 (en) Heat-fusible propylene polymer composition, heat-fusible film and use thereof
KR20080039962A (en) Polypropylene resin composition, film or sheet, stretched film obtained from such film or sheet, multilayer body, and stretched film obtained from such multilayer body
JP2013112736A (en) Propylene polymer composition and application thereof
WO2013080854A1 (en) Propylene-based polymer composition, biaxially stretched film, and use therefor
JPWO2018180165A1 (en) Battery stack
JP5227031B2 (en) Polypropylene single layer film and its use
WO2012070373A1 (en) Biaxially oriented ethylene-polymer multi-layer film
JP4495602B2 (en) Biaxially oriented polypropylene multilayer film
WO2023171155A1 (en) Resin composition for sealant film, sealant film, multilayered film, and method for producing sealant film
JP4892784B2 (en) Multi-layer film for retort packaging
JP4872344B2 (en) Heat-sealable laminated polypropylene resin film and package
JP6798268B2 (en) Multilayer film
US9127133B2 (en) Polypropylene-based resin composition and film
WO2022196239A1 (en) Stretched polyethylene film for lamination
JP6545479B2 (en) Polypropylene resin composition and laminated film obtained therefrom
JP5786608B2 (en) Laminated film
US20090292077A1 (en) Polypropylene-based resin composition and film
JP4574462B2 (en) Polypropylene multilayer stretched film
US8022148B2 (en) Polypropylene resin composition and film made thereof
JP4239067B2 (en) Laminated polypropylene resin film and package using the same
JP6474297B2 (en) Method for producing biaxially stretched multilayer film
JP6717641B2 (en) Multilayer film and manufacturing method thereof
JP6461675B2 (en) Multilayer film
JP5375454B2 (en) Polypropylene resin composition and stretched film
JP2022102606A (en) Multilayer film, and, packaging bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766335

Country of ref document: EP

Kind code of ref document: A1