WO2023170982A1 - Treatment system and operating method for treatment system - Google Patents

Treatment system and operating method for treatment system Download PDF

Info

Publication number
WO2023170982A1
WO2023170982A1 PCT/JP2022/011137 JP2022011137W WO2023170982A1 WO 2023170982 A1 WO2023170982 A1 WO 2023170982A1 JP 2022011137 W JP2022011137 W JP 2022011137W WO 2023170982 A1 WO2023170982 A1 WO 2023170982A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
treatment
treatment system
turbidity
cpu
Prior art date
Application number
PCT/JP2022/011137
Other languages
French (fr)
Japanese (ja)
Inventor
尚也 杉本
宏一郎 渡辺
健 藤崎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2022/011137 priority Critical patent/WO2023170982A1/en
Publication of WO2023170982A1 publication Critical patent/WO2023170982A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans

Definitions

  • the present invention relates to a treatment system and a method of operating the treatment system.
  • Patent Document 1 discloses an ultrasonic treatment tool for forming a hole in a bone. This ultrasonic treatment tool is configured so that the tip of the treatment tool vibrates ultrasonically. In arthroscopic surgery, the tip of a treatment instrument crushes (cuts) bone using ultrasonic vibrations, forming a hole in the bone. After this, the two bone holes are connected to form one bone hole.
  • bone shavings bone powder
  • irrigation fluid may be dispersed in the irrigation fluid, making the irrigation fluid cloudy and obstructing the field of view of the arthroscope for observing the treatment target.
  • the operator must stop and wait for the visual field to recover, which may place a burden on the patient and the operator, and may increase the time required for the surgery.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a treatment system and a method for operating the treatment system that can suppress the influence on surgery caused by turbidity in the irrigation fluid.
  • a treatment system includes a treatment tool for cutting biological tissue in a liquid, a perfusion device for controlling perfusion of the liquid, and a treatment system for cutting biological tissue by the treatment tool.
  • a turbidity information storage unit that stores in advance turbidity information for determining a change in turbidity of the liquid due to cutting dust generated by the cutting process, and a cutting data measurement unit that measures data indicating the state of cutting by the treatment instrument;
  • a control unit that controls driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information.
  • a method for operating a treatment system includes: a treatment tool that cuts biological tissue in a liquid; a perfusion device that controls perfusion of the liquid; A method of operating a treatment system comprising: a turbidity information storage unit that stores turbidity information in advance for determining a change in turbidity of the liquid due to cutting dust generated by cutting with the treatment tool; and the control unit.
  • the cutting data measurement unit measures data indicating the cutting state by the treatment instrument, and the control unit controls the driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information. Control.
  • FIG. 1 is a diagram showing a schematic configuration of a treatment system according to a first embodiment.
  • FIG. 2 is a diagram showing how a bone hole is formed using an ultrasonic probe.
  • FIG. 3A is a schematic diagram showing a schematic configuration of an ultrasound probe.
  • FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A.
  • FIG. 4 is a block diagram showing an overview of the functional configuration of the treatment system according to the first embodiment.
  • FIG. 5 is a block diagram showing the functional configuration of the endoscope device.
  • FIG. 6A is a diagram schematically showing a state in which the endoscope has good visibility when forming a bone hole in the lateral condyle of the femur.
  • FIG. 6A is a diagram schematically showing a state in which the endoscope has good visibility when forming a bone hole in the lateral condyle of the femur.
  • FIG. 6B is a diagram schematically showing a state in which the visibility of the endoscope is not good when forming a bone hole in the lateral condyle of the femur.
  • FIG. 7 is a block diagram showing the functional configuration of the treatment device.
  • FIG. 8 is a block diagram showing the functional configuration of the perfusion device.
  • FIG. 9 is a block diagram showing the functional configuration of the lighting device.
  • FIG. 10 is a flowchart illustrating an overview of a treatment performed by an operator using the treatment system according to the first embodiment.
  • FIG. 11 is a flowchart illustrating an overview of the cutting treatment in the treatment system according to the first embodiment.
  • FIG. 12 is a diagram for explaining control of the perfusion device in a cutting treatment, and is a diagram for explaining the relationship between impedance and drive conditions of the perfusion device.
  • FIG. 13 is a diagram for explaining the driving conditions of the perfusion device.
  • FIG. 14 is a diagram for explaining the pulse waveform under the driving condition D1.
  • FIG. 15 is a diagram for explaining the pulse waveform under driving condition D2.
  • FIG. 16 is a diagram for explaining the pulse waveform under driving condition D3.
  • FIG. 17 is a diagram for explaining the pulse waveform under the driving condition Ds.
  • FIG. 18 is a block diagram showing the functional configuration of a treatment device included in the treatment system according to the second embodiment.
  • FIG. 19 is a flowchart illustrating an overview of cutting treatment in the treatment system according to the second embodiment.
  • FIG. 20 is a diagram for explaining the control of the perfusion device in the cutting treatment, and is a diagram for explaining the relationship between the cutting time and the driving conditions of the perfusion device.
  • FIG. 1 is a diagram showing a schematic configuration of a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats living tissues such as bones by applying ultrasonic vibrations to the living tissues.
  • the treatment means, for example, removal or cutting of living tissue such as bone.
  • a treatment system for performing anterior cruciate ligament reconstruction is illustrated as the treatment system 1.
  • This treatment system 1 includes an endoscope device 2, a treatment device 3, a guiding device 4, a perfusion device 5, and an illumination device 6.
  • the endoscope device 2 includes an endoscope 201, an endoscope control device 202, and a display device 203.
  • the distal end portion of the insertion portion 211 is inserted into the joint cavity C1 of the knee joint J1 through a first portal P1 that communicates the inside of the joint cavity C1 with the outside of the skin.
  • the endoscope 201 then irradiates the inside of the joint cavity C1, captures the illumination light (subject image) reflected within the joint cavity C1, and captures the subject image.
  • the endoscope control device 202 performs various image processing on the captured image captured by the endoscope 201, and causes the display device 203 to display the captured image after the image processing.
  • the endoscope control device 202 is connected to the endoscope 201 and the display device 203 by wire or wirelessly.
  • the display device 203 receives data, image data, audio data, etc. transmitted from each device of the treatment system via the endoscope control device, and displays/announces the data.
  • the display device 203 is configured using a display panel made of liquid crystal or organic EL (Electro-Luminescence).
  • the treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and a foot switch 303.
  • the treatment tool 301 includes a treatment tool main body 311, an ultrasonic probe 312 (see FIG. 2), and a sheath 313.
  • the treatment instrument main body 311 is formed into a cylindrical shape. Inside the treatment instrument main body 311, an ultrasonic transducer 311a (constituted by a bolt-clamped Langevin-type transducer) that generates ultrasonic vibrations in accordance with the supplied driving power. Figure 1) is stored.
  • the treatment instrument control device 302 supplies the driving power to the ultrasonic transducer 311a in response to the operator's operation of the foot switch 303.
  • the supply of the driving power is not limited to the operation on the foot switch 303, and may be performed, for example, in response to the operation on an operation section (not shown) provided on the treatment instrument 301.
  • the foot switch 303 is an input interface used by the surgeon to operate the ultrasound probe 312 with his/her foot.
  • the guiding device 4, perfusion device 5, and lighting device 6 will be described later.
  • FIG. 2 is a diagram showing how the bone hole 101 is formed using the ultrasonic probe 312.
  • FIG. 3A is a schematic diagram showing a schematic configuration of the ultrasound probe 312.
  • FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A.
  • the ultrasonic probe 312 is made of, for example, a titanium alloy, and has a substantially cylindrical shape. A proximal end portion of the ultrasonic probe 312 is connected to an ultrasonic transducer 311a within the treatment instrument main body 311. The ultrasonic probe 312 transmits ultrasonic vibrations generated by the ultrasonic transducer 311a from the base end to the distal end.
  • the ultrasonic vibration is longitudinal vibration along the longitudinal direction of the ultrasonic probe 312 (vertical direction in FIG. 2). Furthermore, as shown in FIG. 2, a distal treatment section 312a is provided at the distal end of the ultrasonic probe 312.
  • the sheath 313 is formed into a cylindrical shape that is more elongated than the treatment instrument main body 311, and covers a part of the outer periphery of the ultrasound probe 312 from the treatment instrument main body 311 to an arbitrary length.
  • the tip of the ultrasonic probe 312 in the treatment instrument 301 described above is guided by the guiding device 4 inserted into the joint cavity C1 through the second portal P2 that communicates the inside of the joint cavity C1 with the outside of the skin. , is inserted into the joint cavity C1.
  • the portion of the bone that mechanically collided with the distal treatment section 312a is finely damaged by the hammering action. It is ground into fine particles (see Figure 2).
  • the distal treatment section 312a is pushed into the treatment target site 100 by the operator, the distal treatment section 312a enters the inside of the treatment target site 100 while crushing the bone. As a result, a bone hole 101 is formed in the treatment target site 100.
  • Posture detection unit 314 includes a sensor that detects rotation and movement of treatment instrument 301.
  • the posture detection unit 314 detects movement in three mutually orthogonal axial directions, including an axis parallel to the longitudinal axis of the ultrasound probe 312, and rotation around each axis.
  • the posture detection unit 314 includes, for example, a three-axis angular velocity sensor (gyro sensor), an acceleration sensor, and the like.
  • the treatment instrument control device 302 determines that the treatment instrument 301 is stationary if the detection result of the posture detection unit 314 does not change for a certain period of time.
  • the CPU 315 corresponds to a control unit that controls the operation of the posture detection unit 314 and transmits and receives information to and from the treatment instrument control device 302.
  • the guiding device 4 is inserted into the joint cavity C1 through the second portal P2, and guides the insertion of the tip portion of the ultrasound probe 312 of the treatment tool 301 into the joint cavity C1.
  • the guiding device 4 includes a guide body 401, a handle portion 402, and a drain portion 403 with a cock.
  • the guide body 401 has a cylindrical shape with a through hole through which the ultrasound probe 312 is inserted (see FIG. 1).
  • the guide body 401 guides the movement of the ultrasound probe 312 by restricting the movement of the ultrasound probe 312 inserted through the through hole in a certain direction.
  • the cross-sectional shapes of the outer circumferential surface and the inner circumferential surface of the guide main body 401 perpendicular to the central axis are approximately circular.
  • This guide body 401 becomes thinner toward the tip. That is, the distal end surface of the guide body 401 includes an opening formed by a slope diagonally intersecting the central axis.
  • the drain part 403 with a cock is provided on the outer peripheral surface of the guide body 401 and has a cylindrical shape that communicates with the inside of the guide body 401.
  • One end of the drain tube 505 of the perfusion device 5 is connected to the drain portion 403 with a cock, and serves as a flow path that communicates the guide main body 401 and the drain tube 505 of the perfusion device 5 .
  • This flow path is configured to be openable and closable by operating a cock (not shown) provided in the drain portion 403 with a cock.
  • the perfusion device 5 delivers a sterilized irrigation fluid such as physiological saline into the joint cavity C1, and also discharges the irrigation fluid outside the joint cavity C1.
  • the perfusion device 5 includes a liquid source 501, a liquid feeding tube 502, a liquid feeding pump 503, a drainage bottle 504, a drainage tube 505, and a drainage pump 506 (see FIG. 1).
  • Fluid source 501 contains irrigation fluid.
  • the liquid feeding tube 502 has one end connected to the liquid source 501 and the other end connected to the endoscope 201.
  • the liquid sending pump 503 sends the irrigation liquid from the liquid source 501 toward the endoscope 201 through the liquid sending tube 502 .
  • the irrigation fluid sent to the endoscope 201 is then sent into the joint cavity C1 from the liquid delivery hole formed at the distal end portion of the insertion section 211.
  • Drainage bottle 504 contains the irrigation fluid drained out of joint cavity C1.
  • the drain tube 505 has one end connected to the guiding device 4 and the other end connected to the drain bottle 504.
  • the drainage pump 506 follows the flow path of the drainage tube 505 from the guiding device 4 inserted into the joint cavity C1, and discharges the irrigation fluid in the joint cavity C1 to the drainage bottle 504.
  • this Embodiment 1 demonstrates using the drainage pump 506, it does not restrict to this and may use the suction device with which the facility was equipped.
  • the illumination device 6 has two light sources that each emit two illumination lights with different wavelength bands.
  • the two illumination lights are, for example, white light and special light.
  • Illumination light from the illumination device 6 is propagated to the endoscope 201 via the light guide, and is irradiated from the tip of the endoscope 201.
  • FIG. 4 is a block diagram showing an overview of the functional configuration of the entire treatment system.
  • the treatment system 1 further includes a network control device 7 that controls communication throughout the system, and a network server 8 that stores various data.
  • the network control device 7 is communicably connected to the endoscope device 2, treatment device 3, perfusion device 5, lighting device 6, and network server 8.
  • FIG. 4 illustrates a case where the devices are connected wirelessly, they may be connected by wire.
  • the detailed functional configurations of the endoscope device 2, treatment device 3, perfusion device 5, and illumination device 6 will be described below.
  • the endoscope device 2 includes an endoscope control device 202, a display device 203, an imaging section 204, and an operation input section 205 (see FIGS. 4 and 5).
  • the endoscope control device 202 includes an image processing unit 221, an image processing unit 222, a turbidity detection unit 223, an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230. It includes a data memory 231 and a communication interface 232.
  • image processing unit 221 an image processing unit 222
  • turbidity detection unit 223 an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230.
  • It includes a data memory 231 and a communication interface 232.
  • the imaging processing unit 221 is provided in an imaging device drive control circuit 221a that controls the driving of the imaging device 241 included in the imaging unit 204, and in a patient circuit 202b that is electrically insulated from the primary circuit 202a, and processes signals from the imaging device 224a. It has an image sensor signal control circuit 221b that performs control.
  • the image sensor drive control circuit 221a is provided in the primary circuit 202a. Further, the image sensor signal control circuit 221b is provided in the patient circuit 202b which is electrically insulated from the primary circuit 202a.
  • the image processing unit 222 includes a first image processing circuit 222a that performs image processing and a second image processing circuit 222b that performs image editing processing.
  • the turbidity detection unit 223 detects turbidity based on information regarding turbidity within the endoscope device 2 .
  • the information regarding turbidity is, for example, a value obtained from imaging data generated by the endoscope 201, a physical property value of the perfusate, an impedance or pH obtained from the treatment device 3, and the like.
  • FIGS. 6A and 6B are diagrams showing a state in which the field of view of the endoscope 201 is good and a state in which it is poor, respectively, when the operator forms a bone hole in the lateral femoral condyle 900.
  • FIG. 3 is a diagram schematically showing a field of view. Of these, FIG.
  • FIG. 6B schematically shows a state in which the field of vision is clouded due to bones crushed into fine particles by the driving of the ultrasonic probe 312. Note that in FIG. 6B, minute bones are represented by dots. The fine bones are white, and the perfusate becomes cloudy due to the white particles containing these bones.
  • the input unit 226 receives the signal input by the operation input unit 205.
  • the CPU 227 centrally controls the operation of the endoscope control device 202.
  • the CPU 227 corresponds to a control unit that executes a program stored in the memory 228 and controls the operation of each part of the endoscope control device 202.
  • the memory 228 stores various information necessary for the operation of the endoscope control device 202, image data captured by the imaging unit 204, and the like.
  • the wireless communication unit 229 is an interface for wireless communication with other devices.
  • the distance sensor drive circuit 230 drives a distance sensor that measures the distance to a predetermined object in the image captured by the imaging unit 204.
  • the distance data memory 231 stores distance data detected by the distance sensor.
  • the communication interface 232 is an interface for communicating with the imaging unit 204. Of the configuration described above, components other than the image sensor signal control circuit 221b are provided in the primary circuit 202a, and are interconnected by bus wiring.
  • the imaging unit 204 includes an imaging element 241, a CPU 242, and a memory 243.
  • the image sensor 241 is configured using a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the CPU 242 centrally controls the operation of the imaging unit 204.
  • the CPU 242 corresponds to a control unit that executes a program stored in the memory 243 and controls the operation of each part of the imaging unit 204.
  • the memory 243 stores various information, image data, etc. necessary for the operation of the imaging unit 204.
  • the operation input unit 205 is configured using an input interface such as a mouse, keyboard, touch panel, microphone, etc., and accepts operation input of the endoscope apparatus 2 by the operator.
  • the treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and an input/output section 304 (see FIGS. 4 and 7).
  • the treatment tool 301 includes an ultrasonic transducer 311a, a posture detection section 314, a CPU 315, and a memory 316 (see FIG. 7).
  • the posture detection unit 314 includes an acceleration sensor and/or an angular velocity sensor, and detects the posture of the treatment instrument 301.
  • the CPU 315 centrally controls the operation of the treatment instrument 301 including the ultrasonic transducer 311a.
  • the CPU 315 corresponds to a control unit that executes a program stored in the memory 316 to control the operation of each part of the treatment instrument 301.
  • the memory 316 stores various information necessary for the operation of the treatment instrument 301.
  • the treatment instrument control device 302 includes a primary circuit 321, a patient circuit 322, a transformer 323, a first power source 324, a second power source 325, a CPU 326, a memory 327, a wireless communication section 328, a communication interface 329, and an impedance measurement section 330.
  • the primary circuit 321 generates power to be supplied to the treatment instrument 301.
  • Patient circuit 322 is electrically insulated from primary circuit 321.
  • Transformer 323 electromagnetically connects primary circuit 321 and patient circuit 322.
  • the first power source 324 is a high voltage power source that supplies driving power for the treatment instrument 301.
  • the second power source 325 is a low voltage power source that supplies driving power for a control circuit within the treatment instrument control device 302.
  • the CPU 326 centrally controls the operation of the treatment instrument control device 302.
  • the CPU 326 corresponds to a control section that executes a program stored in the memory 327 to control the operation of each section of the treatment instrument control device 302.
  • the memory 327 stores various information necessary for the operation of the treatment instrument control device 302.
  • the memory 327 is a turbidity information storage unit that stores in advance turbidity information for determining a change in turbidity of the liquid, which corresponds to cutting dust generated by cutting with the treatment tool 301.
  • the wireless communication unit 328 is an interface for wireless communication with other devices.
  • the communication interface 329 is an interface for communicating with the treatment instrument 301.
  • the impedance measurement unit 330 supplies power to the treatment instrument 301 and measures the impedance in the treatment region. For example, a pair of electric wires is provided at the tip of the treatment tool 301, and a voltage or current is applied to the treatment region to obtain a signal (voltage and current).
  • the impedance measuring section 330 measures impedance based on the ratio of the obtained signals. This impedance changes depending on the degree of clouding caused by bone powder during treatment.
  • the input/output unit 304 is configured using input interfaces such as a mouse, keyboard, touch panel, microphone, etc., and output interfaces such as a monitor, speakers, etc., and receives operation input from the surgeon for the endoscope device 2 and notifies the surgeon. Various information is output (see Figure 4).
  • the perfusion device 5 includes a liquid feeding pump 503, a drainage pump 506, a liquid feeding control section 507, a liquid drainage control section 508, an input section 509, a CPU 510, a memory 511, a wireless communication section 512, a communication interface 513, a pump internal CPU 514, and An internal pump memory 515 is provided (see FIGS. 4 and 8).
  • the liquid feeding control unit 507 includes a first drive control unit 571, a first driving power generation unit 572, a first transformer 573, and a liquid feeding pump drive circuit 574 (see FIG. 8).
  • the first drive control section 571 controls the driving of the first drive power generation section 572 and the liquid pump drive circuit 574.
  • the first driving power generation unit 572 generates driving power for the liquid feeding pump 503.
  • the first transformer 573 electromagnetically connects the first drive power generation section 572 and the liquid pump drive circuit 574.
  • the first drive control section 571, the first drive power generation section 572, and the first transformer 573 are provided in the primary circuit 5a. Further, the liquid pump drive circuit 574 is provided in the patient circuit 5b which is electrically insulated from the primary circuit 5a.
  • the drain control section 508 includes a second drive control section 581, a second drive power generation section 582, a second transformer 583, and a drain pump drive circuit 584.
  • the second drive control section 581 controls the driving of the second drive power generation section 582 and the drainage pump drive circuit 584.
  • the second drive power generation unit 582 generates drive power for the drainage pump 506.
  • the second transformer 583 electromagnetically connects the second drive power generation section 582 and the drain pump drive circuit 584.
  • the second drive control section 581, the second drive power generation section 582, and the second transformer 583 are provided in the primary circuit 5a. Further, a drainage pump drive circuit 584 is provided in the patient circuit 5b.
  • the input unit 509 receives input of various signals such as operation input (not shown).
  • the CPU 510 and the pump CPU 514 work together to centrally control the operation of the perfusion device 5.
  • the CPU 510 corresponds to a control unit that executes a program stored in the memory 511 and controls the operation of each part of the perfusion device 5 via the BUS line.
  • the memory 511 stores various information necessary for the operation of the perfusion device 5.
  • the wireless communication unit 512 is an interface for wireless communication with other devices.
  • the communication interface 513 is an interface for communicating with the pump CPU 514.
  • the internal pump memory 515 stores various information necessary for the operation of the liquid feeding pump 503 and the liquid draining pump 506.
  • the input section 509, CPU 510, memory 511, wireless communication section 512, and communication interface 513 are provided in the primary circuit 5a.
  • An in-pump CPU 514 and an in-pump memory 515 are provided in the pump 5c.
  • the in-pump CPU 514 and the in-pump memory 515 may be provided around the liquid feeding pump 503 or around the drainage pump 506.
  • the lighting device 6 includes a first lighting control section 601, a second lighting control section 602, a first lighting 603, a second lighting 604, an input section 605, a CPU 606, a memory 607, a wireless communication section 608, a communication interface 609, and a lighting circuit. It includes a CPU 610 and a lighting circuit internal memory 61A (see FIGS. 4 and 9).
  • the first lighting control section 601 includes a first drive control section 611 , a first drive power generation section 612 , a first controller 613 , and a first drive circuit 614 .
  • the first drive control section 611 controls the driving of the first drive power generation section 612 , the first controller 613 , and the first drive circuit 614 .
  • the first drive power generation unit 612 generates drive power for the first lighting 603.
  • the first controller 613 controls the light output of the first illumination 603.
  • the first drive circuit 614 drives the first illumination 603 to output illumination light.
  • the first drive control section 611, the first drive power generation section 612, and the first controller 613 are provided in the primary circuit 6a. Further, the first drive circuit 614 is provided in the patient circuit 6b which is electrically insulated from the primary circuit 6a.
  • the second lighting control section 602 includes a second drive control section 621 , a second drive power generation section 622 , a second controller 623 , and a second drive circuit 624 .
  • the second drive control section 621 controls the driving of the second drive power generation section 622, the second controller 623, and the second drive circuit 624.
  • the second drive power generation unit 622 generates drive power for the second lighting 604.
  • the second controller 623 controls the light output of the second illumination 604.
  • the second drive circuit 624 drives the second illumination 604 to output illumination light.
  • the second drive control section 621, the second drive power generation section 622, and the second controller 623 are provided in the primary circuit 6a. Further, the second drive circuit 624 is provided in the patient circuit 6b.
  • the input unit 605 receives input of various signals such as operation input (not shown).
  • the CPU 606 and the lighting circuit CPU 610 work together to centrally control the operation of the lighting device 6.
  • the CPU 606 corresponds to a control unit that executes a program stored in the memory 607 to control the operation of each part of the lighting device 6.
  • the memory 607 stores various information necessary for the operation of the lighting device 6.
  • the wireless communication unit 608 is an interface for wireless communication with other devices.
  • the communication interface 609 is an interface for communicating with the lighting circuit 6c.
  • the lighting circuit memory 61A stores various information necessary for the operation of the first lighting 603 and the second lighting 604.
  • the input section 605, CPU 606, memory 607, wireless communication section 608, and communication interface 609 are provided in the primary circuit 6a.
  • the lighting circuit CPU 610 and the lighting circuit memory 61A are provided in the lighting circuit 6c.
  • FIG. 10 is a flowchart illustrating an overview of the treatment performed by the surgeon using the treatment system 1. Note that the number of surgeons who perform the treatment may be one doctor, or two or more including a doctor and an assistant.
  • the operator forms a first portal P1 and a second portal P2 that communicate the inside of the joint cavity C1 of the knee joint J1 and the outside of the skin, respectively (step S1).
  • the operator inserts the endoscope 201 into the joint cavity C1 from the first portal P1, inserts the guiding device 4 into the joint cavity C1 from the second portal P2, and guides the guiding device 4.
  • the treatment instrument 301 is inserted into the joint cavity C1 (step S2). Note that although the case where two portals are formed and the endoscope 201 and the treatment instrument 301 are inserted into the joint cavity C1 from each portal has been described here, the first portal P1 is formed and the endoscope 201 is inserted into the joint cavity C1. After inserting into the joint cavity C1, the second portal P2 may be formed and the guiding device 4 and the treatment instrument 301 may be inserted into the joint cavity C1.
  • step S3 the operator brings the ultrasound probe 312 into contact with the bone to be treated while visually checking the endoscopic image of the joint cavity C1 displayed on the display device 203.
  • step S4 the operator performs a cutting treatment using the treatment tool 301 (step S4).
  • the operator turns on the output of the treatment tool 301 and causes the ultrasonic probe 312 to vibrate ultrasonically to perform the treatment. For example, bone is crushed to form a bone hole.
  • the display device 203 performs a display/notification process of displaying the inside of the joint cavity C1 and information regarding the state after the cutting procedure (step S5). For example, after the display/notification process, the endoscope control device 202 stops the display/notification after a predetermined period of time.
  • FIG. 11 is a flowchart illustrating an overview of the cutting treatment in the treatment system according to the first embodiment.
  • FIG. 12 is a diagram for explaining control of the perfusion device in a cutting treatment, and is a diagram for explaining the relationship between impedance and drive conditions of the perfusion device.
  • each process will be described as being executed under the control of the CPU 326 of the treatment instrument control device 302, but for example, any one of the control devices such as the network control device 7 may execute the process.
  • the process may be executed, or the CPU of each control device may partially execute the process.
  • FIG. 11 describes an example in which a bone hole is formed by crushing a bone.
  • step S101 when a signal is input by an operation for turning on the output of the treatment instrument 301, such as pressing down the foot switch 303, the CPU 326 turns on the output of the treatment instrument 301 (step S101).
  • the ultrasonic probe 312 vibrates ultrasonically.
  • the CPU 326 sets the operation mode to cutting mode.
  • the CPU 326 sets the driving condition of the perfusion device 5 to condition D1 (step S102).
  • the CPU 326 outputs a signal to the CPU 510 of the perfusion device 5 indicating that the perfusion device 5 is to be driven under the condition D1.
  • the first drive control unit 571 drives the liquid pump 503 according to the condition D1. Note that the driving conditions will be described later.
  • the CPU 326 causes the impedance measurement unit 330 to measure the impedance during treatment (step S103).
  • the impedance measurement unit 330 measures impedance Z by acquiring a signal from the power supplied to the treatment tool 301. At this time, the impedance Z changes depending on the contact/non-contact state between the ultrasound probe 312 and the bone, or the properties of the crushed bone tissue of the bone. That is, the impedance measuring section 330 is configured as a cutting data measuring section that measures the state of cutting by the treatment tool 301.
  • the CPU 326 determines whether the impedance Z measured in step S103 satisfies Z ⁇ Z1 (step S104).
  • Z1 is a threshold value for determining the cutting state, and the minimum value of impedance for determining whether cortical bone is being crushed is set (see FIG. 12).
  • Each piece of state information showing changes in turbidity and a look-up table showing the relationship with driving conditions shown in FIG. 12 are stored in advance in the memory 327 as turbidity information for determining changes in turbidity. That is, the memory 327 is configured as a turbidity information storage section.
  • step S104 the process returns to step S103 and remeasures the impedance.
  • the impedance measurement may be performed immediately or after a predetermined period of time has passed since the previous measurement time. At this time, if the impedance Z is Z ⁇ Z1, it can be assumed that cutting has just started, or that the ultrasonic probe 312 is in a non-contact state with the bone, or in a state other than cutting bone tissue.
  • step S105 the CPU 326 determines whether impedance Z satisfies Z ⁇ Z2.
  • Z2 is a threshold value for determining the cutting state, and is set as the minimum value of impedance for determining whether or not cancellous bone is being crushed.
  • step S106 the CPU 326 determines that Z ⁇ Z2 is not satisfied
  • step S107 the process proceeds to step S107.
  • the cortical bone is crushed.
  • cancellous bone is crushed, and the amount of bone powder increases compared to when cortical bone is crushed.
  • step S106 the CPU 326 sets the drive condition of the perfusion device 5 to condition D2.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D2.
  • the first drive control unit 571 drives the liquid pump 503 according to condition D2.
  • step S107 the CPU 326 determines whether the output of the treatment instrument 301 is off. If the CPU 326 determines that the output of the treatment instrument 301 is turned off by detecting an operation to turn off the output of the treatment instrument 301 due to the operator's foot leaving the foot switch 303 or the like (step S107: Yes), the process proceeds to step S109. Further, when the CPU 326 determines that the output of the treatment tool 301 is not turned off (step S107: No), the process proceeds to step S108.
  • step S108 the CPU 326 sets the drive condition of the perfusion device 5 to condition D3.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D3.
  • the first drive control unit 571 drives the liquid pump 503 according to condition D3.
  • step S109 the CPU 326 determines whether the elapsed time Toff since the output of the treatment tool 301 is turned off satisfies Toff>Ts.
  • Ts is a time set in advance as a period for transitioning to standby mode after the output is turned off.
  • step S110 the CPU 326 sets the drive condition of the perfusion device 5 to condition Ds.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition Ds.
  • the first drive control unit 571 drives the liquid pump 503 according to the condition Ds. Note that at this time, the CPU 326 sets the operation mode to standby mode.
  • step S111 the CPU 326 sets the operation mode of the perfusion device 5 to the stop mode, and outputs a signal to turn off the driving power of the perfusion device 5 (at least the driving power of the pump, the same applies hereinafter). After that, the CPU 326 moves to step S5 shown in FIG. Note that at this time, the CPU 326 sets the operation mode to the stop mode.
  • FIG. 13 is a diagram for explaining the driving conditions of the perfusion device 5.
  • the driving conditions of the perfusion device 5 are set by combining the power amplitude (voltage V) and the power frequency.
  • the power frequency is set by setting a cycle and a pulse width in the cycle.
  • the look-up table in FIG. 13 is stored in advance in the memory 511 of the perfusion device 5, and the CPU of each control device reads the data via communication and uses it as a driving condition.
  • FIG. 14 is a diagram for explaining the power pulse waveform under driving condition D1. Under drive condition D1, the voltage is set to V1, and a pattern (power frequency FP1) with continuously different pulse widths and cycles is repeated.
  • FIG. 15 is a diagram for explaining the pulse waveform under driving condition D2.
  • the voltage is set to V2 (>V1), and a pattern (power frequency FP2) with continuously different pulse widths and cycles is repeated.
  • the period of this pattern (power frequency FP2) is shorter than the period of the pattern (power frequency FP1) of driving condition D1.
  • FIG. 16 is a diagram for explaining the pulse waveform under driving condition D3.
  • the voltage is set to V3 (>V2), and a pattern (power frequency FP3) with continuously different pulse widths and cycles is repeated.
  • the period of this pattern (power frequency FP3) is shorter than the period of the pattern (power frequency FP2) of driving condition D2.
  • FIG. 17 is a diagram for explaining the pulse waveform under the driving condition Ds.
  • the voltage is set to Vs ( ⁇ V1), and a pattern (power frequency FPs) with continuously different pulse widths and cycles is repeated.
  • the period of this pattern (power frequency FPs) is longer than the period of the pattern (power frequency FP1) of driving condition D1.
  • a low-pressure irrigation fluid is supplied for a predetermined period of time in order to remove bone powder (see FIG. 12) remaining in the fluid after the treatment.
  • the impedance of the treatment environment which is state information, is measured, and the water supply conditions of the perfusion device 5 are set based on this impedance.
  • the amount of bone powder generated by the treatment is estimated from the impedance and the amount of water supplied by the perfusion device 5 is automatically controlled, thereby suppressing the influence on the surgery caused by turbidity in the perfusate. Can be done.
  • FIG. 18 is a block diagram showing the functional configuration of a treatment device included in the treatment system according to the second embodiment.
  • the treatment system according to the second embodiment includes a treatment instrument control device 302A in place of the treatment instrument control device 302 of the treatment system 1 according to the first embodiment.
  • This treatment tool control device 302A has the same configuration as the treatment tool control device 302 except that it does not include the impedance measuring section 330. Further, since the other configurations are the same as those in Embodiment 1, the explanation will be omitted.
  • FIG. 19 is a flowchart illustrating an overview of cutting treatment in the treatment system according to the second embodiment.
  • FIG. 20 is a diagram for explaining the control of the perfusion device in the cutting treatment, and is a diagram for explaining the relationship between the cutting time and the driving conditions of the perfusion device.
  • the look-up table showing the relationship among the total amount of bone powder, cutting time, and driving conditions showing changes in turbidity shown in FIG. 20 is stored in advance in the memory 327 as turbidity information for determining changes in turbidity. That is, the memory 327 is configured as a turbidity information storage section.
  • the amount of cutting per unit time that is, the amount of bone powder depending on the tissue properties of the bone.
  • the CPU 326 turns on the output of the treatment instrument 301 (step S201). At this time, the CPU 326 sets the operation mode to cutting mode.
  • the CPU 326 measures the cutting time T from the time when cutting is started by the treatment tool 301 as cutting data, and is configured as a cutting data measurement unit that measures the state of cutting by the treatment tool 301.
  • the CPU 326 sets the driving condition of the perfusion device 5 to condition D1 (step S203).
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition D1.
  • the first drive control unit 571 drives the liquid pump 503 according to the condition D1. Note that although the condition D1 will be described as being the same as that in FIG. 13, it is not limited thereto.
  • the CPU 326 determines whether the cutting time T is T>T1 (step S204).
  • T1 is a threshold value for determining the cutting state, and for example, the minimum value of the time for determining whether the cutting time (elapsed time) has reached the cortical bone surface layer is set. .
  • the CPU 326 determines that T>T1 (step S204: Yes)
  • the process proceeds to step S205.
  • the CPU 326 determines that T>T1 is not satisfied (T ⁇ T1) (step S204: No)
  • the CPU 326 repeats confirmation of the elapsed time.
  • the total amount of bone powder during the period T ⁇ T1 is aT, where a (mm 3 /sec) is the amount of bone fragments reaching the cortical bone surface layer.
  • step S205 the CPU 326 determines whether the cutting time T is T ⁇ T2.
  • T2 is a threshold value for determining the cutting state, and, for example, the maximum value of the time for determining whether the cutting time (elapsed time) is at which cortical bone is being crushed is set. Ru. That is, when the cutting time exceeds T2, the bone crushing position changes from cortical bone to cancellous bone.
  • the CPU 326 determines that T ⁇ T2 (step S205: Yes)
  • the process proceeds to step S207.
  • step S205: No the process proceeds to step S206.
  • the cortical bone is crushed.
  • the total amount of bone powder during the period of T1 ⁇ T ⁇ T2 is aT1+b (T ⁇ T1), where b (mm 3 /sec) is the amount of crushed bone in cortical bone.
  • step S206 the CPU 326 sets the drive condition of the perfusion device 5 to condition D2.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D2.
  • the first drive control unit 571 drives the liquid pump 503 according to condition D2.
  • step S207 the CPU 326 determines whether the cutting time T is T ⁇ T3.
  • T3 is a threshold value for determining the cutting state, and for example, the maximum value of the time for determining whether or not the cutting time (elapsed time) is at which the cancellous bone is crushed is set. Ru.
  • the CPU 326 determines that T ⁇ T3 (step S207: Yes)
  • the process proceeds to step S209.
  • the CPU 326 determines that T ⁇ T3 is not satisfied (T ⁇ T3) (step S207: No)
  • the process proceeds to step S208.
  • the total amount of bone powder during the period of T2 ⁇ T ⁇ T3 is aT1+b(T2-T1)+c(T-T2), where c (mm 3 /sec) is the amount of broken bone in the cancellous bone.
  • step S208 the CPU 326 sets the driving condition of the perfusion device 5 to condition D3.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D3.
  • the first drive control unit 571 drives the liquid pump 503 according to condition D3.
  • step S209 the CPU 326 determines whether the cutting time T is T>T4.
  • T4 is a preset time period from the start of cutting until the transition to the standby mode after completing the crushing of the cancellous bone.
  • step S210 the CPU 326 sets the drive condition of the perfusion device 5 to condition Ds.
  • the CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition Ds.
  • the first drive control unit 571 drives the liquid pump 503 according to the condition Ds. Note that at this time, the CPU 326 sets the operation mode to standby mode.
  • step S211 the CPU 326 sets the operation mode of the perfusion device 5 to stop mode, and outputs a signal to turn off the driving power of the perfusion device 5 (at least the driving power of the pump). After that, the CPU 326 moves to step S5 shown in FIG. Note that at this time, the CPU 326 sets the operation mode to the stop mode.
  • the water supply conditions of the perfusion device 5 are set based on the elapsed time from the start of cutting, which is state information. According to the second embodiment, the amount of bone powder generated by the treatment is estimated from the elapsed time and the amount of water supplied by the perfusion device 5 is automatically controlled, thereby suppressing the influence on the surgery caused by turbidity in the perfusate. be able to.
  • Embodiments 1 and 2 an example was explained in which conditions on the liquid sending side are set as drive conditions, but conditions on the liquid draining side may be set, or conditions on the liquid sending side and liquid draining side. may also be set.
  • Embodiments 1 and 2 an example has been described in which the treatment instrument control devices 302 and 302A have the function of a control section that sets and controls the driving conditions of the perfusion device 5, but the CPU 510 of the perfusion device 5
  • the configuration may have a function of a control section for setting and controlling the driving conditions of No. 5.
  • the CPU 510 may acquire impedance from the treatment instrument control device 302, or may acquire measured raw data (voltage value and current value) and calculate the impedance in the perfusion device 5. .
  • the amount of turbidity is estimated by determining the bone tissue based on the impedance of the electric power supplied to the treatment instrument 301, but the amount of turbidity is estimated by determining the bone tissue based on other parameters. It may also be a configuration.
  • the amount of turbidity was estimated from the amount of bone powder depending on the tissue properties of bone produced by cutting, but the amount of bone powder calculated by simulation from a diffusion model in liquid of each tissue, experimental values, and treatment
  • a configuration that generates turbidity information to judge turbidity changes and estimates the turbidity amount from bone powder amount calculation using a high-order polynomial that approximates various factors such as the cross-sectional area for crushing bone tissue due to the shape of the tool. You can also use it as
  • Embodiments 1 and 2 an example in which white turbidity is caused by white bone powder generated by crushing bones has been described, but the present invention can be applied to treatments in which white turbidity is caused by white particles other than bone powder.
  • Embodiments 1 and 2 a configuration was described in which the control units that control each device such as the endoscope 201 and the treatment instrument 301 are individually provided as control devices, but one control unit (control device) It is also possible to adopt a configuration in which each device is controlled collectively.
  • the above-mentioned "apparatus”, “unit”, and “circuit” can be read as “means”, “circuit", “unit”, etc.
  • the control device can be read as a control unit or a control circuit.
  • the program to be executed by each device according to Embodiments 1 and 2 is file data in an installable or executable format and can be stored on a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). ), USB media, flash memory, and other computer-readable recording media.
  • the programs to be executed by each device according to Embodiments 1 and 2 may be stored on a computer connected to a network such as the Internet, and may be provided by being downloaded via the network. Furthermore, the program to be executed by the information processing apparatus according to Embodiments 1 and 2 may be provided or distributed via a network such as the Internet.
  • signals were transmitted and received by wireless communication, but for example, signals were transmitted from various devices via transmission cables without the need for wireless communication. Good too.
  • the treatment system and the method of operating the treatment system according to the present invention are useful for suppressing the influence on surgery caused by turbidity in the perfusate.

Abstract

A treatment system according to the present invention is equipped with: a treatment instrument for cutting biological tissue in a liquid; an irrigation device for controlling the irrigation of the liquid; a turbidity information storage unit for storing turbidity information in advance in order to determine a change in the turbidity of the liquid which is caused by cutting debris generated by cutting with the treatment instrument; a cutting data measurement unit for measuring data which expresses the cutting state brought about by the treatment instrument; and a control unit for controlling the drive conditions of the irrigation device on the basis of the measured cutting data and the stored turbidity information.

Description

処置システムおよび処置システムの作動方法Treatment systems and how they operate
 本発明は、処置システムおよび処置システムの作動方法に関する。 The present invention relates to a treatment system and a method of operating the treatment system.
 関節鏡視下手術は、処置対象の関節にポータルを形成し、ポータルから処置対象の関節の中に関節鏡や処置具を挿入し、関節腔の中を灌流液で満たした状況下で関節鏡を用いて関節腔の中を観察しながら処置を行う手術である。関節鏡視下手術は、関節鏡下手術システムを用いて行われる(例えば、特許文献1を参照)。また、特許文献1には、骨に孔を形成するための超音波処置具が開示されている。この超音波処置具は、処置具の先端が超音波振動するように構成されている。関節鏡視下手術では、超音波振動によって処置具の先端が骨を粉砕(切削)し、骨に孔(骨孔)が形成される。そして、この後、当該2つの骨孔を繋げて1つの骨孔にする。 In arthroscopic surgery, a portal is formed in the joint to be treated, the arthroscope and treatment instruments are inserted through the portal into the joint to be treated, and the arthroscopy is performed with the joint cavity filled with irrigation fluid. This is a surgery in which the inside of the joint cavity is observed using a Arthroscopic surgery is performed using an arthroscopic surgery system (see, for example, Patent Document 1). Moreover, Patent Document 1 discloses an ultrasonic treatment tool for forming a hole in a bone. This ultrasonic treatment tool is configured so that the tip of the treatment tool vibrates ultrasonically. In arthroscopic surgery, the tip of a treatment instrument crushes (cuts) bone using ultrasonic vibrations, forming a hole in the bone. After this, the two bone holes are connected to form one bone hole.
国際公開第2018/078830号International Publication No. 2018/078830
 ところで、処置具によって骨が切削されると、骨の削りカス(骨粉)が発生する。関節鏡視下手術時には、灌流液によって処置対象の骨粉が流される。しかしながら、骨粉は灌流液中に分散されて該灌流液が濁り、処置対象を観察する関節鏡の視野が阻害されてしまう場合がある。その場合、術者は手を止めて視野が回復するのを待たなければならず、患者および術者に負担がかかったり、手術に時間を要したりする場合がある。 By the way, when a bone is cut with a treatment tool, bone shavings (bone powder) are generated. During arthroscopic surgery, bone powder to be treated is flushed away with irrigation fluid. However, bone powder may be dispersed in the irrigation fluid, making the irrigation fluid cloudy and obstructing the field of view of the arthroscope for observing the treatment target. In this case, the operator must stop and wait for the visual field to recover, which may place a burden on the patient and the operator, and may increase the time required for the surgery.
 本発明は上記に鑑みてなされたものであって、灌流液中の濁りによって生じる手術への影響を抑制することができる処置システムおよび処置システムの作動方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a treatment system and a method for operating the treatment system that can suppress the influence on surgery caused by turbidity in the irrigation fluid.
 上述した課題を解決し、目的を達成するために、本発明に係る処置システムは、液中で生体組織を切削する処置具と、前記液の灌流を制御する灌流装置と、前記処置具によって切削されて発生する切削塵に起因する前記液の濁りの変化を判断するための濁り情報を予め記憶する濁り情報記憶部と、前記処置具による切削状態を示すデータを測定する切削データ測定部と、前記測定された切削データおよび前記記憶された濁り情報に基づいて、前記灌流装置の駆動条件を制御する制御部と、を備える。 In order to solve the above-mentioned problems and achieve the objects, a treatment system according to the present invention includes a treatment tool for cutting biological tissue in a liquid, a perfusion device for controlling perfusion of the liquid, and a treatment system for cutting biological tissue by the treatment tool. a turbidity information storage unit that stores in advance turbidity information for determining a change in turbidity of the liquid due to cutting dust generated by the cutting process, and a cutting data measurement unit that measures data indicating the state of cutting by the treatment instrument; A control unit that controls driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information.
 また、上述した課題を解決し、目的を達成するために、本発明に係る処置システムの作動方法は、液中で生体組織を切削する処置具と、前記液の灌流を制御する灌流装置と、前記処置具によって切削されて発生する切削塵に起因する前記液の濁りの変化を判断するための濁り情報を予め記憶する濁り情報記憶部と、前記制御部とを備える処置システムの作動方法であって、切削データ測定部が、前記処置具による切削状態を示すデータを測定し、前記制御部が、前記測定された切削データおよび前記記憶された濁り情報に基づいて、前記灌流装置の駆動条件を制御する。 Moreover, in order to solve the above-mentioned problems and achieve the purpose, a method for operating a treatment system according to the present invention includes: a treatment tool that cuts biological tissue in a liquid; a perfusion device that controls perfusion of the liquid; A method of operating a treatment system comprising: a turbidity information storage unit that stores turbidity information in advance for determining a change in turbidity of the liquid due to cutting dust generated by cutting with the treatment tool; and the control unit. The cutting data measurement unit measures data indicating the cutting state by the treatment instrument, and the control unit controls the driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information. Control.
 本発明によれば、灌流液中の濁りによって生じる手術への影響を抑制することができる。 According to the present invention, it is possible to suppress the influence on surgery caused by turbidity in the irrigation fluid.
図1は、実施の形態1に係る処置システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a treatment system according to a first embodiment. 図2は、超音波プローブによって骨孔を形成する様子を示す図である。FIG. 2 is a diagram showing how a bone hole is formed using an ultrasonic probe. 図3Aは、超音波プローブの概略構成を示す模式図である。FIG. 3A is a schematic diagram showing a schematic configuration of an ultrasound probe. 図3Bは、図3Aの矢視A方向の模式図である。FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A. 図4は、実施の形態1に係る処置システムの機能構成の概要を示すブロック図である。FIG. 4 is a block diagram showing an overview of the functional configuration of the treatment system according to the first embodiment. 図5は、内視鏡装置の機能構成を示すブロック図である。FIG. 5 is a block diagram showing the functional configuration of the endoscope device. 図6Aは、大腿骨外顆に対して骨孔を形成する際の内視鏡の視界が良好な状態を模式的に示す図である。FIG. 6A is a diagram schematically showing a state in which the endoscope has good visibility when forming a bone hole in the lateral condyle of the femur. 図6Bは、大腿骨外顆に対して骨孔を形成する際の内視鏡の視界が良好でない状態を模式的に示す図である。FIG. 6B is a diagram schematically showing a state in which the visibility of the endoscope is not good when forming a bone hole in the lateral condyle of the femur. 図7は、処置装置の機能構成を示すブロック図である。FIG. 7 is a block diagram showing the functional configuration of the treatment device. 図8は、灌流装置の機能構成を示すブロック図である。FIG. 8 is a block diagram showing the functional configuration of the perfusion device. 図9は、照明装置の機能構成を示すブロック図である。FIG. 9 is a block diagram showing the functional configuration of the lighting device. 図10は、実施の形態1に係る処置システムを用いて術者が行う処置の概要を説明するフローチャートである。FIG. 10 is a flowchart illustrating an overview of a treatment performed by an operator using the treatment system according to the first embodiment. 図11は、実施の形態1に係る処置システムにおける切削処置の概要を説明するフローチャートである。FIG. 11 is a flowchart illustrating an overview of the cutting treatment in the treatment system according to the first embodiment. 図12は、切削処置における灌流装置の制御について説明するための図であって、インピーダンスと、灌流装置の駆動条件との関係を説明するための図である。FIG. 12 is a diagram for explaining control of the perfusion device in a cutting treatment, and is a diagram for explaining the relationship between impedance and drive conditions of the perfusion device. 図13は、灌流装置の駆動条件について説明するための図である。FIG. 13 is a diagram for explaining the driving conditions of the perfusion device. 図14は、駆動条件D1におけるパルス波形について説明するための図である。FIG. 14 is a diagram for explaining the pulse waveform under the driving condition D1. 図15は、駆動条件D2におけるパルス波形について説明するための図である。FIG. 15 is a diagram for explaining the pulse waveform under driving condition D2. 図16は、駆動条件D3におけるパルス波形について説明するための図である。FIG. 16 is a diagram for explaining the pulse waveform under driving condition D3. 図17は、駆動条件Dsにおけるパルス波形について説明するための図である。FIG. 17 is a diagram for explaining the pulse waveform under the driving condition Ds. 図18は、実施の形態2に係る処置システムが備える処置装置の機能構成を示すブロック図である。FIG. 18 is a block diagram showing the functional configuration of a treatment device included in the treatment system according to the second embodiment. 図19は、実施の形態2に係る処置システムにおける切削処置の概要を説明するフローチャートである。FIG. 19 is a flowchart illustrating an overview of cutting treatment in the treatment system according to the second embodiment. 図20は、切削処置における灌流装置の制御について説明するための図であって、切削時間と、灌流装置の駆動条件との関係を説明するための図である。FIG. 20 is a diagram for explaining the control of the perfusion device in the cutting treatment, and is a diagram for explaining the relationship between the cutting time and the driving conditions of the perfusion device.
 以下に、図面を参照しつつ、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below. Furthermore, in the description of the drawings, the same parts are denoted by the same reference numerals.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、実施の形態1に係る処置システム1の概略構成を示す図である。
 処置システム1は、骨等の生体組織に対して超音波振動を付与することによって、当該生体組織を処置する。ここで、当該処置とは、例えば、骨等の生体組織の除去や切削を意味する。なお、図1では、当該処置システム1として、前十字靱帯再建術を行う処置システムを例示している。この処置システム1は、内視鏡装置2と、処置装置3と、ガイディングデバイス4と、灌流装置5と、照明装置6とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram showing a schematic configuration of a treatment system 1 according to the first embodiment.
The treatment system 1 treats living tissues such as bones by applying ultrasonic vibrations to the living tissues. Here, the treatment means, for example, removal or cutting of living tissue such as bone. In addition, in FIG. 1, a treatment system for performing anterior cruciate ligament reconstruction is illustrated as the treatment system 1. This treatment system 1 includes an endoscope device 2, a treatment device 3, a guiding device 4, a perfusion device 5, and an illumination device 6.
 内視鏡装置2は、内視鏡201と、内視鏡制御装置202と、表示装置203とを備える。
 内視鏡201は、膝関節J1の関節腔C1内と皮膚外とを連通する第1のポータルP1を通して、挿入部211の先端部分が当該関節腔C1内に挿通される。そして、内視鏡201は、関節腔C1内に照射し、当該関節腔C1内で反射された照明光(被写体像)を取り込み、当該被写体像を撮像する。
 内視鏡制御装置202は、内視鏡201によって撮像された撮像画像に対して種々の画像処理を実行するとともに、当該画像処理後の撮像画像を表示装置203に表示させる。内視鏡制御装置202は、内視鏡201と表示装置203とに有線または無線で接続されている。
 表示装置203は、処置システムの各装置から送信されたデータ、画像データ、及び音声データ等を内視鏡制御装置を介して受信し、表示/告知する。表示装置203は、液晶または有機EL(Electro-Luminescence)からなる表示パネルを用いて構成される。
The endoscope device 2 includes an endoscope 201, an endoscope control device 202, and a display device 203.
In the endoscope 201, the distal end portion of the insertion portion 211 is inserted into the joint cavity C1 of the knee joint J1 through a first portal P1 that communicates the inside of the joint cavity C1 with the outside of the skin. The endoscope 201 then irradiates the inside of the joint cavity C1, captures the illumination light (subject image) reflected within the joint cavity C1, and captures the subject image.
The endoscope control device 202 performs various image processing on the captured image captured by the endoscope 201, and causes the display device 203 to display the captured image after the image processing. The endoscope control device 202 is connected to the endoscope 201 and the display device 203 by wire or wirelessly.
The display device 203 receives data, image data, audio data, etc. transmitted from each device of the treatment system via the endoscope control device, and displays/announces the data. The display device 203 is configured using a display panel made of liquid crystal or organic EL (Electro-Luminescence).
 処置装置3は、処置具301と、処置具制御装置302と、フットスイッチ303とを備える。
 処置具301は、処置具本体311と、超音波プローブ312(図2参照)と、シース313とを有する。
 処置具本体311は、円筒状に形成されている。そして、処置具本体311の内部には、ボルト締めランジュバン型振動子(Bolt-clamped Langevin-type transducer)によって構成され、供給された駆動電力に応じて超音波振動を発生する超音波振動子311a(図1)が収納されている。
 処置具制御装置302は、術者によるフットスイッチ303への操作に応じて、超音波振動子311aに対して当該駆動電力を供給する。なお、当該駆動電力の供給については、フットスイッチ303への操作に限らず、例えば、処置具301に設けられた操作部(図示略)への操作に応じて行われても構わない。
 フットスイッチ303は、超音波プローブ312を駆動する際に術者が足で操作するための入力インターフェースである。
 ガイディングデバイス4、灌流装置5および照明装置6については、後述する。
The treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and a foot switch 303.
The treatment tool 301 includes a treatment tool main body 311, an ultrasonic probe 312 (see FIG. 2), and a sheath 313.
The treatment instrument main body 311 is formed into a cylindrical shape. Inside the treatment instrument main body 311, an ultrasonic transducer 311a (constituted by a bolt-clamped Langevin-type transducer) that generates ultrasonic vibrations in accordance with the supplied driving power. Figure 1) is stored.
The treatment instrument control device 302 supplies the driving power to the ultrasonic transducer 311a in response to the operator's operation of the foot switch 303. Note that the supply of the driving power is not limited to the operation on the foot switch 303, and may be performed, for example, in response to the operation on an operation section (not shown) provided on the treatment instrument 301.
The foot switch 303 is an input interface used by the surgeon to operate the ultrasound probe 312 with his/her foot.
The guiding device 4, perfusion device 5, and lighting device 6 will be described later.
 図2は、超音波プローブ312によって骨孔101を形成する様子を示した図である。図3Aは、超音波プローブ312の概略構成を示す模式図である。図3Bは、図3Aの矢視A方向の模式図である。
 超音波プローブ312は、例えばチタン合金等によって構成され、略円柱形状を有する。この超音波プローブ312の基端部は、処置具本体311内において、超音波振動子311aに対して接続されている。そして、超音波プローブ312は、超音波振動子311aが発生した超音波振動を基端から先端まで伝達する。本実施の形態1では、当該超音波振動は、超音波プローブ312の長手方向(図2の上下方向)に沿う縦振動である。また、超音波プローブ312の先端部には、図2に示すように、先端処置部312aが設けられている。
FIG. 2 is a diagram showing how the bone hole 101 is formed using the ultrasonic probe 312. FIG. 3A is a schematic diagram showing a schematic configuration of the ultrasound probe 312. FIG. 3B is a schematic diagram in the direction of arrow A in FIG. 3A.
The ultrasonic probe 312 is made of, for example, a titanium alloy, and has a substantially cylindrical shape. A proximal end portion of the ultrasonic probe 312 is connected to an ultrasonic transducer 311a within the treatment instrument main body 311. The ultrasonic probe 312 transmits ultrasonic vibrations generated by the ultrasonic transducer 311a from the base end to the distal end. In the first embodiment, the ultrasonic vibration is longitudinal vibration along the longitudinal direction of the ultrasonic probe 312 (vertical direction in FIG. 2). Furthermore, as shown in FIG. 2, a distal treatment section 312a is provided at the distal end of the ultrasonic probe 312.
 シース313は、処置具本体311よりも細長い円筒状に形成され、当該処置具本体311から任意の長さまで超音波プローブ312の外周の一部を覆っている。 The sheath 313 is formed into a cylindrical shape that is more elongated than the treatment instrument main body 311, and covers a part of the outer periphery of the ultrasound probe 312 from the treatment instrument main body 311 to an arbitrary length.
 以上説明した処置具301における超音波プローブ312の先端部分は、関節腔C1内と皮膚外とを連通する第2のポータルP2を通して当該関節腔C1内に挿通されたガイディングデバイス4によって案内されつつ、当該関節腔C1内に挿入される。
 そして、骨の処置対象部位100に対して先端処置部312aを接触させた状態で超音波振動を発生させると、ハンマリング作用によって、当該先端処置部312aと機械的に衝突した骨の部分が微細な粒状に粉砕される(図2参照)。そして、術者によって先端処置部312aが処置対象部位100に対して押し込まれると、当該先端処置部312aは、骨を粉砕しながら当該処置対象部位100の内部に進入していく。これによって、処置対象部位100には、骨孔101が形成される。
The tip of the ultrasonic probe 312 in the treatment instrument 301 described above is guided by the guiding device 4 inserted into the joint cavity C1 through the second portal P2 that communicates the inside of the joint cavity C1 with the outside of the skin. , is inserted into the joint cavity C1.
When ultrasonic vibration is generated with the distal treatment section 312a in contact with the bone treatment target site 100, the portion of the bone that mechanically collided with the distal treatment section 312a is finely damaged by the hammering action. It is ground into fine particles (see Figure 2). When the distal treatment section 312a is pushed into the treatment target site 100 by the operator, the distal treatment section 312a enters the inside of the treatment target site 100 while crushing the bone. As a result, a bone hole 101 is formed in the treatment target site 100.
 処置具本体311の基端には、処置具本体311の基端には、姿勢検出部314と、CPU(Central Processing Unit)315と、メモリ316とが搭載された円環状の回路基板317が設けられている(図3Aおよび図3B参照)。姿勢検出部314は、処置具301の回転や移動を検出するセンサを含む。姿勢検出部314は、超音波プローブ312の長手軸と平行な軸を含む、互い直交する三つの軸方向への移動と、各軸のまわりの回転とを検出する。姿勢検出部314は、例えば三軸角速度センサ(ジャイロセンサ)および加速度センサ等を含む。処置具制御装置302は、姿勢検出部314の検出結果が一定時間変化しなければ、処置具301は静止していると判定する。CPU315は、姿勢検出部314の動作を制御したり、処置具制御装置302との間の情報を送受信したりする制御部に相当する。 At the base end of the treatment instrument main body 311, an annular circuit board 317 on which a posture detection section 314, a CPU (Central Processing Unit) 315, and a memory 316 are mounted is provided. (See Figures 3A and 3B). Posture detection unit 314 includes a sensor that detects rotation and movement of treatment instrument 301. The posture detection unit 314 detects movement in three mutually orthogonal axial directions, including an axis parallel to the longitudinal axis of the ultrasound probe 312, and rotation around each axis. The posture detection unit 314 includes, for example, a three-axis angular velocity sensor (gyro sensor), an acceleration sensor, and the like. The treatment instrument control device 302 determines that the treatment instrument 301 is stationary if the detection result of the posture detection unit 314 does not change for a certain period of time. The CPU 315 corresponds to a control unit that controls the operation of the posture detection unit 314 and transmits and receives information to and from the treatment instrument control device 302.
 図1において、ガイディングデバイス4は、第2のポータルP2を通して関節腔C1内に挿通され、処置具301における超音波プローブ312の先端部分の当該関節腔C1内への挿入を案内する。
 ガイディングデバイス4は、ガイド本体401と、ハンドル部402と、コック付き排液部403とを備える。
In FIG. 1, the guiding device 4 is inserted into the joint cavity C1 through the second portal P2, and guides the insertion of the tip portion of the ultrasound probe 312 of the treatment tool 301 into the joint cavity C1.
The guiding device 4 includes a guide body 401, a handle portion 402, and a drain portion 403 with a cock.
 ガイド本体401は、内部に超音波プローブ312が挿通される貫通孔を有する筒形状を有する(図1参照)。そして、ガイド本体401は、当該貫通孔に挿通された超音波プローブ312の進行を一定方向に規制して、当該超音波プローブ312の移動を案内する。本実施の形態では、ガイド本体401の外周面及び内周面における中心軸に直交する断面形状は、それぞれ略円形である。
 このガイド本体401は、先端に向かうにしたがって細くなっている。即ち、ガイド本体401の先端面は、中心軸に対して斜めに交差する斜面で形成された開口を備える。
The guide body 401 has a cylindrical shape with a through hole through which the ultrasound probe 312 is inserted (see FIG. 1). The guide body 401 guides the movement of the ultrasound probe 312 by restricting the movement of the ultrasound probe 312 inserted through the through hole in a certain direction. In this embodiment, the cross-sectional shapes of the outer circumferential surface and the inner circumferential surface of the guide main body 401 perpendicular to the central axis are approximately circular.
This guide body 401 becomes thinner toward the tip. That is, the distal end surface of the guide body 401 includes an opening formed by a slope diagonally intersecting the central axis.
 コック付き排液部403は、ガイド本体401の外周面に設けられ、当該ガイド本体401内に連通する筒形状を有する。そして、コック付き排液部403には、灌流装置5の排液チューブ505の一端が接続され、ガイド本体401と灌流装置5の排液チューブ505とを連通する流路となる。この流路は、コック付き排液部403に設けられたコック(図示略)の操作によって開閉可能に構成されている。 The drain part 403 with a cock is provided on the outer peripheral surface of the guide body 401 and has a cylindrical shape that communicates with the inside of the guide body 401. One end of the drain tube 505 of the perfusion device 5 is connected to the drain portion 403 with a cock, and serves as a flow path that communicates the guide main body 401 and the drain tube 505 of the perfusion device 5 . This flow path is configured to be openable and closable by operating a cock (not shown) provided in the drain portion 403 with a cock.
 灌流装置5は、滅菌した生理食塩水等の灌流液を関節腔C1内に送出するとともに、潅流液を関節腔C1外に排出する。この灌流装置5は、液体源501と、送液チューブ502と、送液ポンプ503と、排液ボトル504と、排液チューブ505と、排液ポンプ506とを備える(図1参照)。 The perfusion device 5 delivers a sterilized irrigation fluid such as physiological saline into the joint cavity C1, and also discharges the irrigation fluid outside the joint cavity C1. The perfusion device 5 includes a liquid source 501, a liquid feeding tube 502, a liquid feeding pump 503, a drainage bottle 504, a drainage tube 505, and a drainage pump 506 (see FIG. 1).
 液体源501は、灌流液を収容する。
 送液チューブ502は、一端が液体源501に対して接続され、他端が内視鏡201に対して接続されている。
 送液ポンプ503は、送液チューブ502を通して、液体源501から内視鏡201に向けて灌流液を送出する。そして、内視鏡201に送出された灌流液は、挿入部211の先端部分に形成された送液孔から関節腔C1内に送出される。
Fluid source 501 contains irrigation fluid.
The liquid feeding tube 502 has one end connected to the liquid source 501 and the other end connected to the endoscope 201.
The liquid sending pump 503 sends the irrigation liquid from the liquid source 501 toward the endoscope 201 through the liquid sending tube 502 . The irrigation fluid sent to the endoscope 201 is then sent into the joint cavity C1 from the liquid delivery hole formed at the distal end portion of the insertion section 211.
 排液ボトル504は、関節腔C1外に排出された灌流液を収容する。
 排液チューブ505は、一端がガイディングデバイス4に対して接続され、他端が排液ボトル504に対して接続されている。
 排液ポンプ506は、関節腔C1内に挿通されたガイディングデバイス4から排液チューブ505の流路を辿って、当該関節腔C1内の灌流液を排液ボトル504に排出する。なお、本実施の形態1では、排液ポンプ506を用いて説明するが、これに限らず、施設に備えられた吸引装置を用いても構わない。
Drainage bottle 504 contains the irrigation fluid drained out of joint cavity C1.
The drain tube 505 has one end connected to the guiding device 4 and the other end connected to the drain bottle 504.
The drainage pump 506 follows the flow path of the drainage tube 505 from the guiding device 4 inserted into the joint cavity C1, and discharges the irrigation fluid in the joint cavity C1 to the drainage bottle 504. In addition, although this Embodiment 1 demonstrates using the drainage pump 506, it does not restrict to this and may use the suction device with which the facility was equipped.
 照明装置6は、互いに波長帯域が異なる2つの照明光をそれぞれ発する2つの光源を有する。2つの照明光は、例えば白色光と特殊光である。照明装置6からの照明光は、ライトガイドを介して内視鏡201に伝播され、内視鏡201の先端から照射される。 The illumination device 6 has two light sources that each emit two illumination lights with different wavelength bands. The two illumination lights are, for example, white light and special light. Illumination light from the illumination device 6 is propagated to the endoscope 201 via the light guide, and is irradiated from the tip of the endoscope 201.
 〔処置システム全体の機能構成〕
 図4は、処置システム全体の機能構成の概要を示すブロック図である。処置システム1は、システム全体の通信を制御するネットワーク制御装置7と、各種データを記憶するネットワークサーバ8とをさらに備える。
 ネットワーク制御装置7は、内視鏡装置2、処置装置3、灌流装置5、照明装置6およびネットワークサーバ8と通信可能に接続される。図4では、装置間が無線接続されている場合を例示しているが、有線接続されていてもよい。以下、内視鏡装置2、処置装置3、灌流装置5および照明装置6の詳細な機能構成を説明する。
[Functional configuration of the entire treatment system]
FIG. 4 is a block diagram showing an overview of the functional configuration of the entire treatment system. The treatment system 1 further includes a network control device 7 that controls communication throughout the system, and a network server 8 that stores various data.
The network control device 7 is communicably connected to the endoscope device 2, treatment device 3, perfusion device 5, lighting device 6, and network server 8. Although FIG. 4 illustrates a case where the devices are connected wirelessly, they may be connected by wire. The detailed functional configurations of the endoscope device 2, treatment device 3, perfusion device 5, and illumination device 6 will be described below.
 〔内視鏡装置の機能構成〕
 内視鏡装置2は、内視鏡制御装置202と、表示装置203と、撮像部204と、操作入力部205とを備える(図4および図5参照)。
[Functional configuration of endoscope device]
The endoscope device 2 includes an endoscope control device 202, a display device 203, an imaging section 204, and an operation input section 205 (see FIGS. 4 and 5).
 内視鏡制御装置202は、撮像処理部221、画像処理部222、濁り検出部223、入力部226、CPU(Central Processing Unit)227、メモリ228、無線通信部229、距離センサ駆動回路230、距離データ用メモリ231、および通信インターフェース232を備える。 The endoscope control device 202 includes an image processing unit 221, an image processing unit 222, a turbidity detection unit 223, an input unit 226, a CPU (Central Processing Unit) 227, a memory 228, a wireless communication unit 229, a distance sensor drive circuit 230, and a distance sensor drive circuit 230. It includes a data memory 231 and a communication interface 232.
 撮像処理部221は、撮像部204が有する撮像素子241の駆動制御を行う撮像素子駆動制御回路221aと、1次回路202aと電気的に絶縁された患者回路202bに設けられて撮像素子224aの信号制御を行う撮像素子信号制御回路221bとを有する。撮像素子駆動制御回路221aは1次回路202aに設けられる。また、撮像素子信号制御回路221bは、1次回路202aと電気的に絶縁された患者回路202bに設けられる。
 画像処理部222は、画像化処理を行う第1画像処理回路222aと、画像編集処理を行う第2画像処理回路222bとを有する。
 濁り検出部223は、内視鏡装置2内の濁りに関する情報に基づいて濁りを検出する。ここで、濁りに関する情報とは、例えば内視鏡201が生成する撮像データから得られる値、灌流液の物性値、処置装置3から取得したインピーダンスまたはpH等である。ここで、図6Aおよび図6Bは、内視鏡201の視界が良好な状態と不良な状態とをそれぞれ示す図であり、術者が大腿骨外顆900に対して骨孔を形成する際の視界を模式的に示す図である。このうち、図6Bは、超音波プローブ312の駆動により微細な粒状に粉砕された骨が原因で視界が濁った状態を模式的に示している。なお、図6Bでは、微細な骨をドットによって表現している。微細な骨は白色であり、この骨を含む白色の粒子の粒子によって灌流液が白濁する。
The imaging processing unit 221 is provided in an imaging device drive control circuit 221a that controls the driving of the imaging device 241 included in the imaging unit 204, and in a patient circuit 202b that is electrically insulated from the primary circuit 202a, and processes signals from the imaging device 224a. It has an image sensor signal control circuit 221b that performs control. The image sensor drive control circuit 221a is provided in the primary circuit 202a. Further, the image sensor signal control circuit 221b is provided in the patient circuit 202b which is electrically insulated from the primary circuit 202a.
The image processing unit 222 includes a first image processing circuit 222a that performs image processing and a second image processing circuit 222b that performs image editing processing.
The turbidity detection unit 223 detects turbidity based on information regarding turbidity within the endoscope device 2 . Here, the information regarding turbidity is, for example, a value obtained from imaging data generated by the endoscope 201, a physical property value of the perfusate, an impedance or pH obtained from the treatment device 3, and the like. Here, FIGS. 6A and 6B are diagrams showing a state in which the field of view of the endoscope 201 is good and a state in which it is poor, respectively, when the operator forms a bone hole in the lateral femoral condyle 900. FIG. 3 is a diagram schematically showing a field of view. Of these, FIG. 6B schematically shows a state in which the field of vision is clouded due to bones crushed into fine particles by the driving of the ultrasonic probe 312. Note that in FIG. 6B, minute bones are represented by dots. The fine bones are white, and the perfusate becomes cloudy due to the white particles containing these bones.
 図5において、入力部226は、操作入力部205によって入力された信号の入力を受け付ける。
 CPU227は、内視鏡制御装置202の動作を統括して制御する。CPU227は、メモリ228に記憶されているプログラムを実行して内視鏡制御装置202の各部の動作を制御する制御部に相当する。
 メモリ228は、内視鏡制御装置202の動作に必要な各種情報や、撮像部204が撮像した画像データなどを記憶する。
 無線通信部229は、他の装置との間の無線通信を行うためのインターフェースである。
 距離センサ駆動回路230は、撮像部204が撮像した画像内の所定対象物までの距離を計測する距離センサを駆動する。
 距離データ用メモリ231は、距離センサが検出した距離データを記憶する。
 通信インターフェース232は、撮像部204との通信を行うためのインターフェースである。
 上述した構成のうち、撮像素子信号制御回路221b以外は1次回路202aに設けられており、バス配線によって相互に接続されている。
In FIG. 5, the input unit 226 receives the signal input by the operation input unit 205.
The CPU 227 centrally controls the operation of the endoscope control device 202. The CPU 227 corresponds to a control unit that executes a program stored in the memory 228 and controls the operation of each part of the endoscope control device 202.
The memory 228 stores various information necessary for the operation of the endoscope control device 202, image data captured by the imaging unit 204, and the like.
The wireless communication unit 229 is an interface for wireless communication with other devices.
The distance sensor drive circuit 230 drives a distance sensor that measures the distance to a predetermined object in the image captured by the imaging unit 204.
The distance data memory 231 stores distance data detected by the distance sensor.
The communication interface 232 is an interface for communicating with the imaging unit 204.
Of the configuration described above, components other than the image sensor signal control circuit 221b are provided in the primary circuit 202a, and are interconnected by bus wiring.
 撮像部204は、撮像素子241と、CPU242と、メモリ243とを有する。
 撮像素子241は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)を用いて構成される。
 CPU242は、撮像部204の動作を統括して制御する。CPU242は、メモリ243に記憶されているプログラムを実行して撮像部204の各部の動作を制御する制御部に相当する。
 メモリ243は、撮像部204の動作に必要な各種情報や画像データなどを記憶する。
The imaging unit 204 includes an imaging element 241, a CPU 242, and a memory 243.
The image sensor 241 is configured using a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
The CPU 242 centrally controls the operation of the imaging unit 204. The CPU 242 corresponds to a control unit that executes a program stored in the memory 243 and controls the operation of each part of the imaging unit 204.
The memory 243 stores various information, image data, etc. necessary for the operation of the imaging unit 204.
 図4において、操作入力部205は、マウス、キーボード、タッチパネル、マイクロフォンなどの入力インターフェースを用いて構成され、術者による内視鏡装置2の操作入力を受け付ける。 In FIG. 4, the operation input unit 205 is configured using an input interface such as a mouse, keyboard, touch panel, microphone, etc., and accepts operation input of the endoscope apparatus 2 by the operator.
 〔処置装置の機能構成〕
 処置装置3は、処置具301と、処置具制御装置302と、入出力部304とを備える(図4および図7参照)。
[Functional configuration of treatment device]
The treatment device 3 includes a treatment tool 301, a treatment tool control device 302, and an input/output section 304 (see FIGS. 4 and 7).
 処置具301は、超音波振動子311aと、姿勢検出部314と、CPU315と、メモリ316とを有する(図7参照)。
 姿勢検出部314は、加速度センサおよび/または角速度センサを有し、処置具301の姿勢を検出する。
 CPU315は、超音波振動子311aを含む処置具301の動作を統括して制御する。CPU315は、メモリ316に記憶されているプログラムを実行して処置具301の各部の動作を制御する制御部に相当する。
 メモリ316は、処置具301の動作に必要な各種情報を記憶する。
The treatment tool 301 includes an ultrasonic transducer 311a, a posture detection section 314, a CPU 315, and a memory 316 (see FIG. 7).
The posture detection unit 314 includes an acceleration sensor and/or an angular velocity sensor, and detects the posture of the treatment instrument 301.
The CPU 315 centrally controls the operation of the treatment instrument 301 including the ultrasonic transducer 311a. The CPU 315 corresponds to a control unit that executes a program stored in the memory 316 to control the operation of each part of the treatment instrument 301.
The memory 316 stores various information necessary for the operation of the treatment instrument 301.
 処置具制御装置302は、1次回路321、患者回路322,トランス323、第1電源324、第2電源325、CPU326、メモリ327、無線通信部328、通信インターフェース329およびインピーダンス測定部330を備える。 The treatment instrument control device 302 includes a primary circuit 321, a patient circuit 322, a transformer 323, a first power source 324, a second power source 325, a CPU 326, a memory 327, a wireless communication section 328, a communication interface 329, and an impedance measurement section 330.
 1次回路321は、処置具301への供給電力を生成する。
 患者回路322は、1次回路321と電気的に絶縁されている。
 トランス323は、1次回路321と患者回路322とを電磁的に接続する。
 第1電源324は、処置具301の駆動電力を供給する高電圧電源である。
 第2電源325は、処置具制御装置302内の制御回路の駆動電力を供給する低電圧電源である。
 CPU326は、処置具制御装置302の動作を統括して制御する。CPU326は、メモリ327に記憶されているプログラムを実行して処置具制御装置302の各部の動作を制御する制御部に相当する。
 メモリ327は、処置具制御装置302の動作に必要な各種情報を記憶する。メモリ327は、処置具301により切削されて発生する切削塵に対応する、液の濁りの変化を判断する濁り情報を予め記憶する濁り情報記憶部である。無線通信部328は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース329は、処置具301との通信を行うためのインターフェースである。
 インピーダンス測定部330は、処置具301に電力を供給して処置領域におけるインピーダンスを測定する。例えば、処置具301の先端に対をなす電線を設け、処置領域に電圧を印加するか、または電流を流して、信号(電圧および電流)を取得する。インピーダンス測定部330は、得られた信号の比に基づいてインピーダンスを測定する。このインピーダンスは、処置中の骨粉によって発生する白濁の度合いで変化する。
The primary circuit 321 generates power to be supplied to the treatment instrument 301.
Patient circuit 322 is electrically insulated from primary circuit 321.
Transformer 323 electromagnetically connects primary circuit 321 and patient circuit 322.
The first power source 324 is a high voltage power source that supplies driving power for the treatment instrument 301.
The second power source 325 is a low voltage power source that supplies driving power for a control circuit within the treatment instrument control device 302.
The CPU 326 centrally controls the operation of the treatment instrument control device 302. The CPU 326 corresponds to a control section that executes a program stored in the memory 327 to control the operation of each section of the treatment instrument control device 302.
The memory 327 stores various information necessary for the operation of the treatment instrument control device 302. The memory 327 is a turbidity information storage unit that stores in advance turbidity information for determining a change in turbidity of the liquid, which corresponds to cutting dust generated by cutting with the treatment tool 301. The wireless communication unit 328 is an interface for wireless communication with other devices.
The communication interface 329 is an interface for communicating with the treatment instrument 301.
The impedance measurement unit 330 supplies power to the treatment instrument 301 and measures the impedance in the treatment region. For example, a pair of electric wires is provided at the tip of the treatment tool 301, and a voltage or current is applied to the treatment region to obtain a signal (voltage and current). The impedance measuring section 330 measures impedance based on the ratio of the obtained signals. This impedance changes depending on the degree of clouding caused by bone powder during treatment.
 入出力部304は、マウス、キーボード、タッチパネル、マイクロフォンなどの入力インターフェース、およびモニタ、スピーカ等の出力インターフェースを用いて構成され、術者による内視鏡装置2の操作入力、および術者に告知する各種情報を出力する(図4参照)。 The input/output unit 304 is configured using input interfaces such as a mouse, keyboard, touch panel, microphone, etc., and output interfaces such as a monitor, speakers, etc., and receives operation input from the surgeon for the endoscope device 2 and notifies the surgeon. Various information is output (see Figure 4).
 〔灌流装置の機能構成〕
 灌流装置5は、送液ポンプ503、排液ポンプ506、送液制御部507、排液制御部508、入力部509、CPU510、メモリ511、無線通信部512、通信インターフェース513、ポンプ内CPU514、およびポンプ内メモリ515を備える(図4および図8参照)。
[Functional configuration of perfusion device]
The perfusion device 5 includes a liquid feeding pump 503, a drainage pump 506, a liquid feeding control section 507, a liquid drainage control section 508, an input section 509, a CPU 510, a memory 511, a wireless communication section 512, a communication interface 513, a pump internal CPU 514, and An internal pump memory 515 is provided (see FIGS. 4 and 8).
 送液制御部507は、第1駆動制御部571と、第1駆動電力生成部572と、第1トランス573と、送液ポンプ駆動回路574とを有する(図8参照)。
 第1駆動制御部571は、第1駆動電力生成部572および送液ポンプ駆動回路574の駆動を制御する。
 第1駆動電力生成部572は、送液ポンプ503の駆動電力を生成する。
 第1トランス573は、第1駆動電力生成部572と送液ポンプ駆動回路574とを電磁的に接続する。
 第1駆動制御部571、第1駆動電力生成部572、および第1トランス573は1次回路5aに設けられる。また、送液ポンプ駆動回路574は、1次回路5aと電気的に絶縁された患者回路5bに設けられる。
The liquid feeding control unit 507 includes a first drive control unit 571, a first driving power generation unit 572, a first transformer 573, and a liquid feeding pump drive circuit 574 (see FIG. 8).
The first drive control section 571 controls the driving of the first drive power generation section 572 and the liquid pump drive circuit 574.
The first driving power generation unit 572 generates driving power for the liquid feeding pump 503.
The first transformer 573 electromagnetically connects the first drive power generation section 572 and the liquid pump drive circuit 574.
The first drive control section 571, the first drive power generation section 572, and the first transformer 573 are provided in the primary circuit 5a. Further, the liquid pump drive circuit 574 is provided in the patient circuit 5b which is electrically insulated from the primary circuit 5a.
 排液制御部508は、第2駆動制御部581と、第2駆動電力生成部582と、第2トランス583と、排液ポンプ駆動回路584とを有する。
 第2駆動制御部581は、第2駆動電力生成部582および排液ポンプ駆動回路584の駆動を制御する。
 第2駆動電力生成部582は、排液ポンプ506の駆動電力を生成する。
 第2トランス583は、第2駆動電力生成部582と排液ポンプ駆動回路584とを電磁的に接続する。
 第2駆動制御部581、第2駆動電力生成部582、および第2トランス583は1次回路5aに設けられる。また、排液ポンプ駆動回路584は患者回路5bに設けられる。
The drain control section 508 includes a second drive control section 581, a second drive power generation section 582, a second transformer 583, and a drain pump drive circuit 584.
The second drive control section 581 controls the driving of the second drive power generation section 582 and the drainage pump drive circuit 584.
The second drive power generation unit 582 generates drive power for the drainage pump 506.
The second transformer 583 electromagnetically connects the second drive power generation section 582 and the drain pump drive circuit 584.
The second drive control section 581, the second drive power generation section 582, and the second transformer 583 are provided in the primary circuit 5a. Further, a drainage pump drive circuit 584 is provided in the patient circuit 5b.
 入力部509は、不図示の操作入力等の各種信号の入力を受け付ける。
 CPU510およびポンプ内CPU514は、連携して灌流装置5の動作を統括して制御する。CPU510は、メモリ511に記憶されているプログラムを実行してBUSラインを経て灌流装置5の各部の動作を制御する制御部に相当する。
 メモリ511は、灌流装置5の動作に必要な各種情報を記憶する。
 無線通信部512は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース513は、ポンプ内CPU514との通信を行うためのインターフェースである。
 ポンプ内メモリ515は、送液ポンプ503および排液ポンプ506の動作に必要な各種情報を記憶する。
 入力部509,CPU510、メモリ511、無線通信部512、および通信インターフェース513は、1次回路5aに設けられる。
 ポンプ内CPU514およびポンプ内メモリ515は、ポンプ5c内に設けられる。ポンプ内CPU514およびポンプ内メモリ515は、送液ポンプ503の周辺に設けてもよいし、排液ポンプ506の周辺に設けてもよい。
The input unit 509 receives input of various signals such as operation input (not shown).
The CPU 510 and the pump CPU 514 work together to centrally control the operation of the perfusion device 5. The CPU 510 corresponds to a control unit that executes a program stored in the memory 511 and controls the operation of each part of the perfusion device 5 via the BUS line.
The memory 511 stores various information necessary for the operation of the perfusion device 5.
The wireless communication unit 512 is an interface for wireless communication with other devices.
The communication interface 513 is an interface for communicating with the pump CPU 514.
The internal pump memory 515 stores various information necessary for the operation of the liquid feeding pump 503 and the liquid draining pump 506.
The input section 509, CPU 510, memory 511, wireless communication section 512, and communication interface 513 are provided in the primary circuit 5a.
An in-pump CPU 514 and an in-pump memory 515 are provided in the pump 5c. The in-pump CPU 514 and the in-pump memory 515 may be provided around the liquid feeding pump 503 or around the drainage pump 506.
 〔照明装置の機能構成〕
 照明装置6は、第1照明制御部601、第2照明制御部602、第1照明603、第2照明604、入力部605、CPU606、メモリ607、無線通信部608、通信インターフェース609、照明回路内CPU610、および照明回路内メモリ61Aを備える(図4および図9参照)。
[Functional configuration of lighting device]
The lighting device 6 includes a first lighting control section 601, a second lighting control section 602, a first lighting 603, a second lighting 604, an input section 605, a CPU 606, a memory 607, a wireless communication section 608, a communication interface 609, and a lighting circuit. It includes a CPU 610 and a lighting circuit internal memory 61A (see FIGS. 4 and 9).
 第1照明制御部601は、第1駆動制御部611と、第1駆動電力生成部612と、第1コントローラ613と、第1駆動回路614とを有する。
 第1駆動制御部611は、第1駆動電力生成部612、第1コントローラ613および第1駆動回路614の駆動を制御する。
 第1駆動電力生成部612は、第1照明603の駆動電力を生成する。
 第1コントローラ613は、第1照明603の光出力を制御する。
 第1駆動回路614は、第1照明603を駆動し、照明光を出力させる。
 第1駆動制御部611、第1駆動電力生成部612、および第1コントローラ613は1次回路6aに設けられる。また、第1駆動回路614は、1次回路6aと電気的に絶縁された患者回路6bに設けられる。
The first lighting control section 601 includes a first drive control section 611 , a first drive power generation section 612 , a first controller 613 , and a first drive circuit 614 .
The first drive control section 611 controls the driving of the first drive power generation section 612 , the first controller 613 , and the first drive circuit 614 .
The first drive power generation unit 612 generates drive power for the first lighting 603.
The first controller 613 controls the light output of the first illumination 603.
The first drive circuit 614 drives the first illumination 603 to output illumination light.
The first drive control section 611, the first drive power generation section 612, and the first controller 613 are provided in the primary circuit 6a. Further, the first drive circuit 614 is provided in the patient circuit 6b which is electrically insulated from the primary circuit 6a.
 第2照明制御部602は、第2駆動制御部621と、第2駆動電力生成部622と、第2コントローラ623と、第2駆動回路624とを有する。
 第2駆動制御部621は、第2駆動電力生成部622、第2コントローラ623および第2駆動回路624の駆動を制御する。
 第2駆動電力生成部622は、第2照明604の駆動電力を生成する。
 第2コントローラ623は、第2照明604の光出力を制御する。
 第2駆動回路624は、第2照明604を駆動し、照明光を出力させる。
 第2駆動制御部621、第2駆動電力生成部622、および第2コントローラ623は1次回路6aに設けられる。また、第2駆動回路624は患者回路6bに設けられる。
The second lighting control section 602 includes a second drive control section 621 , a second drive power generation section 622 , a second controller 623 , and a second drive circuit 624 .
The second drive control section 621 controls the driving of the second drive power generation section 622, the second controller 623, and the second drive circuit 624.
The second drive power generation unit 622 generates drive power for the second lighting 604.
The second controller 623 controls the light output of the second illumination 604.
The second drive circuit 624 drives the second illumination 604 to output illumination light.
The second drive control section 621, the second drive power generation section 622, and the second controller 623 are provided in the primary circuit 6a. Further, the second drive circuit 624 is provided in the patient circuit 6b.
 入力部605は、不図示の操作入力等の各種信号の入力を受け付ける。
 CPU606および照明回路内CPU610は、連携して照明装置6の動作を統括して制御する。CPU606は、メモリ607に記憶されているプログラムを実行して照明装置6の各部の動作を制御する制御部に相当する。
 メモリ607は、照明装置6の動作に必要な各種情報を記憶する。
 無線通信部608は、他の装置との間の無線通信を行うためのインターフェースである。
 通信インターフェース609は、照明回路6cとの通信を行うためのインターフェースである。
 照明回路内メモリ61Aは、第1照明603および第2照明604の動作に必要な各種情報を記憶する。
 入力部605、CPU606、メモリ607、無線通信部608、および通信インターフェース609は、1次回路6aに設けられる。
 照明回路内CPU610および照明回路内メモリ61Aは、照明回路6cに設けられる。
The input unit 605 receives input of various signals such as operation input (not shown).
The CPU 606 and the lighting circuit CPU 610 work together to centrally control the operation of the lighting device 6. The CPU 606 corresponds to a control unit that executes a program stored in the memory 607 to control the operation of each part of the lighting device 6.
The memory 607 stores various information necessary for the operation of the lighting device 6.
The wireless communication unit 608 is an interface for wireless communication with other devices.
The communication interface 609 is an interface for communicating with the lighting circuit 6c.
The lighting circuit memory 61A stores various information necessary for the operation of the first lighting 603 and the second lighting 604.
The input section 605, CPU 606, memory 607, wireless communication section 608, and communication interface 609 are provided in the primary circuit 6a.
The lighting circuit CPU 610 and the lighting circuit memory 61A are provided in the lighting circuit 6c.
 〔処置の概要〕
 図10は、処置システム1を用いて術者が行う処置の概要を説明するフローチャートである。なお、処置を行う術者は、医師一人でもよいし、医師や助手を含む二人以上でもよい。
[Summary of treatment]
FIG. 10 is a flowchart illustrating an overview of the treatment performed by the surgeon using the treatment system 1. Note that the number of surgeons who perform the treatment may be one doctor, or two or more including a doctor and an assistant.
 まず術者は、膝関節J1の関節腔C1内と皮膚外とをそれぞれ連通する第1のポータルP1および第2のポータルP2を形成する(ステップS1)。 First, the operator forms a first portal P1 and a second portal P2 that communicate the inside of the joint cavity C1 of the knee joint J1 and the outside of the skin, respectively (step S1).
 続いて術者は、内視鏡201を第1のポータルP1から関節腔C1内に挿入し、ガイディングデバイス4を第2のポータルP2から関節腔C1内に挿入し、ガイディングデバイス4の案内によって処置具301を関節腔C1内に挿入する(ステップS2)。なお、ここでは2つのポータルを形成してから内視鏡201および処置具301を各ポータルから関節腔C1内に挿入する場合を説明したが、第1のポータルP1を形成して内視鏡201を関節腔C1内に挿入した後、第2のポータルP2を形成してガイディングデバイス4および処置具301を関節腔C1内に挿入してもよい。 Next, the operator inserts the endoscope 201 into the joint cavity C1 from the first portal P1, inserts the guiding device 4 into the joint cavity C1 from the second portal P2, and guides the guiding device 4. The treatment instrument 301 is inserted into the joint cavity C1 (step S2). Note that although the case where two portals are formed and the endoscope 201 and the treatment instrument 301 are inserted into the joint cavity C1 from each portal has been described here, the first portal P1 is formed and the endoscope 201 is inserted into the joint cavity C1. After inserting into the joint cavity C1, the second portal P2 may be formed and the guiding device 4 and the treatment instrument 301 may be inserted into the joint cavity C1.
 この後、術者は、表示装置203が表示する関節腔C1内の内視鏡画像を目視により確認しながら、超音波プローブ312を処置対象の骨に接触させる(ステップS3)。 Thereafter, the operator brings the ultrasound probe 312 into contact with the bone to be treated while visually checking the endoscopic image of the joint cavity C1 displayed on the display device 203 (step S3).
 続いて、術者は処置具301を用いて切削処置を行う(ステップS4)。この際、術者は、処置具301の出力をオンにして超音波プローブ312を超音波振動させて、処置する。例えば、骨を砕いて骨孔を形成する。 Subsequently, the operator performs a cutting treatment using the treatment tool 301 (step S4). At this time, the operator turns on the output of the treatment tool 301 and causes the ultrasonic probe 312 to vibrate ultrasonically to perform the treatment. For example, bone is crushed to form a bone hole.
 その後、表示装置203は、関節腔C1内の表示および切削処置後の状態に関する情報の表示・告知処理を行う(ステップS5)。内視鏡制御装置202は、例えば、表示・告知処理後、所定時間後に表示・告知を停止する。 After that, the display device 203 performs a display/notification process of displaying the inside of the joint cavity C1 and information regarding the state after the cutting procedure (step S5). For example, after the display/notification process, the endoscope control device 202 stops the display/notification after a predetermined period of time.
 続いて、本実施の形態1の切削処置について、図11~図17を参照して説明する。図11は、実施の形態1に係る処置システムにおける切削処置の概要を説明するフローチャートである。図12は、切削処置における灌流装置の制御について説明するための図であって、インピーダンスと、灌流装置の駆動条件との関係を説明するための図である。本実施の形態1では、処置具制御装置302のCPU326の制御のもとで、各処理が実行されるものとして説明するが、例えばネットワーク制御装置7等の制御装置のうちのいずれかが処理を実行してもよいし、各制御装置のCPUが部分的に処理を実行してもよい。図11は、骨を砕いて骨孔を形成する処置を行う例について説明する。 Next, the cutting treatment of the first embodiment will be explained with reference to FIGS. 11 to 17. FIG. 11 is a flowchart illustrating an overview of the cutting treatment in the treatment system according to the first embodiment. FIG. 12 is a diagram for explaining control of the perfusion device in a cutting treatment, and is a diagram for explaining the relationship between impedance and drive conditions of the perfusion device. In the first embodiment, each process will be described as being executed under the control of the CPU 326 of the treatment instrument control device 302, but for example, any one of the control devices such as the network control device 7 may execute the process. The process may be executed, or the CPU of each control device may partially execute the process. FIG. 11 describes an example in which a bone hole is formed by crushing a bone.
 まず、フットスイッチ303の押下等、処置具301の出力をオンにするための操作によって信号が入力されると、CPU326は、処置具301の出力をオンにする(ステップS101)。処置具301の出力がオンになると、超音波プローブ312が超音波振動する。この際、CPU326は、動作モードを切削モードに設定する。 First, when a signal is input by an operation for turning on the output of the treatment instrument 301, such as pressing down the foot switch 303, the CPU 326 turns on the output of the treatment instrument 301 (step S101). When the output of the treatment instrument 301 is turned on, the ultrasonic probe 312 vibrates ultrasonically. At this time, the CPU 326 sets the operation mode to cutting mode.
 CPU326は、灌流装置5の駆動条件を条件D1に設定する(ステップS102)。CPU326は、灌流装置5のCPU510に、条件D1で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D1にしたがって送液ポンプ503を駆動させる。なお、駆動条件については、後述する。 The CPU 326 sets the driving condition of the perfusion device 5 to condition D1 (step S102). The CPU 326 outputs a signal to the CPU 510 of the perfusion device 5 indicating that the perfusion device 5 is to be driven under the condition D1. For example, the first drive control unit 571 drives the liquid pump 503 according to the condition D1. Note that the driving conditions will be described later.
 その後、CPU326は、インピーダンス測定部330に、処置時におけるインピーダンスを測定させる(ステップS103)。インピーダンス測定部330は、処置具301に供給される電力から信号を取得してインピーダンスZを測定する。この際、インピーダンスZは、超音波プローブ312と骨との接触/非接触状態、または、骨の砕骨組織性状に応じて変化する。
 即ち、インピーダンス測定部330は、処置具301による切削状態を測定する切削データ測定部として構成される。
After that, the CPU 326 causes the impedance measurement unit 330 to measure the impedance during treatment (step S103). The impedance measurement unit 330 measures impedance Z by acquiring a signal from the power supplied to the treatment tool 301. At this time, the impedance Z changes depending on the contact/non-contact state between the ultrasound probe 312 and the bone, or the properties of the crushed bone tissue of the bone.
That is, the impedance measuring section 330 is configured as a cutting data measuring section that measures the state of cutting by the treatment tool 301.
 CPU326は、ステップS103で測定されたインピーダンスZが、Z≧Z1であるか否かを判断する(ステップS104)。ここで、Z1は、切削状態を判定するための閾値であり、皮質骨を砕骨中であるか否かを判定するインピーダンスの最小値が設定される(図12参照)。図12に示した濁りの変化を示す各状態情報、及び、駆動条件との関係を示すルックアップテーブルは、濁り変化を判断する濁り情報としてメモリ327に予め記憶されている。即ち、メモリ327は、濁り情報記憶部として構成される。
 図11に戻り、CPU326は、Z≧Z1であると判断した場合(ステップS104:Yes)、ステップS105に移行する。また、CPU326は、Z≧Z1ではない(Z<Z1)と判断した場合(ステップS104:No)、ステップS103に戻り、インピーダンスの再測定を実行させる。なお、インピーダンスの再測定は、すぐに実行してもよいし、前回測定時刻から所定時間経過後に実行してもよい。
 この際、インピーダンスZがZ<Z1である場合は、切削開始直後であるか、または超音波プローブ312と骨とが非接触の状態等、骨組織の切削以外の状態であると推測できる。
The CPU 326 determines whether the impedance Z measured in step S103 satisfies Z≧Z1 (step S104). Here, Z1 is a threshold value for determining the cutting state, and the minimum value of impedance for determining whether cortical bone is being crushed is set (see FIG. 12). Each piece of state information showing changes in turbidity and a look-up table showing the relationship with driving conditions shown in FIG. 12 are stored in advance in the memory 327 as turbidity information for determining changes in turbidity. That is, the memory 327 is configured as a turbidity information storage section.
Returning to FIG. 11, when the CPU 326 determines that Z≧Z1 (step S104: Yes), the process proceeds to step S105. Further, when the CPU 326 determines that Z≧Z1 is not satisfied (Z<Z1) (step S104: No), the process returns to step S103 and remeasures the impedance. Note that the impedance measurement may be performed immediately or after a predetermined period of time has passed since the previous measurement time.
At this time, if the impedance Z is Z<Z1, it can be assumed that cutting has just started, or that the ultrasonic probe 312 is in a non-contact state with the bone, or in a state other than cutting bone tissue.
 ステップS105において、CPU326は、インピーダンスZが、Z≧Z2であるか否かを判断する。ここで、Z2は、切削状態を判定するための閾値であり、海綿骨を砕骨中であるか否かを判定するインピーダンスの最小値が設定される。CPU326は、Z≧Z2ではない(Z<Z2)と判断した場合(ステップS105:No)、ステップS106に移行する。また、CPU326は、Z≧Z2であると判断した場合(ステップS105:Yes)、ステップS107に移行する。
 この際、Z<Z2であると判断される状態では、皮質骨が砕骨されている状態である。また、Z≧Z2であると判断される状態では、海綿骨が砕骨されている状態であり、皮質骨を砕骨する場合と比して、骨粉量が増大する。
In step S105, the CPU 326 determines whether impedance Z satisfies Z≧Z2. Here, Z2 is a threshold value for determining the cutting state, and is set as the minimum value of impedance for determining whether or not cancellous bone is being crushed. When the CPU 326 determines that Z≧Z2 is not satisfied (Z<Z2) (step S105: No), the process proceeds to step S106. Further, when the CPU 326 determines that Z≧Z2 (step S105: Yes), the process proceeds to step S107.
At this time, when it is determined that Z<Z2, the cortical bone is crushed. Further, in a state where it is determined that Z≧Z2, cancellous bone is crushed, and the amount of bone powder increases compared to when cortical bone is crushed.
 ステップS106において、CPU326は、灌流装置5の駆動条件を条件D2に設定する。CPU326は、CPU510に、条件D2で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D2にしたがって送液ポンプ503を駆動させる。 In step S106, the CPU 326 sets the drive condition of the perfusion device 5 to condition D2. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D2. For example, the first drive control unit 571 drives the liquid pump 503 according to condition D2.
 また、ステップS107において、CPU326は、処置具301の出力がオフであるか否かを判断する。CPU326は、フットスイッチ303から術者の足が離れる等によって処置具301の出力をオフにする操作の検出によって出力がオフであると判断した場合(ステップS107:Yes)、ステップS109に移行する。また、CPU326は、処置具301の出力がオフにはなっていないと判断した場合(ステップS107:No)、ステップS108に移行する。 Furthermore, in step S107, the CPU 326 determines whether the output of the treatment instrument 301 is off. If the CPU 326 determines that the output of the treatment instrument 301 is turned off by detecting an operation to turn off the output of the treatment instrument 301 due to the operator's foot leaving the foot switch 303 or the like (step S107: Yes), the process proceeds to step S109. Further, when the CPU 326 determines that the output of the treatment tool 301 is not turned off (step S107: No), the process proceeds to step S108.
 ステップS108において、CPU326は、灌流装置5の駆動条件を条件D3に設定する。CPU326は、CPU510に、条件D3で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D3にしたがって送液ポンプ503を駆動させる。 In step S108, the CPU 326 sets the drive condition of the perfusion device 5 to condition D3. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D3. For example, the first drive control unit 571 drives the liquid pump 503 according to condition D3.
 また、ステップS109において、CPU326は、処置具301の出力がオフになってからの経過時間Toffが、Toff>Tsであるか否かを判断する。ここで、Tsは、出力オフ後に待機モードに遷移する期間として予め設定された時間である。CPU326は、Toff>Tsであると判断した場合(ステップS109:Yes)、ステップS111に移行する。また、CPU326は、Toff>Tsではない(Toff≦Ts)と判断した場合(ステップS109:No)、ステップS110に移行する。 Furthermore, in step S109, the CPU 326 determines whether the elapsed time Toff since the output of the treatment tool 301 is turned off satisfies Toff>Ts. Here, Ts is a time set in advance as a period for transitioning to standby mode after the output is turned off. When the CPU 326 determines that Toff>Ts (step S109: Yes), the process proceeds to step S111. Further, when the CPU 326 determines that Toff>Ts is not satisfied (Toff≦Ts) (step S109: No), the process proceeds to step S110.
 ステップS110において、CPU326は、灌流装置5の駆動条件を条件Dsに設定する。CPU326は、CPU510に、条件Dsで駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件Dsにしたがって送液ポンプ503を駆動させる。
 なお、この際、CPU326は、動作モードを待機モードに設定する。
In step S110, the CPU 326 sets the drive condition of the perfusion device 5 to condition Ds. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition Ds. For example, the first drive control unit 571 drives the liquid pump 503 according to the condition Ds.
Note that at this time, the CPU 326 sets the operation mode to standby mode.
 また、ステップS111において、CPU326は、灌流装置5の動作モードを停止モードに設定し、灌流装置5の駆動電力(少なくともポンプの駆動電力、以下同様)をオフにする旨の信号を出力する。その後、CPU326は、図10に示すステップS5に移行する。
 なお、この際、CPU326は、動作モードを停止モードに設定する。
Further, in step S111, the CPU 326 sets the operation mode of the perfusion device 5 to the stop mode, and outputs a signal to turn off the driving power of the perfusion device 5 (at least the driving power of the pump, the same applies hereinafter). After that, the CPU 326 moves to step S5 shown in FIG.
Note that at this time, the CPU 326 sets the operation mode to the stop mode.
 図13は、灌流装置5の駆動条件について説明するための図である。本実施の形態1において、灌流装置5の駆動条件は、電力振幅(電圧V)と、電力周波数とが組み合わされて設定される。電力周波数の設定は、周期、および、その周期におけるパルス幅が設定される。図13のルックアップテーブルは、灌流装置5のメモリ511に予め記憶され、各制御装置のCPUは通信を介してデータを読みこみ、駆動条件として用いる。 FIG. 13 is a diagram for explaining the driving conditions of the perfusion device 5. In the first embodiment, the driving conditions of the perfusion device 5 are set by combining the power amplitude (voltage V) and the power frequency. The power frequency is set by setting a cycle and a pulse width in the cycle. The look-up table in FIG. 13 is stored in advance in the memory 511 of the perfusion device 5, and the CPU of each control device reads the data via communication and uses it as a driving condition.
 駆動条件D1は、電圧がV1、電力周波数がFP1に設定される。図14は、駆動条件D1における電力パルス波形について説明するための図である。駆動条件D1では、電圧をV1とし、パルス幅および周期が連続的に異なるパターン(電力周波数FP1)を繰り返す。 As for the driving condition D1, the voltage is set to V1 and the power frequency is set to FP1. FIG. 14 is a diagram for explaining the power pulse waveform under driving condition D1. Under drive condition D1, the voltage is set to V1, and a pattern (power frequency FP1) with continuously different pulse widths and cycles is repeated.
 駆動条件D2は、電圧がV2、電力周波数がFP2に設定される。図15は、駆動条件D2におけるパルス波形について説明するための図である。駆動条件D2では、電圧をV2(>V1)とし、パルス幅および周期が連続的に異なるパターン(電力周波数FP2)を繰り返す。このパターン(電力周波数FP2)の周期は、駆動条件D1のパターン(電力周波数FP1)の周期よりも短い。 As for the driving condition D2, the voltage is set to V2 and the power frequency is set to FP2. FIG. 15 is a diagram for explaining the pulse waveform under driving condition D2. Under drive condition D2, the voltage is set to V2 (>V1), and a pattern (power frequency FP2) with continuously different pulse widths and cycles is repeated. The period of this pattern (power frequency FP2) is shorter than the period of the pattern (power frequency FP1) of driving condition D1.
 駆動条件D3は、電圧がV3、電力周波数がFP3に設定される。図16は、駆動条件D3におけるパルス波形について説明するための図である。駆動条件D3では、電圧をV3(>V2)とし、パルス幅および周期が連続的に異なるパターン(電力周波数FP3)を繰り返す。このパターン(電力周波数FP3)の周期は、駆動条件D2のパターン(電力周波数FP2)の周期よりも短い。
 駆動条件D1からD2、D2からD3に移行するにしたがって、ポンプによる送水量(送水強度)が大きく、かつ短期間に連続して灌流液が送水されることになる。
As for the driving condition D3, the voltage is set to V3 and the power frequency is set to FP3. FIG. 16 is a diagram for explaining the pulse waveform under driving condition D3. Under drive condition D3, the voltage is set to V3 (>V2), and a pattern (power frequency FP3) with continuously different pulse widths and cycles is repeated. The period of this pattern (power frequency FP3) is shorter than the period of the pattern (power frequency FP2) of driving condition D2.
As the driving conditions change from D1 to D2 and from D2 to D3, the amount of water fed by the pump (water feeding intensity) increases, and the irrigation fluid is fed continuously over a short period of time.
 駆動条件Dsは、電圧がVs、電力周波数がFPsに設定される。図17は、駆動条件Dsにおけるパルス波形について説明するための図である。駆動条件D3では、電圧をVs(<V1)とし、パルス幅および周期が連続的に異なるパターン(電力周波数FPs)を繰り返す。このパターン(電力周波数FPs)の周期は、駆動条件D1のパターン(電力周波数FP1)の周期よりも長い。駆動条件Ds下では、処置後に液中に残留した骨粉(図12参照)を除去するため、所定の時間、低圧の灌流液が送水される。 As for the driving conditions Ds, the voltage is set to Vs and the power frequency is set to FPs. FIG. 17 is a diagram for explaining the pulse waveform under the driving condition Ds. Under drive condition D3, the voltage is set to Vs (<V1), and a pattern (power frequency FPs) with continuously different pulse widths and cycles is repeated. The period of this pattern (power frequency FPs) is longer than the period of the pattern (power frequency FP1) of driving condition D1. Under the driving condition Ds, a low-pressure irrigation fluid is supplied for a predetermined period of time in order to remove bone powder (see FIG. 12) remaining in the fluid after the treatment.
 以上説明した実施の形態1では、状態情報である処置環境のインピーダンスを測定し、このインピーダンスに基づいて、灌流装置5の送水条件を設定する。本実施の形態1によれば、処置によって発生する骨粉の量をインピーダンスから推定して灌流装置5の送水量を自動制御することによって、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the first embodiment described above, the impedance of the treatment environment, which is state information, is measured, and the water supply conditions of the perfusion device 5 are set based on this impedance. According to the first embodiment, the amount of bone powder generated by the treatment is estimated from the impedance and the amount of water supplied by the perfusion device 5 is automatically controlled, thereby suppressing the influence on the surgery caused by turbidity in the perfusate. Can be done.
(実施の形態2)
 次に、実施の形態2について、図18~図20を参照して説明する。図18は、実施の形態2に係る処置システムが備える処置装置の機能構成を示すブロック図である。実施の形態2にかかる処置システムは、実施の形態1にかかる処置システム1の処置具制御装置302に代えて処置具制御装置302Aを備える。この処置具制御装置302Aは、インピーダンス測定部330を有しないこと以外は、処置具制御装置302と同様の構成である。また、それ以外の構成は、実施の形態1と同様であるため、説明を省略する。
(Embodiment 2)
Next, a second embodiment will be described with reference to FIGS. 18 to 20. FIG. 18 is a block diagram showing the functional configuration of a treatment device included in the treatment system according to the second embodiment. The treatment system according to the second embodiment includes a treatment instrument control device 302A in place of the treatment instrument control device 302 of the treatment system 1 according to the first embodiment. This treatment tool control device 302A has the same configuration as the treatment tool control device 302 except that it does not include the impedance measuring section 330. Further, since the other configurations are the same as those in Embodiment 1, the explanation will be omitted.
 本実施の形態2では、図10に示す流れで処置が行われる。以下、本実施の形態2に係る切削処置について説明する。図19は、実施の形態2に係る処置システムにおける切削処置の概要を説明するフローチャートである。図20は、切削処置における灌流装置の制御について説明するための図であって、切削時間と、灌流装置の駆動条件との関係を説明するための図である。図20に示した濁りの変化を示す総骨粉量、切削時間、および、駆動条件の関係を示すルックアップテーブルは、濁り変化を判断する濁り情報としてメモリ327に予め記憶されている。即ち、メモリ327は、濁り情報記憶部として構成される。本実施の形態2では、処置具301を所定の押圧力で押圧し、所定の振幅および周波数の振動によって骨組織を切削したときに、骨の組織性状による単位時間あたりの切削量、即ち骨粉量が異なることに適応した処置を行う。骨の組織性状として、皮質骨表層に至るまでの軟組織、皮質骨、および、海綿骨、の各組織の順に切削する場合の制御について説明する。 In the second embodiment, treatment is performed according to the flow shown in FIG. 10. The cutting treatment according to the second embodiment will be explained below. FIG. 19 is a flowchart illustrating an overview of cutting treatment in the treatment system according to the second embodiment. FIG. 20 is a diagram for explaining the control of the perfusion device in the cutting treatment, and is a diagram for explaining the relationship between the cutting time and the driving conditions of the perfusion device. The look-up table showing the relationship among the total amount of bone powder, cutting time, and driving conditions showing changes in turbidity shown in FIG. 20 is stored in advance in the memory 327 as turbidity information for determining changes in turbidity. That is, the memory 327 is configured as a turbidity information storage section. In the second embodiment, when the treatment tool 301 is pressed with a predetermined pressing force and the bone tissue is cut by vibrations of a predetermined amplitude and frequency, the amount of cutting per unit time, that is, the amount of bone powder depending on the tissue properties of the bone. Take appropriate measures to accommodate different conditions. As for bone tissue properties, control will be described when cutting soft tissue up to the surface layer of cortical bone, cortical bone, and cancellous bone in this order.
 まず、フットスイッチ303の押下等、処置具301の出力をオンにするための操作によって信号が入力されると、CPU326は、処置具301の出力をオンにする(ステップS201)。この際、CPU326は、動作モードを切削モードに設定する。 First, when a signal is input by an operation for turning on the output of the treatment instrument 301, such as pressing down the foot switch 303, the CPU 326 turns on the output of the treatment instrument 301 (step S201). At this time, the CPU 326 sets the operation mode to cutting mode.
 CPU326は、出力をオンにした時刻にける切削時間TをT=0に設定する(ステップS202)。
 CPU326は、処置具301によって切削を開始した時刻からの切削時間Tを切削データとして測定するものであり、処置具301による切削状態を測定する切削データ測定部として構成される。
The CPU 326 sets the cutting time T at the time when the output is turned on to T=0 (step S202).
The CPU 326 measures the cutting time T from the time when cutting is started by the treatment tool 301 as cutting data, and is configured as a cutting data measurement unit that measures the state of cutting by the treatment tool 301.
 CPU326は、灌流装置5の駆動条件を条件D1に設定する(ステップS203)。CPU326は、CPU510に、条件D1で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D1にしたがって送液ポンプ503を駆動させる。なお、条件D1は、図13と同様であるものとして説明するが、これに限らない。 The CPU 326 sets the driving condition of the perfusion device 5 to condition D1 (step S203). The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition D1. For example, the first drive control unit 571 drives the liquid pump 503 according to the condition D1. Note that although the condition D1 will be described as being the same as that in FIG. 13, it is not limited thereto.
 CPU326は、切削時間Tが、T>T1であるか否かを判断する(ステップS204)。ここで、T1は、切削状態を判定するための閾値であり、例えば、皮質骨表層に至るまでの切削時間(経過時間)であるか否かを判定するための時間の最小値が設定される。CPU326は、T>T1であると判断した場合(ステップS204:Yes)、ステップS205に移行する。また、CPU326は、T>T1ではない(T≦T1)と判断した場合(ステップS204:No)、経過時間の確認を繰り返す。
 この際、切削時間TがT≦T1である場合は、超音波プローブ312と骨とが実質的に非接触の状態であると推測できる。T≦T1の期間における総骨粉量は、皮質骨表層までに至る砕骨量をa(mm3/sec)とした場合、aTとなる。
The CPU 326 determines whether the cutting time T is T>T1 (step S204). Here, T1 is a threshold value for determining the cutting state, and for example, the minimum value of the time for determining whether the cutting time (elapsed time) has reached the cortical bone surface layer is set. . When the CPU 326 determines that T>T1 (step S204: Yes), the process proceeds to step S205. Further, when the CPU 326 determines that T>T1 is not satisfied (T≦T1) (step S204: No), the CPU 326 repeats confirmation of the elapsed time.
At this time, if the cutting time T is T≦T1, it can be assumed that the ultrasound probe 312 and the bone are in a substantially non-contact state. The total amount of bone powder during the period T≦T1 is aT, where a (mm 3 /sec) is the amount of bone fragments reaching the cortical bone surface layer.
 ステップS205において、CPU326は、切削時間Tが、T≧T2であるか否かを判断する。ここで、T2は、切削状態を判定するための閾値であり、例えば、皮質骨を砕骨している切削時間(経過時間)であるか否かを判定するための時間の最大値が設定される。即ち、切削時間がT2を超えると、砕骨位置が皮質骨から海綿骨に変わる。CPU326は、T≧T2であると判断した場合(ステップS205:Yes)、ステップS207に移行する。また、CPU326は、T≧T2ではない(T<T2)と判断した場合(ステップS205:No)、ステップS206に移行する。
 この際、(T1≦)T≦T2であると判断される状態では、皮質骨が砕骨されている状態である。T1≦T≦T2の期間における総骨粉量は、皮質骨における砕骨量をb(mm3/sec)とした場合、aT1+b(T-T1)となる。
In step S205, the CPU 326 determines whether the cutting time T is T≧T2. Here, T2 is a threshold value for determining the cutting state, and, for example, the maximum value of the time for determining whether the cutting time (elapsed time) is at which cortical bone is being crushed is set. Ru. That is, when the cutting time exceeds T2, the bone crushing position changes from cortical bone to cancellous bone. When the CPU 326 determines that T≧T2 (step S205: Yes), the process proceeds to step S207. Further, when the CPU 326 determines that T≧T2 is not satisfied (T<T2) (step S205: No), the process proceeds to step S206.
At this time, when it is determined that (T1≦)T≦T2, the cortical bone is crushed. The total amount of bone powder during the period of T1≦T≦T2 is aT1+b (T−T1), where b (mm 3 /sec) is the amount of crushed bone in cortical bone.
 ステップS206において、CPU326は、灌流装置5の駆動条件を条件D2に設定する。CPU326は、CPU510に、条件D2で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D2にしたがって送液ポンプ503を駆動させる。 In step S206, the CPU 326 sets the drive condition of the perfusion device 5 to condition D2. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D2. For example, the first drive control unit 571 drives the liquid pump 503 according to condition D2.
 また、ステップS207において、CPU326は、切削時間Tが、T≧T3であるか否かを判断する。ここで、T3は、切削状態を判定するための閾値であり、例えば、海綿骨を砕骨している切削時間(経過時間)であるか否かを判定するための時間の最大値が設定される。CPU326は、T≧T3であると判断した場合(ステップS207:Yes)、ステップS209に移行する。また、CPU326は、T≧T3ではない(T<T3)と判断した場合(ステップS207:No)、ステップS208に移行する。
 この際、(T2<)T≦T3であると判断される状態では、海綿骨が砕骨されている状態である。T2<T≦T3の期間における総骨粉量は、海綿骨における砕骨量をc(mm3/sec)とした場合、aT1+b(T2-T1)+c(T-T2)となる。
Further, in step S207, the CPU 326 determines whether the cutting time T is T≧T3. Here, T3 is a threshold value for determining the cutting state, and for example, the maximum value of the time for determining whether or not the cutting time (elapsed time) is at which the cancellous bone is crushed is set. Ru. When the CPU 326 determines that T≧T3 (step S207: Yes), the process proceeds to step S209. Further, when the CPU 326 determines that T≧T3 is not satisfied (T<T3) (step S207: No), the process proceeds to step S208.
At this time, when it is determined that (T2<)T≦T3, the cancellous bone is crushed. The total amount of bone powder during the period of T2<T≦T3 is aT1+b(T2-T1)+c(T-T2), where c (mm 3 /sec) is the amount of broken bone in the cancellous bone.
 ステップS208において、CPU326は、灌流装置5の駆動条件を条件D3に設定する。CPU326は、CPU510に、条件D3で駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件D3にしたがって送液ポンプ503を駆動させる。 In step S208, the CPU 326 sets the driving condition of the perfusion device 5 to condition D3. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under condition D3. For example, the first drive control unit 571 drives the liquid pump 503 according to condition D3.
 また、ステップS209において、CPU326は、切削時間Tが、T>T4であるか否かを判断する。ここで、T4は、切削開始から海綿骨の砕骨を完了した後に待機モードに遷移するまでの期間として予め設定された時間である。CPU326は、T>T4であると判断した場合(ステップS209:Yes)、ステップS211に移行する。また、CPU326は、T>T4ではない(T≦T4)と判断した場合(ステップS209:No)、ステップS210に移行する。 Furthermore, in step S209, the CPU 326 determines whether the cutting time T is T>T4. Here, T4 is a preset time period from the start of cutting until the transition to the standby mode after completing the crushing of the cancellous bone. When the CPU 326 determines that T>T4 (step S209: Yes), the process proceeds to step S211. Further, when the CPU 326 determines that T>T4 is not satisfied (T≦T4) (step S209: No), the process proceeds to step S210.
 ステップS210において、CPU326は、灌流装置5の駆動条件を条件Dsに設定する。CPU326は、CPU510に、条件Dsで駆動する旨の信号を出力する。例えば、第1駆動制御部571は、条件Dsにしたがって送液ポンプ503を駆動させる。
 なお、この際、CPU326は、動作モードを待機モードに設定する。
In step S210, the CPU 326 sets the drive condition of the perfusion device 5 to condition Ds. The CPU 326 outputs a signal to the CPU 510 indicating that it is to be driven under the condition Ds. For example, the first drive control unit 571 drives the liquid pump 503 according to the condition Ds.
Note that at this time, the CPU 326 sets the operation mode to standby mode.
 また、ステップS211において、CPU326は、灌流装置5の動作モードを停止モードに設定し、灌流装置5の駆動電力(少なくともポンプの駆動電力)をオフにする旨の信号を出力する。その後、CPU326は、図10に示すステップS5に移行する。
 なお、この際、CPU326は、動作モードを停止モードに設定する。
Further, in step S211, the CPU 326 sets the operation mode of the perfusion device 5 to stop mode, and outputs a signal to turn off the driving power of the perfusion device 5 (at least the driving power of the pump). After that, the CPU 326 moves to step S5 shown in FIG.
Note that at this time, the CPU 326 sets the operation mode to the stop mode.
 以上説明した実施の形態2では、状態情報である切削開始からの経過時間に基づいて、灌流装置5の送水条件を設定する。本実施の形態2によれば、処置によって発生する骨粉の量を経過時間から推定して灌流装置5の送水量を自動制御することによって、灌流液中の濁りによって生じる手術への影響を抑制することができる。 In the second embodiment described above, the water supply conditions of the perfusion device 5 are set based on the elapsed time from the start of cutting, which is state information. According to the second embodiment, the amount of bone powder generated by the treatment is estimated from the elapsed time and the amount of water supplied by the perfusion device 5 is automatically controlled, thereby suppressing the influence on the surgery caused by turbidity in the perfusate. be able to.
(その他の実施の形態)
 上述した実施の形態1、2に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した実施の形態1、2に記載した全構成要素からいくつかの構成要素を削除してもよい。
(Other embodiments)
Various inventions can be formed by appropriately combining the plurality of components disclosed in the first and second embodiments described above. For example, some components may be deleted from all the components described in the first and second embodiments.
 また、実施の形態1、2では、駆動条件として電力および電力周波数が設定されるものとして説明したが、電力および電力周波数のいずれかのみを設定するものであってもよい。 Furthermore, in Embodiments 1 and 2, the description has been made assuming that power and power frequency are set as drive conditions, but it is also possible to set only either power or power frequency.
 また、実施の形態1、2では、駆動条件として送液側の条件を設定する例について説明したが、排液側の条件を設定するものとしてもよいし、送液側および排液側の条件を設定するものとしてもよい。 Furthermore, in Embodiments 1 and 2, an example was explained in which conditions on the liquid sending side are set as drive conditions, but conditions on the liquid draining side may be set, or conditions on the liquid sending side and liquid draining side. may also be set.
 また、実施の形態1、2では、処置具制御装置302、302Aが灌流装置5の駆動条件を設定・制御する制御部の機能を有する例について説明したが、灌流装置5のCPU510が、灌流装置5の駆動条件を設定・制御する制御部の機能を有する構成としてもよい。この際、CPU510は、処置具制御装置302からインピーダンスを取得してもよいし、測定された生データ(電圧値および電流値)を取得して、灌流装置5においてインピーダンスを算出する構成としてもよい。 Furthermore, in Embodiments 1 and 2, an example has been described in which the treatment instrument control devices 302 and 302A have the function of a control section that sets and controls the driving conditions of the perfusion device 5, but the CPU 510 of the perfusion device 5 The configuration may have a function of a control section for setting and controlling the driving conditions of No. 5. At this time, the CPU 510 may acquire impedance from the treatment instrument control device 302, or may acquire measured raw data (voltage value and current value) and calculate the impedance in the perfusion device 5. .
 また、実施の形態1では、処置具301に供給する電力のインピーダンスから骨組織を判断して濁り量を推定したが、それ以外のパラメータをもとに骨組織を判断し、濁り量を推定する構成としてもよい。また、実施の形態2では、切削により生じる骨の組織性状に応じた骨粉量から濁り量を推定したが、各組織の液中における拡散モデルからシミュレーションして算出された骨粉量、実験値、処置具形状に伴う骨組織を破砕する断面積等、様々な要因を含めて近似算出する高次の多項式による骨粉量算出などから、濁り変化を判断する濁り情報を生成し、濁り量を推定する構成としてもよい。 Further, in the first embodiment, the amount of turbidity is estimated by determining the bone tissue based on the impedance of the electric power supplied to the treatment instrument 301, but the amount of turbidity is estimated by determining the bone tissue based on other parameters. It may also be a configuration. In addition, in the second embodiment, the amount of turbidity was estimated from the amount of bone powder depending on the tissue properties of bone produced by cutting, but the amount of bone powder calculated by simulation from a diffusion model in liquid of each tissue, experimental values, and treatment A configuration that generates turbidity information to judge turbidity changes and estimates the turbidity amount from bone powder amount calculation using a high-order polynomial that approximates various factors such as the cross-sectional area for crushing bone tissue due to the shape of the tool. You can also use it as
 また、実施の形態1、2では、骨を砕いて発生する白色の骨粉によって白濁が生じる例について説明したが、骨粉の他、白色の粒子によって白濁が生じる処置等に適用することができる。 Further, in Embodiments 1 and 2, an example in which white turbidity is caused by white bone powder generated by crushing bones has been described, but the present invention can be applied to treatments in which white turbidity is caused by white particles other than bone powder.
 また、実施の形態1、2では、内視鏡201や処置具301等の各機器を制御する制御部を、制御装置として個別に有する構成について説明したが、一つの制御部(制御装置)が各機器を一括して制御する構成としてもよい。 Furthermore, in Embodiments 1 and 2, a configuration was described in which the control units that control each device such as the endoscope 201 and the treatment instrument 301 are individually provided as control devices, but one control unit (control device) It is also possible to adopt a configuration in which each device is controlled collectively.
 また、実施の形態1、2において、上述してきた「装置」、「部」、「回路」は、「手段」や、「回路」、「部」などに読み替えることができる。例えば、制御装置は、制御部や制御回路に読み替えることができる。 Furthermore, in Embodiments 1 and 2, the above-mentioned "apparatus", "unit", and "circuit" can be read as "means", "circuit", "unit", etc. For example, the control device can be read as a control unit or a control circuit.
 また、実施の形態1、2に係る各装置に実行させるプログラムは、インストール可能な形式または実行可能な形式のファイルデータでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB媒体、フラッシュメモリ等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 Furthermore, the program to be executed by each device according to Embodiments 1 and 2 is file data in an installable or executable format and can be stored on a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disk). ), USB media, flash memory, and other computer-readable recording media.
 また、実施の形態1、2に係る各装置に実行させるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。さらに、実施の形態1、2に係る情報処理装置に実行させるプログラムをインターネット等のネットワーク経由で提供または配布するようにしてもよい。 Furthermore, the programs to be executed by each device according to Embodiments 1 and 2 may be stored on a computer connected to a network such as the Internet, and may be provided by being downloaded via the network. Furthermore, the program to be executed by the information processing apparatus according to Embodiments 1 and 2 may be provided or distributed via a network such as the Internet.
 また、実施の形態1、2では、無線通信によって信号を送受信していたが、例えば無線である必要はなく、伝送ケーブルを経由して各種機器から信号を送信していたが、有線であってもよい。 Furthermore, in Embodiments 1 and 2, signals were transmitted and received by wireless communication, but for example, signals were transmitted from various devices via transmission cables without the need for wireless communication. Good too.
 なお、本明細書におけるフローチャートの説明において、本発明を実施するために必要な処理の順序は、フローチャートに示した表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 Note that in the description of the flowcharts in this specification, the order of processing necessary to implement the present invention is not uniquely determined by the expressions shown in the flowcharts. That is, the order of processing in the flowcharts described in this specification can be changed within a consistent range.
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 Some of the embodiments of the present application have been described above in detail based on the drawings, but these are merely examples, and various embodiments including the embodiments described in the disclosure section of the present invention can be used based on the knowledge of those skilled in the art. It is possible to implement the present invention in other forms with modifications and improvements.
 以上のように、本発明にかかる処置システムおよび処置システムの作動方法は、灌流液中の濁りによって生じる手術への影響を抑制するのに有用である。 As described above, the treatment system and the method of operating the treatment system according to the present invention are useful for suppressing the influence on surgery caused by turbidity in the perfusate.
 1 処置システム
 2 内視鏡装置
 3 処置装置
 4 ガイディングデバイス
 5 灌流装置
 5a、6a、202a、321 1次回路
 5b、6b、202b、322 患者回路
 5c ポンプ
 6 照明装置
 6c 照明回路
 7 ネットワーク制御装置
 8 ネットワークサーバ
 61A 照明回路内メモリ
 100 処置対象部位
 101 骨孔
 201 内視鏡
 202 内視鏡制御装置
 203 表示装置
 204 撮像部
 205 操作入力部
 211 挿入部
 221 撮像処理部
 221a 撮像素子駆動制御回路
 221b 撮像素子信号制御回路
 222 画像処理部
 222a 第1画像処理回路
 222b 第2画像処理回路
 223 濁り検出部
 224a 撮像素子
 226、509、605 入力部
 227、242、315、326、510、606 CPU
 228、243、316,327、511、607 メモリ
 229、328、512、608 無線通信部
 230 距離センサ駆動回路
 231 距離データ用メモリ
 232、329、513、609 通信インターフェース
 241 撮像素子
 301 処置具
 302、302A 処置具制御装置
 303 フットスイッチ
 304 入出力部
 311 処置具本体
 311a 超音波振動子
 312 超音波プローブ
 312a 先端処置部
 313 シース
 314 姿勢検出部
 317 回路基板
 323 トランス
 324 第1電源
 325 第2電源
 330 インピーダンス測定部
 401 ガイド本体
 402 ハンドル部
 403 コック付き排液部
 501 液体源
 502 送液チューブ
 503 送液ポンプ
 504 排液ボトル
 505 排液チューブ
 506 排液ポンプ
 507 送液制御部
 508 排液制御部
 514 ポンプ内CPU
 515 ポンプ内メモリ
 571 第1駆動制御部
 572 第1駆動電力生成部
 573 第1トランス
 574 送液ポンプ駆動回路
 581 第2駆動制御部
 582 第2駆動電力生成部
 583 第2トランス
 584 排液ポンプ駆動回路
 610 照明回路内CPU
 900 大腿骨外顆
 C1 関節腔
 J1 膝関節
 P1 第1のポータル
 P2 第2のポータル
1 Treatment system 2 Endoscope device 3 Treatment device 4 Guiding device 5 Perfusion device 5a, 6a, 202a, 321 Primary circuit 5b, 6b, 202b, 322 Patient circuit 5c Pump 6 Lighting device 6c Lighting circuit 7 Network control device 8 Network server 61A Memory in illumination circuit 100 Treatment target site 101 Bone hole 201 Endoscope 202 Endoscope control device 203 Display device 204 Imaging section 205 Operation input section 211 Insertion section 221 Imaging processing section 221a Imaging element drive control circuit 221b Imaging element Signal control circuit 222 Image processing section 222a First image processing circuit 222b Second image processing circuit 223 Turbidity detection section 224a Image sensor 226, 509, 605 Input section 227, 242, 315, 326, 510, 606 CPU
228, 243, 316, 327, 511, 607 Memory 229, 328, 512, 608 Wireless communication unit 230 Distance sensor drive circuit 231 Memory for distance data 232, 329, 513, 609 Communication interface 241 Image sensor 301 Treatment instrument 302, 302A Treatment instrument control device 303 Foot switch 304 Input/output section 311 Treatment instrument body 311a Ultrasonic transducer 312 Ultrasonic probe 312a Tip treatment section 313 Sheath 314 Posture detection section 317 Circuit board 323 Transformer 324 First power source 325 Second power source 330 Impedance measurement Section 401 Guide body 402 Handle section 403 Drainage section with cock 501 Liquid source 502 Liquid feeding tube 503 Liquid feeding pump 504 Drainage bottle 505 Drainage tube 506 Drainage pump 507 Liquid feeding control section 508 Drainage control section 514 CPU in pump
515 Internal pump memory 571 First drive control unit 572 First drive power generation unit 573 First transformer 574 Liquid pump drive circuit 581 Second drive control unit 582 Second drive power generation unit 583 Second transformer 584 Drainage pump drive circuit 610 CPU in lighting circuit
900 Lateral condyle of femur C1 Joint cavity J1 Knee joint P1 First portal P2 Second portal

Claims (13)

  1.  液中で生体組織を切削する処置具と、
     前記液の灌流を制御する灌流装置と、
     前記処置具によって切削されて発生する切削塵に起因する前記液の濁りの変化を判断するための濁り情報を予め記憶する濁り情報記憶部と、
     前記処置具による切削状態を示すデータを測定する切削データ測定部と、
     前記測定された切削データおよび前記記憶された濁り情報に基づいて、前記灌流装置の駆動条件を制御する制御部と、
     を備える処置システム。
    A treatment tool that cuts biological tissue in liquid;
    a perfusion device that controls perfusion of the liquid;
    a turbidity information storage unit that stores in advance turbidity information for determining a change in turbidity of the liquid due to cutting dust generated by cutting with the treatment instrument;
    a cutting data measurement unit that measures data indicating a cutting state by the treatment instrument;
    a control unit that controls driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information;
    A treatment system comprising:
  2.  前記切削データ測定部は、前記処置具に供給される電力に基づいて測定されるインピーダンスを測定する、
     請求項1に記載の処置システム。
    The cutting data measuring unit measures impedance measured based on electric power supplied to the treatment instrument.
    The treatment system according to claim 1.
  3.  前記切削データ測定部は、前記処置具によって切削を開始した切削時刻からの経過時間を測定する、
     請求項1に記載の処置システム。
    The cutting data measurement unit measures an elapsed time from a cutting time when cutting was started by the treatment instrument.
    The treatment system according to claim 1.
  4.  前記制御部は、前記測定された切削データおよび前記記憶された濁り情報に基づいて、前記灌流装置の動作モードを、切削モード、待機モードおよび停止モードのいずれかに設定する、
     請求項1に記載の処置システム。
    The control unit sets the operation mode of the perfusion device to one of a cutting mode, a standby mode, and a stop mode, based on the measured cutting data and the stored turbidity information.
    The treatment system according to claim 1.
  5.  前記制御部は、前記切削モードにおいて、前記灌流装置の駆動条件として、前記状態情報に基づいて、電力振幅および電力周波数の少なくとも一方が互いに異なる複数の駆動条件のうちのいずれかの駆動条件を設定する、
     請求項4に記載の処置システム。
    In the cutting mode, the control unit sets, as a drive condition of the perfusion device, one of a plurality of drive conditions in which at least one of a power amplitude and a power frequency is different from each other, based on the state information. do,
    The treatment system according to claim 4.
  6.  前記処置具を制御する処置具制御装置、
     を備え、
     前記制御部は、前記処置具制御装置に設けられ、
     有線または無線通信によって、前記駆動条件を前記灌流装置に出力する、
     請求項1に記載の処置システム。
    a treatment tool control device that controls the treatment tool;
    Equipped with
    The control unit is provided in the treatment instrument control device,
    outputting the driving conditions to the perfusion device by wired or wireless communication;
    The treatment system according to claim 1.
  7.  前記制御部は、前記灌流装置に設けられ、
     前記処置具を経て取得した切削データおよび前記濁り情報に基づいて、当該灌流装置の駆動条件を設定する、
     請求項1に記載の処置システム。
    The control unit is provided in the perfusion device,
    setting driving conditions for the perfusion device based on the cutting data acquired through the treatment tool and the turbidity information;
    The treatment system according to claim 1.
  8.  前記制御部は、
     前記待機モードにおいて、前記生体組織の切削完了後、予め設定された時間、灌流を継続させる駆動条件を設定する、
     請求項4に記載の処置システム。
    The control unit includes:
    In the standby mode, after the cutting of the biological tissue is completed, driving conditions are set to continue perfusion for a preset time;
    The treatment system according to claim 4.
  9.  前記処置具は、超音波処置具である、
     請求項1に記載の処置システム。
    The treatment tool is an ultrasonic treatment tool,
    The treatment system according to claim 1.
  10.  前記液の濁りは、超音波振動によるハンマリングによって骨を切削した際に発生した骨粉に起因するものである、
     請求項1に記載の処置システム。
    The turbidity of the liquid is caused by bone powder generated when the bone is cut by hammering using ultrasonic vibration.
    The treatment system according to claim 1.
  11.  前記液の濁りは、白色の粒子によるものである、
     請求項1に記載の処置システム。
    The turbidity of the liquid is due to white particles,
    The treatment system according to claim 1.
  12.  前記処置具による切削処置を観測する撮像部を制御する内視鏡制御装置と、
     前記観測位置を照明する照明装置と、
     をさらに備える請求項1に記載の処置システム。
    an endoscope control device that controls an imaging unit that observes the cutting treatment performed by the treatment tool;
    a lighting device that illuminates the observation position;
    The treatment system according to claim 1, further comprising:
  13.  液中で生体組織を切削する処置具と、前記液の灌流を制御する灌流装置と、前記処置具によって切削されて発生する切削塵に起因する前記液の濁りの変化を判断するための濁り情報を予め記憶する濁り情報記憶部と、前記制御部とを備える処置システムの作動方法であって、
     切削データ測定部が、前記処置具による切削状態を示すデータを測定し、
     前記制御部が、前記測定された切削データおよび前記記憶された濁り情報に基づいて、前記灌流装置の駆動条件を制御する、
     処置システムの作動方法。
    A treatment tool that cuts biological tissue in a liquid, a perfusion device that controls perfusion of the liquid, and turbidity information for determining changes in turbidity of the liquid due to cutting dust generated by cutting with the treatment tool. A method of operating a treatment system comprising: a turbidity information storage section that stores in advance a turbidity information storage section; and the control section:
    a cutting data measuring unit measures data indicating a cutting state by the treatment tool,
    The control unit controls driving conditions of the perfusion device based on the measured cutting data and the stored turbidity information.
    How the treatment system works.
PCT/JP2022/011137 2022-03-11 2022-03-11 Treatment system and operating method for treatment system WO2023170982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011137 WO2023170982A1 (en) 2022-03-11 2022-03-11 Treatment system and operating method for treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011137 WO2023170982A1 (en) 2022-03-11 2022-03-11 Treatment system and operating method for treatment system

Publications (1)

Publication Number Publication Date
WO2023170982A1 true WO2023170982A1 (en) 2023-09-14

Family

ID=87936526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011137 WO2023170982A1 (en) 2022-03-11 2022-03-11 Treatment system and operating method for treatment system

Country Status (1)

Country Link
WO (1) WO2023170982A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158792A1 (en) * 2010-06-17 2011-12-22 オリンパスメディカルシステムズ株式会社 Ultrasound suction system and ultrasound suction method
WO2016171014A1 (en) * 2015-04-22 2016-10-27 オリンパス株式会社 Treatment instrument and treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158792A1 (en) * 2010-06-17 2011-12-22 オリンパスメディカルシステムズ株式会社 Ultrasound suction system and ultrasound suction method
WO2016171014A1 (en) * 2015-04-22 2016-10-27 オリンパス株式会社 Treatment instrument and treatment system

Similar Documents

Publication Publication Date Title
EP2332459B1 (en) Medical system
WO2017013815A1 (en) Ultrasound treatment tool and ultrasound treatment assembly
CN107920839B (en) Ultrasonic surgical system
JP6001226B1 (en) Joint surgery system
US11246620B2 (en) Ultrasonic surgical instrument
JP7315785B2 (en) SURGERY SYSTEM, CONTROL UNIT AND METHOD OF OPERATION OF SURGICAL SYSTEM
US20210330342A1 (en) Ultrasonic probe
WO2023170982A1 (en) Treatment system and operating method for treatment system
CN107847257A (en) Ultrasonic surgical apparatus and correlation technique
JP2020508742A (en) Minimally invasive ultrasonic bone blade head and minimally invasive ultrasonic bone power system
WO2022191047A1 (en) Treatment system, control device, and method for operating treatment system
US10226272B2 (en) Arthroscopic surgery method for osteochondritis dissecans of talus
WO2023170971A1 (en) Treatment instrument
WO2022191215A1 (en) Treatment system and operating method for treatment system
US20170172623A1 (en) Method for ankle arthrodesis
WO2023170765A1 (en) Imaging device, treatment system, and imaging method
CN114269276A (en) System for temperature monitoring while performing laser-based intracorporeal lithotripsy
WO2018078833A1 (en) Ultrasonic probe
JP6033503B1 (en) Ultrasonic treatment device and ultrasonic treatment assembly
WO2023170972A1 (en) Image processing device, treatment system, learning device, and image processing method
WO2018078827A1 (en) Ultrasonic probe and ultrasonic treatment tool
WO2023170889A1 (en) Image processing device, energy treatment tool, treatment system, and image processing method
JP3631388B2 (en) Surgery system
US10213223B2 (en) Arthroscopic surgery method for ankle ligament reconstruction
JP4274998B2 (en) Ultrasonic surgery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930962

Country of ref document: EP

Kind code of ref document: A1