WO2023170903A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2023170903A1
WO2023170903A1 PCT/JP2022/010825 JP2022010825W WO2023170903A1 WO 2023170903 A1 WO2023170903 A1 WO 2023170903A1 JP 2022010825 W JP2022010825 W JP 2022010825W WO 2023170903 A1 WO2023170903 A1 WO 2023170903A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
stator core
axial direction
electromagnetic steel
recess
Prior art date
Application number
PCT/JP2022/010825
Other languages
French (fr)
Japanese (ja)
Inventor
健次 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/010825 priority Critical patent/WO2023170903A1/en
Priority to JP2024505793A priority patent/JPWO2023170903A1/ja
Publication of WO2023170903A1 publication Critical patent/WO2023170903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a motor.
  • the coil of the motor is formed by winding a winding wire around the teeth of a stator core, which is a magnetic core, through an insulator, which is an insulator.
  • a stator core which is a magnetic core
  • an insulator which is an insulator.
  • conventional stator cores generally have a shape that is long in the axial direction and short in the circumferential direction.
  • a magnetic generator is equipped with a laminated core whose width in the rotor rotation direction gradually narrows from the center to both ends in the rotor axial direction. has been disclosed (for example, see Patent Document 1).
  • the above generator reduces the gap when the winding bulge occurs near the center of the laminated core in the axial direction.
  • the width of the laminated core in the rotor rotational direction becomes narrower from the central part in the axial direction toward both ends, gaps are created at both ends in the axial direction.
  • the present disclosure has been made in order to solve the above-mentioned problems, and provides a motor that can reduce the voids that occur at both ends of the laminated core in the axial direction when winding the winding wire, and suppress winding bulge.
  • the purpose is to obtain.
  • a motor according to the present disclosure includes a cylindrical rotor provided with magnets and electromagnetic steel plates having a pair of recesses having different lengths in the circumferential direction, stacked in the axial direction, and the direction of the electromagnetic steel plates is reversed in the axial direction.
  • the rotor is provided with a stator core having a winding wound around a pair of recesses, and a plurality of stators arranged annularly on the outer diameter side of the rotor.
  • the stator core is provided by laminating in the axial direction electromagnetic steel plates having a pair of recesses having different lengths in the circumferential direction, and reversing the direction of the electromagnetic steel plates in the axial direction. This has the effect of reducing the gap generated near the center of the stator core in the axial direction and also reducing the gap generated at both ends, thereby suppressing curling and swelling.
  • FIG. 1 is a schematic diagram of a motor according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a part of cross section AA in FIG. 1.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. It is an external view of an electromagnetic steel sheet.
  • FIG. 4 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to the first embodiment.
  • FIG. 4 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to the second embodiment.
  • the axial direction is the direction in which the shaft extends.
  • the radial direction is the radial direction of the shaft.
  • the circumferential direction is the direction in which the shaft rotates.
  • FIG. 1 is a schematic diagram of a motor according to a first embodiment.
  • FIG. 2 is a diagram showing a part of the cross section AA in FIG. 1.
  • FIG. 3 is an enlarged view of a portion of the stator core of FIG. 2.
  • FIG. 4 is an external view of the electrical steel sheet.
  • FIG. 5 is a diagram showing cross section B of FIG. 3 in the stator core of the motor according to the first embodiment.
  • the motor 1 shown in FIG. 1 includes a rotor 2, a stator 3, a frame 4, an encoder 5, and a bracket 6.
  • the rotor 2 has a cylindrical shape and includes a magnet 21 and a shaft 22. As shown in FIG. 2, a plurality of magnets 21 are provided on the outer diameter side of the shaft 22. Note that the example shown in FIG. 2 is an example, and the arrangement position and arrangement method of the magnet 21 are not particularly limited. For example, it may be fixed to the outer peripheral surface of the shaft 22 using an adhesive or the like. Further, it may be embedded in the shaft 22 so as to face the stator 3 on the outer diameter side of the shaft 22.
  • the shaft 22 is provided to pass through the stator 3 and the bracket 6, and is rotatable in the circumferential direction.
  • the brackets 6 are provided at both ends of the stator 3 in the axial direction so as to closely support the frame 4 without inhibiting rotation of the shaft 22.
  • the brackets 6 provided at both ends of the frame 4 include a bracket 6a and a bracket 6b.
  • the bracket 6a and the bracket 6b are provided on opposite sides of the stator 3.
  • the encoder 5 is provided at the end of the bracket 6b opposite to the frame 4 in the axial direction.
  • the encoder 5 includes a sensor and measures the rotation speed and rotation angle of the rotor 2.
  • the sensor installed in the encoder 5 may be, for example, an acceleration sensor, but is not limited thereto.
  • the frame 4 has a cylindrical shape, and is provided in close contact with the outer circumferential surface of the stator 3 so that its inner circumferential surface holds the outer circumferential surface of the stator 3. Further, like the stator 3, the frame 4 is provided with a bracket 6a and a bracket 6b in close contact with each other at both ends in the axial direction.
  • the stator 3 has a cylindrical shape in which a plurality of stator cores 31 are arranged annularly on the outer diameter side of the rotor 2, and is provided so as to cover the outer peripheral surface of the rotor 2. Note that the rotor 2, stator 3, and frame 4 are concentric.
  • a plurality of stator cores 31 arranged in a circular shape on the outer diameter side of the rotor 2 include a winding 32 , an insulating paper 33 , and an insulator 7 .
  • the stator core 31 includes teeth portions 35 around which the winding 32 is wound with an insulating paper 33 interposed therebetween.
  • the insulating paper 33 is provided so as to be sandwiched between the teeth 35 and the winding 32, and has the role of preventing the current flowing through the winding 32 from flowing toward the teeth 35.
  • the teeth portions 35 around which the winding wire 32 is wound are provided with asymmetrical distances from the circumferential center of the stator core 31.
  • the winding 32 is provided so as to be wound around the teeth portion 35 of the stator core 31.
  • the material of the winding 32 is not particularly limited, it is preferable to use copper, for example.
  • the pair of insulators 7 are provided at both ends of the stator core 31 in the axial direction.
  • the stator core 31 is constructed by laminating electromagnetic steel plates 34 shown in FIG. 4 in the axial direction.
  • the electromagnetic steel plate 34 has a pair of recesses 8 having different lengths in the circumferential direction. That is, the first recess 81 has a shorter length in the circumferential direction than the second recess 82, and the first recess 81 and the second recess 82 are provided at asymmetrical distances from the center of the electromagnetic steel sheet 34 in the circumferential direction. ing. Note that in this embodiment, the length of the recess 8 represents the depth of the recess 8 in the circumferential direction.
  • the stator core 31 is constructed by stacking the electromagnetic steel plates 34 with their directions reversed in the axial direction.
  • “inversion” here refers to turning the front and back sides upside down.
  • the stator core 31 is constructed by reversing the direction of the electromagnetic steel plates 34, that is, turning the electromagnetic steel plates 34 upside down, during the stacking process when the electromagnetic steel plates 34 are stacked in the axial direction. This will be explained specifically using FIG. 5.
  • FIG. 5 shows cross section B of FIG. 3 at the tooth portion 35.
  • the arrow indicates the direction in which the winding 32 is wound.
  • the teeth portion 35 of the stator core 31 is provided by laminating electromagnetic steel plates 34 in the axial direction and reversing the direction of the electromagnetic steel plates 34 in the axial direction. That is, the stator core 31 is configured such that teeth portions 35 having the same width are shifted in the circumferential direction.
  • the stator core 31 is provided by stacking the electromagnetic steel sheets 34 with their directions reversed at the center in the axial direction, so that only one cutting die shape is required to create the electromagnetic steel sheets 34. . Therefore, there is no need to prepare electromagnetic steel sheets 34 having different shapes, and manufacturing costs can be reduced.
  • the position of the winding bulge differs depending on the direction in which the winding 32 is wound. Specifically, as shown in FIG. 5, when the winding 32 is wound in the circumferential direction from the second recess 82 to the first recess 81, that is, counterclockwise, a winding bulge is created on the first recess 81 side. As a result, the gap between the winding 32 and the teeth portion 35 of the stator core 31 becomes larger. Similarly, when the winding wire 32 is wound in the opposite direction, a bulge is generated on the second recess 82 side shown in FIG.
  • the direction of the electromagnetic steel plate 34 is reversed in the axial direction so that the first recess 81 is in the front and the second recess 82 is in the rear in the direction in which the winding 32 is wound in the circumferential direction. Constructed by stacking.
  • the stator core 31 is configured such that the first recess 81 located at the front in the direction in which the winding 32 is wound in the circumferential direction is shorter than the second recess 82 located at the rear. With this configuration, it is possible to reduce the gap caused by the winding bulge that occurs when the winding wire 32 is wound.
  • FIG. 5 shows an example in which the winding 32 is wound counterclockwise, similarly, when winding the winding 32 clockwise, a length longer than the second recess 82 is placed forward in the circumferential direction.
  • the stator core 31 is provided by stacking the electromagnetic steel plates 34 with their orientation reversed in the axial direction so that the first recess 81 has a short length and the second recess 82 exists at the rear.
  • the rotor 2 is rotated by the current input to the winding 32, and power is transmitted from the shaft 22 to the outside.
  • the encoder 5 detects the rotation speed and rotation angle of the rotor 2, and sends a signal to a control device (not shown).
  • the method of cooling the frame 4 is not particularly limited and may be either air cooling or liquid cooling.
  • the motor 1 of the present embodiment is provided by laminating the electromagnetic steel plates 34 having a pair of recesses 8 having different lengths in the circumferential direction in the axial direction, and reversing the orientation of the electromagnetic steel plates 34 in the axial direction. It constitutes a stator core 31. With this configuration, it is possible to reduce the gap near the center in the axial direction that is generated due to the curling and bulging, and also to reduce the gaps that occur at both ends in the axial direction. This reduces the thermal resistance between the stator core 31 and the winding 32, reduces the temperature of the winding 32, and improves the energy efficiency of the motor 1.
  • stator core 31 by configuring the stator core 31 by stacking the electromagnetic steel plates 34 with their directions reversed at the center in the axial direction, it is not necessary to create electromagnetic steel plates 34 with different shapes, and manufacturing costs can be reduced.
  • FIG. 6 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to this embodiment.
  • Embodiment 1 a motor is provided with a stator core in which electromagnetic steel plates having a pair of recesses having different circumferential lengths are laminated in the axial direction, and the orientation of the electromagnetic steel plates is reversed in the axial direction.
  • Embodiment 2 shows a motor including an insulator in which a winding portion that is wound together with a stator core protrudes in a direction opposite to the stator core.
  • the other configurations are the same as those in Embodiment 1, and the same components as in Embodiment 1 are given the same numbers and their explanations will be omitted.
  • a winding portion 74 that is wound around the winding 32 together with the stator core 31 via the insulating paper 33 has a chevron-shaped portion that protrudes in the opposite direction to the stator core 31. It has the shape of Although FIG. 6 shows an example in which the winding portion 74 has a mountain-shaped shape, the present invention is not limited to this, and any shape may be used as long as it protrudes in the opposite direction to the stator core 31.
  • the winding portions 74 of the pair of insulators 71 having a chevron-shaped shape are provided closer to the first recess 81 than the center in the circumferential direction of the top portion 72 .
  • the top portion 72 is a protruding portion of the winding portion 74 that protrudes most in the direction opposite to the stator core 31.
  • the direction of the arrow shown in FIG. 6 indicates the direction in which the winding wire 32 is wound.
  • the winding bulge tends to occur on the first recess 81 side shown in FIG. It is provided on the first recess 81 side.
  • the winding bulge tends to occur on the second recess 82 side shown in FIG. It is provided closer to the second recess 82 shown in FIG. That is, the top portion 72 of the winding portion 74 is provided on the side of the first recess 81 located forward of the center in the circumferential direction of the winding portion 74 in the direction in which the winding 32 is wound.
  • the winding 32 is provided closer to the first recess 81 than the center in the circumferential direction. It is possible to reduce the gap between the stator core 31 and the winding 32 due to the winding bulge that occurs when the winding is wound.

Abstract

In a stator core of the present invention, electromagnetic steel sheets that each have a pair of recesses of differing lengths in the circumferential direction are stacked in the axial direction, and are provided such that the orientations of the electromagnetic steel sheets in the axial direction are reversed. Thus, obtained is a motor in which it is possible to reduce gaps that occur on either end in the axial direction of the stator core and to suppress winding bulging. A motor (1) comprises a columnar rotor (2) in which a magnet (21) is provided, and a stator (3) in which a plurality of stator cores (31) are disposed in a ring shape on the outer circumferential side of the rotor (2), wherein in each stator core (31), electromagnetic steel sheets (34) that each have a pair of recesses (8) of differing lengths in the circumferential direction are stacked in the axial direction and are provided such that the orientations of the electromagnetic steel sheets (34) in the axial direction are reversed, and a coil (32) is wound in the pairs of recesses (8).

Description

モータmotor
 本開示は、モータに関する。 The present disclosure relates to a motor.
 モータのコイルは、磁心となる固定子コアのティースの周りに絶縁体であるインシュレーターを介して巻線を巻回することにより形成される。また、従来の固定子コアは軸方向に長く、周方向に短い形状を有していることが一般的である。 The coil of the motor is formed by winding a winding wire around the teeth of a stator core, which is a magnetic core, through an insulator, which is an insulator. Furthermore, conventional stator cores generally have a shape that is long in the axial direction and short in the circumferential direction.
 そのため、固定子コアのティースの周りに巻線を巻回する際に巻き膨らみが生じてしまう。そこで巻き膨らみによる巻線と固定子コアとの空隙を小さくする技術として例えば、ロータ回転方向の幅がロータ軸方向の中央部から両端に向かって段階的に狭くなる積層コアを備える磁石式発電機が開示されている(例えば、特許文献1参照)。 Therefore, when winding the winding around the teeth of the stator core, a bulge occurs. Therefore, as a technology to reduce the gap between the winding and the stator core due to the winding bulge, for example, a magnetic generator is equipped with a laminated core whose width in the rotor rotation direction gradually narrows from the center to both ends in the rotor axial direction. has been disclosed (for example, see Patent Document 1).
特開2004-135382号公報Japanese Patent Application Publication No. 2004-135382
 上記発電機は、巻線の巻き膨らみが積層コアの軸方向の中央付近に発生する場合において空隙を小さくする。一方で軸方向の中央部から両端に向かうほど積層コアのロータ回転方向の幅が狭くなるため、軸方向の両端側には空隙が生じてしまう。 The above generator reduces the gap when the winding bulge occurs near the center of the laminated core in the axial direction. On the other hand, since the width of the laminated core in the rotor rotational direction becomes narrower from the central part in the axial direction toward both ends, gaps are created at both ends in the axial direction.
 本開示は上述のような課題を解決するためになされたものであり、巻線の巻回時に積層コアの軸方向の両端側において生じる空隙を小さくし、巻き膨らみを抑制することができるモータを得ることを目的としている。 The present disclosure has been made in order to solve the above-mentioned problems, and provides a motor that can reduce the voids that occur at both ends of the laminated core in the axial direction when winding the winding wire, and suppress winding bulge. The purpose is to obtain.
 本開示にかかるモータは、磁石が設けられた円柱形状の回転子と、周方向の長さが異なる一対の凹部を有した電磁鋼板を軸方向に積層し、軸方向において電磁鋼板の向きを反転して設けられ、一対の凹部に巻線が巻回された固定子コアが回転子の外径側に環状に複数配置された固定子とを備えたものである。 A motor according to the present disclosure includes a cylindrical rotor provided with magnets and electromagnetic steel plates having a pair of recesses having different lengths in the circumferential direction, stacked in the axial direction, and the direction of the electromagnetic steel plates is reversed in the axial direction. The rotor is provided with a stator core having a winding wound around a pair of recesses, and a plurality of stators arranged annularly on the outer diameter side of the rotor.
 本開示のモータによれば、固定子コアが周方向の長さが異なる一対の凹部を有した電磁鋼板を軸方向に積層し、軸方向において電磁鋼板の向きを反転して設けられているため、固定子コアの軸方向の中央付近に発生する空隙を小さくしつつ両端側に発生する空隙も小さくし、巻き膨らみを抑制する効果を有する。 According to the motor of the present disclosure, the stator core is provided by laminating in the axial direction electromagnetic steel plates having a pair of recesses having different lengths in the circumferential direction, and reversing the direction of the electromagnetic steel plates in the axial direction. This has the effect of reducing the gap generated near the center of the stator core in the axial direction and also reducing the gap generated at both ends, thereby suppressing curling and swelling.
実施の形態1にかかるモータの概略図である。1 is a schematic diagram of a motor according to Embodiment 1. FIG. 図1の断面A―Aの一部を示す図である。2 is a diagram illustrating a part of cross section AA in FIG. 1. FIG. 図2の一部拡大図である。3 is a partially enlarged view of FIG. 2. FIG. 電磁鋼板の外観図である。It is an external view of an electromagnetic steel sheet. 実施の形態1にかかるモータの固定子コアにおける図3の断面Bを示す図である。FIG. 4 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to the first embodiment. 実施の形態2にかかるモータの固定子コアにおける図3の断面Bを示す図である。FIG. 4 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to the second embodiment.
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示である。また、各実施の形態は、適宜組み合わせて実行することができる。 Hereinafter, embodiments will be described in detail based on the drawings. Note that the embodiment described below is an example. Moreover, each embodiment can be executed in combination as appropriate.
 また、図面にも図示したように軸方向および周方向を定義して説明を行う。軸方向は、シャフトが延在する方向である。径方向は、シャフトの半径方向である。周方向は、シャフトが回転する方向である。 Further, as shown in the drawings, the axial direction and circumferential direction will be defined and explained. The axial direction is the direction in which the shaft extends. The radial direction is the radial direction of the shaft. The circumferential direction is the direction in which the shaft rotates.
 実施の形態1.
 図1は実施の形態1にかかるモータの概略図である。図2は図1の断面A―Aの一部を示す図である。図3は図2の固定子コアを一部拡大した拡大図である。図4は電磁鋼板の外観図である。図5は実施の形態1にかかるモータの固定子コアにおける図3の断面Bを示す図である。
Embodiment 1.
FIG. 1 is a schematic diagram of a motor according to a first embodiment. FIG. 2 is a diagram showing a part of the cross section AA in FIG. 1. FIG. 3 is an enlarged view of a portion of the stator core of FIG. 2. As shown in FIG. FIG. 4 is an external view of the electrical steel sheet. FIG. 5 is a diagram showing cross section B of FIG. 3 in the stator core of the motor according to the first embodiment.
 図1に示すモータ1は、回転子2、固定子3、フレーム4、エンコーダ5およびブラケット6を備えている。 The motor 1 shown in FIG. 1 includes a rotor 2, a stator 3, a frame 4, an encoder 5, and a bracket 6.
 以下、図1および図2を用いて説明をする。回転子2は、円柱形状を有し磁石21およびシャフト22を備えている。図2に示すように磁石21は、シャフト22の外径側に複数設けられている。なお図2に示す例は一例であり、磁石21の配置位置および配置方法は特に問わない。例えばシャフト22の外周面に接着剤などを用いて固定するようにしてもよい。また、シャフト22の外径側において固定子3と対向するようにシャフト22に埋め込まれていてもよい。 The following will explain using FIGS. 1 and 2. The rotor 2 has a cylindrical shape and includes a magnet 21 and a shaft 22. As shown in FIG. 2, a plurality of magnets 21 are provided on the outer diameter side of the shaft 22. Note that the example shown in FIG. 2 is an example, and the arrangement position and arrangement method of the magnet 21 are not particularly limited. For example, it may be fixed to the outer peripheral surface of the shaft 22 using an adhesive or the like. Further, it may be embedded in the shaft 22 so as to face the stator 3 on the outer diameter side of the shaft 22.
 シャフト22は、固定子3およびブラケット6を貫通して設けられ、周方向に回転自在である。ブラケット6は固定子3の軸方向両端において、シャフト22の回転を阻害することなく、フレーム4に密接して支持するように設けられている。なお図1に示すようにフレーム4の両端に設けられたブラケット6は、ブラケット6aおよびブラケット6bからなる。ブラケット6aおよびブラケット6bは固定子3を隔てて反対側に設けられている。 The shaft 22 is provided to pass through the stator 3 and the bracket 6, and is rotatable in the circumferential direction. The brackets 6 are provided at both ends of the stator 3 in the axial direction so as to closely support the frame 4 without inhibiting rotation of the shaft 22. Note that, as shown in FIG. 1, the brackets 6 provided at both ends of the frame 4 include a bracket 6a and a bracket 6b. The bracket 6a and the bracket 6b are provided on opposite sides of the stator 3.
 エンコーダ5は軸方向において、ブラケット6bのフレーム4とは反対側の端部に設けられている。エンコーダ5はセンサを内装しており、回転子2の回転速度および回転角などを測定する。なお、エンコーダ5が内装するセンサには例えば加速度センサなどを用いればよいがこれに限らない。 The encoder 5 is provided at the end of the bracket 6b opposite to the frame 4 in the axial direction. The encoder 5 includes a sensor and measures the rotation speed and rotation angle of the rotor 2. Note that the sensor installed in the encoder 5 may be, for example, an acceleration sensor, but is not limited thereto.
 フレーム4は筒状の形状を有しており、内周面が固定子3の外周面を保持するように密着して設けられている。また、フレーム4は固定子3と同様、軸方向両端においてブラケット6aおよびブラケット6bが密着するように備わっている。 The frame 4 has a cylindrical shape, and is provided in close contact with the outer circumferential surface of the stator 3 so that its inner circumferential surface holds the outer circumferential surface of the stator 3. Further, like the stator 3, the frame 4 is provided with a bracket 6a and a bracket 6b in close contact with each other at both ends in the axial direction.
 固定子3は固定子コア31が回転子2の外径側に環状に複数配置された筒状の形状を有しており、回転子2の外周面を覆うように設けられている。なお、回転子2、固定子3およびフレーム4は同心である。 The stator 3 has a cylindrical shape in which a plurality of stator cores 31 are arranged annularly on the outer diameter side of the rotor 2, and is provided so as to cover the outer peripheral surface of the rotor 2. Note that the rotor 2, stator 3, and frame 4 are concentric.
 次に図3から図5を用いて固定子コア31について説明をする。回転子2の外径側において円形状に複数配置された固定子コア31は、巻線32、絶縁紙33およびインシュレーター7を備えている。 Next, the stator core 31 will be explained using FIGS. 3 to 5. A plurality of stator cores 31 arranged in a circular shape on the outer diameter side of the rotor 2 include a winding 32 , an insulating paper 33 , and an insulator 7 .
 図3に示すように固定子コア31は、巻線32が絶縁紙33を介して巻回されるティース部35を備えている。絶縁紙33はティース部35と巻線32との間に挟み込むように設けられており、巻線32を流れる電流がティース部35側へ流れるのを防ぐ役割がある。なお巻線32が巻回されるティース部35は、固定子コア31の周方向中央からの距離が非対称に設けられている。 As shown in FIG. 3, the stator core 31 includes teeth portions 35 around which the winding 32 is wound with an insulating paper 33 interposed therebetween. The insulating paper 33 is provided so as to be sandwiched between the teeth 35 and the winding 32, and has the role of preventing the current flowing through the winding 32 from flowing toward the teeth 35. Note that the teeth portions 35 around which the winding wire 32 is wound are provided with asymmetrical distances from the circumferential center of the stator core 31.
 また巻線32は、固定子コア31のティース部35に巻回して設けられている。巻線32は材質などを特に問わないが、例えば銅を用いるとよい。また一対のインシュレーター7は、固定子コア31の軸方向の両端部に各々設けられている。 Further, the winding 32 is provided so as to be wound around the teeth portion 35 of the stator core 31. Although the material of the winding 32 is not particularly limited, it is preferable to use copper, for example. Further, the pair of insulators 7 are provided at both ends of the stator core 31 in the axial direction.
 固定子コア31は図4に示す電磁鋼板34を軸方向に積層して構成されている。電磁鋼板34は周方向の長さが異なる一対の凹部8を有している。すなわち、第一の凹部81は第二の凹部82よりも周方向の長さが短く、第一の凹部81および第二の凹部82は電磁鋼板34の周方向中央からの距離が非対称に設けられている。なお本実施の形態において、凹部8の長さとは凹部8の周方向の深さを表す。 The stator core 31 is constructed by laminating electromagnetic steel plates 34 shown in FIG. 4 in the axial direction. The electromagnetic steel plate 34 has a pair of recesses 8 having different lengths in the circumferential direction. That is, the first recess 81 has a shorter length in the circumferential direction than the second recess 82, and the first recess 81 and the second recess 82 are provided at asymmetrical distances from the center of the electromagnetic steel sheet 34 in the circumferential direction. ing. Note that in this embodiment, the length of the recess 8 represents the depth of the recess 8 in the circumferential direction.
 また、固定子コア31は軸方向において電磁鋼板34の向きを反転して積層し構成されている。例えば図4に示す電磁鋼板34を表とすると、ここでいう反転とは表裏をひっくり返すことを指している。つまり固定子コア31は軸方向に電磁鋼板34を積層する際、積層する途中において電磁鋼板34の向きを反転すなわち電磁鋼板34の表裏をひっくり返して構成されている。具体的に図5を用いて説明をする。 Furthermore, the stator core 31 is constructed by stacking the electromagnetic steel plates 34 with their directions reversed in the axial direction. For example, assuming that the electromagnetic steel sheet 34 shown in FIG. 4 is the front side, "inversion" here refers to turning the front and back sides upside down. In other words, the stator core 31 is constructed by reversing the direction of the electromagnetic steel plates 34, that is, turning the electromagnetic steel plates 34 upside down, during the stacking process when the electromagnetic steel plates 34 are stacked in the axial direction. This will be explained specifically using FIG. 5.
 図5はティース部35における図3の断面Bを示している。矢印は巻線32を巻回する向きを示している。図5に示すように固定子コア31のティース部35は、電磁鋼板34を軸方向に積層し、軸方向において電磁鋼板34の向きを反転して設けられている。すなわち固定子コア31は、同一幅のティース部35が周方向にずれて構成されている。 FIG. 5 shows cross section B of FIG. 3 at the tooth portion 35. The arrow indicates the direction in which the winding 32 is wound. As shown in FIG. 5, the teeth portion 35 of the stator core 31 is provided by laminating electromagnetic steel plates 34 in the axial direction and reversing the direction of the electromagnetic steel plates 34 in the axial direction. That is, the stator core 31 is configured such that teeth portions 35 having the same width are shifted in the circumferential direction.
 なお、電磁鋼板34の向きを反転させる位置および反転回数については問わないが、図5に示すように固定子コア31の軸方向の中央において電磁鋼板34の向きを反転し積層するとよい。このように固定子コア31は、電磁鋼板34を軸方向の中央にて向きを反転し積層して設けられることにより、電磁鋼板34を作成するための抜型の形状は1つで済むことになる。そのため、形状の異なる電磁鋼板34を準備する必要がなく、製造コストを低減できる。 Although the position and number of times of reversal of the direction of the electromagnetic steel sheets 34 are not limited, it is preferable to reverse the direction of the electromagnetic steel sheets 34 at the axial center of the stator core 31 and stack them as shown in FIG. In this way, the stator core 31 is provided by stacking the electromagnetic steel sheets 34 with their directions reversed at the center in the axial direction, so that only one cutting die shape is required to create the electromagnetic steel sheets 34. . Therefore, there is no need to prepare electromagnetic steel sheets 34 having different shapes, and manufacturing costs can be reduced.
 また、ティース部35に巻線32を巻回する際、巻き膨らみは巻線32を巻回する向きによって生じる位置が異なる。具体的には図5に示すように巻線32を周方向において第二の凹部82から第一の凹部81の向きすなわち左回りに巻回する際には第一の凹部81側に巻き膨らみが生じ、巻線32と固定子コア31のティース部35との空隙が大きくなる。同様に巻線32を巻回する向きを反対にすると、図5に示す第二の凹部82側に巻き膨らみが生じる。 Further, when winding the winding 32 around the teeth portion 35, the position of the winding bulge differs depending on the direction in which the winding 32 is wound. Specifically, as shown in FIG. 5, when the winding 32 is wound in the circumferential direction from the second recess 82 to the first recess 81, that is, counterclockwise, a winding bulge is created on the first recess 81 side. As a result, the gap between the winding 32 and the teeth portion 35 of the stator core 31 becomes larger. Similarly, when the winding wire 32 is wound in the opposite direction, a bulge is generated on the second recess 82 side shown in FIG.
 そのため固定子コア31は、周方向において巻線32を巻回する向きの前方に第一の凹部81、後方に第二の凹部82となるように、軸方向において電磁鋼板34の向きを反転し積層して構成する。つまり固定子コア31は、周方向において巻線32を巻回する向きの前方に位置する第一の凹部81が後方に位置する第二の凹部82よりも長さが短い構成とする。この構成により、巻線32を巻回する際に生じる巻き膨らみによる空隙を小さくできる。 Therefore, in the stator core 31, the direction of the electromagnetic steel plate 34 is reversed in the axial direction so that the first recess 81 is in the front and the second recess 82 is in the rear in the direction in which the winding 32 is wound in the circumferential direction. Constructed by stacking. In other words, the stator core 31 is configured such that the first recess 81 located at the front in the direction in which the winding 32 is wound in the circumferential direction is shorter than the second recess 82 located at the rear. With this configuration, it is possible to reduce the gap caused by the winding bulge that occurs when the winding wire 32 is wound.
 図5には、巻線32を左回りに巻回した例を示しているが、同様に巻線32を右回りに巻回する際には周方向において前方に第二の凹部82よりも長さの短い第一の凹部81、後方に第二の凹部82となるように、固定子コア31は軸方向において電磁鋼板34の向きを反転し積層して設けられている。 Although FIG. 5 shows an example in which the winding 32 is wound counterclockwise, similarly, when winding the winding 32 clockwise, a length longer than the second recess 82 is placed forward in the circumferential direction. The stator core 31 is provided by stacking the electromagnetic steel plates 34 with their orientation reversed in the axial direction so that the first recess 81 has a short length and the second recess 82 exists at the rear.
 次にモータ1の動作について説明する。回転子2が巻線32に入力された電流により回転し、シャフト22から外部へ動力を伝える。このときエンコーダ5より、回転子2の回転速度および回転角などを検出し、図示を省略する制御装置へ信号を送信する。 Next, the operation of the motor 1 will be explained. The rotor 2 is rotated by the current input to the winding 32, and power is transmitted from the shaft 22 to the outside. At this time, the encoder 5 detects the rotation speed and rotation angle of the rotor 2, and sends a signal to a control device (not shown).
 また巻線32に電流が流れることにより、巻線32において銅損が発生し、発生した損失は熱となってモータ1の内部を移動し、各部の温度を上昇させる。各部を通った熱は、フレーム4、シャフト22、ブラケット6aおよびブラケット6bなどからモータ1の外部へ熱伝導、対流および輻射などによって放熱される。なお、フレーム4の冷却方法は特に問わず、空冷および液冷のどちらでもよい。 Furthermore, as current flows through the winding 32, copper loss occurs in the winding 32, and the generated loss becomes heat and moves inside the motor 1, raising the temperature of each part. The heat that has passed through each part is radiated to the outside of the motor 1 from the frame 4, shaft 22, brackets 6a, 6b, etc. by heat conduction, convection, radiation, etc. Note that the method of cooling the frame 4 is not particularly limited and may be either air cooling or liquid cooling.
 このとき、巻線32において銅損により生じた熱は、絶縁紙33およびインシュレーター7を介して固定子コア31に伝わる。一方、巻線32と固定子コア31との間には絶縁紙33とインシュレーター7以外にも空気の隙間すなわち空隙がある。空気の熱伝導率は絶縁紙33およびインシュレーター7より小さいため、空隙が大きいほど巻線32と固定子コア31との間の熱抵抗が大きくなり、巻線32の温度が上昇してしまう。 At this time, heat generated due to copper loss in the winding 32 is transmitted to the stator core 31 via the insulating paper 33 and the insulator 7. On the other hand, in addition to the insulating paper 33 and the insulator 7, there is an air gap, that is, a void, between the winding 32 and the stator core 31. Since the thermal conductivity of air is lower than that of the insulating paper 33 and the insulator 7, the larger the gap, the greater the thermal resistance between the winding 32 and the stator core 31, and the temperature of the winding 32 increases.
 しかしながら、本実施の形態のモータ1は、周方向の長さが異なる一対の凹部8を有した電磁鋼板34を軸方向に積層し、軸方向において電磁鋼板34の向きを反転して設けられた固定子コア31を構成している。この構成により、巻き膨らみによって発生する軸方向の中央付近の空隙を小さくしつつ、軸方向の両端側に発生する空隙も小さくできる。これにより固定子コア31と巻線32との間の熱抵抗が小さくなり、巻線32の温度が低減し、モータ1のエネルギー効率を向上できる。 However, the motor 1 of the present embodiment is provided by laminating the electromagnetic steel plates 34 having a pair of recesses 8 having different lengths in the circumferential direction in the axial direction, and reversing the orientation of the electromagnetic steel plates 34 in the axial direction. It constitutes a stator core 31. With this configuration, it is possible to reduce the gap near the center in the axial direction that is generated due to the curling and bulging, and also to reduce the gaps that occur at both ends in the axial direction. This reduces the thermal resistance between the stator core 31 and the winding 32, reduces the temperature of the winding 32, and improves the energy efficiency of the motor 1.
 また、固定子コア31が軸方向の中央において電磁鋼板34の向きを反転して積層し構成することにより、形状の異なる電磁鋼板34を作成する必要がなく、製造コストを低減できる。 Furthermore, by configuring the stator core 31 by stacking the electromagnetic steel plates 34 with their directions reversed at the center in the axial direction, it is not necessary to create electromagnetic steel plates 34 with different shapes, and manufacturing costs can be reduced.
 実施の形態2.
 本実施の形態は図6を用いて説明をする。図6は本実施の形態にかかるモータの固定子コアにおける図3の断面Bを示す図である。
Embodiment 2.
This embodiment will be explained using FIG. 6. FIG. 6 is a diagram showing cross section B in FIG. 3 of the stator core of the motor according to this embodiment.
 実施の形態1では、周方向の長さが異なる一対の凹部を有した電磁鋼板を軸方向に積層し、軸方向において電磁鋼板の向きを反転して設けられた固定子コアを備えたモータを示した。実施の形態2では、固定子コアと共に巻線に巻回される巻回部が固定子コアとは反対方向に突出しているインシュレーターを備えたモータを示す。それ以外の構成は実施の形態1と同様であり、実施の形態1と同じ構成には同じ番号を付し、説明は省略する。 In Embodiment 1, a motor is provided with a stator core in which electromagnetic steel plates having a pair of recesses having different circumferential lengths are laminated in the axial direction, and the orientation of the electromagnetic steel plates is reversed in the axial direction. Indicated. Embodiment 2 shows a motor including an insulator in which a winding portion that is wound together with a stator core protrudes in a direction opposite to the stator core. The other configurations are the same as those in Embodiment 1, and the same components as in Embodiment 1 are given the same numbers and their explanations will be omitted.
 図6に示すように一対のインシュレーター71において、絶縁紙33を介して固定子コア31と共に巻線32に巻回される巻回部74は、固定子コア31とは反対方向に突出した山型の形状を有している。なお図6では巻回部74が山型の形状を有している例を示しているがこれに限らず、固定子コア31とは反対方向に突出している形状であればよい。 As shown in FIG. 6, in the pair of insulators 71, a winding portion 74 that is wound around the winding 32 together with the stator core 31 via the insulating paper 33 has a chevron-shaped portion that protrudes in the opposite direction to the stator core 31. It has the shape of Although FIG. 6 shows an example in which the winding portion 74 has a mountain-shaped shape, the present invention is not limited to this, and any shape may be used as long as it protrudes in the opposite direction to the stator core 31.
 また、山型の形状を有した一対のインシュレーター71の巻回部74は、頂部72を周方向において中央よりも第一の凹部81側に設けられている。なお頂部72とは、巻回部74において最も固定子コア31とは反対方向に突出した突出部のことである。 Further, the winding portions 74 of the pair of insulators 71 having a chevron-shaped shape are provided closer to the first recess 81 than the center in the circumferential direction of the top portion 72 . Note that the top portion 72 is a protruding portion of the winding portion 74 that protrudes most in the direction opposite to the stator core 31.
 図6を用いて説明をする。図6に示す矢印の向きは巻線32を巻回する向きを示している。巻線32を左向きに巻回する場合、図6に示す第一の凹部81側に巻き膨らみが生じやすくなるため、巻回部74の頂部72は周方向において巻回部74の中央よりも第一の凹部81側に設けられている。同様に巻線32を右向きに巻回する場合は、図6に示す第二の凹部82側に巻き膨らみが生じやすくなるため、巻回部74の頂部72は周方向において巻回部74の中央よりも図6に示す第二の凹部82側に設けられている。つまり、巻回部74の頂部72は、巻回部74の周方向において中央よりも巻線32を巻回する向きの前方に位置する第一の凹部81側に設けられている。 This will be explained using FIG. 6. The direction of the arrow shown in FIG. 6 indicates the direction in which the winding wire 32 is wound. When winding the winding 32 to the left, the winding bulge tends to occur on the first recess 81 side shown in FIG. It is provided on the first recess 81 side. Similarly, when the winding 32 is wound rightward, the winding bulge tends to occur on the second recess 82 side shown in FIG. It is provided closer to the second recess 82 shown in FIG. That is, the top portion 72 of the winding portion 74 is provided on the side of the first recess 81 located forward of the center in the circumferential direction of the winding portion 74 in the direction in which the winding 32 is wound.
 巻回部74の頂部72は、周方向において中央よりも第一の凹部81側に設けられていることにより、実施の形態1にかかるモータよりも固定子コア31の両端側において、巻線32を巻回する際に生じる巻き膨らみによる固定子コア31と巻線32との間の空隙を小さくすることができる。 Since the top portion 72 of the winding portion 74 is provided closer to the first recess 81 than the center in the circumferential direction, the winding 32 is provided closer to the first recess 81 than the center in the circumferential direction. It is possible to reduce the gap between the stator core 31 and the winding 32 due to the winding bulge that occurs when the winding is wound.
 1、11 モータ、2 回転子、21 磁石、22 シャフト、3 固定子、31 固定子コア、32 巻線、33 絶縁紙、34 電磁鋼板、35 ティース部、4 フレーム、5 エンコーダ、6、6a、6b ブラケット、7、71 インシュレーター、72 頂部、73、74 巻回部、8 凹部、81 第一の凹部、82 第二の凹部 1, 11 motor, 2 rotor, 21 magnet, 22 shaft, 3 stator, 31 stator core, 32 winding, 33 insulating paper, 34 electromagnetic steel plate, 35 teeth part, 4 frame, 5 encoder, 6, 6a, 6b bracket, 7, 71 insulator, 72 top, 73, 74 winding part, 8 recess, 81 first recess, 82 second recess

Claims (5)

  1.  磁石が設けられた円柱形状の回転子と、
     周方向の長さが異なる一対の凹部を有した電磁鋼板を軸方向に積層し、前記軸方向において前記電磁鋼板の向きを反転して設けられ、一対の前記凹部に巻線が巻回された固定子コアが前記回転子の外径側に環状に複数配置された固定子と、
     を備えるモータ。
    A cylindrical rotor equipped with magnets,
    Electromagnetic steel sheets having a pair of recesses having different lengths in the circumferential direction are laminated in the axial direction, the orientation of the electromagnetic steel sheets is reversed in the axial direction, and a winding wire is wound around the pair of recesses. a stator in which a plurality of stator cores are arranged annularly on the outer diameter side of the rotor;
    A motor equipped with
  2.  前記固定子コアは前記軸方向の中央にて前記電磁鋼板の向きを反転していることを特徴とする請求項1に記載のモータ。 The motor according to claim 1, wherein the stator core has the electromagnetic steel plate reversed in direction at the center in the axial direction.
  3.  前記固定子コアに設けられた一対の前記凹部は、第一の凹部と第二の凹部とを有し、
     前記周方向において前記巻線を巻回する向きの前方に位置する前記第一の凹部が後方に位置する前記第二の凹部よりも前記長さが短いことを特徴とする請求項1または2に記載のモータ。
    The pair of recesses provided in the stator core have a first recess and a second recess,
    According to claim 1 or 2, the length of the first recess located at the front in the direction in which the winding is wound in the circumferential direction is shorter than that of the second recess located at the rear. Motor listed.
  4.  前記固定子コアの前記軸方向の端部に設けられた一対のインシュレーターは、前記固定子コアと共に前記巻線に巻回される巻回部が前記固定子コアとは反対方向に突出していることを特徴とする請求項1から3のいずれか一項に記載のモータ。 The pair of insulators provided at the ends of the stator core in the axial direction have a winding portion wound around the winding together with the stator core protruding in a direction opposite to the stator core. The motor according to any one of claims 1 to 3, characterized in that:
  5.  前記巻回部は前記固定子コアとは反対方向に突出した山型形状を有し、前記周方向において中央よりも前記第一の凹部側に頂部が設けられていることを特徴とする請求項4に記載のモータ。 The winding portion has a chevron-shaped shape protruding in a direction opposite to the stator core, and a top portion is provided closer to the first recess than the center in the circumferential direction. 4. The motor according to item 4.
PCT/JP2022/010825 2022-03-11 2022-03-11 Motor WO2023170903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/010825 WO2023170903A1 (en) 2022-03-11 2022-03-11 Motor
JP2024505793A JPWO2023170903A1 (en) 2022-03-11 2022-03-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010825 WO2023170903A1 (en) 2022-03-11 2022-03-11 Motor

Publications (1)

Publication Number Publication Date
WO2023170903A1 true WO2023170903A1 (en) 2023-09-14

Family

ID=87936442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010825 WO2023170903A1 (en) 2022-03-11 2022-03-11 Motor

Country Status (2)

Country Link
JP (1) JPWO2023170903A1 (en)
WO (1) WO2023170903A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180339A (en) * 1981-04-29 1982-11-06 Mitsubishi Electric Corp Field core for rotary electric machine
JPH0443372U (en) * 1990-08-03 1992-04-13
JP2002325382A (en) * 2001-04-26 2002-11-08 Mitsubishi Electric Corp Manufacturing method of dynamo-electric machine and dynamo-electric machine
JP2003032935A (en) * 2001-07-11 2003-01-31 Moric Co Ltd Armature of rotating field type electrical equipment
JP2005237051A (en) * 2004-02-17 2005-09-02 Asmo Co Ltd Armature and core insulator for rotating electric machine
JP2014222958A (en) * 2013-05-13 2014-11-27 株式会社日本自動車部品総合研究所 Laminate iron core for rotary electric machine
JP2020025373A (en) * 2018-08-06 2020-02-13 本田技研工業株式会社 Stator core for rotating electric machine and rotating electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180339A (en) * 1981-04-29 1982-11-06 Mitsubishi Electric Corp Field core for rotary electric machine
JPH0443372U (en) * 1990-08-03 1992-04-13
JP2002325382A (en) * 2001-04-26 2002-11-08 Mitsubishi Electric Corp Manufacturing method of dynamo-electric machine and dynamo-electric machine
JP2003032935A (en) * 2001-07-11 2003-01-31 Moric Co Ltd Armature of rotating field type electrical equipment
JP2005237051A (en) * 2004-02-17 2005-09-02 Asmo Co Ltd Armature and core insulator for rotating electric machine
JP2014222958A (en) * 2013-05-13 2014-11-27 株式会社日本自動車部品総合研究所 Laminate iron core for rotary electric machine
JP2020025373A (en) * 2018-08-06 2020-02-13 本田技研工業株式会社 Stator core for rotating electric machine and rotating electric machine

Also Published As

Publication number Publication date
JPWO2023170903A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP4786380B2 (en) Insulation structure of rotating electrical machine
US10680502B2 (en) Magnetically geared apparatus and a pole piece for such apparatus
WO2013132935A1 (en) Rotating electric machine
EP2448089A1 (en) Axial motor
WO2018180721A1 (en) Electric motor
WO2014208110A1 (en) Axial type rotating electrical machine
JP5951131B2 (en) Rotating electric machine
JP2010075027A (en) Stator core and motor
JP2010004634A (en) Axial-gap type rotating electrical machine
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP2006254561A (en) Rotary electric machine
JP2008236866A (en) Rotor of permanent magnet embedded-type rotating electric machine, and permanent magnet embedded-type rotating electric machine
WO2023170903A1 (en) Motor
JP2008125324A (en) Stator for dynamo-electric machine
TWI552486B (en) Axial air gap motor
JP2020171096A (en) Stator
JP2009130958A (en) Rotating electric machine
TWI708460B (en) Cage rotor and rotary motor
JP6068163B2 (en) motor
JPH1080124A (en) Permanent magnet type rotating electric machine
JP2006014565A (en) Disc type rotary electric machine
JP2006280172A (en) Dc motor
WO2023145629A1 (en) Magnetic gear device
CN219247548U (en) Stator punching sheet, stator core and motor
KR102182354B1 (en) Rotation electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505793

Country of ref document: JP