WO2023170854A1 - Carbon film having two-dimensional microlattice structure and method for producing same - Google Patents

Carbon film having two-dimensional microlattice structure and method for producing same Download PDF

Info

Publication number
WO2023170854A1
WO2023170854A1 PCT/JP2022/010501 JP2022010501W WO2023170854A1 WO 2023170854 A1 WO2023170854 A1 WO 2023170854A1 JP 2022010501 W JP2022010501 W JP 2022010501W WO 2023170854 A1 WO2023170854 A1 WO 2023170854A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
microlattice
photocurable resin
carbon film
microlattice structure
Prior art date
Application number
PCT/JP2022/010501
Other languages
French (fr)
Japanese (ja)
Inventor
朗 工藤
和也 大室
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2022/010501 priority Critical patent/WO2023170854A1/en
Publication of WO2023170854A1 publication Critical patent/WO2023170854A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material

Definitions

  • the present invention relates to a carbon film having a two-dimensional microlattice structure and a method for manufacturing the same.
  • a stereolithography 3D printer uses a photocurable resin composition to mold various three-dimensional periodic structures (three-dimensional microlattice) having characteristic sizes from three-dimensional submicron size to millimeter size on the photocurable resin. Can be done.
  • a 3D microlattice of photocurable resin is a pyrolytic carbon material (3D carbon material) with a 3D microstructure that replicates the original topology with shrinkage dimensions of 60-80% after pyrolysis in an inert atmosphere. microlattice) can be formed.
  • Patent Document 1 discloses a composite carbon material consisting of a monolithic three-dimensional microlattice.
  • the present invention has been made in view of the above problems, and is a carbon film having a high degree of freedom in shape, sufficient tensile strength and cantilever bending strength, and having an integrally molded two-dimensional microlattice structure. The purpose is to provide
  • [1] Made of carbon material made by thermally decomposing photocurable resin, It has a two-dimensional microlattice structure (microlattice), A carbon film having a two-dimensional microlattice structure, characterized in that the thickness is 50 ⁇ m to 300 ⁇ m.
  • the photocurable resin is one or more selected from the group consisting of epoxyphenol photocurable resins and polyurethane photocurable resins.
  • the carbon material is obtained by thermally decomposing the photocurable resin at a temperature of 800 to 1200°C in a vacuum or an inert atmosphere at a pressure of 0.1 to 100 Pa [1] or [2] ]
  • a carbon film having a two-dimensional microlattice structure [4] The two-dimensional micro-lattice structure according to any one of [1] to [3], wherein the two-dimensional micro-lattice structure is a two-dimensional structure obtained by two-dimensionally replicating at least one type of unit structure.
  • carbon film with [5] The carbon film having a two-dimensional microlattice structure according to [4], wherein the unit structure has a circumscribed circle size of 50 ⁇ m to 10 mm.
  • the photocurable resin composition is one or more selected from the group consisting of an epoxyphenol photocurable resin composition and a polyurethane photocurable resin composition.
  • a method for producing a carbon film with a dimensional microlattice structure [9] In the carbonization step, the thin film of the photocurable resin is thermally decomposed at a temperature of 800 to 1200° C. in a vacuum or inert atmosphere at an atmospheric pressure of 0.1 to 100 Pa. [7] Or the method for producing a carbon film having a two-dimensional microlattice structure according to [8].
  • a carbon film that has a high degree of freedom in shape, sufficient tensile strength and cantilever bending strength, and has an integrally molded two-dimensional microlattice structure.
  • Step A1-2 of this embodiment It is a photograph showing step A1-2 of this embodiment. It is a photograph showing step A1-2 of this embodiment. This is a photograph showing Step A1-2 of Example 5 (epoxyphenol photocurable resin, pattern 2000-400, final carbon film thickness 0.15 mm). This is a photograph showing Step A1-2 of Example 6 (epoxyphenol photocurable resin, pattern 1000-200, final carbon film thickness 0.08 mm).
  • 1 is an optical micrograph of a carbon film (thickness: 200 ⁇ m) having a two-dimensional microlattice structure produced in Example 1.
  • 1 is an optical micrograph of a carbon film (thickness: 200 ⁇ m) having a two-dimensional microlattice structure produced in Example 1.
  • 2 is an optical micrograph of a carbon film (thickness: 110 ⁇ m) having a two-dimensional microlattice structure prepared in Example 2.
  • 2 is an optical micrograph of a carbon film (thickness: 110 ⁇ m) having a two-dimensional microlattice structure prepared in Example 2.
  • 3 is an optical micrograph of a carbon film (thickness: 90 ⁇ m) having a two-dimensional microlattice structure prepared in Example 3.
  • FIG. 3 is an optical micrograph of a carbon film (thickness: 90 ⁇ m) having a two-dimensional microlattice structure prepared in Example 3. It is a figure showing the tensile test results of the carbon film having a two-dimensional microlattice structure produced in Example 4 (epoxy phenol photocurable resin, pattern 2000-400, dotted line: thickness 0.10 mm, chain line: thickness 0). .08mm, solid line: thickness 0.07mm).
  • FIG. 3 is a diagram showing the results of a tensile test of a carbon film having a two-dimensional microlattice structure produced in Example 4 (polyurethane photocurable resin, pattern 2000-400, thickness 0.08 mm).
  • FIG. 3 is a diagram showing the results of a tensile test of a carbon film having a two-dimensional microlattice structure produced in Example 4 (polyurethane photocurable resin, pattern 2000-400, thickness 0.08 mm).
  • Example 3 is a diagram showing the results of a tensile test of a carbon film having a two-dimensional microlattice structure produced in Example 4 (polyurethane photocurable resin, pattern 2000-400, 0.09 mm). It is a diagram showing the results of a cantilever bending test (10 reciprocations to a depth of 1.5 mm) of the carbon film having a two-dimensional microlattice structure produced in Example 5 (epoxy phenol-based cured resin, pattern 2000-400, thickness length 0.15mm, 0.11mm, 0.07mm).
  • FIG. 6 is a diagram showing the results of an electrical conductivity test (electrical conductivity versus thickness) of a carbon film having a two-dimensional microlattice structure produced in Example 6 (epoxyphenol-based photocurable resin, patterns 1000-200). This is a Raman spectrum of a carbon film having a two-dimensional microlattice structure produced in Example 7 (derived from epoxyphenol, surface).
  • the carbon film having a two-dimensional microlattice structure according to an embodiment of the present invention (sometimes referred to as “the carbon film having a two-dimensional microlattice structure according to the present embodiment” or “the carbon film according to the present embodiment”) is It is made of a carbon material made by thermally decomposing a photocurable resin.
  • the carbon film of this embodiment has a two-dimensional microlattice structure (microlattice) and has a thickness of 50 ⁇ m to 300 ⁇ m.
  • the photocurable resin according to this embodiment is not particularly limited as long as it is a cured product of a photocurable resin composition (photocurable resin ink) that can be molded by a stereolithography method such as a 3D printer. It is preferable that the photocurable resin according to this embodiment is one or more of an epoxyphenol photocurable resin and a polyurethane photocurable resin. The conditions and method of photocuring will be explained in detail in "Method for producing carbon film having two-dimensional microlattice structure" below.
  • the photocurable resin composition according to this embodiment is preferably one that can be molded by a stereolithography method such as a 3D printer, and can be formed from an epoxyphenol photocurable resin composition or a polyurethane photocurable resin composition. More preferably, it is one or more of the following.
  • the photocurable resin composition can contain known components, can be prepared by a known method, and can be obtained commercially.
  • the epoxyphenol-based photocurable resin composition includes Standard photopolymer resin (translucent) manufactured by Elegoo for 3D printers.
  • Examples of the polyurethane photocurable resin composition include Simple, manufactured by Siraya tech, for use in 3D printers.
  • the carbon material according to the present embodiment is obtained by thermally decomposing the photocurable resin at a temperature of 800 to 1200° C. in a vacuum at a pressure of 0.1 to 100 Pa or in an inert atmosphere. It is more preferable that the photocurable resin be kept in a vacuum at an atmospheric pressure of 1 to 50 Pa, and even more preferably in a vacuum of an atmospheric pressure of 10 to 30 Pa. More preferably, the photocurable resin is thermally decomposed at a temperature of 900 to 1100°C. It is preferable that the carbon material according to this embodiment has an amorphous structure. Furthermore, the amorphous structure can be confirmed by Raman spectroscopy. For example, from the Raman spectroscopy shown in FIGS. 19 to 22 later, it can be seen that the carbon material has an amorphous structure.
  • the two-dimensional microlattice structure according to this embodiment is preferably a two-dimensional structure obtained by two-dimensionally replicating at least one type of unit structure.
  • the two-dimensional microlattice structure according to this embodiment is preferably a periodic structure of at least one type of unit structure.
  • the two-dimensional micro-lattice structure according to the present embodiment may be divided into a first type of two-dimensional micro-lattice structure consisting of a first type of unit structure and a second type of two-dimensional micro-lattice structure consisting of a second type of unit structure, depending on the application, for example.
  • the microstructure may include a two-dimensional microlattice structure.
  • the first type of two-dimensional microlattice structure portion and the second type of two-dimensional microlattice structure portion may be arbitrarily combined to form the entire two-dimensional microlattice structure depending on the application.
  • the two-dimensional microlattice structure according to this embodiment is more preferably a two-dimensional structure obtained by two-dimensionally replicating one type of unit structure.
  • the two-dimensional microlattice structure according to this embodiment is produced using a stereolithography method such as a 3D printer, patterns that exist in nature, patterns obtained by computer simulation, etc. can be used.
  • the unit structure according to this embodiment is the smallest unit of the repeating structure of the two-dimensional microlattice structure.
  • one unit structure may have one opening (through hole) and an edge surrounding the opening, and one unit structure may have two openings (through holes) of different shapes and sizes. through holes) and an edge surrounding the openings.
  • two adjacent unit structures have a common part. It is assumed that half of the common parts belong to the first unit structure and the other half belong to another unit structure.
  • the size of the unit structure depends on the stereolithography method used, such as a 3D printer, and the photocurable resin composition (ink).
  • the size of the circumscribed circle of the unit structure is preferably 50 ⁇ m to 10 mm, more preferably 100 ⁇ m to 5 mm, and preferably 100 ⁇ m to 2 mm. More preferred.
  • the pattern of the unit structure is not particularly limited, and is preferably one or more types selected from the group consisting of, for example, a triangle, a quadrangle, a polygon of pentagon or more, an ellipse, and a circle.
  • a carbon film having a two-dimensional microlattice structure consisting of square unit structures was produced.
  • the aperture ratio of the carbon film having the two-dimensional microlattice structure according to the present embodiment is the ratio of the area of the apertures to the total surface area.
  • the aperture ratio is preferably 10% to 90%, more preferably 30 to 80%, even more preferably 40 to 70%.
  • the aperture ratio of the carbon film having the two-dimensional microlattice structure of the embodiment of the present invention is in the range of about 60 to 70%.
  • the aperture ratio can be calculated from a micrograph of a carbon film having a two-dimensional microlattice structure.
  • the thickness of the carbon film having the two-dimensional microlattice structure of this embodiment depends on the stereolithography method used, such as the 3D printer, and the photocurable resin composition (ink).
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m, more preferably 70 ⁇ m to 250 ⁇ m, and even more preferably 90 ⁇ m to 200 ⁇ m.
  • the tensile strength of the carbon film having a microlattice structure of this embodiment can be arbitrarily set depending on the application.
  • the tensile strength of the carbon film of this embodiment may be different in different tensile directions when the pattern of the two-dimensional microlattice structure has anisotropy. Further, by designing a two-dimensional microlattice structure without anisotropy using a known method, tensile strength independent of the tensile direction can be obtained.
  • the tensile strength of the carbon film of this embodiment is preferably 1 to 200 MPa, more preferably 3 to 100 MPa, and even more preferably 5 to 80 MPa.
  • the longitudinal elastic modulus (Young's modulus) of the carbon film of this embodiment is preferably 0.3 to 20 GPa, more preferably 1 to 15 GPa, and even more preferably 1.5 to 10 GPa. The method for evaluating tensile strength will be explained in Examples.
  • the bending strength of the carbon film having the two-dimensional microlattice structure of this embodiment can be arbitrarily set depending on the application.
  • the bending strength of the carbon film of this embodiment may be different in different bending directions when the pattern of the two-dimensional microlattice structure has anisotropy.
  • bending strength that does not depend on the bending direction can be obtained. For example, when the pattern of the unit structures is hexagonal and the unit structures form a two-dimensional microlattice structure (a honeycomb-like pattern), bending strength that is less dependent on the bending direction can be obtained.
  • the bending spring constant (ratio of force and displacement) of the carbon film of this embodiment is preferably 0.0005 N/mm to 0.2 N/mm, more preferably 0.001 to 0.1 N/mm. It is preferably 0.002 to 0.05 N/mm, and more preferably 0.002 to 0.05 N/mm. A method for evaluating bending strength will be explained in Examples.
  • the electrical conductivity of the carbon film having a two-dimensional microlattice structure of this embodiment can be arbitrarily set depending on the application.
  • the carbon film of this embodiment may have different electrical conductivity in the measurement direction.
  • electrical conductivity independent of the measurement direction can be obtained.
  • the electrical conductivity of the carbon film of this embodiment in the planar direction is preferably 1,000 to 30,000 S/m, more preferably 2,000 to 20,000 S/m, and even more preferably 3,000 to 15,000 S/m.
  • a method for producing a carbon film having a two-dimensional microlattice structure according to an embodiment of the present invention includes a method for producing a carbon film having a two-dimensional microlattice structure according to the above-mentioned embodiment.
  • the manufacturing method of this embodiment includes the following steps A1 and A2.
  • Step A1 A photocurable resin molding step in which a photocurable resin composition is molded using a stereolithography method such as a 3D printer to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice).
  • Step A2 A carbonization step of thermally decomposing the thin film of the cured resin to form a carbon film having a two-dimensional microlattice structure having a second two-dimensional microlattice structure (microlattice).
  • the manufacturing method of this embodiment preferably includes the following steps A1-1, A1-2, and A2.
  • Step A1-1 A photocurable resin precursor film forming step in which a photocurable resin composition is molded using a stereolithography method such as a 3D printer to form a thin film having an initial two-dimensional microlattice structure (microlattice).
  • Step A1-2 A photocuring step of photocuring the thin film to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice).
  • Step A3 A carbonization step of thermally decomposing the curable resin thin film to form a carbon film having a second two-dimensional microlattice structure.
  • Step A1 ⁇ Photocurable resin composition (photocurable resin ink)>
  • the curable resin composition according to this embodiment is the same as the photocurable resin composition described for the carbon film having a two-dimensional microlattice structure of this embodiment.
  • the stereolithography method according to this embodiment can use, for example, a 3D printer, but is not limited to a 3D printer.
  • a 3D printer is a machine that can create objects based on three-dimensional digital models. Usually, a structure having a thick three-dimensional shape is produced using a 3D printer, but as in the present application, a structure having a film-like two-dimensional shape can be produced.
  • the method of the 3D printer according to this embodiment is not particularly limited as long as it is a 3D printer that uses a photocurable resin composition (ink).
  • Stereolithography (SLA) in which liquid resin is irradiated with ultraviolet rays and cured little by little, and fused deposition modeling (FDM), in which resin melted by heat is layered little by little. ), etc.
  • the method of the 3D printer according to this embodiment is preferably stereolithography (SLA).
  • SLA stereolithography
  • a stereolithographic 3D printer was used.
  • a fused deposition method can be used.
  • a thermosetting and photocurable resin composition a photo-thermosetting resin precursor film is formed using a hot-melt layer deposition method 3D printer, and then final curing is performed with light. Carbon films with microlattice structures can be produced.
  • the photocurable resin precursor film forming step when a known stereolithography 3D printer is used, the two-dimensional microlattice structure (microlattice) of the three-dimensional digital model is designed using the known stereolithography method. It is preferable to mold the pattern using a photocurable resin to form a thin film having an initial two-dimensional microlattice structure (microlattice).
  • the difference between the design pattern of the two-dimensional microlattice structure (microlattice) and the pattern of the initial two-dimensional microlattice structure (microlattice) differs depending on the photocurable resin composition and 3D printer used. It also depends on the final film thickness.
  • the material formed is a photocurable resin precursor obtained by semi-photocuring a photocurable resin composition. For example, it is semi-photocured using a laser beam from a 3D printer.
  • FIGS. 1 and 2 are diagrams showing an experiment in which a photocurable resin precursor film sandwiched between glass plates was irradiated with ultraviolet rays.
  • a photocurable resin precursor film sandwiched between glass plates was irradiated with ultraviolet rays.
  • two Preferably, two glass plates are arranged. Then, the film of the photocurable resin precursor sandwiched between two glass plates is irradiated with light to perform final photocuring to form a thin film of the photocurable resin.
  • the curable resin thin film is thermally decomposed at a temperature of 800 to 1200° C. in a vacuum of 0.1 to 100 Pa or in an inert atmosphere.
  • the vacuum condition is more preferably a vacuum of 1 to 50 Pa, and even more preferably a vacuum of 10 to 30 Pa. More preferably, the temperature condition is 900 to 1100°C.
  • the thermal decomposition time is, for example, preferably 30 minutes to 10 hours, more preferably 30 minutes to 7 hours, even more preferably 30 minutes to 2 hours,
  • a heat treatment preliminary heat treatment
  • the temperature of the preliminary heat treatment is more preferably 300 to 500°C.
  • Figures 3 to 6 are Panasonic digital camera DMC-LX15
  • Figures 7 to 12 show an Olympus optical microscope BX51M equipped with an Olympus digital microscope camera DP72.
  • Test test Equipment used: Shimadzu EZ-SX Tensile strength test method: Reference standard: JIS K7161 Test piece length: 20-25mm Test piece width: 3.0-4.5mm Test piece thickness: 0.05-0.2mm Distance between gauge lines: 12-17mm Measurement atmosphere: room temperature (temperature 25°C), relative humidity 50%
  • Test piece bending test Shimadzu EZ-SX Cantilever beam bending test method: Reference standard: JIS K7106 Test piece length: 18-25mm Test piece width: 3.0-4.5mm Test piece thickness: 0.05-0.2mm Distance between fulcrums: 14-20mm Deformation range of test piece: 0 (horizontal) to 1.5 mm (depth) Number of round trips: 10 times Measurement atmosphere: Room temperature (temperature 25°C), relative humidity 50%
  • a thin film of a photocurable resin precursor was manufactured by the following method. ⁇ 1> Clean the printer head of the 3D printer with isopropyl alcohol (IPA). ⁇ 2> Input the two-dimensional microlattice pattern of the digital model into a 3D printer, and apply epoxyphenol photocuring so that the final carbon film with the two-dimensional microlattice structure has a thickness of 200 ⁇ m. A thin film of a photocurable resin precursor was molded using a photocurable resin. ⁇ 3> After the molding was completed, the thin film of the photocurable resin precursor was sprayed with IPA to clean it while still attached to the printer head, and then wiped off with Kimwipe.
  • IPA isopropyl alcohol
  • the thin film of the photocurable resin precursor was pressed down and wiped until the stitches (openings) were visible, and such cleaning was repeated twice.
  • the thin film of the photocurable resin precursor was removed from the printer head using a cutter and soaked in IPA for 10 minutes.
  • a thin film of a photocurable resin precursor having a two-dimensional microlattice structure (microlattice) was obtained.
  • Step A1-2 ⁇ 5> The obtained thin film of the photocurable resin precursor was sandwiched between glass plates, and was irradiated with ultraviolet rays (wavelength: 405 nm) for 30 minutes using a light irradiation device for secondary curing to obtain the final thin film of the photocurable resin.
  • ultraviolet rays wavelength: 405 nm
  • Step A2 The photocurable resin thin film obtained above was placed on an alumina plate, and the resin thin film placed on the alumina plate was inserted into a quartz tube and set in an electric furnace. When vacuum (10 to 20 Pa) was reached, heat treatment (preliminary heat treatment) was performed at 400° C. for 4 hours. Thereafter, it was heat treated at 1000° C. for 4 hours to cause a thermal decomposition reaction. The temperature increase rate was 5-10°C per minute. A carbon film with a two-dimensional microlattice structure was obtained.
  • Example 2 [Step A1-1] was carried out in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 110 ⁇ m. , a carbon film with a two-dimensional microlattice structure was obtained. Evaluation was performed in the same manner as in Example 1, and the results are shown in FIGS. 9 and 10.
  • Example 3 [Step A1-1] was carried out in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 90 ⁇ m. , a carbon film with a two-dimensional microlattice structure was obtained. Evaluation was performed in the same manner as in Example 1, and the results are shown in FIGS. 11 and 12.
  • Example 4 "Tensile test" In [Step A1-1], epoxyphenol-based and polyurethane-based photocurable resins are used; the two-dimensional microlattice structure pattern of the digital model is created so that the unit structure pattern of the resin film before carbonization is 2000-400. Used: In the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 70, 80, 90, and 100 ⁇ m. A carbon film specimen having a two-dimensional microlattice structure for tensile testing was obtained.
  • the unit structure pattern 2000-400 is the unit structure pattern labeled L-w using the width L ( ⁇ m) of the unit structure in the resin state before carbonization and the width W ( ⁇ m) of the beam. It is a pattern type. A tensile test was conducted using the method described above, and the results are shown in FIGS. 13 to 15.
  • Example 5 "Cantilever beam bending test"
  • epoxyphenol-based and polyurethane-based photocurable resins are used; the two-dimensional microlattice structure pattern of the digital model is created so that the unit structure pattern of the resin film before carbonization is 2000-400.
  • a carbon film specimen having a two-dimensional micro-lattice structure for cantilever bending tests was obtained.
  • a cantilever bending test was conducted using the method described above, and the results are shown in FIGS. 16 and 17.
  • Example 6 "Electrical conductivity test"
  • an epoxyphenol-based photocurable resin is used; a two-dimensional microlattice structure pattern of a digital model is used so that the unit structure pattern of the resin film before carbonization is 1000-200;
  • a two-dimensional carbon film for electrical conductivity testing was prepared in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the thickness of the carbon film having a two-dimensional microlattice structure was 45 to 80 ⁇ m.
  • a carbon film specimen with a microlattice structure was obtained.
  • An electrical conductivity test was conducted using the method described above, and the results are shown in FIG.
  • Example 7 "Measurement of Raman spectroscopy spectrum" Using the test piece obtained in Example 4 and the fragment after the test, a carbon film test piece having a two-dimensional microlattice structure for measurement of Raman spectroscopy was obtained. The Raman spectra were measured using the method described above, and the results are shown in FIGS. 19 to 22.
  • the carbon film with a two-dimensional microlattice structure derived from epoxyphenol resin has an amorphous carbon structure on its surface and cross section (inside), and the resin is thermally decomposed at 1000°C.
  • the result is standard. Comparing FIG. 19 with FIG. 20, the intensity of the G peak ( ⁇ 1610 cm -1 ) derived from the graphene sheet structure is higher at the surface than the D peak ( ⁇ 1350 cm -1 ) derived from structural defects. In other words, graphene formation is slightly more advanced on the surface, which is a common feature of carbon fibers obtained by thermal decomposition of polyacrylonitrile resin.
  • the carbon film with a two-dimensional microlattice structure derived from polyurethane resin has an amorphous carbon structure both on its surface and in its cross section (inside), and the resin was thermally decomposed at 1000°C.
  • the result is standard. Comparing FIG. 21 and FIG. 22, we can see that the intensity of the G peak ( ⁇ 1610 cm -1 ) derived from the graphene sheet structure is higher than that of the D peak ( ⁇ 1350 cm -1 ) derived from structural defects in the sample derived from epoxyphenol resin. There is no difference in cross section.
  • Table 1 in comparison with conventional carbon materials, the 2D carbon microlattice of the present invention has a high degree of freedom in shape, and is expected to be used as a structural material and an electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention provides a carbon film which is integrally molded and has a two-dimensional microlattice structure, while achieving a high degree of freedom in shape, a sufficient tensile strength and a sufficient cantilever beam bending strength. A carbon film having a two-dimensional microlattice structure according to the present invention is formed of a carbon material which is obtained by thermally decomposing a photocurable resin. The carbon film having a two-dimensional microlattice structure according to the present invention has a two-dimensional microlattice structure (a microlattice), while having a thickness of 50 µm to 300 µm.

Description

2次元マイクロ格子構造を有する炭素フィルム及びその製造方法Carbon film with two-dimensional microlattice structure and method for producing the same
 本発明は、2次元マイクロ格子構造を有する炭素フィルム及びその製造方法に関する。 The present invention relates to a carbon film having a two-dimensional microlattice structure and a method for manufacturing the same.
 光造形3Dプリンターは、光硬化性樹脂組成物を用いて、光硬化樹脂に3次元サブミクロンサイズからミリメートルサイズまでの特徴サイズを有する様々な3次元周期構造(3次元マイクロラティス)を成形することができる。このような光硬化樹脂の3次元マイクロラティスは,不活性雰囲気中での熱分解後に60~80%の収縮寸法で元のトポロジーを複製する3次元微細構造を有する熱分解炭素材料(3次元カーボンマイクロラティス)を形成することができる。例えば、特許文献1には、モノリシックである3次元マイクロラティスからなる複合炭素材料が開示されている。 A stereolithography 3D printer uses a photocurable resin composition to mold various three-dimensional periodic structures (three-dimensional microlattice) having characteristic sizes from three-dimensional submicron size to millimeter size on the photocurable resin. Can be done. Such a 3D microlattice of photocurable resin is a pyrolytic carbon material (3D carbon material) with a 3D microstructure that replicates the original topology with shrinkage dimensions of 60-80% after pyrolysis in an inert atmosphere. microlattice) can be formed. For example, Patent Document 1 discloses a composite carbon material consisting of a monolithic three-dimensional microlattice.
特表2021-505429Special table 2021-505429
 しかしながら、光造形3Dプリンターなどを用い、光硬化樹脂に2次元サブミクロンサイズからミリメートルサイズまでの特徴サイズを有する様々な2次元周期構造(2次元マイクロラティス)を成形することが容易ではない。このような光硬化樹脂の2次元マイクロラティスは,不活性雰囲気中での熱分解後、2次元マイクロ格子構造を有する熱分解炭素材料フィルム(2次元マイクロ格子構造を有する炭素フィルム)を形成することに関する報告がない。
 本発明は、上記問題点に鑑みてなされたものであって、高い形状自由度を持ち、十分な引っ張り強度と片持ち梁曲げ強度を有し、一体成形の2次元マイクロ格子構造を有する炭素フィルムを提供することを目的とする。
However, it is not easy to mold various two-dimensional periodic structures (two-dimensional microlattices) having feature sizes ranging from two-dimensional submicron size to millimeter size in photocurable resin using a stereolithography 3D printer or the like. Such a two-dimensional microlattice of photocurable resin can form a pyrolyzed carbon material film having a two-dimensional microlattice structure (carbon film having a two-dimensional microlattice structure) after thermal decomposition in an inert atmosphere. There are no reports regarding.
The present invention has been made in view of the above problems, and is a carbon film having a high degree of freedom in shape, sufficient tensile strength and cantilever bending strength, and having an integrally molded two-dimensional microlattice structure. The purpose is to provide
本発明によれば、以下のものが提供される。
〔1〕 光硬化樹脂を熱分解してなる炭素材料からなり、
 2次元マイクロ格子構造(マイクロラティス)を有し、
 厚さが50μm~300μmであることを特徴とする、2次元マイクロ格子構造を有する炭素フィルム。
〔2〕 前記光硬化樹脂が、エポキシフェノール系光硬化樹脂及びポリウレタン系光硬化樹脂からなる群から選択される1種以上である〔1〕に記載の、2次元マイクロ格子構造を有する炭素フィルム。
〔3〕 前記炭素材料が、前記光硬化樹脂を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解してなるものである〔1〕又は〔2〕に記載の、2次元マイクロ格子構造を有する炭素フィルム。
〔4〕 前記2次元マイクロ格子構造は、少なくとも1種類の単位構造を、2次元で複製してなる2次元構造である〔1〕~〔3〕の何れかに記載の、2次元マイクロ格子構造を有する炭素フィルム。
〔5〕 前記単位構造の外接円に換算のサイズが50μm~10mmである〔4〕に記載の、2次元マイクロ格子構造を有する炭素フィルム。
〔6〕 前記単位構造のパターンが、三角形、四角、五角形以上の多角形、楕円、丸、からなる群から選択される1種以上である、〔4〕又は〔5〕に記載の、2次元マイクロ格子構造を有する炭素フィルム。
〔7〕 光造形法で、光硬化性樹脂組成物を成形し、第1の2次元マイクロ格子構造(マイクロラティス)を有する光硬化樹脂の薄膜を形成する光硬化樹脂成形工程と、
 前記光硬化樹脂の薄膜を熱分解し、第2の2次元マイクロ格子構造を有する炭素フィルムを形成する炭素化工程と、
を有する、2次元マイクロ格子構造を有する炭素フィルムの製造方法。
〔8〕 前記光硬化性樹脂組成物が、エポキシフェノール系光硬化性樹脂組成物及びポリウレタン系光硬化性樹脂組成物からなる群から選択される1種以上である〔7〕に記載の、2次元マイクロ格子構造を有する炭素フィルムの製造方法。
〔9〕 前記炭素化工程において、前記光硬化樹脂の薄膜を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解してなるものである〔7〕又は〔8〕に記載の、2次元マイクロ格子構造を有する炭素フィルムの製造方法。
According to the present invention, the following is provided.
[1] Made of carbon material made by thermally decomposing photocurable resin,
It has a two-dimensional microlattice structure (microlattice),
A carbon film having a two-dimensional microlattice structure, characterized in that the thickness is 50 μm to 300 μm.
[2] The carbon film having a two-dimensional microlattice structure according to [1], wherein the photocurable resin is one or more selected from the group consisting of epoxyphenol photocurable resins and polyurethane photocurable resins.
[3] The carbon material is obtained by thermally decomposing the photocurable resin at a temperature of 800 to 1200°C in a vacuum or an inert atmosphere at a pressure of 0.1 to 100 Pa [1] or [2] ] A carbon film having a two-dimensional microlattice structure.
[4] The two-dimensional micro-lattice structure according to any one of [1] to [3], wherein the two-dimensional micro-lattice structure is a two-dimensional structure obtained by two-dimensionally replicating at least one type of unit structure. carbon film with
[5] The carbon film having a two-dimensional microlattice structure according to [4], wherein the unit structure has a circumscribed circle size of 50 μm to 10 mm.
[6] The two-dimensional structure according to [4] or [5], wherein the pattern of the unit structure is one or more types selected from the group consisting of a triangle, a square, a polygon of pentagon or more, an ellipse, and a circle. Carbon film with microlattice structure.
[7] A photocurable resin molding step of molding the photocurable resin composition by stereolithography to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice);
a carbonization step of thermally decomposing the thin film of the photocurable resin to form a carbon film having a second two-dimensional microlattice structure;
A method for producing a carbon film having a two-dimensional microlattice structure.
[8] 2 according to [7], wherein the photocurable resin composition is one or more selected from the group consisting of an epoxyphenol photocurable resin composition and a polyurethane photocurable resin composition. A method for producing a carbon film with a dimensional microlattice structure.
[9] In the carbonization step, the thin film of the photocurable resin is thermally decomposed at a temperature of 800 to 1200° C. in a vacuum or inert atmosphere at an atmospheric pressure of 0.1 to 100 Pa. [7] Or the method for producing a carbon film having a two-dimensional microlattice structure according to [8].
 本発明により、高い形状自由度を持ち、十分な引っ張り強度と片持ち梁曲げ強度を有し、一体成形の2次元マイクロ格子構造を有する炭素フィルムを提供することができる。 According to the present invention, it is possible to provide a carbon film that has a high degree of freedom in shape, sufficient tensile strength and cantilever bending strength, and has an integrally molded two-dimensional microlattice structure.
本実施形態の工程A1-2を示す写真である。It is a photograph showing step A1-2 of this embodiment. 本実施形態の工程A1-2を示す写真である。It is a photograph showing step A1-2 of this embodiment. 実施例5の工程A1-2を示す写真である(エポキシフェノール系光硬化樹脂、パターン2000-400、最終炭素フィルム厚さ0.15mm)。This is a photograph showing Step A1-2 of Example 5 (epoxyphenol photocurable resin, pattern 2000-400, final carbon film thickness 0.15 mm). 実施例6の工程A1-2を示す写真である(エポキシフェノール系光硬化樹脂、パターン1000-200、最終炭素フィルム厚さ0.08mm)。This is a photograph showing Step A1-2 of Example 6 (epoxyphenol photocurable resin, pattern 1000-200, final carbon film thickness 0.08 mm). 実施例5で作製した2次元マイクロ格子構造を有する炭素フィルムの光学顕微鏡写真である(エポキシフェノール系光硬化樹脂、パターン2000-400、厚さ0.15mm)。This is an optical micrograph of a carbon film having a two-dimensional microlattice structure produced in Example 5 (epoxyphenol photocurable resin, pattern 2000-400, thickness 0.15 mm). 実施例6で作製した2次元マイクロ格子構造を有する炭素フィルムの光学顕微鏡写真である(エポキシフェノール系光硬化樹脂、パターン1000-200、厚さ0.15mm)。This is an optical micrograph of a carbon film having a two-dimensional microlattice structure produced in Example 6 (epoxyphenol photocurable resin, pattern 1000-200, thickness 0.15 mm). 実施例1で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚200μm)の光学顕微鏡写真である。1 is an optical micrograph of a carbon film (thickness: 200 μm) having a two-dimensional microlattice structure produced in Example 1. 実施例1で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚200μm)の光学顕微鏡写真である。1 is an optical micrograph of a carbon film (thickness: 200 μm) having a two-dimensional microlattice structure produced in Example 1. 実施例2で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚110μm)の光学顕微鏡写真である。2 is an optical micrograph of a carbon film (thickness: 110 μm) having a two-dimensional microlattice structure prepared in Example 2. 実施例2で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚110μm)の光学顕微鏡写真である。2 is an optical micrograph of a carbon film (thickness: 110 μm) having a two-dimensional microlattice structure prepared in Example 2. 実施例3で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚90μm)の光学顕微鏡写真である。3 is an optical micrograph of a carbon film (thickness: 90 μm) having a two-dimensional microlattice structure prepared in Example 3. 実施例3で作製した2次元マイクロ格子構造を有する炭素フィルム(膜厚90μm)の光学顕微鏡写真である。3 is an optical micrograph of a carbon film (thickness: 90 μm) having a two-dimensional microlattice structure prepared in Example 3. 実施例4で作製した2次元マイクロ格子構造を有する炭素フィルムの引張り試験結果を示す図である(エポキシフェノール系光硬化樹脂、パターン2000-400、点線:厚さ0.10mm、鎖線:厚さ0.08mm、実線:厚さ0.07mm)。It is a figure showing the tensile test results of the carbon film having a two-dimensional microlattice structure produced in Example 4 (epoxy phenol photocurable resin, pattern 2000-400, dotted line: thickness 0.10 mm, chain line: thickness 0). .08mm, solid line: thickness 0.07mm). 実施例4で作製した2次元マイクロ格子構造を有する炭素フィルムの引張り試験結果を示す図である(ポリウレタン系光硬化樹脂、パターン2000-400、厚さ0.08mm)。FIG. 3 is a diagram showing the results of a tensile test of a carbon film having a two-dimensional microlattice structure produced in Example 4 (polyurethane photocurable resin, pattern 2000-400, thickness 0.08 mm). 実施例4で作製した2次元マイクロ格子構造を有する炭素フィルムの引張り試験結果を示す図である(ポリウレタン系光硬化樹脂、パターン2000-400、0.09mm)。FIG. 3 is a diagram showing the results of a tensile test of a carbon film having a two-dimensional microlattice structure produced in Example 4 (polyurethane photocurable resin, pattern 2000-400, 0.09 mm). 実施例5で作製した2次元マイクロ格子構造を有する炭素フィルムの片持ち梁曲げ試験結果(1.5mm深さまで10往復)結果を示す図である(エポキシフェノール系硬化樹脂、パターン2000-400、厚さ0.15mm、0.11mm、0.07mm)。It is a diagram showing the results of a cantilever bending test (10 reciprocations to a depth of 1.5 mm) of the carbon film having a two-dimensional microlattice structure produced in Example 5 (epoxy phenol-based cured resin, pattern 2000-400, thickness length 0.15mm, 0.11mm, 0.07mm). 実施例5で作製した2次元マイクロ格子構造を有する炭素フィルムの片持ち梁曲げ試験結果を示す図である(ポリウレタン系光硬化樹脂、パターン2000-400、厚さ0.09mm、0.08mm、0.08mm)。It is a figure showing the cantilever bending test results of the carbon film having a two-dimensional microlattice structure produced in Example 5 (polyurethane-based photocurable resin, pattern 2000-400, thickness 0.09 mm, 0.08 mm, 0 .08mm). 実施例6で作製した2次元マイクロ格子構造を有する炭素フィルムの電気伝導性試験の結果(電気伝導率対厚さ)を示す図である(エポキシフェノール系光硬化樹脂、パターン1000-200)。FIG. 6 is a diagram showing the results of an electrical conductivity test (electrical conductivity versus thickness) of a carbon film having a two-dimensional microlattice structure produced in Example 6 (epoxyphenol-based photocurable resin, patterns 1000-200). 実施例7で作製した2次元マイクロ格子構造を有する炭素フィルムのラマン分光スペクトルである(エポキシフェノール由来、表面)。This is a Raman spectrum of a carbon film having a two-dimensional microlattice structure produced in Example 7 (derived from epoxyphenol, surface). 実施例7で作製した2次元マイクロ格子構造を有する炭素フィルムのラマン分光スペクトルである(エポキシフェノール由来、断面)。This is a Raman spectra of a carbon film having a two-dimensional microlattice structure produced in Example 7 (derived from epoxyphenol, cross section). 実施例8で作製した2次元マイクロ格子構造を有する炭素フィルムのラマン分光スペクトルである(ポリウレタン由来、表面)。This is a Raman spectrum of a carbon film having a two-dimensional microlattice structure produced in Example 8 (derived from polyurethane, surface). 実施例8で作製した2次元マイクロ格子構造を有する炭素フィルムのラマン分光スペクトルである(ポリウレタン由来、断面)。This is a Raman spectrum of a carbon film having a two-dimensional microlattice structure produced in Example 8 (derived from polyurethane, cross section).
 本発明を実施するための形態(実施形態)につき、図面を参照しながら詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。 A mode (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments.
(2次元マイクロ格子構造を有する炭素フィルム)
 本発明の一実施形態の、2次元マイクロ格子構造を有する炭素フィルム(「本実施形態の、2次元マイクロ格子構造を有する炭素フィルム」あるいは「本実施形態の炭素フィルム」ということがある)は、光硬化樹脂を熱分解してなる炭素材料からなる。本実施形態の炭素フィルムが2次元マイクロ格子構造(マイクロラティス)を有し、厚さが50μm~300μmである。
(Carbon film with two-dimensional microlattice structure)
The carbon film having a two-dimensional microlattice structure according to an embodiment of the present invention (sometimes referred to as "the carbon film having a two-dimensional microlattice structure according to the present embodiment" or "the carbon film according to the present embodiment") is It is made of a carbon material made by thermally decomposing a photocurable resin. The carbon film of this embodiment has a two-dimensional microlattice structure (microlattice) and has a thickness of 50 μm to 300 μm.
〔光硬化樹脂〕
 本実施形態に係る光硬化樹脂が、3Dプリンターなどの光造形法で成形可能な光硬化性樹脂組成物(光硬化性樹脂インク)の硬化物であれば、特に限定がない。本実施形態に係る光硬化樹脂が、エポキシフェノール系光硬化樹脂、ポリウレタン系光硬化樹脂からなる1種以上であることが好ましい。光硬化の条件と方法は、後述の「2次元マイクロ格子構造を有する炭素フィルムの製造方法」で詳細に説明する。
[Photo-curing resin]
The photocurable resin according to this embodiment is not particularly limited as long as it is a cured product of a photocurable resin composition (photocurable resin ink) that can be molded by a stereolithography method such as a 3D printer. It is preferable that the photocurable resin according to this embodiment is one or more of an epoxyphenol photocurable resin and a polyurethane photocurable resin. The conditions and method of photocuring will be explained in detail in "Method for producing carbon film having two-dimensional microlattice structure" below.
 <光硬化性樹脂組成物(光硬化性樹脂インク)>
 本実施形態に係る光硬化性樹脂組成物は、3Dプリンターなどの光造形法で成形可能なものであることが好ましく、エポキシフェノール系光硬化性樹脂組成物、ポリウレタン系光硬化性樹脂組成物からなる1種以上であることがより好ましい。前記光硬化性樹脂組成物は、公知の成分を含むことができ、公知の方法で調製することができ、また、市販で入手することができる。例えば、エポキシフェノール系光硬化性樹脂組成物は、3Dプリンター用、Elegoo社製Standard photopolymer resin (translucent)が挙げられる。ポリウレタン系光硬化性樹脂組成物は、3Dプリンター用、Siraya tech製Simpleが挙げられる。
<Photocurable resin composition (photocurable resin ink)>
The photocurable resin composition according to this embodiment is preferably one that can be molded by a stereolithography method such as a 3D printer, and can be formed from an epoxyphenol photocurable resin composition or a polyurethane photocurable resin composition. More preferably, it is one or more of the following. The photocurable resin composition can contain known components, can be prepared by a known method, and can be obtained commercially. For example, the epoxyphenol-based photocurable resin composition includes Standard photopolymer resin (translucent) manufactured by Elegoo for 3D printers. Examples of the polyurethane photocurable resin composition include Simple, manufactured by Siraya tech, for use in 3D printers.
〔炭素材料〕
 本実施形態に係る炭素材料が、前記光硬化樹脂を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解してなるものであることが好ましい。前記光硬化樹脂を1~50Paの気圧の真空中であることがより好ましく、10~30Paの気圧の真空中であることが更に好ましい。前記光硬化樹脂を900~1100℃の温度で熱分解してなるものであることがより好ましい。
 本実施形態に係る炭素材料が、非晶質な構造であることが好ましい。また、非晶質な構造であることについて、ラマン分光法で確認することができる。例えば、後の図19~22で示すラマン分光から、炭素材料が非晶質な構造であることがわかる。
[Carbon material]
It is preferable that the carbon material according to the present embodiment is obtained by thermally decomposing the photocurable resin at a temperature of 800 to 1200° C. in a vacuum at a pressure of 0.1 to 100 Pa or in an inert atmosphere. It is more preferable that the photocurable resin be kept in a vacuum at an atmospheric pressure of 1 to 50 Pa, and even more preferably in a vacuum of an atmospheric pressure of 10 to 30 Pa. More preferably, the photocurable resin is thermally decomposed at a temperature of 900 to 1100°C.
It is preferable that the carbon material according to this embodiment has an amorphous structure. Furthermore, the amorphous structure can be confirmed by Raman spectroscopy. For example, from the Raman spectroscopy shown in FIGS. 19 to 22 later, it can be seen that the carbon material has an amorphous structure.
〔2次元マイクロ格子構造〕
 本実施形態に係る2次元マイクロ格子構造は、少なくとも1種類の単位構造を、2次元で複製してなる2次元構造であることが好ましい。本実施形態に係る2次元マイクロ格子構造は、少なくとも1種類の単位構造の周期構造であることが好ましい。本実施形態に係る2次元マイクロ格子構造は、例えば、用途に応じて、第1種類の単位構造からなる第1種類の2次元マイクロ格子構造と、第2種類の単位構造からなる第2種類の2次元マイクロ格子構造とを含む微細構造であってもよい。第1種類の2次元マイクロ格子構造の部分と第2種類の2次元マイクロ格子構造の部分とは、用途に応じて、任意で組み合わせて、全体の2次元マイクロ格子構造を形成してもよい。
 製造の容易さ又は物性制御の容易さの観点から、本実施形態に係る2次元マイクロ格子構造は、1種類の単位構造を、2次元で複製してなる2次元構造であることがより好ましい。
[Two-dimensional microlattice structure]
The two-dimensional microlattice structure according to this embodiment is preferably a two-dimensional structure obtained by two-dimensionally replicating at least one type of unit structure. The two-dimensional microlattice structure according to this embodiment is preferably a periodic structure of at least one type of unit structure. The two-dimensional micro-lattice structure according to the present embodiment may be divided into a first type of two-dimensional micro-lattice structure consisting of a first type of unit structure and a second type of two-dimensional micro-lattice structure consisting of a second type of unit structure, depending on the application, for example. The microstructure may include a two-dimensional microlattice structure. The first type of two-dimensional microlattice structure portion and the second type of two-dimensional microlattice structure portion may be arbitrarily combined to form the entire two-dimensional microlattice structure depending on the application.
From the viewpoint of ease of manufacture or control of physical properties, the two-dimensional microlattice structure according to this embodiment is more preferably a two-dimensional structure obtained by two-dimensionally replicating one type of unit structure.
 本実施形態に係る2次元マイクロ格子構造は、3Dプリンターなどの光造形法を用いて作製するので、自然界で存在する模様、コンピューターでシミュレーションより得られるパターンなどを用いることができる。 Since the two-dimensional microlattice structure according to this embodiment is produced using a stereolithography method such as a 3D printer, patterns that exist in nature, patterns obtained by computer simulation, etc. can be used.
<単位構造>
 本実施形態に係る単位構造は、前記2次元マイクロ格子構造の繰り返す構造の最小単位である。例えば、1つの単位構造が、1つの開口部(貫通孔)とその開口部を囲んでなる縁部とを有してもよく、1つの単位構造が、2つの異なる形状やサイズの開口部(貫通孔)とそれらの開口部を囲んでなる縁部とを有してもよい。1つの単位構造が、1つの開口部(貫通孔)とその開口部を囲んでなる縁部とを有する場合、隣接の2つの単位構造が共通の部分を有する。その共通の部分は、半分が1つ目の単位構造に属し、残り半分が別の単位構造に属するとする。
 前記単位構造のサイズは、使用する3Dプリンターなどの光造形法及び光硬化性樹脂組成物(インク)に依存する。出願時の通常の3Dプリンターを用いる場合、例えば、前記単位構造の外接円に換算のサイズが50μm~10mmであることが好ましく、100μm~5mmであることがより好ましく、100μm~2mmであることが更に好ましい。
 前記単位構造のパターンが、特に制限がなく、例えば、三角形、四角形、五角形以上の多角形、楕円、丸、からなる群から選択される1種以上であることが好ましい。例えば、本願実施例で四角形の単位構造からなる、2次元マイクロ格子構造を有する炭素フィルムを作製した。
<Unit structure>
The unit structure according to this embodiment is the smallest unit of the repeating structure of the two-dimensional microlattice structure. For example, one unit structure may have one opening (through hole) and an edge surrounding the opening, and one unit structure may have two openings (through holes) of different shapes and sizes. through holes) and an edge surrounding the openings. When one unit structure has one opening (through hole) and an edge surrounding the opening, two adjacent unit structures have a common part. It is assumed that half of the common parts belong to the first unit structure and the other half belong to another unit structure.
The size of the unit structure depends on the stereolithography method used, such as a 3D printer, and the photocurable resin composition (ink). When using a normal 3D printer at the time of filing, for example, the size of the circumscribed circle of the unit structure is preferably 50 μm to 10 mm, more preferably 100 μm to 5 mm, and preferably 100 μm to 2 mm. More preferred.
The pattern of the unit structure is not particularly limited, and is preferably one or more types selected from the group consisting of, for example, a triangle, a quadrangle, a polygon of pentagon or more, an ellipse, and a circle. For example, in Examples of the present application, a carbon film having a two-dimensional microlattice structure consisting of square unit structures was produced.
 本実施形態に係る2次元マイクロ格子構造を有する炭素フィルムの開口率は、全表面積に対する開口部の面積の割合である。前記開口率が10%~90%であることが好ましく、30~80%であることがより好ましく、40~70であることが更に好ましい。例えば、本願実施例の2次元マイクロ格子構造を有する炭素フィルムの開口率は、約60~70%の範囲である。開口率は、2次元マイクロ格子構造を有する炭素フィルムの顕微鏡写真から、算出することができる。 The aperture ratio of the carbon film having the two-dimensional microlattice structure according to the present embodiment is the ratio of the area of the apertures to the total surface area. The aperture ratio is preferably 10% to 90%, more preferably 30 to 80%, even more preferably 40 to 70%. For example, the aperture ratio of the carbon film having the two-dimensional microlattice structure of the embodiment of the present invention is in the range of about 60 to 70%. The aperture ratio can be calculated from a micrograph of a carbon film having a two-dimensional microlattice structure.
〔2次元マイクロ格子構造を有する炭素フィルムの形状〕
 本実施形態の2次元マイクロ格子構造を有する炭素フィルムの厚さは、使用する3Dプリンターなどの光造形法及び光硬化性樹脂組成物(インク)に依存する。その厚さは、50μm~300μmであることが好ましく、70μm~250μmであることがより好ましく、90μm~200μmであることが更に好ましい。
[Shape of carbon film with two-dimensional microlattice structure]
The thickness of the carbon film having the two-dimensional microlattice structure of this embodiment depends on the stereolithography method used, such as the 3D printer, and the photocurable resin composition (ink). The thickness is preferably 50 μm to 300 μm, more preferably 70 μm to 250 μm, and even more preferably 90 μm to 200 μm.
〔2次元マイクロ格子構造を有する炭素フィルムの特性〕
 <引張強度>
 本実施形態の、マイクロ格子構造を有する炭素フィルムの引張強度は、用途に応じて、任意設定することができる。本実施形態の炭素フィルムの引張強度は、前記2次元マイクロ格子構造のパターンが異方性を有する場合、異なる引張方向において、異なる引張強度であってもよい。また、公知の方法より、異方性を有しない2次元マイクロ格子構造を設計することより、引張方向に依存しない引張強度が得られる。例えば、前記単位構造のパターンが六角形であり、この単位構造からなる2次元マイクロ格子構造(ハチの巣類似パターン)である場合、引張方向の依存性が弱くなる引張強度が得られる。
 本実施形態の炭素フィルムの引張強度は、1~200MPaであることが好ましく、3~100MPaであることがより好ましく、5~80MPaであることが更に好ましい。
 本実施形態の炭素フィルムの縦弾性係数(ヤング率)は、0.3~20GPaであることが好ましく、1~15GPaであることがより好ましく、1.5~10GPaであることが更に好ましい。
 引張強度の評価方法は、実施例で説明する。
[Characteristics of carbon film with two-dimensional microlattice structure]
<Tensile strength>
The tensile strength of the carbon film having a microlattice structure of this embodiment can be arbitrarily set depending on the application. The tensile strength of the carbon film of this embodiment may be different in different tensile directions when the pattern of the two-dimensional microlattice structure has anisotropy. Further, by designing a two-dimensional microlattice structure without anisotropy using a known method, tensile strength independent of the tensile direction can be obtained. For example, when the pattern of the unit structures is hexagonal and a two-dimensional microlattice structure (honeycomb-like pattern) made of the unit structures, a tensile strength with a weak dependence on the tensile direction can be obtained.
The tensile strength of the carbon film of this embodiment is preferably 1 to 200 MPa, more preferably 3 to 100 MPa, and even more preferably 5 to 80 MPa.
The longitudinal elastic modulus (Young's modulus) of the carbon film of this embodiment is preferably 0.3 to 20 GPa, more preferably 1 to 15 GPa, and even more preferably 1.5 to 10 GPa.
The method for evaluating tensile strength will be explained in Examples.
<曲げ強度>
 本実施形態の、2次元マイクロ格子構造を有する炭素フィルムの曲げ強度は、用途に応じて、任意設定することができる。本実施形態の炭素フィルムの曲げ強度は、前記2次元マイクロ格子構造のパターンが異方性を有する場合、異なる曲げ方向において、異なる曲げ強度であってもよい。また、公知の方法より、異方性を有しない2次元マイクロ格子構造を設計することより、曲げ方向に依存しない曲げ強度が得られる。例えば、前記単位構造のパターンが六角形であり、この単位構造からなる2次元マイクロ格子構造(ハチの巣類似パターン)である場合、曲げ方向の依存性が弱くなる曲げ強度が得られる。
 本実施形態の炭素フィルムの曲げバネ定数(力と変位の比)は、0.0005N/mm~0.2N/mmであることが好ましく、0.001~0.1N/mmであることがより好ましく、0.002~0.05N/mmであることが更に好ましい。
 曲げ強度の評価方法は、実施例で説明する。
<Bending strength>
The bending strength of the carbon film having the two-dimensional microlattice structure of this embodiment can be arbitrarily set depending on the application. The bending strength of the carbon film of this embodiment may be different in different bending directions when the pattern of the two-dimensional microlattice structure has anisotropy. Furthermore, by designing a two-dimensional microlattice structure that does not have anisotropy using a known method, bending strength that does not depend on the bending direction can be obtained. For example, when the pattern of the unit structures is hexagonal and the unit structures form a two-dimensional microlattice structure (a honeycomb-like pattern), bending strength that is less dependent on the bending direction can be obtained.
The bending spring constant (ratio of force and displacement) of the carbon film of this embodiment is preferably 0.0005 N/mm to 0.2 N/mm, more preferably 0.001 to 0.1 N/mm. It is preferably 0.002 to 0.05 N/mm, and more preferably 0.002 to 0.05 N/mm.
A method for evaluating bending strength will be explained in Examples.
<電気伝導性>
 本実施形態の、2次元マイクロ格子構造を有する炭素フィルムの電気伝導性は、用途に応じて、任意設定することができる。本実施形態の炭素フィルムの電気伝導性は、前記2次元マイクロ格子構造のパターンが異方性を有する場合、測定方向において、異なる電気伝導性であってもよい。また、公知の方法より、異方性を有しない2次元マイクロ格子構造を設計することより、測定方向に依存しない電気伝導性が得られる。
 本実施形態の炭素フィルムの平面方向の電気伝導率は、1000~30000S/mであることが好ましく、2000~20000S/mであることがより好ましく、3000~15000S/mであることが更に好ましい。
<Electrical conductivity>
The electrical conductivity of the carbon film having a two-dimensional microlattice structure of this embodiment can be arbitrarily set depending on the application. When the pattern of the two-dimensional microlattice structure has anisotropy, the carbon film of this embodiment may have different electrical conductivity in the measurement direction. Further, by designing a two-dimensional microlattice structure without anisotropy using a known method, electrical conductivity independent of the measurement direction can be obtained.
The electrical conductivity of the carbon film of this embodiment in the planar direction is preferably 1,000 to 30,000 S/m, more preferably 2,000 to 20,000 S/m, and even more preferably 3,000 to 15,000 S/m.
(2次元マイクロ格子構造を有する炭素フィルムの製造方法)
 本発明の一実施形態の、2次元マイクロ格子構造を有する炭素フィルムの製造方法(以後、「本実施形態の製造方法」をいうことがある。)は、上記本実施形態の2次元マイクロ格子構造を有する炭素フィルムを製造する方法である。
 本実施形態の製造方法は、以下の工程A1と工程A2とを有する。
 工程A1:3Dプリンターなどの光造形法で、光硬化性樹脂組成物を成形し、第1の2次元マイクロ格子構造(マイクロラティス)を有する光硬化樹脂の薄膜を形成する光硬化樹脂成形工程。
 工程A2:前記硬化樹脂の薄膜を熱分解し、第2の2次元マイクロ格子構造(マイクロラティス)を有する2次元マイクロ格子構造を有する炭素フィルムを形成する炭素化工程。
(Method for producing carbon film with two-dimensional microlattice structure)
A method for producing a carbon film having a two-dimensional microlattice structure according to an embodiment of the present invention (hereinafter sometimes referred to as "the production method according to the present embodiment") includes a method for producing a carbon film having a two-dimensional microlattice structure according to the above-mentioned embodiment. This is a method of manufacturing a carbon film having the following.
The manufacturing method of this embodiment includes the following steps A1 and A2.
Step A1: A photocurable resin molding step in which a photocurable resin composition is molded using a stereolithography method such as a 3D printer to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice).
Step A2: A carbonization step of thermally decomposing the thin film of the cured resin to form a carbon film having a two-dimensional microlattice structure having a second two-dimensional microlattice structure (microlattice).
 本実施形態の製造方法は、以下の工程A1-1、工程A1-2、工程A2を有することが好ましい。
 工程A1-1:3Dプリンターなどの光造形法で、光硬化性樹脂組成物を成形し、最初の2次元マイクロ格子構造(マイクロラティス)を有する薄膜を形成する光硬化樹脂前駆体膜形成工程。
 工程A1-2:前記薄膜を光硬化し、第1の2次元マイクロ格子構造(マイクロラティス)を有する光硬化樹脂の薄膜を形成する光硬化工程。
 工程A3: 前記硬化性樹脂薄膜を熱分解し、第2の2次元マイクロ格子構造を有する炭素フィルムを形成する炭素化工程。
The manufacturing method of this embodiment preferably includes the following steps A1-1, A1-2, and A2.
Step A1-1: A photocurable resin precursor film forming step in which a photocurable resin composition is molded using a stereolithography method such as a 3D printer to form a thin film having an initial two-dimensional microlattice structure (microlattice).
Step A1-2: A photocuring step of photocuring the thin film to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice).
Step A3: A carbonization step of thermally decomposing the curable resin thin film to form a carbon film having a second two-dimensional microlattice structure.
〔工程A1〕
 <光硬化性樹脂組成物(光硬化性樹脂インク)>
 本実施形態に係る硬化性樹脂組成物は、上記本実施形態の2次元マイクロ格子構造を有する炭素フィルムに説明した光硬化性樹脂組成物と同じである。
[Step A1]
<Photocurable resin composition (photocurable resin ink)>
The curable resin composition according to this embodiment is the same as the photocurable resin composition described for the carbon film having a two-dimensional microlattice structure of this embodiment.
<光造形法>
 本実施形態に係る光造形法は、例えば、3Dプリンターを用いることができるが、3Dプリンターに限定されない。3Dプリンターとは、3次元的なデジタル・モデルをもとにして、物体をつくりだすことができる機械のことである。通常、3Dプリンターで厚さがある3次元形状を有する構造体を作製するが、本願のように、フィルム状の2次元形状を有する構造体を作製することができる。
 本実施形態にかかる3Dプリンターの方式は、光硬化性樹脂組成物(インク)を用いる3Dプリンターであれば、特に限定されない。液状の樹脂に紫外線などを照射し少しずつ硬化させていく光造形方式(SLA:Stereolithography)、熱で融解した樹脂を少しずつ積み重ねていく熱溶解積層方式(FDM:Fused Deposition Modeling, 熱溶解積層法)などが挙げられる。
<Stereolithography>
The stereolithography method according to this embodiment can use, for example, a 3D printer, but is not limited to a 3D printer. A 3D printer is a machine that can create objects based on three-dimensional digital models. Usually, a structure having a thick three-dimensional shape is produced using a 3D printer, but as in the present application, a structure having a film-like two-dimensional shape can be produced.
The method of the 3D printer according to this embodiment is not particularly limited as long as it is a 3D printer that uses a photocurable resin composition (ink). Stereolithography (SLA), in which liquid resin is irradiated with ultraviolet rays and cured little by little, and fused deposition modeling (FDM), in which resin melted by heat is layered little by little. ), etc.
 本実施形態にかかる3Dプリンターの方式は、光造形方式(SLA:Stereolithography)が好ましい。後述の実施例は、光造形方式の3Dプリンターを用いた。
 本実施形態にかかる3Dプリンターの方式は、熱溶解積層方式を用いることができる。例えば、熱硬化と光硬化性とを有する樹脂組成物を用いて、熱溶解積層方式3Dプリンターで光・熱硬化樹脂前駆体膜を形成した後、光で最終硬化し、本実施形態の2次元マイクロ格子構造を有する炭素フィルムを製造することができる。
The method of the 3D printer according to this embodiment is preferably stereolithography (SLA). In the examples described below, a stereolithographic 3D printer was used.
As the method of the 3D printer according to this embodiment, a fused deposition method can be used. For example, using a thermosetting and photocurable resin composition, a photo-thermosetting resin precursor film is formed using a hot-melt layer deposition method 3D printer, and then final curing is performed with light. Carbon films with microlattice structures can be produced.
<工程A1-1>
 前記光硬化樹脂前駆体膜形成工程において、公知の光造形方式3Dプリンターを用いる場合、公知の光造形法を用いて、3次元的なデジタル・モデルの2次元マイクロ格子構造(マイクロラティスの)設計パターンを、光硬化樹脂を成形し、最初の2次元マイクロ格子構造(マイクロラティス)を有する薄膜を形成することが好ましい。2次元マイクロ格子構造(マイクロラティス)の設計パターンと、最初の2次元マイクロ格子構造(マイクロラティス)のパターンとの差は、使用する光硬化性樹脂組成物及び3Dプリンターによって、異なる。また、最終の膜の厚さによって異なる。
 前記光硬化樹脂前駆体膜形成工程において、形成した材料は、光硬化性樹脂組成物を半光硬化した光硬化樹脂前駆体である。例えば、使用する3Dプリンターのレーザー光で半光硬化したものである。
<Step A1-1>
In the photocurable resin precursor film forming step, when a known stereolithography 3D printer is used, the two-dimensional microlattice structure (microlattice) of the three-dimensional digital model is designed using the known stereolithography method. It is preferable to mold the pattern using a photocurable resin to form a thin film having an initial two-dimensional microlattice structure (microlattice). The difference between the design pattern of the two-dimensional microlattice structure (microlattice) and the pattern of the initial two-dimensional microlattice structure (microlattice) differs depending on the photocurable resin composition and 3D printer used. It also depends on the final film thickness.
In the photocurable resin precursor film forming step, the material formed is a photocurable resin precursor obtained by semi-photocuring a photocurable resin composition. For example, it is semi-photocured using a laser beam from a 3D printer.
<工程A1-2>
 前記光硬化工程において、工程A-1において得た前記光硬化樹脂前駆体膜を、更に、光(紫外・可視など)硬化し、最終の光硬化樹脂の薄膜を形成する。図1と2は、ガラス板で挟んだ光硬化樹脂前駆体膜を紫外線で照射する実験を示す図である。
 本実施形態の2次元マイクロ格子構造(マイクロラティスの)を有する光硬化樹脂の薄膜を形成するために、工程A-1の後、形成された光硬化樹脂前駆体の膜を挟むように、2枚のガラス板を配置することが好ましい。そして、2枚のガラス板で挟む光硬化樹脂前駆体の膜を光照射し、最終の光硬化を行って、光硬化樹脂の薄膜を形成する。
<Step A1-2>
In the photocuring step, the photocurable resin precursor film obtained in step A-1 is further cured with light (ultraviolet, visible, etc.) to form a final photocurable resin thin film. FIGS. 1 and 2 are diagrams showing an experiment in which a photocurable resin precursor film sandwiched between glass plates was irradiated with ultraviolet rays.
In order to form a thin film of photocurable resin having a two-dimensional microlattice structure (microlattice) of this embodiment, after step A-1, two Preferably, two glass plates are arranged. Then, the film of the photocurable resin precursor sandwiched between two glass plates is irradiated with light to perform final photocuring to form a thin film of the photocurable resin.
〔工程A2〕
 前記炭素化工程において、前記硬化性樹脂薄膜を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解することが好ましい。
 前記真空条件は、1~50Paの気圧の真空中であることがより好ましく、10~30Paの気圧の真空中であることが更に好ましい。前記温度条件は、900~1100℃であることがより好ましい。
 熱分解時間は、例えば、30分~10時間であることが好ましく、30分~7時間であることがより好ましく、30分~2時間であることが更に好ましく、
 前記800℃以上の温度で熱分解(本熱物分解)する前に、200~600℃温度で熱処理(予備熱処理)することが好ましい。その予備熱処理の温度は、300~500℃であることがより好ましい。
[Step A2]
In the carbonization step, it is preferable that the curable resin thin film is thermally decomposed at a temperature of 800 to 1200° C. in a vacuum of 0.1 to 100 Pa or in an inert atmosphere.
The vacuum condition is more preferably a vacuum of 1 to 50 Pa, and even more preferably a vacuum of 10 to 30 Pa. More preferably, the temperature condition is 900 to 1100°C.
The thermal decomposition time is, for example, preferably 30 minutes to 10 hours, more preferably 30 minutes to 7 hours, even more preferably 30 minutes to 2 hours,
Before the thermal decomposition (main thermal decomposition) at a temperature of 800°C or higher, it is preferable to perform a heat treatment (preliminary heat treatment) at a temperature of 200 to 600°C. The temperature of the preliminary heat treatment is more preferably 300 to 500°C.
 〔2次元マイクロ格子構造の設計と成形〕
 3次元的なデジタル・モデルの2次元マイクロ格子構造(マイクロラティスの)設計パターンと炭素化後の第2の2次元マイクロ格子構造(マイクロラティス)のパターンとは、光硬化工程や炭素化工程において収縮する。所定の最終の2次元マイクロ格子構造(マイクロラティス)を有する2次元マイクロ格子構造を有する炭素フィルムを得るために、例えば、最適化した成形条件で予備サンプルを作成し、所定の収縮率を得ることができる。その収縮率を用いて、目的の最終2次元マイクロ格子構造を得るデジタル・モデルを作成することができる。
[Design and molding of two-dimensional microlattice structure]
The design pattern of the two-dimensional microlattice structure (microlattice) of the three-dimensional digital model and the pattern of the second two-dimensional microlattice structure (microlattice) after carbonization are different from each other in the photocuring process and carbonization process. Shrink. In order to obtain a carbon film with a two-dimensional microlattice structure having a predetermined final two-dimensional microlattice structure (microlattice), for example, a preliminary sample is created under optimized molding conditions to obtain a predetermined shrinkage rate. I can do it. The shrinkage factor can be used to create a digital model of the desired final two-dimensional microlattice structure.
 以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described below based on more detailed examples, but the present invention is not limited to these examples.
(使用装置と材料)
〔3Dプリンター〕
 Elegoo社製 Mars 2 
〔紫外照射装置〕
 Elegoo社製及びKudo3D社製
(Equipment and materials used)
[3D printer]
Mars 2 manufactured by Elegoo
[Ultraviolet irradiation device]
Manufactured by Elegoo and Kudo3D
〔電気炉〕
 アサヒ理化製管状電気炉
〔Electric furnace〕
Asahi Rika tubular electric furnace
〔光硬化性樹脂組成物〕
 「エポキシフェノール系光硬化樹脂」:Elegoo社製Standard photopolymer resin (translucent)
 「ポリウレタン系光硬化樹脂」:Siraya Tech社製Simple
[Photocurable resin composition]
"Epoxyphenol photocurable resin": Standard photopolymer resin (translucent) manufactured by Elegoo
"Polyurethane photocurable resin": Simple manufactured by Siraya Tech
(評価方法)
「光顕微鏡」
 使用装置:
 図3~6はPanasonic社製デジタルカメラDMC-LX15
 図7~12はオリンパス社製光学顕微鏡BX51Mにオリンパス社製顕微デジタルカメラDP72を搭載
(Evaluation method)
"Light microscope"
Equipment used:
Figures 3 to 6 are Panasonic digital camera DMC-LX15
Figures 7 to 12 show an Olympus optical microscope BX51M equipped with an Olympus digital microscope camera DP72.
「膜厚評定」
 使用装置:ミツトヨ製 デジタルノギス
"Film thickness evaluation"
Equipment used: Mitutoyo digital caliper
「引張試験」
 使用装置:島津製作所製EZ-SX
 引張強度試験方法:
  参考規格:JIS K7161
  試験片長さ:20~25mm
  試験片幅:3.0~4.5mm
  試験片厚さ:0.05~0.2mm
  標線間距離:12~17mm
  測定雰囲気:室温(温度25℃),相対湿度50%
"Tensile test"
Equipment used: Shimadzu EZ-SX
Tensile strength test method:
Reference standard: JIS K7161
Test piece length: 20-25mm
Test piece width: 3.0-4.5mm
Test piece thickness: 0.05-0.2mm
Distance between gauge lines: 12-17mm
Measurement atmosphere: room temperature (temperature 25℃), relative humidity 50%
「片持ち梁曲げ試験」
 使用装置:島津製作所製EZ-SX
 片持ち梁曲げ試験方法:
  参考規格:JIS K7106
  試験片長さ:18~25mm
  試験片幅:3.0~4.5mm
  試験片厚さ:0.05~0.2mm
  支点間距離:14~20mm
  試験片の変形範囲:0(水平)~1.5mm(深さ)
  往復回数:10回
  測定雰囲気:室温(温度25℃),相対湿度50%
"Cantilever beam bending test"
Equipment used: Shimadzu EZ-SX
Cantilever beam bending test method:
Reference standard: JIS K7106
Test piece length: 18-25mm
Test piece width: 3.0-4.5mm
Test piece thickness: 0.05-0.2mm
Distance between fulcrums: 14-20mm
Deformation range of test piece: 0 (horizontal) to 1.5 mm (depth)
Number of round trips: 10 times Measurement atmosphere: Room temperature (temperature 25°C), relative humidity 50%
「電気伝導性評価」
 使用装置:テクシオ・テクノロジー製 抵抗測定器 TEXIO DL-1060
 使用治具:4端子法試料ホルダー
"Electrical conductivity evaluation"
Equipment used: Resistance measuring device TEXIO DL-1060 manufactured by TEXIO Technology
Jig used: 4-terminal method sample holder
「ラマン分光装置」
 使用装置:レニショー製 inViaラマンマイクロスコープシステム
 使用箇所:表面、断面
"Raman spectroscopy device"
Equipment used: Renishaw inVia Raman Microscope System Used areas: Surface, cross section
(実施例1)
 〔工程A1-1〕
 以下の方法で光硬化樹脂前駆体の薄膜を製造した。
<1>3Dプリンターのプリンタヘッドをイソプロピルアルコール(IPA)で洗浄する。
<2>デジタル・モデルの2次元マイクロ格子構造(マイクロラティス)パターンを3Dプリンターに入力し、最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが200μmになるように、エポキシフェノール系光硬化性樹脂を用いて、光硬化樹脂前駆体の薄膜を成形した。
<3>成形終了後、光硬化樹脂前駆体の薄膜をプリンタヘッドに付けたままIPAを吹きかけて洗浄し、キムワイプで拭き取った。
 光硬化樹脂前駆体の薄膜を押さえつけるように、編み目(開口部)が見えるくらいまで拭き、このような洗浄を2回繰り返した。
<4> カッターを使用してプリンタヘッドから光硬化樹脂前駆体の薄膜を取り外し、IPAに10分間浸けた。2次元マイクロ格子構造(マイクロラティス)を有する光硬化樹脂前駆体の薄膜を得た。
(Example 1)
[Step A1-1]
A thin film of a photocurable resin precursor was manufactured by the following method.
<1> Clean the printer head of the 3D printer with isopropyl alcohol (IPA).
<2> Input the two-dimensional microlattice pattern of the digital model into a 3D printer, and apply epoxyphenol photocuring so that the final carbon film with the two-dimensional microlattice structure has a thickness of 200 μm. A thin film of a photocurable resin precursor was molded using a photocurable resin.
<3> After the molding was completed, the thin film of the photocurable resin precursor was sprayed with IPA to clean it while still attached to the printer head, and then wiped off with Kimwipe.
The thin film of the photocurable resin precursor was pressed down and wiped until the stitches (openings) were visible, and such cleaning was repeated twice.
<4> The thin film of the photocurable resin precursor was removed from the printer head using a cutter and soaked in IPA for 10 minutes. A thin film of a photocurable resin precursor having a two-dimensional microlattice structure (microlattice) was obtained.
 〔工程A1-2〕
<5> 得た光硬化樹脂前駆体の薄膜をガラス板で挟み、光照射装置で紫外線(波長:405nm)を30分間照射し、二次硬化し、最終の光硬化樹の薄膜を得た。
[Step A1-2]
<5> The obtained thin film of the photocurable resin precursor was sandwiched between glass plates, and was irradiated with ultraviolet rays (wavelength: 405 nm) for 30 minutes using a light irradiation device for secondary curing to obtain the final thin film of the photocurable resin.
〔工程A2〕
<6> 前記得た光硬化樹脂の薄膜をアルミナプレートに載せ、アルミナプレートに載せた前記樹脂薄膜を石英管に挿入し、電気炉にセットした。
 真空(10~20Pa)に達したら、400℃で4時間熱処理(予備熱処理)した。その後1000℃で4時間熱処理し、熱分解反応をさせた。昇温速度は毎分5~10℃であった。2次元マイクロ格子構造を有する炭素フィルムを得た。
[Step A2]
<6> The photocurable resin thin film obtained above was placed on an alumina plate, and the resin thin film placed on the alumina plate was inserted into a quartz tube and set in an electric furnace.
When vacuum (10 to 20 Pa) was reached, heat treatment (preliminary heat treatment) was performed at 400° C. for 4 hours. Thereafter, it was heat treated at 1000° C. for 4 hours to cause a thermal decomposition reaction. The temperature increase rate was 5-10°C per minute. A carbon film with a two-dimensional microlattice structure was obtained.
 上記の方法で、光顕微鏡を用いて表面観察試験を行い、得た2次元マイクロ格子構造を有する炭素フィルムを評価した。その結果を図7と8に示す。 In the above method, a surface observation test was conducted using a light microscope to evaluate the obtained carbon film having a two-dimensional microlattice structure. The results are shown in Figures 7 and 8.
(実施例2)
 〔工程A1-1〕において、最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが110μmになるように、光硬化樹脂前駆体の薄膜を成形した以外は、実施例1と同様な方法で、2次元マイクロ格子構造を有する炭素フィルムを得た。
 実施例1と同様方法で評価し、その結果を図9と10に示す。
(Example 2)
[Step A1-1] was carried out in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 110 μm. , a carbon film with a two-dimensional microlattice structure was obtained.
Evaluation was performed in the same manner as in Example 1, and the results are shown in FIGS. 9 and 10.
(実施例3)
 〔工程A1-1〕において、最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが90μmになるように、光硬化樹脂前駆体の薄膜を成形した以外は、実施例1と同様な方法で、2次元マイクロ格子構造を有する炭素フィルムを得た。
 実施例1と同様方法で評価し、その結果を図11と12に示す。
(Example 3)
[Step A1-1] was carried out in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 90 μm. , a carbon film with a two-dimensional microlattice structure was obtained.
Evaluation was performed in the same manner as in Example 1, and the results are shown in FIGS. 11 and 12.
(実施例4)
「引張り試験」
 〔工程A1-1〕において、エポキシフェノール系、ポリウレタン系光硬化樹脂を用い;炭素化前の樹脂膜の単位構造のパターンが2000-400になるようにデジタル・モデルの2次元マイクロ格子構造パターンを用い;最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが70、80、90、100μmになるように光硬化樹脂前駆体の薄膜を成形した以外は、実施例1と同様な方法で、引張り試験用2次元マイクロ格子構造を有する炭素フィルム試験片を得た。なお、単位構造のパターン2000-400とは、炭素化前の樹脂状態での単位構造の幅L(μm)と梁の幅w(μm)を使って、L-wでラベル付けた単位構造のパターン種類である。
 上記記載の方法で引張り試験を行った、その結果を図13~15に示す。
(Example 4)
"Tensile test"
In [Step A1-1], epoxyphenol-based and polyurethane-based photocurable resins are used; the two-dimensional microlattice structure pattern of the digital model is created so that the unit structure pattern of the resin film before carbonization is 2000-400. Used: In the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 70, 80, 90, and 100 μm. A carbon film specimen having a two-dimensional microlattice structure for tensile testing was obtained. Note that the unit structure pattern 2000-400 is the unit structure pattern labeled L-w using the width L (μm) of the unit structure in the resin state before carbonization and the width W (μm) of the beam. It is a pattern type.
A tensile test was conducted using the method described above, and the results are shown in FIGS. 13 to 15.
(実施例5)
「片持ち梁曲げ試験」
 〔工程A1-1〕において、エポキシフェノール系、ポリウレタン系光硬化樹脂を用い;炭素化前の樹脂膜の単位構造のパターンが2000-400になるようにデジタル・モデルの2次元マイクロ格子構造パターンを用い;最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが70、80、90、110、150μmになるように光硬化樹脂前駆体の薄膜を成形した以外は、実施例1と同様な方法で、片持ち梁曲げ試験用2次元マイクロ格子構造を有する炭素フィルム試験片を得た。
 上記記載の方法で片持ち梁曲げ試験を行った、その結果を図16~17に示す。
(Example 5)
"Cantilever beam bending test"
In [Step A1-1], epoxyphenol-based and polyurethane-based photocurable resins are used; the two-dimensional microlattice structure pattern of the digital model is created so that the unit structure pattern of the resin film before carbonization is 2000-400. Used: The same method as in Example 1 except that a thin film of the photocurable resin precursor was formed so that the final carbon film having a two-dimensional microlattice structure had a thickness of 70, 80, 90, 110, and 150 μm. Thus, a carbon film specimen having a two-dimensional micro-lattice structure for cantilever bending tests was obtained.
A cantilever bending test was conducted using the method described above, and the results are shown in FIGS. 16 and 17.
(実施例6)
「電気伝導性試験」
 〔工程A1-1〕において、エポキシフェノール系光硬化樹脂を用い;炭素化前の樹脂膜の単位構造のパターンが1000-200になるようにデジタル・モデルの2次元マイクロ格子構造パターンを用い;最終の2次元マイクロ格子構造を有する炭素フィルムの厚さが45~80μmになるように光硬化樹脂前駆体の薄膜を成形した以外は、実施例1と同様な方法で、電気伝導性試験用2次元マイクロ格子構造を有する炭素フィルム試験片を得た。
 上記記載の方法で電気伝導性試験を行った、その結果を図18に示す。
(Example 6)
"Electrical conductivity test"
In [Step A1-1], an epoxyphenol-based photocurable resin is used; a two-dimensional microlattice structure pattern of a digital model is used so that the unit structure pattern of the resin film before carbonization is 1000-200; A two-dimensional carbon film for electrical conductivity testing was prepared in the same manner as in Example 1, except that a thin film of the photocurable resin precursor was formed so that the thickness of the carbon film having a two-dimensional microlattice structure was 45 to 80 μm. A carbon film specimen with a microlattice structure was obtained.
An electrical conductivity test was conducted using the method described above, and the results are shown in FIG.
(実施例7)
「ラマン分光スペクトルの測定」
 実施例4で得られた試験片及び試験後の断片を用いて、ラマン分光スペクトルの測定用2次元マイクロ格子構造を有する炭素フィルム試験片を得た。
 上記記載の方法でラマン分光スペクトルの測定を行った、その結果を図19~22に示す。
(Example 7)
"Measurement of Raman spectroscopy spectrum"
Using the test piece obtained in Example 4 and the fragment after the test, a carbon film test piece having a two-dimensional microlattice structure for measurement of Raman spectroscopy was obtained.
The Raman spectra were measured using the method described above, and the results are shown in FIGS. 19 to 22.
(考察)
 図19及び20に示すように、エポキシフェノール樹脂由来の2次元マイクロ格子構造を有する炭素フィルムはその表面も断面(内部)も非晶質な炭素構造をしており、樹脂を1000℃で熱分解した結果として標準的である。その上で図19と図20を比較すると、構造欠陥由来のDピーク(~1350cm-1)に対するグラフェンシート構造由来のGピーク(~1610cm-1)の強度は表面の方が高い。すなわち表面の方が若干グラフェン化が進んでおり、これはポリアクリロニトリル樹脂の熱分解で得られるカーボンファイバーにも共通する特徴である。
 図21及び22に示すように、ポリウレタン樹脂由来の2次元マイクロ格子構造を有する炭素フィルムはその表面も断面(内部)も非晶質な炭素構造をしており、樹脂を1000℃で熱分解した結果として標準的である。その上で図21と図22を比較すると、構造欠陥由来のDピーク(~1350cm-1)に対するグラフェンシート構造由来のGピーク(~1610cm-1)の強度は、エポキシフェノール樹脂由来のサンプルほど表面と断面で差が無い。
 また、下記表1に示す通り、従来の炭素材料との比較では、本発明の2Dカーボンマイクロラティスは、形状自由度が高く、構造材料・電極材料としての用途が期待される。
(Consideration)
As shown in Figures 19 and 20, the carbon film with a two-dimensional microlattice structure derived from epoxyphenol resin has an amorphous carbon structure on its surface and cross section (inside), and the resin is thermally decomposed at 1000°C. The result is standard. Comparing FIG. 19 with FIG. 20, the intensity of the G peak (~1610 cm -1 ) derived from the graphene sheet structure is higher at the surface than the D peak (~1350 cm -1 ) derived from structural defects. In other words, graphene formation is slightly more advanced on the surface, which is a common feature of carbon fibers obtained by thermal decomposition of polyacrylonitrile resin.
As shown in Figures 21 and 22, the carbon film with a two-dimensional microlattice structure derived from polyurethane resin has an amorphous carbon structure both on its surface and in its cross section (inside), and the resin was thermally decomposed at 1000°C. The result is standard. Comparing FIG. 21 and FIG. 22, we can see that the intensity of the G peak (~1610 cm -1 ) derived from the graphene sheet structure is higher than that of the D peak (~1350 cm -1 ) derived from structural defects in the sample derived from epoxyphenol resin. There is no difference in cross section.
Further, as shown in Table 1 below, in comparison with conventional carbon materials, the 2D carbon microlattice of the present invention has a high degree of freedom in shape, and is expected to be used as a structural material and an electrode material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  光硬化樹脂を熱分解してなる炭素材料からなり、
     2次元マイクロ格子構造(マイクロラティス)を有し、
     厚さが50μm~300μmであることを特徴とする、2次元マイクロ格子構造を有する炭素フィルム。
    Made of carbon material made by thermally decomposing photocurable resin,
    It has a two-dimensional microlattice structure (microlattice),
    A carbon film having a two-dimensional microlattice structure, characterized in that the thickness is 50 μm to 300 μm.
  2.  前記光硬化樹脂が、エポキシフェノール系光硬化樹脂及びポリウレタン系光硬化樹脂からなる群から選択される1種以上である請求項1に記載の、2次元マイクロ格子構造を有する炭素フィルム。 The carbon film having a two-dimensional microlattice structure according to claim 1, wherein the photocurable resin is one or more selected from the group consisting of an epoxyphenol photocurable resin and a polyurethane photocurable resin.
  3.  前記炭素材料が、前記光硬化樹脂を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解してなるものである請求項1又は2に記載の、2次元マイクロ格子構造を有する炭素フィルム。 3. The carbon material according to claim 1, wherein the carbon material is obtained by thermally decomposing the photocurable resin at a temperature of 800 to 1200° C. in a vacuum at an air pressure of 0.1 to 100 Pa or in an inert atmosphere. A carbon film with a two-dimensional microlattice structure.
  4.  前記2次元マイクロ格子構造は、少なくとも1種類の単位構造を、2次元で複製してなる2次元構造である請求項1~3の何れか1項に記載の、2次元マイクロ格子構造を有する炭素フィルム。 The carbon having a two-dimensional microlattice structure according to any one of claims 1 to 3, wherein the two-dimensional microlattice structure is a two-dimensional structure obtained by two-dimensionally replicating at least one type of unit structure. film.
  5.  前記単位構造の外接円に換算のサイズが50μm~10mmである請求項4に記載の、2次元マイクロ格子構造を有する炭素フィルム。 The carbon film having a two-dimensional microlattice structure according to claim 4, wherein the size of the unit structure in terms of a circumscribed circle is 50 μm to 10 mm.
  6.  前記単位構造のパターンが、三角形、四角、五角形以上の多角形、楕円、丸、からなる群から選択される1種以上である、請求項4又は5の何れか1に記載の、2次元マイクロ格子構造を有する炭素フィルム。 6. The two-dimensional micrometer according to claim 4, wherein the pattern of the unit structure is one or more types selected from the group consisting of a triangle, a square, a polygon of pentagon or more, an ellipse, and a circle. Carbon film with lattice structure.
  7.  光造形法で、光硬化性樹脂組成物を成形し、第1の2次元マイクロ格子構造(マイクロラティス)を有する光硬化樹脂の薄膜を形成する光硬化樹脂成形工程と、
     前記光硬化樹脂の薄膜を熱分解し、第2の2次元マイクロ格子構造を有する炭素フィルムを形成する炭素化工程と、
    を有する、2次元マイクロ格子構造を有する炭素フィルムの製造方法。
    a photocurable resin molding step of molding the photocurable resin composition by stereolithography to form a thin film of photocurable resin having a first two-dimensional microlattice structure (microlattice);
    a carbonization step of thermally decomposing the thin film of the photocurable resin to form a carbon film having a second two-dimensional microlattice structure;
    A method for producing a carbon film having a two-dimensional microlattice structure.
  8.  前記光硬化性樹脂組成物が、エポキシフェノール系光硬化性樹脂組成物及びポリウレタン系光硬化性樹脂組成物からなる群から選択される1種以上である請求項7に記載の、2次元マイクロ格子構造を有する炭素フィルムの製造方法。 The two-dimensional microlattice according to claim 7, wherein the photocurable resin composition is one or more selected from the group consisting of an epoxyphenol photocurable resin composition and a polyurethane photocurable resin composition. A method for producing a structured carbon film.
  9.  前記炭素化工程において、前記光硬化樹脂の薄膜を0.1~100Paの気圧の真空中あるいは不活性雰囲気中、800~1200℃の温度で熱分解してなるものである請求項7又は8に記載の、2次元マイクロ格子構造を有する炭素フィルムの製造方法。 According to claim 7 or 8, in the carbonization step, the thin film of the photocurable resin is thermally decomposed at a temperature of 800 to 1200° C. in a vacuum at an atmospheric pressure of 0.1 to 100 Pa or in an inert atmosphere. The method for producing a carbon film having a two-dimensional microlattice structure as described above.
PCT/JP2022/010501 2022-03-10 2022-03-10 Carbon film having two-dimensional microlattice structure and method for producing same WO2023170854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010501 WO2023170854A1 (en) 2022-03-10 2022-03-10 Carbon film having two-dimensional microlattice structure and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010501 WO2023170854A1 (en) 2022-03-10 2022-03-10 Carbon film having two-dimensional microlattice structure and method for producing same

Publications (1)

Publication Number Publication Date
WO2023170854A1 true WO2023170854A1 (en) 2023-09-14

Family

ID=87936423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010501 WO2023170854A1 (en) 2022-03-10 2022-03-10 Carbon film having two-dimensional microlattice structure and method for producing same

Country Status (1)

Country Link
WO (1) WO2023170854A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021905A1 (en) * 1998-10-13 2000-04-20 Alliedsignal Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
JP2008296481A (en) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc Method for manufacturing resin film having three-dimensional structure formed therein
JP2017501910A (en) * 2013-11-18 2017-01-19 チャン、カイ−ジュイ Color or multi-material 3D printer
WO2019235557A1 (en) * 2018-06-08 2019-12-12 花王株式会社 Method for producing shortened anionically modified cellulose fibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021905A1 (en) * 1998-10-13 2000-04-20 Alliedsignal Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
JP2008296481A (en) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc Method for manufacturing resin film having three-dimensional structure formed therein
JP2017501910A (en) * 2013-11-18 2017-01-19 チャン、カイ−ジュイ Color or multi-material 3D printer
WO2019235557A1 (en) * 2018-06-08 2019-12-12 花王株式会社 Method for producing shortened anionically modified cellulose fibers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIAN BIN, SHI DAI, CAI XIAOBING, HU MINGJUN, GUO QIUQUAN, ZHANG CHUHONG, WANG QI, SUN ANDY XUELIANG, YANG JUN: "3D printed porous carbon anode for enhanced power generation in microbial fuel cell", NANO ENERGY, ELSEVIER, NL, vol. 44, 1 February 2018 (2018-02-01), NL , pages 174 - 180, XP093091377, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2017.11.070 *
WANG PANFENG, ZHANG HAO, WANG HUIZHI, LI DAWEI, XUAN JIN, ZHANG LI: "Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage", ADVANCED MATERIALS TECHNOLOGIES, WILEY, DE, vol. 5, no. 6, 1 June 2020 (2020-06-01), DE , XP093091376, ISSN: 2365-709X, DOI: 10.1002/admt.201901030 *

Similar Documents

Publication Publication Date Title
Kotz et al. Glassomer—processing fused silica glass like a polymer
Sano et al. 3D printing of discontinuous and continuous fibre composites using stereolithography
Zhang et al. 3D printing of glass by additive manufacturing techniques: a review
Puebla et al. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography
DE202017007499U1 (en) Composition for the production of a shaped body from high-purity, transparent quartz glass using additive manufacturing
Kim et al. Replication of a glass microlens array using a vitreous carbon mold
US20090096136A1 (en) Thiol-ene based poly(alkylsiloxane) materials
Ju et al. A method to fabricate low-cost and large area vitreous carbon mold for glass molded microstructures
DE112005002186T5 (en) Nanoimprint mold, method of forming a nano-stencil and resin molded product
WO2023170854A1 (en) Carbon film having two-dimensional microlattice structure and method for producing same
Park et al. Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp
Bazyar et al. A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing
CN113895051A (en) Preparation method of high-load-bearing polymer functional composite material based on 3D printing technology
Zhang et al. Study on nano-graphitic carbon coating on Si mold insert for precision glass molding
CN107428071A (en) Formed body
Khan et al. Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography
CN101114120A (en) A stamper and production method thereof and imprinting process of substrate using the stamper
Cheah et al. Characteristics of photopolymeric material used in rapid prototypes Part II. Mechanical properties at post-cured state
KR102117829B1 (en) Method of manufacturing 3d ceramic structure using silica nanoparticle and ceramic microreactor for high temeprature chemical process using the same
TWI679098B (en) Method for the production of an optical glass element
Komori et al. Micro/nanoimprinting of glass under high temperature using a CVD diamond mold
Ju et al. Development of low-cost and large-area nanopatterned vitreous carbon stamp for glass nanoreplication
DE19612576A1 (en) Double layer light-conducting microstructure mfr.
JP2014033062A (en) Production method of wavelength selective heat radiation material composed of aluminum sheet by nanoimprint method
JP5343682B2 (en) Imprint mold and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930835

Country of ref document: EP

Kind code of ref document: A1