WO2023170841A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2023170841A1
WO2023170841A1 PCT/JP2022/010403 JP2022010403W WO2023170841A1 WO 2023170841 A1 WO2023170841 A1 WO 2023170841A1 JP 2022010403 W JP2022010403 W JP 2022010403W WO 2023170841 A1 WO2023170841 A1 WO 2023170841A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
resin
threshold
control device
pressure reduction
Prior art date
Application number
PCT/JP2022/010403
Other languages
French (fr)
Japanese (ja)
Inventor
堀内淳史
浅岡裕泰
清水顕次郎
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022526713A priority Critical patent/JP7108157B1/en
Priority to PCT/JP2022/010403 priority patent/WO2023170841A1/en
Publication of WO2023170841A1 publication Critical patent/WO2023170841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to a control device and a control method for controlling an injection molding machine.
  • An injection molding machine is an industrial machine that mass-produces molded products by repeatedly executing a molding cycle that includes multiple steps.
  • the molding cycle includes a metering process, a pressure reduction process, and an injection process (see also JP-A-10-16016).
  • the pressure reduction step is performed after the metering step.
  • the injection process is performed after the depressurization process.
  • the measuring step a predetermined amount of resin is melted and stored inside the tip (measuring area) of the cylinder of the injection molding machine.
  • the pressure reduction step the pressure of the resin stored in the metering area is reduced.
  • the control device for the injection molding machine controls the injection molding machine based on various set parameters.
  • the parameters include, for example, the rotational speed of the screw that rotates in the metering process, the metering position that indicates the target position of the screw that is retracted, and the like.
  • the temperature, viscosity, density, amount of resin, etc. of the resin in the measurement area after the pressure reduction process may change for each molding cycle. In this case, the quality of the molded product obtained by performing the injection step after the depressurization step varies from molding cycle to molding cycle.
  • the present invention aims to solve the above-mentioned problems.
  • a first aspect of the present invention is an injection molding machine that includes a cylinder and a screw that injects a predetermined amount of resin measured in the cylinder into a mold.
  • a pressure reduction control unit that controls the screw based on a predetermined pressure reduction condition value to reduce the pressure of the resin after the predetermined amount of the resin is measured in the cylinder;
  • a first measurement unit that measures a load applied to the screw in response to the resin being injected from the cylinder into the mold after the pressure reduction of the resin is completed; and a first measurement unit configured to inject the resin into the mold.
  • a second measuring section that measures the amount of movement of the screw; and a reduced pressure condition correction section that corrects the predetermined reduced pressure condition value based on the difference between the time or the amount of movement and a second threshold value.
  • a second aspect of the present invention is an injection molding machine that includes a cylinder and a screw that injects a predetermined amount of resin measured in the cylinder into a mold.
  • the control method includes a pressure reduction control step of controlling the screw based on a predetermined pressure reduction condition value to reduce the pressure of the resin after the predetermined amount of the resin is measured in the cylinder.
  • a second measuring step of measuring the amount of movement of the screw until including:
  • the operator's work burden related to parameter adjustment for the depressurization process is reduced.
  • FIG. 1 is a side view of an injection molding machine according to an embodiment.
  • FIG. 2 is a schematic diagram of the injection unit.
  • FIG. 3 is a configuration diagram of the control device.
  • FIG. 4 is a table illustrating the first threshold table.
  • FIG. 5 is a table illustrating the second threshold table.
  • FIG. 6 is a table illustrating a correction amount table.
  • FIG. 7 is a flowchart illustrating the flow of the control method according to the embodiment.
  • FIG. 8 is a time chart illustrating changes in the screw rotational speed and the resin pressure over time when the control method of FIG. 7 is executed.
  • FIG. 9 is a time chart illustrating the time course of the torque of the first motor measured by the first measurement unit.
  • FIG. 10 is a time chart illustrating the respective time changes of the resin pressure and the torque of the first motor in the next molding cycle after the molding cycles shown in FIGS. 8 and 9.
  • FIG. 11 is a configuration diagram of a control device according to modification 1.
  • FIG. 12 is a flowchart illustrating the flow of the control method according to the first modification.
  • FIG. 1 is a side view of an injection molding machine 10 according to an embodiment.
  • the injection molding machine 10 includes a mold clamping unit 12, an injection unit 14, a machine stand 16, and a control device 18. Note that an arrow D1 in FIG. 1 indicates the front direction of the injection unit 14. An arrow D2 in FIG. 1 indicates the rear direction of the injection unit 14.
  • the mold clamping unit 12 is a device that opens and closes the mold 20.
  • the mold clamping unit 12 is arranged in front of the injection unit 14. Note that the mold 20 opens and closes in the front and rear directions.
  • the mold 20 in the closed state forms a cavity 20c.
  • the mold 20 in FIG. 1 is in a closed state.
  • the mold clamping unit 12 can apply mold clamping force to the mold 20 so that the mold 20 is maintained in a closed state.
  • a more detailed explanation of the mold clamping unit 12 will be omitted.
  • the machine stand 16 supports the mold clamping unit 12 and the injection unit 14. However, the machine stand 16 may support only the injection unit 14 of the mold clamping unit 12 and the injection unit 14.
  • a guide rail 22 is installed on the machine stand 16. The guide rail 22 extends in the front-rear direction.
  • the injection unit 14 is supported by the slide base 24.
  • the slide base 24 is guided by the guide rail 22 and slides in the front and rear directions. Therefore, the injection unit 14 slides in the front and back direction together with the slide base 24.
  • the injection unit 14 includes a cylinder 26.
  • the cylinder 26 is a cylindrical member that extends toward the front of the injection unit 14 .
  • FIG. 2 is a schematic diagram of the injection unit 14.
  • the axis L of the cylinder 26 extends parallel to the front-rear direction.
  • the cylinder 26 includes a hopper 28, a heater 30, a nozzle 32, and a screw 34.
  • the injection unit 14 further includes a first drive device 36, a second drive device 38, and a pressure sensor 40.
  • the hopper 28 is arranged at the rear end 26r of the cylinder 26.
  • the hopper 28 stores resin solids (pellets).
  • the resin is a raw material for molded products produced by the injection molding machine 10. Further, the hopper 28 has a supply port 28o. The resin in the hopper 28 is supplied into the cylinder 26 via the supply port 28o.
  • the heater 30 heats the cylinder 26. By heating the cylinder 26, the resin inside the cylinder 26 is heated.
  • the heater 30 includes, for example, a plurality of band heaters. A plurality of band heaters are wrapped around the cylinder 26.
  • the nozzle 32 is attached to the front end 26f of the cylinder 26.
  • the nozzle 32 has an injection port 32p.
  • the nozzle 32 communicates the inside of the front end portion 26f with the cavity 20c of the mold 20 via the injection port 32p.
  • the injection unit 14 may include a temperature sensor for detecting the temperature of the nozzle 32. Illustration of the temperature sensor is omitted.
  • the screw 34 is arranged inside the cylinder 26.
  • the axis L of the cylinder 26 is also the axis of the screw 34.
  • the screw 34 has a flight portion 42, a screw head 44, a check sheet 46, and a backflow prevention ring 48.
  • the flight portion 42 has a single spiral shape and is formed on the surface of the screw 34. However, the flight portion 42 may have a double helical shape.
  • the flight portion 42 forms a flow path 50 inside the cylinder 26 together with the inner wall 26 i of the cylinder 26 .
  • the flow path 50 is formed to guide the resin supplied into the cylinder 26 from the rear end 26r to the front end 26f.
  • the screw head 44 is the front end of the screw 34.
  • the check sheet 46 is arranged behind the screw head 44.
  • the backflow prevention ring 48 is arranged between the screw head 44 and the check sheet 46.
  • the backflow prevention ring 48 moves forward within the range between the screw head 44 and the check sheet 46 according to the pressure. By moving forward, the backflow prevention ring 48 moves away from the check sheet 46. By separating from the check sheet 46, the backflow prevention ring 48 opens a flow path 50 between the screw head 44 and the check sheet 46.
  • the backflow prevention ring 48 moves rearward within the range between the screw head 44 and the check sheet 46 according to the pressure.
  • the backflow prevention ring 48 approaches the check sheet 46 by moving backward.
  • the backflow prevention ring 48 closes the flow path 50 between the screw head 44 and the check sheet 46 by coming into contact with the check sheet 46 .
  • the first drive device 36 is a device that rotates the screw 34.
  • the first drive device 36 includes a first motor 52a, a first drive pulley 54a, a first belt member 56a, and a first driven pulley 58a.
  • the first motor 52a is, for example, a servo motor.
  • the first motor 52a includes a first shaft 60a, a first position and speed sensor 62a, and a first current torque sensor 63a.
  • the first shaft 60a rotates according to the drive current supplied to the first motor 52a.
  • the first position and speed sensor 62a outputs a detection signal according to the rotational position of the first shaft 60a to the control device 18.
  • the first current torque sensor 63a outputs a detection signal to the control device 18 according to the drive current supplied to the first motor 52a, the rotational torque of the first shaft 60a, and the like. Note that a more detailed explanation of the control device 18 will be given later.
  • the first drive pulley 54a is connected to the first shaft 60a.
  • the first drive pulley 54a rotates in accordance with the rotation of the first shaft 60a.
  • the first belt member 56a spans the first driving pulley 54a and the first driven pulley 58a.
  • the rotation of the first drive pulley 54a is transmitted to the first driven pulley 58a via the first belt member 56a.
  • the first driven pulley 58a also rotates in accordance with the rotation of the first drive pulley 54a.
  • the first driven pulley 58a is provided integrally with the screw 34. Therefore, the screw 34 also rotates in accordance with the rotation of the first driven pulley 58a.
  • the screw 34 rotates around the axis L. By rotating the screw 34, the resin inside the cylinder 26 can be caused to flow along the flow path 50.
  • the rotation direction of the first shaft 60a is switched according to the control of the control device 18. In response to the switching of the rotational direction of the first shaft 60a, the rotational direction of the screw 34 is also switched. By switching the rotational direction of the screw 34, the flow direction of the resin inside the cylinder 26 changes.
  • the direction of rotation of the screw 34 when the resin flows forward is also referred to as the forward rotation direction. Further, the rotational movement of the screw 34 in the forward rotation direction is also referred to as forward rotation.
  • the rotation direction of the screw 34 when the resin flows backward is also described as a reverse rotation direction. Further, the rotational movement of the screw 34 in the reverse rotation direction is also referred to as reverse rotation.
  • the second drive device 38 is a device that moves the screw 34 forward and backward inside the cylinder 26.
  • the second drive device 38 includes a second motor 52b, a second drive pulley 54b, a second belt member 56b, a second driven pulley 58b, a ball screw 64, and a nut 66.
  • the second motor 52b is, for example, a servo motor.
  • the second motor 52b includes a second shaft 60b, a second position and speed sensor 62b, and a second current torque sensor 63b.
  • the second shaft 60b rotates according to the drive current supplied to the second motor 52b.
  • the second position and speed sensor 62b outputs a detection signal according to the rotational position of the second shaft 60b to the control device 18.
  • the second current torque sensor 63b outputs a detection signal to the control device 18 according to the drive current supplied to the second motor 52b, the rotational torque of the second shaft 60b, and the like.
  • the second drive pulley 54b is connected to the second shaft 60b.
  • the second drive pulley 54b rotates in accordance with the rotation of the second shaft 60b.
  • the second belt member 56b spans the second drive pulley 54b and the second driven pulley 58b.
  • the rotation of the second drive pulley 54b is transmitted to the second driven pulley 58b via the second belt member 56b.
  • the second driven pulley 58b also rotates in accordance with the rotation of the second drive pulley 54b.
  • the second driven pulley 58b is connected to the ball screw 64.
  • the second driven pulley 58b rotates in accordance with the rotation of the second drive pulley 54b transmitted via the second belt member 56b. Therefore, the ball screw 64 also rotates in accordance with the rotation of the second driven pulley 58b.
  • the nut 66 is screwed onto the ball screw 64.
  • the axis of the ball screw 64 is parallel to the axis L of the cylinder 26 (screw 34). Therefore, the relative positional relationship between the nut 66 and the ball screw 64 changes in parallel to the axis L of the screw 34 in accordance with the rotation of the ball screw 64. That is, the relative positional relationship between the nut 66 and the ball screw 64 changes in the front-back direction according to the rotation of the ball screw 64.
  • the screw 34 is connected to a nut 66 and moves back and forth inside the cylinder 26 as the relative positional relationship between the nut 66 and the ball screw 64 changes in the front and back direction.
  • the rotation direction of the second shaft 60b is switched according to the control of the control device 18.
  • the rotational direction of the ball screw 64 is also switched.
  • the moving direction of the nut 66 and the screw 34 is switched.
  • the resin supplied from the hopper 28 into the cylinder 26 flows forward along the flow path 50 as the screw 34 rotates in the forward rotation direction (forward rotation). . While flowing along the flow path 50, the resin melts under the influence of the heat of the heater 30 transmitted via the cylinder 26 and the shear heat generated in the resin by being sheared by the flight portion 42.
  • the resin located behind the backflow prevention ring 48 flows forward along the flow path 50 and reaches the backflow prevention ring 48 as the screw 34 continues to rotate forward.
  • the resin that has reached the backflow prevention ring 48 presses the backflow prevention ring 48 in the forward direction.
  • the backflow prevention ring 48 moves forward within the range between the screw head 44 and the check sheet 46 to open the flow path 50.
  • the resin passes through the open channel 50 and reaches a region inside the cylinder 26 in front of the screw head 44 .
  • the area inside the cylinder 26 in front of the screw head 44 is also referred to as a metering area.
  • the amount of resin refers to the amount of resin stored in the measurement area unless otherwise specified.
  • the pressure sensor 40 is a sensor for detecting the pressure applied to the screw 34 by the resin in the metering area.
  • the pressure sensor 40 outputs a detection signal to the control device 18 in accordance with the pressure applied to the screw 34 by the resin in the measurement area.
  • the pressure sensor 40 is, for example, a load cell.
  • FIG. 3 is a configuration diagram of the control device 18.
  • the control device 18 is an electronic device (computer) that controls the injection molding machine 10.
  • the control device 18 is, for example, a numerical control device.
  • the control device 18 includes a display section 68, an operation section 70, a storage section 72, and a calculation section 74.
  • the display unit 68 is a display device including a display screen 68d.
  • the material of the display screen 68d includes, for example, liquid crystal or OEL (Organic Electro-Luminescence).
  • the operation unit 70 is an input device that accepts information input to the control device 18.
  • the operation unit 70 includes, for example, an operation panel 70a, a touch panel 70b, and the like.
  • the touch panel 70b is installed on the display screen 68d.
  • the operation unit 70 may include a keyboard, a mouse, and the like.
  • the storage unit 72 includes a storage circuit.
  • This storage circuit includes one or more memories such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage unit 72 stores a control program 76.
  • the control program 76 is a program for causing the control device 18 to execute the method for controlling the injection molding machine 10 according to the present embodiment.
  • the storage unit 72 may store various data as necessary.
  • the storage unit 72 may store the pressure obtained based on the detection signal of the pressure sensor 40.
  • the storage unit 72 also stores, for example, the torque of the first motor 52a (first torque) obtained based on the detection signal of the first current torque sensor 63a, and the torque of the first motor 52a obtained based on the detection signal of the second current torque sensor 63b.
  • the torque of the two motors 52b (second torque), etc. may be stored.
  • the storage unit 72 may store, for example, the drive current and voltage of the first motor 52a or the second motor 52b, the temperature of the nozzle 32, and the like.
  • the calculation unit 74 includes a processing circuit.
  • This processing circuit includes, for example, one or more processors.
  • the processing circuit of the calculation unit 74 may include an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). Further, the processing circuit of the calculation unit 74 may include a discrete device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the calculation section 74 includes a metering control section 78, a pressure reduction control section 80, an injection control section 82, and a display control section 84.
  • the metering control section 78, the pressure reduction control section 80, the injection control section 82, and the display control section 84 are realized by the processor of the calculation section 74 executing the control program 76.
  • the metering control section 78, the pressure reduction control section 80, the injection control section 82, and the display control section 84 may be realized by the aforementioned integrated circuit, discrete device, or the like.
  • the metering control unit 78 performs the control explained below in order to cause the injection molding machine 10 to execute the metering process in the molding cycle.
  • the initial position of the screw 34 (screw head 44) at the start of the metering process is the most forward position within the range of movement in the longitudinal direction inside the cylinder 26.
  • the mold 20 is in a closed state and a mold clamping force is applied from the mold clamping unit 12.
  • the metering control unit 78 controls the first motor 52a to rotate the screw 34 in the forward direction. Thereby, the resin supplied from the hopper 28 into the cylinder 26 is forced forward along the flow path 50. The resin flowing forward inside the cylinder 26 reaches the metering area while being melted. The amount of resin gradually increases as the metering control section 78 continues to rotate the screw 34 in the forward direction.
  • the screw 34 retreats as the amount of resin increases.
  • the metering control unit 78 controls the second motor 52b to prevent the screw 34 from retracting excessively. This prevents the pressure of the resin from decreasing excessively as the screw 34 retreats.
  • the metering control unit 78 controls the second motor 52b so that the pressure of the resin is adjusted to a predetermined pressure (metering pressure) P1 while the screw 34 rotates forward.
  • the metered pressure P1 is stored in the storage section 72 in advance.
  • the pressure of the resin is obtained based on the detection signal of the pressure sensor 40.
  • the metering pressure P1 is, for example, greater than atmospheric pressure.
  • the metering control unit 78 may control the second motor 52b to retract the screw 34 in order to adjust the pressure of the resin to the metering pressure P1.
  • the screw 34 which retreats as the amount of resin increases, reaches a predetermined position (measuring position) regarding the position of the screw 34.
  • the measuring position is a position behind the initial position of the screw 34 in the measuring process.
  • the metering control unit 78 can accumulate a predetermined amount of resin in the metering area by adjusting the resin pressure to the metering pressure P1 and causing the screw 34 to reach the metering position.
  • the metering control section 78 controls the first motor 52a to stop the forward rotation of the screw 34.
  • the pressure reduction control unit 80 After a predetermined amount of resin is measured in the cylinder 26, the pressure reduction control unit 80 performs the control described below in order to cause the injection molding machine 10 to execute the pressure reduction step of the molding cycle.
  • the pressure reduction control unit 80 controls the first motor 52a to rotate the screw 34 in the reverse direction.
  • the resin within the metering area flows backward. This reduces the amount of resin.
  • the pressure of the resin applied to the screw 34 is reduced.
  • the pressure reduction control unit 80 can also adjust the amount of resin to be closer to a predetermined amount by reducing the amount of resin in accordance with the reverse rotation of the screw 34.
  • the backflow prevention ring 48 is pressed by the resin flowing from the metering area to the rear of the backflow prevention ring 48 in response to the pressure reduction control unit 80 rotating the screw 34 in the reverse direction. This causes the backflow prevention ring 48 to move rearward.
  • the backflow prevention ring 48 moves rearward, it comes into contact with the check sheet 46 located behind the backflow prevention ring 48 .
  • the flow path 50 is closed. By closing the flow path 50, the resin accumulated in the metering area cannot reach the rear of the backflow prevention ring 48. As a result, the amount of resin is prevented from decreasing more than necessary.
  • the pressure reduction control unit 80 controls the screw 34 based on a predetermined pressure reduction condition value CV and a target pressure reduction value P0.
  • the predetermined pressure reduction condition value CV includes three items: reverse rotation time, reverse rotation amount, and reverse rotation speed.
  • the reverse rotation time indicates the duration of reverse rotation.
  • the amount of reverse rotation indicates the amount of rotation that causes the screw 34 to rotate in the reverse direction.
  • the reverse rotation speed indicates the rotation speed of the screw 34 that rotates in reverse. Note that the items of reverse rotation time, amount of reverse rotation, and reverse rotation speed are automatically determined by determining the remaining two items.
  • the predetermined pressure reduction condition value CV is stored in the storage unit 72.
  • the manufacturer of the injection molding machine 10 may store the recommended default value in the storage unit 72 in advance as the initial value of the predetermined pressure reduction condition value CV.
  • the operator may arbitrarily change at least one item among the reverse rotation time, the reverse rotation amount, and the reverse rotation speed via the operation unit 70.
  • the manufacturer of the injection molding machine 10 may store in the storage unit 72 in advance a predetermined range (upper limit value, lower limit value) in which the predetermined pressure reduction condition value CV can be changed. This limits the range of the predetermined pressure reduction condition value CV that can be changed by the operator.
  • the target pressure reduction value P0 indicates the target pressure of the resin pressure to be reduced in the pressure reduction step.
  • the pressure reduction control unit 80 (injection control unit 82, which will be described later) determines that the pressure reduction has ended when the resin pressure reaches the target pressure reduction value P0.
  • the target pressure reduction value P0 is, for example, atmospheric pressure.
  • the target pressure reduction value P0 is stored in the storage unit 72, for example.
  • the manufacturer of the injection molding machine 10 may store the recommended target pressure reduction value P0 in advance in the storage unit 72 as a default value. Further, the operator may specify an arbitrary pressure as the target pressure reduction value P0 via the operation unit 70. In this case, similarly to the predetermined pressure reduction condition value CV, the manufacturer of the injection molding machine 10 may store in the storage unit 72 in advance a changeable range of the target pressure reduction value P0.
  • the injection control unit 82 controls the second motor 52b to advance the screw 34 after the pressure reduction is completed. Thereby, the resin within the metering area is injected toward the cavity 20c of the mold 20 via the nozzle 32. The injected resin is solidified within the cavity 20c to complete the molded product.
  • the screw 34 that has advanced in the injection process moves to the most forward position within the range of movement in the longitudinal direction inside the cylinder 26.
  • the screw 34 may be moved to the initial position of the metering process described above.
  • the metering control unit 78 can start the metering step of the next molding cycle by sequentially rotating the screw 34 again after the molded product is taken out from the mold 20.
  • the display control unit 84 controls the display unit 68 to appropriately display various data stored in the storage unit 72 on the display screen 68d.
  • the display control unit 84 may display the resin pressure based on the detection signal of the pressure sensor 40 on the display screen 68d.
  • the state of the resin (temperature, viscosity, density, amount of resin, etc.) after the pressure reduction step may differ depending on the molding cycle.
  • the nozzle 32 and the mold 20 are separated.
  • the temperature of the nozzle 32 is likely to be different from the temperature of the mold 20.
  • the injection unit 14 supported by the slide base 24 is slid forward along the guide rail 22, and the nozzle 32 and the mold 20 are brought into contact.
  • the temperatures of the nozzle 32 and the mold 20 gradually become balanced.
  • the temperature of the nozzle 32 is not stable until the temperatures of the nozzle 32 and the mold 20 reach equilibrium.
  • the temperature of the resin stored in the metering area near the nozzle 32 varies with each molding cycle. When the temperature of the resin varies from molding cycle to molding cycle, the viscosity of the resin also fluctuates from molding cycle to molding cycle.
  • the way the resin flows in each of the pressure reduction process and the injection process will vary from molding cycle to molding cycle. Therefore, for example, when the screw 34 is reversely rotated in the pressure reduction step, the amount of decrease in the amount of resin varies from molding cycle to molding cycle. In this case, since the amount of resin filled into the cavity 20c during the injection process varies from molding cycle to molding cycle, the quality of the molded product varies from molding cycle to molding cycle. Furthermore, if the way the resin flows into the cavity 20c during the injection process varies from molding cycle to molding cycle, there is a greater possibility that the quality of the molded product will vary from molding cycle to molding cycle.
  • the cause of variations in the state of the resin from molding cycle to molding cycle is not limited to variations in the temperature of the nozzle 32.
  • the resin supplied into the cylinder 26 may change due to changes in room temperature, humidity, etc. due to seasonal changes. Drying conditions may vary from molding cycle to molding cycle.
  • the state of the resin after being melted in the metering process varies from cycle to cycle depending on changes in room temperature, humidity, etc.
  • the lot of resin supplied to the inside of the cylinder 26 may be changed during a plurality of molding cycles.
  • a difference occurs in the state of the resin before and after changing the resin lot.
  • molded products may be produced using recycled resin, fiber-reinforced resin, etc.
  • Recycled resin is resin containing recycled material.
  • Fiber-reinforced resin is a resin containing reinforcing fibers as a material.
  • the reinforcing fiber is, for example, glass fiber.
  • the physical properties of the recycled resin and the fiber-reinforced resin are not stable compared to the physical properties of virgin material made from new materials. Therefore, when the injection molding machine 10 produces a molded product using recycled resin, fiber-reinforced resin, etc., the state of the resin accumulated in the metering area during the metering process tends to vary from molding cycle to molding cycle.
  • the control device 18 includes a first measuring section 86, a first threshold determining section 88, a second measuring section 90, a second threshold determining section 92, and a decompression condition correcting section 94. Furthermore, it is equipped with.
  • the first measuring section 86, the first threshold determining section 88, the second measuring section 90, the second threshold determining section 92, and the depressurization condition correcting section 94 are, for example, a calculation section, similar to the metering control section 78, etc. 74 is realized by executing the control program 76.
  • the first measurement unit 86 measures the load applied to the screw 34 in response to resin being injected from the cylinder 26 into the mold 20 after the resin has been depressurized. That is, the first measurement unit 86 measures the load applied to the screw 34 as the screw 34 moves forward during the injection process.
  • the load applied to the screw 34 as the screw 34 moves forward in the injection process is, for example, the torque of the first motor 52a. That is, the resin adheres to the screw 34 along the spiral flow path 50.
  • the resin attached to the screw 34 provides viscous resistance in the rotational direction of the screw 34 to the advancing screw 34. This viscous resistance affects the torque of the first motor 52a. Therefore, the torque of the first motor 52a reflects the load on the screw 34.
  • the first measurement unit 86 can calculate the torque of the first motor 52a based on the detection signal of the first current torque sensor 63a.
  • the first threshold value determination unit 88 determines the first threshold value TH1 based on the first threshold value table TB1.
  • the first threshold table TB1 is a data table that stores a plurality of first threshold values TH1 according to at least one of a plurality of types of screws 34 and a plurality of types of resin.
  • the first threshold value determination unit 88 sets a first threshold value TH1 corresponding to the type of screw 34 provided in the injection molding machine 10 and the type of resin supplied into the inside of the cylinder 26 in the first threshold value table TB1. Search from.
  • FIG. 4 is a table illustrating the first threshold table TB1.
  • a plurality of types of screws 34 are stored in the first column (screw types) of the first threshold table TB1 illustrated in FIG. 4.
  • FIG. 4 shows multiple types of screws 34, including a full-flight screw, a barrier-flight screw, and a highly plasticized screw.
  • FIG. 4 shows PA (polyamide), PBT (polybutylene terephthalate), and PE (polyethylene) as a plurality of types of resin.
  • the third column (first threshold) of the first threshold table TB1 illustrated in FIG. 4 stores a plurality of first thresholds TH1 (V1 to V7) corresponding to each data in the first column and the second column. be done.
  • the specific value of each of the plurality of first threshold values TH1 is determined in advance based on experiments. Note that, as shown in the bottom row of FIG. 4, the first threshold value TH1 depending on the type of screw 34 may be stored in the first threshold value table TB1 regardless of the type of resin. Furthermore, regardless of the type of screw 34, the first threshold value TH1 depending on the type of resin may be stored in the first threshold value table TB1.
  • the first threshold table TB1 is stored in advance in the storage unit 72 (see also FIG. 3).
  • the type of screw 34 provided in the injection molding machine 10 and the type of resin supplied to the inside of the cylinder 26 are instructed by the operator to the first threshold value determination unit 88 via the operation unit 70, for example.
  • the second measurement unit 90 measures the required time TM from when the screw 34 starts an injection operation for injecting resin into the mold 20 until the load applied to the screw 34 reaches the first threshold value TH1. That is, the second measurement unit 90 measures the time TM required from when the screw 34 starts moving forward in the injection process until the torque of the first motor 52a reaches the first threshold value TH1.
  • the measured required time TM is stored in the storage unit 72.
  • the second threshold determination unit 92 determines the second threshold TH2 based on the second threshold table TB2.
  • the second threshold table TB2 is a data table that stores a plurality of second threshold values TH2 according to at least one of the plurality of types of screws 34 and the plurality of types of resin.
  • the second threshold determination unit 92 sets a second threshold TH2 corresponding to the type of screw 34 provided in the injection molding machine 10 and the type of resin supplied into the cylinder 26 in the second threshold table TB2. Search from.
  • FIG. 5 is a table illustrating the second threshold table TB2.
  • a plurality of types of screws 34 are stored in the first column (types of screws 34) of the second threshold table TB2 illustrated in FIG.
  • a plurality of types of resin are stored in the second column (types of resin) of the second threshold table TB2 illustrated in FIG. 5 .
  • the third column (second threshold) of the second threshold table TB2 illustrated in FIG. 5 stores a plurality of second thresholds TH2 (U1 to U7) corresponding to each data in the first column and the second column. be done.
  • each of the plurality of second threshold values TH2 is determined in advance based on experiments.
  • the second threshold value TH2 according to the type of screw 34 may be stored in the second threshold value table TB2 regardless of the type of resin.
  • the second threshold value TH2 depending on the type of resin may be stored in the second threshold value table TB2.
  • the second threshold table TB2 is stored in advance in the storage unit 72 (see also FIG. 3).
  • the type of screw 34 provided in the injection molding machine 10 and the type of resin to be supplied into the cylinder 26 are specified by an operator to the second threshold value determination unit 92 via the operation unit 70, for example.
  • the operator may have already input the type of screw 34 and the type of resin into the control device 18.
  • the second threshold determination unit 92 may use the type of screw 34 and the type of resin that have already been input to the control device 18.
  • the decompression condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference ⁇ between the required time TM and the second threshold TH2.
  • the decompression condition correction unit 94 corrects at least one of the reverse rotation time, the reverse rotation amount, and the reverse rotation speed out of the predetermined pressure reduction condition value CV.
  • the decompression condition correction unit 94 determines the amount of correction for the predetermined decompression condition value CV based on the correction amount table TBC.
  • the correction amount table TBC is a data table in which a plurality of correction amounts are stored according to the difference ⁇ between the required time TM and the second threshold TH2.
  • FIG. 6 is a table illustrating the correction amount table TBC.
  • the first column (difference range) of the correction amount table TBC illustrated in FIG. 6 stores a plurality of ranges regarding the difference ⁇ between the required time TM and the second threshold TH2.
  • the second column (correction amount) of the correction amount table TBC illustrated in FIG. 6 stores a plurality of correction amounts (C1 to C6,%) corresponding to each of the plurality of ranges stored in the first column. Ru. Specific values of the plurality of correction amounts are determined in advance based on experiments. Note that the correction amount table TBC separately stores a correction amount for correcting the reverse rotation time, a correction amount for correcting the reverse rotation amount, and a correction amount for correcting the reverse rotation speed. Good too.
  • the correction amount table TBC is stored in advance in the storage unit 72 (see also FIG. 3).
  • the decompression condition correction unit 94 determines the correction amount by referring to the correction amount table TBC based on the difference ⁇ between the required time TM and the second threshold TH2. Further, the depressurization condition correction unit 94 corrects the predetermined depressurization condition value CV based on the determined correction amount.
  • the decompression condition correction section 94 corrects the predetermined decompression condition value CV based on the correction amount C1.
  • the decompression condition correction unit 94 adjusts the predetermined decompression condition value CV so that it falls within the predetermined range. It is preferable to correct it.
  • the pressure reduction condition correction unit 94 sets the upper limit value as the correction result of the predetermined pressure reduction condition value CV.
  • the pressure reduction condition correction unit 94 sets the lower limit value as the correction result of the predetermined pressure reduction condition value CV.
  • the injection molding machine 10 is prevented from performing an operation that is not recommended by the manufacturer.
  • the correction amount table TBC stores correction amounts that decrease the predetermined pressure reduction condition value CV as the required time TM is larger than the second threshold TH2. Therefore, when the required time TM exceeds the second threshold TH2, the decompression condition correction unit 94 decreases the predetermined depressurization condition value CV as the difference ⁇ between the required time TM and the second threshold TH2 increases.
  • the density of the resin stored in the measurement area is increased in the pressure reduction step performed after the correction.
  • the backward pressure applied to the resin is increased.
  • the resin in the metering area becomes more likely to flow forward in a short time. That is, by correcting the predetermined pressure reduction condition value CV to a smaller value, the pressure of the resin during the injection process is likely to increase quickly.
  • the required time TM approaches the second threshold value TH2 in the injection process after the pressure reduction process performed based on the corrected predetermined pressure reduction condition value CV.
  • the correction amount table TBC stores a correction amount that increases the predetermined pressure reduction condition value CV as the required time TM is smaller than the second threshold TH2. Therefore, when the required time TM is less than the second threshold TH2, the depressurization condition correction unit 94 increases the predetermined depressurization condition value CV as the difference ⁇ between the required time TM and the second threshold TH2 increases.
  • the density of the resin accumulated in the measurement area is reduced in the pressure reduction step performed after the correction.
  • the backward pressure applied to the resin is weakened.
  • the resin within the metering area becomes more difficult to flow forward. That is, by correcting the predetermined pressure reduction condition value CV to a larger value, the pressure of the resin during the injection process becomes difficult to increase.
  • the required time TM approaches the second threshold value TH2 in the injection process after the pressure reduction process performed based on the corrected predetermined pressure reduction condition value CV.
  • the predetermined pressure reduction condition value CV corrected by the pressure reduction condition correction section 94 is stored in the storage section 72.
  • the display control unit 84 may display the corrected predetermined pressure reduction condition value CV on the display screen 68d.
  • the corrected predetermined pressure reduction condition value CV is used by the pressure reduction control unit 80 in a pressure reduction process executed after the correction.
  • the quality of the molded product can be stabilized, as described below.
  • the way the resin flows changes depending on the state of the resin. Further, as the resin flows, it applies a load to the screw. Therefore, there is a correlation between the state of the resin and the way the resin flows, and a correlation between the way the resin flows and the load applied to the screw. For the above reasons, there is a correlation between the state of the resin and the load applied to the screw.
  • the change in the load applied to the screw according to the flow of the resin is reflected in the required time TM. Therefore, by correcting the predetermined pressure reduction condition value CV so that the required time TM approaches the second threshold value TH2, it is possible to uniformly adjust the state of the resin over a plurality of molding cycles. Thereby, the quality of the molded product can be made uniform while reducing the burden on the operator in adjusting the predetermined pressure reduction condition value CV.
  • FIG. 7 is a flowchart illustrating the flow of the control method according to the embodiment.
  • the control device 18 executes the control method illustrated in FIG. 7, for example.
  • the control method of FIG. 7 includes a first threshold value determination step S1, a second threshold value determination step S2, a pressure reduction control step S3, a first measurement step S4, a second measurement step S5, and a pressure reduction condition correction step S6. include.
  • the first threshold value determination unit 88 refers to the first threshold value table TB1 based on the type of screw 34 provided in the injection molding machine 10 and the type of resin used for injection molding. Then, the first threshold TH1 is determined. Note that the first threshold value determination step S1 may be executed at any time between START and the second measurement step S5 in the flowchart of FIG.
  • the second threshold value determination unit 92 generates a second threshold value table TB2 based on the type of screw 34 provided in the injection molding machine 10 and the type of resin used for injection molding.
  • the second threshold value TH2 is determined with reference to. Note that the second threshold value determination step S2 may be executed at any time between START and the depressurization condition correction step S6 in the flowchart of FIG.
  • the pressure reduction control section 80 controls the screw 34 to reduce the pressure of the resin.
  • the pressure reduction control step S3 is included in the pressure reduction step of the molding cycle. Note that the measuring process ends before the pressure reduction process starts. Therefore, the start point of the pressure reduction control step S3 is after the screw 34 has reached the metering position and a predetermined amount of resin has been metered within the cylinder 26.
  • FIG. 8 is a time chart illustrating the respective time changes of the rotational speed of the screw 34 and the pressure of the resin when the control method of FIG. 7 is executed.
  • the rotational speed of the screw 34 is less than 0, the screw 34 is rotating in the opposite direction.
  • time t0 indicates the end time of the weighing process.
  • Time t0 is also the start time of the pressure reduction process (pressure reduction control step S3).
  • the pressure of the resin is metering pressure P1. Further, since the forward rotation of the screw 34 does not stop immediately, the screw 34 is rotating forward at time t0. In FIG. 8, when the rotational speed is greater than 0, the screw 34 is rotating forward.
  • the screw 34 rotates in reverse based on a predetermined pressure reduction condition value CV.
  • the predetermined pressure reduction condition value CV includes the reverse rotation speed Vrb.
  • the rotational speed of the screw 34 is adjusted to the reverse rotational speed Vrb.
  • the pressure reduction process ends.
  • the first measurement unit 86 measures the load applied to the screw 34 in response to resin being injected from the cylinder 26 to the mold 20.
  • the first measurement step S4 can be included in the injection step of the molding cycle.
  • the load applied to the screw 34 in response to the resin being injected from the cylinder 26 to the mold 20 is, for example, the torque (first torque) of the first motor 52a.
  • the torque of the first motor 52a is calculated based on the current that drives the first motor 52a.
  • the injection control unit 82 outputs a control command to the second drive device 38 to move the screw 34 forward in order to start the injection process.
  • This command is output from the injection control section 82 at time t2 in FIG. 8, for example.
  • Time t2 is the start time of the injection process and also the start time of the first measurement step S4.
  • the second motor 52b is controlled based on a control command from the injection control section 82 to move the screw 34 forward.
  • the resin in the measurement area is injected into the cavity 20c of the mold 20. Furthermore, after time t2, the pressure of the resin increases. However, the cavity 20c is hollow before being filled with resin. Therefore, for a while after the resin starts being injected, the flow resistance applied to the injected resin is small. While the flow resistance applied to the resin is small, the pressure applied from the resin to the screw increases slowly.
  • FIG. 9 is a time chart illustrating the time course of the torque of the first motor 52a measured by the first measurement unit 86.
  • time t2 corresponds to FIG. 8.
  • the load applied to the screw 34 is also small. Therefore, the load applied to the screw 34 gradually increases for a while after the resin starts being injected.
  • the required time TM from when the screw 34 starts the injection operation for injecting the resin into the mold 20 until the load applied to the screw 34 reaches the first threshold value TH1 is calculated.
  • the second measuring section 90 measures. For example, according to FIG. 9, the torque of the first motor 52a, which is measured as a load, reaches the first threshold value TH1 at time t3.
  • the second measurement step S5 measures the required time TM from time t2 to time t3.
  • the second measurement step S5 can also be included in the injection process.
  • the pressure reduction condition correction section 94 corrects the predetermined pressure reduction condition value CV.
  • the correction amount is determined to be C1 based on the correction amount table TBC.
  • the corrected pressure reduction condition value CV is a value obtained by subtracting the correction amount C1 from the predetermined pressure reduction condition value CV.
  • the pressure reduction control unit 80 may reduce the pressure of the resin in the pressure reduction step of the next molding cycle by controlling the screw 34 using the corrected pressure reduction condition value CV.
  • FIG. 10 is a time chart illustrating the time course of the resin pressure and the torque of the first motor 52a in the next molding cycle after the molding cycles shown in FIGS. 8 and 9. For comparison, the time course of the resin pressure shown in FIG. 8 and the time course of the torque of the first motor 52a shown in FIG. 9 are shown by broken lines in FIG.
  • the injection molding machine 10 repeatedly executes the molding cycle even after the control method shown in FIG. 7 ends (RETURN). That is, after the control method of FIG. 7 is completed (RETURN), the metering process, the pressure reduction process, and the injection process are performed again.
  • the required time TM approaches the second threshold value TH2 in the injection process that is performed again after the reduced pressure condition correction step S6 (see FIG. 10). In this way, by continuing to automatically adjust the required time TM in each molding cycle to a time length close to the second threshold value TH2, it is possible to reduce the burden on the operator and make the quality of molded products uniform. .
  • FIG. 11 is a configuration diagram of a control device 181 (18) according to Modification 1.
  • the control device 181 is a modification of the control device 18.
  • the control device 181 includes the components of the control device 18 (see the embodiment).
  • the control device 181 further includes a measurement frequency determination section 96 and a statistics calculation section 98.
  • the measurement count determination unit 96 and the statistic calculation unit 98 are realized, for example, by the calculation unit 74 executing the control program 76, similarly to the measurement control unit 78 and the like.
  • the second measurement unit 90 measures the required time TM for each molding cycle (depressurization process) repeatedly executed by the injection molding machine 10.
  • the storage unit 72 stores a plurality of required times TM measured by the second measurement unit 90 during a plurality of molding cycles.
  • the measurement number determination unit 96 determines whether the required time TM for a predetermined number of times, which is measured by repeating the molding cycle a predetermined number of times, has been stored in the storage unit 72.
  • the predetermined number of times is specified in advance by the manufacturer of the injection molding machine 10 based on experiments. However, the operator may instruct a predetermined number of times to the measurement number determination section 96 via the operation section 70.
  • the statistics calculation unit 98 calculates the statistics of the required time TM for a predetermined number of times.
  • the statistic calculation unit 98 calculates, for example, a weighted average value of the required time TM for a predetermined number of times as a statistic.
  • the weighting coefficients used to calculate the weighted average value are determined in advance, for example, based on experiments, and are stored in the storage unit 72. For example, the weighting coefficient is smaller as the weighting coefficient is applied to the required time TM obtained in a molding cycle in the past.
  • the calculated statistics are stored in the storage unit 72.
  • the decompression condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference ⁇ between the required time TM and the second threshold TH2. However, in this modification, the decompression condition correction section 94 uses the statistics calculated by the statistics calculation section 98 as the required time TM. This reduces the possibility that the predetermined pressure reduction condition value CV will be corrected based on an outlier value of the required time TM.
  • FIG. 12 is a flowchart illustrating the flow of the control method according to Modification 1.
  • the control device 181 can execute the control method shown in FIG. 12, for example.
  • the control method of FIG. 12 includes the components of the control method of FIG. 7 (see embodiment).
  • the control method of FIG. 12 further includes a measurement number determination step S7 and a calculation step S8.
  • the measurement count determination step S7 is performed after the second measurement step S5.
  • the measurement number determination unit 96 determines whether it is possible to calculate the statistics. That is, in the measurement number determination step S7, the measurement number determination unit 96 determines whether the storage unit 72 stores the required time TM for a predetermined number of times necessary to calculate the statistics.
  • the statistics calculation unit 98 calculates statistics based on the required time TM for a predetermined number of times.
  • the reduced pressure condition correction step S6 is performed after the calculation step S8.
  • the pressure reduction condition correction section 94 corrects the predetermined pressure reduction condition value CV based on the difference ⁇ between the required time TM and the second threshold value TH2.
  • the statistic calculated in the calculation step S8 is used as the required time TM.
  • the statistics calculation unit 98 may calculate an arithmetic mean value, a weighted harmonic mean value, a pruned mean value, a two-section sum mean square root, a mode, or a weighted median value of a plurality of required times TM as a statistic. good.
  • the operator may indicate at least one of the first threshold TH1 and the second threshold TH2.
  • the operator inputs the first threshold value TH1 into the control device 18, for example, via the operation unit 70.
  • the second measurement unit 90 measures the required time TM using the input first threshold TH1.
  • the operator may change the first threshold value TH1 determined by the first threshold value determination unit 88 or the second threshold value TH2 determined by the second threshold value determination unit 92 via the operation unit 70.
  • the amount of correction of the predetermined pressure reduction condition value CV may be determined in advance depending on whether the required time TM exceeds the second threshold TH2 or when the required time TM is less than the second threshold TH2. In other words, the correction amount of the predetermined pressure reduction condition value CV is determined based only on the magnitude relationship between the required time TM and the second threshold TH2, regardless of the magnitude of the difference ⁇ between the required time TM and the second threshold TH2. It's okay.
  • the depressurization condition correction unit 94 corrects the predetermined depressurization condition value CV based on the correction amount according to the magnitude relationship between the required time TM and the second threshold value TH2. Note that the absolute value of the correction amount when the required time TM exceeds the second threshold TH2 may be the same as the absolute value of the correction amount when the required time TM is less than the second threshold TH2.
  • the first measurement unit 86 may measure the pressure of the resin as a load applied to the screw 34.
  • the rearward pressure is a load on the advancing screw 34.
  • the first measurement unit 86 may measure the torque of the second motor 52b calculated based on the detection signal of the second current torque sensor 63b as the load applied to the screw 34.
  • the backward pressure applied by the resin to the screw 34 affects the torque of the second motor 52b that moves the screw 34 forward. Therefore, the torque of the second motor 52b shows a value according to the load on the screw 34.
  • the first measurement unit 86 may measure both the torque of the first motor 52a and the torque of the second motor 52b as the load applied to the screw 34.
  • the first threshold value TH1 with which the torque of the first motor 52a is compared and the first threshold value TH1 with which the torque of the second motor 52b is compared may be different.
  • the second measurement unit 90 determines which of the time TM required for the torque of the first motor 52a to reach the first threshold TH1 and the time TM required for the torque of the second motor 52b to reach the first threshold TH1. , the shorter one is stored in the storage unit 72.
  • the second measurement unit 90 determines the time TM required for the torque of the first motor 52a to reach the first threshold TH1, and the time TM required for the torque of the second motor 52b to reach the first threshold TH1. Of these, the longer one may be stored in the storage unit 72.
  • the depressurization condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference ⁇ between the required time TM stored in the storage unit 72 and the second threshold value TH2.
  • the second measurement unit 90 measures, in place of the required time TM, the amount of movement of the screw 34 from when the screw 34 starts the injection operation until the load on the screw 34 reaches the first threshold value TH1. It's okay.
  • the amount of movement is measured as the distance that the screw 34 has moved in the front-back direction based on the detection signal of the second position and speed sensor 62b included in the second motor 52b.
  • the load applied to the screw 34 after the start of the injection operation is measured as, for example, the torque of the first motor 52a (see also the embodiment).
  • the pressure reduction control unit 80 may control the second motor 52b to suck back the screw 34 in order to reduce the pressure of the resin.
  • Suckback is a backward movement of the screw 34. By sucking back, the screw 34 moves further rearward from the measuring position.
  • the predetermined pressure reduction condition value CV includes three items: the suckback time of the screw 34, the suckback distance, and the suckback speed.
  • the suckback time indicates the duration of suckback of the screw 34.
  • the suckback distance indicates the distance that the screw 34 sucks back.
  • the suckback speed indicates the backward speed of the screw 34 that sucks back.
  • the suckback time, suckback distance, and suckback speed are automatically determined by determining the remaining two items.
  • the decompression condition correction unit 94 corrects at least one of the suckback time, the suckback distance, and the suckback speed.
  • the pressure reduction control unit 80 may cause the screw 34 to perform both reverse rotation and suckback during the pressure reduction process.
  • the decompression condition correction unit 94 corrects at least one item of the reverse rotation time, the reverse rotation amount, the reverse rotation speed, the suckback time, the suckback distance, and the suckback speed.
  • the first threshold value table TB1 may store a plurality of first threshold values TH1 according to not only the type of screw 34 and the type of resin but also the type of nozzle 32.
  • the second threshold value table TB2 may store a plurality of second threshold values TH2 according to not only the type of screw 34 and the type of resin but also the type of nozzle 32.
  • the control device 18 may further control the mold clamping unit 12.
  • Modification 11 The method in which the axis L of the cylinder 26 and the axis of the screw 34 overlap is also referred to as an in-line (in-line screw) method.
  • An injection molding machine to which an in-line method is applied is also referred to as an in-line injection molding machine.
  • the injection unit (14) of the in-line injection molding machine (10) is easier to maintain than injection units of other types.
  • control device 18 may be included in an injection molding machine that is not an in-line type.
  • a method other than the inline method is, for example, a pre-pura method.
  • the required time TM according to each of Modifications 1 to 7 described above may be transformed to the movement amount according to Modification 8.
  • a first invention provides an injection molding machine (10) that includes a cylinder (26) and a screw (34) that injects a predetermined amount of resin measured within the cylinder into a mold (20).
  • a control device (18) that controls rotation and forward/backward movement within the cylinder, the control device (18) controlling the screw based on a predetermined pressure reduction condition value (CV) after the predetermined amount of the resin has been measured in the cylinder.
  • a pressure reduction control unit (80) that controls to reduce the pressure of the resin; and a load applied to the screw in response to the resin being injected from the cylinder to the mold after the resin pressure reduction is completed.
  • the control device includes a depressurization condition correction unit (94) that corrects the predetermined decompression condition value based on the difference ( ⁇ ) between the amount and the second threshold value (TH2).
  • the first measurement unit measures at least one of a first torque of a first motor (52a) that rotates the screw and a second torque of a second motor (52b) that advances the screw as the load. You may. Thereby, the load on the screw can be detected based on the current torque sensor originally provided in the motor, so an increase in equipment cost for load detection can be suppressed.
  • the first measurement unit may measure the pressure of the resin in the cylinder as the load. Thereby, the load on the screw can be detected based on the pressure sensor originally provided in the injection molding machine, so an increase in equipment cost for load detection can be suppressed.
  • the predetermined pressure reduction condition value may include at least one of a suckback time, a suckback distance, and a suckback speed of the screw.
  • the predetermined pressure reduction condition value may include at least one of a reverse rotation time, a reverse rotation amount, and a reverse rotation speed of the screw.
  • the decompression condition correction unit reduces the predetermined depressurization condition value when the time or the movement amount exceeds the second threshold, and decreases the predetermined decompression condition value when the time or the movement amount is less than the second threshold.
  • the reduced pressure condition value may be increased.
  • the predetermined pressure reduction condition value is corrected so as to approach an appropriate pressure reduction condition value depending on the state of the resin.
  • the decompression condition correction unit adjusts the predetermined decompression condition value based on a correction amount table (TBC) in which a plurality of correction amounts are stored according to the difference between the time or the movement amount and the second threshold value. may be corrected. Thereby, the predetermined pressure reduction condition value is corrected to a more appropriate pressure reduction condition value depending on the state of the resin.
  • TBC correction amount table
  • the amount of correction of the predetermined pressure reduction condition value is predetermined for a case where the time or the amount of movement exceeds the second threshold and a case where the time or the amount of movement is less than the second threshold.
  • the decompression condition correction unit may correct the predetermined depressurization condition value based on the difference between the time or the movement amount and the second threshold value, and the correction amount. Thereby, the predetermined pressure reduction condition value is corrected so as to approach an appropriate pressure reduction condition value depending on the state of the resin.
  • a first invention provides the first threshold value table (TB1) in which a plurality of first threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resins.
  • the device further includes a first threshold determining unit (88) that determines a threshold, and the second measuring unit measures the time or the amount of movement using the first threshold determined by the first threshold determining unit. Good too. Thereby, the time or the amount of movement is measured based on an appropriate first threshold value depending on the screw, resin, etc. used in injection molding.
  • a first invention provides the second threshold value table (TB2) in which a plurality of second threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resins.
  • the system further includes a second threshold value determination section (92) that determines a threshold value, and the decompression condition correction section corrects the predetermined decompression condition value using the second threshold value determined by the second threshold value determination section. Good too. Thereby, the predetermined pressure reduction condition value is corrected based on an appropriate second threshold value depending on the screw, resin, etc. used in injection molding.
  • the first invention may further include an operation unit (70) for an operator to specify the first threshold value or the second threshold value. Thereby, the operator can arbitrarily set the first threshold value or the second threshold value.
  • a first invention includes a storage unit (72) that stores a plurality of the times or a plurality of movement amounts measured by the second measuring unit during a plurality of molding cycles;
  • the depressurization condition correction unit further includes a statistics calculation unit (98) that calculates statistics based on the movement amount, and the depressurization condition correction unit uses the statistics as the time or the movement amount to determine the predetermined value.
  • the reduced pressure condition value may be corrected. This prevents the predetermined pressure reduction condition value from being corrected based on outliers in time or movement amount.
  • the decompression condition correction unit may correct the predetermined decompression condition value so that the predetermined decompression condition value does not deviate from a predetermined range. This prevents the injection molding machine from performing operations that are not recommended.
  • the pressure reduction control unit may reduce the pressure of the resin based on the corrected predetermined pressure reduction condition value. Thereby, after the predetermined reduced pressure condition value is corrected, molded products of uniform quality can be produced over a plurality of molding cycles.
  • the first invention may further include a display control section (84) that causes the display section (68) to display the corrected predetermined decompression condition value. Thereby, the corrected predetermined pressure reduction condition value is notified to the operator.
  • a second invention provides an injection molding machine (10) that includes a cylinder (26) and a screw (34) that injects a predetermined amount of resin measured within the cylinder into a mold (20).
  • a control method for controlling rotation and forward and backward movement within the cylinder comprising: controlling the screw based on a predetermined pressure reduction condition value (CV) after the predetermined amount of the resin has been measured within the cylinder; , a pressure reduction control step (S3) for reducing the pressure of the resin, and after the pressure reduction of the resin is completed, measuring the load applied to the screw in response to the resin being injected from the cylinder to the mold.
  • CV pressure reduction condition value
  • S3 pressure reduction control step
  • a first measuring step (S4) a time (TM) from when the screw starts an injection operation for injecting the resin into the mold until the load reaches a first threshold value (TH1);
  • a second measuring step (S5) of measuring the amount of movement of the screw after the screw starts the injection operation until the load reaches the first threshold;
  • a depressurization condition correction step (S6) of correcting the predetermined depressurization condition value based on the difference ( ⁇ ) from the second threshold value (TH2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A control device (18) for controlling a screw (34) of an injection molding machine (10) comprises: a decompression control unit (80) for reducing the pressure of a resin on the basis of a predetermined decompression condition value (CV) after the resin has been weighed; a first measurement unit (86) for measuring the load applied to the screw (34) due to injection of the resin; a second measurement unit (90) for measuring a time (TM) from the start of an injection operation by the screw (34) until the load reaches a first threshold value (TH1); and a decompression condition correction unit (94) for correcting the predetermined decompression condition value (CV) on the basis of a difference (δ) between the time (TM) and a second threshold value (TH2).

Description

制御装置および制御方法Control device and control method

 本発明は、射出成形機を制御する制御装置および制御方法に関する。 The present invention relates to a control device and a control method for controlling an injection molding machine.

 射出成形機は、複数の工程を含む成形サイクルを繰り返し実行することで、成形品を量産する産業機械である。成形サイクルは、計量工程と、減圧工程と、射出工程とを含む(特開平10-16016号公報も参照)。特開平10-16016号公報によれば、減圧工程は、計量工程の後に行われる。射出工程は、減圧工程の後に行われる。 An injection molding machine is an industrial machine that mass-produces molded products by repeatedly executing a molding cycle that includes multiple steps. The molding cycle includes a metering process, a pressure reduction process, and an injection process (see also JP-A-10-16016). According to Japanese Patent Application Laid-Open No. 10-16016, the pressure reduction step is performed after the metering step. The injection process is performed after the depressurization process.

 計量工程では、所定量の樹脂が、溶融されつつ、射出成形機のシリンダの先端内部(計量領域)に溜められる。減圧工程では、計量領域に溜められた樹脂の圧力が、低下される。 In the measuring step, a predetermined amount of resin is melted and stored inside the tip (measuring area) of the cylinder of the injection molding machine. In the pressure reduction step, the pressure of the resin stored in the metering area is reduced.

 射出成形機の制御装置は、設定された各種パラメータに基づいて、射出成形機を制御する。パラメータは、例えば、計量工程において回転するスクリュの回転速度、後退するスクリュの目標位置を示す計量位置等である。ここで、パラメータが何ら変更されない場合であっても、計量領域内の樹脂の減圧工程後の温度、粘度、密度、樹脂量等が、成形サイクルごとに変化する場合がある。この場合、減圧工程後の射出工程を行って得られる成形品の品質が成形サイクルごとにばらつく。 The control device for the injection molding machine controls the injection molding machine based on various set parameters. The parameters include, for example, the rotational speed of the screw that rotates in the metering process, the metering position that indicates the target position of the screw that is retracted, and the like. Here, even if the parameters are not changed at all, the temperature, viscosity, density, amount of resin, etc. of the resin in the measurement area after the pressure reduction process may change for each molding cycle. In this case, the quality of the molded product obtained by performing the injection step after the depressurization step varies from molding cycle to molding cycle.

 成形品の品質を均一化するためには、減圧工程後の樹脂の状態が成形サイクルごとに変化する可能性を考慮して、減圧工程で用いられるパラメータを適宜調整することが望まれる。しかし、このパラメータの調整作業は、射出成形機のオペレータの負担である。 In order to make the quality of the molded product uniform, it is desirable to appropriately adjust the parameters used in the pressure reduction process, taking into account the possibility that the state of the resin after the pressure reduction process changes with each molding cycle. However, adjusting this parameter is a burden on the operator of the injection molding machine.

 本発明は、上述した課題を解決することを目的とする。 The present invention aims to solve the above-mentioned problems.

 本発明の第1の態様は、シリンダと、前記シリンダ内で計量された所定量の樹脂を金型に射出するスクリュと、を備える射出成形機の前記スクリュの前記シリンダ内における回転と進退とを制御する制御装置であって、前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御部と、前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測部と、前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値に到達するまでの時間、または前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測部と、前記時間または前記移動量と、第2閾値との差に基づいて、前記所定の減圧条件値を補正する減圧条件補正部と、を備える、制御装置である。 A first aspect of the present invention is an injection molding machine that includes a cylinder and a screw that injects a predetermined amount of resin measured in the cylinder into a mold. a pressure reduction control unit that controls the screw based on a predetermined pressure reduction condition value to reduce the pressure of the resin after the predetermined amount of the resin is measured in the cylinder; , a first measurement unit that measures a load applied to the screw in response to the resin being injected from the cylinder into the mold after the pressure reduction of the resin is completed; and a first measurement unit configured to inject the resin into the mold. The time from when the screw starts the injection operation until the load reaches the first threshold value, or from the time when the screw starts the injection operation until the load reaches the first threshold value. a second measuring section that measures the amount of movement of the screw; and a reduced pressure condition correction section that corrects the predetermined reduced pressure condition value based on the difference between the time or the amount of movement and a second threshold value. , is a control device.

 本発明の第2の態様は、シリンダと、前記シリンダ内で計量された所定量の樹脂を金型に射出するスクリュと、を備える射出成形機の前記スクリュの前記シリンダ内における回転と進退とを制御する制御方法であって、前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御ステップと、前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測ステップと、前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値に到達するまでの時間、または、前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測ステップと、前記時間または前記移動量と、第2閾値との差に基づいて、前記所定の減圧条件値を補正する減圧条件補正ステップと、を含む、制御方法である。 A second aspect of the present invention is an injection molding machine that includes a cylinder and a screw that injects a predetermined amount of resin measured in the cylinder into a mold. The control method includes a pressure reduction control step of controlling the screw based on a predetermined pressure reduction condition value to reduce the pressure of the resin after the predetermined amount of the resin is measured in the cylinder. , a first measuring step of measuring the load applied to the screw in response to the resin being injected from the cylinder into the mold after the pressure reduction of the resin is completed; and injecting the resin into the mold. time from when the screw starts an injection operation until the load reaches the first threshold value, or from when the screw starts the injection operation until the load reaches the first threshold value. a second measuring step of measuring the amount of movement of the screw until A control method including:

 本発明によれば、減圧工程用のパラメータ調整に係るオペレータの作業負担が低減される。 According to the present invention, the operator's work burden related to parameter adjustment for the depressurization process is reduced.

図1は、実施形態に係る射出成形機の側面図である。FIG. 1 is a side view of an injection molding machine according to an embodiment. 図2は、射出ユニットの概略構成図である。FIG. 2 is a schematic diagram of the injection unit. 図3は、制御装置の構成図である。FIG. 3 is a configuration diagram of the control device. 図4は、第1閾値テーブルを例示する表である。FIG. 4 is a table illustrating the first threshold table. 図5は、第2閾値テーブルを例示する表である。FIG. 5 is a table illustrating the second threshold table. 図6は、補正量テーブルを例示する表である。FIG. 6 is a table illustrating a correction amount table. 図7は、実施形態に係る制御方法の流れを例示するフローチャートである。FIG. 7 is a flowchart illustrating the flow of the control method according to the embodiment. 図8は、図7の制御方法が実行される場合におけるスクリュの回転速度と、樹脂の圧力との各々の時間推移を例示するタイムチャートである。FIG. 8 is a time chart illustrating changes in the screw rotational speed and the resin pressure over time when the control method of FIG. 7 is executed. 図9は、第1計測部が計測する第1モータのトルクの時間推移を例示するタイムチャートである。FIG. 9 is a time chart illustrating the time course of the torque of the first motor measured by the first measurement unit. 図10は、図8と図9に係る成形サイクルの次の成形サイクルにおける樹脂の圧力と、第1モータのトルクとの各々の時間推移を例示するタイムチャートである。FIG. 10 is a time chart illustrating the respective time changes of the resin pressure and the torque of the first motor in the next molding cycle after the molding cycles shown in FIGS. 8 and 9. FIG. 図11は、変形例1に係る制御装置の構成図である。FIG. 11 is a configuration diagram of a control device according to modification 1. 図12は、変形例1に係る制御方法の流れを例示するフローチャートである。FIG. 12 is a flowchart illustrating the flow of the control method according to the first modification.

 [実施の形態]
 図1は、実施形態に係る射出成形機10の側面図である。
[Embodiment]
FIG. 1 is a side view of an injection molding machine 10 according to an embodiment.

 射出成形機10は、型締めユニット12と、射出ユニット14と、機台16と、制御装置18とを備える。なお、図1中の矢印D1は、射出ユニット14の前方向を示す。図1中の矢印D2は、射出ユニット14の後方向を示す。 The injection molding machine 10 includes a mold clamping unit 12, an injection unit 14, a machine stand 16, and a control device 18. Note that an arrow D1 in FIG. 1 indicates the front direction of the injection unit 14. An arrow D2 in FIG. 1 indicates the rear direction of the injection unit 14.

 型締めユニット12は、金型20を開閉させる装置である。型締めユニット12は、射出ユニット14の前方に配される。なお、金型20は、前後方向に開閉する。閉状態の金型20は、キャビティ20cを形成する。図1の金型20は閉状態である。型締めユニット12は、金型20の閉状態が維持されるように、金型20に型締力を付与することができる。ただし、型締めユニット12のより詳細な説明は、省略する。 The mold clamping unit 12 is a device that opens and closes the mold 20. The mold clamping unit 12 is arranged in front of the injection unit 14. Note that the mold 20 opens and closes in the front and rear directions. The mold 20 in the closed state forms a cavity 20c. The mold 20 in FIG. 1 is in a closed state. The mold clamping unit 12 can apply mold clamping force to the mold 20 so that the mold 20 is maintained in a closed state. However, a more detailed explanation of the mold clamping unit 12 will be omitted.

 機台16は、型締めユニット12と、射出ユニット14とを支持する。ただし、機台16は、型締めユニット12と、射出ユニット14とのうち射出ユニット14のみを支持してもよい。機台16の上にはガイドレール22が設置される。ガイドレール22は前後方向に延びる。 The machine stand 16 supports the mold clamping unit 12 and the injection unit 14. However, the machine stand 16 may support only the injection unit 14 of the mold clamping unit 12 and the injection unit 14. A guide rail 22 is installed on the machine stand 16. The guide rail 22 extends in the front-rear direction.

 射出ユニット14は、スライドベース24に支持される。スライドベース24はガイドレール22に案内されて前後方向にスライドする。したがって、射出ユニット14は、スライドベース24と一緒に、前後方向にスライドする。 The injection unit 14 is supported by the slide base 24. The slide base 24 is guided by the guide rail 22 and slides in the front and rear directions. Therefore, the injection unit 14 slides in the front and back direction together with the slide base 24.

 射出ユニット14は、シリンダ26を備える。シリンダ26は、射出ユニット14の前方に向かって延びる筒状部材である。 The injection unit 14 includes a cylinder 26. The cylinder 26 is a cylindrical member that extends toward the front of the injection unit 14 .

 図2は、射出ユニット14の概略構成図である。 FIG. 2 is a schematic diagram of the injection unit 14.

 シリンダ26の軸線Lは、前後方向に平行に延びる。シリンダ26は、ホッパ28と、ヒータ30と、ノズル32と、スクリュ34とを備える。また、射出ユニット14は、第1駆動装置36と、第2駆動装置38と、圧力センサ40とをさらに備える。 The axis L of the cylinder 26 extends parallel to the front-rear direction. The cylinder 26 includes a hopper 28, a heater 30, a nozzle 32, and a screw 34. In addition, the injection unit 14 further includes a first drive device 36, a second drive device 38, and a pressure sensor 40.

 ホッパ28は、シリンダ26の後端部26rに配される。ホッパ28は、樹脂の固体(ペレット)を貯留する。樹脂は、射出成形機10が生産する成形品の原材料である。また、ホッパ28は、供給口28oを有する。ホッパ28内の樹脂は、供給口28oを介してシリンダ26の内部に供給される。 The hopper 28 is arranged at the rear end 26r of the cylinder 26. The hopper 28 stores resin solids (pellets). The resin is a raw material for molded products produced by the injection molding machine 10. Further, the hopper 28 has a supply port 28o. The resin in the hopper 28 is supplied into the cylinder 26 via the supply port 28o.

 ヒータ30は、シリンダ26を加熱する。シリンダ26が加熱されることで、シリンダ26の内部の樹脂が加熱される。ヒータ30は、例えば複数のバンドヒータからなる。複数のバンドヒータは、シリンダ26に巻き付けられる。 The heater 30 heats the cylinder 26. By heating the cylinder 26, the resin inside the cylinder 26 is heated. The heater 30 includes, for example, a plurality of band heaters. A plurality of band heaters are wrapped around the cylinder 26.

 ノズル32は、シリンダ26の前端部26fに取り付けられる。ノズル32は、射出口32pを有する。ノズル32は、前端部26fの内部と、金型20のキャビティ20cとを、射出口32pを介して連通させる。なお、射出ユニット14は、ノズル32の温度を検出するための温度センサを備えてもよい。温度センサの図示は省略する。 The nozzle 32 is attached to the front end 26f of the cylinder 26. The nozzle 32 has an injection port 32p. The nozzle 32 communicates the inside of the front end portion 26f with the cavity 20c of the mold 20 via the injection port 32p. Note that the injection unit 14 may include a temperature sensor for detecting the temperature of the nozzle 32. Illustration of the temperature sensor is omitted.

 スクリュ34は、シリンダ26の内部に配される。シリンダ26の軸線Lは、スクリュ34の軸線でもある。スクリュ34は、フライト部42と、スクリュヘッド44と、チェックシート46と、逆流防止リング48とを有する。 The screw 34 is arranged inside the cylinder 26. The axis L of the cylinder 26 is also the axis of the screw 34. The screw 34 has a flight portion 42, a screw head 44, a check sheet 46, and a backflow prevention ring 48.

 フライト部42は、一重螺旋状を有し、スクリュ34の表面に形成される。ただし、フライト部42は、二重螺旋状を有してもよい。フライト部42は、シリンダ26の内壁26iとともに、シリンダ26の内部に流路50を形成する。流路50は、シリンダ26の内部に供給された樹脂を、後端部26rから前端部26fへと導くように形成される。 The flight portion 42 has a single spiral shape and is formed on the surface of the screw 34. However, the flight portion 42 may have a double helical shape. The flight portion 42 forms a flow path 50 inside the cylinder 26 together with the inner wall 26 i of the cylinder 26 . The flow path 50 is formed to guide the resin supplied into the cylinder 26 from the rear end 26r to the front end 26f.

 スクリュヘッド44は、スクリュ34の前端部である。チェックシート46は、スクリュヘッド44よりも後方に配される。逆流防止リング48は、スクリュヘッド44とチェックシート46との間に配される。 The screw head 44 is the front end of the screw 34. The check sheet 46 is arranged behind the screw head 44. The backflow prevention ring 48 is arranged between the screw head 44 and the check sheet 46.

 逆流防止リング48は、逆流防止リング48に前方向の圧力が付与された場合、スクリュヘッド44とチェックシート46との間の範囲内で、圧力に応じて前方向に移動する。逆流防止リング48は、前方向に移動することで、チェックシート46から遠ざかる。逆流防止リング48は、チェックシート46から離れることで、スクリュヘッド44とチェックシート46との間において、流路50を開く。 When forward pressure is applied to the backflow prevention ring 48, the backflow prevention ring 48 moves forward within the range between the screw head 44 and the check sheet 46 according to the pressure. By moving forward, the backflow prevention ring 48 moves away from the check sheet 46. By separating from the check sheet 46, the backflow prevention ring 48 opens a flow path 50 between the screw head 44 and the check sheet 46.

 また、逆流防止リング48は、逆流防止リング48に後方向の圧力が付与された場合、スクリュヘッド44とチェックシート46との間の範囲内で、圧力に応じて後方向に移動する。逆流防止リング48は、後方向に移動することで、チェックシート46に近接する。逆流防止リング48は、チェックシート46に当接することで、スクリュヘッド44とチェックシート46との間において、流路50を閉じる。 Furthermore, when rearward pressure is applied to the backflow prevention ring 48, the backflow prevention ring 48 moves rearward within the range between the screw head 44 and the check sheet 46 according to the pressure. The backflow prevention ring 48 approaches the check sheet 46 by moving backward. The backflow prevention ring 48 closes the flow path 50 between the screw head 44 and the check sheet 46 by coming into contact with the check sheet 46 .

 第1駆動装置36は、スクリュ34を回転させる装置である。第1駆動装置36は、第1モータ52aと、第1駆動プーリ54aと、第1ベルト部材56aと、第1従動プーリ58aとを備える。 The first drive device 36 is a device that rotates the screw 34. The first drive device 36 includes a first motor 52a, a first drive pulley 54a, a first belt member 56a, and a first driven pulley 58a.

 第1モータ52aは、例えばサーボモータである。第1モータ52aは、第1シャフト60aと、第1位置速度センサ62aと、第1電流トルクセンサ63aとを備える。第1シャフト60aは、第1モータ52aに供給される駆動電流に応じて回転する。第1位置速度センサ62aは、第1シャフト60aの回転位置に応じた検出信号を、制御装置18に出力する。第1電流トルクセンサ63aは、第1モータ52aに供給される駆動電流、第1シャフト60aの回転のトルク等に応じた検出信号を、制御装置18に出力する。なお、制御装置18のより詳細な説明は、後述する。 The first motor 52a is, for example, a servo motor. The first motor 52a includes a first shaft 60a, a first position and speed sensor 62a, and a first current torque sensor 63a. The first shaft 60a rotates according to the drive current supplied to the first motor 52a. The first position and speed sensor 62a outputs a detection signal according to the rotational position of the first shaft 60a to the control device 18. The first current torque sensor 63a outputs a detection signal to the control device 18 according to the drive current supplied to the first motor 52a, the rotational torque of the first shaft 60a, and the like. Note that a more detailed explanation of the control device 18 will be given later.

 第1駆動プーリ54aは、第1シャフト60aに接続される。第1駆動プーリ54aは、第1シャフト60aの回転に応じて、回転する。第1ベルト部材56aは、第1駆動プーリ54aと、第1従動プーリ58aとに架け渡される。これにより、第1駆動プーリ54aの回転が、第1ベルト部材56aを介して第1従動プーリ58aに伝達される。その結果、第1駆動プーリ54aの回転に応じて、第1従動プーリ58aも回転する。 The first drive pulley 54a is connected to the first shaft 60a. The first drive pulley 54a rotates in accordance with the rotation of the first shaft 60a. The first belt member 56a spans the first driving pulley 54a and the first driven pulley 58a. Thereby, the rotation of the first drive pulley 54a is transmitted to the first driven pulley 58a via the first belt member 56a. As a result, the first driven pulley 58a also rotates in accordance with the rotation of the first drive pulley 54a.

 第1従動プーリ58aは、スクリュ34と一体的に設けられている。したがって、第1従動プーリ58aの回転に応じて、スクリュ34も回転する。スクリュ34は、軸線Lを中心に回転する。スクリュ34は、回転することで、シリンダ26の内部の樹脂を流路50に沿って流動させることができる。なお、第1シャフト60aの回転方向は、制御装置18の制御に応じて、切り換わる。第1シャフト60aの回転方向が切り換わることに応じて、スクリュ34の回転方向も切り換わる。スクリュ34の回転方向が切り換わることで、シリンダ26の内部における樹脂の流動方向が変化する。 The first driven pulley 58a is provided integrally with the screw 34. Therefore, the screw 34 also rotates in accordance with the rotation of the first driven pulley 58a. The screw 34 rotates around the axis L. By rotating the screw 34, the resin inside the cylinder 26 can be caused to flow along the flow path 50. Note that the rotation direction of the first shaft 60a is switched according to the control of the control device 18. In response to the switching of the rotational direction of the first shaft 60a, the rotational direction of the screw 34 is also switched. By switching the rotational direction of the screw 34, the flow direction of the resin inside the cylinder 26 changes.

 以下の説明において、樹脂が前方向に流動する場合のスクリュ34の回転方向は、順回転方向とも記載される。また、スクリュ34の順回転方向の回転動作は、順回転とも記載される。 In the following description, the direction of rotation of the screw 34 when the resin flows forward is also referred to as the forward rotation direction. Further, the rotational movement of the screw 34 in the forward rotation direction is also referred to as forward rotation.

 一方、以下の説明において、樹脂が後方向に流動する場合のスクリュ34の回転方向は、逆回転方向とも記載される。また、スクリュ34の逆回転方向の回転動作は、逆回転とも記載される。 On the other hand, in the following description, the rotation direction of the screw 34 when the resin flows backward is also described as a reverse rotation direction. Further, the rotational movement of the screw 34 in the reverse rotation direction is also referred to as reverse rotation.

 第2駆動装置38は、スクリュ34をシリンダ26の内部において進退させる装置である。第2駆動装置38は、第2モータ52bと、第2駆動プーリ54bと、第2ベルト部材56bと、第2従動プーリ58bと、ボールネジ64と、ナット66とを備える。 The second drive device 38 is a device that moves the screw 34 forward and backward inside the cylinder 26. The second drive device 38 includes a second motor 52b, a second drive pulley 54b, a second belt member 56b, a second driven pulley 58b, a ball screw 64, and a nut 66.

 第2モータ52bは、例えばサーボモータである。第2モータ52bは、第2シャフト60bと、第2位置速度センサ62bと、第2電流トルクセンサ63bとを備える。第2シャフト60bは、第2モータ52bに供給される駆動電流に応じて回転する。第2位置速度センサ62bは、第2シャフト60bの回転位置に応じた検出信号を、制御装置18に出力する。第2電流トルクセンサ63bは、第2モータ52bに供給される駆動電流、第2シャフト60bの回転のトルク等に応じた検出信号を、制御装置18に出力する。 The second motor 52b is, for example, a servo motor. The second motor 52b includes a second shaft 60b, a second position and speed sensor 62b, and a second current torque sensor 63b. The second shaft 60b rotates according to the drive current supplied to the second motor 52b. The second position and speed sensor 62b outputs a detection signal according to the rotational position of the second shaft 60b to the control device 18. The second current torque sensor 63b outputs a detection signal to the control device 18 according to the drive current supplied to the second motor 52b, the rotational torque of the second shaft 60b, and the like.

 第2駆動プーリ54bは、第2シャフト60bに接続される。第2駆動プーリ54bは、第2シャフト60bの回転に応じて、回転する。第2ベルト部材56bは、第2駆動プーリ54bと、第2従動プーリ58bとに架け渡される。これにより、第2駆動プーリ54bの回転が、第2ベルト部材56bを介して第2従動プーリ58bに伝達される。その結果、第2駆動プーリ54bの回転に応じて、第2従動プーリ58bも回転する。 The second drive pulley 54b is connected to the second shaft 60b. The second drive pulley 54b rotates in accordance with the rotation of the second shaft 60b. The second belt member 56b spans the second drive pulley 54b and the second driven pulley 58b. Thereby, the rotation of the second drive pulley 54b is transmitted to the second driven pulley 58b via the second belt member 56b. As a result, the second driven pulley 58b also rotates in accordance with the rotation of the second drive pulley 54b.

 第2従動プーリ58bは、ボールネジ64に連結される。第2従動プーリ58bは、第2ベルト部材56bを介して伝達される第2駆動プーリ54bの回転に応じて、回転する。したがって、第2従動プーリ58bの回転に応じて、ボールネジ64も回転する。 The second driven pulley 58b is connected to the ball screw 64. The second driven pulley 58b rotates in accordance with the rotation of the second drive pulley 54b transmitted via the second belt member 56b. Therefore, the ball screw 64 also rotates in accordance with the rotation of the second driven pulley 58b.

 ナット66は、ボールネジ64に螺合する。ボールネジ64が回転することで、ナット66とボールネジ64との相対位置関係が、ボールネジ64の軸線方向に変化する。ボールネジ64の軸線は、シリンダ26(スクリュ34)の軸線Lと平行である。したがって、ナット66とボールネジ64との相対位置関係は、ボールネジ64の回転に応じて、スクリュ34の軸線Lに平行に変化する。すなわち、ナット66とボールネジ64との相対位置関係は、ボールネジ64の回転に応じて、前後方向に変化する。 The nut 66 is screwed onto the ball screw 64. As the ball screw 64 rotates, the relative positional relationship between the nut 66 and the ball screw 64 changes in the axial direction of the ball screw 64. The axis of the ball screw 64 is parallel to the axis L of the cylinder 26 (screw 34). Therefore, the relative positional relationship between the nut 66 and the ball screw 64 changes in parallel to the axis L of the screw 34 in accordance with the rotation of the ball screw 64. That is, the relative positional relationship between the nut 66 and the ball screw 64 changes in the front-back direction according to the rotation of the ball screw 64.

 スクリュ34は、ナット66に接続され、ナット66とボールネジ64との相対位置関係が前後方向に変化することに応じて、シリンダ26の内部で前後方向に進退する。なお、第2シャフト60bの回転方向は、制御装置18の制御に応じて、切り換わる。第2シャフト60bの回転方向が切り換わることに応じて、ボールネジ64の回転方向も切り換わる。ボールネジ64の回転方向が切り換わることで、ナット66とスクリュ34との移動方向が切り換わる。 The screw 34 is connected to a nut 66 and moves back and forth inside the cylinder 26 as the relative positional relationship between the nut 66 and the ball screw 64 changes in the front and back direction. Note that the rotation direction of the second shaft 60b is switched according to the control of the control device 18. In response to the switching of the rotational direction of the second shaft 60b, the rotational direction of the ball screw 64 is also switched. By switching the rotational direction of the ball screw 64, the moving direction of the nut 66 and the screw 34 is switched.

 上記の射出ユニット14によれば、ホッパ28からシリンダ26の内部に供給された樹脂は、スクリュ34が順回転方向に回転(順回転)することで、流路50に沿って前方向に流動する。樹脂は、流路50に沿って流動する間、シリンダ26を介して伝達されるヒータ30の熱と、フライト部42に剪断されることで樹脂に生じる剪断熱との影響を受けて溶融する。 According to the injection unit 14 described above, the resin supplied from the hopper 28 into the cylinder 26 flows forward along the flow path 50 as the screw 34 rotates in the forward rotation direction (forward rotation). . While flowing along the flow path 50, the resin melts under the influence of the heat of the heater 30 transmitted via the cylinder 26 and the shear heat generated in the resin by being sheared by the flight portion 42.

 逆流防止リング48よりも後方にある樹脂は、スクリュ34が順回転を継続することで、流路50に沿って前方向に流動して逆流防止リング48に到達する。逆流防止リング48に到達した樹脂は、逆流防止リング48を前方向に圧す。これにより、逆流防止リング48は、スクリュヘッド44とチェックシート46との間の範囲内で前方向に移動して、流路50を開く。樹脂は、開かれた流路50を通って、シリンダ26の内部のうち、スクリュヘッド44よりも前方の領域に到達する。 The resin located behind the backflow prevention ring 48 flows forward along the flow path 50 and reaches the backflow prevention ring 48 as the screw 34 continues to rotate forward. The resin that has reached the backflow prevention ring 48 presses the backflow prevention ring 48 in the forward direction. As a result, the backflow prevention ring 48 moves forward within the range between the screw head 44 and the check sheet 46 to open the flow path 50. The resin passes through the open channel 50 and reaches a region inside the cylinder 26 in front of the screw head 44 .

 以下の説明において、シリンダ26の内部のうち、スクリュヘッド44よりも前方の領域は、計量領域とも記載される。また、以下の説明において樹脂量とは、特に断らない限り、計量領域内に溜められた樹脂の量を指す。 In the following description, the area inside the cylinder 26 in front of the screw head 44 is also referred to as a metering area. Further, in the following description, the amount of resin refers to the amount of resin stored in the measurement area unless otherwise specified.

 計量領域内に溜められた樹脂は、スクリュヘッド44を後方向に圧すことで、スクリュ34を後方向に圧す。したがって、スクリュ34には、計量領域内の樹脂から、後方向の圧力が付与される。 The resin accumulated in the metering area presses the screw head 44 backward, thereby pressing the screw 34 backward. Therefore, backward pressure is applied to the screw 34 from the resin in the metering area.

 圧力センサ40は、計量領域内の樹脂がスクリュ34に付与する圧力を検出するためのセンサである。圧力センサ40は、計量領域内の樹脂がスクリュ34に付与する圧力に応じた検出信号を、制御装置18に出力する。圧力センサ40は、例えばロードセルである。 The pressure sensor 40 is a sensor for detecting the pressure applied to the screw 34 by the resin in the metering area. The pressure sensor 40 outputs a detection signal to the control device 18 in accordance with the pressure applied to the screw 34 by the resin in the measurement area. The pressure sensor 40 is, for example, a load cell.

 図3は、制御装置18の構成図である。 FIG. 3 is a configuration diagram of the control device 18.

 制御装置18は、射出成形機10を制御する電子装置(コンピュータ)である。制御装置18は、例えば数値制御装置である。制御装置18は、表示部68と、操作部70と、記憶部72と、演算部74とを備える。 The control device 18 is an electronic device (computer) that controls the injection molding machine 10. The control device 18 is, for example, a numerical control device. The control device 18 includes a display section 68, an operation section 70, a storage section 72, and a calculation section 74.

 表示部68は、表示画面68dを備える表示装置である。表示画面68dの材料は、例えば液晶、またはOEL(Organic Electro-Luminescence)を含む。 The display unit 68 is a display device including a display screen 68d. The material of the display screen 68d includes, for example, liquid crystal or OEL (Organic Electro-Luminescence).

 操作部70は、制御装置18への情報入力を受け付ける入力装置である。操作部70は、例えば操作盤70a、タッチパネル70b等を含む。タッチパネル70bは、表示画面68dに設置される。なお、操作部70は、キーボード、マウス等を含んでもよい。 The operation unit 70 is an input device that accepts information input to the control device 18. The operation unit 70 includes, for example, an operation panel 70a, a touch panel 70b, and the like. The touch panel 70b is installed on the display screen 68d. Note that the operation unit 70 may include a keyboard, a mouse, and the like.

 記憶部72は、記憶回路を備える。この記憶回路は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等のメモリを1以上含む。 The storage unit 72 includes a storage circuit. This storage circuit includes one or more memories such as RAM (Random Access Memory) and ROM (Read Only Memory).

 記憶部72は、制御プログラム76を記憶する。制御プログラム76は、本実施形態に係る射出成形機10の制御方法を制御装置18に実行させるためのプログラムである。 The storage unit 72 stores a control program 76. The control program 76 is a program for causing the control device 18 to execute the method for controlling the injection molding machine 10 according to the present embodiment.

 なお、記憶部72が記憶するデータは、制御プログラム76に限定されない。記憶部72は、必要に応じて各種データを記憶してもよい。例えば、記憶部72は、圧力センサ40の検出信号に基づいて得られる圧力を記憶してもよい。また、記憶部72は、例えば、第1電流トルクセンサ63aの検出信号に基づいて得られる第1モータ52aのトルク(第1トルク)、第2電流トルクセンサ63bの検出信号に基づいて得られる第2モータ52bのトルク(第2トルク)等を記憶してもよい。さらに、記憶部72は、例えば、第1モータ52aまたは第2モータ52bの駆動電流、電圧、ノズル32の温度等を記憶してもよい。 Note that the data stored in the storage unit 72 is not limited to the control program 76. The storage unit 72 may store various data as necessary. For example, the storage unit 72 may store the pressure obtained based on the detection signal of the pressure sensor 40. The storage unit 72 also stores, for example, the torque of the first motor 52a (first torque) obtained based on the detection signal of the first current torque sensor 63a, and the torque of the first motor 52a obtained based on the detection signal of the second current torque sensor 63b. The torque of the two motors 52b (second torque), etc. may be stored. Furthermore, the storage unit 72 may store, for example, the drive current and voltage of the first motor 52a or the second motor 52b, the temperature of the nozzle 32, and the like.

 演算部74は、処理回路を備える。この処理回路は、例えば、1以上のプロセッサを含む。ただし、演算部74の処理回路は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の集積回路を含んでもよい。また、演算部74の処理回路は、ディスクリートデバイスを含んでもよい。 The calculation unit 74 includes a processing circuit. This processing circuit includes, for example, one or more processors. However, the processing circuit of the calculation unit 74 may include an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). Further, the processing circuit of the calculation unit 74 may include a discrete device.

 演算部74は、計量制御部78と、減圧制御部80と、射出制御部82と、表示制御部84とを備える。計量制御部78と、減圧制御部80と、射出制御部82と、表示制御部84とは、演算部74のプロセッサが制御プログラム76を実行することで、実現される。ただし、計量制御部78と、減圧制御部80と、射出制御部82と、表示制御部84との少なくとも一部は、前述の集積回路、ディスクリートデバイス等によって実現されてもよい。 The calculation section 74 includes a metering control section 78, a pressure reduction control section 80, an injection control section 82, and a display control section 84. The metering control section 78, the pressure reduction control section 80, the injection control section 82, and the display control section 84 are realized by the processor of the calculation section 74 executing the control program 76. However, at least a portion of the metering control section 78, the pressure reduction control section 80, the injection control section 82, and the display control section 84 may be realized by the aforementioned integrated circuit, discrete device, or the like.

 計量制御部78は、成形サイクルのうちの計量工程を射出成形機10に実行させるために、以下に説明される制御を行う。なお、計量工程の開始時点における、スクリュ34(スクリュヘッド44)の初期位置は、シリンダ26の内部における前後方向の移動範囲のうち、最も前方の位置である。また、計量工程の開始時点において、金型20は閉状態であり、型締めユニット12から型締力を付与されている。 The metering control unit 78 performs the control explained below in order to cause the injection molding machine 10 to execute the metering process in the molding cycle. Note that the initial position of the screw 34 (screw head 44) at the start of the metering process is the most forward position within the range of movement in the longitudinal direction inside the cylinder 26. Further, at the start of the metering process, the mold 20 is in a closed state and a mold clamping force is applied from the mold clamping unit 12.

 計量制御部78は、第1モータ52aを制御して、スクリュ34を順回転させる。これにより、ホッパ28からシリンダ26の内部に供給された樹脂は、流路50に沿って前方向に圧送される。シリンダ26の内部を前方向に流動する樹脂は、溶融しつつ、計量領域に到達する。樹脂量は、計量制御部78がスクリュ34の順回転を継続させることで、次第に増加する。 The metering control unit 78 controls the first motor 52a to rotate the screw 34 in the forward direction. Thereby, the resin supplied from the hopper 28 into the cylinder 26 is forced forward along the flow path 50. The resin flowing forward inside the cylinder 26 reaches the metering area while being melted. The amount of resin gradually increases as the metering control section 78 continues to rotate the screw 34 in the forward direction.

 樹脂量が増加することに応じて、スクリュ34は後退する。ここで、計量制御部78は、第2モータ52bを制御して、スクリュ34が過度に後退することを抑止する。これにより、スクリュ34の後退に伴って樹脂の圧力が過度に低下することが、抑制される。 The screw 34 retreats as the amount of resin increases. Here, the metering control unit 78 controls the second motor 52b to prevent the screw 34 from retracting excessively. This prevents the pressure of the resin from decreasing excessively as the screw 34 retreats.

 なお、計量制御部78は、スクリュ34が順回転する間において樹脂の圧力が所定の圧力(計量圧力)P1に調整されるように、第2モータ52bを制御する。計量圧力P1は、記憶部72に予め記憶される。樹脂の圧力は、圧力センサ40の検出信号に基づいて取得される。計量圧力P1は、例えば大気圧よりも大きい。計量制御部78は、樹脂の圧力を計量圧力P1に調整するために、第2モータ52bを制御して、スクリュ34を後退させてもよい。 Note that the metering control unit 78 controls the second motor 52b so that the pressure of the resin is adjusted to a predetermined pressure (metering pressure) P1 while the screw 34 rotates forward. The metered pressure P1 is stored in the storage section 72 in advance. The pressure of the resin is obtained based on the detection signal of the pressure sensor 40. The metering pressure P1 is, for example, greater than atmospheric pressure. The metering control unit 78 may control the second motor 52b to retract the screw 34 in order to adjust the pressure of the resin to the metering pressure P1.

 樹脂量の増加に応じて後退するスクリュ34は、スクリュ34の位置に関する所定の位置(計量位置)に到達する。計量位置は、計量工程におけるスクリュ34の初期位置よりも後方の位置である。計量制御部78は、樹脂の圧力を計量圧力P1に調整しつつ、スクリュ34を計量位置に到達させることで、計量領域内に所定量の樹脂を溜めることができる。計量制御部78は、スクリュ34が計量位置に到達した場合、第1モータ52aを制御して、スクリュ34の順回転を停止させる。 The screw 34, which retreats as the amount of resin increases, reaches a predetermined position (measuring position) regarding the position of the screw 34. The measuring position is a position behind the initial position of the screw 34 in the measuring process. The metering control unit 78 can accumulate a predetermined amount of resin in the metering area by adjusting the resin pressure to the metering pressure P1 and causing the screw 34 to reach the metering position. When the screw 34 reaches the metering position, the metering control section 78 controls the first motor 52a to stop the forward rotation of the screw 34.

 減圧制御部80は、所定量の樹脂がシリンダ26内で計量された後、成形サイクルのうちの減圧工程を射出成形機10に実行させるために、以下に説明される制御を行う。 After a predetermined amount of resin is measured in the cylinder 26, the pressure reduction control unit 80 performs the control described below in order to cause the injection molding machine 10 to execute the pressure reduction step of the molding cycle.

 減圧制御部80は、第1モータ52aを制御して、スクリュ34を逆回転させる。スクリュ34が逆回転すると、計量領域内の樹脂が後方向に流動する。これにより、樹脂量が減少する。樹脂量が減少することで、スクリュ34に付与される樹脂の圧力が減圧される。 The pressure reduction control unit 80 controls the first motor 52a to rotate the screw 34 in the reverse direction. When the screw 34 rotates in the opposite direction, the resin within the metering area flows backward. This reduces the amount of resin. As the amount of resin decreases, the pressure of the resin applied to the screw 34 is reduced.

 また、順回転するスクリュ34には、イナーシャが作用する。したがって、スクリュ34は、計量位置に到達した後も、順回転を継続する。その結果、計量直後の樹脂量は、厳密には所定量を超える。減圧制御部80は、スクリュ34の逆回転に応じて樹脂量を減少させることで、樹脂量を、所定量により近い量に調整することもできる。 Furthermore, inertia acts on the screw 34 that rotates in the forward direction. Therefore, the screw 34 continues to rotate even after reaching the metering position. As a result, the amount of resin immediately after measurement strictly exceeds the predetermined amount. The pressure reduction control unit 80 can also adjust the amount of resin to be closer to a predetermined amount by reducing the amount of resin in accordance with the reverse rotation of the screw 34.

 なお、逆流防止リング48は、減圧制御部80がスクリュ34を逆回転させることに応じて計量領域から逆流防止リング48の後方に流動する樹脂に、圧される。これにより、逆流防止リング48は、後方向に移動する。逆流防止リング48は、後方向に移動することで、逆流防止リング48よりも後方にあるチェックシート46に当接する。逆流防止リング48がチェックシート46に当接することで、流路50が閉じられる。流路50が閉じられることで、計量領域内に溜められた樹脂は、逆流防止リング48の後方に到達できなくなる。その結果、樹脂量が必要以上に減少することは、防止される。 Note that the backflow prevention ring 48 is pressed by the resin flowing from the metering area to the rear of the backflow prevention ring 48 in response to the pressure reduction control unit 80 rotating the screw 34 in the reverse direction. This causes the backflow prevention ring 48 to move rearward. When the backflow prevention ring 48 moves rearward, it comes into contact with the check sheet 46 located behind the backflow prevention ring 48 . When the backflow prevention ring 48 comes into contact with the check sheet 46, the flow path 50 is closed. By closing the flow path 50, the resin accumulated in the metering area cannot reach the rear of the backflow prevention ring 48. As a result, the amount of resin is prevented from decreasing more than necessary.

 減圧制御部80は、所定の減圧条件値CVと、目標減圧値P0とに基づいてスクリュ34を制御する。 The pressure reduction control unit 80 controls the screw 34 based on a predetermined pressure reduction condition value CV and a target pressure reduction value P0.

 所定の減圧条件値CVは、逆回転時間と、逆回転量と、逆回転速度との3つの項目を含む。逆回転時間は、逆回転の継続時間を示す。逆回転量は、スクリュ34を逆回転させる回転量を示す。逆回転速度は、逆回転するスクリュ34の回転速度を示す。なお、逆回転時間と、逆回転量と、逆回転速度との各項目は、残りの2項目が決まることで、自ずと決まる。 The predetermined pressure reduction condition value CV includes three items: reverse rotation time, reverse rotation amount, and reverse rotation speed. The reverse rotation time indicates the duration of reverse rotation. The amount of reverse rotation indicates the amount of rotation that causes the screw 34 to rotate in the reverse direction. The reverse rotation speed indicates the rotation speed of the screw 34 that rotates in reverse. Note that the items of reverse rotation time, amount of reverse rotation, and reverse rotation speed are automatically determined by determining the remaining two items.

 所定の減圧条件値CVは、記憶部72に記憶される。なお、射出成形機10のメーカは、推奨する既定値を、所定の減圧条件値CVの初期値として記憶部72に予め記憶させてもよい。ただし、オペレータは、操作部70を介して、逆回転時間と、逆回転量と、逆回転速度とのうち少なくとも1項目を任意に変更してもよい。この場合、射出成形機10のメーカは、所定の減圧条件値CVの変更可能な所定の範囲(上限値、下限値)を記憶部72に予め記憶させてもよい。これにより、オペレータが変更できる所定の減圧条件値CVの範囲が、制限される。 The predetermined pressure reduction condition value CV is stored in the storage unit 72. Note that the manufacturer of the injection molding machine 10 may store the recommended default value in the storage unit 72 in advance as the initial value of the predetermined pressure reduction condition value CV. However, the operator may arbitrarily change at least one item among the reverse rotation time, the reverse rotation amount, and the reverse rotation speed via the operation unit 70. In this case, the manufacturer of the injection molding machine 10 may store in the storage unit 72 in advance a predetermined range (upper limit value, lower limit value) in which the predetermined pressure reduction condition value CV can be changed. This limits the range of the predetermined pressure reduction condition value CV that can be changed by the operator.

 目標減圧値P0は、減圧工程において減圧させる樹脂の圧力の目標圧を示す。減圧制御部80(後述の射出制御部82)は、樹脂の圧力が目標減圧値P0に到達した場合に、減圧が終了したと判定する。目標減圧値P0は、例えば大気圧である。 The target pressure reduction value P0 indicates the target pressure of the resin pressure to be reduced in the pressure reduction step. The pressure reduction control unit 80 (injection control unit 82, which will be described later) determines that the pressure reduction has ended when the resin pressure reaches the target pressure reduction value P0. The target pressure reduction value P0 is, for example, atmospheric pressure.

 目標減圧値P0は、例えば記憶部72に記憶される。なお、射出成形機10のメーカは、推奨する目標減圧値P0を、既定値として記憶部72に予め記憶させてもよい。また、オペレータは、操作部70を介して、任意の圧力を目標減圧値P0として指定してもよい。この場合、所定の減圧条件値CVと同様に、射出成形機10のメーカは、目標減圧値P0の変更可能な範囲を記憶部72に予め記憶させてもよい。 The target pressure reduction value P0 is stored in the storage unit 72, for example. Note that the manufacturer of the injection molding machine 10 may store the recommended target pressure reduction value P0 in advance in the storage unit 72 as a default value. Further, the operator may specify an arbitrary pressure as the target pressure reduction value P0 via the operation unit 70. In this case, similarly to the predetermined pressure reduction condition value CV, the manufacturer of the injection molding machine 10 may store in the storage unit 72 in advance a changeable range of the target pressure reduction value P0.

 射出制御部82は、成形サイクルのうちの射出工程を射出成形機10に実行させるために、減圧が終了した後に第2モータ52bを制御して、スクリュ34を前進させる。これにより、計量領域内の樹脂が、ノズル32を介して、金型20のキャビティ20cに向けて射出される。射出された樹脂は、キャビティ20c内で固化されて、成形品として完成する。 In order to cause the injection molding machine 10 to execute the injection step of the molding cycle, the injection control unit 82 controls the second motor 52b to advance the screw 34 after the pressure reduction is completed. Thereby, the resin within the metering area is injected toward the cavity 20c of the mold 20 via the nozzle 32. The injected resin is solidified within the cavity 20c to complete the molded product.

 射出工程において前進したスクリュ34は、シリンダ26の内部における前後方向の移動範囲のうち、最も前方の位置まで移動する。ここで、スクリュ34は、前述した計量工程の初期位置に移動してもよい。これにより、計量制御部78は、金型20から成形品が取り出された後に再びスクリュ34を順回転させることで、次の成形サイクルの計量工程を開始することができる。 The screw 34 that has advanced in the injection process moves to the most forward position within the range of movement in the longitudinal direction inside the cylinder 26. Here, the screw 34 may be moved to the initial position of the metering process described above. Thereby, the metering control unit 78 can start the metering step of the next molding cycle by sequentially rotating the screw 34 again after the molded product is taken out from the mold 20.

 表示制御部84は、表示部68を制御して、記憶部72に記憶された各種データを表示画面68dに適宜表示させる。例えば表示制御部84は、圧力センサ40の検出信号に基づく樹脂の圧力を、表示画面68dに表示させてもよい。 The display control unit 84 controls the display unit 68 to appropriately display various data stored in the storage unit 72 on the display screen 68d. For example, the display control unit 84 may display the resin pressure based on the detection signal of the pressure sensor 40 on the display screen 68d.

 ところで、減圧工程後の樹脂の状態(温度、粘度、密度、樹脂量等)が、成形サイクルごとに異なる場合がある。 By the way, the state of the resin (temperature, viscosity, density, amount of resin, etc.) after the pressure reduction step may differ depending on the molding cycle.

 例えば、射出成形機10が射出成形を開始する前のノズル32と金型20とは、離されている。この場合、ノズル32の温度が、金型20の温度と異なりやすい。射出成形機10に射出成形を開始させるために、スライドベース24に支持された射出ユニット14をガイドレール22に沿って前方向にスライドさせ、ノズル32と金型20とが当接される。これにより、ノズル32と金型20との温度が次第に均衡する。ただし、ノズル32と金型20との温度が均衡するまでの期間中、ノズル32の温度は安定しない。この場合、ノズル32の付近の計量領域に溜められる樹脂の温度は、成形サイクルごとにばらつく。樹脂の温度が成形サイクルごとにばらつく場合、樹脂の粘度も成形サイクルごとにばらつく。 For example, before the injection molding machine 10 starts injection molding, the nozzle 32 and the mold 20 are separated. In this case, the temperature of the nozzle 32 is likely to be different from the temperature of the mold 20. In order to cause the injection molding machine 10 to start injection molding, the injection unit 14 supported by the slide base 24 is slid forward along the guide rail 22, and the nozzle 32 and the mold 20 are brought into contact. As a result, the temperatures of the nozzle 32 and the mold 20 gradually become balanced. However, the temperature of the nozzle 32 is not stable until the temperatures of the nozzle 32 and the mold 20 reach equilibrium. In this case, the temperature of the resin stored in the metering area near the nozzle 32 varies with each molding cycle. When the temperature of the resin varies from molding cycle to molding cycle, the viscosity of the resin also fluctuates from molding cycle to molding cycle.

 樹脂の温度、粘度等が成形サイクルごとにばらつく場合、減圧工程と、射出工程との各々における樹脂の流れ方が成形サイクルごとにばらつく。したがって、例えば、減圧工程においてスクリュ34を逆回転させた場合における、樹脂量の減少量が成形サイクルごとにばらつく。この場合、射出工程においてキャビティ20cに充填される樹脂量が成形サイクルごとにばらつくので、成形品の品質が成形サイクルごとにばらつく。また、射出工程においてキャビティ20cに流れ込む樹脂の流れ方が成形サイクルごとにばらつく場合、成形品の品質が成形サイクルごとにばらつくおそれが、より大きくなる。 If the temperature, viscosity, etc. of the resin vary from molding cycle to molding cycle, the way the resin flows in each of the pressure reduction process and the injection process will vary from molding cycle to molding cycle. Therefore, for example, when the screw 34 is reversely rotated in the pressure reduction step, the amount of decrease in the amount of resin varies from molding cycle to molding cycle. In this case, since the amount of resin filled into the cavity 20c during the injection process varies from molding cycle to molding cycle, the quality of the molded product varies from molding cycle to molding cycle. Furthermore, if the way the resin flows into the cavity 20c during the injection process varies from molding cycle to molding cycle, there is a greater possibility that the quality of the molded product will vary from molding cycle to molding cycle.

 なお、樹脂の状態が成形サイクルごとにばらつく原因は、ノズル32の温度のばらつきに限定されない。例えば、ノズル32と金型20との温度が均衡している場合であっても、季節の変化に応じて室温、湿度等が変化する等の理由で、シリンダ26の内部に供給される樹脂の乾燥状態が成形サイクルごとにばらつく場合がある。この場合、同じ種類の樹脂がシリンダ26の内部に供給され続ける場合であっても、計量工程において溶融された後の樹脂の状態は、室温、湿度等の変化に応じてサイクル毎にばらつく。 Note that the cause of variations in the state of the resin from molding cycle to molding cycle is not limited to variations in the temperature of the nozzle 32. For example, even if the temperatures of the nozzle 32 and the mold 20 are balanced, the resin supplied into the cylinder 26 may change due to changes in room temperature, humidity, etc. due to seasonal changes. Drying conditions may vary from molding cycle to molding cycle. In this case, even if the same type of resin continues to be supplied into the cylinder 26, the state of the resin after being melted in the metering process varies from cycle to cycle depending on changes in room temperature, humidity, etc.

 また、例えば、シリンダ26の内部に供給される樹脂のロットが、複数の成形サイクルを繰り返す途中で変更される場合がある。この場合、変更前と変更後の樹脂のロットとで、樹脂の物性に差異がある場合がある。その結果、樹脂のロットを変更する前後で、樹脂の状態に差異が生じる。 Furthermore, for example, the lot of resin supplied to the inside of the cylinder 26 may be changed during a plurality of molding cycles. In this case, there may be a difference in the physical properties of the resin between the resin lots before and after the change. As a result, a difference occurs in the state of the resin before and after changing the resin lot.

 さらに、例えば、再生樹脂、繊維強化樹脂等を用いて成形品を生産する場合がある。再生樹脂は、再生材料を含む樹脂である。繊維強化樹脂は、強化繊維を材料に含む樹脂である。強化繊維は、例えばガラス繊維である。再生樹脂と、繊維強化樹脂との各々の物性は、新品の素材からなるバージン材の物性と比較して、安定していない。したがって、再生樹脂、繊維強化樹脂等を用いて射出成形機10が成形品を生産する場合、計量工程において計量領域に溜められた樹脂の状態は、成形サイクルごとにばらつきやすい。 Further, for example, molded products may be produced using recycled resin, fiber-reinforced resin, etc. Recycled resin is resin containing recycled material. Fiber-reinforced resin is a resin containing reinforcing fibers as a material. The reinforcing fiber is, for example, glass fiber. The physical properties of the recycled resin and the fiber-reinforced resin are not stable compared to the physical properties of virgin material made from new materials. Therefore, when the injection molding machine 10 produces a molded product using recycled resin, fiber-reinforced resin, etc., the state of the resin accumulated in the metering area during the metering process tends to vary from molding cycle to molding cycle.

 以上の理由から、減圧工程において減圧制御部80が用いる所定の減圧条件値CVは、樹脂の状態に応じて適切に調整されることが、望ましい。これを踏まえ、制御装置18(演算部74)は、第1計測部86と、第1閾値決定部88と、第2計測部90と、第2閾値決定部92と、減圧条件補正部94とをさらに備える。第1計測部86と、第1閾値決定部88と、第2計測部90と、第2閾値決定部92と、減圧条件補正部94とは、計量制御部78等と同様に、例えば演算部74が制御プログラム76を実行することで実現される。 For the above reasons, it is desirable that the predetermined pressure reduction condition value CV used by the pressure reduction control section 80 in the pressure reduction step is appropriately adjusted depending on the state of the resin. Based on this, the control device 18 (calculating section 74) includes a first measuring section 86, a first threshold determining section 88, a second measuring section 90, a second threshold determining section 92, and a decompression condition correcting section 94. Furthermore, it is equipped with. The first measuring section 86, the first threshold determining section 88, the second measuring section 90, the second threshold determining section 92, and the depressurization condition correcting section 94 are, for example, a calculation section, similar to the metering control section 78, etc. 74 is realized by executing the control program 76.

 第1計測部86は、樹脂の減圧が終了した後、シリンダ26から金型20に樹脂が射出されることに応じてスクリュ34にかかる負荷を計測する。すなわち、第1計測部86は、射出工程において、スクリュ34が前進することに応じてスクリュ34にかかる負荷を計測する。 The first measurement unit 86 measures the load applied to the screw 34 in response to resin being injected from the cylinder 26 into the mold 20 after the resin has been depressurized. That is, the first measurement unit 86 measures the load applied to the screw 34 as the screw 34 moves forward during the injection process.

 射出工程においてスクリュ34が前進することに応じてスクリュ34にかかる負荷は、例えば第1モータ52aのトルクである。つまり、樹脂は、螺旋状の流路50に沿ってスクリュ34に付着している。スクリュ34に付着した樹脂は、スクリュ34の回転方向の粘性抵抗を、前進するスクリュ34に付与する。この粘性抵抗は、第1モータ52aのトルクに影響する。したがって、第1モータ52aのトルクは、スクリュ34の負荷を反映する。第1計測部86は、第1電流トルクセンサ63aの検出信号に基づいて、第1モータ52aのトルクを算出することができる。 The load applied to the screw 34 as the screw 34 moves forward in the injection process is, for example, the torque of the first motor 52a. That is, the resin adheres to the screw 34 along the spiral flow path 50. The resin attached to the screw 34 provides viscous resistance in the rotational direction of the screw 34 to the advancing screw 34. This viscous resistance affects the torque of the first motor 52a. Therefore, the torque of the first motor 52a reflects the load on the screw 34. The first measurement unit 86 can calculate the torque of the first motor 52a based on the detection signal of the first current torque sensor 63a.

 第1閾値決定部88は、第1閾値テーブルTB1に基づいて、第1閾値TH1を決定する。第1閾値テーブルTB1は、スクリュ34の複数の種類と樹脂の複数の種類とのうち少なくとも一方に応じて複数の第1閾値TH1を格納するデータテーブルである。第1閾値決定部88は、射出成形機10に備えられたスクリュ34の種類と、シリンダ26の内部に供給される樹脂の種類とに対応する第1閾値TH1を、第1閾値テーブルTB1の中から検索する。 The first threshold value determination unit 88 determines the first threshold value TH1 based on the first threshold value table TB1. The first threshold table TB1 is a data table that stores a plurality of first threshold values TH1 according to at least one of a plurality of types of screws 34 and a plurality of types of resin. The first threshold value determination unit 88 sets a first threshold value TH1 corresponding to the type of screw 34 provided in the injection molding machine 10 and the type of resin supplied into the inside of the cylinder 26 in the first threshold value table TB1. Search from.

 図4は、第1閾値テーブルTB1を例示する表である。 FIG. 4 is a table illustrating the first threshold table TB1.

 図4に例示される第1閾値テーブルTB1の第1列(スクリュの種類)には、スクリュ34の複数の種類が格納される。図4には、例示のために、スクリュ34の複数の種類として、フルフライト型スクリュと、バリアフライト型スクリュと、高可塑化スクリュとが示される。 A plurality of types of screws 34 are stored in the first column (screw types) of the first threshold table TB1 illustrated in FIG. 4. For illustrative purposes, FIG. 4 shows multiple types of screws 34, including a full-flight screw, a barrier-flight screw, and a highly plasticized screw.

 図4に例示される第1閾値テーブルTB1の第2列(樹脂の種類)には、樹脂の複数の種類が格納される。図4には、例示のために、樹脂の複数の種類として、PA(ポリアミド)と、PBT(ポリブチレンテレフタレート)と、PE(ポリエチレン)とが示される。 A plurality of types of resin are stored in the second column (types of resin) of the first threshold table TB1 illustrated in FIG. 4. For illustrative purposes, FIG. 4 shows PA (polyamide), PBT (polybutylene terephthalate), and PE (polyethylene) as a plurality of types of resin.

 図4に例示される第1閾値テーブルTB1の第3列(第1閾値)には、第1列と第2列との各データに対応する複数の第1閾値TH1(V1~V7)が格納される。複数の第1閾値TH1の各々の具体値は、実験に基づいて予め決められる。なお、図4の最下行に示されるように、樹脂の種類に拘わらず、スクリュ34の種類に応じた第1閾値TH1が第1閾値テーブルTB1に格納されてもよい。また、スクリュ34の種類に拘わらず、樹脂の種類に応じた第1閾値TH1が第1閾値テーブルTB1に格納されてもよい。 The third column (first threshold) of the first threshold table TB1 illustrated in FIG. 4 stores a plurality of first thresholds TH1 (V1 to V7) corresponding to each data in the first column and the second column. be done. The specific value of each of the plurality of first threshold values TH1 is determined in advance based on experiments. Note that, as shown in the bottom row of FIG. 4, the first threshold value TH1 depending on the type of screw 34 may be stored in the first threshold value table TB1 regardless of the type of resin. Furthermore, regardless of the type of screw 34, the first threshold value TH1 depending on the type of resin may be stored in the first threshold value table TB1.

 第1閾値テーブルTB1は、記憶部72に予め記憶される(図3も参照)。射出成形機10に備えられたスクリュ34の種類と、シリンダ26の内部に供給される樹脂の種類とは、例えば操作部70を介してオペレータが第1閾値決定部88に指示する。 The first threshold table TB1 is stored in advance in the storage unit 72 (see also FIG. 3). The type of screw 34 provided in the injection molding machine 10 and the type of resin supplied to the inside of the cylinder 26 are instructed by the operator to the first threshold value determination unit 88 via the operation unit 70, for example.

 第2計測部90は、金型20に樹脂を射出するための射出動作をスクリュ34が開始してから、スクリュ34にかかる負荷が第1閾値TH1に到達するまでの所要時間TMを計測する。すなわち、第2計測部90は、射出工程においてスクリュ34が前進を開始してから、第1モータ52aのトルクが第1閾値TH1に到達するまでの所要時間TMを計測する。 The second measurement unit 90 measures the required time TM from when the screw 34 starts an injection operation for injecting resin into the mold 20 until the load applied to the screw 34 reaches the first threshold value TH1. That is, the second measurement unit 90 measures the time TM required from when the screw 34 starts moving forward in the injection process until the torque of the first motor 52a reaches the first threshold value TH1.

 計測された所要時間TMは、記憶部72に記憶される。 The measured required time TM is stored in the storage unit 72.

 第2閾値決定部92は、第2閾値テーブルTB2に基づいて、第2閾値TH2を決定する。第2閾値テーブルTB2は、スクリュ34の複数の種類と樹脂の複数の種類とのうち少なくとも一方に応じて複数の第2閾値TH2を格納するデータテーブルである。第2閾値決定部92は、射出成形機10に備えられたスクリュ34の種類と、シリンダ26の内部に供給される樹脂の種類とに対応する第2閾値TH2を、第2閾値テーブルTB2の中から検索する。 The second threshold determination unit 92 determines the second threshold TH2 based on the second threshold table TB2. The second threshold table TB2 is a data table that stores a plurality of second threshold values TH2 according to at least one of the plurality of types of screws 34 and the plurality of types of resin. The second threshold determination unit 92 sets a second threshold TH2 corresponding to the type of screw 34 provided in the injection molding machine 10 and the type of resin supplied into the cylinder 26 in the second threshold table TB2. Search from.

 図5は、第2閾値テーブルTB2を例示する表である。 FIG. 5 is a table illustrating the second threshold table TB2.

 図5に例示される第2閾値テーブルTB2の第1列(スクリュ34の種類)には、スクリュ34の複数の種類が格納される。図5に例示される第2閾値テーブルTB2の第2列(樹脂の種類)には、樹脂の複数の種類が格納される。図5に例示される第2閾値テーブルTB2の第3列(第2閾値)には、第1列と第2列との各データに対応する複数の第2閾値TH2(U1~U7)が格納される。 A plurality of types of screws 34 are stored in the first column (types of screws 34) of the second threshold table TB2 illustrated in FIG. A plurality of types of resin are stored in the second column (types of resin) of the second threshold table TB2 illustrated in FIG. 5 . The third column (second threshold) of the second threshold table TB2 illustrated in FIG. 5 stores a plurality of second thresholds TH2 (U1 to U7) corresponding to each data in the first column and the second column. be done.

 複数の第2閾値TH2の各々の具体値は、実験に基づいて予め決められる。なお、樹脂の種類に拘わらず、スクリュ34の種類に応じた第2閾値TH2が第2閾値テーブルTB2に格納されてもよい。また、スクリュ34の種類に拘わらず、樹脂の種類に応じた第2閾値TH2が第2閾値テーブルTB2に格納されてもよい。 The specific value of each of the plurality of second threshold values TH2 is determined in advance based on experiments. Note that the second threshold value TH2 according to the type of screw 34 may be stored in the second threshold value table TB2 regardless of the type of resin. Furthermore, regardless of the type of screw 34, the second threshold value TH2 depending on the type of resin may be stored in the second threshold value table TB2.

 第2閾値テーブルTB2は、記憶部72に予め記憶される(図3も参照)。射出成形機10に備えられたスクリュ34の種類と、シリンダ26の内部に供給される樹脂の種類とは、例えば操作部70を介してオペレータが第2閾値決定部92に指示する。 The second threshold table TB2 is stored in advance in the storage unit 72 (see also FIG. 3). The type of screw 34 provided in the injection molding machine 10 and the type of resin to be supplied into the cylinder 26 are specified by an operator to the second threshold value determination unit 92 via the operation unit 70, for example.

 ただし、第1閾値TH1を第1閾値決定部88に決定させるために、オペレータが、スクリュ34の種類と樹脂の種類とを既に制御装置18に入力している場合がある。この場合、第2閾値決定部92は、制御装置18に入力済のスクリュ34の種類と樹脂の種類とを用いてもよい。 However, in order to have the first threshold value determination unit 88 determine the first threshold value TH1, the operator may have already input the type of screw 34 and the type of resin into the control device 18. In this case, the second threshold determination unit 92 may use the type of screw 34 and the type of resin that have already been input to the control device 18.

 減圧条件補正部94は、所要時間TMと第2閾値TH2との差δに基づいて、所定の減圧条件値CVを補正する。ここで、減圧条件補正部94は、所定の減圧条件値CVのうち、逆回転時間と、逆回転量と、逆回転速度の少なくとも1つを補正する。 The decompression condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference δ between the required time TM and the second threshold TH2. Here, the decompression condition correction unit 94 corrects at least one of the reverse rotation time, the reverse rotation amount, and the reverse rotation speed out of the predetermined pressure reduction condition value CV.

 所要時間TMと第2閾値TH2との差δは、所要時間TMから第2閾値TH2を引いた値(δ=TM-TH2)でもよいし、第2閾値TH2から所要時間TMを引いた値(δ=TH2-TM)でもよい。 The difference δ between the required time TM and the second threshold TH2 may be the value obtained by subtracting the second threshold TH2 from the required time TM (δ = TM - TH2), or the value obtained by subtracting the required time TM from the second threshold TH2 ( δ=TH2-TM).

 減圧条件補正部94は、所定の減圧条件値CVの補正量を、補正量テーブルTBCに基づいて決定する。補正量テーブルTBCは、所要時間TMと第2閾値TH2との差δに応じて複数の補正量が格納されるデータテーブルである。 The decompression condition correction unit 94 determines the amount of correction for the predetermined decompression condition value CV based on the correction amount table TBC. The correction amount table TBC is a data table in which a plurality of correction amounts are stored according to the difference δ between the required time TM and the second threshold TH2.

 図6は、補正量テーブルTBCを例示する表である。 FIG. 6 is a table illustrating the correction amount table TBC.

 図6に例示される補正量テーブルTBCの第1列(差の範囲)には、所要時間TMと第2閾値TH2との差δに関する複数の範囲が格納される。図6に例示される補正量テーブルTBCの第2列(補正量)には、第1列に格納される複数の範囲の各々に応じた複数の補正量(C1~C6、…)が格納される。複数の補正量の具体値は、実験に基づいて予め決められる。なお、補正量テーブルTBCには、逆回転時間を補正するための補正量と、逆回転量を補正するための補正量と、逆回転速度を補正するための補正量とが別々に格納されてもよい。 The first column (difference range) of the correction amount table TBC illustrated in FIG. 6 stores a plurality of ranges regarding the difference δ between the required time TM and the second threshold TH2. The second column (correction amount) of the correction amount table TBC illustrated in FIG. 6 stores a plurality of correction amounts (C1 to C6,...) corresponding to each of the plurality of ranges stored in the first column. Ru. Specific values of the plurality of correction amounts are determined in advance based on experiments. Note that the correction amount table TBC separately stores a correction amount for correcting the reverse rotation time, a correction amount for correcting the reverse rotation amount, and a correction amount for correcting the reverse rotation speed. Good too.

 補正量テーブルTBCは、記憶部72に予め記憶される(図3も参照)。減圧条件補正部94は、所要時間TMと第2閾値TH2との差δに基づいて補正量テーブルTBCを参照して、補正量を決定する。また、減圧条件補正部94は、決定した補正量に基づいて、所定の減圧条件値CVを補正する。 The correction amount table TBC is stored in advance in the storage unit 72 (see also FIG. 3). The decompression condition correction unit 94 determines the correction amount by referring to the correction amount table TBC based on the difference δ between the required time TM and the second threshold TH2. Further, the depressurization condition correction unit 94 corrects the predetermined depressurization condition value CV based on the determined correction amount.

 例えば、所要時間TMと第2閾値TH2との差δがD1である場合の補正量は、図6によればC1である。したがって、所要時間TMと第2閾値TH2との差δがD1である場合、減圧条件補正部94は、補正量C1に基づいて所定の減圧条件値CVを補正する。 For example, when the difference δ between the required time TM and the second threshold TH2 is D1, the correction amount is C1 according to FIG. Therefore, when the difference δ between the required time TM and the second threshold TH2 is D1, the decompression condition correction section 94 corrects the predetermined decompression condition value CV based on the correction amount C1.

 ただし、所定の減圧条件値CVの変更可能な所定の範囲が記憶部72に予め記憶されている場合、減圧条件補正部94は、所定の範囲内に収まるように、所定の減圧条件値CVを補正すると、好ましい。 However, if a predetermined range in which the predetermined decompression condition value CV can be changed is stored in advance in the storage unit 72, the decompression condition correction unit 94 adjusts the predetermined decompression condition value CV so that it falls within the predetermined range. It is preferable to correct it.

 例えば、補正量に基づいて補正することで所定の減圧条件値CVが上限値を超える場合、減圧条件補正部94は、上限値を所定の減圧条件値CVの補正結果とする。 For example, if the predetermined pressure reduction condition value CV exceeds the upper limit value due to correction based on the correction amount, the pressure reduction condition correction unit 94 sets the upper limit value as the correction result of the predetermined pressure reduction condition value CV.

 また、補正量に基づいて補正することで所定の減圧条件値CVが下限値を下回る場合、減圧条件補正部94は、下限値を所定の減圧条件値CVの補正結果とする。 Further, when the predetermined pressure reduction condition value CV is lower than the lower limit value by correcting based on the correction amount, the pressure reduction condition correction unit 94 sets the lower limit value as the correction result of the predetermined pressure reduction condition value CV.

 所定の範囲内に収まるように所定の減圧条件値CVが補正されることで、メーカが推奨しない動作を射出成形機10が実行することが防止される。 By correcting the predetermined pressure reduction condition value CV so that it falls within a predetermined range, the injection molding machine 10 is prevented from performing an operation that is not recommended by the manufacturer.

 なお、補正量テーブルTBCには、所要時間TMが第2閾値TH2よりも大きいほど、所定の減圧条件値CVを小さくする補正量が格納される。したがって、減圧条件補正部94は、所要時間TMが第2閾値TH2を超える場合、所要時間TMと第2閾値TH2との差δが大きいほど、所定の減圧条件値CVを小さくする。 Note that the correction amount table TBC stores correction amounts that decrease the predetermined pressure reduction condition value CV as the required time TM is larger than the second threshold TH2. Therefore, when the required time TM exceeds the second threshold TH2, the decompression condition correction unit 94 decreases the predetermined depressurization condition value CV as the difference δ between the required time TM and the second threshold TH2 increases.

 所定の減圧条件値CVがより小さい値に補正されることで、補正後に行われる減圧工程において、計量領域に溜められた樹脂の密度が高められる。計量領域に溜められた樹脂の密度が高められることで、樹脂に付与される後方向の圧力が強められる。これにより、計量領域内の樹脂は、より前方向に短時間で流動しやすい状態になる。つまり、所定の減圧条件値CVがより小さい値に補正されることで、射出工程中における樹脂の圧力が早期に上がりやすくなる。その結果、補正された所定の減圧条件値CVに基づいて行われる減圧工程の後の射出工程において、所要時間TMが第2閾値TH2に近づく。 By correcting the predetermined pressure reduction condition value CV to a smaller value, the density of the resin stored in the measurement area is increased in the pressure reduction step performed after the correction. By increasing the density of the resin stored in the metering area, the backward pressure applied to the resin is increased. As a result, the resin in the metering area becomes more likely to flow forward in a short time. That is, by correcting the predetermined pressure reduction condition value CV to a smaller value, the pressure of the resin during the injection process is likely to increase quickly. As a result, the required time TM approaches the second threshold value TH2 in the injection process after the pressure reduction process performed based on the corrected predetermined pressure reduction condition value CV.

 また、補正量テーブルTBCには、所要時間TMが第2閾値TH2よりも小さいほど、所定の減圧条件値CVを大きくする補正量が格納される。したがって、減圧条件補正部94は、所要時間TMが第2閾値TH2未満である場合、所要時間TMと第2閾値TH2との差δが大きいほど、所定の減圧条件値CVを大きくする。 Further, the correction amount table TBC stores a correction amount that increases the predetermined pressure reduction condition value CV as the required time TM is smaller than the second threshold TH2. Therefore, when the required time TM is less than the second threshold TH2, the depressurization condition correction unit 94 increases the predetermined depressurization condition value CV as the difference δ between the required time TM and the second threshold TH2 increases.

 所定の減圧条件値CVがより大きい値に補正されることで、補正後に行われる減圧工程において、計量領域に溜められた樹脂の密度が低められる。計量領域に溜められた樹脂の密度が低められることで、樹脂に付与される後方向の圧力が弱められる。これにより、計量領域内の樹脂は、より前方向に流動しにくい状態になる。つまり、所定の減圧条件値CVがより大きい値に補正されることで、射出工程中における樹脂の圧力が上がりにくくなる。その結果、補正された所定の減圧条件値CVに基づいて行われる減圧工程の後の射出工程において、所要時間TMが第2閾値TH2に近づく。 By correcting the predetermined pressure reduction condition value CV to a larger value, the density of the resin accumulated in the measurement area is reduced in the pressure reduction step performed after the correction. By lowering the density of the resin stored in the metering area, the backward pressure applied to the resin is weakened. As a result, the resin within the metering area becomes more difficult to flow forward. That is, by correcting the predetermined pressure reduction condition value CV to a larger value, the pressure of the resin during the injection process becomes difficult to increase. As a result, the required time TM approaches the second threshold value TH2 in the injection process after the pressure reduction process performed based on the corrected predetermined pressure reduction condition value CV.

 減圧条件補正部94が補正した所定の減圧条件値CVは、記憶部72に記憶される。表示制御部84は、補正された所定の減圧条件値CVを表示画面68dに表示させてもよい。補正された所定の減圧条件値CVは、補正以後に実行される減圧工程において、減圧制御部80に用いられる。 The predetermined pressure reduction condition value CV corrected by the pressure reduction condition correction section 94 is stored in the storage section 72. The display control unit 84 may display the corrected predetermined pressure reduction condition value CV on the display screen 68d. The corrected predetermined pressure reduction condition value CV is used by the pressure reduction control unit 80 in a pressure reduction process executed after the correction.

 減圧条件補正部94によれば、次に説明されるように、成形品の品質を安定させることができる。 According to the reduced pressure condition correction unit 94, the quality of the molded product can be stabilized, as described below.

 前述の通り、樹脂の流れ方は、樹脂の状態に応じて、変化する。また、樹脂は、流動することに応じて、スクリュに負荷を付与する。したがって、樹脂の状態と樹脂の流れ方とが相関関係を有し、且つ、樹脂の流れ方とスクリュに付与される負荷とが相関関係を有する。以上の理由から、樹脂の状態と、スクリュに付与される負荷とが、相関関係を有する。 As mentioned above, the way the resin flows changes depending on the state of the resin. Further, as the resin flows, it applies a load to the screw. Therefore, there is a correlation between the state of the resin and the way the resin flows, and a correlation between the way the resin flows and the load applied to the screw. For the above reasons, there is a correlation between the state of the resin and the load applied to the screw.

 樹脂の流動に応じてスクリュに付与される負荷の変化は、所要時間TMに反映される。したがって、所要時間TMが第2閾値TH2に近づくように所定の減圧条件値CVを補正することで、複数の成形サイクルにわたって樹脂の状態を均一に調節することができる。これにより、所定の減圧条件値CVの調整作業に係るオペレータの負担を低減しつつ、成形品の品質を均一にすることができる。 The change in the load applied to the screw according to the flow of the resin is reflected in the required time TM. Therefore, by correcting the predetermined pressure reduction condition value CV so that the required time TM approaches the second threshold value TH2, it is possible to uniformly adjust the state of the resin over a plurality of molding cycles. Thereby, the quality of the molded product can be made uniform while reducing the burden on the operator in adjusting the predetermined pressure reduction condition value CV.

 図7は、実施形態に係る制御方法の流れを例示するフローチャートである。 FIG. 7 is a flowchart illustrating the flow of the control method according to the embodiment.

 制御装置18は、例えば図7に例示される制御方法を実行する。図7の制御方法は、第1閾値決定ステップS1と、第2閾値決定ステップS2と、減圧制御ステップS3と、第1計測ステップS4と、第2計測ステップS5と、減圧条件補正ステップS6とを含む。 The control device 18 executes the control method illustrated in FIG. 7, for example. The control method of FIG. 7 includes a first threshold value determination step S1, a second threshold value determination step S2, a pressure reduction control step S3, a first measurement step S4, a second measurement step S5, and a pressure reduction condition correction step S6. include.

 第1閾値決定ステップS1では、第1閾値決定部88が、射出成形機10に備えられたスクリュ34の種類と、射出成形に用いられる樹脂の種類とに基づき、第1閾値テーブルTB1を参照して第1閾値TH1を決定する。なお、第1閾値決定ステップS1は、図7のフローチャートのSTART~第2計測ステップS5の間であれば、いつ実行されてもよい。 In the first threshold value determination step S1, the first threshold value determination unit 88 refers to the first threshold value table TB1 based on the type of screw 34 provided in the injection molding machine 10 and the type of resin used for injection molding. Then, the first threshold TH1 is determined. Note that the first threshold value determination step S1 may be executed at any time between START and the second measurement step S5 in the flowchart of FIG.

 同様に、第2閾値決定ステップS2では、第2閾値決定部92が、射出成形機10に備えられたスクリュ34の種類と、射出成形に用いられる樹脂の種類とに基づき、第2閾値テーブルTB2を参照して第2閾値TH2を決定する。なお、第2閾値決定ステップS2は、図7のフローチャートのSTART~減圧条件補正ステップS6の間であれば、いつ実行されてもよい。 Similarly, in the second threshold value determination step S2, the second threshold value determination unit 92 generates a second threshold value table TB2 based on the type of screw 34 provided in the injection molding machine 10 and the type of resin used for injection molding. The second threshold value TH2 is determined with reference to. Note that the second threshold value determination step S2 may be executed at any time between START and the depressurization condition correction step S6 in the flowchart of FIG.

 減圧制御ステップS3では、減圧制御部80が、スクリュ34を制御して、樹脂の圧力を減圧させる。減圧制御ステップS3は、成形サイクルのうちの減圧工程に含まれる。なお、減圧工程が開始される前に、計量工程が終了する。したがって、減圧制御ステップS3の開始時点は、スクリュ34が計量位置に到達して、所定量の樹脂がシリンダ26内で計量された後である。 In the pressure reduction control step S3, the pressure reduction control section 80 controls the screw 34 to reduce the pressure of the resin. The pressure reduction control step S3 is included in the pressure reduction step of the molding cycle. Note that the measuring process ends before the pressure reduction process starts. Therefore, the start point of the pressure reduction control step S3 is after the screw 34 has reached the metering position and a predetermined amount of resin has been metered within the cylinder 26.

 図8は、図7の制御方法が実行される場合におけるスクリュ34の回転速度と、樹脂の圧力との各々の時間推移を例示するタイムチャートである。スクリュ34の回転速度が0より小さい場合、スクリュ34は逆回転している。 FIG. 8 is a time chart illustrating the respective time changes of the rotational speed of the screw 34 and the pressure of the resin when the control method of FIG. 7 is executed. When the rotational speed of the screw 34 is less than 0, the screw 34 is rotating in the opposite direction.

 時点t0において、スクリュ34が計量位置に到達する。すなわち、時点t0は、計量工程の終了時点を示す。時点t0は、減圧工程(減圧制御ステップS3)の開始時点でもある。時点t0において、樹脂の圧力は、計量圧力P1である。また、スクリュ34の順回転は即座に停止しないので、時点t0においてスクリュ34は順回転している。図8において回転速度が0よりも大きい場合、スクリュ34は順回転している。 At time t0, the screw 34 reaches the metering position. That is, time t0 indicates the end time of the weighing process. Time t0 is also the start time of the pressure reduction process (pressure reduction control step S3). At time t0, the pressure of the resin is metering pressure P1. Further, since the forward rotation of the screw 34 does not stop immediately, the screw 34 is rotating forward at time t0. In FIG. 8, when the rotational speed is greater than 0, the screw 34 is rotating forward.

 減圧制御ステップS3において、スクリュ34は所定の減圧条件値CVに基づいて逆回転する。例えば、所定の減圧条件値CVが逆回転速度Vrbを含む。この場合、時点t0の後において、スクリュ34の回転速度が逆回転速度Vrbに調整される。スクリュ34が逆回転することに応じて、樹脂の圧力は減圧される。樹脂の圧力が目標減圧値P0まで減圧される時点t1において、減圧工程(減圧制御ステップS3)は、終了する。 In the pressure reduction control step S3, the screw 34 rotates in reverse based on a predetermined pressure reduction condition value CV. For example, the predetermined pressure reduction condition value CV includes the reverse rotation speed Vrb. In this case, after time t0, the rotational speed of the screw 34 is adjusted to the reverse rotational speed Vrb. As the screw 34 rotates in the opposite direction, the pressure of the resin is reduced. At time t1 when the pressure of the resin is reduced to the target pressure reduction value P0, the pressure reduction process (pressure reduction control step S3) ends.

 第1計測ステップS4では、シリンダ26から金型20に樹脂が射出されることに応じてスクリュ34にかかる負荷を、第1計測部86が計測する。第1計測ステップS4は、成形サイクルのうちの射出工程に含むことができる。シリンダ26から金型20に樹脂が射出されることに応じてスクリュ34にかかる負荷は、例えば、第1モータ52aのトルク(第1トルク)である。第1モータ52aのトルクは、第1モータ52aを駆動する電流に基づいて算出される。 In the first measurement step S4, the first measurement unit 86 measures the load applied to the screw 34 in response to resin being injected from the cylinder 26 to the mold 20. The first measurement step S4 can be included in the injection step of the molding cycle. The load applied to the screw 34 in response to the resin being injected from the cylinder 26 to the mold 20 is, for example, the torque (first torque) of the first motor 52a. The torque of the first motor 52a is calculated based on the current that drives the first motor 52a.

 例えば、射出制御部82が、射出工程を開始するために、スクリュ34を前進させる旨の制御指令を第2駆動装置38に向けて出力する。この指令が、例えば図8の時点t2で射出制御部82から出力される。時点t2は、射出工程の開始時点であり、第1計測ステップS4の開始時点でもある。第2モータ52bは、射出制御部82の制御指令に基づいて制御されて、スクリュ34を前進させる。 For example, the injection control unit 82 outputs a control command to the second drive device 38 to move the screw 34 forward in order to start the injection process. This command is output from the injection control section 82 at time t2 in FIG. 8, for example. Time t2 is the start time of the injection process and also the start time of the first measurement step S4. The second motor 52b is controlled based on a control command from the injection control section 82 to move the screw 34 forward.

 これにより、時点t2以後において、計量領域内の樹脂が金型20のキャビティ20cに射出される。また、時点t2以後において、樹脂の圧力が上昇する。ただし、樹脂が充填される前のキャビティ20cは空洞である。したがって、樹脂が射出され始めてから暫くの間は、射出される樹脂に付与される流動抵抗が小さい。樹脂に付与される流動抵抗が小さい間は、樹脂からスクリュに付与される圧力が緩やかに上昇する。 As a result, after time t2, the resin in the measurement area is injected into the cavity 20c of the mold 20. Furthermore, after time t2, the pressure of the resin increases. However, the cavity 20c is hollow before being filled with resin. Therefore, for a while after the resin starts being injected, the flow resistance applied to the injected resin is small. While the flow resistance applied to the resin is small, the pressure applied from the resin to the screw increases slowly.

 図9は、第1計測部86が計測する第1モータ52aのトルクの時間推移を例示するタイムチャートである。図9のうち、時点t2は、図8に準ずる。 FIG. 9 is a time chart illustrating the time course of the torque of the first motor 52a measured by the first measurement unit 86. In FIG. 9, time t2 corresponds to FIG. 8.

 射出される樹脂に付与される流動抵抗が小さい場合、スクリュ34に付与される負荷も小さい。したがって、樹脂が射出され始めてから暫くの間は、スクリュ34に付与される負荷が緩やかに上昇する。 When the flow resistance applied to the injected resin is small, the load applied to the screw 34 is also small. Therefore, the load applied to the screw 34 gradually increases for a while after the resin starts being injected.

 なお、キャビティ20cへの樹脂の充填がある程度進行することで、樹脂の圧力が急峻に上昇する。これに応じて、キャビティ20cへの樹脂の充填がある程度進行した後は、スクリュ34に付与される負荷も、急峻に上昇する。 Note that as the filling of the resin into the cavity 20c progresses to a certain extent, the pressure of the resin increases sharply. Correspondingly, after the resin filling into the cavity 20c has progressed to a certain extent, the load applied to the screw 34 also increases sharply.

 第2計測ステップS5では、金型20に樹脂を射出するための射出動作をスクリュ34が開始してから、スクリュ34に付与される負荷が第1閾値TH1に到達するまでの所要時間TMを、第2計測部90が計測する。例えば、図9によれば、負荷として計測されている第1モータ52aのトルクが、時点t3で第1閾値TH1に到達する。第2計測ステップS5は、時点t2から時点t3までの所要時間TMを計測する。第2計測ステップS5も、射出工程に含むことができる。 In the second measurement step S5, the required time TM from when the screw 34 starts the injection operation for injecting the resin into the mold 20 until the load applied to the screw 34 reaches the first threshold value TH1 is calculated. The second measuring section 90 measures. For example, according to FIG. 9, the torque of the first motor 52a, which is measured as a load, reaches the first threshold value TH1 at time t3. The second measurement step S5 measures the required time TM from time t2 to time t3. The second measurement step S5 can also be included in the injection process.

 減圧条件補正ステップS6では、減圧条件補正部94が、所定の減圧条件値CVを補正する。減圧条件補正部94は、所要時間TMと、第2閾値TH2との差δに基づき補正量テーブルTBCを参照して、所定の減圧条件値CVの補正量を決定することができる。なお、図9の例示において、所要時間TMは、第2閾値TH2を超える。この場合、所要時間TMと第2閾値TH2との差δ(δ=TM-TH2)に基づいて、所定の減圧条件値CVは、より小さい値に補正される。例えば、所要時間TMと第2閾値TH2との差δが0<δ≦D1の範囲内である場合、補正量は、補正量テーブルTBCに基づきC1と決定される。この場合、補正後の減圧条件値CVは、所定の減圧条件値CVから補正量C1を減じた値となる。減圧制御部80は、次の成形サイクルの減圧工程において、補正後の減圧条件値CVを用いてスクリュ34を制御することで、樹脂の圧力を減圧させてもよい。 In the pressure reduction condition correction step S6, the pressure reduction condition correction section 94 corrects the predetermined pressure reduction condition value CV. The depressurization condition correction unit 94 can determine the correction amount for the predetermined depressurization condition value CV by referring to the correction amount table TBC based on the difference δ between the required time TM and the second threshold value TH2. Note that in the example of FIG. 9, the required time TM exceeds the second threshold TH2. In this case, the predetermined pressure reduction condition value CV is corrected to a smaller value based on the difference δ between the required time TM and the second threshold TH2 (δ=TM−TH2). For example, when the difference δ between the required time TM and the second threshold TH2 is within the range of 0<δ≦D1, the correction amount is determined to be C1 based on the correction amount table TBC. In this case, the corrected pressure reduction condition value CV is a value obtained by subtracting the correction amount C1 from the predetermined pressure reduction condition value CV. The pressure reduction control unit 80 may reduce the pressure of the resin in the pressure reduction step of the next molding cycle by controlling the screw 34 using the corrected pressure reduction condition value CV.

 図10は、図8、図9に係る成形サイクルの次の成形サイクルにおける樹脂の圧力と、第1モータ52aのトルクとの時間推移を例示するタイムチャートである。なお、比較のために、図8に示した樹脂の圧力の時間推移と、図9に示した第1モータ52aのトルクの時間推移とが、図10中に破線で示される。 FIG. 10 is a time chart illustrating the time course of the resin pressure and the torque of the first motor 52a in the next molding cycle after the molding cycles shown in FIGS. 8 and 9. For comparison, the time course of the resin pressure shown in FIG. 8 and the time course of the torque of the first motor 52a shown in FIG. 9 are shown by broken lines in FIG.

 射出成形機10は、図7の制御方法が終了(RETURN)した後も成形サイクルを繰り返し実行する。すなわち、図7の制御方法が終了(RETURN)した後、計量工程と、減圧工程と、射出工程とが再び行われる。ここで、本実施形態によれば、減圧条件補正ステップS6の後に再び行われる射出工程において、所要時間TMは、第2閾値TH2に近づく(図10参照)。このように、各成形サイクルにおける所要時間TMを、第2閾値TH2に近い時間長に自動的に調整し続けることで、オペレータの負担を低減しつつ、成形品の品質を均一にすることができる。 The injection molding machine 10 repeatedly executes the molding cycle even after the control method shown in FIG. 7 ends (RETURN). That is, after the control method of FIG. 7 is completed (RETURN), the metering process, the pressure reduction process, and the injection process are performed again. According to this embodiment, the required time TM approaches the second threshold value TH2 in the injection process that is performed again after the reduced pressure condition correction step S6 (see FIG. 10). In this way, by continuing to automatically adjust the required time TM in each molding cycle to a time length close to the second threshold value TH2, it is possible to reduce the burden on the operator and make the quality of molded products uniform. .

 [変形例]
 以下には、上記実施形態に係る変形例が記載される。ただし、上記実施形態と重複する説明は、以下の説明では可能な限り省略される。上記実施形態で説明済みの要素には、特に断らない限り、上記実施形態と同一の参照符号が付される。
[Modified example]
Modifications of the above embodiment will be described below. However, descriptions that overlap with the above embodiments will be omitted as much as possible in the following description. Elements already described in the above embodiments are given the same reference numerals as in the above embodiments, unless otherwise specified.

 (変形例1)
 図11は、変形例1に係る制御装置181(18)の構成図である。
(Modification 1)
FIG. 11 is a configuration diagram of a control device 181 (18) according to Modification 1.

 制御装置181は、制御装置18の変形例である。制御装置181は、制御装置18の構成要素(実施形態参照)を備える。また、制御装置181は、計測回数判定部96と、統計量算出部98とをさらに備える。計測回数判定部96と、統計量算出部98とは、計量制御部78等と同様に、例えば演算部74が制御プログラム76を実行することで実現される。 The control device 181 is a modification of the control device 18. The control device 181 includes the components of the control device 18 (see the embodiment). In addition, the control device 181 further includes a measurement frequency determination section 96 and a statistics calculation section 98. The measurement count determination unit 96 and the statistic calculation unit 98 are realized, for example, by the calculation unit 74 executing the control program 76, similarly to the measurement control unit 78 and the like.

 本変形例において、第2計測部90は、射出成形機10が繰り返し実行する成形サイクル(減圧工程)ごとに、所要時間TMを計測する。記憶部72は、複数の成形サイクルの中で第2計測部90が計測した複数の所要時間TMを記憶する。 In this modification, the second measurement unit 90 measures the required time TM for each molding cycle (depressurization process) repeatedly executed by the injection molding machine 10. The storage unit 72 stores a plurality of required times TM measured by the second measurement unit 90 during a plurality of molding cycles.

 計測回数判定部96は、所定回数の成形サイクルを繰り返すことで計測された所定回数分の所要時間TMが記憶部72に記憶されたか否かを判定する。所定回数は、射出成形機10のメーカが、実験に基づいて予め指定する。ただし、オペレータが操作部70を介して計測回数判定部96に所定回数を指示してもよい。 The measurement number determination unit 96 determines whether the required time TM for a predetermined number of times, which is measured by repeating the molding cycle a predetermined number of times, has been stored in the storage unit 72. The predetermined number of times is specified in advance by the manufacturer of the injection molding machine 10 based on experiments. However, the operator may instruct a predetermined number of times to the measurement number determination section 96 via the operation section 70.

 統計量算出部98は、所定回数分の所要時間TMが記憶部72に記憶されている場合に、所定回数分の所要時間TMの統計量を算出する。統計量算出部98は、例えば所定回数分の所要時間TMの加重平均値を統計量として算出する。 When the required time TM for a predetermined number of times is stored in the storage unit 72, the statistics calculation unit 98 calculates the statistics of the required time TM for a predetermined number of times. The statistic calculation unit 98 calculates, for example, a weighted average value of the required time TM for a predetermined number of times as a statistic.

 加重平均値を算出するために用いられる重み係数は、例えば実験に基づいて予め決められて、記憶部72に記憶される。重み係数は、例えば、より過去の成形サイクルで得られた所要時間TMにかかる重み係数であるほど、小さい。算出された統計量は、記憶部72に記憶される。 The weighting coefficients used to calculate the weighted average value are determined in advance, for example, based on experiments, and are stored in the storage unit 72. For example, the weighting coefficient is smaller as the weighting coefficient is applied to the required time TM obtained in a molding cycle in the past. The calculated statistics are stored in the storage unit 72.

 減圧条件補正部94は、所要時間TMと第2閾値TH2との差δに基づいて、所定の減圧条件値CVを補正する。ただし、本変形例において、減圧条件補正部94は、統計量算出部98が算出した統計量を、所要時間TMとして用いる。これにより、所定の減圧条件値CVが所要時間TMの外れ値に基づいて補正されるおそれが低減する。 The decompression condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference δ between the required time TM and the second threshold TH2. However, in this modification, the decompression condition correction section 94 uses the statistics calculated by the statistics calculation section 98 as the required time TM. This reduces the possibility that the predetermined pressure reduction condition value CV will be corrected based on an outlier value of the required time TM.

 図12は、変形例1に係る制御方法の流れを例示するフローチャートである。 FIG. 12 is a flowchart illustrating the flow of the control method according to Modification 1.

 制御装置181は、例えば図12に示す制御方法を実行することができる。図12の制御方法は、図7の制御方法の構成要素(実施形態参照)を含む。また、図12の制御方法は、計測回数判定ステップS7と、算出ステップS8とをさらに含む。 The control device 181 can execute the control method shown in FIG. 12, for example. The control method of FIG. 12 includes the components of the control method of FIG. 7 (see embodiment). Moreover, the control method of FIG. 12 further includes a measurement number determination step S7 and a calculation step S8.

 計測回数判定ステップS7は、第2計測ステップS5の後に行われる。計測回数判定ステップS7では、計測回数判定部96が、統計量を算出することが可能であるか否かを判定する。つまり、計測回数判定ステップS7では、計測回数判定部96が、統計量を算出するために必要な所定回数分の所要時間TMが記憶部72に記憶されているか否かを判定する。 The measurement count determination step S7 is performed after the second measurement step S5. In the measurement number determination step S7, the measurement number determination unit 96 determines whether it is possible to calculate the statistics. That is, in the measurement number determination step S7, the measurement number determination unit 96 determines whether the storage unit 72 stores the required time TM for a predetermined number of times necessary to calculate the statistics.

 所定回数分の所要時間TMが記憶部72に記憶されていない場合(S7:NO)、次の成形サイクルの射出工程で所要時間TMが再び計測される。所定回数分の所要時間TMが記憶部72に記憶されている場合(S7:YES)、算出ステップS8が実行される。 If the required time TM for the predetermined number of times is not stored in the storage unit 72 (S7: NO), the required time TM is measured again in the injection process of the next molding cycle. If the required time TM for the predetermined number of times is stored in the storage unit 72 (S7: YES), calculation step S8 is executed.

 算出ステップS8では、統計量算出部98が、所定回数分の所要時間TMに基づいて、統計量を算出する。 In calculation step S8, the statistics calculation unit 98 calculates statistics based on the required time TM for a predetermined number of times.

 本変形例において、減圧条件補正ステップS6は、算出ステップS8の後に行われる。減圧条件補正ステップS6では、減圧条件補正部94が、所要時間TMと第2閾値TH2との差δに基づいて、所定の減圧条件値CVを補正する。ただし、減圧条件補正ステップS6では、算出ステップS8で算出された統計量が、所要時間TMとして用いられる。 In this modification, the reduced pressure condition correction step S6 is performed after the calculation step S8. In the pressure reduction condition correction step S6, the pressure reduction condition correction section 94 corrects the predetermined pressure reduction condition value CV based on the difference δ between the required time TM and the second threshold value TH2. However, in the decompression condition correction step S6, the statistic calculated in the calculation step S8 is used as the required time TM.

 これにより、所要時間TMの外れ値に基づいて所定の減圧条件値CVが補正されることが防止される。 This prevents the predetermined pressure reduction condition value CV from being corrected based on an outlier value of the required time TM.

 なお、統計量算出部98は、複数の所要時間TMの相加平均値、重み付き調和平均値、刈り込み平均値、二条和平均平方根、最頻値または加重中央値を統計量として算出してもよい。 Note that the statistics calculation unit 98 may calculate an arithmetic mean value, a weighted harmonic mean value, a pruned mean value, a two-section sum mean square root, a mode, or a weighted median value of a plurality of required times TM as a statistic. good.

 (変形例2)
 オペレータは、第1閾値TH1と、第2閾値TH2との少なくとも一方を指示してもよい。オペレータは、例えば操作部70を介して、第1閾値TH1を制御装置18に入力する。第2計測部90は、入力された第1閾値TH1を用いて、所要時間TMを計測する。
(Modification 2)
The operator may indicate at least one of the first threshold TH1 and the second threshold TH2. The operator inputs the first threshold value TH1 into the control device 18, for example, via the operation unit 70. The second measurement unit 90 measures the required time TM using the input first threshold TH1.

 オペレータは、第1閾値決定部88が決定した第1閾値TH1、または第2閾値決定部92が決定した第2閾値TH2を、操作部70を介して変更してもよい。 The operator may change the first threshold value TH1 determined by the first threshold value determination unit 88 or the second threshold value TH2 determined by the second threshold value determination unit 92 via the operation unit 70.

 (変形例3)
 所定の減圧条件値CVの補正量は、所要時間TMが第2閾値TH2を超える場合と、所要時間TMが第2閾値TH2未満である場合とで、予め決められてもよい。つまり、所定の減圧条件値CVの補正量は、所要時間TMと第2閾値TH2との差δの大きさに拘わらず、所要時間TMと第2閾値TH2との大小関係のみに基づいて決められてもよい。
(Modification 3)
The amount of correction of the predetermined pressure reduction condition value CV may be determined in advance depending on whether the required time TM exceeds the second threshold TH2 or when the required time TM is less than the second threshold TH2. In other words, the correction amount of the predetermined pressure reduction condition value CV is determined based only on the magnitude relationship between the required time TM and the second threshold TH2, regardless of the magnitude of the difference δ between the required time TM and the second threshold TH2. It's okay.

 減圧条件補正部94は、所要時間TMと第2閾値TH2との大小関係に応じた補正量に基づいて、所定の減圧条件値CVを補正する。なお、所要時間TMが第2閾値TH2を超える場合の補正量の絶対値と、所要時間TMが第2閾値TH2未満である場合の補正量の絶対値とは、同じでもよい。 The depressurization condition correction unit 94 corrects the predetermined depressurization condition value CV based on the correction amount according to the magnitude relationship between the required time TM and the second threshold value TH2. Note that the absolute value of the correction amount when the required time TM exceeds the second threshold TH2 may be the same as the absolute value of the correction amount when the required time TM is less than the second threshold TH2.

 (変形例4)
 第1計測部86は、樹脂の圧力を、スクリュ34にかかる負荷として計測してもよい。後方向の圧力は、前進するスクリュ34にとって負荷である。
(Modification 4)
The first measurement unit 86 may measure the pressure of the resin as a load applied to the screw 34. The rearward pressure is a load on the advancing screw 34.

 (変形例5)
 第1計測部86は、第2電流トルクセンサ63bの検出信号に基づいて算出される第2モータ52bのトルクを、スクリュ34にかかる負荷として計測してもよい。樹脂がスクリュ34に付与する後方向の圧力は、スクリュ34を前進させる第2モータ52bのトルクに影響する。したがって、第2モータ52bのトルクは、スクリュ34の負荷に応じた値を示す。
(Modification 5)
The first measurement unit 86 may measure the torque of the second motor 52b calculated based on the detection signal of the second current torque sensor 63b as the load applied to the screw 34. The backward pressure applied by the resin to the screw 34 affects the torque of the second motor 52b that moves the screw 34 forward. Therefore, the torque of the second motor 52b shows a value according to the load on the screw 34.

 (変形例6)
 第1計測部86は、第1モータ52aのトルクと、第2モータ52bのトルクとの両方を、スクリュ34にかかる負荷として計測してもよい。第1モータ52aのトルクと比較される第1閾値TH1と、第2モータ52bのトルクと比較される第1閾値TH1とは、異なってもよい。
(Modification 6)
The first measurement unit 86 may measure both the torque of the first motor 52a and the torque of the second motor 52b as the load applied to the screw 34. The first threshold value TH1 with which the torque of the first motor 52a is compared and the first threshold value TH1 with which the torque of the second motor 52b is compared may be different.

 第2計測部90は、第1モータ52aのトルクが第1閾値TH1に到達するまでの所要時間TMと、第2モータ52bのトルクが第1閾値TH1に到達するまでの所要時間TMとのうち、短い方を、記憶部72に記憶させる。 The second measurement unit 90 determines which of the time TM required for the torque of the first motor 52a to reach the first threshold TH1 and the time TM required for the torque of the second motor 52b to reach the first threshold TH1. , the shorter one is stored in the storage unit 72.

 ただし、第2計測部90は、第1モータ52aのトルクが第1閾値TH1に到達するまでの所要時間TMと、第2モータ52bのトルクが第1閾値TH1に到達するまでの所要時間TMとのうち、長い方を、記憶部72に記憶させてもよい。 However, the second measurement unit 90 determines the time TM required for the torque of the first motor 52a to reach the first threshold TH1, and the time TM required for the torque of the second motor 52b to reach the first threshold TH1. Of these, the longer one may be stored in the storage unit 72.

 減圧条件補正部94は、記憶部72に記憶された所要時間TMと、第2閾値TH2との差δに基づいて、所定の減圧条件値CVを補正する。 The depressurization condition correction unit 94 corrects the predetermined decompression condition value CV based on the difference δ between the required time TM stored in the storage unit 72 and the second threshold value TH2.

 (変形例7)
 第2計測部90は、射出動作をスクリュ34が開始してから、スクリュ34にかかる負荷が第1閾値TH1に到達するまでにスクリュ34が移動した移動量を、所要時間TMに代えて計測してもよい。移動量は、第2モータ52bが備える第2位置速度センサ62bの検出信号に基づいて、スクリュ34が前後方向に移動した距離として計測される。射出動作開始後にスクリュ34にかかる負荷は、例えば第1モータ52aのトルクとして計測される(実施形態も参照)。
(Modification 7)
The second measurement unit 90 measures, in place of the required time TM, the amount of movement of the screw 34 from when the screw 34 starts the injection operation until the load on the screw 34 reaches the first threshold value TH1. It's okay. The amount of movement is measured as the distance that the screw 34 has moved in the front-back direction based on the detection signal of the second position and speed sensor 62b included in the second motor 52b. The load applied to the screw 34 after the start of the injection operation is measured as, for example, the torque of the first motor 52a (see also the embodiment).

 (変形例8)
 減圧制御部80は、樹脂の圧力を減圧させるために、第2モータ52bを制御して、スクリュ34をサックバックさせてもよい。サックバックは、スクリュ34の後退動作である。スクリュ34は、サックバックすることで、計量位置からさらに後方に移動する。この場合、所定の減圧条件値CVは、スクリュ34のサックバック時間と、サックバック距離と、サックバック速度との3項目を含む。
(Modification 8)
The pressure reduction control unit 80 may control the second motor 52b to suck back the screw 34 in order to reduce the pressure of the resin. Suckback is a backward movement of the screw 34. By sucking back, the screw 34 moves further rearward from the measuring position. In this case, the predetermined pressure reduction condition value CV includes three items: the suckback time of the screw 34, the suckback distance, and the suckback speed.

 サックバック時間は、スクリュ34のサックバックの継続時間を示す。サックバック距離は、スクリュ34がサックバックする距離を示す。サックバック速度は、サックバックするスクリュ34の後退速度を示す。サックバック時間と、サックバック距離と、サックバック速度との各項目は、残りの2項目が決まることで、自ずと決まる。 The suckback time indicates the duration of suckback of the screw 34. The suckback distance indicates the distance that the screw 34 sucks back. The suckback speed indicates the backward speed of the screw 34 that sucks back. The suckback time, suckback distance, and suckback speed are automatically determined by determining the remaining two items.

 減圧条件補正部94は、減圧工程においてスクリュ34が逆回転なしでサックバックする場合、サックバック時間と、サックバック距離と、サックバック速度との少なくとも1項目を補正する。 When the screw 34 sucks back without reverse rotation during the pressure reduction process, the decompression condition correction unit 94 corrects at least one of the suckback time, the suckback distance, and the suckback speed.

 ただし、減圧制御部80は、減圧工程において、逆回転と、サックバックとの両方をスクリュ34に実行させてもよい。この場合、減圧条件補正部94は、逆回転時間と、逆回転量と、逆回転速度と、サックバック時間と、サックバック距離と、サックバック速度との少なくとも1項目を補正する。 However, the pressure reduction control unit 80 may cause the screw 34 to perform both reverse rotation and suckback during the pressure reduction process. In this case, the decompression condition correction unit 94 corrects at least one item of the reverse rotation time, the reverse rotation amount, the reverse rotation speed, the suckback time, the suckback distance, and the suckback speed.

 (変形例9)
 第1閾値テーブルTB1は、スクリュ34の種類と、樹脂の種類とのみならず、ノズル32の種類に応じて複数の第1閾値TH1を格納してもよい。
(Modification 9)
The first threshold value table TB1 may store a plurality of first threshold values TH1 according to not only the type of screw 34 and the type of resin but also the type of nozzle 32.

 同様に、第2閾値テーブルTB2は、スクリュ34の種類と、樹脂の種類とのみならず、ノズル32の種類に応じて複数の第2閾値TH2を格納してもよい。 Similarly, the second threshold value table TB2 may store a plurality of second threshold values TH2 according to not only the type of screw 34 and the type of resin but also the type of nozzle 32.

 (変形例10)
 制御装置18は、型締めユニット12をさらに制御してもよい。
(Modification 10)
The control device 18 may further control the mold clamping unit 12.

 (変形例11)
 シリンダ26の軸線Lと、スクリュ34の軸線とが重なる方式は、インライン(インラインスクリュ)方式とも称される。インライン方式が適用された射出成形機は、インライン式射出成形機とも称される。インライン式射出成形機(10)の射出ユニット(14)は、他方式の射出ユニットよりもメンテナンスしやすい。
(Modification 11)
The method in which the axis L of the cylinder 26 and the axis of the screw 34 overlap is also referred to as an in-line (in-line screw) method. An injection molding machine to which an in-line method is applied is also referred to as an in-line injection molding machine. The injection unit (14) of the in-line injection molding machine (10) is easier to maintain than injection units of other types.

 ただし、制御装置18は、インライン方式でない射出成形機に備えられてもよい。インライン方式でない方式は、例えばプリプラ方式である。 However, the control device 18 may be included in an injection molding machine that is not an in-line type. A method other than the inline method is, for example, a pre-pura method.

 (複数の変形例の組み合わせ)
 前述された複数の変形例は、矛盾しない範囲内において適宜組み合わされてもよい。
(Combination of multiple variations)
The plurality of modifications described above may be combined as appropriate within the scope of consistency.

 例えば、前述した変形例1~変形例7の各々に係る所要時間TMは、変形例8に係る移動量に変形されてもよい。 For example, the required time TM according to each of Modifications 1 to 7 described above may be transformed to the movement amount according to Modification 8.

 [実施形態から得られる発明]
 上記実施形態および変形例から把握しうる発明が、以下に記載される。
[Invention obtained from embodiment]
The inventions that can be understood from the above embodiments and modifications are described below.

 <第1の発明>
 第1の発明は、シリンダ(26)と、前記シリンダ内で計量された所定量の樹脂を金型(20)に射出するスクリュ(34)と、を備える射出成形機(10)の前記スクリュの前記シリンダ内における回転と進退とを制御する制御装置(18)であって、前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値(CV)に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御部(80)と、前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測部(86)と、前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値(TH1)に到達するまでの時間(TM)、または前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測部(90)と、前記時間または前記移動量と、第2閾値(TH2)との差(δ)に基づいて、前記所定の減圧条件値を補正する減圧条件補正部(94)と、を備える、制御装置である。
<First invention>
A first invention provides an injection molding machine (10) that includes a cylinder (26) and a screw (34) that injects a predetermined amount of resin measured within the cylinder into a mold (20). A control device (18) that controls rotation and forward/backward movement within the cylinder, the control device (18) controlling the screw based on a predetermined pressure reduction condition value (CV) after the predetermined amount of the resin has been measured in the cylinder. a pressure reduction control unit (80) that controls to reduce the pressure of the resin; and a load applied to the screw in response to the resin being injected from the cylinder to the mold after the resin pressure reduction is completed. a first measurement unit (86) that measures the time from when the screw starts an injection operation for injecting the resin into the mold until the load reaches a first threshold value (TH1); TM), or a second measurement unit (90) that measures the amount of movement of the screw from when the screw starts the injection operation until the load reaches the first threshold; The control device includes a depressurization condition correction unit (94) that corrects the predetermined decompression condition value based on the difference (δ) between the amount and the second threshold value (TH2).

 これにより、減圧工程用のパラメータ調整に係るオペレータの作業負担が低減される。 As a result, the operator's work burden related to parameter adjustment for the depressurization process is reduced.

 前記第1計測部は、前記スクリュを回転させる第1モータ(52a)の第1トルクと、前記スクリュを前進させる第2モータ(52b)の第2トルクとのうち少なくとも一方を、前記負荷として計測してもよい。これにより、モータに元々備えられる電流トルクセンサに基づいてスクリュの負荷を検出することができるので、負荷検出のための設備コストの増加が抑制される。 The first measurement unit measures at least one of a first torque of a first motor (52a) that rotates the screw and a second torque of a second motor (52b) that advances the screw as the load. You may. Thereby, the load on the screw can be detected based on the current torque sensor originally provided in the motor, so an increase in equipment cost for load detection can be suppressed.

 前記第1計測部は、前記シリンダ内の前記樹脂の圧力を前記負荷として計測してもよい。これにより、射出成形機に元々備えられる圧力センサに基づいてスクリュの負荷を検出することができるので、負荷検出のための設備コストの増加が抑制される。 The first measurement unit may measure the pressure of the resin in the cylinder as the load. Thereby, the load on the screw can be detected based on the pressure sensor originally provided in the injection molding machine, so an increase in equipment cost for load detection can be suppressed.

 前記所定の減圧条件値は、前記スクリュのサックバック時間と、サックバック距離と、サックバック速度とのうち少なくとも1つを含んでもよい。これにより、減圧工程中にサックバックを行うスクリュを備える射出成形機用の制御装置に第1の発明を適用することができる。 The predetermined pressure reduction condition value may include at least one of a suckback time, a suckback distance, and a suckback speed of the screw. Thereby, the first invention can be applied to a control device for an injection molding machine equipped with a screw that performs suckback during the depressurization process.

 前記所定の減圧条件値は、前記スクリュの逆回転時間と、逆回転量と、逆回転速度とのうち少なくとも1つを含んでもよい。これにより、減圧工程中に逆回転を行うスクリュを備える射出成形機用の制御装置に第1の発明を適用することができる。 The predetermined pressure reduction condition value may include at least one of a reverse rotation time, a reverse rotation amount, and a reverse rotation speed of the screw. Thereby, the first invention can be applied to a control device for an injection molding machine equipped with a screw that rotates in reverse during the decompression process.

 前記減圧条件補正部は、前記時間または前記移動量が前記第2閾値を超える場合、前記所定の減圧条件値を小さくし、前記時間または前記移動量が前記第2閾値未満である場合、前記所定の減圧条件値を大きくしてもよい。これにより、所定の減圧条件値が、樹脂の状態に応じた適切な減圧条件値に近づくように補正される。 The decompression condition correction unit reduces the predetermined depressurization condition value when the time or the movement amount exceeds the second threshold, and decreases the predetermined decompression condition value when the time or the movement amount is less than the second threshold. The reduced pressure condition value may be increased. Thereby, the predetermined pressure reduction condition value is corrected so as to approach an appropriate pressure reduction condition value depending on the state of the resin.

 前記減圧条件補正部は、前記時間または前記移動量と、前記第2閾値との前記差に応じて複数の補正量が格納された補正量テーブル(TBC)に基づいて、前記所定の減圧条件値を補正してもよい。これにより、所定の減圧条件値が、樹脂の状態に応じてより適切な減圧条件値に補正される。 The decompression condition correction unit adjusts the predetermined decompression condition value based on a correction amount table (TBC) in which a plurality of correction amounts are stored according to the difference between the time or the movement amount and the second threshold value. may be corrected. Thereby, the predetermined pressure reduction condition value is corrected to a more appropriate pressure reduction condition value depending on the state of the resin.

 前記所定の減圧条件値の補正量は、前記時間または前記移動量が前記第2閾値を超える場合と、前記時間または前記移動量が前記第2閾値未満である場合とで、予め決められており、前記減圧条件補正部は、前記時間または前記移動量と前記第2閾値との前記差と、前記補正量と、に基づいて、前記所定の減圧条件値を補正してもよい。これにより、所定の減圧条件値が、樹脂の状態に応じた適切な減圧条件値に近づくように補正される。 The amount of correction of the predetermined pressure reduction condition value is predetermined for a case where the time or the amount of movement exceeds the second threshold and a case where the time or the amount of movement is less than the second threshold. The decompression condition correction unit may correct the predetermined depressurization condition value based on the difference between the time or the movement amount and the second threshold value, and the correction amount. Thereby, the predetermined pressure reduction condition value is corrected so as to approach an appropriate pressure reduction condition value depending on the state of the resin.

 第1の発明は、前記スクリュの複数の種類と前記樹脂の複数の種類とのうち少なくとも一方に応じて複数の前記第1閾値が格納された第1閾値テーブル(TB1)に基づいて前記第1閾値を決定する第1閾値決定部(88)をさらに備え、前記第2計測部は、前記第1閾値決定部が決定した前記第1閾値を用いて、前記時間または前記移動量を計測してもよい。これにより、射出成形に用いられるスクリュ、樹脂等に応じた適切な第1閾値に基づいて、時間または移動量が計測される。 A first invention provides the first threshold value table (TB1) in which a plurality of first threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resins. The device further includes a first threshold determining unit (88) that determines a threshold, and the second measuring unit measures the time or the amount of movement using the first threshold determined by the first threshold determining unit. Good too. Thereby, the time or the amount of movement is measured based on an appropriate first threshold value depending on the screw, resin, etc. used in injection molding.

 第1の発明は、前記スクリュの複数の種類と前記樹脂の複数の種類とのうち少なくとも一方に応じて複数の前記第2閾値が格納された第2閾値テーブル(TB2)に基づいて前記第2閾値を決定する第2閾値決定部(92)をさらに備え、前記減圧条件補正部は、前記第2閾値決定部が決定した前記第2閾値を用いて、前記所定の減圧条件値を補正してもよい。これにより、射出成形に用いられるスクリュ、樹脂等に応じた適切な第2閾値に基づいて、所定の減圧条件値が補正される。 A first invention provides the second threshold value table (TB2) in which a plurality of second threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resins. The system further includes a second threshold value determination section (92) that determines a threshold value, and the decompression condition correction section corrects the predetermined decompression condition value using the second threshold value determined by the second threshold value determination section. Good too. Thereby, the predetermined pressure reduction condition value is corrected based on an appropriate second threshold value depending on the screw, resin, etc. used in injection molding.

 第1の発明は、前記第1閾値または前記第2閾値をオペレータが指示するための操作部(70)をさらに備えてもよい。これにより、オペレータは、第1閾値または第2閾値を任意に設定することができる。 The first invention may further include an operation unit (70) for an operator to specify the first threshold value or the second threshold value. Thereby, the operator can arbitrarily set the first threshold value or the second threshold value.

 第1の発明は、複数の成形サイクルの中で前記第2計測部が計測した複数の前記時間、または複数の前記移動量を記憶する記憶部(72)と、複数の前記時間、または複数の前記移動量に基づいて、統計量を算出する統計量算出部(98)と、をさらに備え、前記減圧条件補正部は、前記統計量を前記時間または前記移動量として用いることで、前記所定の減圧条件値を補正してもよい。これにより、時間または移動量の外れ値に基づいて所定の減圧条件値が補正されることが防止される。 A first invention includes a storage unit (72) that stores a plurality of the times or a plurality of movement amounts measured by the second measuring unit during a plurality of molding cycles; The depressurization condition correction unit further includes a statistics calculation unit (98) that calculates statistics based on the movement amount, and the depressurization condition correction unit uses the statistics as the time or the movement amount to determine the predetermined value. The reduced pressure condition value may be corrected. This prevents the predetermined pressure reduction condition value from being corrected based on outliers in time or movement amount.

 前記減圧条件補正部は、前記所定の減圧条件値が所定の範囲を逸脱しないように、前記所定の減圧条件値を補正してもよい。これにより、推奨されない動作を射出成形機が行うことが防止される。 The decompression condition correction unit may correct the predetermined decompression condition value so that the predetermined decompression condition value does not deviate from a predetermined range. This prevents the injection molding machine from performing operations that are not recommended.

 前記減圧制御部は、前記所定の減圧条件値が補正された場合、補正された前記所定の減圧条件値に基づいて、前記樹脂の前記圧力を減圧させてもよい。これにより、所定の減圧条件値が補正された後は、均一な品質の成形品を複数の成形サイクルにわたって生産することができる。 When the predetermined pressure reduction condition value is corrected, the pressure reduction control unit may reduce the pressure of the resin based on the corrected predetermined pressure reduction condition value. Thereby, after the predetermined reduced pressure condition value is corrected, molded products of uniform quality can be produced over a plurality of molding cycles.

 第1の発明は、補正された前記所定の減圧条件値を表示部(68)に表示させる表示制御部(84)をさらに備えてもよい。これにより、補正された前記所定の減圧条件値がオペレータに報知される。 The first invention may further include a display control section (84) that causes the display section (68) to display the corrected predetermined decompression condition value. Thereby, the corrected predetermined pressure reduction condition value is notified to the operator.

 <第2の発明>
 第2の発明は、シリンダ(26)と、前記シリンダ内で計量された所定量の樹脂を金型(20)に射出するスクリュ(34)と、を備える射出成形機(10)の前記スクリュの前記シリンダ内における回転と進退とを制御する制御方法であって、前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値(CV)に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御ステップ(S3)と、前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測ステップ(S4)と、前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値(TH1)に到達するまでの時間(TM)、または、前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測ステップ(S5)と、前記時間または前記移動量と、第2閾値(TH2)との差(δ)に基づいて、前記所定の減圧条件値を補正する減圧条件補正ステップ(S6)と、を含む、制御方法である。
<Second invention>
A second invention provides an injection molding machine (10) that includes a cylinder (26) and a screw (34) that injects a predetermined amount of resin measured within the cylinder into a mold (20). A control method for controlling rotation and forward and backward movement within the cylinder, the method comprising: controlling the screw based on a predetermined pressure reduction condition value (CV) after the predetermined amount of the resin has been measured within the cylinder; , a pressure reduction control step (S3) for reducing the pressure of the resin, and after the pressure reduction of the resin is completed, measuring the load applied to the screw in response to the resin being injected from the cylinder to the mold. a first measuring step (S4); a time (TM) from when the screw starts an injection operation for injecting the resin into the mold until the load reaches a first threshold value (TH1); Alternatively, a second measuring step (S5) of measuring the amount of movement of the screw after the screw starts the injection operation until the load reaches the first threshold; , a depressurization condition correction step (S6) of correcting the predetermined depressurization condition value based on the difference (δ) from the second threshold value (TH2).

 これにより、減圧工程用のパラメータ調整に係るオペレータの作業負担が低減する。 This reduces the operator's work burden related to parameter adjustment for the depressurization process.

10…射出成形機            18…制御装置
20…金型               26…シリンダ
34…スクリュ             40…圧力センサ
52a…第1モータ           52b…第2モータ
68…表示部              70…操作部
72…記憶部              80…減圧制御部
84…表示制御部            86…第1計測部
88…第1閾値決定部          90…第2計測部
92…第2閾値決定部          94…減圧条件補正部
98…統計量算出部           CV…所定の減圧条件値
TB1…第1閾値テーブル        TB2…第2閾値テーブル
TBC…補正量テーブル         TH1…第1閾値
TH2…第2閾値            TM…時間(所要時間)
δ…時間(所要時間)または移動量と第2閾値との差
DESCRIPTION OF SYMBOLS 10... Injection molding machine 18... Control device 20... Mold 26... Cylinder 34... Screw 40... Pressure sensor 52a... First motor 52b... Second motor 68... Display part 70... Operation part 72... Memory part 80... Decompression control part 84...Display control unit 86...First measurement unit 88...First threshold value determination unit 90...Second measurement unit 92...Second threshold value determination unit 94...Decompression condition correction unit 98...Statistics calculation unit CV...Predetermined decompression condition value TB1...First threshold table TB2...Second threshold table TBC...Correction amount table TH1...First threshold TH2...Second threshold TM...Time (required time)
δ...Difference between time (required time) or amount of movement and second threshold

Claims (16)

 シリンダ(26)と、前記シリンダ内で計量された所定量の樹脂を金型(20)に射出するスクリュ(34)と、を備える射出成形機(10)の前記スクリュの前記シリンダ内における回転と進退とを制御する制御装置(18)であって、
 前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値(CV)に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御部(80)と、
 前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測部(86)と、
 前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値(TH1)に到達するまでの時間(TM)、または前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測部(90)と、
 前記時間または前記移動量と、第2閾値(TH2)との差(δ)に基づいて、前記所定の減圧条件値を補正する減圧条件補正部(94)と、
 を備える、制御装置。
rotation of the screw in the cylinder of an injection molding machine (10) comprising a cylinder (26) and a screw (34) for injecting a predetermined amount of resin measured in the cylinder into the mold (20); A control device (18) for controlling advancement and retreat,
After the predetermined amount of the resin is measured in the cylinder, a pressure reduction control unit (80) controls the screw based on a predetermined pressure reduction condition value (CV) to reduce the pressure of the resin;
a first measurement unit (86) that measures the load applied to the screw in response to the resin being injected from the cylinder into the mold after the pressure reduction of the resin is completed;
The time (TM) from when the screw starts an injection operation for injecting the resin into the mold until the load reaches a first threshold (TH1), or when the screw starts the injection operation a second measurement unit (90) that measures the amount of movement of the screw until the load reaches the first threshold;
a decompression condition correction unit (94) that corrects the predetermined decompression condition value based on a difference (δ) between the time or the movement amount and a second threshold (TH2);
A control device comprising:
 請求項1に記載の制御装置であって、
 前記第1計測部は、前記スクリュを回転させる第1モータ(52a)の第1トルクと、前記スクリュを前進させる第2モータ(52b)の第2トルクとのうち少なくとも一方を、前記負荷として計測する、制御装置。
The control device according to claim 1,
The first measurement unit measures at least one of a first torque of a first motor (52a) that rotates the screw and a second torque of a second motor (52b) that advances the screw as the load. control device.
 請求項1に記載の制御装置であって、
 前記第1計測部は、前記シリンダ内の前記樹脂の圧力を前記負荷として計測する、制御装置。
The control device according to claim 1,
The first measurement unit is a control device that measures the pressure of the resin in the cylinder as the load.
 請求項1~3のいずれか1項に記載の制御装置であって、
 前記所定の減圧条件値は、前記スクリュのサックバック時間と、サックバック距離と、サックバック速度とのうち少なくとも1つを含む、制御装置。
The control device according to any one of claims 1 to 3,
The predetermined pressure reduction condition value includes at least one of a suckback time, a suckback distance, and a suckback speed of the screw.
 請求項1~4のいずれか1項に記載の制御装置であって、
 前記所定の減圧条件値は、前記スクリュの逆回転時間と、逆回転量と、逆回転速度とのうち少なくとも1つを含む、制御装置。
The control device according to any one of claims 1 to 4,
The predetermined pressure reduction condition value includes at least one of a reverse rotation time, a reverse rotation amount, and a reverse rotation speed of the screw.
 請求項4または5に記載の制御装置であって、
 前記減圧条件補正部は、前記時間または前記移動量が前記第2閾値を超える場合、前記所定の減圧条件値を小さくし、前記時間または前記移動量が前記第2閾値未満である場合、前記所定の減圧条件値を大きくする、制御装置。
The control device according to claim 4 or 5,
The decompression condition correction unit reduces the predetermined depressurization condition value when the time or the movement amount exceeds the second threshold, and decreases the predetermined decompression condition value when the time or the movement amount is less than the second threshold. A control device that increases the reduced pressure condition value.
 請求項6に記載の制御装置であって、
 前記減圧条件補正部は、前記時間または前記移動量と、前記第2閾値との前記差に応じて複数の補正量が格納された補正量テーブル(TBC)に基づいて、前記所定の減圧条件値を補正する、制御装置。
The control device according to claim 6,
The decompression condition correction unit adjusts the predetermined decompression condition value based on a correction amount table (TBC) in which a plurality of correction amounts are stored according to the difference between the time or the movement amount and the second threshold value. A control device that corrects.
 請求項6に記載の制御装置であって、
 前記所定の減圧条件値の補正量は、前記時間または前記移動量が前記第2閾値を超える場合と、前記時間または前記移動量が前記第2閾値未満である場合とで、予め決められており、
 前記減圧条件補正部は、前記時間または前記移動量と前記第2閾値との前記差と、前記補正量と、に基づいて、前記所定の減圧条件値を補正する、制御装置。
The control device according to claim 6,
The amount of correction of the predetermined pressure reduction condition value is predetermined for a case where the time or the amount of movement exceeds the second threshold and a case where the time or the amount of movement is less than the second threshold. ,
The decompression condition correction unit is a control device that corrects the predetermined depressurization condition value based on the difference between the time or the movement amount and the second threshold value, and the correction amount.
 請求項1~8のいずれか1項に記載の制御装置であって、
 前記スクリュの複数の種類と前記樹脂の複数の種類とのうち少なくとも一方に応じて複数の前記第1閾値が格納された第1閾値テーブル(TB1)に基づいて前記第1閾値を決定する第1閾値決定部(88)をさらに備え、
 前記第2計測部は、前記第1閾値決定部が決定した前記第1閾値を用いて、前記時間または前記移動量を計測する、制御装置。
The control device according to any one of claims 1 to 8,
a first threshold value that determines the first threshold value based on a first threshold table (TB1) in which a plurality of first threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resin; further comprising a threshold value determination unit (88),
The second measurement unit is a control device that measures the time or the amount of movement using the first threshold determined by the first threshold determination unit.
 請求項1~9のいずれか1項に記載の制御装置であって、
 前記スクリュの複数の種類と前記樹脂の複数の種類とのうち少なくとも一方に応じて複数の前記第2閾値が格納された第2閾値テーブル(TB2)に基づいて前記第2閾値を決定する第2閾値決定部(92)をさらに備え、
 前記減圧条件補正部は、前記第2閾値決定部が決定した前記第2閾値を用いて、前記所定の減圧条件値を補正する、制御装置。
The control device according to any one of claims 1 to 9,
a second threshold value that determines the second threshold value based on a second threshold table (TB2) in which a plurality of second threshold values are stored according to at least one of the plurality of types of the screws and the plurality of types of the resin; further comprising a threshold determination unit (92),
The pressure reduction condition correction section is a control device that corrects the predetermined pressure reduction condition value using the second threshold determined by the second threshold value determination section.
 請求項1~10のいずれか1項に記載の制御装置であって、
 前記第1閾値または前記第2閾値をオペレータが指示するための操作部(70)をさらに備える、制御装置。
The control device according to any one of claims 1 to 10,
The control device further includes an operation unit (70) for an operator to specify the first threshold value or the second threshold value.
 請求項1~11のいずれか1項に記載の制御装置であって、
 複数の成形サイクルの中で前記第2計測部が計測した複数の前記時間、または複数の前記移動量を記憶する記憶部(72)と、
 複数の前記時間、または複数の前記移動量に基づいて、統計量を算出する統計量算出部(98)と、
 をさらに備え、
 前記減圧条件補正部は、前記統計量を前記時間または前記移動量として用いることで、前記所定の減圧条件値を補正する、制御装置。
The control device according to any one of claims 1 to 11,
a storage unit (72) that stores the plurality of times or the plurality of movement amounts measured by the second measurement unit during the plurality of molding cycles;
a statistics calculation unit (98) that calculates statistics based on the plurality of times or the plurality of movement amounts;
Furthermore,
The depressurization condition correction unit is a control device that corrects the predetermined depressurization condition value by using the statistical amount as the time or the movement amount.
 請求項1~12のいずれか1項に記載の制御装置であって、
 前記減圧条件補正部は、前記所定の減圧条件値が所定の範囲を逸脱しないように、前記所定の減圧条件値を補正する、制御装置。
The control device according to any one of claims 1 to 12,
The pressure reduction condition correction unit is a control device that corrects the predetermined pressure reduction condition value so that the predetermined pressure reduction condition value does not deviate from a predetermined range.
 請求項1~13のいずれか1項に記載の制御装置であって、
 前記減圧制御部は、前記所定の減圧条件値が補正された場合、補正された前記所定の減圧条件値に基づいて、前記樹脂の前記圧力を減圧させる、制御装置。
The control device according to any one of claims 1 to 13,
The pressure reduction control unit is a control device that, when the predetermined pressure reduction condition value is corrected, reduces the pressure of the resin based on the corrected predetermined pressure reduction condition value.
 請求項1~14のいずれか1項に記載の制御装置であって、
 補正された前記所定の減圧条件値を表示部(68)に表示させる表示制御部(84)をさらに備える、制御装置。
The control device according to any one of claims 1 to 14,
The control device further includes a display control section (84) that causes a display section (68) to display the corrected predetermined pressure reduction condition value.
 シリンダ(26)と、前記シリンダ内で計量された所定量の樹脂を金型(20)に射出するスクリュ(34)と、を備える射出成形機(10)の前記スクリュの前記シリンダ内における回転と進退とを制御する制御方法であって、
 前記所定量の前記樹脂が前記シリンダ内で計量された後、所定の減圧条件値(CV)に基づいて前記スクリュを制御して、前記樹脂の圧力を減圧させる減圧制御ステップ(S3)と、
 前記樹脂の減圧が終了した後、前記シリンダから前記金型に前記樹脂が射出されることに応じて前記スクリュにかかる負荷を計測する第1計測ステップ(S4)と、
 前記金型に前記樹脂を射出するための射出動作を前記スクリュが開始してから、前記負荷が第1閾値(TH1)に到達するまでの時間(TM)、または、前記射出動作を前記スクリュが開始してから、前記負荷が前記第1閾値に到達するまでの前記スクリュの移動量を計測する第2計測ステップ(S5)と、
 前記時間または前記移動量と、第2閾値(TH2)との差(δ)に基づいて、前記所定の減圧条件値を補正する減圧条件補正ステップ(S6)と、
 を含む、制御方法。
rotation of the screw in the cylinder of an injection molding machine (10) comprising a cylinder (26) and a screw (34) for injecting a predetermined amount of resin measured in the cylinder into the mold (20); A control method for controlling advancement and retreat,
After the predetermined amount of the resin is measured in the cylinder, a pressure reduction control step (S3) in which the screw is controlled based on a predetermined pressure reduction condition value (CV) to reduce the pressure of the resin;
a first measuring step (S4) of measuring the load applied to the screw in response to the resin being injected from the cylinder into the mold after the pressure reduction of the resin is completed;
The time (TM) from when the screw starts the injection operation for injecting the resin into the mold until the load reaches the first threshold value (TH1), or when the screw starts the injection operation. a second measuring step (S5) of measuring the amount of movement of the screw from when the load reaches the first threshold;
a decompression condition correction step (S6) of correcting the predetermined decompression condition value based on a difference (δ) between the time or the movement amount and a second threshold (TH2);
including control methods.
PCT/JP2022/010403 2022-03-09 2022-03-09 Control device and control method WO2023170841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022526713A JP7108157B1 (en) 2022-03-09 2022-03-09 Control device and control method
PCT/JP2022/010403 WO2023170841A1 (en) 2022-03-09 2022-03-09 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010403 WO2023170841A1 (en) 2022-03-09 2022-03-09 Control device and control method

Publications (1)

Publication Number Publication Date
WO2023170841A1 true WO2023170841A1 (en) 2023-09-14

Family

ID=82607877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010403 WO2023170841A1 (en) 2022-03-09 2022-03-09 Control device and control method

Country Status (2)

Country Link
JP (1) JP7108157B1 (en)
WO (1) WO2023170841A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127090A1 (en) * 2022-10-17 2024-04-18 Arburg Gmbh + Co Kg Drive-synchronized dosing control and injection molding machine working with it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103401A (en) * 2011-11-14 2013-05-30 Sodick Co Ltd Injection molding machine and injection control method thereof
JP2019014057A (en) * 2017-07-03 2019-01-31 宇部興産機械株式会社 Screw type injection device and method for detecting back flow
JP2021091155A (en) * 2019-12-11 2021-06-17 ファナック株式会社 Control device and control method for injection molding machine
JP2021091105A (en) * 2019-12-06 2021-06-17 ファナック株式会社 Control device and control method for injection molding machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299125B2 (en) * 2019-09-30 2023-06-27 ファナック株式会社 CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103401A (en) * 2011-11-14 2013-05-30 Sodick Co Ltd Injection molding machine and injection control method thereof
JP2019014057A (en) * 2017-07-03 2019-01-31 宇部興産機械株式会社 Screw type injection device and method for detecting back flow
JP2021091105A (en) * 2019-12-06 2021-06-17 ファナック株式会社 Control device and control method for injection molding machine
JP2021091155A (en) * 2019-12-11 2021-06-17 ファナック株式会社 Control device and control method for injection molding machine

Also Published As

Publication number Publication date
JP7108157B1 (en) 2022-07-27
JPWO2023170841A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP4038226B2 (en) Measuring method and control device for injection molding machine
KR101521708B1 (en) Injection molding machine
JP6774804B2 (en) Injection molding machine and weighing method
WO2023170841A1 (en) Control device and control method
WO1991013743A1 (en) Method of controlling injection of injection molding machine
CN112519153B (en) Control device and control method for injection molding machine
US11554525B2 (en) Injection molding machine
JP7277327B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE
WO2022102637A1 (en) Control device and control method
JP4889574B2 (en) Control method of injection molding machine
JP5210785B2 (en) Injection molding machine
JP7333245B2 (en) METHOD AND APPARATUS FOR CONTROLLING FLUIDITY INDEX OF MOLTEN RESIN
JP7256718B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE
JPH0455849B2 (en)
JP7299125B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE
WO2023209988A1 (en) Determination device and determination method
WO2023203715A1 (en) Control device and control method
WO2023203716A1 (en) Control device and control method
CN113825615A (en) Determination method of fluidity index of molten resin
WO2023203714A1 (en) Control device and control method
JP2010188706A (en) Injection molding machine, molding and injection molding method
JP7311376B2 (en) Reverse rotation condition estimation device, reverse rotation condition estimation method, and injection molding machine
JPH0592461A (en) Measurement controlling method for injection molding machine of in-line screw type
JP2024090802A (en) Control device, and injection molding device
JP4248504B2 (en) Injection control method and injection apparatus for injection molding machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022526713

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE