WO2023170759A1 - 受信電力予測方法、及び受信電力予測システム - Google Patents
受信電力予測方法、及び受信電力予測システム Download PDFInfo
- Publication number
- WO2023170759A1 WO2023170759A1 PCT/JP2022/009800 JP2022009800W WO2023170759A1 WO 2023170759 A1 WO2023170759 A1 WO 2023170759A1 JP 2022009800 W JP2022009800 W JP 2022009800W WO 2023170759 A1 WO2023170759 A1 WO 2023170759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication terminal
- received power
- predetermined time
- information
- elapsed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000004891 communication Methods 0.000 claims abstract description 148
- 238000011156 evaluation Methods 0.000 claims abstract description 31
- 230000007613 environmental effect Effects 0.000 claims description 70
- 230000003068 static effect Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 230000010365 information processing Effects 0.000 description 13
- 238000007781 pre-processing Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a received power prediction method and a received power prediction system.
- Techniques for predicting wireless communication quality in wireless communication systems are known. For example, assuming a static environment where the blocker is a building, tree, or other object whose position and size do not change on a second-by-second basis, the reception power of the communication terminal is Techniques for predicting power are known.
- Embodiments of the present invention have been made in view of the above-mentioned problems, and in a dynamic environment where a mobile object exists, the received power of a communication terminal is predicted by taking into account the interruption of radio waves by the mobile object.
- the present invention provides a method for predicting received power.
- a received power prediction method includes an acquisition process in which a received power prediction system acquires dynamic environmental information of an object in a predetermined area, and a process of acquiring the position of the communication terminal located in the area, a process of predicting the predicted position of the communication terminal after a predetermined time has elapsed, and a process of predicting the dynamic environmental information after the elapse of the predetermined time. , based on path information of radio wave propagation calculated in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and path information blocked by the dynamic environmental information after the predetermined time has elapsed. and a prediction process of predicting the received power of the communication terminal after the predetermined time has elapsed.
- a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
- FIG. 1 is a diagram illustrating an example of a system configuration of a received power prediction system according to the present embodiment.
- FIG. 3 is a diagram for explaining reception power prediction processing according to the present embodiment.
- FIG. 3 is a diagram for explaining pre-processing according to the present embodiment.
- FIG. 3 is a diagram illustrating another example of the system configuration of the received power prediction system according to the present embodiment.
- 7 is a flowchart illustrating an example of received power prediction processing according to the first embodiment. 7 is a flowchart illustrating an example of received power prediction processing according to the second embodiment.
- FIG. 7 is a diagram (1) for explaining reception power prediction processing according to the second embodiment.
- FIG. 7 is a diagram (2) for explaining reception power prediction processing according to the second embodiment.
- FIG. 2 is a diagram showing an example of a hardware configuration of a prediction device according to the present embodiment.
- FIG. 2 is a diagram illustrating an example of the hardware configuration of a communication terminal according to the present embodiment.
- FIG. 1 is a diagram (1) for explaining a problem of the present embodiment.
- FIG. 2 is a diagram (2) for explaining the problem of this embodiment.
- a received power prediction system 1 is a system that predicts received power received by a communication terminal from a wireless base station in a wireless communication network.
- Non-Patent Document 1 predict wireless communication quality from actual measured values of communication quality at evaluation points obtained in advance, the current position of the communication terminal, movement information of the communication terminal, etc. There is.
- this conventional technology for example, as shown in FIG. 12, in a static environment 1200 where there are only stationary objects such as a building 1203, communication is made from a wireless base station 901 based on an actual measured value of received power obtained in advance. The received power received by terminal 902 can be predicted.
- the received power prediction system 1 is configured to be able to predict the received power received by the communication terminal 1202 in a dynamic environment 1300 where a mobile body exists, taking into account the interruption of radio waves by the mobile body. , for example, has the system configuration shown in FIG. 1 or FIG. 4.
- FIG. 1 is a diagram showing an example of a system configuration of a received power prediction system according to this embodiment.
- the received power prediction system 1 is realized by a prediction device 100.
- the prediction device 100 is an information processing device having a computer configuration or a system including multiple computers.
- the prediction device 100 executes a predetermined program on a computer included in the prediction device 100 to obtain an environment information acquisition unit 101, a terminal position acquisition unit 102, a terminal position prediction unit 103, an environment information prediction unit 104, and a received power prediction unit 105. , the communication unit 106, and other functional configurations. Note that at least some of the above functional configurations may be realized by hardware.
- the prediction device 100 realizes an environment information storage unit 111, a terminal position storage unit 112, an estimation result storage unit 113, etc. using a storage device and a memory included in the prediction device 100.
- the environmental information acquisition unit 101 executes an acquisition process to acquire dynamic environmental information about objects in a predetermined area.
- the environmental information acquisition unit 101 uses a three-dimensional sensor such as a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, or a wireless sensing device 215 to obtain information in a predetermined area.
- Dynamic environmental information within the building 201 is acquired.
- This dynamic environment information includes, for example, information indicating the positions of the moving objects 202a, 202b, and 202c within the building 201.
- LiDAR Light Detection And Ranging, or Laser Imaging Detection And Ranging
- the environmental information acquisition unit 101 uses the LiDAR 211 to acquire three-dimensional point cloud data by sensing a predetermined area, such as inside the building 201, and converts the acquired three-dimensional point cloud data into dynamic environmental information. You can also use it as
- the stereo camera 212 is a camera that can measure images of the object and the distance to the object by simultaneously photographing the object from two different directions.
- the environmental information acquisition unit 101 uses a stereo camera 212 to sense a predetermined area, such as inside a building 201, to acquire three-dimensional point cloud data, and dynamically converts the acquired three-dimensional point cloud data. It may also be used as environmental information.
- the depth camera 213 is a camera that captures a depth image including depth data indicating the distance to the target object by photographing the target object.
- the environmental information acquisition unit 101 may use the depth camera 213 to acquire depth data by photographing a predetermined area, such as inside the building 201, and use the acquired depth data as dynamic environmental information.
- the camera 214 is, for example, a monocular camera that takes a normal camera image that does not include depth data. Deep learning has been used to estimate depth images from monocular camera images that do not contain depth data.
- the environmental information acquisition unit 101 may generate depth data using deep learning from a camera image taken by the camera 214, and use the generated depth data as dynamic environmental information.
- the wireless sensing device 215 is a device that measures the position of an object using wireless communication or reflection of radio waves. For example, by acquiring the CSI (Channel State Information) of each subcarrier using multiple subcarriers such as wireless LAN (Local Area Network) communication, and inputting the acquired CSI into a trained machine learning model, Techniques have been developed to acquire the position of objects. Further, the wireless sensing device 215 may be a millimeter wave radar or the like that can measure the distance, angle, speed, etc. to the target object.
- the environmental information acquisition unit 101 uses the wireless sensing device 215 to sense a predetermined area, such as inside the building 201, to obtain position data of objects in the predetermined area, and uses the obtained position data etc. It may also be dynamic environmental information.
- the environmental information acquisition unit 101 may acquire dynamic environmental information about objects in a predetermined area using other positioning methods.
- the dynamic environmental information acquired by the environmental information acquisition unit 101 includes 3D point cloud data, depth data, position data, etc. of objects acquired by a 3D sensor, and includes objects within a predetermined area. Any data that can identify the position of the moving object may be used.
- the positioning method for acquiring dynamic environmental information may be any positioning method.
- the terminal location acquisition unit 102 executes processing to acquire the location of a communication terminal in a predetermined area. For example, the communication terminal adds position information (coordinate information) indicating the location of the communication terminal and transmits request information requesting the prediction device 100 to obtain a predicted value of received power.
- the terminal position acquisition unit 102 may acquire the position of the communication terminal from, for example, request information that the communication unit 106 receives from the communication terminal.
- the present invention is not limited to this, and similarly to the environmental information acquisition section 101, the terminal position acquisition section 102 may acquire the position of the communication terminal using various three-dimensional sensors.
- the terminal position prediction unit 103 executes a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time.
- the terminal location acquisition unit 102 stores the acquired location of the communication terminal in the terminal location storage unit 112.
- the terminal position prediction unit 103 may predict the position of the communication terminal after a predetermined period of time has elapsed based on the history of the position of the communication terminal stored in the terminal position storage unit 112, for example, by linear prediction or the like. good.
- the terminal position prediction unit 103 may be included in the communication terminal.
- the terminal position prediction unit 103 of the communication terminal calculates a predetermined time period ( The predicted position of the communication terminal after t seconds has elapsed is calculated. Further, the communication terminal adds the position of the communication terminal and the predicted position of the communication terminal after a predetermined time has elapsed, and transmits request information to the prediction device 100 requesting acquisition of the predicted value of received power.
- the environmental information prediction unit 104 executes a process of predicting dynamic environmental information after a predetermined time (t seconds) has elapsed from the current time.
- the environment information acquisition unit 101 stores the acquired dynamic environment information in the environment information storage unit 111.
- the environmental information prediction unit 104 predicts dynamic environmental information after a predetermined time has elapsed, based on the history of dynamic environmental information stored in the environmental information storage unit 111, for example, by linear prediction or the like. .
- the environmental information prediction unit 104 acquires the positions of the moving objects 202a, 202b, and 202c as shown in FIG.
- the information is stored in the information storage unit 111 or the like.
- the environmental information prediction unit 104 calculates the movement of the moving body (moving direction, moving speed, etc.) from the history of the position of the moving body stored in the environmental information storage unit 111 etc., and calculates the current position of the moving body and the moving body.
- the position of the moving object after a predetermined period of time may be predicted based on the movement of the moving object.
- the environmental information prediction unit 104 inputs the movement history of the moving object into a prediction model that has been machine-learned in advance to predict the position of the moving object after a predetermined period of time, based on the movement history of the moving object. , the position of the moving body after a predetermined time has elapsed may be predicted.
- the received power prediction unit 105 calculates the radio wave propagation path information 206 generated in advance by ray tracing or the like at the predicted position of the communication terminal or evaluation points around the predicted position, and the position of the mobile object after a predetermined period of time has elapsed. Based on this, the reception power of the communication terminal after a predetermined period of time is predicted.
- the path information 206 is information about a plurality of radio wave propagation paths through which radio waves transmitted by the wireless base station (BS) 204 are received at the evaluation point 205, and preferably, each path Contains information on received power.
- the received power prediction unit 105 deletes the path in the direction of the moving objects 202a and 202b after a predetermined time has elapsed from the radio wave propagation path information 206 generated in advance at evaluation points around the predicted position of the communication terminal 203. By doing so, the received power of the communication terminal 203 after a predetermined time has elapsed is predicted.
- the prediction device 100 stores in the estimation result storage unit 113 in advance the path information 206 of radio wave propagation at a plurality of evaluation points, which is obtained in advance through preliminary processing as shown in FIG. 3, for example.
- FIG. 3 is a diagram for explaining the pre-processing according to this embodiment.
- This pre-processing is executed by, for example, an information processing device having a computer configuration using, for example, a program for radio wave propagation simulation such as ray tracing.
- the information processing device used for the pre-processing may be the same information processing device as the prediction device 100, or may be a different information processing device from the prediction device 100.
- the information processing device obtains static environmental information from a building DB (Database) (or map DB) 311 representing the structure of the building 201, CAD (Computer Aided Design) data 312, BIM (Building Information Modeling) data 313, etc. Acquire (step S11).
- a building DB Database
- map DB Map DB
- CAD Computer Aided Design
- BIM Building Information Modeling
- the information processing device sets a plurality of evaluation points 205 in the building 201, which is an example of a predetermined area, and generates path information 206 of radio wave propagation at each set evaluation point 205 by ray tracing or the like ( calculation) (step S12).
- radio wave propagation path information 206 generated in advance at a plurality of evaluation points 205 within the building 201 can be obtained.
- the prediction device 100 stores the radio wave propagation path information 206 obtained through this pre-processing in the estimation result storage unit 113 in advance.
- the communication unit 106 executes communication processing to communicate with the communication terminal 203 and the like via the communication network.
- the environmental information storage unit 111 stores dynamic environmental information etc. acquired by the environmental information acquisition unit 101.
- the terminal location storage unit 112 stores the location of the communication terminal 203 acquired by the terminal location acquisition unit 102.
- the estimation result storage unit 113 stores in advance radio wave propagation path information 206 that is generated in advance at a plurality of evaluation points and that is obtained through pre-processing.
- the environmental information acquisition unit 101 of the prediction device 100 acquires dynamic environmental information using various three-dimensional sensors, for example, as shown in FIG. 2 (step S1).
- This dynamic environment information includes, for example, information indicating the positions of the moving bodies 202a, 202b, and 202c within a predetermined area.
- the terminal position acquisition unit 102 of the prediction device 100 acquires the position of the communication terminal 203 (step S2).
- the terminal position prediction unit 103 of the prediction device 100 predicts the predicted position of the communication terminal 203 after a predetermined time (t seconds) has elapsed, and the environmental information prediction unit 104 predicts the predicted position of the communication terminal 203 after the elapse of a predetermined time (t seconds). predict environmental information (step S3).
- the received power prediction unit 105 of the prediction device 100 stores the path information 206 of radio wave propagation generated in advance at the predicted position of the communication terminal 203 after a predetermined time has elapsed, or at evaluation points around the predicted position. 113. Further, from the acquired radio wave propagation path information 206, the received power prediction unit 105 deletes the path in the direction in which the moving objects 202a and 202b are located after a predetermined time has elapsed, and returns the path to the communication terminal after the predetermined time has elapsed. 203 reception power is predicted.
- the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
- the communication terminal 203 may have at least a part of each functional configuration that the prediction device 100 has.
- FIG. 4 shows another example of the system configuration of the received power prediction system according to this embodiment.
- the received power prediction system 1 includes a prediction device 100 and a communication terminal 203 that can communicate with the prediction device 100 via the communication network 2.
- the communication terminal 203 not the prediction device 100, has the terminal position acquisition unit 102 and the terminal position prediction unit 103 described in FIG.
- the communication terminal 203 is a wireless communication device having a computer configuration.
- the communication terminal 203 realizes the functional configuration of the terminal position acquisition unit 102, the terminal position prediction unit 103, the communication unit 401, etc. by executing a predetermined program on a computer included in the communication terminal 203. Note that at least some of the above functional configurations may be realized by hardware.
- the terminal position acquisition unit 102 acquires the current position of the communication terminal 203 on the communication terminal 203 side, for example, by positioning using a GPS (Global Positioning System) device and autonomous navigation using sensors such as an acceleration sensor and an angle sensor. .
- GPS Global Positioning System
- the terminal position prediction unit 103 executes, on the communication terminal 203 side, a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time. For example, the terminal position prediction unit 103 predicts the position of the communication terminal 203 after a predetermined period of time, based on the history of the position of the communication terminal 203 acquired by the terminal position acquisition unit 102, for example, by linear prediction or the like. Good too.
- the terminal position prediction unit 103 calculates a predetermined time (t seconds) based on the current position of the communication terminal 203 and the movement (moving direction, moving speed, etc.) of the communication terminal measured by a sensor such as an acceleration sensor or an angle sensor. The predicted position of the communication terminal 203 after elapsed may be calculated.
- the communication unit 401 connects to the communication network 2 through predetermined wireless communication, such as 5G (5th Generation) or LTE (Long Term Evolution), and executes communication processing to communicate with the prediction device 100 and the like. For example, the communication unit 401 adds communication terminal information, the position of the communication terminal 203, the predicted position of the communication terminal 203, etc. to request information requesting the prediction device 100 to predict received power, and transmits the request information to the prediction device 100. do. Furthermore, the communication unit 401 receives the received power prediction result transmitted by the prediction device 100.
- 5G Fifth Generation
- LTE Long Term Evolution
- the prediction device 100 includes the request information that the communication unit 106 receives from the communication terminal 203, including the position of the communication terminal 203, the predicted position of the communication terminal 203 after a predetermined period of time, etc. ing. Therefore, the prediction device 100 does not need to include the terminal position acquisition unit 102, the terminal position prediction unit 103, and the like.
- each functional configuration included in the prediction device 100 described in FIG. 1 only needs to be included in the received power prediction system 1, and may be included in any device within the system.
- FIG. 5 is a flowchart illustrating an example of received power prediction processing according to the first embodiment.
- This process is an example of a received power prediction process in which the received power prediction system 1 having the functional configuration as shown in FIG. 1 or 4 predicts the received power of the communication terminal 203 after a predetermined time has elapsed. There is. It is assumed that at the start of the process shown in FIG. 5, the estimation result storage unit 113 stores path information 206 of radio wave propagation measured in advance at a plurality of evaluation points within a predetermined area.
- the environmental information acquisition unit 101 acquires dynamic environmental information about objects in a predetermined area.
- the environmental information acquisition unit 101 acquires dynamic environmental information using a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, a wireless sensing device 215, or the like installed in a predetermined area.
- This dynamic environment information includes information indicating the position of a mobile object within a predetermined area.
- step S502 the terminal location acquisition unit 102 acquires the location of the communication terminal 203 in a predetermined area. Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
- step S503 the terminal position prediction unit 103 predicts the predicted position of the communication terminal 203 after t seconds (after a predetermined time has elapsed). Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
- step S504 the environmental information prediction unit 104 predicts dynamic environmental information after t seconds (after a predetermined time has elapsed).
- the dynamic environment information predicted here includes information indicating the predicted position of the moving object in the predetermined area after t seconds.
- step S505 the received power prediction unit 105 predicts, at the predicted position of the communication terminal 203 after t seconds, a path (radio wave propagation path) that will be interrupted by the predicted position of the mobile object after t seconds.
- the received power prediction unit 105 acquires path information 206 of radio wave propagation measured in advance at the predicted position of the communication terminal 203 after t seconds or at evaluation points around the predicted position. Further, the received power prediction unit 105 predicts a path that will be interrupted by the predicted position of the mobile object after t seconds from the acquired radio wave propagation path information 206.
- step S506 the received power prediction unit 105 predicts (calculates) the communication terminal 203 after t seconds by subtracting the received power due to the blocked path from all the paths included in the acquired radio wave propagation path information 206. do.
- the received power prediction unit 105 deletes the path that will be blocked by the mobile bodies 202a and 202b after t seconds from the acquired radio wave propagation path information 206, and The received power of the subsequent communication terminal 203 is calculated.
- the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
- FIG. 6 is a flowchart illustrating an example of received power prediction processing according to the second embodiment.
- This process is another example of a received power prediction process in which the received power prediction system 1 having the functional configuration as shown in FIG. 1 or 4 predicts the received power of the communication terminal 203 after a predetermined time has elapsed. It shows. Note that among the processes shown in FIG. 6, the processes in steps S501 to S505 are the same as the reception power prediction process according to the first embodiment described in FIG. 5, so the description thereof will be omitted here.
- step S601 the received power prediction unit 105 calculates the probability that the first Fresnel zone of each path in the acquired radio wave propagation path information 206 will be blocked after t seconds by the predicted position of the moving object after t seconds. Predict the received power of a communication terminal.
- FIGS. 7 and 8 are diagrams for explaining received power prediction processing according to the second embodiment.
- a method is known in which the electric field at the receiving point is calculated from the blocking ratio of the blocking object in the radius of the first Fresnel zone (for example, see Patent Document: Japanese Patent Application Laid-Open No. 2020-31366).
- the propagation path of radio waves until the radio waves transmitted from the radio base station (BS) 204 reach the communication terminal (UE) 203 connects the radio base station 204 and the communication terminal 203 with a line segment. It becomes a three-dimensional space (spheroid) centered on the shortest path 702. This three-dimensional radio wave propagation path is called a Fresnel zone. Furthermore, the innermost region of the Fresnel zone where most of the radio wave energy exists is referred to as a first Fresnel zone 701.
- the received electric field of the communication terminal 203 when the mobile body 202a is not present is E0(i)
- the received electric field E1(i) of the communication terminal 203 when the mobile body 202a is present is: It can be determined by the following (Formula 1) and (Formula 2).
- the received electric fields E1(i) obtained for each path are summed to obtain the transmitted and received electric field E1 total received by the communication terminal 203 (Formula 3 ).
- the transmitting/receiving electric field E1 total is calculated by adding a diffraction wave in addition to the direct wave and the reflected wave.
- the received power prediction system 1 calculates the received power of the communication terminal 203 by calculating the blockage rate by the mobile object for the first Fresnel zone of each path of the radio wave propagation path information 206. (or the amount of attenuation) can be calculated faster.
- FIG. 9 is a flowchart illustrating an example of pre-processing according to this embodiment. This process is an example of a process in which an information processing apparatus having a computer configuration acquires path information of radio wave propagation at a plurality of evaluation points within a predetermined area.
- step S901 the information processing device acquires static environmental information of a predetermined area from the building DB (or map DB) 311, CAD data 312, BIM data 313, etc.
- This static environment information includes, for example, information indicating the positions of objects that basically do not move, such as buildings, walls, floors, etc.
- step S902 the information processing device sets the position of the wireless base station in the static environmental information of a predetermined area.
- step S903 the information processing device sets a plurality of evaluation points in the static environmental information of a predetermined area.
- step S904 the information processing device generates (calculates) path information between the wireless base station and each evaluation point by radio wave propagation estimation such as ray tracing.
- the information processing device can generate path information 206 of radio wave propagation generated at a plurality of evaluation points to be stored in the estimation result storage unit 113.
- FIG. 10 is a diagram showing an example of the hardware configuration of the prediction device according to this embodiment.
- the prediction device 100 includes, for example, the configuration of a computer 1000 as shown in FIG.
- the computer 1000 includes a processor 1001, a memory 1002, a storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus B, and the like.
- the processor 1001 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program.
- the memory 1002 is a storage medium readable by the computer 1000, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like.
- the storage device 1003 is a computer-readable storage medium, and may include, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), various optical disks, magneto-optical disks, and the like.
- the communication device 1004 includes one or more hardware (communication devices) for communicating with other devices via a wireless or wired network.
- the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, an input/output device such as a touch panel display).
- Bus B is commonly connected to each of the above components, and transmits, for example, address signals, data signals, and various control signals.
- the processor 1001 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
- FIG. 11 is a diagram illustrating an example of the hardware configuration of a communication terminal according to this embodiment.
- the communication terminal 203 includes, for example, a GPS device 1101, a sensor 1102, and the like.
- the GPS device 1101 is a positioning device that receives positioning signals transmitted by GPS satellites and outputs position information indicating the current position of the communication terminal 203.
- the sensor 1102 is, for example, a detection device such as an acceleration sensor or an angle sensor that detects the movement of the communication terminal 203.
- the prediction device 100 in this embodiment is not limited to implementation by a dedicated device, but may be implemented by a general-purpose computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
- the "computer system” herein includes hardware such as an OS and peripheral devices.
- computer-readable recording medium includes various storage devices such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, and other portable media, and hard disks built into computer systems.
- a “computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
- the above-mentioned program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- ⁇ Effects of embodiment> it is possible to provide a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
- the received power prediction system an acquisition process that acquires dynamic environmental information of objects in a predetermined area; a process of acquiring the position of a communication terminal in the predetermined area; A process of predicting a predicted position of the communication terminal after a predetermined time has elapsed; a process of predicting the dynamic environmental information after the predetermined time has elapsed; Based on path information of radio wave propagation calculated in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and path information blocked by the dynamic environmental information after the predetermined time has elapsed.
- the dynamic environment information acquired in the acquisition process includes three-dimensional point group data, depth data, or position data of the object acquired by a three-dimensional sensor.
- the radio wave propagation path information includes path information at the evaluation point calculated by estimating radio wave propagation characteristics by ray tracing using static environmental information of the predetermined area. Method. (Section 4) 4.
- the received power prediction method according to claim 3, wherein the received power prediction system has path information of the radio wave propagation calculated in advance at a plurality of evaluation points within the predetermined area.
- the dynamic environment information after the predetermined time period includes information indicating the position of the mobile object in the predetermined area after the predetermined time period has elapsed;
- the prediction process is performed by subtracting a path that is blocked by a moving object in the predetermined area after the predetermined time has elapsed from the radio wave propagation path information calculated in advance at the evaluation point, 4.
- the received power prediction method according to claim 3, wherein the received power of the communication terminal is predicted later.
- the dynamic environment information after the predetermined time period includes information indicating the position of the mobile object in the predetermined area after the predetermined time period has elapsed;
- the prediction process is based on the blockage rate of the first Fresnel zone of each path by a moving object in the predetermined area after the elapse of the predetermined time, from the path information of the radio wave propagation calculated in advance at the evaluation point.
- the received power prediction method according to claim 3, wherein the received power of the communication terminal after the predetermined time has elapsed is predicted.
- an environmental information acquisition unit configured to acquire dynamic environmental information of objects in a predetermined area; a terminal location acquisition unit configured to acquire the location of a communication terminal in the predetermined area; a terminal position prediction unit configured to predict a predicted position of the communication terminal after a predetermined time has elapsed; an environmental information prediction unit configured to predict the dynamic environmental information after the predetermined time has elapsed; Based on path information of radio wave propagation calculated in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and path information blocked by the dynamic environmental information after the predetermined time has elapsed. , a received power prediction unit configured to predict received power of the communication terminal after the predetermined time has elapsed; A received power prediction system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
受信電力予測方法は、受信電力予測システムが、所定のエリアにある物体の動的な環境情報を取得する取得処理と、前記所定のエリアにある通信端末の位置を取得する処理と、所定の時間を経過後の前記通信端末の予測位置を予測する処理と、前記所定の時間を経過後の前記動的な環境情報を予測する処理と、前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、を実行する。
Description
本発明は、受信電力予測方法、及び受信電力予測システムに関する。
無線通信システムにおける無線通信品質を予測する技術が知られている。例えば、遮断物として建物、樹木等、秒単位では位置、大きさが変動しない物体の静的な環境を想定して、過去のその位置における受信電力の実測値をベースにして、通信端末の受信電力を予測する技術が知られている。
若尾佳祐、川村憲一、守山貴庸、"複数無線アクセス最適利用のための品質予測技術"、NTT技術ジャーナル、2020年4月、p.11-13
"屋内の人やモノの位置はどう把握する? 屋内測位の手法まとめ"、[online]、Techfirm Blog、[平成3年10月7日検索]、インターネット<URL: https://www.techfirm.co.jp/blog/indoor-localization>
しかし、従来の技術では、例えば、人、車両、ロボット等の移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測することは困難である。
本発明の実施形態は、上記の問題点に鑑みてなされたものであって、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供する。
上記の課題を解決するため、本発明の実施形態に係る受信電力予測方法は、受信電力予測システムが、所定のエリアにある物体の動的な環境情報を取得する取得処理と、前記所定のエリアにある通信端末の位置を取得する処理と、所定の時間を経過後の前記通信端末の予測位置を予測する処理と、前記所定の時間を経過後の前記動的な環境情報を予測する処理と、前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、を実行する。
本発明の実施形態によれば、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供することができる。
以下、図面を参照して本発明の実施の形態(本実施形態)を説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。
<システム構成>
本実施形態に係る受信電力予測システム1は、無線通信ネットワークにおいて、通信端末が無線基地局から受信する受信電力を予測するシステムである。
本実施形態に係る受信電力予測システム1は、無線通信ネットワークにおいて、通信端末が無線基地局から受信する受信電力を予測するシステムである。
非特許文献1に示すような従来の品質予測システムは、事前に取得した評価地点の通信品質の実測値、現在の通信端末の位置、及び通信端末の移動情報等から無線通信品質を予測している。この従来の技術により、例えば、図12に示すように、建物1203等の静止物のみがある静的な環境1200において、事前に取得した受信電力の実測値に基づいて、無線基地局901から通信端末902が受信する受信電力を予測することができる。
しかし、この方法では、例えば、図13に示すように、車両1301、人1302、ロボット1303等の移動体がある動的な環境1300では、移動体により電波が遮られるため、無線基地局1201から通信端末1202が受信する受信電力を予測することは困難である。
そこで、本実施形態に係る受信電力予測システム1は、移動体が存在する動的な環境1300において、移動体による電波の遮断を考慮して、通信端末1202が受信する受信電力を予測できるように、例えば、図1、又は図4に示すシステム構成を有している。
(システム構成1)
図1は、本実施形態に係る受信電力予測システムのシステム構成の一例を示す図である。図1の例では、受信電力予測システム1は、予測装置100によって実現される。
図1は、本実施形態に係る受信電力予測システムのシステム構成の一例を示す図である。図1の例では、受信電力予測システム1は、予測装置100によって実現される。
予測装置100は、コンピュータの構成を有する情報処理装置、又は複数のコンピュータを含むシステムである。予測装置100は、予測装置100が備えるコンピュータで所定のプログラムを実行することにより、環境情報取得部101、端末位置取得部102、端末位置予測部103、環境情報予測部104、受信電力予測部105、及び通信部106等の機能構成を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。
また、予測装置100は、予測装置100が備えるストレージデバイス、及びメモリ等により、環境情報記憶部111、端末位置記憶部112、及び推定結果記憶部113等を実現している。
環境情報取得部101は、所定のエリアにある物体の動的な環境情報を取得する取得処理を実行する。例えば、環境情報取得部101は、図2に示すように、LiDAR211、ステレオカメラ212、深度カメラ213、カメラ214、又は無線センシングデバイス215等の3次元センサを用いて、所定のエリアの一例である建物201内の動的な環境情報を取得する。この動的な環境情報には、例えば、建物201内にある移動体202a、202b、202cの位置を示す情報が含まれる。
LiDAR(Light Detection And Ranging、又はLaser Imaging Detection And Ranging)211は、対象物にレーザー光等の光を照射し、その反射光を光センサ等で検知することにより、対象物までの距離を測定するデバイスである。環境情報取得部101は、LiDAR211を使って、例えば、建物201内等の所定のエリアをセンシングして3次元の点群データを取得し、取得した3次元の点群データを動的な環境情報としてもよい。
ステレオカメラ212は、対象物を2つの異なる方向から同時に撮影することにより、対象物の画像と共に、対象物までの距離を測定可能なカメラである。環境情報取得部101は、ステレオカメラ212を使って、例えば、建物201内等の所定のエリアをセンシングして3次元の点群データを取得し、取得した3次元の点群データを動的な環境情報としてもよい。
深度カメラ213は、対象物を撮影することにより、対象物までの距離を示す深度データを含む深度画像を撮影するカメラである。環境情報取得部101は、深度カメラ213を使って、例えば、建物201内等の所定のエリアを撮影して深度データを取得し、取得した深度データを動的な環境情報としてもよい。
カメラ214は、例えば、深度データを含まない通常のカメラ画像を撮影する単眼のカメラである。深度データを含まない単眼のカメラ画像から、深度画像を推定する技術が深層学習で実現されている。環境情報取得部101は、カメラ214で撮影したカメラ画像から、深層学習で深度データを生成し、生成した深度データを動的な環境情報としてもよい。
無線センシングデバイス215は、無線通信、又は電波の反射を利用して、対象物の位置等を測定するデバイスである。例えば、無線LAN(Local Area Network)通信等の複数のサブキャリアを使って、各サブキャリアのCSI(Channel State Information)を取得し、取得したCSIを学習済の機械学習モデルに入力することにより、対象物の位置等を取得する技術が開発されている。また、無線センシングデバイス215は、対象物との距離、角度、又は速度等を測定可能なミリ波レーダー等であってもよい。環境情報取得部101は、無線センシングデバイス215を使って、例えば、建物201内等の所定のエリアをセンシングして、所定のエリアにある物体の位置データ等を取得し、取得した位置データ等を動的な環境情報としてもよい。
さらに、環境情報取得部101は、他の測位手法により、所定のエリアにある物体の動的な環境情報を取得してもよい。このように、環境情報取得部101が取得する動的な環境情報は、3次元センサで取得した、物体の3次元点群データ、深度データ、又は位置データ等を含み、所定のエリア内にある移動体の位置を特定可能なデータであればよい。また、動的な環境情報を取得する測位方法は、任意の測位方法であってよい。
端末位置取得部102は、所定のエリアにある通信端末の位置を取得する処理を実行する。例えば、通信端末は、自端末の位置を示す位置情報(座標情報)を付加して、予測装置100に対して受信電力の予測値の取得を要求する要求情報を送信する。端末位置取得部102は、例えば、通信部106が通信端末から受信した要求情報から、通信端末の位置を取得してもよい。ただし、これに限られず、端末位置取得部102は、環境情報取得部101と同様に、各種の3次元センサを用いて、通信端末の位置を取得してもよい。
端末位置予測部103は、現時点から所定の時間(t秒)を経過後の通信端末の予測位置を予測する処理を実行する。例えば、端末位置取得部102は、取得した通信端末の位置を、端末位置記憶部112に記憶しておく。また、端末位置予測部103は、端末位置記憶部112に記憶した通信端末の位置の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後の通信端末の位置を予測してもよい。
別の一例として、端末位置予測部103は、通信端末が有していてもよい。この場合、通信端末の端末位置予測部103は、通信端末の現在位置と、加速度センサ、角度センサ等のセンサで測定した通信端末の動き(移動方向、移動速度等)とから、所定の時間(t秒)を経過後の通信端末の予測位置を算出する。また、通信端末は、通信端末の位置と、所定の時間を経過後の通信端末の予測位置とを付加して、受信電力の予測値の取得を要求する要求情報を予測装置100に送信する。
環境情報予測部104は、現時点から所定の時間(t秒)を経過後の動的な環境情報を予測する処理を実行する。例えば、環境情報取得部101は、取得した動的な環境情報を環境情報記憶部111に記憶しておく。また、環境情報予測部104は、環境情報記憶部111に記憶した動的な環境情報の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後の動的な環境情報を予測する。
例えば、環境情報予測部104は、動的な環境情報から、図2に示すような移動体202a、202b、202cの位置を取得し、取得した移動体202a、202b、202cの位置の履歴を環境情報記憶部111等に記憶しておく。また、環境情報予測部104は、環境情報記憶部111等に記憶した移動体の位置の履歴から、移動体の動き(移動方向、移動速度等)を算出し、移動体の現在位置と移動体の動きとから、所定の時間を経過後の移動体の位置を予測してもよい。或いは、環境情報予測部104は、移動体の移動履歴から、所定の時間を経過後の移動体の位置を予測するように予め機械学習した予測モデルに、移動体の移動履歴を入力することにより、所定の時間を経過後の移動体の位置を予測してもよい。
受信電力予測部105は、通信端末の予測位置、又は予測位置の周辺の評価地点において、レイトレース等で予め生成した電波伝搬のパス情報206と、所定の時間を経過後の移動体の位置とに基づいて、所定の時間を経過後の通信端末の受信電力を予測する。
例えば、図2に示すように、パス情報206は、無線基地局(BS)204が送信した電波を、評価地点205で受信する複数の電波伝搬の経路の情報であり、好ましくは、各経路で受信する受信電力の情報を含む。受信電力予測部105は、通信端末203の予測位置の周辺の評価地点で予め生成した電波伝搬のパス情報206から、所定の時間を経過後の移動体202a、202bがある方向のパスを削除することにより、所定の時間を経過後の通信端末203の受信電力を予測する。
なお、予測装置100は、例えば、図3に示すような事前処理で予め取得した、複数の評価地点における電波伝搬のパス情報206を、推定結果記憶部113に予め記憶しておく。
図3は、本実施形態に係る事前処理について説明するための図である。この事前処理は、例えば、コンピュータの構成を有する情報処理装置が、例えば、レイトレース等の電波伝搬シミュレーション用のプログラムを用いて実行する。なお、事前処理に用いる情報処理装置は、予測装置100と同じ情報処理装置であってもよいし、予測装置100とは異なる情報処理装置であってもよい。
情報処理装置は、建物201の構造を表す建物DB(Database)(又は地図DB)311、CAD(Computer Aided Design)データ312、又はBIM(Building Information Modeling)データ313等から、静的な環境情報を取得する(ステップS11)。
また、情報処理装置は、所定のエリアの一例である建物201内に、複数の評価地点205を設定し、レイトレース等により、設定された各評価地点205における電波伝搬のパス情報206を生成(算出)する(ステップS12)。
これにより、例えば、建物201内の複数の評価地点205で予め生成した電波伝搬のパス情報206が得られる。予測装置100は、この事前処理で得られた電波伝搬のパス情報206を、推定結果記憶部113に予め記憶しておく。
ここで、図1に戻り、予測装置100の機能構成の説明を続ける。通信部106は、通信ネットワークを介して、通信端末203等と通信する通信処理を実行する。
環境情報記憶部111は、環境情報取得部101が取得した動的な環境情報等を記憶する。端末位置記憶部112は、端末位置取得部102が取得した通信端末203の位置を記憶する。推定結果記憶部113は、事前処理で取得した、複数の評価地点で予め生成した電波伝搬のパス情報206を、予め記憶している。
上記の各機能構成により、予測装置100の環境情報取得部101は、例えば、図2に示すように、各種の3次元センサを用いて動的な環境情報を取得する(ステップS1)。この動的な環境情報には、例えば、所定のエリア内の移動体202a、202b、202cの位置を示す情報が含まれる。また、予測装置100の端末位置取得部102は、通信端末203の位置を取得する(ステップS2)。
続いて、予測装置100の端末位置予測部103は、所定の時間(t秒)を経過後の通信端末203の予測位置を予測し、環境情報予測部104は、所定の時間を経過後の動的な環境情報を予測する(ステップS3)。
また、予測装置100の受信電力予測部105は、所定の時間を経過後の通信端末203の予測位置、又は予測位置の周辺の評価地点で予め生成した電波伝搬のパス情報206を、推定結果記憶部113から取得する。さらに、受信電力予測部105は、取得した電波伝搬のパス情報206から、所定の時間を経過後に、移動体202a、202bがある方向のパスを削除して、所定の時間を経過後の通信端末203の受信電力を予測する。
上記の処理により、受信電力予測システム1は、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末203の受信電力を予測することができる。
なお、図1に示した受信電力予測システム1のシステム構成は一例である。予測装置100が有する各機能構成のうち、少なくとも一部は、通信端末203が有していてもよい。
(システム構成2)
図4は、本実施形態に係る受信電力予測システムのシステム構成の別の一例を示している。図4の例では、受信電力予測システム1は、予測装置100と、予測装置100と通信ネットワーク2を介して通信可能な通信端末203とを含む。
図4は、本実施形態に係る受信電力予測システムのシステム構成の別の一例を示している。図4の例では、受信電力予測システム1は、予測装置100と、予測装置100と通信ネットワーク2を介して通信可能な通信端末203とを含む。
図4に示す受信電力予測システム1では、図1で説明した端末位置取得部102と端末位置予測部103とを、予測装置100ではなく、通信端末203が有している。
通信端末203は、コンピュータの構成を有する無線通信装置である。通信端末203は、通信端末203が備えるコンピュータで所定のプログラムを実行することにより、端末位置取得部102、端末位置予測部103、及び通信部401等の機能構成を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。
端末位置取得部102は、例えば、GPS(Global Positioning System)デバイスによる測位、及び加速度センサ、角度センサ等のセンサによる自律航法等により、通信端末203の現在の位置を、通信端末203側で取得する。
端末位置予測部103は、現時点から所定の時間(t秒)を経過後の通信端末の予測位置を予測する処理を、通信端末203側で実行する。例えば、端末位置予測部103は、端末位置取得部102が取得した通信端末203の位置の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後に通信端末203の位置を予測してもよい。
或いは、端末位置予測部103は、通信端末203の現在位置と、加速度センサ、角度センサ等のセンサで測定した通信端末の動き(移動方向、移動速度等)とから、所定の時間(t秒)を経過後の通信端末203の予測位置を算出してもよい。
通信部401は、例えば、5G(5th. Generation)、LTE(Long Term Evolution)等の所定の無線通信で通信ネットワーク2に接続し、予測装置100等と通信する通信処理を実行する。例えば、通信部401は、予測装置100に受信電力の予測を要求する要求情報に、通信端末の情報、通信端末203の位置、通信端末203の予測位置等を付加して、予測装置100に送信する。また、通信部401は、予測装置100が送信する受信電力の予測結果を受信する。
図4のシステム構成では、予測装置100は、通信部106が通信端末203から受信した要求情報に、通信端末203の位置、及び所定の時間を経過後の通信端末203の予測位置等が含まれている。従って、予測装置100は、端末位置取得部102、及び端末位置予測部103等を有していなくてもよい。
このように、図1で説明した予測装置100が備える各機能構成は、受信電力予測システム1が有していればよく、システム内のいずれの装置が有していてもよい。
<処理の流れ>
続いて、本実施形態に係る受信電力の予測方法の処理の流れについて説明する。
続いて、本実施形態に係る受信電力の予測方法の処理の流れについて説明する。
<受信電力の予測処理>
[実施例1]
図5は、実施例1に係る受信電力の予測処理の例を示すフローチャートである。この処理は、図1、又は図4に示すような機能構成を有する受信電力予測システム1が、通信端末203の所定の時間を経過後の受信電力を予測する受信電力予測処理の一例を示している。なお、図5に示す処理の開始時点において、推定結果記憶部113には、所定のエリア内の複数の評価地点で予め測定した電波伝搬のパス情報206が記憶されているものとする。
[実施例1]
図5は、実施例1に係る受信電力の予測処理の例を示すフローチャートである。この処理は、図1、又は図4に示すような機能構成を有する受信電力予測システム1が、通信端末203の所定の時間を経過後の受信電力を予測する受信電力予測処理の一例を示している。なお、図5に示す処理の開始時点において、推定結果記憶部113には、所定のエリア内の複数の評価地点で予め測定した電波伝搬のパス情報206が記憶されているものとする。
ステップS501において、環境情報取得部101は、所定のエリアにある物体の動的な環境情報を取得する。例えば、環境情報取得部101は、所定のエリア内に設置したLiDAR211、ステレオカメラ212、深度カメラ213、カメラ214、又は無線センシングデバイス215等を用いて、動的な環境情報を取得する。この動的な環境情報には、所定のエリア内にある移動体の位置を示す情報が含まれる。
ステップS502において、端末位置取得部102は、所定のエリアにある通信端末203の位置を取得する。なお、この処理は、予測装置100が実行してもよいし、通信端末203が実行してもよい。
ステップS503において、端末位置予測部103は、t秒後(所定の時間を経過後)の通信端末203の予測位置を予測する。なお、この処理は、予測装置100が実行してもよいし、通信端末203が実行してもよい。
ステップS504において、環境情報予測部104は、t秒後(所定の時間を経過後)の動的な環境情報を予測する。ここで予測した動的な環境情報には、所定のエリアにある移動体のt秒後の予測位置を示す情報が含まれる。
ステップS505において、受信電力予測部105は、t秒後の通信端末203の予測位置において、t秒後の移動体の予測位置により遮断されるパス(電波伝搬経路)を予測する。
例えば、受信電力予測部105は、t秒後の通信端末203の予測位置、又は当該予測位の周辺の評価地点で予め測定した電波伝搬のパス情報206を取得する。また、受信電力予測部105は、取得した電波伝搬のパス情報206から、t秒後の移動体の予測位置により遮断されるパスを予測する。
ステップS506において、受信電力予測部105は、取得した電波伝搬のパス情報206に含まれる全てのパスから、遮断されるパスによる受信電力を差し引いて、t秒後の通信端末203を予測(算出)する。
例えば、受信電力予測部105は、図2のステップS4に示すように、取得した電波伝搬のパス情報206から、t秒後の移動体202a、202bによって遮断されるパスを削除して、t秒後の通信端末203の受信電力を算出する。
図5の処理により、受信電力予測システム1は、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末203の受信電力を予測することができる。
[実施例2]
図6は、実施例2に係る受信電力の予測処理の例を示すフローチャートである。この処理は、図1、又は図4に示すような機能構成を有する受信電力予測システム1が、通信端末203の所定の時間を経過後の受信電力を予測する受信電力予測処理の別の一例を示している。なお、図6に示す処理のうち、ステップS501~S505の処理は、図5で説明した実施例1に係る受信電力の予測処理と同様なので、ここでは説明を省略する。
図6は、実施例2に係る受信電力の予測処理の例を示すフローチャートである。この処理は、図1、又は図4に示すような機能構成を有する受信電力予測システム1が、通信端末203の所定の時間を経過後の受信電力を予測する受信電力予測処理の別の一例を示している。なお、図6に示す処理のうち、ステップS501~S505の処理は、図5で説明した実施例1に係る受信電力の予測処理と同様なので、ここでは説明を省略する。
ステップS601において、受信電力予測部105は、取得した電波伝搬のパス情報206の各パスの第1のフレネルゾーンが、t秒後の移動体の予測位置により遮断される割合により、t秒後の通信端末の受信電力を予測する。
図7、8は、実施例2に係る受信電力予測処理について説明するための図である。第1フレネルゾーンの半径における遮断物の遮断割合から、受信点における電界を算出する方法が知られている(例えば、特許文献:特開2020-31366参照)。
図7に示すように、無線基地局(BS)204から送信した電波が通信端末(UE)203に到達するまでの電波の伝搬経路は、無線基地局204と通信端末203とを線分で結ぶ最短経路702を中心とする立体的な空間(回転楕円体)となる。この立体的な電波の伝搬経路をフレネルゾーンと呼ぶ。また、フレネルゾーンのうち、電波のエネルギーの大部分が存在している最も内側の領域を第1フレネルゾーン701と呼ぶ。
上記の特許文献によれば、移動体202aがない場合の通信端末203の受信電界をE0(i)とすると、移動体202aがある場合の通信端末203の受信電界E1(i)は、
下記(式1)、(式2)により求めることができる。
下記(式1)、(式2)により求めることができる。
(直接波の場合)
図7に示すように、無線基地局204から通信端末203への電波の伝搬経路が直接波
である場合、受信電界E1(i)は、次の(式1)で求められる。
|E1(i)|2=|E0(i)|2×r(i) …(式1)
ここで、r(i)は、移動体202aによる第1フレネルゾーン701の遮断割合である。例えば、移動体202aの位置における第1フレネルゾーン701の面積に対して、移動体202aが示す面積が70%である場合、遮断割合は70%(0.7)となる。
図7に示すように、無線基地局204から通信端末203への電波の伝搬経路が直接波
である場合、受信電界E1(i)は、次の(式1)で求められる。
|E1(i)|2=|E0(i)|2×r(i) …(式1)
ここで、r(i)は、移動体202aによる第1フレネルゾーン701の遮断割合である。例えば、移動体202aの位置における第1フレネルゾーン701の面積に対して、移動体202aが示す面積が70%である場合、遮断割合は70%(0.7)となる。
(反射波の場合)
図8に示すように、無線基地局(BS)204から通信端末(UE)203への伝搬経路が反射波である場合、受信電界E1(i)は、次の(式2)で求められる。
|E1(i)|2=|E0(i)|2×r(i)/La …(式2)
ここでLaは、反射損失であり、例えば、反射面801等の材質で決定される概算値が用いられる。
図8に示すように、無線基地局(BS)204から通信端末(UE)203への伝搬経路が反射波である場合、受信電界E1(i)は、次の(式2)で求められる。
|E1(i)|2=|E0(i)|2×r(i)/La …(式2)
ここでLaは、反射損失であり、例えば、反射面801等の材質で決定される概算値が用いられる。
また、無線基地局204から通信端末203へのパスがN個ある場合、各パスについて求めた受信電界E1(i)を合計し、通信端末203が受信する送受信電界E1totalが求められる(式3)。
第2の実施形態によれば、受信電力予測システム1は、電波伝搬のパス情報206の各パスの第1フレネルゾーンに対して移動体による遮断割合を計算することで、通信端末203の受信電力(又は減衰量)を、より高速に計算することができる。
<事前処理>
図9は、本実施形態に係る事前処理の例を示すフローチャートである。この処理は、コンピュータの構成を有する情報処理装置が、所定のエリア内の複数の評価地点における電波伝搬のパス情報を取得する処理の例を示している。
図9は、本実施形態に係る事前処理の例を示すフローチャートである。この処理は、コンピュータの構成を有する情報処理装置が、所定のエリア内の複数の評価地点における電波伝搬のパス情報を取得する処理の例を示している。
ステップS901において、情報処理装置は、建物DB(又は地図DB)311、CADデータ312、又はBIMデータ313等から、所定のエリアの静的な環境情報を取得する。この静的な環境情報には、例えば、建物、壁、床等、基本的に移動しない物体の位置を示す情報が含まれる。
ステップS902において、情報処理装置は、所定のエリアの静的な環境情報に、無線基地局の位置を設定する。
ステップS903において、情報処理装置は、所定のエリアの静的な環境情報に、複数の評価地点を面的に設定する。
ステップS904において、情報処理装置は、レイトレース等の電波伝搬推定により、無線基地局と各評価地点との間のパス情報を生成(算出)する。
図9の処理により、情報処理装置は、推定結果記憶部113に記憶するための、複数の評価地点で生成した電波伝搬のパス情報206を生成することができる。
<ハードウェア構成例>
(予測装置のハードウェア構成)
図10は、本実施形態に係る予測装置のハードウェア構成の例を示す図である。予測装置100は、例えば、図10に示すようなコンピュータ1000の構成を備えている。図10の例では、コンピュータ1000は、プロセッサ1001、メモリ1002、ストレージデバイス1003、通信装置1004、入力装置1005、出力装置1006、及びバスB等を有する。
(予測装置のハードウェア構成)
図10は、本実施形態に係る予測装置のハードウェア構成の例を示す図である。予測装置100は、例えば、図10に示すようなコンピュータ1000の構成を備えている。図10の例では、コンピュータ1000は、プロセッサ1001、メモリ1002、ストレージデバイス1003、通信装置1004、入力装置1005、出力装置1006、及びバスB等を有する。
プロセッサ1001は、例えば、所定のプログラムを実行することにより、様々な機能を実現するCPU(Central Processing Unit)等の演算装置である。メモリ1002は、コンピュータ1000が読み取り可能な記憶媒体であり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む。ストレージデバイス1003は、コンピュータ読み取り可能な記憶媒体であり、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、各種の光ディスク、及び光磁気ディスク等を含み得る。
通信装置1004は、無線、又は有線のネットワークを介して他の装置と通信を行うための1つ以上のハードウェア(通信デバイス)を含む。入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005と出力装置1006とは、一体となった構成(例えば、タッチパネルディスプレイ等の入出力装置)であってもよい。
バスBは、上記の各構成要素に共通に接続され、例えば、アドレス信号、データ信号、及び各種の制御信号等を伝送する。なお、プロセッサ1001は、CPUに限られず、例えば、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、又はFPGA(Field Programmable Gate Array)等であってもよい。
(通信端末のハードウェア構成)
図11は、本実施形態に係る通信端末のハードウェア構成の例を示す図である。通信端末203は、図10で説明したコンピュータ1000のハードウェア構成に加えて、例えば、GPSデバイス1101、及びセンサ1102等を有する。
図11は、本実施形態に係る通信端末のハードウェア構成の例を示す図である。通信端末203は、図10で説明したコンピュータ1000のハードウェア構成に加えて、例えば、GPSデバイス1101、及びセンサ1102等を有する。
GPSデバイス1101は、GPS衛星が送信する測位信号を受信し、通信端末203の現在の位置を示す位置情報を出力する測位デバイスである。センサ1102は、例えば、加速度センサ、角度センサ等の通信端末203の動きを検出する検出デバイスである。
(補足)
本実施形態における予測装置100は専用装置による実現に限らず、汎用コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
本実施形態における予測装置100は専用装置による実現に限らず、汎用コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の様々な記憶装置を含む。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。
また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良く、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
<実施形態の効果>
本実施形態によれば、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供することができる。
本実施形態によれば、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供することができる。
また、上記の効果により、無線通信システムにおいて、通信品質の劣化による通信端末の収容先(無線基地局)の切り替え、通信パラメータの制御、又は自動運転車における走行ルートの変更等、無線通信、又はアプリケーションの安定利用が可能になる。
<実施形態のまとめ>
本明細書には、少なくとも下記各項の無線通信方法、及び無線通信システムが開示されている。
(第1項)
受信電力予測システムが、
所定のエリアにある物体の動的な環境情報を取得する取得処理と、
前記所定のエリアにある通信端末の位置を取得する処理と、
所定の時間を経過後の前記通信端末の予測位置を予測する処理と、
前記所定の時間を経過後の前記動的な環境情報を予測する処理と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、
を実行する、受信電力予測方法。
(第2項)
前記取得処理で取得する前記動的な環境情報は、3次元センサで取得した前記物体の3次元点群データ、深度データ、又は位置データを含む、第1項に記載の受信電力予測方法。
(第3項)
前記電波伝搬のパス情報は、前記所定のエリアの静的な環境情報を用いて、レイトレースによる電波伝搬特性推定で算出した前記評価地点におけるパス情報を含む、第1項に記載の受信電力予測方法。
(第4項)
前記受信電力予測システムは、前記所定のエリア内の複数の評価地点で予め算出した前記電波伝搬のパス情報を有する、第3項に記載の受信電力予測方法。
(第5項)
前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報から、前記所定の時間を経過後に前記所定のエリアにある移動体によって遮断されるパスを差し引いて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、第3項に記載の受信電力予測方法。
(第6項)
前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報から、各パスの第1フレネルゾーンに対する、前記所定の時間を経過後に前記所定のエリアにある移動体による遮断割合に基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、第3項に記載の受信電力予測方法。
(第7項)
所定のエリアにある物体の動的な環境情報を取得するように構成されている環境情報取得部と、
前記所定のエリアにある通信端末の位置を取得するように構成されている端末位置取得部と、
所定の時間を経過後の前記通信端末の予測位置を予測するように構成されている端末位置予測部と、
前記所定の時間を経過後の前記動的な環境情報を予測するように構成されている環境情報予測部と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測するように構成されている受信電力予測部と、
を有する、受信電力予測システム。
本明細書には、少なくとも下記各項の無線通信方法、及び無線通信システムが開示されている。
(第1項)
受信電力予測システムが、
所定のエリアにある物体の動的な環境情報を取得する取得処理と、
前記所定のエリアにある通信端末の位置を取得する処理と、
所定の時間を経過後の前記通信端末の予測位置を予測する処理と、
前記所定の時間を経過後の前記動的な環境情報を予測する処理と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、
を実行する、受信電力予測方法。
(第2項)
前記取得処理で取得する前記動的な環境情報は、3次元センサで取得した前記物体の3次元点群データ、深度データ、又は位置データを含む、第1項に記載の受信電力予測方法。
(第3項)
前記電波伝搬のパス情報は、前記所定のエリアの静的な環境情報を用いて、レイトレースによる電波伝搬特性推定で算出した前記評価地点におけるパス情報を含む、第1項に記載の受信電力予測方法。
(第4項)
前記受信電力予測システムは、前記所定のエリア内の複数の評価地点で予め算出した前記電波伝搬のパス情報を有する、第3項に記載の受信電力予測方法。
(第5項)
前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報から、前記所定の時間を経過後に前記所定のエリアにある移動体によって遮断されるパスを差し引いて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、第3項に記載の受信電力予測方法。
(第6項)
前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報から、各パスの第1フレネルゾーンに対する、前記所定の時間を経過後に前記所定のエリアにある移動体による遮断割合に基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、第3項に記載の受信電力予測方法。
(第7項)
所定のエリアにある物体の動的な環境情報を取得するように構成されている環境情報取得部と、
前記所定のエリアにある通信端末の位置を取得するように構成されている端末位置取得部と、
所定の時間を経過後の前記通信端末の予測位置を予測するように構成されている端末位置予測部と、
前記所定の時間を経過後の前記動的な環境情報を予測するように構成されている環境情報予測部と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測するように構成されている受信電力予測部と、
を有する、受信電力予測システム。
以上、本実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 受信電力予測システム
101 環境情報取得部
102 端末位置取得部
103 端末位置予測部
104 環境情報予測部
105 受信電力予測部
113 推定結果記憶部113
206 電波伝搬のパス情報
211 LiDAR
212 ステレオカメラ
213 深度カメラ
214 カメラ
215 無線センシングデバイス
205 評価地点
701 第1フレネルゾーン
101 環境情報取得部
102 端末位置取得部
103 端末位置予測部
104 環境情報予測部
105 受信電力予測部
113 推定結果記憶部113
206 電波伝搬のパス情報
211 LiDAR
212 ステレオカメラ
213 深度カメラ
214 カメラ
215 無線センシングデバイス
205 評価地点
701 第1フレネルゾーン
Claims (7)
- 受信電力予測システムが、
所定のエリアにある物体の動的な環境情報を取得する取得処理と、
前記所定のエリアにある通信端末の位置を取得する処理と、
所定の時間を経過後の前記通信端末の予測位置を予測する処理と、
前記所定の時間を経過後の前記動的な環境情報を予測する処理と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、
を実行する、受信電力予測方法。 - 前記取得処理で取得する前記動的な環境情報は、3次元センサで取得した前記物体の3次元点群データ、深度データ、又は位置データを含む、請求項1に記載の受信電力予測方法。
- 前記電波伝搬のパス情報は、前記所定のエリアの静的な環境情報を用いて、電波伝搬特性推定により予め生成した前記評価地点におけるパス情報を含む、請求項1に記載の受信電力予測方法。
- 前記受信電力予測システムは、前記所定のエリア内の複数の評価地点で予め生成した前記電波伝搬のパス情報を有する、請求項3に記載の受信電力予測方法。
- 前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報から、前記所定の時間を経過後に前記所定のエリアにある移動体によって遮断されるパスを差し引いて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、請求項3に記載の受信電力予測方法。 - 前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
前記予測処理は、前記評価地点で予め算出した前記電波伝搬のパス情報における、各パスの第1フレネルゾーンに対する、前記所定の時間を経過後に前記所定のエリアにある移動体による遮断割合に基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、請求項3に記載の受信電力予測方法。 - 所定のエリアにある物体の動的な環境情報を取得するように構成されている環境情報取得部と、
前記所定のエリアにある通信端末の位置を取得するように構成されている端末位置取得部と、
所定の時間を経過後の前記通信端末の予測位置を予測するように構成されている端末位置予測部と、
前記所定の時間を経過後の前記動的な環境情報を予測するように構成されている環境情報予測部と、
前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め算出した電波伝搬のパス情報と、前記所定の時間を経過後の前記動的な環境情報によって遮断されるパス情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測するように構成されている受信電力予測部と、
を有する、受信電力予測システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024505677A JPWO2023170759A1 (ja) | 2022-03-07 | 2022-03-07 | |
PCT/JP2022/009800 WO2023170759A1 (ja) | 2022-03-07 | 2022-03-07 | 受信電力予測方法、及び受信電力予測システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009800 WO2023170759A1 (ja) | 2022-03-07 | 2022-03-07 | 受信電力予測方法、及び受信電力予測システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023170759A1 true WO2023170759A1 (ja) | 2023-09-14 |
Family
ID=87936241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009800 WO2023170759A1 (ja) | 2022-03-07 | 2022-03-07 | 受信電力予測方法、及び受信電力予測システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023170759A1 (ja) |
WO (1) | WO2023170759A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017175262A (ja) * | 2016-03-22 | 2017-09-28 | パイオニア株式会社 | 情報生成装置、情報生成方法、プログラム及び記録媒体 |
JP2020031366A (ja) * | 2018-08-23 | 2020-02-27 | 日本電信電話株式会社 | 電波遮蔽損失の計算方法、計算装置およびプログラム |
JP2021184545A (ja) * | 2020-05-22 | 2021-12-02 | 株式会社日立製作所 | 無線運用管理システム、及び無線運用支援方法 |
-
2022
- 2022-03-07 JP JP2024505677A patent/JPWO2023170759A1/ja active Pending
- 2022-03-07 WO PCT/JP2022/009800 patent/WO2023170759A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017175262A (ja) * | 2016-03-22 | 2017-09-28 | パイオニア株式会社 | 情報生成装置、情報生成方法、プログラム及び記録媒体 |
JP2020031366A (ja) * | 2018-08-23 | 2020-02-27 | 日本電信電話株式会社 | 電波遮蔽損失の計算方法、計算装置およびプログラム |
JP2021184545A (ja) * | 2020-05-22 | 2021-12-02 | 株式会社日立製作所 | 無線運用管理システム、及び無線運用支援方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023170759A1 (ja) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12117549B2 (en) | Dynamic, cognitive hybrid method and system for indoor sensing and positioning | |
KR102548282B1 (ko) | 고정밀도 맵 작성 방법 및 장치 | |
US10073179B2 (en) | Systems, methods and devices for satellite navigation reconciliation | |
JP6239664B2 (ja) | 周辺環境推定装置及び周辺環境推定方法 | |
CN109313810A (zh) | 用于对环境进行测绘的系统和方法 | |
US20160280401A1 (en) | Systems, methods and devices for satellite navigation | |
TW201144759A (en) | Using filtering with mobile device positioning in a constrained environment | |
JP2015531053A (ja) | 無線マップを動的に作成するためのシステム、方法、及びコンピュータプログラム | |
US11270513B2 (en) | System and method for attaching applications and interactions to static objects | |
EP3152586B1 (en) | Mobile device position uncertainty based on a measure of potential hindrance of an estimated trajectory | |
US20230267695A1 (en) | Method and system for enabling enhanced user-to-user communication in digital realities | |
KR102180523B1 (ko) | 무선 통신 시스템에서 단말의 위치추정 방법 및 장치 | |
Amutha et al. | Development of a ZigBee based virtual eye for visually impaired persons | |
WO2023170759A1 (ja) | 受信電力予測方法、及び受信電力予測システム | |
Wang et al. | Sound localization and multi-modal steering for autonomous virtual agents | |
WO2023170758A1 (ja) | 受信電力予測方法、及び受信電力予測システム | |
Ghantous et al. | Augmented reality indoor navigation based on Wi-Fi trilateration | |
CN117693771A (zh) | 用于交通工具的自主控制的占用映射 | |
CN117043638A (zh) | 根据雷达数据的占用群集化 | |
WO2024009440A1 (ja) | 受信電力予測システム、受信電力予測装置、受信電力予測方法、及びプログラム | |
Almanza-Ojeda et al. | Occupancy map construction for indoor robot navigation | |
KR20210017303A (ko) | 이동통신 시스템에서 단말의 위치추정 방법 및 장치 | |
Raspopoulos et al. | PINSPOT: An open platform for intelligent context-based indoor positioning | |
US20240203062A1 (en) | Geometry-aware spatial interpolation | |
JP7072311B1 (ja) | 移動体の移動経路生成方法及びプログラム、管理サーバ、管理システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22930745 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024505677 Country of ref document: JP |