WO2023170754A1 - Receiver device, communication system, control circuit, storage medium, and communication method - Google Patents
Receiver device, communication system, control circuit, storage medium, and communication method Download PDFInfo
- Publication number
- WO2023170754A1 WO2023170754A1 PCT/JP2022/009768 JP2022009768W WO2023170754A1 WO 2023170754 A1 WO2023170754 A1 WO 2023170754A1 JP 2022009768 W JP2022009768 W JP 2022009768W WO 2023170754 A1 WO2023170754 A1 WO 2023170754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- timing
- chirp signal
- correlation value
- signal
- preamble
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 25
- 238000000034 method Methods 0.000 title claims description 18
- 238000005314 correlation function Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims description 70
- 238000001228 spectrum Methods 0.000 claims description 54
- 238000001514 detection method Methods 0.000 claims description 22
- 230000007423 decrease Effects 0.000 claims description 7
- 230000003111 delayed effect Effects 0.000 claims description 4
- 230000015654 memory Effects 0.000 description 40
- 238000012545 processing Methods 0.000 description 39
- 238000012935 Averaging Methods 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 16
- 238000012937 correction Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 6
- 238000009432 framing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a receiving device, a communication system, a control circuit, a storage medium, and a communication method.
- a frequency band called the ISM (Industry Science Medical) band is open for industrial, academic, and medical purposes and can be used without a license, so it is used in a plurality of different wireless communication systems.
- LoRa registered trademark
- SIGFOX Low Power Wide Area wireless communication standards that have been attracting attention as wireless communication technologies for IoT (Internet of Things) and M2M (Machine to Machine).
- IoT Internet of Things
- M2M Machine to Machine
- Wi-SUN registered trademark
- Wi-SUN registered trademark
- direct spread spectrum which has excellent interference resistance, jamming resistance, and communication confidentiality, in environments where multiple different wireless communication systems operate in the same frequency band, such as when using the ISM band. is valid.
- direct spread spectrum may be referred to as DS-SS (Direct Sequence Spread Spectrum).
- timing synchronization In the DS-SS system, in order to perform despreading on the receiving side, it is necessary to synchronize the timing at which the transmission information is multiplied by the spreading code at the transmitter.
- initial synchronization is used to coarsely synchronize the time difference of the spreading code between transmission and reception, for example, within 1/2 chip, and then fine timing synchronization is used to synchronize the remaining timing error with high precision.
- a method of correcting is generally used.
- Non-Patent Document 1 two types of chirp signals whose frequencies change linearly over time are used to spread the spectrum of the preamble by half, and on the synchronization side, by detecting the intermediate value of the correlation peaks of the two sequences, the transmitter A technique is disclosed for capturing the spreading code timing, which is the timing at which the spreading code is multiplied. According to this technique, it is possible to improve frequency offset tolerance compared to the case where a preamble is spread spectrum using one type of chirp signal.
- Non-Patent Document 1 Japanese Patent Document 1
- two chirp signals are used to spread the spectrum of preambles of the same length, and the timing of each of the two chirp signals is independently detected on the synchronization side.
- the amount of calculation for initial synchronization increased.
- the present disclosure has been made in view of the above, and aims to provide a receiving device that can suppress an increase in the amount of calculation for initial synchronization while improving frequency offset resistance.
- a receiving device includes a first preamble whose spectrum is spread by a first chirp signal, a first preamble that is transmitted after the first preamble, and a first preamble that is transmitted after the first preamble. and a second preamble spread spectrum with a different second chirp signal.
- a first timing detection section that includes a correlation value calculation section and detects a first timing at which the first correlation value peaks; and a first timing detection section that detects a first timing at which the first correlation value peaks; a search range calculation unit that calculates a search range that is a range for calculating a second correlation value that is a value of a cross-correlation function; and a second correlation value calculation unit that calculates a second correlation value limited to the search range.
- a second timing detection section that detects a second timing at which the second correlation value peaks; and a transmitting device that transmits a received signal based on the first timing and the second timing.
- the method is characterized by comprising an initial synchronization section having a rough timing estimating section that obtains a rough estimation result of the spreading code timing multiplied by the spreading code.
- the receiving device has the effect that it is possible to suppress an increase in the amount of calculation for initial synchronization while improving frequency offset resistance.
- a diagram showing the configuration of a communication system according to Embodiment 1 A diagram showing the functional configuration of the transmitting device shown in FIG. A diagram showing an example of a signal after framing by the frame generation unit shown in FIG. 2 A diagram showing the functional configuration of the receiving device shown in FIG. A diagram showing the detailed functional configuration of the initial synchronization section shown in FIG. 4 An explanatory diagram for setting the threshold in the threshold determination unit shown in FIG. 5 Flowchart for explaining the operation of the transmitting device shown in FIG. 2 Flowchart for explaining the operation of the receiving device shown in FIG. 4 Flowchart for explaining detailed operation of initial synchronization shown in FIG. 8 A diagram showing an example of the configuration of a processing circuit when the processing circuit included in the receiving device shown in FIG. 4 is implemented by a processor and memory. A diagram showing an example of a processing circuit when the processing circuit included in the receiving device shown in FIG. 4 is configured with dedicated hardware.
- FIG. 1 is a diagram showing the configuration of a communication system 3 according to the first embodiment.
- the communication system 3 includes a transmitting device 1 and a receiving device 2.
- the communication system 3 performs communication between the transmitting device 1 and the receiving device 2 using wireless signals.
- the communication system 3 uses direct spectrum spreading, which uses a chirp signal whose frequency changes linearly over time to spread the signal over a wider range than the original frequency band.
- FIG. 2 is a diagram showing the functional configuration of the transmitting device 1 shown in FIG. 1.
- the transmitter 1 includes a modulator 11 , a spectrum spreader 12 , a preamble generator 13 , a frame generator 14 , a transmit filter 15 , and a transmit antenna 16 .
- the modulation unit 11 generates a data modulation signal by modulating transmission data acquired from a higher-level device (not shown).
- the modulator 11 can use, for example, PSK (Phase Shift Keying) as a modulation method.
- Modulating section 11 outputs the generated modulated signal to spectrum spreading section 12 .
- the spectrum spreading unit 12 directly performs spectrum spreading on the modulated signal output by the modulating unit 11 using the chirp signal as a spreading code.
- An example of a chirp signal used by the spectrum spreader 12 as a spreading code is the Zadoff-Chu sequence.
- C(t) which is the t-th element of the Zadoff-Chu sequence C
- M in formula (1) is a series parameter and has a coprime relationship with Nc. Further, M indicates the number of increases from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc.
- the spectrum spreading unit 12 outputs the signal subjected to spectrum spreading to the frame generating unit 14. In the following description, the signal generated by the spectrum spreader 12 may be referred to as data.
- the preamble generation unit 13 performs spectrum spreading on a known preamble signal to generate a preamble.
- the preamble generation unit 13 performs spectrum spreading using a method different from the method in which the spectrum spreading unit 12 spreads the spectrum of transmission data.
- Preamble generation section 13 includes a modulation section 131 and a spectrum spreading section 132.
- the signal generated by the preamble generation unit 13 may be referred to as a preamble.
- the modulation unit 131 modulates the known preamble signal in the same manner as the modulation unit 11.
- the known preamble signal signals having the same value such as 0, 0, 0, 0, . . . can be used.
- the modulator 131 uses, for example, QPSK (Quadrature Phase Shift Keying) as a modulation method.
- Modulating section 131 outputs the modulated signal to spectrum spreading section 132 .
- one element of the modulated signal modulated by modulation section 131 may be referred to as a symbol.
- the spectrum spreading unit 132 directly performs spectrum spreading on the modulated signal output by the modulating unit 131 using the chirp signal as a spreading code.
- the chirp signal used by the spectrum spreader 132 is an up-chirp signal or a down-chirp signal.
- An up-chirp signal is a signal whose frequency increases with time, and in this embodiment, the up-chirp signal used by the spectrum spreader 132 is generated with the value of M in the above formula (1) set to 1.
- the signal corresponds to the Zadoff-Chu sequence.
- a down-chirp signal is a signal whose frequency decreases over time, and in this embodiment, the down-chirp signal used by the spectrum spreading section 132 is a signal whose frequency decreases by -1 in the above formula (1).
- the signal corresponds to the Zadoff-Chu sequence generated as follows.
- the spectrum spreading unit 132 spreads each of the two types of preambles with a different chirp signal.
- the preamble that is transmitted first is referred to as a first preamble
- the preamble that is transmitted after the first preamble is referred to as a second preamble.
- the chirp signal used when spreading the first preamble is called a first chirp signal
- the chirp signal used when spreading the second preamble is called a second chirp signal.
- the second chirp signal is a different chirp signal from the first chirp signal.
- the first chirp signal is an up-chirp signal
- the second chirp signal is a down-chirp signal.
- the spectrum spreading unit 132 performs spectrum spreading on the first preamble using an up-chirp signal, which is a first chirp signal, and spread spectrum on the second preamble using a down-chirp signal, which is a second chirp signal. conduct.
- the spectrum spreading unit 132 outputs the signal after spectrum spreading to the frame generating unit 14.
- the frame generation unit 14 frames the spectrum-spread data output from the spectrum spread unit 12 and the spectrum-spread preamble output from the preamble generation unit 13.
- FIG. 3 is a diagram showing an example of a signal after framing by the frame generation unit 14 shown in FIG. 2.
- the framed signal includes a first preamble, a second preamble transmitted after the first preamble, and data.
- the first preamble is subjected to up-chirp spreading, which is spectrum spreading using an up-chirp signal
- the second preamble is subjected to down-chirp spreading, which is spectrum spreading using a down-chirp signal.
- the length of the second preamble can be equal to the length of the first preamble, or can be shorter than the length of the first preamble depending on the propagation environment and requirements.
- the frame generation unit 14 sequentially outputs the framed signals to the transmission filter 15.
- the transmission filter 15 performs band limitation on the framed signal output by the frame generation unit 14.
- the transmission filter 15 outputs each of the plurality of band-limited signals to the transmission antenna 16.
- the transmitting antenna 16 transmits each of the plurality of band-limited signals output by the transmitting filter 15.
- the transmitting antenna 16 wirelessly transmits a signal toward the receiving device 2 .
- FIG. 4 is a diagram showing the functional configuration of the receiving device 2 shown in FIG. 1.
- the receiving device 2 includes a receiving antenna 21, a receiving filter 22, an initial synchronization section 23, a frame synchronization section 24, a fine synchronization section 25, a frequency offset correction section 26, a despreading section 27, and a demodulation section 28. has.
- the receiving antenna 21 receives wireless signals.
- a received signal which is a signal received by the receiving antenna 21, is a signal transmitted from the transmitting device 1.
- the receiving antenna 21 outputs the received signal to the receiving filter 22.
- the reception filter 22 performs filter processing on the reception signal output by the reception antenna 21.
- the reception filter 22 outputs the filtered signal to the initial synchronization section 23, the frame synchronization section 24, and the frequency offset correction section 26, respectively.
- the initial synchronization unit 23 performs initial synchronization based on the filtered signal output by the reception filter 22.
- the initial synchronization unit 23 roughly estimates the spreading code timing, which is the timing at which the spreading code is multiplied in the transmitting device 1, and the frequency shift of the local oscillator between the transmitting device 1 and the receiving device 2.
- a rough estimate of the amount of frequency offset generated is performed.
- the coarse estimation of the amount of frequency offset refers to estimation of the amount of frequency offset performed with coarse accuracy compared to the estimation accuracy of the amount of frequency offset by the fine synchronization unit 25 described later.
- the initial synchronization unit 23 outputs the rough estimation result of the spreading code timing and the rough estimation result of the frequency offset amount to the frame synchronization unit 24. The detailed configuration and operation of the initial synchronization unit 23 will be described later.
- the frame synchronization unit 24 performs frame synchronization to synchronize frame timing based on the rough estimation result of the spreading code timing output by the initial synchronization unit 23.
- the frame synchronization unit 24 outputs the coarse estimation result of the spreading code timing, the rough estimation result of the frequency offset amount, and the estimation result of the frame timing to the fine synchronization unit 25.
- the fine synchronization unit 25 corrects the residual spread code timing error and frequency offset amount based on the frame timing output from the frame synchronization unit 24, thereby adjusting the spread code timing and frequency offset from the initial synchronization unit 23. It also estimates with high accuracy.
- the precise synchronization unit 25 uses, for example, a circuit called AFC (Automatic Frequency Control) to perform synchronization processing with higher accuracy than the initial synchronization unit 23.
- the precision synchronization unit 25 outputs the estimation result of the frequency offset amount to the frequency offset correction unit 26 and outputs the estimation result of the spreading code timing to the despreading unit 27.
- the frequency offset correction unit 26 corrects the frequency offset of the signal output by the reception filter 22 based on the estimation result of the frequency offset amount output by the fine synchronization unit 25.
- the frequency offset correction section 26 outputs the signal after correcting the frequency offset to the despreading section 27 .
- the despreading unit 27 performs despreading on the frequency offset corrected signal output by the frequency offset correction unit 26 based on the estimation result of the spreading code timing output by the fine synchronization unit 25.
- the despreader 27 outputs the despread signal to the demodulator 28 .
- the demodulator 28 performs demodulation processing on the despread signal output from the despreader 27.
- FIG. 5 is a diagram showing a detailed functional configuration of the initial synchronization section 23 shown in FIG. 4.
- the initial synchronization section 23 includes a first timing detection section 231, a search range calculation section 237, a second timing detection section 238, and a coarse estimation section 240.
- the first timing detection section 231 detects the first timing n1 based on the first correlation value, which is the value of the cross-correlation function between the received signal and the first chirp signal.
- the first timing n1 is the timing at which the first correlation value reaches its peak and exceeds the threshold value.
- the first timing detection section 231 includes a first correlation value calculation section 232, a power value calculation section 233, an averaging section 234, a correlation power memory 235, and a threshold determination section 236.
- the first correlation value calculation section 232 uses a matched filter to combine the filtered reception signal output by the reception filter 22 with the first chirp signal used when spectrum spreading is performed by the preamble generation section 13 of the transmission device 1.
- a first correlation value is calculated, which is the value of the cross-correlation function of .
- the first correlation value calculation unit 232 outputs the calculated first correlation value to the power value calculation unit 233.
- the power value calculation unit 233 calculates the power value by squaring the first correlation value output by the first correlation value calculation unit 232.
- the power value calculation unit 233 outputs the calculated power value to the averaging unit 234.
- the averaging unit 234 averages the power value output by the power value calculation unit 233 with the power value of the previous symbol at the same sample timing.
- the averaging unit 234 stores the averaged power value in the correlation power memory 235.
- the correlation power memory 235 is configured to hold a number of power values corresponding to the spreading code length Nc x the number of oversamples Novs, and uses the averaged power values output by the averaging section 234 as the spreading code length Nc. It is stored over one symbol period which is x the number of oversamples Novs.
- the processing up to the averaging unit 234 operates on a sample time basis, but the processing after the correlation power memory 235 changes to operation on a symbol time basis.
- the threshold determination unit 236 detects the first timing n1 from the power value for one period of the spreading code held in the correlation power memory 235. Specifically, the threshold determination unit 236 detects the maximum power value among the power values for one period of the spreading code held in the correlation power memory 235, and compares the detected maximum power value with the threshold. If the maximum power value exceeds the threshold, the threshold determination unit 236 detects the sample timing corresponding to the maximum power value as the first timing n1, and sets the first timing n1 to the search range calculation unit 237 and the rough It is output to each of the estimators 240. Since the power value is the square of the first correlation value, the first correlation value reaches its peak at the sample timing when the power value reaches its peak. Further, the threshold determining section 236 outputs symbol numbers exceeding the threshold to the second timing detecting section 238.
- the search range calculation unit 237 calculates a search range, which is the range of timings in which calculations are performed in the second timing detection unit 238 and thereafter, based on the first timing n1 output by the first timing detection unit 231.
- the search range is a range in which the second timing detection section 238 calculates a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal.
- the search range calculation unit 237 can calculate the search range based on the maximum amount of frequency offset expected in the environment in which the search range is used.
- the search range calculation unit 237 calculates the search range when
- the second timing detection unit 238 calculates a second correlation value limited to the search range determined by the search range calculation unit 237, and detects the second timing n2 based on the second correlation value.
- the second timing n2 is the timing at which the second correlation value reaches its peak and exceeds the threshold value.
- the second timing detection section 238 includes a second correlation value calculation section 239, a power value calculation section 233a, an averaging section 234a, a correlation power memory 235a, and a threshold determination section 236a.
- the second correlation value calculation unit 239 uses a matched filter to calculate the received signal output from the reception filter 22 after filter processing and the second chirp signal used when spectrum spreading is performed by the preamble generation unit 13 of the transmission device 1.
- a second correlation value is calculated, which is the value of the cross-correlation function with.
- the second correlation value calculation unit 239 outputs the second correlation value to the power value calculation unit 233a.
- the power value calculation unit 233a calculates the power value by squaring the second correlation value output by the second correlation value calculation unit 239.
- the power value calculation unit 233a outputs the calculated power value to the averaging unit 234a.
- the averaging unit 234a averages the power value output by the power value calculation unit 233a with the power value at the same sample timing of the previous symbol.
- the averaging unit 234a stores the averaged power value in the correlation power memory 235a.
- the correlation power memory 235a is configured to be able to hold a number of power values corresponding to the spreading code length Nc x the number of oversamples Novs, and the averaged power value output by the averaging section 234a is divided into Nc x oversamples. It is stored over one symbol period, which is several Novs.
- the processing up to the averaging unit 234a operates on a sample time basis, but the processing after the correlation power memory 235a changes to operation on a symbol time basis.
- the threshold determination unit 236a detects the second timing n2 from the power value for one period of the spreading code stored in the correlation power memory 235a. Specifically, the threshold determination unit 236a detects the maximum power value among the power values for one cycle of the spreading code held in the correlation power memory 235a, and compares the detected maximum power value with a predetermined threshold. Compare. If the maximum power value exceeds the threshold, the threshold determination unit 236a detects the sample timing corresponding to the maximum power value as the second timing n2, and outputs the second timing n2 to the coarse estimation unit 240.
- the threshold values used by each of the threshold determination units 236 and 236a may be predetermined values, or may be dynamically generated as described below.
- the threshold determination unit 236 can calculate the average of the power values for one spreading code period read from the correlation power memory 235, and set the average value multiplied by a constant ⁇ as the threshold.
- FIG. 6 is an explanatory diagram of threshold setting in the threshold value determination units 236, 236a shown in FIG. 5. The horizontal axis in FIG.
- the threshold determination units 236 and 236a calculate the average of the averaged power values of each sample timing for one spreading code period, and set ⁇ times the average as the threshold.
- Each of the threshold determination units 236 and 236a can detect the first timing n1 or the second timing n2 based on the comparison result between the threshold value set in this manner and the maximum power value.
- the coarse estimation section 240 includes a timing coarse estimation section 241 and a frequency offset coarse estimation section 242.
- the rough timing estimator 241 determines the spread code in the transmitter 1 that has transmitted the received signal based on the first timing n1 output by the threshold determiner 236 and the second timing n2 output by the threshold determiner 236a.
- a rough estimation result of the spread code timing which is the multiplied timing, can be obtained.
- the rough timing estimator 241 can set the spreading code timing to a third timing n0 that is intermediate between the first timing n1 and the second timing n2.
- the rough timing estimator 241 may round off the intermediate third timing n0 to a decimal number.
- the third timing n0 is expressed by the following equation (2).
- the rough timing estimation unit 241 outputs the estimated spreading code timing to the frame synchronization unit 24 as a result of rough estimation of the spreading code timing.
- the frequency offset coarse estimator 242 calculates the difference between the transmitting device 1 and the receiving device 2 based on the first timing n1 outputted by the threshold determining unit 236 and the second timing n2 outputted by the threshold determining unit 236a. A rough estimate of the amount of frequency offset can be obtained.
- the frequency offset coarse estimator 242 can calculate the frequency offset amount using the following formula (3).
- the frequency offset rough estimation unit 242 outputs the estimated frequency offset amount to the frame synchronization unit 24 as a rough estimation result of the frequency offset amount.
- FIG. 7 is a flowchart for explaining the operation of the transmitting device 1 shown in FIG. 2.
- the modulating unit 11 of the transmitting device 1 modulates transmission data acquired from a higher-level device (not shown) (step S101).
- the modulator 11 outputs a modulated signal, which is a modulated signal, to the spectrum spreader 12 .
- the spectrum spreading unit 12 performs spectrum spreading on the modulated signal output by the modulating unit 11 (step S102).
- the spectrum spreader 12 outputs the signal after spectrum spreading to the frame generator 14 .
- the preamble generation unit 13 performs spectrum spreading on the known preamble signal using a method different from that of the spectrum spreading unit 12, and generates a preamble (step S103).
- the preamble generation unit 13 outputs the generated preamble to the frame generation unit 14.
- the frame generator 14 frames the data output by the spectrum spreader 12 and the preamble output by the preamble generator 13 (step S104).
- the frame generation unit 14 outputs the framed signal to the transmission filter 15.
- the transmission filter 15 performs band limitation on the signal after framing (step S105).
- the transmission filter 15 outputs the band-limited signal to the transmission antenna 16.
- the transmitting antenna 16 transmits the signal output by the transmitting filter 15 (step S106).
- FIG. 8 is a flowchart for explaining the operation of the receiving device 2 shown in FIG. 4.
- the receiving antenna 21 of the receiving device 2 receives the signal transmitted from the transmitting device 1 (step S201).
- the receiving antenna 21 outputs the received signal to the receiving filter 22.
- the reception filter 22 performs filter processing on the reception signal output by the reception antenna 21 (step S202).
- the reception filter 22 outputs the filtered signal to the initial synchronization section 23, the frame synchronization section 24, and the frequency offset correction section 26.
- the initial synchronization unit 23 performs initial synchronization based on the signal output by the reception filter 22 (step S203). Details of step S203 will be described later.
- the initial synchronization unit 23 outputs to the frame synchronization unit 24 a rough estimation result of the spreading code timing generated by the initial synchronization and a rough estimation result of the frequency offset amount.
- the frame synchronization unit 24 performs frame synchronization to synchronize frame timing with respect to the signal output from the reception filter 22, based on the rough estimation result of the spreading code timing output from the initial synchronization unit 23 (step S204).
- the frame synchronization unit 24 outputs the frame timing estimation result, the spreading code timing rough estimation result, and the frequency offset amount estimation result to the fine synchronization unit 25.
- the fine synchronization unit 25 corrects the error included in the rough estimation result of the spreading code timing and the rough estimation result of the frequency offset amount based on the frame timing output from the frame synchronization unit 24, and corrects the error included in the rough estimation result of the spreading code timing and the frequency offset amount. Precise synchronization is performed to estimate more accurately than the initial synchronization unit 23 (step S205).
- the precise synchronization unit 25 outputs the estimation result of the spreading code timing to the despreading unit 27 and outputs the estimation result of the frequency offset amount to the frequency offset correction unit 26.
- the frequency offset correction unit 26 corrects the frequency offset of the signal output by the reception filter 22 based on the estimation result of the frequency offset amount output by the fine synchronization unit 25 (step S206).
- the frequency offset correction section 26 outputs the corrected signal to the despreading section 27.
- the despreading unit 27 performs despreading on the frequency offset corrected signal output from the frequency offset correction unit 26 based on the estimation result of the spreading code timing output from the precision synchronization unit 25 (step S207). .
- the despreader 27 outputs the despread signal to the demodulator 28 .
- the demodulator 28 demodulates the despread signal output from the despreader 27 (step S208).
- FIG. 9 is a flowchart for explaining the detailed operation of the initial synchronization shown in FIG. 8.
- the first correlation value calculation unit 232 of the initial synchronization unit 23 calculates a first correlation value (step S301).
- the first correlation value calculation unit 232 outputs the calculated first correlation value to the power value calculation unit 233.
- the power value calculation unit 233 calculates the power value by squaring the first correlation value (step S302).
- the power value calculation unit 233 outputs the calculated power value to the averaging unit 234.
- the averaging unit 234 averages the power value output by the power value calculation unit 233 with the power value at the same sample timing of the previous symbol (step S303).
- the averaging unit 234 stores the averaged power value in the correlation power memory 235.
- the correlation power memory 235 stores the averaged power value from the averaging unit 234 (step S304).
- the threshold determination unit 236 performs threshold determination at the first timing n1 at which the first correlation value reaches a peak, based on the power value stored in the correlation power memory 235 (step S305). Specifically, the threshold determination unit 236 extracts the maximum power value from among the plurality of power values for one period of the spreading code stored in the correlation power memory 235, and sets the extracted maximum power value and the threshold value. compare. If the maximum power value exceeds the threshold, the threshold determination unit 236 outputs the sample timing corresponding to the maximum power value to the rough estimation unit 240 and the search range calculation unit 237 as the first timing n1.
- the search range calculation unit 237 calculates the search range based on the first timing n1 output by the threshold determination unit 236 (step S306).
- the search range calculation unit 237 outputs the calculated search range to the second timing detection unit 238.
- the second correlation value calculation unit 239 of the second timing detection unit 238 calculates a second correlation value by limiting the time range to the search range output by the search range calculation unit 237 (step S307). Specifically, the second correlation value calculation unit 239 calculates the second correlation value from the symbol corresponding to the maximum power value determined by the threshold value determination unit 236 to exceed the threshold value. The second correlation value calculation unit 239 outputs the calculated second correlation value to the power value calculation unit 233a.
- the power value calculation unit 233a calculates the power value by squaring the second correlation value output by the second correlation value calculation unit 239 (step S308).
- the power value calculation unit 233a outputs the calculated power value to the averaging unit 234a.
- the averaging unit 234a averages the power value output by the power value calculation unit 233a with the power value at the same sample timing of the previous symbol (step S309).
- the averaging unit 234a stores the averaged power value in the correlation power memory 235a.
- the correlation power memory 235a stores the averaged power value from the averaging unit 234a (step S310).
- the threshold determination unit 236a performs threshold determination at the second timing n2 when the second correlation value reaches its peak, based on the power value stored in the correlation power memory 235a (step S311). Specifically, the threshold determination unit 236a extracts the maximum power value from among the power values for one period of the spreading code stored in the correlation power memory 235a, and compares the extracted maximum power value with a threshold value. . If the maximum power value exceeds the threshold, the threshold determination unit 236a outputs the sample timing corresponding to the maximum power value to the rough estimation unit 240 as the second timing n2.
- the rough timing estimation unit 241 of the rough estimation unit 240 performs rough estimation of the spreading code timing based on the first timing n1 and the second timing n2 (step S312).
- the rough timing estimation section 241 outputs the result of rough estimation of the spreading code timing to the frame synchronization section 24 .
- the frequency offset coarse estimator 242 of the coarse estimator 240 roughly estimates the frequency offset amount based on the first timing n1 and the second timing n2 (step S313).
- the frequency offset rough estimator 242 outputs the rough estimation result of the frequency offset amount to the frame synchronizer 24.
- the receiving antenna 21 is realized by an antenna device.
- the reception filter 22 is realized by a filter circuit.
- the initial synchronization section 23, frame synchronization section 24, fine synchronization section 25, frequency offset correction section 26, despreading section 27, and demodulation section 28 are realized by processing circuits.
- the processing circuit may be a processor and memory that executes a program stored in memory, or may be dedicated hardware.
- the processing circuit is also called a control circuit.
- FIG. 10 is a diagram showing an example of the configuration of the processing circuit 90 when the processing circuit included in the receiving device 2 shown in FIG. 4 is implemented by the processor 91 and the memory 92.
- a processing circuit 90 shown in FIG. 10 is a control circuit and includes a processor 91 and a memory 92.
- each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware.
- Software or firmware is written as a program and stored in memory 92.
- each function is realized by a processor 91 reading and executing a program stored in a memory 92.
- the processing circuit 90 includes a memory 92 for storing a program by which the processing of the receiving device 2 is executed as a result.
- This program can also be said to be a program for causing the receiving device 2 to execute each function realized by the processing circuit 90.
- This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
- the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
- the memory 92 may be a nonvolatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs).
- FIG. 11 is a diagram showing an example of the processing circuit 93 in the case where the processing circuit included in the receiving device 2 shown in FIG. 4 is configured with dedicated hardware.
- the processing circuit 93 shown in FIG. 11 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. applicable.
- a part may be realized by dedicated hardware, and a part may be realized by software or firmware. In this way, the processing circuit can implement each of the above-mentioned functions using dedicated hardware, software, firmware, or a combination thereof.
- the transmitting antenna 16 is realized by an antenna device.
- the transmission filter 15 is realized by a filter circuit.
- the modulator 11, spectrum spreader 12, preamble generator 13, and frame generator 14 are realized by processing circuits.
- the processing circuit may be a processor and memory that executes a program stored in memory, or may be dedicated hardware.
- each of the plurality of functional blocks shown in FIG. 2 and FIGS. 4 and 5 does not necessarily need to be realized by one processing circuit.
- the functions of a plurality of functional blocks may be realized by one processing circuit, or the functions of one functional block may be realized by a plurality of processing circuits.
- the preamble generation unit 13 of the transmitting device 1 spreads the spectrum of the first preamble transmitted initially using the first chirp signal, and A second preamble transmitted after the first preamble is subjected to spectrum spreading using a second chirp signal that is a different chirp signal from the first chirp signal.
- the first timing detection section 231 of the initial synchronization section 23 first calculates a first correlation value, which is the value of the cross-correlation function between the first chirp signal and the received signal, and calculates the first correlation value.
- a first timing n1 at which the correlation value reaches a peak is detected.
- the search range calculation unit 237 of the initial synchronization unit 23 calculates a range for calculating a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal, based on the detected first timing n1. Calculate the search range that is .
- the second timing detection unit 238 calculates the second correlation value within the search range, and detects the second timing n2 at which the second correlation value reaches its peak.
- the coarse estimation section 240 of the initial synchronization section 23 obtains a coarse estimation result of the spreading code timing based on the first timing n1 and the second timing n2.
- the calculation range in the second timing detection section 238 is limited to the search range, so by using two types of chirp signals, frequency offset resistance is improved and the amount of calculations in the initial synchronization section 23 is reduced. be able to. Therefore, it is possible to reduce the scale of the circuit for realizing the initial synchronization section 23.
- the initial synchronization unit 23 further includes a frequency offset coarse estimating unit 242 that obtains a rough estimation result of the frequency offset amount with respect to the transmitting device 1 based on the first timing n1 and the second timing n2. This makes it possible to obtain a rough estimation result of the frequency offset amount while reducing the amount of calculation by the initial synchronization unit 23.
- the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
- the down chirp signal is used, the present embodiment is not limited to such an example. It is sufficient that the first chirp signal and the second chirp signal are different chirp signals.
- the different chirp signals may be chirp signals that differ in at least one of the slope of frequency change over time, the minimum frequency fmin, and the maximum frequency fmax.
- the first preamble may be an up-chirp signal and the second preamble may be a down-chirp signal, or the first preamble may be a down-chirp signal and the second preamble may be an up-chirp signal.
- both the first preamble and the second preamble may be up-chirp signals, or both the first preamble and the second preamble may be down-chirp signals.
- the search range calculation unit 237 of the initial synchronization unit 23 calculates the search range based on the absolute value of the maximum offset amount assumed in the environment in which it is used and the first timing n1.
- the method for determining the search range is not limited to this example.
- the search range calculation unit 237 may determine the search range by considering the amount of delay of delayed waves. This makes it possible to improve the accuracy of initial synchronization in a multipath environment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
This receiver device is characterized by comprising an initial synchronization unit (23) that includes a first timing detecting unit (231), a search range calculating unit (237), a second timing detecting unit (238) and a timing coarse estimation unit (241). The first timing detecting unit (231) comprises a first correlation value calculating unit (232) for calculating a first correlation value that is the value of a cross-correlation function between a received signal, which includes a first preamble having been spectrally spread with a first chirp signal and a second preamble having been spectrally spread with a second chirp signal, and the first chirp signal, the first timing detecting unit (231) detecting a first timing at which the first correlation value peaks. The search range calculating unit (237) calculates a search range on the basis of the first timing. The second timing detecting unit (238) comprises a second correlation value calculating unit (239) for calculating a second correlation value strictly for the search range, and detects a second timing at which the second correlation value peaks. The timing coarse estimation unit (241) determines, on the basis of the first timing and the second timing, a coarse estimation result of a spreading code timing of multiplication by a spreading code in the transmitter device.
Description
本開示は、受信装置、通信システム、制御回路、記憶媒体および通信方法に関する。
The present disclosure relates to a receiving device, a communication system, a control circuit, a storage medium, and a communication method.
同一の周波数帯で異なる複数の無線通信システムが運用される環境では、チャネル干渉への対策が必要になる。例えば、ISM(Industry Science Medical)帯と呼ばれる周波数帯は、工業、学術、医療を目的に開放されており、免許不要で利用することができるため、複数の異なる無線通信システムにおいて利用される。近年、IoT(Internet of Things)およびM2M(Machine to Machine)向けの無線通信技術として注目を集めているLPWA(Low Power Wide Area)の無線通信規格であるLoRa(登録商標)(Long Range)、SIGFOX(登録商標)、Wi-SUN(登録商標)(Wireless Smart Utility Network)などは、ISM帯を利用している。ISM帯を利用する場合のように、同一の周波数帯で異なる複数の無線通信システムが運用される環境において、耐干渉性、耐妨害性、通信の秘匿性などに優れる直接スペクトル拡散を適用することは有効である。以下、直接スペクトル拡散のことをDS-SS(Direct Sequence Spread Spectrum)と称することがある。
In an environment where multiple different wireless communication systems are operated in the same frequency band, countermeasures against channel interference are required. For example, a frequency band called the ISM (Industry Science Medical) band is open for industrial, academic, and medical purposes and can be used without a license, so it is used in a plurality of different wireless communication systems. In recent years, LoRa (registered trademark) (Long Range) and SIGFOX are LPWA (Low Power Wide Area) wireless communication standards that have been attracting attention as wireless communication technologies for IoT (Internet of Things) and M2M (Machine to Machine). (registered trademark), Wi-SUN (registered trademark) (Wireless Smart Utility Network), etc. use the ISM band. Applying direct spread spectrum, which has excellent interference resistance, jamming resistance, and communication confidentiality, in environments where multiple different wireless communication systems operate in the same frequency band, such as when using the ISM band. is valid. Hereinafter, direct spread spectrum may be referred to as DS-SS (Direct Sequence Spread Spectrum).
DS-SS方式では、受信側で逆拡散を行うために、送信装置で送信情報に拡散符号が乗算されたタイミングを同期する必要がある。DS-SS方式のタイミング同期の方法として、初期同期によって送受信間の拡散符号の時間ずれを、例えば、1/2チップ以内の精度で粗同期した後、精タイミング同期によって残留したタイミング誤差を高精度に補正する方法が一般的に使用される。
In the DS-SS system, in order to perform despreading on the receiving side, it is necessary to synchronize the timing at which the transmission information is multiplied by the spreading code at the transmitter. As a method of timing synchronization in the DS-SS system, initial synchronization is used to coarsely synchronize the time difference of the spreading code between transmission and reception, for example, within 1/2 chip, and then fine timing synchronization is used to synchronize the remaining timing error with high precision. A method of correcting is generally used.
DS-SS方式の初期同期では、逆拡散前の広い周波数帯域に拡散された信号に対して同期処理が行われる。このため、低SNR(Signal-to-Noise Ratio)で高精度に同期できることが重要となる。また、送信装置および受信装置の局部発信機の精度が低い場合、送受信間の周波数オフセットが大きくなってしまう。例えば、IoTおよびM2Mの分野では、多数の端末に通信機器を搭載する必要がある場合に、安価な局部発信機を使用することがあり、この場合、局部発信機の精度が低く、周波数オフセットが大きくなってしまう。この場合、初期同期は周波数同期の前段で行われるため、著しく精度が低下し、同期を行うことが困難となることもある。
In the initial synchronization of the DS-SS method, synchronization processing is performed on signals spread over a wide frequency band before despreading. Therefore, it is important to be able to synchronize with high precision at a low SNR (Signal-to-Noise Ratio). Furthermore, if the accuracy of the local oscillators of the transmitting device and the receiving device is low, the frequency offset between transmitting and receiving becomes large. For example, in the fields of IoT and M2M, when a large number of terminals need to be equipped with communication equipment, inexpensive local oscillators may be used, and in this case, the accuracy of the local oscillator is low and the frequency offset is high. It gets bigger. In this case, since the initial synchronization is performed before frequency synchronization, the accuracy decreases significantly and it may become difficult to perform synchronization.
非特許文献1では、時間とともに周波数が線形変化する2種類のチャープ信号を用いてプリアンブルを半分ずつスペクトル拡散し、同期側では、2つの系列の相関ピークの中間値を検出することで、送信装置において拡散符号が乗算されたタイミングである拡散符号タイミングを捕捉する技術が開示されている。この技術によれば、1種類のチャープ信号を使用してプリアンブルをスペクトル拡散する場合と比較して、周波数オフセット耐性を向上させることが可能になる。
In Non-Patent Document 1, two types of chirp signals whose frequencies change linearly over time are used to spread the spectrum of the preamble by half, and on the synchronization side, by detecting the intermediate value of the correlation peaks of the two sequences, the transmitter A technique is disclosed for capturing the spreading code timing, which is the timing at which the spreading code is multiplied. According to this technique, it is possible to improve frequency offset tolerance compared to the case where a preamble is spread spectrum using one type of chirp signal.
しかしながら、上記の非特許文献1に開示された技術では、2つのチャープ信号を用いて同じ長さのプリアンブルをスペクトル拡散し、同期側では2つのチャープ信号のそれぞれを独立にタイミング検出することから、初期同期の演算量が増大するという問題があった。
However, in the technique disclosed in Non-Patent Document 1 mentioned above, two chirp signals are used to spread the spectrum of preambles of the same length, and the timing of each of the two chirp signals is independently detected on the synchronization side. There was a problem that the amount of calculation for initial synchronization increased.
本開示は、上記に鑑みてなされたものであって、周波数オフセット耐性を向上させつつ、初期同期の演算量の増大を抑制することが可能な受信装置を得ることを目的とする。
The present disclosure has been made in view of the above, and aims to provide a receiving device that can suppress an increase in the amount of calculation for initial synchronization while improving frequency offset resistance.
上述した課題を解決し、目的を達成するために、本開示にかかる受信装置は、第1のチャープ信号でスペクトル拡散された第1のプリアンブルと、第1のプリアンブルよりも後に送信され、第1のチャープ信号と異なる第2のチャープ信号でスペクトル拡散された第2のプリアンブルとを含む受信信号と第1のチャープ信号との相互相関関数の値である第1の相関値を計算する第1の相関値計算部を有し、第1の相関値がピークとなる第1のタイミングを検出する第1のタイミング検出部と、第1のタイミングに基づいて、第2のチャープ信号と受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算するサーチ範囲計算部と、サーチ範囲に限定して、第2の相関値を計算する第2の相関値計算部を有し、第2の相関値がピークとなる第2のタイミングを検出する第2のタイミング検出部と、第1のタイミングと第2のタイミングとに基づいて、受信信号を送信した送信装置において拡散符号が乗算された拡散符号タイミングの粗推定結果を求めるタイミング粗推定部と、を有する初期同期部を備えることを特徴とする。
In order to solve the above problems and achieve the objective, a receiving device according to the present disclosure includes a first preamble whose spectrum is spread by a first chirp signal, a first preamble that is transmitted after the first preamble, and a first preamble that is transmitted after the first preamble. and a second preamble spread spectrum with a different second chirp signal. a first timing detection section that includes a correlation value calculation section and detects a first timing at which the first correlation value peaks; and a first timing detection section that detects a first timing at which the first correlation value peaks; a search range calculation unit that calculates a search range that is a range for calculating a second correlation value that is a value of a cross-correlation function; and a second correlation value calculation unit that calculates a second correlation value limited to the search range. a second timing detection section that detects a second timing at which the second correlation value peaks; and a transmitting device that transmits a received signal based on the first timing and the second timing. The method is characterized by comprising an initial synchronization section having a rough timing estimating section that obtains a rough estimation result of the spreading code timing multiplied by the spreading code.
本開示にかかる受信装置は、周波数オフセット耐性を向上させつつ、初期同期の演算量の増大を抑制することが可能であるという効果を奏する。
The receiving device according to the present disclosure has the effect that it is possible to suppress an increase in the amount of calculation for initial synchronization while improving frequency offset resistance.
以下に、本開示の実施の形態にかかる受信装置、通信システム、制御回路、記憶媒体および通信方法を図面に基づいて詳細に説明する。
Below, a receiving device, a communication system, a control circuit, a storage medium, and a communication method according to embodiments of the present disclosure will be described in detail based on the drawings.
実施の形態1.
図1は、実施の形態1にかかる通信システム3の構成を示す図である。通信システム3は、送信装置1と、受信装置2とを有する。通信システム3は、送信装置1と受信装置2との間で、無線信号による通信を行う。また通信システム3は、経時的に周波数が線形変化するチャープ信号を用いて信号を元の周波数帯よりも広範囲に拡散する直接スペクトル拡散を用いる。 Embodiment 1.
FIG. 1 is a diagram showing the configuration of acommunication system 3 according to the first embodiment. The communication system 3 includes a transmitting device 1 and a receiving device 2. The communication system 3 performs communication between the transmitting device 1 and the receiving device 2 using wireless signals. Further, the communication system 3 uses direct spectrum spreading, which uses a chirp signal whose frequency changes linearly over time to spread the signal over a wider range than the original frequency band.
図1は、実施の形態1にかかる通信システム3の構成を示す図である。通信システム3は、送信装置1と、受信装置2とを有する。通信システム3は、送信装置1と受信装置2との間で、無線信号による通信を行う。また通信システム3は、経時的に周波数が線形変化するチャープ信号を用いて信号を元の周波数帯よりも広範囲に拡散する直接スペクトル拡散を用いる。 Embodiment 1.
FIG. 1 is a diagram showing the configuration of a
図2は、図1に示す送信装置1の機能構成を示す図である。送信装置1は、変調部11と、スペクトル拡散部12と、プリアンブル生成部13と、フレーム生成部14と、送信フィルタ15と、送信アンテナ16とを有する。
FIG. 2 is a diagram showing the functional configuration of the transmitting device 1 shown in FIG. 1. The transmitter 1 includes a modulator 11 , a spectrum spreader 12 , a preamble generator 13 , a frame generator 14 , a transmit filter 15 , and a transmit antenna 16 .
変調部11は、図示しない上位装置から取得した送信データを変調することによってデータの変調信号を生成する。変調部11は、変調方式として、例えばPSK(Phase Shift Keying)を用いることができる。変調部11は、生成した変調信号をスペクトル拡散部12へ出力する。
The modulation unit 11 generates a data modulation signal by modulating transmission data acquired from a higher-level device (not shown). The modulator 11 can use, for example, PSK (Phase Shift Keying) as a modulation method. Modulating section 11 outputs the generated modulated signal to spectrum spreading section 12 .
スペクトル拡散部12は、変調部11が出力した変調信号に対してチャープ信号を拡散符号として用いて直接スペクトル拡散を行う。スペクトル拡散部12が拡散符号として用いるチャープ信号の一例としては、Zadoff-Chu系列が挙げられる。符号長Ncが偶数である場合、Zadoff-Chu系列Cのt番目の要素であるC(t)は、以下の数式(1)で表される。スペクトル拡散部12は、例えば、数式(1)のM=3として生成可能なZadoff-Chu系列C(t)を用いることができる。
The spectrum spreading unit 12 directly performs spectrum spreading on the modulated signal output by the modulating unit 11 using the chirp signal as a spreading code. An example of a chirp signal used by the spectrum spreader 12 as a spreading code is the Zadoff-Chu sequence. When the code length Nc is an even number, C(t), which is the t-th element of the Zadoff-Chu sequence C, is expressed by the following equation (1). The spectrum spreading unit 12 can use, for example, the Zadoff-Chu sequence C(t) that can be generated with M=3 in equation (1).
数式(1)のMは系列パラメータであり、Ncと互いに素な関係にある。また、Mは系列長Ncでの最小周波数fminから最大周波数fmaxまでの増加回数を示す。M=1の場合、系列長Ncにおいて、最小周波数fminから最大周波数fmaxまで周波数が1回増加する。M=2の場合、系列長Ncにおいて、最小周波数fminから最大周波数fmaxまで周波数が増加した後、さらに最小周波数fminから最大周波数fmaxまで周波数が増加する。すなわち、M=2の場合、系列長Ncにおいて、最小周波数fminから最大周波数fmaxまで周波数が2回増加する。一方、M=-1の場合、Ncにおいて、最大周波数fmaxから最小周波数fminまで周波数が1回減少する。スペクトル拡散部12は、スペクトル拡散を行った信号をフレーム生成部14へ出力する。以降の説明において、スペクトル拡散部12で生成された信号をデータと称することがある。
M in formula (1) is a series parameter and has a coprime relationship with Nc. Further, M indicates the number of increases from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc. When M=1, the frequency increases once from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc. When M=2, in the sequence length Nc, the frequency increases from the minimum frequency fmin to the maximum frequency fmax, and then further increases from the minimum frequency fmin to the maximum frequency fmax. That is, when M=2, the frequency increases twice from the minimum frequency fmin to the maximum frequency fmax in the sequence length Nc. On the other hand, when M=-1, the frequency decreases once from the maximum frequency fmax to the minimum frequency fmin at Nc. The spectrum spreading unit 12 outputs the signal subjected to spectrum spreading to the frame generating unit 14. In the following description, the signal generated by the spectrum spreader 12 may be referred to as data.
プリアンブル生成部13は、既知のプリアンブル信号に対してスペクトル拡散を行い、プリアンブルを生成する。プリアンブル生成部13は、スペクトル拡散部12が送信データをスペクトル拡散する方法と異なる方法でスペクトル拡散を行う。プリアンブル生成部13は、変調部131と、スペクトル拡散部132とを有する。以降の説明において、プリアンブル生成部13で生成された信号をプリアンブルと称することがある。
The preamble generation unit 13 performs spectrum spreading on a known preamble signal to generate a preamble. The preamble generation unit 13 performs spectrum spreading using a method different from the method in which the spectrum spreading unit 12 spreads the spectrum of transmission data. Preamble generation section 13 includes a modulation section 131 and a spectrum spreading section 132. In the following description, the signal generated by the preamble generation unit 13 may be referred to as a preamble.
変調部131は、変調部11と同様な方法で、既知のプリアンブル信号を変調する。例えば、既知のプリアンブル信号としては、0,0,0,0,・・・のように同じ値の信号を用いることができる。変調部131は、変調方式として、例えばQPSK(Quadrature Phase Shift Keying)を用いる。変調部131は、変調した信号をスペクトル拡散部132へ出力する。以降の説明において、変調部131で変調された変調信号の1要素をシンボルと称することがある。
The modulation unit 131 modulates the known preamble signal in the same manner as the modulation unit 11. For example, as the known preamble signal, signals having the same value such as 0, 0, 0, 0, . . . can be used. The modulator 131 uses, for example, QPSK (Quadrature Phase Shift Keying) as a modulation method. Modulating section 131 outputs the modulated signal to spectrum spreading section 132 . In the following description, one element of the modulated signal modulated by modulation section 131 may be referred to as a symbol.
スペクトル拡散部132は、変調部131が出力する変調信号に対して、チャープ信号を拡散符号として用いて直接スペクトル拡散を行う。具体的には、スペクトル拡散部132が使用するチャープ信号は、アップチャープ信号またはダウンチャープ信号である。アップチャープ信号は、時間とともに周波数が増加する信号のことであり、本実施の形態では、スペクトル拡散部132が使用するアップチャープ信号は、上記の数式(1)のMの値を1として生成されるZadoff-Chu系列に対応する信号とする。また、ダウンチャープ信号は、時間とともに周波数が減少する信号のことであり、本実施の形態では、スペクトル拡散部132が使用するダウンチャープ信号は、上記の数式(1)のMの値を-1として生成されるZadoff-Chu系列に対応する信号とする。
The spectrum spreading unit 132 directly performs spectrum spreading on the modulated signal output by the modulating unit 131 using the chirp signal as a spreading code. Specifically, the chirp signal used by the spectrum spreader 132 is an up-chirp signal or a down-chirp signal. An up-chirp signal is a signal whose frequency increases with time, and in this embodiment, the up-chirp signal used by the spectrum spreader 132 is generated with the value of M in the above formula (1) set to 1. The signal corresponds to the Zadoff-Chu sequence. Further, a down-chirp signal is a signal whose frequency decreases over time, and in this embodiment, the down-chirp signal used by the spectrum spreading section 132 is a signal whose frequency decreases by -1 in the above formula (1). The signal corresponds to the Zadoff-Chu sequence generated as follows.
スペクトル拡散部132は、2種類のプリアンブルのそれぞれを異なるチャープ信号で拡散する。2種類のプリアンブルのうち、先に送信されるプリアンブルを第1のプリアンブルと称し、第1のプリアンブルの後に送信されるプリアンブルを第2のプリアンブルと称する。第1のプリアンブルを拡散する際に使用されるチャープ信号を第1のチャープ信号と称し、第2のプリアンブルを拡散する際に使用されるチャープ信号を第2のチャープ信号と称する。第2のチャープ信号は、第1のチャープ信号と異なるチャープ信号である。ここでは、第1のチャープ信号はアップチャープ信号であり、第2のチャープ信号はダウンチャープ信号であることとする。スペクトル拡散部132は、第1のプリアンブルに対して第1のチャープ信号であるアップチャープ信号でスペクトル拡散を行い、第2のプリアンブルに対して第2のチャープ信号であるダウンチャープ信号でスペクトル拡散を行う。スペクトル拡散部132は、スペクトル拡散後の信号をフレーム生成部14へ出力する。
The spectrum spreading unit 132 spreads each of the two types of preambles with a different chirp signal. Of the two types of preambles, the preamble that is transmitted first is referred to as a first preamble, and the preamble that is transmitted after the first preamble is referred to as a second preamble. The chirp signal used when spreading the first preamble is called a first chirp signal, and the chirp signal used when spreading the second preamble is called a second chirp signal. The second chirp signal is a different chirp signal from the first chirp signal. Here, the first chirp signal is an up-chirp signal, and the second chirp signal is a down-chirp signal. The spectrum spreading unit 132 performs spectrum spreading on the first preamble using an up-chirp signal, which is a first chirp signal, and spread spectrum on the second preamble using a down-chirp signal, which is a second chirp signal. conduct. The spectrum spreading unit 132 outputs the signal after spectrum spreading to the frame generating unit 14.
フレーム生成部14は、スペクトル拡散部12が出力するスペクトル拡散後のデータと、プリアンブル生成部13が出力するスペクトル拡散後のプリアンブルとをフレーミングする。図3は、図2に示すフレーム生成部14によるフレーミング後の信号の一例を示す図である。フレーミング後の信号は、第1のプリアンブルと、第1のプリアンブルよりも後に送信される第2のプリアンブルと、データとを含む。第1のプリアンブルはアップチャープ信号によるスペクトル拡散であるアップチャープ拡散を実施されており、第2のプリアンブルは、ダウンチャープ信号によるスペクトル拡散であるダウンチャープ拡散を実施されている。なお、第2のプリアンブルの長さは、第1のプリアンブルの長さと同等としたり、伝搬環境や要求条件によっては第1のプリアンブルの長さよりも短くすることができる。フレーム生成部14は、フレーミング後の信号を、順次、送信フィルタ15へ出力する。
The frame generation unit 14 frames the spectrum-spread data output from the spectrum spread unit 12 and the spectrum-spread preamble output from the preamble generation unit 13. FIG. 3 is a diagram showing an example of a signal after framing by the frame generation unit 14 shown in FIG. 2. The framed signal includes a first preamble, a second preamble transmitted after the first preamble, and data. The first preamble is subjected to up-chirp spreading, which is spectrum spreading using an up-chirp signal, and the second preamble is subjected to down-chirp spreading, which is spectrum spreading using a down-chirp signal. Note that the length of the second preamble can be equal to the length of the first preamble, or can be shorter than the length of the first preamble depending on the propagation environment and requirements. The frame generation unit 14 sequentially outputs the framed signals to the transmission filter 15.
送信フィルタ15は、フレーム生成部14が出力するフレーミング後の信号に対して、帯域制限を行う。送信フィルタ15は、帯域制限された複数の信号のそれぞれを送信アンテナ16へ出力する。
The transmission filter 15 performs band limitation on the framed signal output by the frame generation unit 14. The transmission filter 15 outputs each of the plurality of band-limited signals to the transmission antenna 16.
送信アンテナ16は、送信フィルタ15が出力する帯域制限後の複数の信号のそれぞれを送信する。送信アンテナ16は、受信装置2に向けて信号を無線送信する。
The transmitting antenna 16 transmits each of the plurality of band-limited signals output by the transmitting filter 15. The transmitting antenna 16 wirelessly transmits a signal toward the receiving device 2 .
図4は、図1に示す受信装置2の機能構成を示す図である。受信装置2は、受信アンテナ21と、受信フィルタ22と、初期同期部23と、フレーム同期部24と、精同期部25と、周波数オフセット補正部26と、逆拡散部27と、復調部28とを有する。
FIG. 4 is a diagram showing the functional configuration of the receiving device 2 shown in FIG. 1. The receiving device 2 includes a receiving antenna 21, a receiving filter 22, an initial synchronization section 23, a frame synchronization section 24, a fine synchronization section 25, a frequency offset correction section 26, a despreading section 27, and a demodulation section 28. has.
受信アンテナ21は、無線信号を受信する。受信アンテナ21で受信される信号である受信信号は、送信装置1から送信された信号である。受信アンテナ21は、受信信号を受信フィルタ22へ出力する。
The receiving antenna 21 receives wireless signals. A received signal, which is a signal received by the receiving antenna 21, is a signal transmitted from the transmitting device 1. The receiving antenna 21 outputs the received signal to the receiving filter 22.
受信フィルタ22は、受信アンテナ21が出力する受信信号に対してフィルタ処理を行う。受信フィルタ22は、フィルタ処理後の信号を初期同期部23、フレーム同期部24および周波数オフセット補正部26のそれぞれへ出力する。
The reception filter 22 performs filter processing on the reception signal output by the reception antenna 21. The reception filter 22 outputs the filtered signal to the initial synchronization section 23, the frame synchronization section 24, and the frequency offset correction section 26, respectively.
初期同期部23は、受信フィルタ22が出力するフィルタ処理後の信号に基づいて、初期同期を行う。本実施の形態において、初期同期部23は、送信装置1において拡散符号が乗算されたタイミングである拡散符号タイミングの粗推定と、送信装置1と受信装置2との間の局部発信機の周波数ずれにより発生する周波数オフセット量の粗推定とを行う。周波数オフセット量の粗推定とは、後述する精同期部25による周波数オフセット量の推定精度と比較して、粗い精度で行う周波数オフセット量の推定のことを指す。初期同期部23は、拡散符号タイミングの粗推定結果と、周波数オフセット量の粗推定結果とを、フレーム同期部24へ出力する。初期同期部23の詳細な構成および動作については後述する。
The initial synchronization unit 23 performs initial synchronization based on the filtered signal output by the reception filter 22. In this embodiment, the initial synchronization unit 23 roughly estimates the spreading code timing, which is the timing at which the spreading code is multiplied in the transmitting device 1, and the frequency shift of the local oscillator between the transmitting device 1 and the receiving device 2. A rough estimate of the amount of frequency offset generated is performed. The coarse estimation of the amount of frequency offset refers to estimation of the amount of frequency offset performed with coarse accuracy compared to the estimation accuracy of the amount of frequency offset by the fine synchronization unit 25 described later. The initial synchronization unit 23 outputs the rough estimation result of the spreading code timing and the rough estimation result of the frequency offset amount to the frame synchronization unit 24. The detailed configuration and operation of the initial synchronization unit 23 will be described later.
フレーム同期部24は、初期同期部23が出力する拡散符号タイミングの粗推定結果に基づいて、フレームのタイミングを同期するフレーム同期を行う。フレーム同期部24は、拡散符号タイミングの粗推定結果と、周波数オフセット量の粗推定結果と、フレームタイミングの推定結果とを精同期部25へ出力する。
The frame synchronization unit 24 performs frame synchronization to synchronize frame timing based on the rough estimation result of the spreading code timing output by the initial synchronization unit 23. The frame synchronization unit 24 outputs the coarse estimation result of the spreading code timing, the rough estimation result of the frequency offset amount, and the estimation result of the frame timing to the fine synchronization unit 25.
精同期部25は、フレーム同期部24が出力するフレームタイミングに基づいて、残留した拡散符号タイミングの誤差と周波数オフセット量とを補正することによって、拡散符号タイミングと周波数オフセットとを初期同期部23よりも高精度に推定する。精同期部25は、例えば、AFC(Automatic Frequency Control)と呼ばれる回路を使用して、初期同期部23よりも高精度な同期処理を行う。精同期部25は、周波数オフセット量の推定結果を周波数オフセット補正部26へ出力し、拡散符号タイミングの推定結果を逆拡散部27へ出力する。
The fine synchronization unit 25 corrects the residual spread code timing error and frequency offset amount based on the frame timing output from the frame synchronization unit 24, thereby adjusting the spread code timing and frequency offset from the initial synchronization unit 23. It also estimates with high accuracy. The precise synchronization unit 25 uses, for example, a circuit called AFC (Automatic Frequency Control) to perform synchronization processing with higher accuracy than the initial synchronization unit 23. The precision synchronization unit 25 outputs the estimation result of the frequency offset amount to the frequency offset correction unit 26 and outputs the estimation result of the spreading code timing to the despreading unit 27.
周波数オフセット補正部26は、精同期部25が出力する周波数オフセット量の推定結果に基づいて、受信フィルタ22が出力する信号に対して周波数オフセットを補正する。周波数オフセット補正部26は、周波数オフセットを補正後の信号を逆拡散部27へ出力する。
The frequency offset correction unit 26 corrects the frequency offset of the signal output by the reception filter 22 based on the estimation result of the frequency offset amount output by the fine synchronization unit 25. The frequency offset correction section 26 outputs the signal after correcting the frequency offset to the despreading section 27 .
逆拡散部27は、精同期部25が出力する拡散符号タイミングの推定結果に基づいて、周波数オフセット補正部26が出力する周波数オフセットを補正後の信号に対して逆拡散を行う。逆拡散部27は、逆拡散後の信号を復調部28へ出力する。
The despreading unit 27 performs despreading on the frequency offset corrected signal output by the frequency offset correction unit 26 based on the estimation result of the spreading code timing output by the fine synchronization unit 25. The despreader 27 outputs the despread signal to the demodulator 28 .
復調部28は、逆拡散部27が出力する逆拡散後の信号に対して復調処理を行う。
The demodulator 28 performs demodulation processing on the despread signal output from the despreader 27.
続いて、受信装置2の初期同期部23の詳細な構成について説明する。図5は、図4に示す初期同期部23の詳細な機能構成を示す図である。
Next, the detailed configuration of the initial synchronization section 23 of the receiving device 2 will be explained. FIG. 5 is a diagram showing a detailed functional configuration of the initial synchronization section 23 shown in FIG. 4.
初期同期部23は、第1のタイミング検出部231と、サーチ範囲計算部237と、第2のタイミング検出部238と、粗推定部240とを有する。
The initial synchronization section 23 includes a first timing detection section 231, a search range calculation section 237, a second timing detection section 238, and a coarse estimation section 240.
第1のタイミング検出部231は、受信信号と第1のチャープ信号との相互相関関数の値である第1の相関値に基づいて第1のタイミングn1を検出する。第1のタイミングn1は、第1の相関値がピークとなり、且つ、第1の相関値が閾値を超えるタイミングである。第1のタイミング検出部231は、第1の相関値計算部232と、電力値計算部233と、平均化部234と、相関電力メモリ235と、閾値判定部236とを有する。
The first timing detection section 231 detects the first timing n1 based on the first correlation value, which is the value of the cross-correlation function between the received signal and the first chirp signal. The first timing n1 is the timing at which the first correlation value reaches its peak and exceeds the threshold value. The first timing detection section 231 includes a first correlation value calculation section 232, a power value calculation section 233, an averaging section 234, a correlation power memory 235, and a threshold determination section 236.
第1の相関値計算部232は、マッチドフィルタにより、受信フィルタ22が出力するフィルタ処理後の受信信号と、送信装置1のプリアンブル生成部13でスペクトル拡散する際に使用した第1のチャープ信号との相互相関関数の値である第1の相関値を計算する。第1の相関値計算部232は、計算した第1の相関値を電力値計算部233へ出力する。
The first correlation value calculation section 232 uses a matched filter to combine the filtered reception signal output by the reception filter 22 with the first chirp signal used when spectrum spreading is performed by the preamble generation section 13 of the transmission device 1. A first correlation value is calculated, which is the value of the cross-correlation function of . The first correlation value calculation unit 232 outputs the calculated first correlation value to the power value calculation unit 233.
電力値計算部233は、第1の相関値計算部232が出力する第1の相関値を2乗することによって電力値を計算する。電力値計算部233は、計算した電力値を平均化部234へ出力する。
The power value calculation unit 233 calculates the power value by squaring the first correlation value output by the first correlation value calculation unit 232. The power value calculation unit 233 outputs the calculated power value to the averaging unit 234.
平均化部234は、電力値計算部233が出力する電力値を、前シンボルの同じサンプルタイミングの電力値と平均化する。本実施の形態では、1シンボル長は拡散符号長Nc×オーバーサンプル数Novsとなり、サンプルタイミングは、k=1~Nc×Novsの1要素とする。平均化部234は、平均化後の電力値を相関電力メモリ235に記憶させる。
The averaging unit 234 averages the power value output by the power value calculation unit 233 with the power value of the previous symbol at the same sample timing. In this embodiment, the length of one symbol is the spreading code length Nc x the number of oversamples Novs, and the sample timing is one element from k=1 to Nc x Novs. The averaging unit 234 stores the averaged power value in the correlation power memory 235.
相関電力メモリ235は、拡散符号長Nc×オーバーサンプル数Novsに相当する数の電力値を保持できるように構成されており、平均化部234が出力する平均化後の電力値を拡散符号長Nc×オーバーサンプル数Novsである1シンボル周期分にわたって記憶する。平均化部234までの処理はサンプル時間単位で動作していた処理が、相関電力メモリ235以降の処理では、シンボル時間単位での動作に変わることになる。
The correlation power memory 235 is configured to hold a number of power values corresponding to the spreading code length Nc x the number of oversamples Novs, and uses the averaged power values output by the averaging section 234 as the spreading code length Nc. It is stored over one symbol period which is x the number of oversamples Novs. The processing up to the averaging unit 234 operates on a sample time basis, but the processing after the correlation power memory 235 changes to operation on a symbol time basis.
閾値判定部236は、相関電力メモリ235に保持される拡散符号1周期分の電力値から、第1のタイミングn1を検出する。具体的には、閾値判定部236は、相関電力メモリ235に保持される拡散符号1周期分の電力値のうち最大となる電力値を検出し、検出した最大電力値と閾値とを比較する。最大電力値が閾値を超えている場合、閾値判定部236は、最大電力値に対応したサンプルタイミングを、第1のタイミングn1として検出し、第1のタイミングn1を、サーチ範囲計算部237および粗推定部240のそれぞれへ出力する。電力値は第1の相関値の2乗であるため、電力値がピークとなるサンプルタイミングにおいて、第1の相関値はピークとなる。また、閾値判定部236は、閾値を超えたシンボル番号を第2のタイミング検出部238へ出力する。
The threshold determination unit 236 detects the first timing n1 from the power value for one period of the spreading code held in the correlation power memory 235. Specifically, the threshold determination unit 236 detects the maximum power value among the power values for one period of the spreading code held in the correlation power memory 235, and compares the detected maximum power value with the threshold. If the maximum power value exceeds the threshold, the threshold determination unit 236 detects the sample timing corresponding to the maximum power value as the first timing n1, and sets the first timing n1 to the search range calculation unit 237 and the rough It is output to each of the estimators 240. Since the power value is the square of the first correlation value, the first correlation value reaches its peak at the sample timing when the power value reaches its peak. Further, the threshold determining section 236 outputs symbol numbers exceeding the threshold to the second timing detecting section 238.
サーチ範囲計算部237は、第1のタイミング検出部231が出力する第1のタイミングn1に基づいて、第2のタイミング検出部238以降で演算を行うタイミングの範囲であるサーチ範囲を計算する。サーチ範囲は、第2のタイミング検出部238が第2のチャープ信号と受信信号との相互相関関数の値である第2の相関値を計算する範囲となる。サーチ範囲計算部237は、使用される環境で想定される最大の周波数オフセット量に基づいて、サーチ範囲を計算することができる。具体的には、サーチ範囲計算部237は、使用される環境で想定される最大の周波数オフセット量の絶対値を|Δfmax|として、|Δfmax|が起こすタイミングオフセット量をΔtmaxとした場合、サーチ範囲を、(n1-2Δtmax)~(n1+2Δtmax)とすることができる。さらに、サーチ範囲計算部237は、遅延波の遅延量を考慮して、サーチ範囲を計算することもできる。例えば、サーチ範囲計算部237は、使用される環境で想定される最大の遅延波の直接波からの遅延量を、直接波からのサンプル数dmaxで表した場合、サーチ範囲を、(n1-2Δtmax-dmax)~(n1+2Δtmax+dmax)とすることができる。サーチ範囲計算部237は、求めたサーチ範囲を第2のタイミング検出部238へ出力する。
The search range calculation unit 237 calculates a search range, which is the range of timings in which calculations are performed in the second timing detection unit 238 and thereafter, based on the first timing n1 output by the first timing detection unit 231. The search range is a range in which the second timing detection section 238 calculates a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal. The search range calculation unit 237 can calculate the search range based on the maximum amount of frequency offset expected in the environment in which the search range is used. Specifically, the search range calculation unit 237 calculates the search range when |Δfmax| is the absolute value of the maximum frequency offset amount expected in the environment in which it is used, and the timing offset amount caused by |Δfmax| is Δtmax. can be set to (n1-2Δtmax) to (n1+2Δtmax). Furthermore, the search range calculation unit 237 can also calculate the search range by taking into account the amount of delay of the delayed wave. For example, when the delay amount from the direct wave of the largest delayed wave expected in the environment in which it is used is expressed as the number of samples from the direct wave dmax, the search range calculation unit 237 calculates the search range as (n1-2Δtmax −dmax) to (n1+2Δtmax+dmax). The search range calculation unit 237 outputs the search range determined to the second timing detection unit 238.
第2のタイミング検出部238は、サーチ範囲計算部237で求められたサーチ範囲に限定して第2の相関値を計算し、第2の相関値に基づいて第2のタイミングn2を検出する。第2のタイミングn2は、第2の相関値がピークとなり、且つ、第2の相関値が閾値を超えるタイミングである。第2のタイミング検出部238は、第2の相関値計算部239と、電力値計算部233aと、平均化部234aと、相関電力メモリ235aと、閾値判定部236aとを有する。
The second timing detection unit 238 calculates a second correlation value limited to the search range determined by the search range calculation unit 237, and detects the second timing n2 based on the second correlation value. The second timing n2 is the timing at which the second correlation value reaches its peak and exceeds the threshold value. The second timing detection section 238 includes a second correlation value calculation section 239, a power value calculation section 233a, an averaging section 234a, a correlation power memory 235a, and a threshold determination section 236a.
第2の相関値計算部239は、マッチドフィルタにより、受信フィルタ22が出力するフィルタ処理後の受信信号と、送信装置1のプリアンブル生成部13でスペクトル拡散する際に使用された第2のチャープ信号との相互相関関数の値である第2の相関値を計算する。第2の相関値計算部239は、第2の相関値を電力値計算部233aへ出力する。
The second correlation value calculation unit 239 uses a matched filter to calculate the received signal output from the reception filter 22 after filter processing and the second chirp signal used when spectrum spreading is performed by the preamble generation unit 13 of the transmission device 1. A second correlation value is calculated, which is the value of the cross-correlation function with. The second correlation value calculation unit 239 outputs the second correlation value to the power value calculation unit 233a.
電力値計算部233aは、第2の相関値計算部239が出力する第2の相関値を2乗することによって電力値を計算する。電力値計算部233aは、計算した電力値を平均化部234aへ出力する。
The power value calculation unit 233a calculates the power value by squaring the second correlation value output by the second correlation value calculation unit 239. The power value calculation unit 233a outputs the calculated power value to the averaging unit 234a.
平均化部234aは、電力値計算部233aが出力する電力値を、前シンボルの同じサンプルタイミングの電力値と平均化する。平均化部234aは、平均化後の電力値を相関電力メモリ235aに記憶させる。
The averaging unit 234a averages the power value output by the power value calculation unit 233a with the power value at the same sample timing of the previous symbol. The averaging unit 234a stores the averaged power value in the correlation power memory 235a.
相関電力メモリ235aは、拡散符号長Nc×オーバーサンプル数Novsに相当する数の電力値を保持できるように構成されており、平均化部234aが出力する平均化後の電力値をNc×オーバーサンプル数Novsである1シンボル周期分にわたって記憶する。平均化部234aまでの処理はサンプル時間単位で動作していた処理が、相関電力メモリ235a以降の処理では、シンボル時間単位での動作に変わることになる。
The correlation power memory 235a is configured to be able to hold a number of power values corresponding to the spreading code length Nc x the number of oversamples Novs, and the averaged power value output by the averaging section 234a is divided into Nc x oversamples. It is stored over one symbol period, which is several Novs. The processing up to the averaging unit 234a operates on a sample time basis, but the processing after the correlation power memory 235a changes to operation on a symbol time basis.
閾値判定部236aは、相関電力メモリ235aに記憶された拡散符号1周期分の電力値から、第2のタイミングn2を検出する。具体的には、閾値判定部236aは、相関電力メモリ235aに保持される拡散符号1周期分の電力値のうち最大となる電力値を検出し、検出した最大電力値と予め定められた閾値とを比較する。最大電力値が閾値を超えている場合、閾値判定部236aは、最大電力値に対応したサンプルタイミングを第2のタイミングn2として検出し、第2のタイミングn2を、粗推定部240へ出力する。
The threshold determination unit 236a detects the second timing n2 from the power value for one period of the spreading code stored in the correlation power memory 235a. Specifically, the threshold determination unit 236a detects the maximum power value among the power values for one cycle of the spreading code held in the correlation power memory 235a, and compares the detected maximum power value with a predetermined threshold. Compare. If the maximum power value exceeds the threshold, the threshold determination unit 236a detects the sample timing corresponding to the maximum power value as the second timing n2, and outputs the second timing n2 to the coarse estimation unit 240.
閾値判定部236,236aのそれぞれが使用する閾値は、予め定められた値であってもよいし、以下に説明するように、動的に生成してもよい。閾値判定部236は、相関電力メモリ235から読みだした1拡散符号周期分の電力値の平均を計算し、平均値の定数α倍を閾値とすることができる。閾値判定部236aについても同様であり、閾値判定部236aは、相関電力メモリ235aから読みだした1拡散符号周期分の電力値の平均を計算し、平均値の定数α倍を閾値とすることができる。図6は、図5に示す閾値判定部236,236aにおける閾値の設定についての説明図である。図6の横軸はサンプルタイミングであり、縦軸は平均化後の電力値、つまり相関電力メモリ235,235aに記憶された電力値である。閾値判定部236,236aは、各サンプルタイミングの平均化後の電力値の1拡散符号周期分の平均を計算し、平均のα倍を閾値とする。閾値判定部236,236aのそれぞれは、このようにして設定した閾値と最大電力値との比較結果に基づいて、第1のタイミングn1または第2のタイミングn2を検出することができる。
The threshold values used by each of the threshold determination units 236 and 236a may be predetermined values, or may be dynamically generated as described below. The threshold determination unit 236 can calculate the average of the power values for one spreading code period read from the correlation power memory 235, and set the average value multiplied by a constant α as the threshold. The same applies to the threshold value determination unit 236a, and the threshold value determination unit 236a calculates the average of the power values for one spread code period read from the correlation power memory 235a, and sets the average value multiplied by a constant α as the threshold value. can. FIG. 6 is an explanatory diagram of threshold setting in the threshold value determination units 236, 236a shown in FIG. 5. The horizontal axis in FIG. 6 is the sample timing, and the vertical axis is the power value after averaging, that is, the power value stored in the correlation power memories 235, 235a. The threshold determination units 236 and 236a calculate the average of the averaged power values of each sample timing for one spreading code period, and set α times the average as the threshold. Each of the threshold determination units 236 and 236a can detect the first timing n1 or the second timing n2 based on the comparison result between the threshold value set in this manner and the maximum power value.
粗推定部240は、タイミング粗推定部241と、周波数オフセット粗推定部242とを有する。タイミング粗推定部241は、閾値判定部236が出力する第1のタイミングn1と、閾値判定部236aが出力する第2のタイミングn2とに基づいて、受信信号を送信した送信装置1において拡散符号が乗算されたタイミングである拡散符号タイミングの粗推定結果を求めることができる。具体的には、タイミング粗推定部241は、拡散符号タイミングを、第1のタイミングn1と第2のタイミングn2との中間の第3のタイミングn0とすることができる。タイミング粗推定部241は、中間の第3のタイミングn0が小数になる場合、四捨五入してもよい。第3のタイミングn0は、以下の数式(2)で表される。
The coarse estimation section 240 includes a timing coarse estimation section 241 and a frequency offset coarse estimation section 242. The rough timing estimator 241 determines the spread code in the transmitter 1 that has transmitted the received signal based on the first timing n1 output by the threshold determiner 236 and the second timing n2 output by the threshold determiner 236a. A rough estimation result of the spread code timing, which is the multiplied timing, can be obtained. Specifically, the rough timing estimator 241 can set the spreading code timing to a third timing n0 that is intermediate between the first timing n1 and the second timing n2. The rough timing estimator 241 may round off the intermediate third timing n0 to a decimal number. The third timing n0 is expressed by the following equation (2).
タイミング粗推定部241は、推定した拡散符号タイミングを拡散符号タイミングの粗推定結果として、フレーム同期部24へ出力する。
The rough timing estimation unit 241 outputs the estimated spreading code timing to the frame synchronization unit 24 as a result of rough estimation of the spreading code timing.
周波数オフセット粗推定部242は、閾値判定部236が出力する第1のタイミングn1と、閾値判定部236aが出力する第2のタイミングn2とに基づいて、送信装置1と受信装置2との間の周波数オフセット量の粗推定結果を求めることができる。周波数オフセット粗推定部242は、以下の数式(3)を用いて周波数オフセット量を算出することができる。周波数オフセット粗推定部242は、推定した周波数オフセット量を周波数オフセット量の粗推定結果として、フレーム同期部24へ出力する。
The frequency offset coarse estimator 242 calculates the difference between the transmitting device 1 and the receiving device 2 based on the first timing n1 outputted by the threshold determining unit 236 and the second timing n2 outputted by the threshold determining unit 236a. A rough estimate of the amount of frequency offset can be obtained. The frequency offset coarse estimator 242 can calculate the frequency offset amount using the following formula (3). The frequency offset rough estimation unit 242 outputs the estimated frequency offset amount to the frame synchronization unit 24 as a rough estimation result of the frequency offset amount.
続いて、通信システム3の動作について説明する。まず、送信装置1の動作について説明する。
Next, the operation of the communication system 3 will be explained. First, the operation of the transmitting device 1 will be explained.
図7は、図2に示す送信装置1の動作を説明するためのフローチャートである。送信装置1の変調部11は、図示しない上位装置から取得した送信データを変調する(ステップS101)。変調部11は、変調後の信号である変調信号をスペクトル拡散部12へ出力する。
FIG. 7 is a flowchart for explaining the operation of the transmitting device 1 shown in FIG. 2. The modulating unit 11 of the transmitting device 1 modulates transmission data acquired from a higher-level device (not shown) (step S101). The modulator 11 outputs a modulated signal, which is a modulated signal, to the spectrum spreader 12 .
スペクトル拡散部12は、変調部11が出力する変調信号に対してスペクトル拡散を行う(ステップS102)。スペクトル拡散部12は、スペクトル拡散後の信号をフレーム生成部14へ出力する。
The spectrum spreading unit 12 performs spectrum spreading on the modulated signal output by the modulating unit 11 (step S102). The spectrum spreader 12 outputs the signal after spectrum spreading to the frame generator 14 .
プリアンブル生成部13は、既知のプリアンブル信号に対して、スペクトル拡散部12と異なる方法でスペクトル拡散を行い、プリアンブルを生成する(ステップS103)。プリアンブル生成部13は、生成したプリアンブルをフレーム生成部14へ出力する。
The preamble generation unit 13 performs spectrum spreading on the known preamble signal using a method different from that of the spectrum spreading unit 12, and generates a preamble (step S103). The preamble generation unit 13 outputs the generated preamble to the frame generation unit 14.
フレーム生成部14は、スペクトル拡散部12が出力するデータと、プリアンブル生成部13が出力するプリアンブルとをフレーミングする(ステップS104)。フレーム生成部14は、フレーミング後の信号を送信フィルタ15へ出力する。
The frame generator 14 frames the data output by the spectrum spreader 12 and the preamble output by the preamble generator 13 (step S104). The frame generation unit 14 outputs the framed signal to the transmission filter 15.
送信フィルタ15は、フレーミング後の信号に対して、帯域制限を行う(ステップS105)。送信フィルタ15は、帯域制限された信号を送信アンテナ16へ出力する。
The transmission filter 15 performs band limitation on the signal after framing (step S105). The transmission filter 15 outputs the band-limited signal to the transmission antenna 16.
送信アンテナ16は、送信フィルタ15が出力する信号を送信する(ステップS106)。
The transmitting antenna 16 transmits the signal output by the transmitting filter 15 (step S106).
続いて受信装置2の動作について説明する。図8は、図4に示す受信装置2の動作について説明するためのフローチャートである。受信装置2の受信アンテナ21は、送信装置1から送信された信号を受信する(ステップS201)。受信アンテナ21は、受信信号を受信フィルタ22へ出力する。
Next, the operation of the receiving device 2 will be explained. FIG. 8 is a flowchart for explaining the operation of the receiving device 2 shown in FIG. 4. The receiving antenna 21 of the receiving device 2 receives the signal transmitted from the transmitting device 1 (step S201). The receiving antenna 21 outputs the received signal to the receiving filter 22.
受信フィルタ22は、受信アンテナ21が出力する受信信号に対してフィルタ処理を行う(ステップS202)。受信フィルタ22は、フィルタ処理後の信号を初期同期部23、フレーム同期部24および周波数オフセット補正部26へ出力する。
The reception filter 22 performs filter processing on the reception signal output by the reception antenna 21 (step S202). The reception filter 22 outputs the filtered signal to the initial synchronization section 23, the frame synchronization section 24, and the frequency offset correction section 26.
初期同期部23は、受信フィルタ22が出力する信号に基づいて、初期同期を行う(ステップS203)。ステップS203の詳細については、後述する。初期同期部23は、初期同期により生成される拡散符号タイミングの粗推定結果と、周波数オフセット量の粗推定結果とをフレーム同期部24へ出力する。
The initial synchronization unit 23 performs initial synchronization based on the signal output by the reception filter 22 (step S203). Details of step S203 will be described later. The initial synchronization unit 23 outputs to the frame synchronization unit 24 a rough estimation result of the spreading code timing generated by the initial synchronization and a rough estimation result of the frequency offset amount.
フレーム同期部24は、受信フィルタ22が出力する信号に対して、初期同期部23が出力する拡散符号タイミングの粗推定結果に基づいて、フレームのタイミングを同期するフレーム同期を行う(ステップS204)。フレーム同期部24は、フレームタイミングの推定結果と、拡散符号タイミングの粗推定結果と、周波数オフセット量の粗推定結果とを精同期部25へ出力する。
The frame synchronization unit 24 performs frame synchronization to synchronize frame timing with respect to the signal output from the reception filter 22, based on the rough estimation result of the spreading code timing output from the initial synchronization unit 23 (step S204). The frame synchronization unit 24 outputs the frame timing estimation result, the spreading code timing rough estimation result, and the frequency offset amount estimation result to the fine synchronization unit 25.
精同期部25は、フレーム同期部24が出力するフレームタイミングに基づいて、拡散符号タイミングの粗推定結果と周波数オフセット量の粗推定結果とに含まれる誤差を補正し、拡散符号タイミングおよび周波数オフセット量を初期同期部23よりも高精度に推定する精同期を行う(ステップS205)。精同期部25は、拡散符号タイミングの推定結果を逆拡散部27へ出力し、周波数オフセット量の推定結果を周波数オフセット補正部26へ出力する。
The fine synchronization unit 25 corrects the error included in the rough estimation result of the spreading code timing and the rough estimation result of the frequency offset amount based on the frame timing output from the frame synchronization unit 24, and corrects the error included in the rough estimation result of the spreading code timing and the frequency offset amount. Precise synchronization is performed to estimate more accurately than the initial synchronization unit 23 (step S205). The precise synchronization unit 25 outputs the estimation result of the spreading code timing to the despreading unit 27 and outputs the estimation result of the frequency offset amount to the frequency offset correction unit 26.
周波数オフセット補正部26は、精同期部25が出力する周波数オフセット量の推定結果に基づいて、受信フィルタ22が出力する信号に対して周波数オフセットを補正する(ステップS206)。周波数オフセット補正部26は、補正後の信号を逆拡散部27へ出力する。
The frequency offset correction unit 26 corrects the frequency offset of the signal output by the reception filter 22 based on the estimation result of the frequency offset amount output by the fine synchronization unit 25 (step S206). The frequency offset correction section 26 outputs the corrected signal to the despreading section 27.
逆拡散部27は、精同期部25が出力する拡散符号タイミングの推定結果に基づいて、周波数オフセット補正部26が出力する周波数オフセットを補正後の信号に対して、逆拡散を行う(ステップS207)。逆拡散部27は、逆拡散後の信号を復調部28へ出力する。
The despreading unit 27 performs despreading on the frequency offset corrected signal output from the frequency offset correction unit 26 based on the estimation result of the spreading code timing output from the precision synchronization unit 25 (step S207). . The despreader 27 outputs the despread signal to the demodulator 28 .
復調部28は、逆拡散部27が出力する逆拡散後の信号に対して復調を行う(ステップS208)。
The demodulator 28 demodulates the despread signal output from the despreader 27 (step S208).
図9は、図8に示す初期同期の詳細な動作を説明するためのフローチャートである。初期同期部23の第1の相関値計算部232は、第1の相関値を計算する(ステップS301)。第1の相関値計算部232は、計算した第1の相関値を電力値計算部233へ出力する。
FIG. 9 is a flowchart for explaining the detailed operation of the initial synchronization shown in FIG. 8. The first correlation value calculation unit 232 of the initial synchronization unit 23 calculates a first correlation value (step S301). The first correlation value calculation unit 232 outputs the calculated first correlation value to the power value calculation unit 233.
電力値計算部233は、第1の相関値を2乗することによって、電力値を計算する(ステップS302)。電力値計算部233は、計算した電力値を平均化部234へ出力する。平均化部234は、電力値計算部233が出力する電力値を、前シンボルの同じサンプルタイミングの電力値と平均化する(ステップS303)。平均化部234は、平均化後の電力値を相関電力メモリ235に記憶させる。
The power value calculation unit 233 calculates the power value by squaring the first correlation value (step S302). The power value calculation unit 233 outputs the calculated power value to the averaging unit 234. The averaging unit 234 averages the power value output by the power value calculation unit 233 with the power value at the same sample timing of the previous symbol (step S303). The averaging unit 234 stores the averaged power value in the correlation power memory 235.
相関電力メモリ235は、平均化部234からの平均化後の電力値を記憶する(ステップS304)。閾値判定部236は、相関電力メモリ235に記憶された電力値に基づいて、第1の相関値がピークとなる第1のタイミングn1の閾値判定を行う(ステップS305)。具体的には、閾値判定部236は、相関電力メモリ235に記憶された拡散符号1周期分の複数の電力値の中から最大となる電力値を抽出し、抽出した最大電力値と閾値とを比較する。最大電力値が閾値を超えている場合、閾値判定部236は、最大電力値に対応したサンプルタイミングを、第1のタイミングn1として、粗推定部240およびサーチ範囲計算部237へ出力する。
The correlation power memory 235 stores the averaged power value from the averaging unit 234 (step S304). The threshold determination unit 236 performs threshold determination at the first timing n1 at which the first correlation value reaches a peak, based on the power value stored in the correlation power memory 235 (step S305). Specifically, the threshold determination unit 236 extracts the maximum power value from among the plurality of power values for one period of the spreading code stored in the correlation power memory 235, and sets the extracted maximum power value and the threshold value. compare. If the maximum power value exceeds the threshold, the threshold determination unit 236 outputs the sample timing corresponding to the maximum power value to the rough estimation unit 240 and the search range calculation unit 237 as the first timing n1.
サーチ範囲計算部237は、閾値判定部236が出力する第1のタイミングn1に基づいて、サーチ範囲を計算する(ステップS306)。サーチ範囲計算部237は、計算したサーチ範囲を、第2のタイミング検出部238へ出力する。
The search range calculation unit 237 calculates the search range based on the first timing n1 output by the threshold determination unit 236 (step S306). The search range calculation unit 237 outputs the calculated search range to the second timing detection unit 238.
第2のタイミング検出部238の第2の相関値計算部239は、サーチ範囲計算部237が出力するサーチ範囲に時間範囲を限定して、第2の相関値を計算する(ステップS307)。具体的には、第2の相関値計算部239は、閾値判定部236が閾値を超えたと判定した最大電力値に対応するシンボルから第2の相関値を計算する。第2の相関値計算部239は、計算した第2の相関値を電力値計算部233aへ出力する。
The second correlation value calculation unit 239 of the second timing detection unit 238 calculates a second correlation value by limiting the time range to the search range output by the search range calculation unit 237 (step S307). Specifically, the second correlation value calculation unit 239 calculates the second correlation value from the symbol corresponding to the maximum power value determined by the threshold value determination unit 236 to exceed the threshold value. The second correlation value calculation unit 239 outputs the calculated second correlation value to the power value calculation unit 233a.
電力値計算部233aは、第2の相関値計算部239が出力する第2の相関値を2乗することによって電力値を計算する(ステップS308)。電力値計算部233aは、計算した電力値を平均化部234aへ出力する。
The power value calculation unit 233a calculates the power value by squaring the second correlation value output by the second correlation value calculation unit 239 (step S308). The power value calculation unit 233a outputs the calculated power value to the averaging unit 234a.
平均化部234aは、電力値計算部233aが出力する電力値を、前シンボルの同じサンプルタイミングの電力値と平均化する(ステップS309)。平均化部234aは、平均化後の電力値を相関電力メモリ235aに記憶させる。
The averaging unit 234a averages the power value output by the power value calculation unit 233a with the power value at the same sample timing of the previous symbol (step S309). The averaging unit 234a stores the averaged power value in the correlation power memory 235a.
相関電力メモリ235aは、平均化部234aからの平均化後の電力値を記憶する(ステップS310)。閾値判定部236aは、相関電力メモリ235aに記憶された電力値に基づいて、第2の相関値がピークとなる第2のタイミングn2の閾値判定を行う(ステップS311)。具体的には、閾値判定部236aは、相関電力メモリ235aに記憶された拡散符号1周期分の電力値の中から最大となる電力値を抽出し、抽出した最大電力値と閾値とを比較する。最大電力値が閾値を超えている場合、閾値判定部236aは、最大電力値に対応したサンプルタイミングを、第2のタイミングn2として、粗推定部240へ出力する。
The correlation power memory 235a stores the averaged power value from the averaging unit 234a (step S310). The threshold determination unit 236a performs threshold determination at the second timing n2 when the second correlation value reaches its peak, based on the power value stored in the correlation power memory 235a (step S311). Specifically, the threshold determination unit 236a extracts the maximum power value from among the power values for one period of the spreading code stored in the correlation power memory 235a, and compares the extracted maximum power value with a threshold value. . If the maximum power value exceeds the threshold, the threshold determination unit 236a outputs the sample timing corresponding to the maximum power value to the rough estimation unit 240 as the second timing n2.
粗推定部240のタイミング粗推定部241は、第1のタイミングn1および第2のタイミングn2に基づいて、拡散符号タイミングの粗推定を行う(ステップS312)。タイミング粗推定部241は、拡散符号タイミングの粗推定結果をフレーム同期部24へ出力する。粗推定部240の周波数オフセット粗推定部242は、第1のタイミングn1および第2のタイミングn2に基づいて、周波数オフセット量の粗推定を行う(ステップS313)。周波数オフセット粗推定部242は、周波数オフセット量の粗推定結果をフレーム同期部24へ出力する。
The rough timing estimation unit 241 of the rough estimation unit 240 performs rough estimation of the spreading code timing based on the first timing n1 and the second timing n2 (step S312). The rough timing estimation section 241 outputs the result of rough estimation of the spreading code timing to the frame synchronization section 24 . The frequency offset coarse estimator 242 of the coarse estimator 240 roughly estimates the frequency offset amount based on the first timing n1 and the second timing n2 (step S313). The frequency offset rough estimator 242 outputs the rough estimation result of the frequency offset amount to the frame synchronizer 24.
続いて、受信装置2のハードウェア構成について説明する。受信装置2において、受信アンテナ21は、アンテナ装置で実現される。受信フィルタ22は、フィルタ回路で実現される。初期同期部23、フレーム同期部24、精同期部25、周波数オフセット補正部26、逆拡散部27、および復調部28は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は、制御回路とも呼ばれる。
Next, the hardware configuration of the receiving device 2 will be explained. In the receiving device 2, the receiving antenna 21 is realized by an antenna device. The reception filter 22 is realized by a filter circuit. The initial synchronization section 23, frame synchronization section 24, fine synchronization section 25, frequency offset correction section 26, despreading section 27, and demodulation section 28 are realized by processing circuits. The processing circuit may be a processor and memory that executes a program stored in memory, or may be dedicated hardware. The processing circuit is also called a control circuit.
図10は、図4に示す受信装置2が備える処理回路をプロセッサ91およびメモリ92で実現する場合の処理回路90の構成例を示す図である。図10に示す処理回路90は、制御回路であり、プロセッサ91およびメモリ92を有する。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読みだして実行することにより、各機能を実現する。すなわち、処理回路90は、受信装置2の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能を受信装置2に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。
FIG. 10 is a diagram showing an example of the configuration of the processing circuit 90 when the processing circuit included in the receiving device 2 shown in FIG. 4 is implemented by the processor 91 and the memory 92. A processing circuit 90 shown in FIG. 10 is a control circuit and includes a processor 91 and a memory 92. When the processing circuit 90 includes a processor 91 and a memory 92, each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 92. In the processing circuit 90, each function is realized by a processor 91 reading and executing a program stored in a memory 92. That is, the processing circuit 90 includes a memory 92 for storing a program by which the processing of the receiving device 2 is executed as a result. This program can also be said to be a program for causing the receiving device 2 to execute each function realized by the processing circuit 90. This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。
Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). The memory 92 may be a nonvolatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs).
図11は、図4に示す受信装置2が備える処理回路を専用のハードウェアで構成する場合の処理回路93の例を示す図である。図11に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
FIG. 11 is a diagram showing an example of the processing circuit 93 in the case where the processing circuit included in the receiving device 2 shown in FIG. 4 is configured with dedicated hardware. The processing circuit 93 shown in FIG. 11 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. applicable. Regarding the processing circuit, a part may be realized by dedicated hardware, and a part may be realized by software or firmware. In this way, the processing circuit can implement each of the above-mentioned functions using dedicated hardware, software, firmware, or a combination thereof.
なお、ここでは受信装置2のハードウェア構成について説明したが、送信装置1のハードウェア構成も同様である。送信装置1において、送信アンテナ16はアンテナ装置で実現される。送信フィルタ15はフィルタ回路で実現される。変調部11、スペクトル拡散部12、プリアンブル生成部13およびフレーム生成部14は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。
Although the hardware configuration of the receiving device 2 has been described here, the hardware configuration of the transmitting device 1 is also similar. In the transmitting device 1, the transmitting antenna 16 is realized by an antenna device. The transmission filter 15 is realized by a filter circuit. The modulator 11, spectrum spreader 12, preamble generator 13, and frame generator 14 are realized by processing circuits. The processing circuit may be a processor and memory that executes a program stored in memory, or may be dedicated hardware.
なお、図2および図4,5に示す複数の機能ブロックのそれぞれは、必ずしも1つの処理回路で実現する必要はない。複数の機能ブロックの機能が1つの処理回路で実現されてもよいし、1つの機能ブロックの機能が複数の処理回路で実現されてもよい。
Note that each of the plurality of functional blocks shown in FIG. 2 and FIGS. 4 and 5 does not necessarily need to be realized by one processing circuit. The functions of a plurality of functional blocks may be realized by one processing circuit, or the functions of one functional block may be realized by a plurality of processing circuits.
以上説明したように、実施の形態1にかかる通信システム3は、送信装置1のプリアンブル生成部13において、初めに送信される第1のプリアンブルに対して第1のチャープ信号でスペクトル拡散し、第1のプリアンブルの次に送信される第2のプリアンブルに対して、第1のチャープ信号と異なるチャープ信号である第2のチャープ信号でスペクトル拡散する。受信装置2は、初期同期部23の第1のタイミング検出部231において、まず、第1のチャープ信号と受信信号との相互相関関数の値である第1の相関値を計算し、第1の相関値がピークとなる第1のタイミングn1を検出する。初期同期部23のサーチ範囲計算部237は、検出された第1のタイミングn1に基づいて、第2のチャープ信号と受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算する。第2のタイミング検出部238は、サーチ範囲に限定して、第2の相関値を計算し、第2の相関値がピークとなる第2のタイミングn2を検出する。初期同期部23の粗推定部240は、第1のタイミングn1および第2のタイミングn2に基づいて、拡散符号タイミングの粗推定結果を求める。
As explained above, in the communication system 3 according to the first embodiment, the preamble generation unit 13 of the transmitting device 1 spreads the spectrum of the first preamble transmitted initially using the first chirp signal, and A second preamble transmitted after the first preamble is subjected to spectrum spreading using a second chirp signal that is a different chirp signal from the first chirp signal. In the receiving device 2, the first timing detection section 231 of the initial synchronization section 23 first calculates a first correlation value, which is the value of the cross-correlation function between the first chirp signal and the received signal, and calculates the first correlation value. A first timing n1 at which the correlation value reaches a peak is detected. The search range calculation unit 237 of the initial synchronization unit 23 calculates a range for calculating a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal, based on the detected first timing n1. Calculate the search range that is . The second timing detection unit 238 calculates the second correlation value within the search range, and detects the second timing n2 at which the second correlation value reaches its peak. The coarse estimation section 240 of the initial synchronization section 23 obtains a coarse estimation result of the spreading code timing based on the first timing n1 and the second timing n2.
これにより、第2のタイミング検出部238において計算する範囲がサーチ範囲に限定されるため、2種類のチャープ信号を用いることによって周波数オフセット耐性を向上させつつ、初期同期部23の演算量を削減することができる。したがって、初期同期部23を実現するための回路の規模を低減することが可能になる。
As a result, the calculation range in the second timing detection section 238 is limited to the search range, so by using two types of chirp signals, frequency offset resistance is improved and the amount of calculations in the initial synchronization section 23 is reduced. be able to. Therefore, it is possible to reduce the scale of the circuit for realizing the initial synchronization section 23.
また、初期同期部23は、第1のタイミングn1および第2のタイミングn2に基づいて、送信装置1との間の周波数オフセット量の粗推定結果を求める周波数オフセット粗推定部242をさらに有する。これにより、初期同期部23の演算量を削減しつつ、周波数オフセット量の粗推定結果を得ることが可能になる。
In addition, the initial synchronization unit 23 further includes a frequency offset coarse estimating unit 242 that obtains a rough estimation result of the frequency offset amount with respect to the transmitting device 1 based on the first timing n1 and the second timing n2. This makes it possible to obtain a rough estimation result of the frequency offset amount while reducing the amount of calculation by the initial synchronization unit 23.
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
例えば、上記の実施の形態1では、第1のチャープ信号を数式(1)のM=1として生成するアップチャープ信号とし、第2のチャープ信号を数式(1)のM=-1として生成するダウンチャープ信号としたが、本実施の形態はかかる例に限定されない。第1のチャープ信号と第2のチャープ信号とが異なるチャープ信号であればよい。ここで、異なるチャープ信号とは、周波数の経時的な変化の傾き、最小周波数fmin、最大周波数fmaxの少なくとも1つが異なるチャープ信号であればよい。したがって、第1のプリアンブルがアップチャープ信号であって、第2のプリアンブルがダウンチャープ信号であってもよいし、第1のプリアンブルがダウンチャープ信号であって、第2のプリアンブルがアップチャープ信号であってもよい。さらに、第1のプリアンブルおよび第2のプリアンブルが共にアップチャープ信号であってもよいし、第1のプリアンブルおよび第2のプリアンブルが共にダウンチャープ信号であってもよい。例えば、M=3,5としたZadoff-Chu系列、アップチャープ信号とダウンチャープ信号とで中心周波数を合わせたZadoff-Chu系列などを用いることができる。ただし、M=1のアップチャープ信号と、M=-1のダウンチャープ信号とを併せて用いることで、周波数オフセットが発生する場合にも精度の良い同期が可能になるという利点がある。また、M=1でないZadoff-Chu系列を利用することで、多元接続時にも精度の低下を抑えて同期を行うことができるという利点がある。
For example, in the first embodiment described above, the first chirp signal is an up-chirp signal generated with M=1 in equation (1), and the second chirp signal is generated as M=-1 in equation (1). Although the down chirp signal is used, the present embodiment is not limited to such an example. It is sufficient that the first chirp signal and the second chirp signal are different chirp signals. Here, the different chirp signals may be chirp signals that differ in at least one of the slope of frequency change over time, the minimum frequency fmin, and the maximum frequency fmax. Therefore, the first preamble may be an up-chirp signal and the second preamble may be a down-chirp signal, or the first preamble may be a down-chirp signal and the second preamble may be an up-chirp signal. There may be. Furthermore, both the first preamble and the second preamble may be up-chirp signals, or both the first preamble and the second preamble may be down-chirp signals. For example, a Zadoff-Chu sequence in which M=3, 5, a Zadoff-Chu sequence in which the center frequencies of an up-chirp signal and a down-chirp signal are matched, etc. can be used. However, by using both the up-chirp signal with M=1 and the down-chirp signal with M=-1, there is an advantage that accurate synchronization is possible even when a frequency offset occurs. Further, by using a Zadoff-Chu sequence where M=1 is not used, there is an advantage that synchronization can be performed while suppressing a decrease in accuracy even during multiple access.
また、上記の実施の形態1では、初期同期部23のサーチ範囲計算部237は、使用される環境で想定される最大のオフセット量の絶対値と第1のタイミングn1とに基づいてサーチ範囲を決定したが、サーチ範囲の決定方法はかかる例に限定されない。例えば、マルチパス環境では、サーチ範囲計算部237は、遅延波の遅延量を考慮してサーチ範囲を決定してもよい。これにより、マルチパス環境における初期同期の精度を改善することができる。
Further, in the first embodiment described above, the search range calculation unit 237 of the initial synchronization unit 23 calculates the search range based on the absolute value of the maximum offset amount assumed in the environment in which it is used and the first timing n1. However, the method for determining the search range is not limited to this example. For example, in a multipath environment, the search range calculation unit 237 may determine the search range by considering the amount of delay of delayed waves. This makes it possible to improve the accuracy of initial synchronization in a multipath environment.
1 送信装置、2 受信装置、3 通信システム、11,131 変調部、12,132 スペクトル拡散部、13 プリアンブル生成部、14 フレーム生成部、15 送信フィルタ、16 送信アンテナ、21 受信アンテナ、22 受信フィルタ、23 初期同期部、24 フレーム同期部、25 精同期部、26 周波数オフセット補正部、27 逆拡散部、28 復調部、90,93 処理回路、91 プロセッサ、92 メモリ、231 第1のタイミング検出部、232 第1の相関値計算部、233,233a 電力値計算部、234,234a 平均化部、235,235a 相関電力メモリ、236,236a 閾値判定部、237 サーチ範囲計算部、238 第2のタイミング検出部、239 第2の相関値計算部、240 粗推定部、241 タイミング粗推定部、242 周波数オフセット粗推定部。
1 Transmitting device, 2 Receiving device, 3 Communication system, 11, 131 Modulation section, 12, 132 Spectrum spreading section, 13 Preamble generation section, 14 Frame generation section, 15 Transmission filter, 16 Transmission antenna, 21 Reception antenna, 22 Reception filter , 23 Initial synchronization section, 24 Frame synchronization section, 25 Fine synchronization section, 26 Frequency offset correction section, 27 Despreading section, 28 Demodulation section, 90, 93 Processing circuit, 91 Processor, 92 Memory, 231 First timing detection section , 232 First correlation value calculation unit, 233, 233a Power value calculation unit, 234, 234a Averaging unit, 235, 235a Correlation power memory, 236, 236a Threshold determination unit, 237 Search range calculation unit, 238 Second timing Detection unit, 239 Second correlation value calculation unit, 240 Coarse estimation unit, 241 Timing coarse estimation unit, 242 Frequency offset coarse estimation unit.
Claims (12)
- 第1のチャープ信号でスペクトル拡散された第1のプリアンブルと、前記第1のプリアンブルよりも後に送信され、前記第1のチャープ信号と異なる第2のチャープ信号でスペクトル拡散された第2のプリアンブルとを含む受信信号と前記第1のチャープ信号との相互相関関数の値である第1の相関値を計算する第1の相関値計算部を有し、前記第1の相関値がピークとなる第1のタイミングを検出する第1のタイミング検出部と、
前記第1のタイミングに基づいて、前記第2のチャープ信号と前記受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算するサーチ範囲計算部と、
前記サーチ範囲に限定して、前記第2の相関値を計算する第2の相関値計算部を有し、前記第2の相関値がピークとなる第2のタイミングを検出する第2のタイミング検出部と、
前記第1のタイミングと前記第2のタイミングとに基づいて、前記受信信号を送信した送信装置において拡散符号が乗算された拡散符号タイミングの粗推定結果を求めるタイミング粗推定部と、
を有する初期同期部を備えることを特徴とする受信装置。 a first preamble that is spectrum-spread with a first chirp signal; and a second preamble that is transmitted after the first preamble and that is spectrum-spread with a second chirp signal that is different from the first chirp signal. a first correlation value calculating section that calculates a first correlation value that is a value of a cross-correlation function between a received signal containing a received signal and the first chirp signal; a first timing detection unit that detects the timing of 1;
a search range calculation unit that calculates a search range that is a range for calculating a second correlation value that is a value of a cross-correlation function between the second chirp signal and the received signal, based on the first timing;
a second correlation value calculation unit that calculates the second correlation value limited to the search range, and a second timing detection that detects a second timing at which the second correlation value reaches a peak; Department and
a timing rough estimator that calculates a rough estimation result of a spreading code timing multiplied by a spreading code in a transmitting device that transmitted the received signal, based on the first timing and the second timing;
A receiving device comprising an initial synchronization section having the following. - 前記第1のチャープ信号は、時間に対して周波数が線形的に増加するアップチャープ信号であり、
前記第2のチャープ信号は、時間に対して周波数が線形的に減少するダウンチャープ信号であり、
前記第1の相関値計算部は、前記受信信号と前記アップチャープ信号との相互相関関数の値である前記第1の相関値を計算し、
前記第2の相関値計算部は、前記受信信号と前記ダウンチャープ信号との相互相関関数の値である前記第2の相関値を計算することを特徴とする請求項1に記載の受信装置。 The first chirp signal is an up-chirp signal whose frequency increases linearly with time,
The second chirp signal is a down chirp signal whose frequency decreases linearly with time,
The first correlation value calculation unit calculates the first correlation value that is a value of a cross-correlation function between the received signal and the up-chirp signal,
The receiving device according to claim 1, wherein the second correlation value calculation unit calculates the second correlation value that is a value of a cross-correlation function between the received signal and the downchirp signal. - 前記第1のチャープ信号は、時間に対して周波数が線形的に減少するダウンチャープ信号であり、
前記第2のチャープ信号は、時間に対して周波数が線形的に増加するアップチャープ信号であり、
前記第1の相関値計算部は、前記受信信号と前記ダウンチャープ信号との相互相関関数の値である前記第1の相関値を計算し、
前記第2の相関値計算部は、前記受信信号と前記アップチャープ信号との相互相関関数の値である第2の相関値を計算することを特徴とする請求項1に記載の受信装置。 The first chirp signal is a down chirp signal whose frequency decreases linearly with time,
The second chirp signal is an up-chirp signal whose frequency increases linearly with time,
The first correlation value calculation unit calculates the first correlation value that is a value of a cross-correlation function between the received signal and the downchirp signal,
The receiving device according to claim 1, wherein the second correlation value calculation unit calculates a second correlation value that is a value of a cross-correlation function between the received signal and the up-chirp signal. - 前記第2のプリアンブルは、前記第1のプリアンブルよりも短いことを特徴とする請求項1から3のいずれか1項に記載の受信装置。 The receiving device according to any one of claims 1 to 3, wherein the second preamble is shorter than the first preamble.
- 前記第2のチャープ信号は、前記第1のチャープ信号と時間に対して周波数が変化する傾きが異なることを特徴とする請求項1から4のいずれか1項に記載の受信装置。 The receiving device according to any one of claims 1 to 4, wherein the second chirp signal and the first chirp signal have a different slope in which the frequency changes with respect to time.
- 前記サーチ範囲計算部は、使用される環境で想定される最大の周波数オフセット量に基づいて、前記サーチ範囲を決定することを特徴とする請求項1から5のいずれか1項に記載の受信装置。 The receiving device according to any one of claims 1 to 5, wherein the search range calculation unit determines the search range based on a maximum frequency offset amount expected in an environment in which the receiver is used. .
- 前記サーチ範囲計算部は、使用される環境で想定される最大の周波数オフセット量と遅延波の遅延量とに基づいて、前記サーチ範囲を決定することを特徴とする請求項6に記載の受信装置。 The receiving device according to claim 6, wherein the search range calculation unit determines the search range based on a maximum frequency offset amount and a delay amount of a delayed wave expected in an environment in which the receiver device is used. .
- 前記初期同期部は、
前記第1のタイミングおよび前記第2のタイミングに基づいて、前記送信装置との間の周波数オフセット量の粗推定結果を求める周波数オフセット粗推定部、
をさらに有することを特徴とする請求項1から7のいずれか1項に記載の受信装置。 The initial synchronization section is
a frequency offset rough estimating unit that calculates a rough estimation result of a frequency offset amount with the transmitting device based on the first timing and the second timing;
The receiving device according to any one of claims 1 to 7, further comprising a receiver. - 請求項1から8のいずれか1項に記載の受信装置と、
前記受信信号を前記受信装置に送信する送信装置と、
を備えることを特徴とする通信システム。 A receiving device according to any one of claims 1 to 8,
a transmitting device that transmits the received signal to the receiving device;
A communication system comprising: - 受信装置を制御する制御回路であって、
第1のチャープ信号でスペクトル拡散された第1のプリアンブルと、前記第1のプリアンブルよりも後に送信され、前記第1のチャープ信号と異なる第2のチャープ信号でスペクトル拡散された第2のプリアンブルとを含む受信信号と前記第1のチャープ信号との相互相関関数の値である第1の相関値を計算するステップと、
前記第1の相関値がピークとなる第1のタイミングを検出するステップと、
前記第1のタイミングに基づいて、前記第2のチャープ信号と前記受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算するステップと、
前記サーチ範囲に限定して、前記第2の相関値を計算するステップと、
前記第2の相関値がピークとなる第2のタイミングを検出するステップと、
前記第1のタイミングと前記第2のタイミングとに基づいて、前記受信信号を送信した送信装置において拡散符号が乗算された拡散符号タイミングの粗推定結果を求めるステップと、
を前記受信装置に実行させることを特徴とする制御回路。 A control circuit for controlling a receiving device,
a first preamble that is spectrum-spread with a first chirp signal; and a second preamble that is transmitted after the first preamble and that is spectrum-spread with a second chirp signal that is different from the first chirp signal. calculating a first correlation value that is a value of a cross-correlation function between a received signal containing the first chirp signal and the first chirp signal;
detecting a first timing at which the first correlation value reaches a peak;
calculating a search range, which is a range for calculating a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal, based on the first timing;
calculating the second correlation value limited to the search range;
detecting a second timing at which the second correlation value reaches a peak;
Based on the first timing and the second timing, obtaining a rough estimation result of a spreading code timing multiplied by a spreading code in a transmitting device that transmitted the received signal;
A control circuit that causes the receiving device to execute the following. - 受信装置を制御するためのプログラムを記憶した記憶媒体において、該プログラムは、
第1のチャープ信号でスペクトル拡散された第1のプリアンブルと、前記第1のプリアンブルよりも後に送信され、前記第1のチャープ信号と異なる第2のチャープ信号でスペクトル拡散された第2のプリアンブルとを含む受信信号と前記第1のチャープ信号との相互相関関数の値である第1の相関値を計算するステップと、
前記第1の相関値がピークとなる第1のタイミングを検出するステップと、
前記第1のタイミングに基づいて、前記第2のチャープ信号と前記受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算するステップと、
前記サーチ範囲に限定して、前記第2の相関値を計算するステップと、
前記第2の相関値がピークとなる第2のタイミングを検出するステップと、
前記第1のタイミングと前記第2のタイミングとに基づいて、前記受信信号を送信した送信装置において拡散符号が乗算された拡散符号タイミングの粗推定結果を求めるステップと、
を前記受信装置に実行させることを特徴とする記憶媒体。 In a storage medium storing a program for controlling a receiving device, the program includes:
a first preamble that is spectrum-spread with a first chirp signal; and a second preamble that is transmitted after the first preamble and that is spectrum-spread with a second chirp signal that is different from the first chirp signal. calculating a first correlation value that is a value of a cross-correlation function between a received signal containing the first chirp signal and the first chirp signal;
detecting a first timing at which the first correlation value reaches a peak;
calculating a search range, which is a range for calculating a second correlation value, which is a value of a cross-correlation function between the second chirp signal and the received signal, based on the first timing;
calculating the second correlation value limited to the search range;
detecting a second timing at which the second correlation value reaches a peak;
Based on the first timing and the second timing, obtaining a rough estimation result of a spreading code timing multiplied by a spreading code in a transmitting device that transmitted the received signal;
A storage medium characterized by causing the receiving device to execute the following. - 送信装置が、時間に対して周波数が線形的に変化する第1のチャープ信号で第1のプリアンブルをスペクトル拡散し、前記第1のチャープ信号と異なる第2のチャープ信号で前記第1のプリアンブルよりも後に送信されるプリアンブルであって前記第1のプリアンブルよりも短い第2のプリアンブルをスペクトル拡散するステップと、
前記送信装置が、前記第1のプリアンブルおよび前記第2のプリアンブルを含む信号を送信するステップと、
前記送信装置が送信した信号を受信した受信装置が、受信信号と前記第1のチャープ信号との相互相関関数の値である第1の相関値を計算するステップと、
前記受信装置が、前記第1の相関値がピークとなる第1のタイミングを検出するステップと、
前記受信装置が、前記第1のタイミングに基づいて、前記第2のチャープ信号と前記受信信号との相互相関関数の値である第2の相関値を計算する範囲であるサーチ範囲を計算するステップと、
前記受信装置が、前記サーチ範囲に限定して、前記第2の相関値を計算するステップと、
前記受信装置が、前記第2の相関値がピークとなる第2のタイミングを検出するステップと、
前記受信装置が、前記第1のタイミングと前記第2のタイミングとに基づいて、前記送信装置において拡散符号が乗算された拡散符号タイミングの粗推定結果を求めるステップと、
を含むことを特徴とする通信方法。 The transmitting device spectrally spreads the first preamble with a first chirp signal whose frequency changes linearly with respect to time, and spreads the spectrum of the first preamble with a second chirp signal different from the first chirp signal. Spreading the spectrum of a second preamble that is also transmitted later and is shorter than the first preamble;
the transmitting device transmitting a signal including the first preamble and the second preamble;
A receiving device that has received the signal transmitted by the transmitting device calculates a first correlation value that is a value of a cross-correlation function between the received signal and the first chirp signal;
the receiving device detecting a first timing at which the first correlation value reaches a peak;
The receiving device calculates a search range that is a range in which a second correlation value that is a value of a cross-correlation function between the second chirp signal and the received signal is calculated based on the first timing. and,
the receiving device calculating the second correlation value limited to the search range;
the receiving device detecting a second timing at which the second correlation value reaches a peak;
the receiving device obtaining a rough estimation result of the spreading code timing multiplied by the spreading code in the transmitting device based on the first timing and the second timing;
A communication method characterized by including.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009768 WO2023170754A1 (en) | 2022-03-07 | 2022-03-07 | Receiver device, communication system, control circuit, storage medium, and communication method |
JP2023572656A JP7446550B2 (en) | 2022-03-07 | 2022-03-07 | Receiving device, communication system, control circuit, storage medium and communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009768 WO2023170754A1 (en) | 2022-03-07 | 2022-03-07 | Receiver device, communication system, control circuit, storage medium, and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023170754A1 true WO2023170754A1 (en) | 2023-09-14 |
Family
ID=87936254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009768 WO2023170754A1 (en) | 2022-03-07 | 2022-03-07 | Receiver device, communication system, control circuit, storage medium, and communication method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7446550B2 (en) |
WO (1) | WO2023170754A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130142A (en) * | 2009-12-17 | 2011-06-30 | Fujitsu Ltd | Device and method for detecting frame timing |
US20130051433A1 (en) * | 2011-08-30 | 2013-02-28 | Cambridge Silicon Radio Limited | Chirp Receiver |
JP2018524890A (en) * | 2015-06-19 | 2018-08-30 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | System scan and capture |
WO2021140627A1 (en) * | 2020-01-09 | 2021-07-15 | 三菱電機株式会社 | Reception device, transmission device, communication system, control circuit, storage medium, reception synchronization method and transmission method |
-
2022
- 2022-03-07 JP JP2023572656A patent/JP7446550B2/en active Active
- 2022-03-07 WO PCT/JP2022/009768 patent/WO2023170754A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130142A (en) * | 2009-12-17 | 2011-06-30 | Fujitsu Ltd | Device and method for detecting frame timing |
US20130051433A1 (en) * | 2011-08-30 | 2013-02-28 | Cambridge Silicon Radio Limited | Chirp Receiver |
JP2018524890A (en) * | 2015-06-19 | 2018-08-30 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | System scan and capture |
WO2021140627A1 (en) * | 2020-01-09 | 2021-07-15 | 三菱電機株式会社 | Reception device, transmission device, communication system, control circuit, storage medium, reception synchronization method and transmission method |
Non-Patent Citations (3)
Title |
---|
MEGUMI FUKUMA, MASATSUGU HIGASHINAKA , RYOSUKE NAKAMURA, AND HIROSHI ARUGA: "A Novel Code Acquisition Scheme Using Multiple Chirp Signals Robust to Initial Frequency Offset", IEICE TECHNICAL REPORT, vol. 119, no. 377 (IT2019-46), 16 January 2020 (2020-01-16), pages 63 - 68, XP009548839, ISSN: 0913-5685 * |
MEGUMI FUKUMA, MASATSUGU HIGASHINAKA, AKINORI OHASHI, HIROSHI ARIGA: "B-5-58 Evaluation of characteristics of DS-SS initial acquisition in multipath environment using two chirp signals", IEICE 2020 COMMUNICATION SOCIETY CONFERENCE PROCEEDINGS 1; 2020.09.15-18, IEICE, JP, 1 September 2020 (2020-09-01) - 18 September 2020 (2020-09-18), JP, pages 258, XP009549411 * |
MEGUMI FUKUMA, MASATSUGU HIGASHINAKA, RYOSUKE NAKAMURA, HIROSHI ARUGA: "A Frame Timing Detection Scheme Using Multiple Zadoff-Chu Sequences for DS-SS Systems Employing Space-time Block Codes", IEICE TECHNICAL REPORT, vol. 121, no. 7, 15 April 2021 (2021-04-15), pages 36 - 41, XP009539539, ISSN: 2432-6380 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023170754A1 (en) | 2023-09-14 |
JP7446550B2 (en) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0820156B1 (en) | Reception timing detection circuit of CDMA receiver and detection method | |
JP6999869B2 (en) | Receiver, communication system, control circuit, storage medium and reception synchronization method | |
US11133890B2 (en) | Adaptive multi-standard signal classification and synchronization | |
JP2008532379A (en) | Method and apparatus for synchronizing a radio receiver | |
GB2367211A (en) | Slot timing acquisition and local oscillator frequency offset correction in a direct sequence spread spectrum receiver | |
US20070104252A1 (en) | Method and apparatus for estimating frequency offset in a wireless mobile communication system | |
JP7004876B2 (en) | Receiver, control circuit, storage medium and communication system | |
US9516616B2 (en) | Method and apparatus for estimating frequency errors | |
US6829291B1 (en) | Receiving apparatus and synchronization capturing method | |
US7085311B2 (en) | Apparatus and method for measuring SIR in CDMA communication system | |
US9490867B2 (en) | CDMA communications device and related methods | |
KR20040017859A (en) | Acquisition of a gated pilot | |
WO2023170754A1 (en) | Receiver device, communication system, control circuit, storage medium, and communication method | |
EP1454421A1 (en) | Interference suppression in a cdma radio receiver | |
US20240267277A1 (en) | Method and device for synchronization | |
JP5634354B2 (en) | Communication system and receiver | |
US7346098B2 (en) | Communication receiver | |
US20140003468A1 (en) | Communication system and communication method | |
WO2022176079A1 (en) | Transmission device, receiving device, communication system, transmission method, timing synchronization method, control circuit, and storage medium | |
JP7378687B2 (en) | Receiving device, reception synchronization method, control circuit, and storage medium | |
US7881418B2 (en) | Device, method and program for detecting communication frame base point through blind processing | |
JP7366329B2 (en) | Receiving device, communication system, control circuit and storage medium | |
US8184742B2 (en) | RF receiver having timing offset recovery function and timing offset recovery method using thereof | |
JP2006519567A (en) | Method and system for capturing a received impulse radio signal | |
US20240275639A1 (en) | Communication apparatus, communication system, communication method, control circuit, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22930740 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023572656 Country of ref document: JP |