WO2023170360A1 - Process for manufacturing a jet fuel from loads of renewable origin - Google Patents

Process for manufacturing a jet fuel from loads of renewable origin Download PDF

Info

Publication number
WO2023170360A1
WO2023170360A1 PCT/FR2023/050296 FR2023050296W WO2023170360A1 WO 2023170360 A1 WO2023170360 A1 WO 2023170360A1 FR 2023050296 W FR2023050296 W FR 2023050296W WO 2023170360 A1 WO2023170360 A1 WO 2023170360A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
ethyl esters
fatty acids
process according
manufacturing process
Prior art date
Application number
PCT/FR2023/050296
Other languages
French (fr)
Inventor
Sophie LOYAN
Jérémy MINEAU
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2023170360A1 publication Critical patent/WO2023170360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate

Definitions

  • the present invention relates to the technical field of refining petroleum feedstocks of fossil origin and feedstocks of biological origin, particularly for the manufacture of jet fuel. More particularly, the invention relates to a process for obtaining a jet fuel having a component of biological (or renewable) origin.
  • jet fuels also called jet fuel, jet fuel or kerosene
  • jet fuel are produced from crude oil and contain a complex mixture of hydrocarbons that typically have 6 to 18 carbon atoms. These hydrocarbons include linear and branched alkanes, cycloalkanes and aromatic hydrocarbons.
  • the cut points of the jet-fuel fraction typically vary between 140°C and 240°C.
  • fuel bases can be crude oil distillation cuts, possibly hydrotreated or sometimes subjected to a softening treatment (MEROX process for example). These bases can also be cuts from a hydrocracker effluent or an effluent from a catalytic cracker (often after hydrotreatment). Other fuel bases can be prepared by other routes such as Fischer Tropsch synthesis followed by a cracking step. The choice of fuel bases as well as their relative proportions are made so that the final properties of the mixture meet the desired specifications.
  • MEOX process softening treatment
  • Other fuel bases can be prepared by other routes such as Fischer Tropsch synthesis followed by a cracking step. The choice of fuel bases as well as their relative proportions are made so that the final properties of the mixture meet the desired specifications.
  • a solution for obtaining a jet fuel with a component of biological origin consists of mixing a conventional jet with a paraffin base derived from renewable feedstocks as provided for by standard D7566-21, thus allowing the production of alternative aviation fuels.
  • Bases for aviation fuel derived from renewable feedstocks that can be incorporated into fossil fuels are
  • Synthetic paraffinic kerosenes [SPK] resulting from processes such as the Fischer-Tropsch process, the hydrotreatment of esters and fatty acids [HEFA-SPK] or produced by the Alcohol-to-jet route (transformation of alcohol into kerosene) [ATJ-SPK],
  • SPK Synthetic paraffinic kerosenes
  • Another solution consists of co-treating a hydrocarbon of fossil origin with a feed of renewable origin, as provided in particular in standard ASTM D1655-21 c.
  • document EP2346962 describes a process making it possible to obtain a kerosene cut, part of which is of biological origin.
  • a feed of petroleum origin mixed with a feed of biological origin is subjected to a hydrotreatment step, then fractionated in order to recover a kerosene cut.
  • the filler of biological origin used is an animal oil and/or fat, or a mixture of these oils/fats.
  • the oils and/or fats used are not transesterified.
  • Document EP2533895 describes a specific catalyst for producing biodiesel. It describes in particular the use of this catalyst to treat a load which is a mixture of a hydrocarbon of fossil origin (kerosene, diesel, etc.) and a biomass chosen from vegetable or animal oils and fats. The oils and/or fats used are not trans-esterified. Jet production is not mentioned.
  • document EP3813539 describes a process for producing a purified biodiesel from renewable raw materials (such as fats and oils) containing unsaponifiable materials.
  • the process involves the esterification of vegetable oils or fats to obtain a crude biodiesel which is then subjected to distillation to produce a purified biodiesel and a distillation base.
  • the latter contains more than 2% by mass of unsaponifiables as well as soaps, phospholipids, proteins, colored compounds, sulfur compounds, high boiling point compounds containing acidic or basic groups, and mono-, di- and triglycerides.
  • This distillation bottom is then diluted with a filler of fossil origin of the middle distillate type, before being subjected to a hydrodeoxygenation step in order to produce hydrocarbons of the diesel type. Jet production is not mentioned.
  • the invention proposes a process for manufacturing a jet fuel comprising at least the steps consisting of: a) providing ethyl esters of fatty acids resulting from the reaction of animal fats and/or used oils with ethanol in a transesterification reactor, b) supplying hydrocarbons of fossil origin, c) preparing a hydrocarbon feed containing the hydrocarbons of fossil origin supplied by step b) and the fatty acid ethyl esters supplied by step a ) in a content of at most 5% vol relative to the hydrocarbon feedstock, d) subjecting the hydrocarbon feedstock prepared in step c) to hydrotreatment and obtaining a treated hydrocarbon feedstock, e) fractionating the treated hydrocarbon feedstock obtained in step d) and recover a kerosene fraction as jet fuel, said kerosene fraction preferably having a final boiling point below 300°C, measured in particular according to standard ASTM D86-12.
  • the process according to the invention thus makes it possible to obtain an aviation fuel, part of which is of renewable origin, this type of fuel also being called SAF for “Sustainable Aviation Fuel” in English.
  • the kerosene fraction obtained meets the specifications of an A1 jet according to standard ASTM D1655-21, in particular when the ethyl esters are obtained from animal fats which are animal by-products. This makes it possible to increase the production of kerosene by using this type of fat.
  • process according to the invention can be implemented in existing hydrotreatment units.
  • % by weight and % by mass have an equivalent meaning and refer to the proportion of the mass of a product compared to 100g of a composition comprising it.
  • Boiling points as mentioned here are measured at atmospheric pressure unless otherwise noted.
  • An initial boiling point is defined as the temperature value at which a first vapor bubble is formed.
  • a final boiling point is the highest temperature achievable during distillation. At this temperature, no more vapor can be transported to a condenser.
  • the determination of the initial and final points uses techniques known in the trade and several methods adapted depending on the range of distillation temperatures are applicable, for example NF EN 15199-1 (version 2020) or ASTM D2887-19 for the measurement of boiling points of petroleum fractions by gas chromatography, ASTM D7169-05 for heavy hydrocarbons, ASTM D7500-15(2019), D86-12 or D1160-18 for distillates.
  • the animal fats and used cooking oils, from which the ethyl esters used in the present invention are derived, are advantageously animal fats and used cooking oils having the status of animal by-products, in particular within the meaning of Regulation (EC) No. °1069/2009 of the European Parliament and of the Council of October 21, 2009 and Commission Regulation (EU) No. 142/2011 (Regulation implementing EC Regulation No. 1069/2009).
  • Animal fats with the status of animal by-product are fatty residues of animal origin, other than used cooking oils, for example from the food industries or rendering installations.
  • Used cooking oils having the status of animal by-products are used cooking oils (used cooking oils or UCO), namely residues of fats of plant or animal origin used for human food, in food industry, collective or commercial catering.
  • the ethyl esters of fatty acids supplied in step a) come from the reaction of animal fats and/or used oils with ethanol in a transesterification reactor.
  • this step a) may thus include, or consist of, a step of transesterification of animal fats and/or used oils with ethanol to obtain ethyl esters of the fatty acids initially contained in the animal fats and/or used oils, and glycerin, followed by a separation step by distillation, decantation or centrifugation of the ethyl esters produced.
  • the triglycerides contained in animal fats and/or used cooking oils react with ethanol to obtain ethyl esters of fatty acids in a transesterification reactor.
  • This reaction well known to those skilled in the art, is usually carried out in the presence of a catalyst, by an acid or basic, homogeneous or heterogeneous catalysis process, typically at a temperature of 25°C to 110°C or 35°C. °C to 90°C and a reaction time of 30 minutes to 50 hours.
  • a catalyst/oil mass ratio typically 0.25 to 8% and an ethanol/oil molar ratio of 3:1 to 15:1.
  • This reaction is for example carried out in the presence of acid catalysts (hydrochloric acid, sulfuric acid, sulfonic acid, boron trifloride, zinc chloride, acid ion exchangers, aluminum trioxide, iron trioxide, etc.) or in the presence basic catalysts such as alkali metal alkoxides and hydroxides as well as sodium or potassium carbonates (sodium hydroxide, potassium hydroxide, sodium ethanolate, potassium ethanolate, etc.).
  • acid catalysts hydroochloric acid, sulfuric acid, sulfonic acid, boron trifloride, zinc chloride, acid ion exchangers, aluminum trioxide, iron trioxide, etc.
  • basic catalysts such as alkali metal alkoxides and hydroxides as well as sodium or potassium carbonates (sodium hydroxide, potassium hydroxide, sodium ethanolate, potassium ethanolate, etc.).
  • the ethyl esters of fatty acids used in the present invention are therefore free of impurities such as unsaponifiable compounds, soaps, or other compounds originating from animal fats or used oils used as raw material.
  • impurities such as unsaponifiable compounds, soaps, or other compounds originating from animal fats or used oils used as raw material.
  • their unsaponifiable content is less than or equal to 1% m/m (measured according to standard ISO 3596:2001).
  • esters ethyl fatty acids provided in step a) may comprise at least one of the following characteristics:
  • the ethyl esters of fatty acids provided in step a) may comprise at least one of the following characteristics:
  • the content of ethyl esters of fatty acids whose carbon chain contains 20 to 22 carbon atoms will be as low as possible, preferably zero, in order to improve the cold properties and in particular the freezing point.
  • the esters produced from animal fats which are animal by-products and having one or more of the characteristics mentioned above, are produced from animal fats originating from category 1 materials and/or from materials of category 2, category 1 and 2 materials being defined in articles 8 and 9 respectively of European Regulation 1069/2009.
  • Step a) of supplying ethyl esters of fatty acids may in particular comprise (i) obtaining ethanol of renewable origin, (ii) followed by the reaction of animal fats and/or used oils with the ethanol obtained in step (i) in a transesterification reactor.
  • ethanol of renewable origin we mean ethanol obtained from biomass and/or by fermentation.
  • ethanol can be obtained by ethanolic fermentation in a bioreactor containing a culture of one or more microorganisms.
  • Ethanol of renewable origin can then advantageously be obtained by: aerobic fermentation of a substrate rich in sugars and/or starch derived from biomass, or anaerobic fermentation of a gas comprising CO, which may or may not come from biomass .
  • Ethanol can thus be produced by aerobic fermentation of a substrate rich in sugars and/or starch derived from biomass.
  • This substrate can for example include, or come from, sugar cane, sugar beet, sugar sorghum, corn, wheat, barley, rye, sorghum, triticale, potato , sweet potato, cassava, and/or lignocellulosic biomass.
  • the sugar-rich substrate can also be derived from lignocellullosic biomass by a treatment comprising (i) a step of separating the lignin, cellulose and hemicellulose contained in the lignocellullosic biomass, followed (ii) by a step of conversion of cellulose and/or hemicellulose into sugars.
  • Lignocellulosic biomass consists essentially of cellulose, hemicellulose and lignin. This biomass comes from agricultural and forestry residues or by-products from wood processing or crops, whether woody plants or herbaceous plants. This Lignocellulosic biomass can also include distillers' grains and allow the manufacture of ethanol as described in document EP2675778.
  • the first step (i) is a pretreatment step which makes it possible to separate the lignocellulosic matrix and to release the cellulose and hemicellulose from the complex formed with the lignin by means of one or more pretreatments.
  • pretreatment we know steam pretreatment (or steam explosion), hot water pretreatment (hydrothermal), ammonia explosion (AFEX), pretreatment in an acid medium or pretreatment alkaline.
  • Steam explosion treatment involves treating biomass, preferably previously shredded or ground, with high-pressure saturated steam at temperatures of approximately 160 to 240°C and pressures of 0.7 to 4.8MPa.
  • the efficiency of steam treatment can be improved by adding H2SO4, CO2 or SO2 as a catalyst.
  • AFEX pretreatment the biomass is contacted with a charge of anhydrous liquid ammonia in a ratio of 1:1 to 2:1 (1 to 2kg ammonia/kg dry biomass) for 10 to 60 min at 60 -90°C and at pressures above 3MPa.
  • Hydrothermal pretreatment is similar to steam explosion, but uses liquid water at elevated temperatures instead of steam.
  • an aqueous suspension of the cellulose substrate is heated to the desired temperature and pretreated with preheated sulfuric acid (concentrations ⁇ 4% mass) in a steel reactor stainless steel, the treatment is carried out at a temperature of 140 to 215°C.
  • the residence time varies from a few seconds to a few minutes depending on the processing temperature.
  • Lime pretreatment is an inexpensive physicochemical alkaline treatment that improves the digestibility of cellulosic biomass.
  • the Organosolv process which is a process for the delignification and/or saccharification of cellulosic materials and plant crops can also be used.
  • the Organosolv process involves the use of a mixture of water and a solvent such as alcohols or ketones and sometimes other solvents of a non-polar nature, as well as an acidic compound to facilitate hydrolysis. A process of this type is described for example in document US4470851A.
  • Step (ii) is a step of converting cellulose and/or hemicellulose into sugars. It is also well known to those skilled in the art. This is typically a hydrolysis which can be catalyzed by acid or by enzymes such as cellulases, for example the Trichoderma reesei strain, xylanases and xylosidases and arabinofuranosidases.
  • the substrate rich in sugars and/or starch is then subjected to fermentation.
  • this fermentation can be carried out using microorganisms, and in particular yeasts, specialized which make it possible to optimize the profitability of the production process, in particular the following yeasts: Ethanol Red® (Fermentie), Thermosacc® (Lallemand )), Angel Super Alcohol® (Angel®) and Fali® (AB Mauric)), the Saccharomyces cerevisiae yeast strains described in document FR3015985, the Candida Shehatae or Pichia stipitis yeast strains, or any other suitable microorganism.
  • yeasts Ethanol Red® (Fermentie), Thermosacc® (Lallemand )), Angel Super Alcohol® (Angel®) and Fali® (AB Mauric)
  • Saccharomyces cerevisiae yeast strains described in document FR3015985 the Candida Shehatae or Pichia stipitis yeast strains, or any other suitable microorganism.
  • Ethanol can also be produced by anaerobic fermentation of a gas comprising CO.
  • the substrate is then a gaseous substrate (a gas) containing CO.
  • This gaseous substrate can be a by-product of an industrial process or automobile exhaust.
  • the industrial process is selected from the group consisting of manufacturing of ferrous metal products, including steel mills, manufacturing of non-ferrous products, petroleum refining processes, coal gasification, production of electric power, carbon black production, ammonia production, methanol production, coke manufacturing and methane reforming.
  • the gaseous substrate can be captured from the industrial process before it is emitted into the atmosphere, using any suitable method. Depending on the composition of the gas thus captured, it may also be desirable to treat it to remove any unwanted impurities, such as dust particles, before introducing it into the fermentation.
  • the gas can be filtered or purified by known methods.
  • the gaseous substrate can come from the gasification of biomass.
  • the gasification process involves partial combustion of biomass in a restricted supply of air or oxygen.
  • THE resulting gas typically comprises primarily CO and H2, with minimal volumes of CO2, methane, ethylene, and ethane.
  • biomass by-products obtained during the extraction and processing of food products such as sugar from sugar cane or starch from corn or cereals, or non-food biomass waste generated by the forestry industry, can be gasified to produce a CO-containing gas which can be used in the present invention.
  • the gaseous substrate used typically has a significant proportion of CO.
  • the CO content of the gaseous substrate is typically 15% to 100% by volume, 15% to 95% by volume, 40% to 95% by volume, 40% to 60% by volume, and 45% to 95% by volume. 55% by volume or is in any interval defined by two of these limits.
  • the gas containing CO can comprise 25%, 30%, 35%, 40%, 45%, 50%, 55% or 60% CO by volume. Gases with lower CO contents, such as 6 vol%, may also be suitable, particularly when hh and CO2 are also present.
  • the gas substrate may also contain CO2, for example, in a proportion of 1% to 80% by volume, or 1% to 30% by volume or 5% to 10% by volume or in any interval defined by two of these limits.
  • carbon monoxide will be added to the fermentation reaction in the gaseous state, or in the liquid state.
  • carbon monoxide can be supplied in a liquid.
  • a liquid can be saturated with a gas containing carbon monoxide, and then this liquid can be added to a bioreactor. This can be achieved using a standard methodology.
  • a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnolo RV Volume 101, Number 3 / October, 2002) could be used.
  • the CO concentration of the gas or the partial pressure of CO in the gas
  • Increasing the partial pressure of CO in the gas increases the mass transfer of CO in a medium of fermentation.
  • the composition of the gas streams used to fuel a fermentation reaction can have a significant impact on the efficiency and/or costs of this reaction.
  • 1'02 can reduce the efficiency of an anaerobic fermentation process. Dealing with unwanted or unnecessary gases in the steps of a fermentation process before or after fermentation can increase the load on those steps (e.g., when the gas stream is compressed before entering a bioreactor, unnecessary energy can be used to compress gases that are not necessary for fermentation). Therefore, it may be desirable to treat substrate streams, particularly substrate streams derived from industrial sources, to remove undesirable components and increase the concentration of desirable components.
  • microorganisms capable of fermenting a gaseous substrate comprising CO to produce ethanol can be used in the present invention.
  • microorganisms of the genus Moorella, Clostridia, Ruminococcus, Acetobacterium, Eubacterium, Butyribacterium, Oxobacter, Methanosarcina, Methanosarcina, and Desulfotomaculum can be used.
  • Other specific examples of microorganisms are anaerobic carboxydotrophic bacteria. Examples of usable strains are described in document WO201226833.
  • the invention can be applied to a mixed culture of two or more microorganisms.
  • an appropriate nutrient medium must be introduced into the bioreactor in addition to a substrate, in appropriate conditions.
  • a nutrient medium will contain components, such as vitamins and minerals, sufficient to support the growth of the microorganism used.
  • the reaction conditions to take into account are the temperature, the flow rate of the medium, the pH, the redox potential of the medium, the stirring speed (if using a continuously stirring reactor), the level of inoculum, maximum substrate concentrations and substrate introduction rates into the bioreactor to ensure that the substrate level does not become limiting, and maximum product concentrations to avoid product inhibition.
  • Optimal reaction conditions will depend in part on the particular microorganism used.
  • the methods for cultivating microorganisms are known in the art and those skilled in the art know how to optimize the culture conditions for each microorganism, depending on its nature.
  • Examples of fermentation conditions suitable for the anaerobic fermentation of a substrate comprising CO are detailed in W02007/117157, W02008/115080, W02009/022925 and W002/08438.
  • the bioreactor may comprise a first growth reactor in which the microorganisms are cultivated, and a second fermentation reactor, into which the broth from the growth reactor is introduced and into which the Most of the fermentation product (e.g. ethanol) is produced. of the fermentation product
  • the Most of the fermentation product e.g. ethanol
  • the fermentation will result in a fermentation broth comprising a desirable product (ethanol) and/or one or more by-products (such as acetate and butyrate when the substrate is a gas containing CO) as well as microorganism cells, in a nutrient medium.
  • a desirable product ethanol
  • one or more by-products such as acetate and butyrate when the substrate is a gas containing CO
  • microorganism cells in a nutrient medium.
  • Ethanol recovery may include continuously removing a portion of the broth and recovering ethanol from the removed portion of the broth.
  • the removed part of the broth containing ethanol can be passed through a separation unit to separate, for example by filtration, the bacterial cells from the broth and produce a permeate containing ethanol without cells, and the return of the microorganism cells to the bioreactor.
  • the cell-free ethanol-containing permeate can then be used for the subsequent transesterification reaction.
  • recovery of the ethanol and/or one or more other products or by-products produced in the fermentation reaction comprises continuously removing a portion of the broth and separately recovering the ethanol and one or more other products from the portion removed from the broth.
  • ethanol can be recovered from the fermentation broth using methods such as filtration, distillation or fractional evaporation, pervaporation and extractive fermentation. Distillation of ethanol from a fermentation broth gives an azeotropic mixture of ethanol and water (i.e. 95% ethanol and 5% water). Anhydrous ethanol can then be obtained by the use of molecular sieve ethanol dehydration technology, which is also well known in the art.
  • Extractive fermentation procedures involve the use of a water-miscible solvent that poses a low risk of toxicity to the fermentation organism, to recover ethanol from the diluted fermentation broth.
  • oleyl alcohol is a solvent that can be used in this type of extraction process.
  • the oleyl alcohol is continuously introduced into a fermenter, whereupon this solvent rises forming a layer at the top of the fermenter which is continuously extracted and passed through a centrifuge.
  • the water and cells are then easily separated from the oleyl alcohol and returned to the bioreactor, while the ethanol-laden solvent is fed into a rapid vaporization unit.
  • Most ethanol is vaporized and condensed, while oleyl alcohol is non-volatile and is recovered for reuse in fermentation.
  • Ethanol of renewable origin can also be obtained from biomass by conversion of a synthesis gas rich in CO/H2, this synthetic gas coming from biomass.
  • Biomass can for example be gasified to produce a synthesis gas (or “syngas” in English) rich in CO/H2, this synthetic gas then being converted into methanol in the presence of a catalyst.
  • a synthesis gas or “syngas” in English
  • CO/H2 a synthesis gas
  • a process of this type is for example described in the document WO2012003901.
  • Synthesis gas suitable for further conversion to ethanol can also be obtained by pyrolysis of biomass.
  • Biomass used to produce syngas may include wood fuels from natural forests and woodlands (e.g. sawdust), agricultural residues (e.g. rice husk, straw manure) , energy crops that are grown exclusively for energy production (e.g. corn and oil palm), urban waste (e.g. wood waste, rice, straw manure), energy crops that are grown exclusively for energy production (e.g., corn and oil palm), urban waste (e.g., municipal solid waste and sewage), and waste-derived biomass fuel (e.g., wood pellets).
  • wood fuels from natural forests and woodlands e.g. sawdust
  • agricultural residues e.g. rice husk, straw manure
  • energy crops that are grown exclusively for energy production e.g. corn and oil palm
  • urban waste e.g. wood waste, rice, straw manure
  • energy crops that are grown exclusively for energy production e.g., corn and oil palm
  • urban waste e.g., municipal solid waste and sewage
  • waste-derived biomass fuel e.
  • the fossil hydrocarbons which can be used in the present invention can be chosen from kerosene cuts.
  • a kerosene cut of fossil origin has boiling points ranging from 130°C to 300°C. It typically has an initial boiling point according to the ASTM D86-12 standard of 130 to 160°C and a final boiling point according to the ASTM D86-12 standard of 220°C to 300°C. These kerosene cuts can be :
  • kerosene cut from different conversion processes such as catalytic cracking, hydrocracking and/or visbreaking.
  • the hydrocarbons of fossil origin are advantageously a kerosene cut or a mixture of kerosene cuts, preferably coming from the direct distillation of crude oil or from hydrocracking.
  • the hydrocarbon feed prepared in step c) contains the hydrocarbons of fossil origin provided by step b) and the ethyl esters of fatty acids provided by step a) in a content of at most 5% vol relative to the hydrocarbon filler, advantageously at most 0.9% or 0.6% or 0.5% or 0.4% or 0.3% by volume .
  • the content of fatty acid ethyl esters in the hydrocarbon feedstock can be from 0.1% by volume to 1% by volume, preferably from 0.1% by volume to 0.9% by volume, or from 0 .1% to 0.6% by volume, more preferably 0.1% to 0.5% by volume or 0.1 to 0.4% by volume or 0.1 to 0.3% by volume , or in any inclusive interval defined by two of these limits.
  • This preparation step can be carried out by simply mixing the constituents of the hydrocarbon feed supplied in steps a) and b), in particular upstream of the hydrotreatment step of step d), or during step d. ).
  • Step d) of hydrotreatment of the hydrocarbon feed can be implemented in one or more reactors.
  • Any type of reactor usually used for this type of reaction can be used, for example a fixed bed reactor, a bubbling bed reactor, a slurry reactor, etc., preferably a fixed bed reactor.
  • step d) is carried out under a pressure of 15 to 130 bars and at a temperature of 250 to 380°C, preferably 280 to 340°C, in the presence of a hydrotreatment catalyst and dihydrogen. .
  • an hourly space velocity of the liquid (WH in French, LHSV in English - Liquid Hourly Space Velocity): from 0.2 to 9 hr 1 , preferably 0.5 to 7, and more preferably 0.8 to 1 .8, and a dihydrogen ratio: 50 to 1500 Nm 3 /m 3 of charge, preferably 120 to 250 Nm 3 /m 3 and more preferably 120 to 200 Nm 3 /m 3 .
  • Step d) is typically carried out in a fixed bed reactor, comprising one or more catalyst beds. More specifically, step d) can be carried out under a pressure of 15 to 50 bars and at a temperature of 280°C to 340°C, in the presence of a hydrotreatment catalyst and dihydrogen, typically with a dihydrogen rate from 120 to 180 Nm 3 /m 3 of charge. Typically we can predict an hourly space velocity of the liquid of l to 1.6 h -1 .
  • the hydrotreatment catalyst is a conventional hydrotreatment catalyst.
  • Conventional hydrotreatment catalysts include in particular an active metal compound such as nickel, platinum, palladium, rhenium, rhodium, nickel tungstate, nickel molybdenate, molybdenum, cobalt molybdenate, nickel molybdenate, nickel, this metallic compound may or may not be deposited on a support.
  • This support can generally comprise oxides such as silicas, aluminas, aluminosilicates (in particular zeolites), oxides of titanium, or even carbon, molecular sieves, salts or alkaline earth metals.
  • a support When a support is present, it advantageously has a specific surface area varying from 100 to 250 m 2 /g, preferably from 150 to 200 m 2 /g.
  • the catalyst comprises at least two metals from groups 6, 9, 10, 11 of the periodic table of elements, preferably at least two metals such as NiMo, CoMo, or even CoNiMo, preferably on an alumina support.
  • conventional hydroprocessing catalysts When supported, conventional hydroprocessing catalysts typically comprise a metal content of 0.01 to 25% by mass relative to the total mass of the catalyst, preferably 15 to 20% by mass, for example 20 % by mass relative to the total mass of the catalyst.
  • the catalyst used does not have an isomerizing function or has negligible isomerizing activity under the reaction conditions. In other words, the catalyst does not promote the isomerization of the hydrocarbon compounds present in the feed.
  • a support is present, it is preferably slightly or not acidic.
  • a catalyst not having an isomerizing function can comprise at least one metal from groups 6, 9, 10, 11 of the periodic table of elements, optionally on a support chosen from alumina, silica alumina, phosphated alumina, borated alumina, phosphated alumina silica, alone or in a mixture.
  • the hydrotreatment step d) produces an effluent containing a liquid fraction containing the kerosene fraction, and a gaseous fraction.
  • the hydrotreated feedstock obtained at the outlet of step d) undergoes fractionation.
  • This fractionation can be carried out by distillation or stripping, in particular by adding a separation column, for example a distillation column, or even a stripping column.
  • the effluent leaving the reactor is fractionated, typically by stripping, in order to recover a kerosene cut.
  • This fractionation can be implemented so that the kerosene cut forms a jet fuel, respecting in particular the desired specifications.
  • the recovered kerosene fraction has a final boiling point less than or equal to 300°C, in particular measured according to the ASTM D86-12 standard.
  • the initial boiling point according to ASTM D86-12 can be 120 to 185°C.
  • the final boiling point according to ASTM D86-12 can be 220 to 300°C.
  • step e) makes it possible to obtain a kerosene fraction meeting one or more of the required specifications, in particular those of an A1 jet according to the ASTM standard. D1655-21, in particular at the incorporation levels of the ethyl esters in the hydrocarbon feed prepared in step c) above.
  • the fractionation step also makes it possible to recover the gas produced, in particular methane, during the hydrotreatment step.
  • Fig. 1 simplified diagram of a hydrotreatment unit making it possible to implement the process according to one embodiment of the invention.
  • Figure 1 represents a simplified diagram of a hydrotreatment unit 1 making it possible to implement the process according to the invention.
  • This unit 1 comprises a reactor 2 into which the feed to be treated is introduced by means of a line 3.
  • This reactor contains one or more beds of hydrotreatment catalysts.
  • the filler (C), in the present invention, is a mixture of a kerosene filler of fossil origin and ethyl esters of fatty acids of renewable origin.
  • a line 4 recovers the effluent leaving reactor 2 and leads it to a separation section 5.
  • a heat exchanger 6 is placed downstream of the reactor on line 4 in order to heat the charge circulating in line 3, upstream of the reactor.
  • a line 7, connected to line 3, supplies a gas rich in H2 to the load to be treated.
  • the feed is mixed with the hydrogen-rich gas, then brought to the reaction temperature by the heat exchanger 6 and the oven 8 before entering reactor 2. It then passes into reactor 2.
  • the mixture obtained is cooled, then separated in the separation section 5, for example by stripping, which makes it possible to obtain: - a gaseous fraction (G), containing in particular water from stripping, gaseous hydrocarbons, an acid gas rich in H2S, part of which is reinjected into the gas rich in H2 mixed with the load, by means of a line 9,
  • G gaseous fraction

Abstract

The invention relates to a method for manufacturing a jet fuel comprising at least the steps of: a) providing ethyl esters of fatty acids resulting from the reaction of animal fats and/or used oils with methanol in a transesterification reactor, b) providing hydrocarbons of fossil origin, c) preparing a hydrocarbon load containing the hydrocarbons of fossil origin provided by step b) and the ethyl esters of fatty acids provided by step a) in a content of at most 5 vol.% relative to the hydrocarbon load, d) subjecting the hydrocarbon load prepared in step c) to a hydrotreatment and obtaining a treated hydrocarbon load, e) fractionating the treated hydrocarbon load obtained in step d) and recovering a kerosene fraction as a jet fuel.

Description

Titre : PROCEDE DE FABRICATION D’UN CARBUREACTEUR A PARTIR DE CHARGES D’ORIGINE RENOUVELABLE Title: PROCESS FOR MANUFACTURING A JET FUEL FROM FEEDS OF RENEWABLE ORIGIN
Domaine technique Technical area
La présente invention concerne le domaine technique du raffinage de charges pétrolières d’origine fossile et de charges d’origine biologique, notamment pour la fabrication de carburéacteur. Plus particulièrement, l'invention concerne un procédé pour obtenir un carburéacteur présentant une composante d’origine biologique (ou renouvelable). The present invention relates to the technical field of refining petroleum feedstocks of fossil origin and feedstocks of biological origin, particularly for the manufacture of jet fuel. More particularly, the invention relates to a process for obtaining a jet fuel having a component of biological (or renewable) origin.
Contexte de l'invention Background of the invention
Les carburants conventionnels de type carburéacteur, également appelés «carburant jet », « jet fuel » ou « kérosène » sont produits à partir de pétrole brut et contiennent un mélange complexe d'hydrocarbures qui ont typiquement 6 à 18 atomes de carbone. Ces hydrocarbures comprennent des alcanes linéaires et ramifiés, des cycloalcanes et des hydrocarbures aromatiques. Les points de coupe de la fraction jet-fuel varient typiquement entre 140°C et 240°C. Conventional jet fuels, also called jet fuel, jet fuel or kerosene, are produced from crude oil and contain a complex mixture of hydrocarbons that typically have 6 to 18 carbon atoms. These hydrocarbons include linear and branched alkanes, cycloalkanes and aromatic hydrocarbons. The cut points of the jet-fuel fraction typically vary between 140°C and 240°C.
Un carburéacteur commercial est typiquement obtenu par mélange de différentes bases carburant. Ces bases carburant peuvent être des coupes de distillation de pétroles bruts, éventuellement hydrotraitées ou parfois soumises à un traitement d’adoucissement (procédé MEROX par exemple). Ces bases peuvent également être des coupes d’un effluent d’hydrocraqueur ou d’un effluent d’un craqueur catalytique (souvent après hydrotraitement). D’autres bases carburant peuvent être préparées par d'autres voies comme la synthèse de Fischer Tropsch suivie d'une étape de craquage. Le choix des bases carburant ainsi que leurs proportions relatives sont effectués pour que les propriétés finales du mélange répondent aux spécifications recherchées. Commercial jet fuel is typically obtained by mixing different fuel bases. These fuel bases can be crude oil distillation cuts, possibly hydrotreated or sometimes subjected to a softening treatment (MEROX process for example). These bases can also be cuts from a hydrocracker effluent or an effluent from a catalytic cracker (often after hydrotreatment). Other fuel bases can be prepared by other routes such as Fischer Tropsch synthesis followed by a cracking step. The choice of fuel bases as well as their relative proportions are made so that the final properties of the mixture meet the desired specifications.
Du fait de la raréfaction des ressources fossiles et de préoccupations environnementales de plus en plus importantes, l'utilisation de molécules issues de la biomasse est de plus en plus recherchée pour remplacer les molécules d'origine fossile. Toutefois, la préparation de jet fuel à partir de molécules issues de la biomasse directement utilisables dans la formulation de jet fuel constitue un véritable enjeu économique et environnemental. En particulier, certains pays comme la France mettent en place de taxes incitatives relatives à l’incorporation d’énergie renouvelable dans les transports et en particulier pour le secteur de l’aviation. Due to the increasing scarcity of fossil resources and increasingly significant environmental concerns, the use of molecules from biomass is increasingly sought after to replace molecules of fossil origin. However, the preparation of jet fuel from molecules derived from biomass directly usable in the formulation of jet fuel constitutes a real economic and environmental challenge. In particular, certain countries like France put in place incentive taxes relating to the incorporation of renewable energy in transport and in particular for the aviation sector.
Art antérieur Prior art
Une solution pour obtenir un carburéacteur présentant une composante d’origine biologique consiste à mélanger un jet conventionnel à une base paraffinique issue de charges renouvelables telles que prévues par la norme D7566-21 permettant ainsi la production de carburants d’aviation alternatifs. Les bases pour carburant d’aviation issues de charges renouvelables pouvant être incorporées à du jet fossile sont A solution for obtaining a jet fuel with a component of biological origin consists of mixing a conventional jet with a paraffin base derived from renewable feedstocks as provided for by standard D7566-21, thus allowing the production of alternative aviation fuels. Bases for aviation fuel derived from renewable feedstocks that can be incorporated into fossil fuels are
• Les kérosènes paraffiniques synthétiques [SPK], issus de procédés tels que le procédé Fischer-Tropsch, l’hydrotraitement d’esters et d’acides gras [HEFA- SPK] ou produit par la voie Alcohol-to-jet (transformation d’alcool en kérosène) [ATJ-SPK], • Synthetic paraffinic kerosenes [SPK], resulting from processes such as the Fischer-Tropsch process, the hydrotreatment of esters and fatty acids [HEFA-SPK] or produced by the Alcohol-to-jet route (transformation of alcohol into kerosene) [ATJ-SPK],
• Les isoparaffines synthétiques produites par hydrotraitement à partir de sucres fermentés [SIP-HFS], • Synthetic isoparaffins produced by hydrotreatment from fermented sugars [SIP-HFS],
• Les kérosènes aromatiques synthétiques obtenus par alkylation d’aromatiques légers de source non-pétrolière [SPK/A], • Synthetic aromatic kerosenes obtained by alkylation of light aromatics from non-petroleum sources [SPK/A],
• Les kérosènes de synthèse obtenus à partir de la conversion hydrothermique d’esters d’acide gras et d’acide gras, • Synthetic kerosenes obtained from the hydrothermal conversion of fatty acid esters and fatty acids,
• Les kérosènes paraffiniques synthétiques [SPK] obtenus à partir d’hydrocarbures, d’esters et d’acides gras hydrotraités. • Synthetic paraffinic kerosenes [SPK] obtained from hydrocarbons, esters and hydrotreated fatty acids.
Cette solution nécessite cependant des installations de traitement spécifiques pour produire les bases paraffiniques qui seront mélangées au jet conventionnel. This solution, however, requires specific processing facilities to produce the paraffinic bases which will be mixed with the conventional jet.
Une autre solution consiste à co-traiter un hydrocarbure d’origine fossile avec une charge d’origine renouvelable, tel que prévu notamment dans la norme ASTM D1655- 21 c. Another solution consists of co-treating a hydrocarbon of fossil origin with a feed of renewable origin, as provided in particular in standard ASTM D1655-21 c.
Ainsi, le document EP2346962 décrit un procédé permettant d’obtenir une coupe kérosène dont une partie est d’origine biologique. A cet effet, une charge d’origine pétrolière mélangée à une charge d’origine biologique est soumise à une étape d’hydrotraitement, puis fractionnée afin de récupérer une coupe kérosène. La charge d’origine biologique utilisée est une huile et/ou une graisse animale, ou un mélange de ces huiles/graisses. Les huiles et/ou graisses utilisées ne sont pas trans- estérifiées. Thus, document EP2346962 describes a process making it possible to obtain a kerosene cut, part of which is of biological origin. For this purpose, a feed of petroleum origin mixed with a feed of biological origin is subjected to a hydrotreatment step, then fractionated in order to recover a kerosene cut. The filler of biological origin used is an animal oil and/or fat, or a mixture of these oils/fats. The oils and/or fats used are not transesterified.
Le document EP2533895 décrit un catalyseur spécifique permettant de produire un biodiesel. Il décrit notamment l’utilisation de ce catalyseur pour traiter une charge qui est un mélange d’un hydrocarbure d’origine fossile (kérosène, diésel, ...) et d’une biomasse choisie parmi les huiles et graisses végétales ou animales. Les huiles et/ou graisses utilisées ne sont pas trans-estérifiées. La production de jet n’est pas mentionnée. Document EP2533895 describes a specific catalyst for producing biodiesel. It describes in particular the use of this catalyst to treat a load which is a mixture of a hydrocarbon of fossil origin (kerosene, diesel, etc.) and a biomass chosen from vegetable or animal oils and fats. The oils and/or fats used are not trans-esterified. Jet production is not mentioned.
Par ailleurs, le document EP3813539 décrit un procédé de production d’un biodiesel purifié à partir de matières premières renouvelables (telles que des graisses et des huiles) contenant des matières insaponifiables. Le procédé comprend l’estérification d’huiles ou graisses végétales pour obtenir un biodiesel brut qui est ensuite soumis à une distillation afin de produire un biodiésel purifié et un fond de distillation. Ce dernier contient plus de 2% en masse d’insaponifiables ainsi que des savons, phospholipides, protéines, composés colorés, composés sulfurés, des composés à haut point d’ébullition contenant des groupes acides ou basiques, et des mono-, di- et triglycérides. Ce fond de distillation est ensuite dilué avec une charge d’origine fossile de type distillât moyen, avant d’être soumis à une étape d’hydrodéoxygénation afin de produire des hydrocarbures de type gazole. La production de jet n’est pas mentionnée.Furthermore, document EP3813539 describes a process for producing a purified biodiesel from renewable raw materials (such as fats and oils) containing unsaponifiable materials. The process involves the esterification of vegetable oils or fats to obtain a crude biodiesel which is then subjected to distillation to produce a purified biodiesel and a distillation base. The latter contains more than 2% by mass of unsaponifiables as well as soaps, phospholipids, proteins, colored compounds, sulfur compounds, high boiling point compounds containing acidic or basic groups, and mono-, di- and triglycerides. This distillation bottom is then diluted with a filler of fossil origin of the middle distillate type, before being subjected to a hydrodeoxygenation step in order to produce hydrocarbons of the diesel type. Jet production is not mentioned.
Parmi les charges d’origine renouvelables disponibles aujourd’hui, les charges ayant le statut de sous produits animaux au sens du règlement européen 1069/2009 et de ses actes d’exécution (EU) 142/2011 , telles que les graisses animales ou les huiles usagées de cuisson (aussi désignées par l’acronyme UCO pour « Used Cooking Oil » en anglais), sont intéressantes afin de limiter l’impact environnemental du carburant produit. Ces charges sont toutefois soumises à des réglementations sanitaires contraignantes. L’utilisation de ces charges entraine des contraintes de traçabilité et des contrôles sanitaires associés notamment à la gestion des effluents aqueux. Plus encore, l’utilisation de ces charges ayant le statut de sous produits animaux nécessite de respecter les conditions de temps/températures et de pression telles que préconisées dans le règlement européen 1069/2009, ces conditions n’étant pas remplies par une étape d’hydrotraitement seule. Il existe donc un besoin pour un procédé de fabrication d’un carburéacteur par co-traitement en unité d’hydrotraitement, en particulier à partir de charges d’origine renouvelable ayant le statut de sous produits animaux, qui permette de s’affranchir des problèmes susmentionnés. Among the charges of renewable origin available today, charges having the status of animal by-products within the meaning of European Regulation 1069/2009 and its implementing acts (EU) 142/2011, such as animal fats or Used cooking oils (also referred to by the acronym UCO for “Used Cooking Oil” in English), are interesting in order to limit the environmental impact of the fuel produced. These charges are, however, subject to restrictive health regulations. The use of these fillers leads to traceability constraints and health controls associated in particular with the management of aqueous effluents. Furthermore, the use of these fillers having the status of animal by-products requires respecting the time/temperature and pressure conditions as recommended in European Regulation 1069/2009, these conditions not being met by a step of hydrotreatment alone. There is therefore a need for a process for manufacturing a jet fuel by unit co-processing. hydrotreatment, in particular from feedstocks of renewable origin having the status of animal by-products, which makes it possible to overcome the aforementioned problems.
Description de l’invention Description of the invention
L’invention propose un procédé de de fabrication d’un carburéacteur comprenant au moins les étapes consistant à : a) fournir des esters éthyliques d’acides gras issus de la réaction de graisses animales et/ou d’huiles usagées avec de l’éthanol dans un réacteur de transestérification, b) fournir des hydrocarbures d’origine fossile, c) préparer une charge hydrocarbonée contenant les hydrocarbures d’origine fossile fournis par l’étape b) et les esters éthyliques d’acide gras fournis par l’étape a) en une teneur d’au plus 5% vol par rapport à la charge hydrocarbonée, d) soumettre la charge hydrocarbonée préparée lors de l’étape c) à un hydrotraitement et obtenir une charge hydrocarbonée traitée, e) fractionner la charge hydrocarbonée traitée obtenue à l’étape d) et récupérer une fraction kérosène en tant que carburéacteur, ladite fraction kérosène présentant préférentiellement un point d’ébullition final inférieur à 300°C, mesuré notamment selon la norme ASTM D86-12. The invention proposes a process for manufacturing a jet fuel comprising at least the steps consisting of: a) providing ethyl esters of fatty acids resulting from the reaction of animal fats and/or used oils with ethanol in a transesterification reactor, b) supplying hydrocarbons of fossil origin, c) preparing a hydrocarbon feed containing the hydrocarbons of fossil origin supplied by step b) and the fatty acid ethyl esters supplied by step a ) in a content of at most 5% vol relative to the hydrocarbon feedstock, d) subjecting the hydrocarbon feedstock prepared in step c) to hydrotreatment and obtaining a treated hydrocarbon feedstock, e) fractionating the treated hydrocarbon feedstock obtained in step d) and recover a kerosene fraction as jet fuel, said kerosene fraction preferably having a final boiling point below 300°C, measured in particular according to standard ASTM D86-12.
Le procédé selon l’invention permet ainsi d'obtenir un carburant d’aviation dont une partie est d’origine renouvelable, ce type de carburant étant aussi appelé SAF pour « Sustainable Aviation Fuel » en anglais. Notamment, la fraction kérosène obtenue respecte les spécifications d’un jet A1 selon la norme ASTM D1655-21 , en particulier lorsque les esters éthyliques sont obtenus à partir de graisses animales qui sont des sous produits animaux. Ceci permet d’augmenter la production de kérosène en valorisant ce type de graisses. The process according to the invention thus makes it possible to obtain an aviation fuel, part of which is of renewable origin, this type of fuel also being called SAF for “Sustainable Aviation Fuel” in English. In particular, the kerosene fraction obtained meets the specifications of an A1 jet according to standard ASTM D1655-21, in particular when the ethyl esters are obtained from animal fats which are animal by-products. This makes it possible to increase the production of kerosene by using this type of fat.
En particulier, le procédé selon l’invention peut être mis en œuvre dans les unités d’hydrotraitement existantes. In particular, the process according to the invention can be implemented in existing hydrotreatment units.
Description détaillée de l’invention Detailed description of the invention
Les termes « comprenant » et « comprend » tels qu’utilisés ici sont synonymes avec « incluant », « inclut » ou « contient », « contenant », et sont inclusifs ou sans bornes et n’excluent pas de caractéristiques additionnelles, d’éléments ou d’étapes de méthodes non spécifiés. The terms "comprising" and "includes" as used herein are synonymous with "including", "includes" or "contains", "containing", and are inclusive or without limitation and do not exclude additional features, elements or steps of unspecified methods.
Les expressions % en poids et % en masse ont une signification équivalente et se réfèrent à la proportion de la masse d’un produit rapportée à 100g d’une composition le comprenant. The expressions % by weight and % by mass have an equivalent meaning and refer to the proportion of the mass of a product compared to 100g of a composition comprising it.
Les points d’ébullition tels que mentionnés ici sont mesurés à pression atmosphérique, sauf indication contraire. Un point d’ébullition initial est défini comme la valeur de température à partir de laquelle une première bulle de vapeur est formée. Un point d’ébullition final est la plus haute température atteignable lors d’une distillation. A cette température, plus aucune vapeur ne peut être transportée vers un condensateur. La détermination des points initial et final fait appel à des techniques connues du métier et plusieurs méthodes adaptées en fonction du domaine de températures de distillation sont applicables, par exemple NF EN 15199-1 (version 2020) ou ASTM D2887-19 pour la mesure des points d’ébullition de fractions pétrolières par chromatographie en phase gazeuse, ASTM D7169-05 pour les hydrocarbures lourds, ASTM D7500-15(2019), D86-12 ou D1160-18 pour les distillats. Boiling points as mentioned here are measured at atmospheric pressure unless otherwise noted. An initial boiling point is defined as the temperature value at which a first vapor bubble is formed. A final boiling point is the highest temperature achievable during distillation. At this temperature, no more vapor can be transported to a condenser. The determination of the initial and final points uses techniques known in the trade and several methods adapted depending on the range of distillation temperatures are applicable, for example NF EN 15199-1 (version 2020) or ASTM D2887-19 for the measurement of boiling points of petroleum fractions by gas chromatography, ASTM D7169-05 for heavy hydrocarbons, ASTM D7500-15(2019), D86-12 or D1160-18 for distillates.
Graisses animales et huiles usagées Animal fats and used oils
Les graisses animales et huiles usagées de cuisson, dont sont issus les esters éthyliques utilisés dans la présente invention, sont avantageusement des graisses animales et des huiles usagées de cuisson ayant le statut de sous-produits animaux, notamment au sens du règlement (CE) n°1069/2009 du Parlement européen et du Conseil du 21 octobre 2009 et du règlement (UE) n°142/2011 de la Commission (règlement d’application du règlement CE n°1069/2009). The animal fats and used cooking oils, from which the ethyl esters used in the present invention are derived, are advantageously animal fats and used cooking oils having the status of animal by-products, in particular within the meaning of Regulation (EC) No. °1069/2009 of the European Parliament and of the Council of October 21, 2009 and Commission Regulation (EU) No. 142/2011 (Regulation implementing EC Regulation No. 1069/2009).
Les graisses animales ayant le statut de sous-produit animaux sont des résidus graisseux d'origine animale, autres que les huiles alimentaires usagées de cuisson, provenant par exemple des industries alimentaires ou d'installations d'équarrissage.Animal fats with the status of animal by-product are fatty residues of animal origin, other than used cooking oils, for example from the food industries or rendering installations.
Les huiles usagées de cuisson ayant le statut de sous-produits animaux sont des huiles alimentaires usagées de cuisson (huiles usagées de cuisson ou UCO), à savoir les résidus de matières grasses d'origine végétale ou animale utilisées pour l'alimentation humaine, en industrie agroalimentaire, en restauration collective ou commerciale. Etape a) Used cooking oils having the status of animal by-products are used cooking oils (used cooking oils or UCO), namely residues of fats of plant or animal origin used for human food, in food industry, collective or commercial catering. Step a)
Les esters éthyliques d’acides gras fournis à l’étape a) sont issus de la réaction de graisses animales et/ou d’huiles usagées avec de l’éthanol dans un réacteur de transestérification. The ethyl esters of fatty acids supplied in step a) come from the reaction of animal fats and/or used oils with ethanol in a transesterification reactor.
Notamment, cette étape a) peut ainsi comporter, ou consister en, une étape de transestérification des graisses animales et/ou d’huiles usagées avec de l’éthanol pour obtenir des esters éthyliques des acides gras initialement contenus dans les graisses animales et/ou huiles usagées, et de la glycérine, suivie d’une étape de séparation par distillation, décantation ou centrifugation des esters éthyliques produits. In particular, this step a) may thus include, or consist of, a step of transesterification of animal fats and/or used oils with ethanol to obtain ethyl esters of the fatty acids initially contained in the animal fats and/or used oils, and glycerin, followed by a separation step by distillation, decantation or centrifugation of the ethyl esters produced.
Lors de l’étape de transestérification, les triglycérides contenus dans les graisses animales et/ou d’huiles usagées de cuisson réagissent avec l’éthanol pour obtenir des esters éthyliques des acides gras dans un réacteur de transestérification. Cette réaction, bien connue de l’homme du métier, est habituellement réalisée en présence d’un catalyseur, par un procédé de catalyse acide ou basique, homogène ou hétérogène, typiquement à une température de 25°C à 110°C ou de 35°C à 90°C et une durée de réaction de 30 minutes à 50 heures. On pourra par exemple utiliser un rapport massique catalyseur/huile de 0,25 à 8% et un rapport molaire éthanol/huile de 3 :1 à 15 :1. During the transesterification step, the triglycerides contained in animal fats and/or used cooking oils react with ethanol to obtain ethyl esters of fatty acids in a transesterification reactor. This reaction, well known to those skilled in the art, is usually carried out in the presence of a catalyst, by an acid or basic, homogeneous or heterogeneous catalysis process, typically at a temperature of 25°C to 110°C or 35°C. °C to 90°C and a reaction time of 30 minutes to 50 hours. For example, we could use a catalyst/oil mass ratio of 0.25 to 8% and an ethanol/oil molar ratio of 3:1 to 15:1.
Cette réaction est par exemple réalisée en présence de catalyseurs acides (acide chlorhydrique, acide sulfurique, acide sulfonique, triflorure de bore, chlorure de zinc, échangeurs d'ions acides, trioxyde d'aluminium, trioxyde de fer, etc.) ou en présence de catalyseurs basiques tels que les alcoolates et hydroxydes de métaux alcalins ainsi que les carbonates de sodium ou de potassium (hydroxyde de sodium, hydroxyde de potassium, éthanolate de sodium, éthanolate de potassium, etc.). This reaction is for example carried out in the presence of acid catalysts (hydrochloric acid, sulfuric acid, sulfonic acid, boron trifloride, zinc chloride, acid ion exchangers, aluminum trioxide, iron trioxide, etc.) or in the presence basic catalysts such as alkali metal alkoxides and hydroxides as well as sodium or potassium carbonates (sodium hydroxide, potassium hydroxide, sodium ethanolate, potassium ethanolate, etc.).
Les esters éthyliques d’acides gras utilisés dans la présente invention sont donc dépourvus d’impuretés de type composés insaponifiables, savons, ou autres composés provenant des graisses animales ou huiles usagées utilisées comme matière première. En particulier, leur teneur en insaponifiables est inférieure ou égale à 1 %m/m (mesurée selon la norme ISO 3596 :2001 ). The ethyl esters of fatty acids used in the present invention are therefore free of impurities such as unsaponifiable compounds, soaps, or other compounds originating from animal fats or used oils used as raw material. In particular, their unsaponifiable content is less than or equal to 1% m/m (measured according to standard ISO 3596:2001).
Avantageusement, notamment lorsqu’ils sont produits à partir de graisses animales et/ou huiles usagées de cuisson qui sont des sous-produits animaux, les esters éthyliques d’acides gras fournis à l’étape a) peuvent comprendre au moins une des caractéristiques suivantes : Advantageously, particularly when they are produced from animal fats and/or used cooking oils which are animal by-products, the esters ethyl fatty acids provided in step a) may comprise at least one of the following characteristics:
- au moins 9%m, typiquement de 9%m à 64%m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient de 12 à 16 atomes de carbone, - at least 9%m, typically from 9%m to 64%m, of ethyl esters of fatty acids whose carbon chain contains from 12 to 16 carbon atoms,
- au moins 25%m, typiquement de 30%m à 98%m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient 18 atomes de carbone, - at least 25%m, typically from 30%m to 98%m, of ethyl esters of fatty acids whose carbon chain contains 18 carbon atoms,
- au plus 4%m, typiquement de 0%m à 2%m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient de 20 à 22 atomes de carbone. - at most 4%m, typically from 0%m to 2%m, of ethyl esters of fatty acids whose carbon chain contains 20 to 22 carbon atoms.
Lorsque ces esters sont produits à partir de graisses animales (autres que les huiles de cuisson) qui sont des sous produits animaux(notamment au sens du règlement européen 1069/2009 et de ses actes d’exécution (EU) 142/2011 ), les esters éthyliques d’acides gras fournis à l’étape a) peuvent comprendre au moins une des caractéristiques suivantes : When these esters are produced from animal fats (other than cooking oils) which are animal by-products (in particular within the meaning of European Regulation 1069/2009 and its implementing acts (EU) 142/2011), the ethyl esters of fatty acids provided in step a) may comprise at least one of the following characteristics:
- au moins 20%m, typiquement de 20%m à 64%m, - at least 20%m, typically from 20%m to 64%m,
- d’esters éthyliques d’acides gras dont la chaîne carbonée contient de 12 à 16 atomes de carbone, - ethyl esters of fatty acids whose carbon chain contains 12 to 16 carbon atoms,
- au moins 25%m, typiquement de 25%m à 65%m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient 18 atomes de carbone, - at least 25%m, typically from 25%m to 65%m, of ethyl esters of fatty acids whose carbon chain contains 18 carbon atoms,
- au plus 4%m, typiquement de 0%m à 2%m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient 20 atomes de carbone, - at most 4%m, typically from 0%m to 2%m, of ethyl esters of fatty acids whose carbon chain contains 20 carbon atoms,
- au plus 1 %m, typiquement de 0%m à 1 %m, d’esters éthyliques d’acides gras dont la chaîne carbonée contient 22 atomes de carbone. - at most 1%m, typically from 0%m to 1%m, of ethyl esters of fatty acids whose carbon chain contains 22 carbon atoms.
De préférence, la teneur en esters éthyliques d’acides gras dont la chaîne carbonée contient de 20 à 22 atomes de carbone sera la plus faible possible, de préférence nulle, afin d’améliorer les propriétés à froid et notamment le point de congélation.Preferably, the content of ethyl esters of fatty acids whose carbon chain contains 20 to 22 carbon atoms will be as low as possible, preferably zero, in order to improve the cold properties and in particular the freezing point.
Dans un mode de réalisation préféré, les esters produits à partir de graisses animales qui sont des sous produits animaux et présentant une ou plusieurs des caractéristiques précédemment citées, sont produits à partir de graisses animales provenant de matières de catégorie 1 et/ou de matières de catégorie 2, les matières de catégorie 1 et 2 étant définies dans les articles 8 et 9 respectivement du règlement européen 1069/2009. L’étape a) de fourniture d’esters éthyliques d’acides gras peut notamment comprendre (i) l’obtention d’éthanol d’origine renouvelable, (ii) suivie de la réaction des graisses animales et/ou d’huiles usagées avec l’éthanol obtenu à l’étape (i) dans un réacteur de transestérification. In a preferred embodiment, the esters produced from animal fats which are animal by-products and having one or more of the characteristics mentioned above, are produced from animal fats originating from category 1 materials and/or from materials of category 2, category 1 and 2 materials being defined in articles 8 and 9 respectively of European Regulation 1069/2009. Step a) of supplying ethyl esters of fatty acids may in particular comprise (i) obtaining ethanol of renewable origin, (ii) followed by the reaction of animal fats and/or used oils with the ethanol obtained in step (i) in a transesterification reactor.
Par éthanol d’origine renouvelable, on entend de l’éthanol obtenu à partir de biomasse et/ou par fermentation. By ethanol of renewable origin, we mean ethanol obtained from biomass and/or by fermentation.
A. Obtention d’éthanol d’origine renouvelable par fermentation A. Obtaining ethanol of renewable origin by fermentation
Dans un mode de réalisation, l’éthanol peut être obtenu par fermentation éthanolique dans un bioréacteur contenant une culture d’un ou plusieurs microorganismes. In one embodiment, ethanol can be obtained by ethanolic fermentation in a bioreactor containing a culture of one or more microorganisms.
L’éthanol d’origine renouvelable peut alors avantageusement être obtenu par : fermentation aérobie d’un substrat riche en sucres et/ou amidon issu de biomasse, ou fermentation anaérobie d’un gaz comprenant du CO, lequel peut être issu de biomasse ou non. Ethanol of renewable origin can then advantageously be obtained by: aerobic fermentation of a substrate rich in sugars and/or starch derived from biomass, or anaerobic fermentation of a gas comprising CO, which may or may not come from biomass .
Fermentation aérobie Aerobic fermentation
De l’éthanol peut ainsi être produit par fermentation aérobie d’un substrat riche en sucres et/ou amidon issu de biomasse. Ethanol can thus be produced by aerobic fermentation of a substrate rich in sugars and/or starch derived from biomass.
Ce substrat peut par exemple comprendre, ou provenir, de la canne à sucre, de la betterave sucrière, du sorgho sucrier, du maïs, du blé, de l’orge, du seigle, du sorgho, du triticale, de la pomme de terre, de la patate douce, du manioc, et/ou de la biomasse lignocellulosique. This substrate can for example include, or come from, sugar cane, sugar beet, sugar sorghum, corn, wheat, barley, rye, sorghum, triticale, potato , sweet potato, cassava, and/or lignocellulosic biomass.
Le substrat riche en sucres peut aussi être issu de biomasse lignocellullosique par un traitement comprenant (i) une étape de séparation de la lignine, de la cellulose et de l’hémicellulose contenus dans la biomasse lignocellullosique, suivie (ii) d’une étape de conversion de la cellulose et/ou de l’hémicellulose en sucres. The sugar-rich substrate can also be derived from lignocellullosic biomass by a treatment comprising (i) a step of separating the lignin, cellulose and hemicellulose contained in the lignocellullosic biomass, followed (ii) by a step of conversion of cellulose and/or hemicellulose into sugars.
L’obtention de ce type de substrat à partir de biomasse lignocellulosique est bien connue de l’homme du métier. La biomasse lignocellulosique est constituée essentiellement de cellulose, d’hémicellulose et de lignine. Cette biomasse provient des résidus agricoles et forestier ou des sous-produits de transformation du bois ou des cultures qu’il s’agisse de plantes ligneuses ou de plantes herbacées. Cette biomasse lignocellulosique peut aussi comprendre des drêches de distillerie et permettre la fabrication d’éthanol tel que décrit dans le document EP2675778. Obtaining this type of substrate from lignocellulosic biomass is well known to those skilled in the art. Lignocellulosic biomass consists essentially of cellulose, hemicellulose and lignin. This biomass comes from agricultural and forestry residues or by-products from wood processing or crops, whether woody plants or herbaceous plants. This Lignocellulosic biomass can also include distillers' grains and allow the manufacture of ethanol as described in document EP2675778.
La première étape (i) est une étape de prétraitement qui permet de désolidariser la matrice lignocellulosique et de libérer la cellulose et l’hémicellulose du complexe formé avec la lignine au moyen d’un ou plusieurs prétraitements. Comme prétraitement, on connaît le prétraitement à la vapeur (ou explosion à la vapeur), le prétraitement à l’eau chaude (par voie hydrothermale), l’explosion à l’ammoniac (AFEX), le prétraitement en milieu acide ou le prétraitement alcalin. Le traitement d’explosion à la vapeur consiste à traiter la biomasse, de préférence préalablement déchiquetée ou moulue, avec de de la vapeur saturée à haute pression à des températures d’environ 160 à 240°C et à des pressions de 0,7 à 4,8MPa. L’efficacité du traitement à la vapeur peut être améliorée par addition de H2SO4, CO2 ou SO2 en tant que catalyseur. Dans le prétraitement AFEX, la biomasse est mise en contact avec une charge d’ammoniac liquide anhydre dans un rapport de 1/1 à 2/1 (1 à 2kg d’ammoniac/kg de biomasse sèche) pendant 10 à 60 min à 60-90°C et à des pressions supérieures à 3MPa. Le prétraitement par voie hydrothermale est similaire à l’explosion à la vapeur, mais utilise de l’eau à l’état liquide à des températures élevées au lieu de la vapeur. Dans le cas du prétraitement en milieu acide, typiquement en présence d’acide dilué, une suspension aqueuse du substrat cellulosique est chauffée à la température désirée et prétraitée avec de l'acide sulfurique préchauffé (concentrations<4%masse) dans un réacteur en acier inoxydable, le traitement est effectué à une température de 140 à 215°C. Le temps de séjour varie de quelques secondes à quelques minutes en fonction de la température de traitement. Le prétraitement à la chaux est un traitement alcalin physico-chimique peu coûteux qui améliore la digestibilité de la biomasse cellulosique. En utilisant 0,1g de Ca(OH)2/g de biomasse, le traitement peut être réalisé sur une large gamme de température allant de 25 à 130°C. Le procédé Organosolv qui est procédé pour la délignification et/ou la saccharification de matériaux cellulosiques et de cultures végétales peut aussi être utilisé En général, le procédé Organosolv implique l'utilisation d'un mélange d'eau et d'un solvant tel que des alcools ou des cétones et parfois d'autres solvants de nature non polaire, ainsi qu'un composé acide pour faciliter l'hydrolyse. Un procédé de ce type est décrit par exemple dans le document US4470851A. L’étape (ii) est une étape de conversion de la cellulose et/ou de l’hémicellulose en sucres. Elle est également bien connue de l’homme du métier. Il s’agit typiquement d’une hydrolyse qui peut être catalysée par voie acide ou par des enzymes telles que les cellulases, par exemple la souche Trichoderma reesei, les xylanases es xylosidases et les arabinofuranosidases. The first step (i) is a pretreatment step which makes it possible to separate the lignocellulosic matrix and to release the cellulose and hemicellulose from the complex formed with the lignin by means of one or more pretreatments. As pretreatment, we know steam pretreatment (or steam explosion), hot water pretreatment (hydrothermal), ammonia explosion (AFEX), pretreatment in an acid medium or pretreatment alkaline. Steam explosion treatment involves treating biomass, preferably previously shredded or ground, with high-pressure saturated steam at temperatures of approximately 160 to 240°C and pressures of 0.7 to 4.8MPa. The efficiency of steam treatment can be improved by adding H2SO4, CO2 or SO2 as a catalyst. In AFEX pretreatment, the biomass is contacted with a charge of anhydrous liquid ammonia in a ratio of 1:1 to 2:1 (1 to 2kg ammonia/kg dry biomass) for 10 to 60 min at 60 -90°C and at pressures above 3MPa. Hydrothermal pretreatment is similar to steam explosion, but uses liquid water at elevated temperatures instead of steam. In the case of pretreatment in an acid medium, typically in the presence of dilute acid, an aqueous suspension of the cellulose substrate is heated to the desired temperature and pretreated with preheated sulfuric acid (concentrations <4% mass) in a steel reactor stainless steel, the treatment is carried out at a temperature of 140 to 215°C. The residence time varies from a few seconds to a few minutes depending on the processing temperature. Lime pretreatment is an inexpensive physicochemical alkaline treatment that improves the digestibility of cellulosic biomass. By using 0.1g of Ca(OH)2/g of biomass, the treatment can be carried out over a wide temperature range from 25 to 130°C. The Organosolv process which is a process for the delignification and/or saccharification of cellulosic materials and plant crops can also be used. In general, the Organosolv process involves the use of a mixture of water and a solvent such as alcohols or ketones and sometimes other solvents of a non-polar nature, as well as an acidic compound to facilitate hydrolysis. A process of this type is described for example in document US4470851A. Step (ii) is a step of converting cellulose and/or hemicellulose into sugars. It is also well known to those skilled in the art. This is typically a hydrolysis which can be catalyzed by acid or by enzymes such as cellulases, for example the Trichoderma reesei strain, xylanases and xylosidases and arabinofuranosidases.
Le substrat riche en sucres et/ou amidon est ensuite soumis à la fermentation. The substrate rich in sugars and/or starch is then subjected to fermentation.
A titre d’exemple, cette fermentation peut être réalisée en utilisant des microorganismes, et notamment des levures, spécialisées qui permettent d’optimiser la rentabilité du procédé de production, notamment les levures suivantes : Ethanol Red® (Fermentie), Thermosacc® (Lallemand)), Angel Super Alcohol® (Angel®) et Fali® (AB Mauric)), les souches de levure Saccharomyces cerevisiae décrites dans le document FR3015985, les souches de levure Candida Shehatae ou Pichia stipitis, ou tout autre microorganisme adapté. For example, this fermentation can be carried out using microorganisms, and in particular yeasts, specialized which make it possible to optimize the profitability of the production process, in particular the following yeasts: Ethanol Red® (Fermentie), Thermosacc® (Lallemand )), Angel Super Alcohol® (Angel®) and Fali® (AB Mauric)), the Saccharomyces cerevisiae yeast strains described in document FR3015985, the Candida Shehatae or Pichia stipitis yeast strains, or any other suitable microorganism.
Fermentation anaérobie Anaerobic fermentation
De l’éthanol peut aussi être produit par fermentation anaérobie d’un gaz comprenant du CO. Le substrat est alors un substrat gazeux (un gaz) contenant du CO. Ce substrat gazeux peut être un sous-produit d'un procédé industriel ou des gaz d’échappement d’automobiles. Dans certains modes de réalisation, le procédé industriel est choisi dans le groupe constitué par la fabrication de produits en métal ferreux, notamment les aciéries, la fabrication de produits non ferreux, les procédés de raffinage du pétrole, la gazéification du charbon, la production d'énergie électrique, la production de noir de carbone, la production d'ammoniac, la production de méthanol, la fabrication de coke et le reformage du méthane. Dans ces modes de réalisation, le substrat gazeux peut être capturé à partir du processus industriel avant qu'il ne soit émis dans l'atmosphère, en utilisant toute méthode appropriée. Selon la composition du gaz ainsi capturé, il peut également être souhaitable de le traiter pour éliminer toute impureté indésirable, telle que des particules de poussière, avant de l'introduire dans la fermentation. Par exemple, le gaz peut être filtré ou épuré par des méthodes connues. Ethanol can also be produced by anaerobic fermentation of a gas comprising CO. The substrate is then a gaseous substrate (a gas) containing CO. This gaseous substrate can be a by-product of an industrial process or automobile exhaust. In some embodiments, the industrial process is selected from the group consisting of manufacturing of ferrous metal products, including steel mills, manufacturing of non-ferrous products, petroleum refining processes, coal gasification, production of electric power, carbon black production, ammonia production, methanol production, coke manufacturing and methane reforming. In these embodiments, the gaseous substrate can be captured from the industrial process before it is emitted into the atmosphere, using any suitable method. Depending on the composition of the gas thus captured, it may also be desirable to treat it to remove any unwanted impurities, such as dust particles, before introducing it into the fermentation. For example, the gas can be filtered or purified by known methods.
Dans d'autres modes de réalisation de l'invention, le substrat gazeux peut provenir de la gazéification de la biomasse. Le processus de gazéification implique une combustion partielle de la biomasse dans un apport restreint d'air ou d'oxygène. Le gaz résultant comprend généralement principalement du CO et du H2, avec des volumes minimes de CO2, de méthane, d'éthylène et d'éthane. Par exemple, les sous- produits de la biomasse obtenus au cours de l'extraction et du traitement de produits alimentaires, tels que le sucre de la canne à sucre ou l'amidon du maïs ou des céréales, ou les déchets de biomasse non alimentaire générés par l'industrie forestière, peuvent être gazéifiés pour produire un gaz contenant du CO qui peut être utilisé dans la présente invention. In other embodiments of the invention, the gaseous substrate can come from the gasification of biomass. The gasification process involves partial combustion of biomass in a restricted supply of air or oxygen. THE The resulting gas typically comprises primarily CO and H2, with minimal volumes of CO2, methane, ethylene, and ethane. For example, biomass by-products obtained during the extraction and processing of food products, such as sugar from sugar cane or starch from corn or cereals, or non-food biomass waste generated by the forestry industry, can be gasified to produce a CO-containing gas which can be used in the present invention.
Le substrat gazeux utilisé présente typiquement une proportion notable de CO. La teneur en CO du substrat gazeux est typiquement de 15% à 100% en volume, de 15% à 95% en volume, de 40% à 95% en volume, de 40% à 60% en volume, et de 45% à 55% en volume ou est dans tout intervalle défini par deux de ces limites. Avantageusement, le gaz contenant du CO peut comprendre 25%, 30%, 35%, 40%, 45%, 50%, 55% ou 60% de CO en volume. Des gaz ayant des teneurs plus faibles en CO, comme 6 % en volume, peuvent également être appropriés, en particulier lorsque hh et CO2 sont également présents. The gaseous substrate used typically has a significant proportion of CO. The CO content of the gaseous substrate is typically 15% to 100% by volume, 15% to 95% by volume, 40% to 95% by volume, 40% to 60% by volume, and 45% to 95% by volume. 55% by volume or is in any interval defined by two of these limits. Advantageously, the gas containing CO can comprise 25%, 30%, 35%, 40%, 45%, 50%, 55% or 60% CO by volume. Gases with lower CO contents, such as 6 vol%, may also be suitable, particularly when hh and CO2 are also present.
Il n'est pas nécessaire que le substrat gazeux contienne de l'hydrogène, mais cela n'est pas considéré comme nuisible à la production d'éthanol. Le substrat gazeux peut également contenir du CO2, par exemple, en une proportion de 1 % à 80 % en volume, ou de 1 % à 30 % en volume ou de 5 % à 10 % en volume ou dans tout intervalle défini par deux de ces limites. It is not necessary for the gas substrate to contain hydrogen, but this is not considered detrimental to ethanol production. The gaseous substrate may also contain CO2, for example, in a proportion of 1% to 80% by volume, or 1% to 30% by volume or 5% to 10% by volume or in any interval defined by two of these limits.
Typiquement, le monoxyde de carbone sera ajouté à la réaction de fermentation à l'état gazeux, ou encore à l’état liquide. Par exemple, le monoxyde de carbone peut être fourni dans un liquide. Par exemple, un liquide peut être saturé avec un gaz contenant du monoxyde de carbone, puis ce liquide peut être ajouté à un bioréacteur. Ceci peut être réalisé en utilisant une méthodologie standard. A titre d'exemple, un générateur de dispersion de microbulles (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation ; Applied Biochemistry and Biotechnolo RV Volume 101 , Number 3 / October, 2002) pourrait être utilisé. Typically, carbon monoxide will be added to the fermentation reaction in the gaseous state, or in the liquid state. For example, carbon monoxide can be supplied in a liquid. For example, a liquid can be saturated with a gas containing carbon monoxide, and then this liquid can be added to a bioreactor. This can be achieved using a standard methodology. As an example, a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnolo RV Volume 101, Number 3 / October, 2002) could be used.
En outre, il est souvent souhaitable d'augmenter la concentration en CO du gaz (ou la pression partielle de CO dans le gaz) et d'accroître ainsi l'efficacité des réactions de fermentation utilisant le CO comme substrat. L'augmentation de la pression partielle de CO dans le gaz augmente le transfert de masse de CO dans un milieu de fermentation. La composition des flux gazeux utilisés pour alimenter une réaction de fermentation peut avoir un impact significatif sur l'efficacité et/ou les coûts de cette réaction. Par exemple, 1’02 peut réduire l'efficacité d'un processus de fermentation anaérobie. Le traitement de gaz indésirables ou inutiles dans les étapes d'un processus de fermentation avant ou après la fermentation peut augmenter la charge de ces étapes (par exemple, lorsque le flux gazeux est comprimé avant d'entrer dans un bioréacteur, une énergie inutile peut être utilisée pour comprimer des gaz qui ne sont pas nécessaires à la fermentation). Par conséquent, il peut être souhaitable de traiter les flux de substrat, en particulier les flux de substrat dérivés de sources industrielles, afin d'éliminer les composants indésirables et d'augmenter la concentration des composants souhaitables. Furthermore, it is often desirable to increase the CO concentration of the gas (or the partial pressure of CO in the gas) and thus increase the efficiency of fermentation reactions using CO as a substrate. Increasing the partial pressure of CO in the gas increases the mass transfer of CO in a medium of fermentation. The composition of the gas streams used to fuel a fermentation reaction can have a significant impact on the efficiency and/or costs of this reaction. For example, 1'02 can reduce the efficiency of an anaerobic fermentation process. Dealing with unwanted or unnecessary gases in the steps of a fermentation process before or after fermentation can increase the load on those steps (e.g., when the gas stream is compressed before entering a bioreactor, unnecessary energy can be used to compress gases that are not necessary for fermentation). Therefore, it may be desirable to treat substrate streams, particularly substrate streams derived from industrial sources, to remove undesirable components and increase the concentration of desirable components.
Tout microorganisme capable de fermenter un substrat gazeux comprenant du CO pour produire de l'éthanol peuvent être utilisé dans la présente invention. A titre d'exemple, les micro-organismes du genre Moorella, Clostridia, Ruminococcus, Acetobacterium, Eubacterium, Butyribacterium, Oxobacter, Methanosarcina, Methanosarcina, et Desulfotomaculum peuvent être utilisés. Any microorganism capable of fermenting a gaseous substrate comprising CO to produce ethanol can be used in the present invention. As an example, microorganisms of the genus Moorella, Clostridia, Ruminococcus, Acetobacterium, Eubacterium, Butyribacterium, Oxobacter, Methanosarcina, Methanosarcina, and Desulfotomaculum can be used.
À titre d'exemple, on pourra utiliser le ou les micro-organismes du genre Clostridium, y compris les souches de Clostridium ljungdahlii, Clostridium carboxydivorans, Clostridium ragsdalei et Clostridium autoethanogenum, du genre Moorella, y compris Moorella sp HUC22-1 , du genre Carboxydothermus,, Moorella thermoacetica, Moorella thermoautotrophica, Ruminococcus productus, Acetobacterium woodii, Eubacterium limosum, Butyribacterium methylotrophicum, Oxobacter pfennigii, Methanosarcina barkeri, Methanosarcina acetivorans, ou Desulfotomaculum kuznetsovii. D'autres exemples spécifiques de microorganismes sont les bactéries anaérobies carboxydotrophes. Des exemples de souches utilisables sont décrites dans le document WO201226833. As an example, one may use the microorganism(s) of the genus Clostridium, including the strains of Clostridium ljungdahlii, Clostridium carboxydivorans, Clostridium ragsdalei and Clostridium autoethanogenum, of the genus Moorella, including Moorella sp HUC22-1, of the genus Carboxydothermus,, Moorella thermoacetica, Moorella thermoautotrophica, Ruminococcus productus, Acetobacterium woodii, Eubacterium limosum, Butyribacterium methylotrophicum, Oxobacter pfennigii, Methanosarcina barkeri, Methanosarcina acetivorans, or Desulfotomaculum kuznetsovii. Other specific examples of microorganisms are anaerobic carboxydotrophic bacteria. Examples of usable strains are described in document WO201226833.
Il convient de noter que l'invention peut être appliquée à une culture mixte de deux ou plusieurs micro-organismes. It should be noted that the invention can be applied to a mixed culture of two or more microorganisms.
Milieu et conditions de fermentation Fermentation environment and conditions
Quelle que soit la nature du substrat (gazeux ou non) utilisé, pour que la fermentation de l'éthanol se produise par croissance d'un ou plusieurs micro-organismes, un milieu nutritif approprié devra être introduit dans le bioréacteur en plus d’un substrat, dans des conditions appropriées. Un milieu nutritif contiendra des composants, tels que des vitamines et des minéraux, suffisants pour permettre la croissance du microorganisme utilisé. Les conditions de réaction à prendre en compte sont la température, le débit du milieu, le pH, le potentiel redox du milieu, la vitesse d'agitation (en cas d'utilisation d'un réacteur à agitation continue), le niveau d'inoculum, les concentrations maximales de substrat et les vitesses d'introduction du substrat dans le bioréacteur afin de garantir que le niveau de substrat ne devienne pas limitatif, et les concentrations maximales de produit afin d'éviter l'inhibition du produit. Les conditions de réaction optimales dépendront en partie du microorganisme particulier utilisé. Les procédés de culture des micro-organismes sont connus dans l’art et l’homme du métier sait optimiser les conditions de culture pour chaque microorganisme, en fonction de sa nature. Des exemples de conditions de fermentation convenant à la fermentation anaérobie d'un substrat comprenant du CO sont détaillés dans W02007/117157, W02008/115080, W02009/022925 et W002/08438. Whatever the nature of the substrate (gaseous or not) used, for the fermentation of ethanol to occur by growth of one or more microorganisms, an appropriate nutrient medium must be introduced into the bioreactor in addition to a substrate, in appropriate conditions. A nutrient medium will contain components, such as vitamins and minerals, sufficient to support the growth of the microorganism used. The reaction conditions to take into account are the temperature, the flow rate of the medium, the pH, the redox potential of the medium, the stirring speed (if using a continuously stirring reactor), the level of inoculum, maximum substrate concentrations and substrate introduction rates into the bioreactor to ensure that the substrate level does not become limiting, and maximum product concentrations to avoid product inhibition. Optimal reaction conditions will depend in part on the particular microorganism used. The methods for cultivating microorganisms are known in the art and those skilled in the art know how to optimize the culture conditions for each microorganism, depending on its nature. Examples of fermentation conditions suitable for the anaerobic fermentation of a substrate comprising CO are detailed in W02007/117157, W02008/115080, W02009/022925 and W002/08438.
Bioréacteur Bioreactor
Les réactions de fermentation peuvent être réalisées dans n'importe quel bioréacteur approprié. Dans certains modes de réalisation de l'invention, le bioréacteur peut comprendre un premier réacteur de croissance dans lequel les micro-organismes sont cultivés, et un second réacteur de fermentation, dans lequel le bouillon provenant du réacteur de croissance est introduit et dans lequel la plupart du produit de fermentation (éthanol, par exemple) est produit.
Figure imgf000015_0001
du produit de la fermentation
Fermentation reactions can be carried out in any suitable bioreactor. In some embodiments of the invention, the bioreactor may comprise a first growth reactor in which the microorganisms are cultivated, and a second fermentation reactor, into which the broth from the growth reactor is introduced and into which the Most of the fermentation product (e.g. ethanol) is produced.
Figure imgf000015_0001
of the fermentation product
La fermentation aboutira à un bouillon de fermentation comprenant un produit souhaitable (éthanol) et/ou un ou plusieurs sous-produits (tels que l'acétate et le butyrate lorsque le substrat est un gaz contenant du CO) ainsi que des cellules de microorganisme, dans un milieu nutritif. The fermentation will result in a fermentation broth comprising a desirable product (ethanol) and/or one or more by-products (such as acetate and butyrate when the substrate is a gas containing CO) as well as microorganism cells, in a nutrient medium.
La récupération de l'éthanol peut comprendre le retrait continu d'une partie du bouillon et la récupération de l'éthanol à partir de la partie retirée du bouillon. Ethanol recovery may include continuously removing a portion of the broth and recovering ethanol from the removed portion of the broth.
On peut par exemple faire passer la partie retirée du bouillon contenant de l'éthanol à travers une unité de séparation pour séparer, par exemple par filtration, les cellules bactériennes du bouillon et produire un perméat contenant de l'éthanol sans cellules, et le retour des cellules de micro-organismes dans le bioréacteur. Le perméat contenant de l'éthanol sans cellules peut alors être utilisé pour la réaction ultérieure de transestérification. For example, the removed part of the broth containing ethanol can be passed through a separation unit to separate, for example by filtration, the bacterial cells from the broth and produce a permeate containing ethanol without cells, and the return of the microorganism cells to the bioreactor. The cell-free ethanol-containing permeate can then be used for the subsequent transesterification reaction.
Dans certains modes de réalisation, la récupération de l'éthanol et/ou d'un ou plusieurs autres produits ou sous-produits produits dans la réaction de fermentation comprend le retrait continu d'une partie du bouillon et la récupération séparée de l'éthanol et d'un ou plusieurs autres produits à partir de la partie retirée du bouillon.In some embodiments, recovery of the ethanol and/or one or more other products or by-products produced in the fermentation reaction comprises continuously removing a portion of the broth and separately recovering the ethanol and one or more other products from the portion removed from the broth.
A titre d'exemple, l'éthanol peut être récupéré à partir du bouillon de fermentation en utilisant des méthodes telles que la filtration, la distillation ou l'évaporation fractionnée, la pervaporation et la fermentation extractive. La distillation de l'éthanol à partir d'un bouillon de fermentation donne un mélange azéotropique d'éthanol et d'eau (c'est-à- dire 95 % d'éthanol et 5 % d'eau). L'éthanol anhydre peut ensuite être obtenu par l'utilisation de la technologie de déshydratation de l'éthanol sur tamis moléculaire, qui est également bien connue dans l'art. As an example, ethanol can be recovered from the fermentation broth using methods such as filtration, distillation or fractional evaporation, pervaporation and extractive fermentation. Distillation of ethanol from a fermentation broth gives an azeotropic mixture of ethanol and water (i.e. 95% ethanol and 5% water). Anhydrous ethanol can then be obtained by the use of molecular sieve ethanol dehydration technology, which is also well known in the art.
Les procédures de fermentation extractive impliquent l'utilisation d'un solvant miscible à l'eau qui présente un faible risque de toxicité pour l'organisme de fermentation, afin de récupérer l'éthanol à partir du bouillon de fermentation dilué. Par exemple, l'alcool oléylique est un solvant qui peut être utilisé dans ce type de procédé d'extraction. L'alcool oléylique est introduit en continu dans un fermenteur, à la suite de quoi ce solvant monte en formant une couche au sommet du fermenteur qui est extraite en continu et passée dans une centrifugeuse. L'eau et les cellules sont alors facilement séparées de l'alcool oléylique et renvoyées dans le bioréacteur, tandis que le solvant chargé d'éthanol est introduit dans une unité de vaporisation rapide. La plupart de l'éthanol est vaporisé et condensé, tandis que l'alcool oléylique est non volatil et est récupéré pour être réutilisé dans la fermentation. Extractive fermentation procedures involve the use of a water-miscible solvent that poses a low risk of toxicity to the fermentation organism, to recover ethanol from the diluted fermentation broth. For example, oleyl alcohol is a solvent that can be used in this type of extraction process. The oleyl alcohol is continuously introduced into a fermenter, whereupon this solvent rises forming a layer at the top of the fermenter which is continuously extracted and passed through a centrifuge. The water and cells are then easily separated from the oleyl alcohol and returned to the bioreactor, while the ethanol-laden solvent is fed into a rapid vaporization unit. Most ethanol is vaporized and condensed, while oleyl alcohol is non-volatile and is recovered for reuse in fermentation.
B. Obtention d’éthanol d’origine renouvelable à partir de la biomasse B. Obtaining ethanol of renewable origin from biomass
L’éthanol d’origine renouvelable peut aussi être obtenu à partir de la biomasse par conversion d’un gaz de synthèse riche en CO/H2, ce gaz synthétique étant issu de la biomasse. Ethanol of renewable origin can also be obtained from biomass by conversion of a synthesis gas rich in CO/H2, this synthetic gas coming from biomass.
La biomasse peut par exemple être gazéifiée pour produire un gaz de synthèse (ou « syngas » en anglais) riche en CO/H2, ce gaz synthétique étant ensuite converti en méthanol en présence d’un catalyseur. Un procédé de ce type est par exemple décrit dans le document WO2012003901 . Biomass can for example be gasified to produce a synthesis gas (or “syngas” in English) rich in CO/H2, this synthetic gas then being converted into methanol in the presence of a catalyst. A process of this type is for example described in the document WO2012003901.
Un gaz de synthèse convenant à une conversion ultérieure en éthanol peut également être obtenu par pyrolyse de biomasse. Synthesis gas suitable for further conversion to ethanol can also be obtained by pyrolysis of biomass.
La biomasse utilisée pour produire du gaz de synthèse peut notamment comprendre les combustibles ligneux provenant de forêts et de terres boisées naturelles (par exemple, la sciure de bois), les résidus agricoles (par exemple, les balles de riz, le fumier de paille), les cultures énergétiques qui sont cultivées exclusivement pour la production d'énergie (par exemple, le maïs et le palmier à huile), les déchets urbains (par exemple, les déchets de bois, riz, fumier de paille), les cultures énergétiques qui sont cultivées exclusivement pour la production d'énergie (par exemple, le maïs et le palmier à huile), les déchets urbains (par exemple, les déchets solides municipaux et les eaux usées) et le combustible de biomasse dérivé de déchets (par exemple, les granulés de bois). Biomass used to produce syngas may include wood fuels from natural forests and woodlands (e.g. sawdust), agricultural residues (e.g. rice husk, straw manure) , energy crops that are grown exclusively for energy production (e.g. corn and oil palm), urban waste (e.g. wood waste, rice, straw manure), energy crops that are grown exclusively for energy production (e.g., corn and oil palm), urban waste (e.g., municipal solid waste and sewage), and waste-derived biomass fuel (e.g., wood pellets).
Etape b) Step b)
Les hydrocarbures fossiles utilisables dans la présente invention peuvent être choisis parmi des coupes kérosènes. The fossil hydrocarbons which can be used in the present invention can be chosen from kerosene cuts.
Une coupe kérosène d’origine fossile présente des points d’ébullition allant de 130°C à 300°C. Elle présente typiquement un point d’ébullition initial selon la norme ASTM D86-12 de 130 à 160°C et un point d’ébullition final selon la norme ASTM D86-12 de 220°C à 300°C.Ces coupes kérosènes peuvent être : A kerosene cut of fossil origin has boiling points ranging from 130°C to 300°C. It typically has an initial boiling point according to the ASTM D86-12 standard of 130 to 160°C and a final boiling point according to the ASTM D86-12 standard of 220°C to 300°C. These kerosene cuts can be :
- une coupe kérosène provenant de la distillation directe de pétrole brut, - a kerosene cut from the direct distillation of crude oil,
- une coupe kérosène issue de différents procédés de conversion tels que le craquage catalytique, l’hydrocraquage et/ou la viscoréduction. - a kerosene cut from different conversion processes such as catalytic cracking, hydrocracking and/or visbreaking.
Dans le cadre d’un hydrotraitement, les hydrocarbures d’origine fossile sont avantageusement une coupe kérosène ou un mélange de coupes kérosènes, de préférence provenant de la distillation directe de pétrole brut ou de l’hydrocraquage. In the context of hydrotreatment, the hydrocarbons of fossil origin are advantageously a kerosene cut or a mixture of kerosene cuts, preferably coming from the direct distillation of crude oil or from hydrocracking.
Etape c) Step c)
La charge hydrocarbonée préparée à l’étape c) contient les hydrocarbures d’origine fossile fournis par l’étape b) et les esters éthyliques d’acides gras fournis par l’étape a) en une teneur d’au plus 5% vol par rapport à la charge hydrocarbonée, avantageusement d’au plus 0,9% ou 0,6% ou 0,5% ou 0,4% ou 0,3% en volume.The hydrocarbon feed prepared in step c) contains the hydrocarbons of fossil origin provided by step b) and the ethyl esters of fatty acids provided by step a) in a content of at most 5% vol relative to the hydrocarbon filler, advantageously at most 0.9% or 0.6% or 0.5% or 0.4% or 0.3% by volume .
Avantageusement, la teneur en esters éthyliques d’acides gras de la charge hydrocarbonée peut être de 0,1 % en volume à 1 % en volume, de préférence de 0,1 % en volume à 0,9% en volume, ou de 0,1 % à 0,6% en volume, davantage de préférence de 0,1 % à 0,5% en volume ou de 0,1 à 0,4% en volume ou de 0,1 à 0,3% en volume, ou dans tout intervalle compris défini par deux de ces limites. Advantageously, the content of fatty acid ethyl esters in the hydrocarbon feedstock can be from 0.1% by volume to 1% by volume, preferably from 0.1% by volume to 0.9% by volume, or from 0 .1% to 0.6% by volume, more preferably 0.1% to 0.5% by volume or 0.1 to 0.4% by volume or 0.1 to 0.3% by volume , or in any inclusive interval defined by two of these limits.
Cette étape de préparation peut être réalisée par simple mélange des constituants de la charge hydrocarbonée fournis aux étapes a) et b), notamment en amont de l’étape d’hydrotraitement de l’étape d), ou au cours de l’étape d). This preparation step can be carried out by simply mixing the constituents of the hydrocarbon feed supplied in steps a) and b), in particular upstream of the hydrotreatment step of step d), or during step d. ).
On pourra ainsi prévoir de mélanger les constituants de la charge hydrocarbonée fournis aux étapes a) et b) en amont d’un réacteur d’hydrotraitement dans lequel est mise en œuvre l’étape d), ou à l’intérieur de ce réacteur. We can thus plan to mix the constituents of the hydrocarbon feedstock supplied in steps a) and b) upstream of a hydrotreatment reactor in which step d), or inside this reactor.
Etape d) Step d)
L’étape d) d’hydrotraitement de la charge hydrocarbonée peut être mise en œuvre dans un ou plusieurs réacteurs. On pourra utiliser tout type de réacteur utilisé habituellement pour ce type de réaction, par exemple un réacteur à lit fixe, un réacteur à lit bouillonnant, un réacteur en slurry, etc..., de préférence un réacteur à lit fixe.Step d) of hydrotreatment of the hydrocarbon feed can be implemented in one or more reactors. Any type of reactor usually used for this type of reaction can be used, for example a fixed bed reactor, a bubbling bed reactor, a slurry reactor, etc., preferably a fixed bed reactor.
On pourra notamment utiliser un réacteur du type de ceux utilisés habituellement pour l’hydrotraitement d’hydrocarbures d’origine fossile. In particular, it is possible to use a reactor of the type usually used for the hydrotreatment of hydrocarbons of fossil origin.
Avantageusement, l’étape d) est mise en œuvre sous une pression de 15 à 130 bars et à une température de 250 à 380°C, préférentiellement de 280 à 340°C, en présence d’un catalyseur d’hydrotraitement et de dihydrogène. Advantageously, step d) is carried out under a pressure of 15 to 130 bars and at a temperature of 250 to 380°C, preferably 280 to 340°C, in the presence of a hydrotreatment catalyst and dihydrogen. .
Typiquement on pourra prévoir une vitesse spatiale horaire du liquide (WH en Français, LHSV en anglais- Liquid Hourly Space Velocity) : de 0,2 à 9 hr1, de préférence 0,5 à 7, et plus préférablement 0,8 à 1 ,8, et un ratio de dihydrogène : 50 à 1500 Nm3 /m3 de charge, de préférence 120 à 250 Nm3 /m3 et plus préférablement 120 à 200 Nm3 /m3. Typically we can provide an hourly space velocity of the liquid (WH in French, LHSV in English - Liquid Hourly Space Velocity): from 0.2 to 9 hr 1 , preferably 0.5 to 7, and more preferably 0.8 to 1 .8, and a dihydrogen ratio: 50 to 1500 Nm 3 /m 3 of charge, preferably 120 to 250 Nm 3 /m 3 and more preferably 120 to 200 Nm 3 /m 3 .
L’étape d) est typiquement mise en œuvre dans un réacteur à lit fixe, comprenant un ou plusieurs lits de catalyseurs. Plus spécifiquement, l’étape d) peut être mise en œuvre sous une pression de 15 à 50 bars et à une température de 280°C à 340°C, en présence d’un catalyseur d’hydrotraitement et de dihydrogène, typiquement avec un taux de dihydrogène de 120 à 180 Nm3/m3 de charge. Typiquement on pourra prévoir une vitesse spatiale horaire du liquide de l à 1 ,6 h-1. Step d) is typically carried out in a fixed bed reactor, comprising one or more catalyst beds. More specifically, step d) can be carried out under a pressure of 15 to 50 bars and at a temperature of 280°C to 340°C, in the presence of a hydrotreatment catalyst and dihydrogen, typically with a dihydrogen rate from 120 to 180 Nm 3 /m 3 of charge. Typically we can predict an hourly space velocity of the liquid of l to 1.6 h -1 .
Le catalyseur d’hydrotraitement est un catalyseur d’hydrotraitement classique. Les catalyseurs d’hydrotraitement classiques comprennent notamment un composé métallique actif tel que le nickel, le platine, le palladium, le rhénium, le rhodium, le tungstate de nickel, le molybdénate de nickel, le molybdène, le molybdénate de cobalt, le molybdénate de nickel, ce composé métallique pouvant être déposé ou non sur un support. Ce support peut généralement comprendre des oxydes tels que des silices, des alumines, des alumino-silicates (notamment des zéolithes), des oxydes de titane, ou encore de carbone, de tamis moléculaires, des sels ou des métaux alcalino-terreux. Lorsqu’un support est présent, il présente avantageusement une surface spécifique variant de 100 à 250 m2/g, de préférence de 150 à 200 m2/g. The hydrotreatment catalyst is a conventional hydrotreatment catalyst. Conventional hydrotreatment catalysts include in particular an active metal compound such as nickel, platinum, palladium, rhenium, rhodium, nickel tungstate, nickel molybdenate, molybdenum, cobalt molybdenate, nickel molybdenate, nickel, this metallic compound may or may not be deposited on a support. This support can generally comprise oxides such as silicas, aluminas, aluminosilicates (in particular zeolites), oxides of titanium, or even carbon, molecular sieves, salts or alkaline earth metals. When a support is present, it advantageously has a specific surface area varying from 100 to 250 m 2 /g, preferably from 150 to 200 m 2 /g.
Avantageusement, le catalyseur comprend au moins deux métaux des groupes 6, 9, 10, 11 du tableau périodique des éléments, de préférence au moins deux métaux tels que NiMo, CoMo, ou encore CoNiMo, de préférence sur un support d’alumine. Advantageously, the catalyst comprises at least two metals from groups 6, 9, 10, 11 of the periodic table of elements, preferably at least two metals such as NiMo, CoMo, or even CoNiMo, preferably on an alumina support.
Lorsqu’ils sont supportés, les catalyseurs d’hydrotraitement classiques comprennent typiquement une teneur en métal de 0,01 à 25% en masse par rapport à la masse totale du catalyseur, de préférence de 15 à 20% en masse, par exemple de 20 % en masse par rapport à la masse totale du catalyseur. When supported, conventional hydroprocessing catalysts typically comprise a metal content of 0.01 to 25% by mass relative to the total mass of the catalyst, preferably 15 to 20% by mass, for example 20 % by mass relative to the total mass of the catalyst.
Dans un mode de réalisation préféré, le catalyseur utilisé ne présente pas de fonction isomérisante ou présente une activité isomérisante négligeable dans les conditions de réaction. Dit autrement, le catalyseur ne favorise pas l’isomérisation des composés hydrocarbonés présents dans la charge. Lorsqu’un support est présent, il est de préférence peu ou pas acide. In a preferred embodiment, the catalyst used does not have an isomerizing function or has negligible isomerizing activity under the reaction conditions. In other words, the catalyst does not promote the isomerization of the hydrocarbon compounds present in the feed. When a support is present, it is preferably slightly or not acidic.
Ainsi, un catalyseur ne présentant pas de fonction isomérisante peut comprendre au moins un métal des groupes 6, 9, 10, 11 du tableau périodique des éléments, optionnellement sur un support choisi parmi l’alumine, la silice alumine, l’alumine phosphatée, l’alumine borée, la silice alumine phosphatée, seules ou en mélange. L’étape d’hydrotraitement d) produit un effluent contenant une fraction liquide contenant la fraction kérosène, et une fraction gazeuse. Thus, a catalyst not having an isomerizing function can comprise at least one metal from groups 6, 9, 10, 11 of the periodic table of elements, optionally on a support chosen from alumina, silica alumina, phosphated alumina, borated alumina, phosphated alumina silica, alone or in a mixture. The hydrotreatment step d) produces an effluent containing a liquid fraction containing the kerosene fraction, and a gaseous fraction.
Etape e) Step e)
La charge hydrotraitée obtenue en sortie de l’étape d) subit un fractionnement. Ce fractionnement peut être effectué par distillation ou stripping, notamment par ajout d’une colonne de séparation, par exemple une colonne de distillation, ou encore une colonne de stripping. The hydrotreated feedstock obtained at the outlet of step d) undergoes fractionation. This fractionation can be carried out by distillation or stripping, in particular by adding a separation column, for example a distillation column, or even a stripping column.
Après l’étape d’hydrotraitement, l’effluent sortant du réacteur est fractionné, typiquement par stripping, afin de récupérer une coupe kérosène. Ce fractionnement peut être mis en œuvre de sorte que la coupe kérosène forme un carburéacteur, respectant notamment les spécifications souhaitées. After the hydrotreatment stage, the effluent leaving the reactor is fractionated, typically by stripping, in order to recover a kerosene cut. This fractionation can be implemented so that the kerosene cut forms a jet fuel, respecting in particular the desired specifications.
La fraction kérosène récupérée présente un point d’ébullition final inférieur ou égal à 300°C, notamment mesuré selon la norme ASTM D86-12. The recovered kerosene fraction has a final boiling point less than or equal to 300°C, in particular measured according to the ASTM D86-12 standard.
Le point d’ébullition initial selon la norme ASTM D86-12 peut être de 120 à 185°C. Le point d’ébullition final selon la norme ASTM D86-12 peut être de 220 à 300°C. The initial boiling point according to ASTM D86-12 can be 120 to 185°C. The final boiling point according to ASTM D86-12 can be 220 to 300°C.
La fraction kérosène récupérée présente avantageusement une ou plusieurs des propriétés suivantes : The recovered kerosene fraction advantageously has one or more of the following properties:
- une viscosité cinématique à -20°C de 1 ,2 à 8,0 mm2/s (NF EN ISO 3104-Août 1996), - a kinematic viscosity at -20°C of 1.2 to 8.0 mm 2 /s (NF EN ISO 3104-August 1996),
- une densité à 15°C de 775 à 840 kg/m3 (ASTM D4052-18 ou IP 365), - a density at 15°C of 775 to 840 kg/m 3 (ASTM D4052-18 or IP 365),
- un point de congélation d’au plus -47°C (ASTM D5972-16 ou IP435), - a freezing point of at most -47°C (ASTM D5972-16 or IP435),
- un point éclair d’au moins 38°C (IP170-21 ou ASTM D56-21A). - a flash point of at least 38°C (IP170-21 or ASTM D56-21A).
On pourra notamment adapter les points de coupe de la fraction kérosène récupérée afin d’obtenir une fraction kérosène respectant les spécifications recherchées, par exemples celles d’un jet A1 selon la norme ASTM D1655-21 , notamment au moins en ce qui concerne le point final de distillation et/ou le point de congélation et/ou le point éclair. In particular, it will be possible to adapt the cutting points of the recovered kerosene fraction in order to obtain a kerosene fraction respecting the desired specifications, for example those of an A1 jet according to the ASTM D1655-21 standard, in particular at least with regard to the point final distillation and/or freezing point and/or flash point.
Ainsi, l’étape e) permet d’obtenir une fraction kérosène répondant à une ou plusieurs des spécifications requises, notamment celles d’un jet A1 selon la norme ASTM D1655-21 , en particulier aux teneurs d’incorporation des esters éthyliques dans la charge hydrocarbonée préparée à l’étape c) précitées. Thus, step e) makes it possible to obtain a kerosene fraction meeting one or more of the required specifications, in particular those of an A1 jet according to the ASTM standard. D1655-21, in particular at the incorporation levels of the ethyl esters in the hydrocarbon feed prepared in step c) above.
L’étape de fractionnement permet également de récupérer le gaz produit, notamment le méthane, lors de l’étape d’hydrotraitement. The fractionation step also makes it possible to recover the gas produced, in particular methane, during the hydrotreatment step.
Description des figures Description of figures
Fig. 1 : schéma simplifié d'une unité d'hydrotraitement permettant de mettre en œuvre le procédé selon un mode de réalisation l’invention. Fig. 1: simplified diagram of a hydrotreatment unit making it possible to implement the process according to one embodiment of the invention.
La figure 1 représente un schéma simplifié d'une unité 1 d'hydrotraitement permettant de mettre en œuvre le procédé selon l’invention. Figure 1 represents a simplified diagram of a hydrotreatment unit 1 making it possible to implement the process according to the invention.
Cette unité 1 comprend un réacteur 2 dans lequel est introduite la charge à traiter au moyen d'une ligne 3. Ce réacteur contient un ou plusieurs lits de catalyseurs d'hydrotraitement. This unit 1 comprises a reactor 2 into which the feed to be treated is introduced by means of a line 3. This reactor contains one or more beds of hydrotreatment catalysts.
La charge (C), dans la présente invention, est un mélange d’une charge kérosène d’origine fossile et d’esters éthyliques d’acides gras d’origine renouvelable. The filler (C), in the present invention, is a mixture of a kerosene filler of fossil origin and ethyl esters of fatty acids of renewable origin.
Une ligne 4 récupère l'effluent en sortie du réacteur 2 et le conduit à une section de séparation 5. A line 4 recovers the effluent leaving reactor 2 and leads it to a separation section 5.
Un échangeur de chaleur 6 est placé en aval du réacteur sur la ligne 4 afin de chauffer la charge circulant dans la ligne 3, en amont du réacteur. A heat exchanger 6 is placed downstream of the reactor on line 4 in order to heat the charge circulating in line 3, upstream of the reactor.
En amont de cet échangeur de chaleur 6, une ligne 7, raccordée sur la ligne 3, apporte à la charge à traiter un gaz riche en H2. Upstream of this heat exchanger 6, a line 7, connected to line 3, supplies a gas rich in H2 to the load to be treated.
En aval de l'échangeur de chaleur 6, et en amont du réacteur 2, la charge mélangée au gaz riche en H2 circulant dans la ligne 3 est chauffée par un four 8. Downstream of the heat exchanger 6, and upstream of the reactor 2, the feed mixed with the H2-rich gas circulating in line 3 is heated by a furnace 8.
Ainsi, la charge est mélangée au gaz riche en hydrogène, puis portée à la température de réaction par l'échangeur de chaleur 6 et le four 8 avant son entrée dans le réacteur 2. Elle passe ensuite dans le réacteur 2. Thus, the feed is mixed with the hydrogen-rich gas, then brought to the reaction temperature by the heat exchanger 6 and the oven 8 before entering reactor 2. It then passes into reactor 2.
A la sortie du réacteur, le mélange obtenu est refroidi, puis séparé dans la section de séparation 5, par exemple par stripping, ce qui permet d'obtenir : - une fraction gazeuse (G), contenant notamment de l’eau provenant du stripping, des hydrocarbures gazeux, un gaz acide riche en H2S, dont une partie est réinjectée dans le gaz riche en H2 mélangé à la charge, au moyen d'une ligne 9, At the outlet of the reactor, the mixture obtained is cooled, then separated in the separation section 5, for example by stripping, which makes it possible to obtain: - a gaseous fraction (G), containing in particular water from stripping, gaseous hydrocarbons, an acid gas rich in H2S, part of which is reinjected into the gas rich in H2 mixed with the load, by means of a line 9,
- une coupe kérosène (K). - a kerosene cup (K).

Claims

REVENDICATIONS
1 . Procédé de fabrication d’un carburéacteur comprenant au moins les étapes consistant à : a) fournir des esters éthyliques d’acides gras issus de la réaction de graisses animales qui sont des sous-produits animaux avec de l’éthanol dans un réacteur de transestérification, l’étape a) comprenant : 1. Process for manufacturing a jet fuel comprising at least the steps consisting of: a) providing ethyl esters of fatty acids resulting from the reaction of animal fats which are animal by-products with ethanol in a transesterification reactor, step a) comprising:
(i) l’obtention d’éthanol d’origine renouvelable, (i) obtaining ethanol from renewable sources,
(ii) suivie de la réaction des graisses animales avec l’éthanol obtenu à l’étape(ii) followed by the reaction of animal fats with the ethanol obtained in step
(i) dans un réacteur de transestérification, et les esters éthyliques d’acides gras fournis comprennent : (i) in a transesterification reactor, and the fatty acid ethyl esters supplied include:
- de 20%m à 64%m d’esters éthyliques d’acides gras dont la chaîne carbonée contient de 12 à 16 atomes de carbone, - from 20%m to 64%m of ethyl esters of fatty acids whose carbon chain contains 12 to 16 carbon atoms,
- de 25%m à 65%m d’esters éthyliques d’acides gras dont la chaîne carbonée contient 18 atomes de carbone, b) fournir des hydrocarbures d’origine fossile, c) préparer une charge hydrocarbonée contenant les hydrocarbures d’origine fossile fournis par l’étape b) et les esters éthyliques d’acides gras fournis par l’étape a) en une teneur d’au plus 5% en volume par rapport à la charge hydrocarbonée, d) soumettre la charge hydrocarbonée préparée lors de l’étape c) à un hydrotraitement et obtenir une charge hydrocarbonée traitée, e) fractionner la charge hydrocarbonée traitée obtenue à l’étape d) et récupérer une fraction kérosène en tant que carburéacteur, ladite fraction kérosène présentant préférentiellement un point d’ébullition final inférieur à 300°C. - from 25%m to 65%m of ethyl esters of fatty acids whose carbon chain contains 18 carbon atoms, b) supply hydrocarbons of fossil origin, c) prepare a hydrocarbon feed containing hydrocarbons of fossil origin provided by step b) and the ethyl esters of fatty acids provided by step a) in a content of at most 5% by volume relative to the hydrocarbon feed, d) subjecting the hydrocarbon feed prepared during the step c) to a hydrotreatment and obtain a treated hydrocarbon feedstock, e) fractionate the treated hydrocarbon feedstock obtained in step d) and recover a kerosene fraction as jet fuel, said kerosene fraction preferably having a lower final boiling point at 300°C.
2. Procédé de fabrication selon la revendication 1 , dans lequel lors de l’étape e) on adapte les points de coupe de la fraction kérosène récupérée afin d’obtenir une fraction kérosène respectant les spécifications d’un jet A1 selon la norme ASTM D1655-21. Procédé de fabrication selon la revendication 1 ou 2, dans lequel les esters éthyliques d’acides gras fournis à l’étape a) comprennent au moins une des caractéristiques suivantes : 2. Manufacturing process according to claim 1, in which during step e) the cutting points of the recovered kerosene fraction are adapted in order to obtain a kerosene fraction meeting the specifications of an A1 jet according to standard ASTM D1655 -21. Manufacturing process according to claim 1 or 2, in which the fatty acid ethyl esters provided in step a) comprise at least one of the following characteristics:
- au plus 4%m d’esters éthyliques d’acides gras dont la chaîne carbonée contient 20 atomes de carbone, - at most 4%m of ethyl esters of fatty acids whose carbon chain contains 20 carbon atoms,
- au plus 1%m d’esters éthyliques d’acides gras dont la chaîne carbonée contient de 22 atomes de carbone. Procédé de fabrication selon l’une quelconque des revendications 1 à 3, dans lequel les hydrocarbures d’origine fossile fournis à l’étape b) sont choisis parmi des coupes kérosènes. Procédé de fabrication selon l’une quelconque des revendications 1 à 4, dans lequel, au cours de l’étape (i), l’éthanol d’origine renouvelable est obtenu par fermentation éthanolique dans un bioréacteur contenant une culture d’un ou plusieurs microorganismes. Procédé de fabrication selon la revendication 5, dans lequel, au cours de l’étape (i), l’éthanol est obtenu par : - at most 1%m of ethyl esters of fatty acids whose carbon chain contains 22 carbon atoms. Manufacturing process according to any one of claims 1 to 3, in which the hydrocarbons of fossil origin supplied in step b) are chosen from kerosene cuts. Manufacturing process according to any one of claims 1 to 4, in which, during step (i), the ethanol of renewable origin is obtained by ethanolic fermentation in a bioreactor containing a culture of one or more microorganisms. Manufacturing process according to claim 5, in which, during step (i), the ethanol is obtained by:
- fermentation aérobie d’un substrat riche en sucres et/ou amidon issu de biomasse, ou - aerobic fermentation of a substrate rich in sugars and/or starch derived from biomass, or
- fermentation anaérobie d’un substrat gazeux comprenant du CO. Procédé de fabrication selon l’une quelconque des revendications 1 à 4, dans lequel, au cours de l’étape (i), l’éthanol d’origine renouvelable est obtenu par conversion d’un gaz de synthèse riche en CO/H2, ce gaz de synthèse étant issu de la biomasse. Procédé de fabrication selon l’une quelconque des revendications 1 à 7, dans lequel l’étape d) est mise en œuvre sous une pression de 15 à 130 bars et à une température de 250 et 380°C, en présence d’un catalyseur d’hydrotraitement et de dihydrogène. Procédé de fabrication selon l’une quelconque des revendications 1 à 8, dans lequel le catalyseur d’hydrotraitement comprend au moins un métal des groupes 6, 9, 10, 11 du tableau périodique des éléments, optionnellement sur un support choisi parmi l’alumine, la silice alumine, l’alumine phosphatée, l’alumine borée, la silice alumine phosphatée, seules ou en mélange. - anaerobic fermentation of a gaseous substrate comprising CO. Manufacturing process according to any one of claims 1 to 4, in which, during step (i), the ethanol of renewable origin is obtained by conversion of a synthesis gas rich in CO/H2, this synthesis gas comes from biomass. Manufacturing process according to any one of claims 1 to 7, in which step d) is carried out under a pressure of 15 to 130 bars and at a temperature of 250 and 380°C, in the presence of a catalyst hydrotreatment and dihydrogen. Manufacturing process according to any one of claims 1 to 8, in which the hydrotreatment catalyst comprises at least one metal of the groups 6, 9, 10, 11 of the periodic table of elements, optionally on a support chosen from alumina, silica alumina, phosphated alumina, borated alumina, phosphated silica alumina, alone or as a mixture.
PCT/FR2023/050296 2022-03-07 2023-03-03 Process for manufacturing a jet fuel from loads of renewable origin WO2023170360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2201956 2022-03-07
FR2201956A FR3133196A1 (en) 2022-03-07 2022-03-07 METHOD FOR MANUFACTURING A JET FUEL FROM FEEDS OF RENEWABLE ORIGIN

Publications (1)

Publication Number Publication Date
WO2023170360A1 true WO2023170360A1 (en) 2023-09-14

Family

ID=82196515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050296 WO2023170360A1 (en) 2022-03-07 2023-03-03 Process for manufacturing a jet fuel from loads of renewable origin

Country Status (2)

Country Link
FR (1) FR3133196A1 (en)
WO (1) WO2023170360A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470851A (en) 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
WO2002008438A2 (en) 2000-07-25 2002-01-31 Bioengineering Resources, Inc. Methods for increasing the production of ethanol from microbial fermentation
WO2007117157A1 (en) 2006-04-07 2007-10-18 Lanzatech New Zealand Limited Microbial fermentation of gaseous substrates to produce alcohols
FR2904324A1 (en) * 2006-07-27 2008-02-01 Total France Sa METHOD FOR HYDROPROCESSING A GAS FUEL LOAD, HYDROTREATING REACTOR FOR CARRYING OUT SAID METHOD, AND CORRESPONDING HYDROREFINING UNIT
WO2008115080A1 (en) 2007-03-19 2008-09-25 Lanzatech New Zealand Limited Alcohol production process
WO2009022925A1 (en) 2007-08-15 2009-02-19 Lanzatech New Zealand Limited Processes of producing alcohols
WO2010144684A2 (en) * 2009-06-12 2010-12-16 Exxonmobil Research And Engineering Company Process for preparing diesel fuels using vegetable oils or fatty acid derivatives
EP2346962A2 (en) 2008-10-24 2011-07-27 Total Raffinage Marketing Process for obtaining biokerosene
WO2012003901A1 (en) 2010-07-05 2012-01-12 Haldor Topsøe A/S Process for the preparation of ethanol and higher alcohols
WO2012026833A1 (en) 2010-08-26 2012-03-01 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
EP2533895A1 (en) 2010-02-11 2012-12-19 Sk Innovation Co., Ltd. Catalyst for producing hydrogenated biodiesel and method of producing the same
EP2675778A1 (en) 2011-02-14 2013-12-25 Quad County Corn Processors Process and system for producing ethanol from a byproduct of an ethanol production facility
FR3015985A1 (en) 2013-12-30 2015-07-03 Lesaffre & Cie YEAST STRAINS FOR THE PRODUCTION OF FIRST GENERATION ETHANOL
US20150322378A1 (en) * 2013-03-15 2015-11-12 Heliae Development Llc Direct transesterification of algal biomass for synthesis of fatty acid ethyl esters (faee)
EP3813539A1 (en) 2018-05-03 2021-05-05 Renewable Energy Group, Inc. Methods and devices for producing biodiesel, diesel-range hydrocarbons, and products obtained therefrom

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470851A (en) 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
WO2002008438A2 (en) 2000-07-25 2002-01-31 Bioengineering Resources, Inc. Methods for increasing the production of ethanol from microbial fermentation
WO2007117157A1 (en) 2006-04-07 2007-10-18 Lanzatech New Zealand Limited Microbial fermentation of gaseous substrates to produce alcohols
FR2904324A1 (en) * 2006-07-27 2008-02-01 Total France Sa METHOD FOR HYDROPROCESSING A GAS FUEL LOAD, HYDROTREATING REACTOR FOR CARRYING OUT SAID METHOD, AND CORRESPONDING HYDROREFINING UNIT
WO2008115080A1 (en) 2007-03-19 2008-09-25 Lanzatech New Zealand Limited Alcohol production process
WO2009022925A1 (en) 2007-08-15 2009-02-19 Lanzatech New Zealand Limited Processes of producing alcohols
EP2346962A2 (en) 2008-10-24 2011-07-27 Total Raffinage Marketing Process for obtaining biokerosene
WO2010144684A2 (en) * 2009-06-12 2010-12-16 Exxonmobil Research And Engineering Company Process for preparing diesel fuels using vegetable oils or fatty acid derivatives
EP2533895A1 (en) 2010-02-11 2012-12-19 Sk Innovation Co., Ltd. Catalyst for producing hydrogenated biodiesel and method of producing the same
WO2012003901A1 (en) 2010-07-05 2012-01-12 Haldor Topsøe A/S Process for the preparation of ethanol and higher alcohols
WO2012026833A1 (en) 2010-08-26 2012-03-01 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
EP2675778A1 (en) 2011-02-14 2013-12-25 Quad County Corn Processors Process and system for producing ethanol from a byproduct of an ethanol production facility
US20150322378A1 (en) * 2013-03-15 2015-11-12 Heliae Development Llc Direct transesterification of algal biomass for synthesis of fatty acid ethyl esters (faee)
FR3015985A1 (en) 2013-12-30 2015-07-03 Lesaffre & Cie YEAST STRAINS FOR THE PRODUCTION OF FIRST GENERATION ETHANOL
EP3813539A1 (en) 2018-05-03 2021-05-05 Renewable Energy Group, Inc. Methods and devices for producing biodiesel, diesel-range hydrocarbons, and products obtained therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENSIRISAK: "Scale-up of microbubble dispersion generator for aérobie fermentation", APPLIED BIOCHEMISTRY AND BIOTECHNOLO RV, vol. 101, no. 3, October 2002 (2002-10-01)

Also Published As

Publication number Publication date
FR3133196A1 (en) 2023-09-08

Similar Documents

Publication Publication Date Title
Mesa et al. Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations
US8241881B2 (en) Production of gasoline from fermentable feedstocks
US8148579B2 (en) Production of gasoline from fermentable feedstocks
Gutiérrez et al. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry
Vohra et al. Bioethanol production: Feedstock and current technologies
CA2824993C (en) Systems and methods for hydrolysis of biomass
RU2570880C2 (en) Methods for gasification of carbon-containing materials
US10513715B2 (en) Wet oxidation of biomass
Ritslaid et al. State of the art in bioethanol production.
Basile et al. Second and third generation of feedstocks: The evolution of biofuels
EP2697383B1 (en) Method for producing ethanol from cellulosic or lignocellulosic biomass including the recirculation of an ethylic wine obtained by fermentation of pentoses
WO2017207200A1 (en) Process for producing btx and alcohols by catalytic pyrolysis of biomass and fermentation of the gaseous pyrolysis effluent
WO2023170360A1 (en) Process for manufacturing a jet fuel from loads of renewable origin
Sharma et al. Introduction to lignocellulosic ethanol
WO2023233098A1 (en) Process for producing hydrocarbon fluids from feedstocks of renewable origin
Malinowski et al. An analysis of physico-chemical properties of the next generation biofuels and their correlation with the requirements of diesel engine
Bartocci et al. Biofuels: Types and Process Overview
Sillanpää et al. Biofuels and bioenergy
WO2024023161A1 (en) Renewable jet fuel composition having a high content of naphthenic compounds, and associated preparation method
WO2023170359A1 (en) Process for preparing a jet fuel from renewable feedstock
WO2024023162A1 (en) Renewable jet fuel composition having a high content of naphthenic compounds
Djeddou et al. Etude de la production de bioéthanol de deuxième génération à partir d'un déchet agroalimentaire
Ibifubara et al. BIOCONVERSION OF CHEAP AND LOCALLY AVAILABLE LIGNOCELLULOSIC SUBSTRATES FOR BIOETHANOL PRODUCTION
Konur 20 Propanediol Production
Awoyale Paper 1, HPBPLB, Accepted and Published Journal Paper of Biofuels, Bioproducts and Biorefining, John Wiley & Sons, Ltd Awoyale Adeolu A. and Lokhat, David (2019) Harnessing the Potential of bioethanol production from lignocellulosic biomass in Nigeria–a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23714236

Country of ref document: EP

Kind code of ref document: A1