WO2023169299A1 - 支链组件、并联操作臂、主操作手、操控台以及机器人 - Google Patents

支链组件、并联操作臂、主操作手、操控台以及机器人 Download PDF

Info

Publication number
WO2023169299A1
WO2023169299A1 PCT/CN2023/079285 CN2023079285W WO2023169299A1 WO 2023169299 A1 WO2023169299 A1 WO 2023169299A1 CN 2023079285 W CN2023079285 W CN 2023079285W WO 2023169299 A1 WO2023169299 A1 WO 2023169299A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch chain
moving
connecting bracket
assembly
bracket
Prior art date
Application number
PCT/CN2023/079285
Other languages
English (en)
French (fr)
Inventor
万永宏
徐鉷
胡润晨
柳建飞
Original Assignee
诺创智能医疗科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺创智能医疗科技(杭州)有限公司 filed Critical 诺创智能医疗科技(杭州)有限公司
Publication of WO2023169299A1 publication Critical patent/WO2023169299A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements

Definitions

  • the present disclosure relates to the technical field of teleoperation robots, and specifically to a branch chain assembly, a parallel operating arm, a main operator, a console and a robot including the branch chain assembly.
  • Teleoperated robots usually include an operating end and an execution end (also called a slave end).
  • the main operator serves as an interactive device between the operator and the robot, transmitting the posture, speed and other information given by the operator to the slave end. It can also transmit to the operator the information received by the slave end.
  • Environmental information such as force/torque allows the operator to intuitively feel the force information received by the execution end, giving it a sense of operational presence and enabling timely and effective control and intervention of the movement of the driven end system. Due to the above characteristics of teleoperated robots, their advantages as surgical robots in the field of medical services have become increasingly prominent.
  • the main operator is the carrier of information between the doctor and the slave-side robotic arm. It is required to have more degrees of freedom to assist the doctor in performing precise operations, and it is also required to accurately feedback the slave-side movements. Force conditions so that doctors can feel immersed in the operation.
  • the main operator usually includes a handle and an operating arm, and the types of operating arms mainly include a three-degree-of-freedom parallel mechanism, a six-degree-of-freedom serial mechanism used in the da Vinci surgical robot, and a hybrid mechanism that combines the two.
  • the three-degree-of-freedom parallel main operator has a simple structure, convenient wiring, and can achieve force feedback. However, it only has three translational degrees of freedom, cannot perform attitude control, and cannot meet the demand for freedom of movement.
  • the structure of the six-degree-of-freedom series main operator is compact, but there are complicated cables inside, which increases the manufacturing and assembly costs and also reduces the service life of the equipment. In addition, its series structure is not conducive to realizing force feedback.
  • the hybrid main operator can provide at least four degrees of freedom, but its wiring is complex and difficult to implement.
  • the main operator's own gravity will affect the operator's perception of the authenticity of the force feedback. If the main operator's gravity is not compensated, what the operator will feel will be the combined force of the main operator's own gravity and the feedback force. In addition, if the operator operates the main operator for a long time, if the gravity of the main operator is not compensated, the muscles will feel fatigued and the operation immersion will be reduced.
  • One of the main invention objectives of the present disclosure is to provide a branch chain assembly, a parallel operating arm, a main operator and a robot including the branch chain assembly, which can achieve at least part of the self-gravity dynamic balance effect.
  • a branch chain assembly may include a branch chain and a driving assembly disposed on the branch chain.
  • the branch chain includes a connecting bracket and a device capable of being positioned relative to the connecting bracket.
  • the moving support rod is provided with the driving assembly on the connecting bracket.
  • the driving assembly includes a stator fixedly connected to the connecting bracket and a mover connected to the moving supporting rod.
  • the branch chain includes a hinged fulcrum provided on the connecting bracket, the mover and the moving strut can move in opposite directions on the connecting bracket relative to the hinged fulcrum, and the mover moves on the connecting bracket.
  • a parallel operating arm may include a static platform, a moving platform, and at least three branch chain assemblies respectively connected to the moving platform and the static platform, the At least one branch chain assembly among at least three branch chain assemblies is the branch chain assembly as described above, wherein the moving platform is connected to the moving strut, and at least one branch chain of the at least one branch chain assembly passes through
  • the hinged fulcrum provided on the connecting bracket is connected to the static platform to dynamically balance at least part of the gravity of the parallel operating arm.
  • a main operator which may include a parallel operating arm as described above and a handle installed on the moving platform.
  • the movable platform may be configured in a circular ring shape, and may be disposed between two adjacent hinge points among the at least three hinge points of the movable platform that are combined with the branches of the at least three branch chain assemblies.
  • a control console which may include a main operator as described above.
  • a robot which may include a control console as described above.
  • the robot may be a surgical robot.
  • Figure 1 shows a schematic structural diagram of an operating end of a robot according to an embodiment of the present disclosure
  • Figure 2 shows a schematic structural diagram of a main operator according to an embodiment of the present disclosure
  • Figure 3 shows a partial structural schematic diagram of a main operator according to an embodiment of the present disclosure
  • Figure 4 shows a perspective view of a static platform and related structures according to an embodiment of the present disclosure
  • Figure 5 shows a perspective view of a static platform according to an embodiment of the present disclosure
  • Figure 6 shows a schematic diagram of the range of motion of the branch chain
  • FIG. 7 shows a schematic layout diagram of the positional relationship of three first motors relative to three hinge fulcrums according to an embodiment of the present disclosure
  • Figure 8 shows a schematic diagram of the combination structure between the handle and the moving platform according to an embodiment of the present disclosure
  • Figure 9 shows a schematic structural diagram of a moving platform according to an embodiment of the present disclosure.
  • Figure 10 shows a schematic structural diagram of a second hinge according to an embodiment of the present disclosure
  • 11 and 12 respectively show a structural schematic diagram of the initial state and a movement state of the main operator according to the present disclosure.
  • 10-operating end (doctor's console), 100-main operator, 110-static platform, 111-support body, 111a-avoidance groove, 112-transmission bracket, 113-motor bracket, 113a-boss, 113b-bracket body , 113c-extension part, 120-moving platform, 122-combining protrusion, 122a-third rotation axis, 122b-third bearing, 128-notch, 131-strut connecting block, 131a-first bearing, 132-th A rotating block, 132a-first connecting block, 132b-second connecting block, 133-second rotating block, 133a-second bearing, 200-branch chain, 210-connecting bracket, 210a-bracket connecting block, 211-motor Guide rail, 212-support rod guide rail, 220-moving support rod, 224-support rod slider, 224a-installation part, 225-support rod fixing part, 230a, 230b-runner, 232-conveyor belt/chain, 300
  • FIG. 1 shows a schematic structural diagram of a main operator applied to the operating end of a surgical robot according to an embodiment of the present disclosure.
  • the robot may include an operation end 10, an execution end (not shown), and an imaging device (not shown).
  • the operation end 10 may include a doctor's console
  • the execution end may be a robotic arm system for performing surgery
  • the imaging device may include a display for displaying images of patient lesions and other related information.
  • the main operator 100 is set on the doctor's console 10.
  • the operator (doctor) can control the operation of the execution end by operating the main operator 100.
  • the stress of the instrument at the end of the execution end can be fed back to the main operator 100 through the force sensor. To establish a mechanical model between the operating end 10 and the execution end.
  • FIGS. 2 and 3 respectively show schematic diagrams of the main structure and partial structure of the main operator according to embodiments of the present disclosure.
  • the specific structure of the main operator 100 according to the embodiment of the present disclosure is described below with reference to FIGS. 2 and 3 .
  • the main operator 100 may include a parallel operating arm and a handle 300.
  • the parallel operating arm may include a static platform 110, a moving platform 120, and at least three branch chain assemblies connected between the static platform 110 and the moving platform 120.
  • At least one branch chain assembly among at least three branch chain assemblies may include a branch chain 200 and a driving assembly 500 disposed on the branch chain 200 .
  • the number of the driving assemblies 500 may correspond to the number of the branch chains 200 , and they are respectively disposed on the corresponding branch chains 200 to drive the extension or shortening of the branch chains 200 respectively.
  • the branch chain assemblies according to the present disclosure are not limited to three, but may also be Includes a greater number of branched components.
  • the structures of the branch chain components may be different from each other. For example, among the branch chain components connected to the static platform 110 and the moving platform 120 , only one branch chain component or two branch chain components may have the structure disclosed according to the embodiments of the present disclosure. Structure.
  • an introduction will be given as an example in which the main operator 100 includes three branch chain components that are identical to each other and connected in parallel.
  • the parallel operating arm can be implemented using a 3-UPS parallel mechanism, that is, each Each branch chain 200 in the branch chain assembly can be implemented by a UPS branch chain, so that the moving platform 120 can have six degrees of freedom, so that the main operator 100 can realize six degrees of freedom of movement and six degrees of freedom of force feedback.
  • each branch chain 200 may be a UPS branch chain.
  • each branch chain 200 may be connected to the static platform 110 through a U pair and may be connected to the moving platform 120 through an S pair.
  • a movable P pair can be provided on each branch chain 200 so that it can be extended or shortened.
  • the U pair can be realized by the first hinge piece
  • the S pair can be realized by the second hinge piece. The first hinge piece and the second hinge piece will be described in detail below.
  • the main operator 100 may further include a driving assembly 400 .
  • the driving assembly 400 may be a rotary driving assembly installed on the static platform 110 and its number corresponds to the number of branch chains 200, so as to drive the three branch chains 200 to rotate respectively.
  • the sensor senses the force on the execution end, and the driving components 400 and 500 can provide corresponding force and/or torque according to the information sensed by the sensor to move the force.
  • the force situation is fed back to the operator through the handle 300, so that the operator feels as if his hand is directly using the instrument to contact the patient's surgical site for surgery.
  • each branch chain 200 may include a connecting bracket 210 and a moving strut 220 , both of which are formed in an elongated shape and arranged along the same straight line.
  • the moving strut 220 can move relative to the connecting bracket 210 along its length direction to extend or shorten the entire branch chain 200 .
  • the driving assembly 500 can be disposed on the connecting bracket 210 and includes a stator 520 fixedly connected to the connecting bracket 210 and a mover 510 connected to the moving support rod 220 .
  • connection bracket 210 may include a hinge fulcrum O disposed on the connection bracket 210 to be hinged to the static platform 110 through the first hinge at the hinge fulcrum O, so that the connection bracket 210 can serve as a support part of the branch chain 200 through the static platform 110 .
  • the platform 110 supports the connecting bracket 210.
  • the mover 510 and the moving strut 220 of the driving assembly 500 can move in opposite directions on the connecting bracket 210 relative to the hinge fulcrum O (ie, relative to the static platform 110), thereby dynamically balancing each At least part of the gravity of each branched chain component.
  • the moving support rod 220 can be hinged to the moving platform 120 through the second hinge, and can move in the opposite direction according to the movement of the mover 510, thereby driving the handle 300 connected to the moving platform 120 to move.
  • the force or torque received by the execution component is transmitted to the moving platform 120 .
  • the moving support rod 220 can move according to the operator's control action received from the driven platform 120, thereby driving the mover 510 to move in the opposite direction to transmit the control command to the execution end.
  • the driving assembly 500 provided on each branch chain 200 may use a linear driving assembly, for example, a linear motor may be used.
  • the linear motor may include a mover and a stator that can move relatively.
  • the stator is set to be fixedly connected to the static platform 110 and the mover of the linear motor 500 is set to be able to move along the extension direction of the branch chain 200, so that the mover of the linear motor 500 can be used as a counterweight to balance the own gravity of the main operator 100 .
  • the linear motor may be a magnetic shaft motor.
  • the magnetic shaft motor 500 may include a slider 510 as a mover and a magnetic shaft 520 as a stator.
  • the slider 510 of the magnetic shaft motor 500 in response to the elongation or shortening of the corresponding branch chain 200, can move in a direction away from the moving platform 120 along the connecting bracket 210 relative to the static platform 110. In this way, when the slider When 510 moves to both sides of the hinge fulcrum (the position where the branch chain 200 and the static platform 110 are hinged) relative to the handle 300, the slider 510 can be used as a counterweight to balance the own gravity of the main operator 100.
  • the connecting bracket 210 and the moving support rod 220 can both be provided in a hollow form to reduce the overall weight of the main operator 100 .
  • the connecting bracket 210 may include a bracket rod body and a bracket connecting block 210 a fixedly connected to the bracket rod body.
  • the bracket connecting block 210 a may face the static platform from one side of the connecting bracket 210 110 extends, and a hinge fulcrum O for connecting the connecting bracket 210 with the static platform 110 may be formed on the bracket connecting block 210a.
  • the bracket connection block 210a may have a triangular plate shape, and the hinge fulcrum O may be provided at one vertex thereof, thereby avoiding interference between the bracket connection block 210a and other components.
  • bracket connection block 210a is not limited to this, and can also be arranged in other shapes according to the spatial arrangement of the structure.
  • bracket connection block 210a can also be provided in a hollow form to further reduce the weight of the overall structure.
  • the hinge fulcrum O may be disposed at any point between the first end of the connecting bracket 210 connected to the moving platform 120 and the first end and the second end, wherein the moving support rod 220 Capable of extending or retracting from a first end of the connecting bracket 210 , the second end is an end of the connecting bracket 210 opposite to the first end.
  • the slider 510 can move to the hinge fulcrum O at most, but cannot move to the right side to balance the gravity of the left side. Therefore, the hinge fulcrum O may be provided at any point other than the second end of the connection bracket 210 . In this way, in the initial state, the slider 510 can be disposed at the first end of the connecting bracket 210 close to the moving platform 120, so that when the slider 510 moves along the length direction of the connecting bracket 210, it can cross the hinge fulcrum O Move to the second end of the connecting bracket 210 away from the moving platform 120 to balance the gravity of the structure located on the left side of the hinge fulcrum O.
  • the slider 510 serves as a counterweight to balance part of the gravity of the main operator 100 through the lever principle. Therefore, the most optimal setting position of the hinge fulcrum O may also depend on the length of the branch chain 200 and the motion range of the handle 300 , the weight of the mover (slider 510) of the linear motor and other factors.
  • one end of the connecting bracket 210 connected to the moving platform 120 is defined as a "point with a position of 0"
  • the other end of the connecting bracket 210 is defined as a "point with a position of 1”
  • the hinge fulcrum O The closer the position is to the second end, the worse the self-gravity balancing effect is. Therefore, the hinge fulcrum O may preferably be set at a predetermined distance from the second end. In addition, if the hinge fulcrum O is set at the first end or beyond Close to the first end, the arrangement of the static platform 110 and the moving platform 120 may interfere.
  • a motor guide rail 211 can be provided on the first surface of the connecting bracket 210 .
  • the motor guide rail 211 can be located between the first axis bracket 530 and the second axis bracket 540 .
  • a slider sliding along the motor guide rail 211 can be fixed below the slider 510
  • the guide block (not shown) can both support the slider 510 on the connecting bracket 210 and guide the slider 510 to move between the first shaft bracket 530 and the second shaft bracket 540 .
  • embodiments of the present disclosure are not limited thereto. Since the magnetic shaft 520 itself can function to guide the movement of the slider 510, the motor guide rail 211 provided on the first surface of the connection bracket 210 can also be omitted.
  • the structures of the strut guide rail 212 and the strut slider 224 are not specifically limited, as long as the strut slider 224 can move along the strut guide rail 212 without breaking away from the strut guide rail 212, any structure is feasible.
  • the pole guide rail 212 may be a long strip attached to the connecting bracket 210 , and guide grooves (not shown) may be formed on both sides thereof, and the pole slider 224 may be fastened to the moving
  • the mounting portion 224a of the support rod 220 may be provided with two sliding protrusions (not shown) corresponding to the guide grooves.
  • sliding protrusions may also be provided on the strut guide rail 212 and corresponding guide grooves may be provided on the strut slide block 224 .
  • the strut guide rail 212 may be a guide groove formed in the second surface of the connecting bracket 210, and the strut slider 224 has a matching sliding protrusion.
  • the present disclosure is not limited thereto, and the strut guide rail 212 and the strut slider 224 may also be implemented in other structures or forms.
  • each branch chain 200 may also be provided with a displacement sensor.
  • the displacement sensor according to the present disclosure may use a grating sensor.
  • the grating scale sensor may include a grating main scale 610 and a grating scale reading head 620 .
  • the grating main scale 610 may be installed on one side of the connecting bracket 210 .
  • the grating scale reading head 620 is fixedly coupled to the magnetic axis motor 500 on the slider 510. When the slider 510 moves along the magnetic axis 520 , the grating scale reading head 620 moves synchronously with the slider 510 of the magnetic axis motor 500 , so that the displacement information of the magnetic axis motor 500 can be detected.
  • a motor fixing plate 560 may be provided in order to fixedly couple the scale readhead 620 to the slider 510.
  • the motor fixing plate 560 may be fastened to both the slider 510 and the scale readhead 620. And make them fixedly connected to each other. Therefore, the structure of the motor fixing plate 560 according to the present disclosure is not specifically limited as long as it can achieve the above functions.
  • FIG. 4 shows a perspective view of a static platform 110 and related structures according to an embodiment of the present disclosure.
  • Figure 5 shows a perspective view of a static platform according to an embodiment of the present disclosure.
  • Figure 6 shows a schematic diagram of the range of motion of the branch chain.
  • FIG. 7 shows a schematic layout diagram of the positional relationship of three rotational drive assemblies (eg, rotational motors) 400 relative to three hinge fulcrums O according to an embodiment of the present disclosure.
  • three rotational drive assemblies eg, rotational motors
  • each branch chain 200 is hinged to the static platform 110 through the bracket connection block 210a, rotates relative to the static platform 110 with the hinge fulcrum O as the vertex, and the rotating motor 400 is used to drive the rotation of the branch chain 200.
  • the movement range of each branch chain 200 is: two top cones surrounded by the hinge fulcrum O as the vertex and the branch chain 200 as the generatrix.
  • the rotating motor 400 is disposed close to the branch chain 200, when the operator operates the main operator 100, interference may occur between the rotating motor 400 and the branch chain 200. If a smaller motor is selected as the rotating motor 400, the output torque requirement may not be met.
  • the rotating electric machine 400 is disposed between two adjacent hinge pivot points O along the circumferential direction, so that the position of the branch chain 200 is staggered with the position of the rotating electric machine 400, so that the torque requirements can be met while Does not interfere with branch chains.
  • the three rotating motors 400 are arranged at equal intervals on the static platform 110 , that is, the three rotating motors 400 are arranged at an angle of 120°.
  • S 1 , S 2 , and S 3 respectively represent the first hinges of the three branch chains 200 and the static platform 110
  • M 1 , M 2 , and M 3 respectively represent the three rotating motors 400 that drive the three branch chains 200 .
  • the rotating electrical machine 400 according to the embodiment of the present disclosure is disposed coplanarly with the three hinge fulcrums O in the circumferential direction between two adjacent hinge fulcrums O.
  • the rotating motor 400 is located within the sector-shaped area enclosed by the line connecting the two hinged fulcrums O and the center point of the circle, and may preferably be disposed at a position approximately equal to the two hinged fulcrums O to maximize the to avoid interference with branch chain 200.
  • the rotating motor 400 since the rotating motor 400 is disposed on one side of the first hinge in the circumferential direction, the torque output by it cannot be directly transmitted to the first hinge. Therefore, the rotating motor 400 is not connected to the hinge fulcrum O The distance also depends on the transmission mechanism provided between the rotating motor 400 and the first hinge.
  • the rotating electrical machine 400 and the corresponding first hinge may be connected and driven through a bevel gear set.
  • the bevel gear set may include a driving bevel gear 710 and a driven bevel gear 720 that mesh with each other.
  • the output shaft of the rotating motor 400 is fixedly connected to the driving gear shaft of the driving bevel gear 710.
  • the rotating shaft of the first hinge (as mentioned later, the part that enables the first hinge to rotate around the second axis L2 (see FIG. 4 )) is fixedly connected to the driven gear shaft 721 of the driven bevel gear 720 , thereby rotating the rotation output of the motor 400 .
  • the moment can be transferred to the first hinge.
  • the arrangement position of each rotating electrical machine relative to the corresponding first hinge may be determined by the transmission ratio of the bevel gear set and the sizes of the driving bevel gear 710 and the driven bevel gear 720 .
  • the transmission ratio of the embodiment of the present disclosure is greater than 1, the size of the driving bevel gear 710 is smaller than the size of the driven bevel gear 720 , so relative to the two first hinges adjacent to each other, the rotating motor 400 may be positioned closer to the first hinge it drives.
  • the present disclosure is not limited to this, and other transmission ratios and other sizes of driving bevel gears 710 can also be selected according to requirements.
  • a first hinge may include a rotating bracket 810 .
  • the first end of the rotating bracket 810 may be provided with a rotating bracket rotation shaft (not shown) that extends toward the bracket connecting block 210a of the connecting bracket 210 and is coupled to a hole of the bracket connecting block 210a (ie, a hole at the position of the hinge fulcrum O).
  • the rotation axis of the rotation bracket can be installed in the hole of the bracket connection block 210a through a bearing (not shown), so that the connection bracket 210 can rotate about the rotation axis of the rotation bracket (ie, the first axis L1) relative to the rotation bracket 810.
  • the second end of the rotating bracket 810 may be rotatably coupled to the stationary platform 110 so that the rotating bracket 810 can rotate about the second axis L2 relative to the stationary platform 110 .
  • the first axis L1 is arranged in a direction perpendicular to the side surface of the branch chain 200 (the surface perpendicular to the first surface and the second surface of the connecting bracket 210), and the second axis L2 is perpendicular to the first axis L1 and perpendicular to the movement The lengthwise setting of the bracket.
  • the static platform 110 may include a support body 111 , a transmission bracket 112 and a motor bracket 113 .
  • the main support function of the static platform 110 can be achieved by the support body 111.
  • the transmission bracket 112 can be used to support and install the driven bevel gear 720 and the rotating bracket 810.
  • the motor bracket 113 can be used to support and install the rotating motor 400 and the driving bevel gear 710.
  • the transmission brackets 112 may be arranged at intervals of 120° around the side surfaces of the support body 111 , and the transmission brackets 112 may generally have an L-shape, one end of which is fixedly coupled to one surface of the support body 111 to be in contact with the side surface of the support body 111 A substantially U-shaped accommodation space is formed in which the driven bevel gear 720 can be accommodated. As shown in FIG. 5 , a receiving hole 112 a is formed on the transmission bracket 112 for installing the driven gear shaft 721 of the driven bevel gear 720 .
  • the motor bracket 113 may include a boss 113a extending outward from the support body 111 and a bracket main body 113b installed on the boss 113a.
  • the bracket main body 113b may be in a plate shape, and the rotating motor 400 may be combined by fasteners (not shown). to the bracket body 113b.
  • the bracket body 113b may also be provided with a first mounting hole 113d for installing and supporting the output shaft of the rotating electrical machine 400.
  • the bracket body 113b is spaced apart from the side surface of the support body 111, thereby forming a receiving space therein in which the driving bevel gear 710 can be disposed.
  • the structures of the transmission bracket 112 and the motor bracket 113 according to the present disclosure are not limited thereto.
  • the motor bracket 113 in order to improve the strength of the bracket body 113b and facilitate the installation of the motor bracket 113, the motor bracket 113 is also It may include extending from one end of the bracket body 113b parallel to the boss 113a The extension portion 113c extends in the direction.
  • the support body 111 may have a hexagonal cross-sectional shape, and its cross-sectional area may be tapered in a direction toward the moving platform 120 to be parallel to the extension direction of the branch chain 200 in the initial state to avoid Interference occurs with branch chain 200. That is, the support body 111 may include six side surfaces, and each side surface may be trapezoidal. Three rotating brackets 810 and three rotating motors 400 may be provided on the six side surfaces respectively.
  • the center of the support body 111 of the static platform 110 can be provided in a hollow form.
  • the center of the support body 111 can be formed to reduce the weight of the main operator 100.
  • Figure 8 shows the combination structure between the handle 300 and the moving platform 120 according to an embodiment of the present disclosure
  • Figure 9 shows a schematic structural diagram of the second hinge
  • Figure 10 shows a schematic structural diagram of the moving platform.
  • the movable platform 120 may have a circular ring shape as a whole, and three second hinges may be connected to the movable platform 120 at an angle of 120° apart from each other.
  • each second hinge may include a support connecting block 131 , a first rotating block 132 and a second rotating block 133 , so that each branch chain can achieve three vertical positions relative to the moving platform 120 . rotation in one direction.
  • One end of the strut connecting block 131 (the lower end of the strut connecting block 131 shown in FIG. 8 ) may be fixedly coupled to the moving strut 220 through a fastener (not shown), and the other end (shown in FIG. 8
  • the upper end of the support rod connecting block 131) may be provided with a first rotation axis (not shown) parallel to the length direction of the moving support rod 220.
  • One end of the second rotating block 133 (the lower end of the second rotating block 133 shown in FIG. 8 ) may be provided with a second rotating axis perpendicular to the first rotating axis, and the second rotating axis may be installed on the formed surface through the second bearing 133 a. in the hole of the second connecting block 132b, so that the second rotating block 133 can rotate around the second rotating axis.
  • the other end of the second rotating block 133 (the upper end of the second rotating block 133 shown in FIG. 8 ) may be provided with a receiving hole for receiving the third rotating shaft 122 a on the moving platform 120 .
  • 11 and 12 respectively show a schematic diagram of an initial state and a working state of the main operator according to the present disclosure.
  • the branch chain 200 moves along its length direction (the moving support rod 220 moves relative to the connecting bracket 210 ), and also rotates around the output shaft of the rotating motor 400 (Strictly speaking, the rotation about the driven gear shaft 721 of the driven bevel gear 720) and the swing relative to the hinge fulcrum O.
  • the moving platform 120 drives the moving support rod 220 to move to the left through the second hinge.
  • the moving support rod 220 drives the conveyor belt/chain 232 to move.
  • the conveyor belt/chain 232 drives the slider 510 of the magnetic shaft motor 500 to move to the right.
  • the slider 510 simultaneously drives The grating scale reading head 620 reads the displacement amount of the slider 510 on the grating main scale 610 , that is, the movement amount of the moving support rod 220 .
  • the branch chain 200 drives the output shaft of the rotating motor 400 to rotate through the bevel gear set, and the rotation angle of the rotating motor 400 is the rotation amount of the branch chain 200 .
  • the bracket connecting block 210a rotates around the rotating axis of the rotating bracket, and the encoder 820 records the rotation angle of the rotating axis of the rotating bracket, that is, the swing amount of the branch chain 200.
  • the slider 510 of the magnetic shaft motor 500 moves from one side of the static platform 110 to the other side, so that the lever principle can be used to balance at least part of the gravity.
  • a linear drive assembly with a mover as a driving structure for driving the extension or shortening of the branch chain assembly
  • the gravity of the mover relative to the moment dynamic of the hinged fulcrum is The force changes so as to dynamically balance at least part of the gravity of the branch chain assembly.
  • the main operator in the embodiment of the present disclosure uses its own structure to dynamically balance gravity without adding additional mechanisms, reducing the complexity of the mechanism and space size, and avoiding the possibility of interference between branch chains.
  • active compensation can also be combined to further balance the gravity of the main operator 100 .
  • active compensation refers to controlling the rotating motor 400/magnetic shaft motor 500 to output a reverse force/torque through a gravity balance algorithm to balance the own gravity of the main operator 100, so that the main operator 100 has a "suspended" effect.
  • the hinge fulcrum O of the branch chain 200 and the static platform 110 can be set at a position between the two end points of the branch chain 200, so that the distance between the moving platform 120 and the static platform 110 is shortened. Then part of the gravity is balanced through the setting of this structure. Based on this structure, the force of the rotating motor 400 acts on the hinge fulcrum O, reducing the output moment arm of the rotating motor 400, thereby reducing the output torque; therefore, the loss of the rotating motor 400 in its own gravity compensation is reduced, and there is It is beneficial for the rotating motor 400 to realize force feedback.
  • the rotating motor 400 can be disposed between adjacent hinged fulcrums O. Since it can avoid interference with the branch chain 200 to the greatest extent, even if a motor with higher power (larger volume) is selected to further provide actively compensated torque. and power, and will not limit the range of motion of the branch chain 200.
  • the main operator can have a self-gravity dynamic balance effect, and the motor can perform gravity compensation without outputting a large torque.
  • the moving platform fixedly connected to the handle adopts a circular structure with gaps, so that the operator can move his fingers at will when operating the handle, which improves the user experience.
  • first”, “second”, etc. are used for description purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more unless otherwise specified.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It can be a detachable connection or an integral connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection can be a fixed connection or a fixed connection. It can be a detachable connection or an integral connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种支链组件、并联操作臂、主操作手、操控台以及机器人,支链组件包括支链和设置在支链上的驱动组件,支链包括连接支架和能够相对于连接支架移动的移动支杆,连接支架上设置有驱动组件,驱动组件包括与连接支架固定连接的定子以及与移动支杆连接的动子。支链包括设置在连接支架上的铰接支点,动子与移动支杆能够在连接支架上相对于铰接支点沿相反的方向移动,以能够实现自重力动态平衡效果。

Description

支链组件、并联操作臂、主操作手、操控台以及机器人 技术领域
本公开涉及遥操作机器人技术领域,具体涉及一种支链组件、以及包括该支链组件的并联操作臂、主操作手、操控台以及机器人。
背景技术
遥操作机器人通常包括操作端和执行端(也称从动端)。在遥操作机器人系统中,主操作手作为操作者与机器人之间的交互设备,向从动端传递操作者给出的位姿、速度等信息,同时也可向操作者传递从动端受到的力/力矩等环境信息,让操作者直观感受到执行端接收的力的信息,使其具有操作临场感,可及时对从动端系统的运动做有效的控制和干预。由于遥操作机器人的上述特性,使得其用作手术机器人在医疗服务领域的优势日益凸显。
在手术机器人中,主操作手是医生与从动端机械臂之间传递信息的载体,要求其具备更多的自由度,以辅助医生进行精准的操作,并且要求其能够精准地反馈从动端的受力情况,以使医生有操作沉浸感。
主操作手通常包括手柄和操作臂,而操作臂的类型主要包括三自由度并联机构、用在达芬奇手术机器人中的六自由度串联机构以及两者结合的混联机构。三自由度并联主操作手结构简单、布线方便,能够能实现力反馈,但只有3个平动自由度,无法进行姿态控制,无法满足运动自由度需求。六自由度串联主操作手的结构小巧,但是内部设有繁杂的电缆,提高了制造和装配成本,同时也会降低设备的使用寿命,此外,其串联结构不利于实现力反馈。混联主操作手可提供至少四个自由度,但其布线复杂,实现困难。
此外,主操作手自身的重力会影响操作者对力反馈真实性的感知,如果不对主操作手的重力进行补偿,操作者感受到的将是主操作手自身重力和反馈力的合力。此外,操作者长时间操作主操作手,如果不对主操作手的重力进行补偿,肌肉会感到疲劳,降低操作沉浸感。
发明内容
本公开的主要发明目的之一在于提供一种支链组件、包括该支链组件的并联操作臂、主操作手及机器人,所述支链组件能够实现至少部分自重力动态平衡效果。
针对上述发明目的,本公开提供如下技术方案:
根据本公开的一方面,提供一种支链组件,所述支链组件可包括支链和设置在所述支链上的驱动组件,所述支链包括连接支架和能够相对于所述连接支架移动的移动支杆,所述连接支架上设置有所述驱动组件,所述驱动组件包括与连接支架固定连接的定子以及与所述移动支杆连接的动子。所述支链包括设置在所述连接支架上的铰接支点,所述动子与移动支杆能够在所述连接支架上相对于所述铰接支点沿相反的方向移动,所述动子在所述连接支架上移动时,所述动子的重力相对于铰接支点的力矩发生变化,以通过杠杆原理使所述支链组件动态地平衡其至少一部分自身的重力。
根据本公开的另一方面,提供一种并联操作臂,所述并联操作臂可包括静平台、动平台以及分别连接到所述动平台和所述静平台的至少三个支链组件,所述至少三个支链组件中的至少一个支链组件为如上所述的支链组件,其中,所述动平台连接到所述移动支杆上,所述至少一个支链组件的至少一条支链通过设置在所述连接支架上的所述铰接支点连接到所述静平台,以能够动态地平衡并联操作臂的至少一部分重力。
根据本公开的另一方面,提供一种主操作手,所述主操作手可包括如上所述的并联操作臂以及安装在所述动平台上的手柄。
所述动平台可设置成圆环形状,并且在所述动平台的与所述至少三个支链组件的支链结合的至少三个铰接点中的相邻的两个铰接点之间可设置有缺口,所述手柄安装到所述动平台的与所述缺口相邻的位置处。操作者的手指在该缺口处能够随意活动手指,符合人体工学设计,提高了用户体验。
根据本公开的另一方面,提供一种操控台,所述操控台可包括如上所述的主操作手。
根据本公开的又一方面,提供一种机器人,所述机器人可包括如上所述的操控台。
所述机器人可为手术机器人。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述和/或其它目的和优点将会变得更加清楚,其中:
图1示出了根据本公开的实施例的机器人的操作端的结构示意图;
图2示出了根据本公开的实施例的主操作手的结构示意图;
图3示出了根据本公开的实施例的主操作手的局部结构示意图;
图4示出了根据本公开的实施例的静平台及相关结构的立体示意图;
图5示出了根据本公开的实施例的静平台的立体示意图;
图6示出了支链的运动范围的示意图;
图7示出了根据本公开的实施例的三个第一电机相对于三个铰接支点的位置关系的布置示意图;
图8示出了根据本公开的实施例的手柄与动平台之间的结合结构的示意图;
图9示出了根据本公开的实施例的动平台的结构示意图;
图10示出了根据本公开的实施例的第二铰接件的结构示意图;
图11和图12分别示出了根据本公开的主操作手的初始状态和一个运动状态的结构示意图。
附图标记说明:
10-操作端(医生控制台),100-主操作手,110-静平台,111-支撑主体,111a-避让槽,112-传动支架,113-电机支架,113a-凸台,113b-支架主体,113c-延伸部,120-动平台,122-结合凸起,122a-第三旋转轴,122b-第三轴承,128-缺口,131-支杆连接块,131a-第一轴承,132-第一旋转块,132a-第一连接块,132b-第二连接块,133-第二旋转块,133a-第二轴承,200-支链,210-连接支架,210a-支架连接块,211-电机导轨,212-支杆导轨,220-移动支杆,224-支杆滑块,224a-安装部,225-支杆固定件,230a,230b-转轮,232-传送带/链,300-手柄,310-手柄固定块,400-旋转驱动组件(旋转电机),500-直线驱动组件(直线电机,磁轴电机),510-动子(滑块),520-定子(磁轴),530-第一轴支架,540-第二轴支架,550-电机固定件,560-电机固定板,610-光栅主尺,620-光栅尺读数头,710-主动锥齿轮,720-从动锥齿轮,721-从动齿轮轴,810-旋转支架,820-编码器,830-编码器固定架。
具体实施方式
现在将参照附图更全面地描述示例实施方式。然而,不应被理解为本公开的实施形态限于在此阐述的实施方式。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
在描述根据本公开的实施例的支链组件、并联操作臂、主操作手和机器人时,将以手术机器人作为示例进行介绍,但本领域技术人员将意识到,根据本公开的主操作手不限于应用于手术机器人,而是可以是用于各种其他领域的遥操作机器人。图1示出了根据本公开的实施例的主操作手应用在手术机器人的操作端的结构示意图。
根据本公开的实施例的机器人可包括操作端10、执行端(未示出)和成像设备(未示出)。如图1中所示,操作端10可包括医生控制台,执行端可以是执行手术的机械臂系统,成像设备可包括用于显示病人病灶处的图像和其他相关信息的显示器。主操作手100设置在医生控制台10上,操作者(医生)可通过操作主操作手100来控制执行端的操作,位于执行端末端的器械的受力情况可通过力传感器反馈至主操作手100,以在操作端10与执行端之间的建立力学模型。
图2和图3分别示出了根据本公开的实施例的主操作手的主体结构和局部结构的示意图。下面参照图2和图3描述根据本公开的实施例的主操作手100的具体结构。
根据本公开的实施例的主操作手100可包括并联操作臂和手柄300。并联操作臂可包括静平台110、动平台120和连接在静平台110与动平台120之间的至少三个支链组件。至少三个支链组件中的至少一个支链组件可包括支链200和设置在支链200上的驱动组件500。驱动组件500的数量可与支链200的数量对应,并且分别设置在相应的支链200上,以分别用于驱动支链200的伸长或缩短。虽然图2中示出了主操作手100包括并联连接的三个支链组件且三个支链组件的结构相同的情形,然而,根据本公开的支链组件不限于三个,而是还可包括更多数量的支链组件。此外,支链组件的结构可彼此不同,例如,在连接到静平台110和动平台120的支链组件中,可仅一个支链组件或两个支链组件具有根据本公开的实施例所公开的结构。在下文中,将以主操作手100包括三个彼此相同且并联连接的三个支链组件为例进行介绍。
根据本公开的实施例,并联操作臂可采用3-UPS并联机构实现,即,每 个支链组件中的每条支链200可采用UPS支链实现,使动平台120可具备六个自由度,进而使主操作手100可以实现六自由度的运动和六自由度的力反馈。
参照图2和图3,根据本公开的每条支链200可以为UPS支链,例如,每条支链200可通过U副与静平台110连接并且可通过S副与动平台120连接,此外,在每条支链200上可设有移动P副,以使其能够伸长或缩短。其中,U副可通过第一铰接件实现,S副可通过第二铰接件实现,下文中将对第一铰接件和第二铰接件进行详细描述。
根据本公开的实施例的主操作手100还可包括驱动组件400。具体而言,驱动组件400可以是安装在静平台110上的旋转驱动组件并且其数量与支链200的数量对应,以分别用于驱动三条支链200转动。在操作者通过手柄300和并联操作臂输入手势和姿态信息后,传感器感测执行端的受力情况,驱动组件400和500可根据传感器感测的信息提供相应的力和/或力矩而将该受力情况通过手柄300反馈至操作者,使操作者的感觉像是手正直接使用器械接触患者的手术部位进行手术。
如图3中所示,根据本公开的实施例的每条支链200可包括连接支架210和移动支杆220,连接支架210和移动支杆220均形成为长条形状并且沿同一直线设置。移动支杆220可沿其长度方向相对于连接支架210移动,以使支链200的整体伸长或缩短。驱动组件500可设置在连接支架210上,并且包括与连接支架210固定连接的定子520和与移动支杆220连接的动子510。
此外,连接支架210可包括设置在连接支架210上的铰接支点O,以在铰接支点O处通过第一铰接件铰接到静平台110,从而使得连接支架210可作为支链200的支撑部分通过静平台110支撑连接支架210,驱动组件500的动子510与移动支杆220能够在连接支架210上相对于铰接支点O(即,相对于静平台110)沿相反的方向移动,从而能够动态地平衡每个支链组件的至少一部分重力。
根据本公开的实施例,移动支杆220可通过第二铰接件铰接到动平台120,根据动子510的移动而沿相反的方向移动,进而带动与动平台120连接的手柄300移动,以可将执行组件受到的力或力矩传递给动平台120。或者,移动支杆220可根据从动平台120接收的操作者的操控动作而移动,进而带动动子510沿相反的方向移动,以将操控指令传递到执行端。
根据本公开的实施例,设置在每条支链200上的驱动组件500可采用直线驱动组件,例如,可采用直线电机,直线电机可包括能够相对移动的动子和定子,通过将直线电机500的定子设置为与静平台110固定连接并且直线电机500的动子设置为能够沿着支链200的延伸方向移动,从而直线电机500的动子可作为配重块平衡主操作手100的自身重力。
根据本公开的实施例,直线电机可以是磁轴电机,在下面的描述中,将以磁轴电机作为直线驱动组件的示例对本公开实施例进行详细描述。磁轴电机500可包括作为动子的滑块510和作为定子的磁轴520。
根据本公开的实施例,响应于相应支链200的伸长或缩短,磁轴电机500的滑块510可相对于静平台110沿连接支架210向远离动平台120的方向移动,这样,当滑块510运动到相对于手柄300位于铰接支点(支链200与静平台110铰接的位置处)两侧时,滑块510可作为配重块来平衡主操作手100的自身重力。
此外,如图3中所示,连接支架210和移动支杆220可均设置成镂空的形式,以减轻主操作手100的整体重量。
根据本公开的实施例,如图2和图3所示,连接支架210可包括支架杆体以及与支架杆体固定连接的支架连接块210a,支架连接块210a可从连接支架210的一侧朝向静平台110延伸,用于将连接支架210与静平台110连接的铰接支点O可形成在支架连接块210a上。可选地,支架连接块210a可具有三角形的板形状,铰接支点O可设置在其一个顶点处,从而可避免支架连接块210a与其他部件发生干涉。然而,支架连接块210a的形状不限于此,也可根据结构的空间排布设置成其他形状。此外,支架连接块210a也可设置成镂空的形式,以进一步减轻整体结构的重量。
根据本公开的实施例,铰接支点O可设置在连接支架210的连接到动平台120的第一端部以及第一端部和第二端部之间的任意一点处,其中,移动支杆220能够从连接支架210的第一端部伸出或缩回,第二端部是连接支架210的与第一端部相对的端部。以图3中所示出的方向为例,当在滑块510在从左向右移动的过程中,滑块510的重力相对于铰接支点O的力矩随着靠近铰接支点O逐渐减小,并在运动到铰接支点O处时为0,当滑块510运动到铰接支点O的右侧,该力矩随着远离铰接支点O而逐渐变大,以平衡铰接支点O左侧的结构的重力相对于铰接支点O的力矩。
由此可知,当铰接支点O设置在连接支架210的第二端部时,滑块510最多能够运动到铰接支点O处,无法运动到其右侧来平衡左侧的重力。因此,铰接支点O可设置在连接支架210的除第二端部之外的任意点处。这样,在初始状态下,滑块510可设置在连接支架210的靠近动平台120的第一端部处,这样,当滑块510沿着连接支架210的长度方向移动时,能够跨越铰接支点O运动到连接支架210的远离动平台120的第二端部,以平衡位于铰接支点O左侧的结构的重力。
结合以上描述可知,滑块510作为配重块通过杠杆原理平衡主操作手100的一部分重力,因此,铰接支点O的最优选的设置位置还可取决于支链200的长度、手柄300的运动范围、直线电机的动子(滑块510)的重量等因素。
根据本公开的实施例,将连接支架210的连接到动平台120的一端定义为“位置为0的点”,将连接支架210的另一端定义为“位置为1的点”,铰接支点O的位置越靠近第二端部,自重力平衡效果越差,因此,铰接支点O可优选地设置在距第二端部预定距离的位置处,此外,如果铰接支点O设置在第一端部或越靠近第一端部,则静平台110与动平台120的设置可能发生干涉。此外,考虑到支链200的长度、手柄300的运动范围、直线电机的动子(滑块510)的重量等,铰接支点O的位置可优选地位于连接支架210的位置为1/6的点至位置为2/3的点之间的范围内。更优选地,铰接支点O可位于连接支架210的位置为1/2的点处或位于连接支架210的位置为3/4的点处。这样,滑块510在初始状态下可位于连接支架210的位置为0的点,并且可沿着支链200运动到位置为1的点处,以能够最大程度地实现自重力平衡效果。
如图2中所示,磁轴电机500和移动支杆220设置在连接支架210的彼此相对的两个表面上,并通过传动机构将磁轴电机500的滑块510连接到移动支杆220,使得滑块510的移动与移动支杆220的移动彼此关联。
根据本公开的实施例,磁轴电机500可包括第一轴支架530和第二轴支架540,第一轴支架530和第二轴支架540安装在连接支架210的第一表面上,并位于连接支架210在长度方向上的两个端部,磁轴520的两端分别安装在第一轴支架530和第二轴支架540上,由此沿着磁轴520滑动的滑块510被安装在连接支架210的第一表面上。其中,第一表面可以是连接支架210的背对静平台110的表面,通过将磁轴电机500设置在第一表面上,能够防 止磁轴电机500的滑块510在运动时与静平台110或主操作手100的其他结构发生干涉。
此外,连接支架210的第一表面上可设置有电机导轨211,电机导轨211可位于第一轴支架530和第二轴支架540之间,滑块510的下方可固定有沿着电机导轨211滑动的引导块(未示出),引导块既能够将滑块510支撑在连接支架210上,又能够引导滑块510在第一轴支架530和第二轴支架540之间移动。然而,本公开的实施例不限于此,由于磁轴520本身可起到引导滑块510的移动的作用,因此也可省略设置在连接支架210的第一表面上的电机导轨211。
移动支杆220设置在连接支架210的与第一表面背对的第二表面(即,面对静平台110的表面)上,并且连接支架210的第二表面上可设置有支杆导轨212。根据本公开的实施例,移动支杆220的一个端部可铰接到动平台120,另一端部可设置有支杆滑块224,支杆滑块224与滑块510通过传动机构(下文中将描述)联动,能够在滑块510的带动下沿着支杆导轨212移动,进而带动移动支杆220移动。
支杆导轨212和支杆滑块224的结构不受具体限制,只要能够实现支杆滑块224沿着支杆导轨212移动而不脱离支杆导轨212的结构都是可行的。如图3中所示,支杆导轨212可以是附接到连接支架210的长条形板,并且其两侧可形成有导向槽(未示出),支杆滑块224可紧固到移动支杆220的安装部224a并且可设置有与导向槽相对应的两个滑动突起(未示出)。根据本公开的另一实施例,也可在支杆导轨212上设置滑动突起,在支杆滑块224上设置与之对应的导向槽。根据本公开的又一实施例,支杆导轨212可以是形成在连接支架210的第二表面中的导向槽,支杆滑块224具有与之匹配的滑动突起。然而,本公开不限于此,支杆导轨212和支杆滑块224也可通过其他结构或形式实现。
此外,上文中所提及的支架连接块210a可设置在连接支架210的第二表面的一侧,以避免与支杆导轨212和支杆滑块224干涉。
根据本公开的实施例,如上所述,每条支链200还包括传动机构,传动机构用于将磁轴电机500输出的力传递到移动支杆220。根据本公开的实施例的传动机构可具有沿相反方向运动的第一运动部和第二运动部,第一运动部与所述第二运动部联动,滑块510与传动机构的第一运动部相连,移动支 杆220与第二运动部相连,以使滑块510和移动支杆220在传动机构的作用下沿相反的方向移动。
根据本公开的优选实施例,传动机构可为链轮组结构或带轮组结构,其可包括两个转轮230a和230b以及绕转轮230a和230b设置的传送带/链232。转轮230a和230b分别固定到连接支架210的一个侧表面的两个端部,并且它们的转动轴的轴线与连接支架210的侧表面垂直地设置。
根据本公开的实施例,滑块510和移动支杆220可分别固定地结合到传送带/链232的两侧的第一运动部和第二运动部。这里,传送带/链232的“两侧”是以连接两个转轮230a和230b的旋转轴的连线为基准而言的。具体地,通过两个转轮230a和230b支撑的传送带/链232被转轮230a和230b分为首尾相连并且移动方向相反的第一段和第二段,第一段位于连接支架210的第一表面所在的一侧,第二段位于连接支架210的第二表面所在的一侧。如图所示,第一运动部可指第一段的左端(即,靠近动平台120的端部)的部分,第二运动部可指第二段的右端(即,远离动平台120的端部)的部分,滑块510与第一运动部连接,移动支杆220的支杆滑块224与第二运动部连接。这样,在主操作手100的初始状态下,滑块510可以位于支链200的靠近动平台120的端部,支杆滑块224位于支链200的远离动平台120的端部。因此,在传送带/链232运动时,滑块510能够与移动支杆220沿相反的方向移动。
以图3中所示的方向为例,当滑块510通过电机固定件550带动传送带/链232的上侧向右移动时,传送带/链232将带动支杆固定件225沿着支杆导轨212向左移动,使得滑块510能够与带动移动支杆220同步移动。因此,根据本公开的实施例的主操作手100在作为控制端或为操作者输出反馈力的情况下使得滑块510移动时,磁轴电机500的滑块510可充当配重块平衡支链200两端的部分重力,操作者在操作手柄300时,存在部分自重力动态平衡的效果,减少电机补偿重力需要输出的扭矩。
此外,根据本公开的实施例,磁轴电机500的滑块510上可设置有与其固定结合的电机固定件550,移动支杆220上可设置有与其固定结合的支杆固定件225,电机固定件550和支杆固定件225分别将滑块510和移动支杆220固定连接到传送带/链232的两侧,以实现滑块510和移动支杆220彼此关联地沿相反方向的移动。根据本公开的实施例,电机固定件550的结构不 受限制,只要其能够将滑块510固定到传送带/链232即可。支杆固定件225的结构也不受限制,只要其能够将移动支杆220固定到传送带/链232即可。
根据本公开的实施例,每条支链200上还可设置有位移传感器。为了精准地测量磁轴电机500的滑块510的位移信息,根据本公开的位移传感器可使用光栅尺传感器。
如图3中所示,光栅尺传感器可包括光栅主尺610和光栅尺读数头620,光栅主尺610可安装在连接支架210的一侧,光栅尺读数头620固定地结合到磁轴电机500的滑块510上。当滑块510沿着磁轴520移动时,光栅尺读数头620与磁轴电机500的滑块510同步运动,从而能够检测到磁轴电机500的位移信息。
根据本公开的实施例,为了将光栅尺读数头620固定地结合到滑块510,可设置电机固定板560,可通过将电机固定板560紧固到滑块510和光栅尺读数头620两者而使它们彼此固定连接。因此,根据本公开的电机固定板560的结构不受具体限制,只要能够实现上述功能即可。
图4示出了根据本公开的实施例的静平台110及相关结构的立体示意图。图5示出了根据本公开的实施例的静平台的立体示意图。图6示出了支链的运动范围的示意图。图7示出了根据本公开的实施例的三个旋转驱动组件(例如,旋转电机)400相对于三个铰接支点O的位置关系的布置示意图。
如上所述,每条支链200通过支架连接块210a铰接到静平台110,以铰接支点O为顶点相对于静平台110转动,并且旋转电机400用于驱动支链200的转动。如图6所示,每条支链200的运动范围为:以铰接支点O为顶点,以支链200为母线围成的两个顶头圆锥体。
在这种情况下,如果旋转电机400靠近支链200设置,当操作者操作主操作手100时,则旋转电机400与支链200之间可能发生干涉。如果旋转电机400选用体积较小的电机,则有可能达不到输出转矩的要求。
因此,根据本公开的实施例,旋转电机400沿圆周方向设置在相邻的两个铰接支点O之间,使支链200的位置与旋转电机400的位置错开,能够在满足转矩要求的同时不与支链发生干涉。优选地,三个旋转电机400在静平台110上以等间隔布置,即,三个旋转电机400呈120°的角度布置。
参照图7,S1、S2、S3分别表示三条支链200与静平台110铰接的第一铰接件,M1、M2、M3分别表示驱动三条支链200的三个旋转电机400。根据支 链200的运动范围可知,三个铰接支点所围成的圆周的区域是支链200无法运动到的区域,当在该区域内设置旋转电机400时,不容易与支链200发生干涉,可以增大支链200的活动范围。因此,根据本公开的实施例的旋转电机400沿圆周方向与三个铰接支点O共面地设置在相邻的两个铰接支点O之间。
需要注意的是,虽然图7中示出了三个第一铰接件S1、S2、S3所围成的圆与三个旋转电机M1、M2、M3所围成的圆共面的情形,但由于旋转电机400的在该圆的轴向方向上的尺寸大于铰接支点O在轴向方向的尺寸,因此上文中所提及的“与三个铰接支点O共面”并非是指旋转电机400与三个铰接支点O严格共面,而是只要大致共面不与支链200发生干涉即可。
另外,“沿圆周方向设置在相邻的两个铰接支点O之间”并不意味着旋转电机400的设置位置与铰接支点O共圆设置,而是指在三个铰接支点O所围成的圆中,旋转电机400位于两个铰接支点O与圆的中心点的连线所围成的扇形区域之内,并且可优选地设置在距离两个铰接支点O大致相等的位置处,以最大程度地避免与支链200发生干涉。
然而,根据本公开的实施例,由于旋转电机400设置在第一铰接件的在圆周方向上的一侧,其输出的扭矩无法直接传递到第一铰接件,因此,旋转电机400与铰接支点O的距离还取决于旋转电机400与第一铰接件之间设置的传动机构。
如图7所示,根据本公开的实施例,旋转电机400与相应的第一铰接件可通过锥齿轮组连接并传动。参照图4和图7,锥齿轮组可包括彼此啮合的主动锥齿轮710和从动锥齿轮720,旋转电机400的输出轴与主动锥齿轮710的主动齿轮轴固定连接,第一铰接件的转轴(如后文中所提及的能够使第一铰接件绕第二轴线L2(参见图4)旋转的部分)与从动锥齿轮720的从动齿轮轴721固定连接,从而旋转电机400输出的转矩可被传递到第一铰接件。
因此,根据本公开的实施例,可通过锥齿轮组的传动比以及主动锥齿轮710和从动锥齿轮720的尺寸来确定每个旋转电机相对于对应的第一铰接件的设置位置。如图7中所示,根据本公开的实施例的传动比大于1,主动锥齿轮710的尺寸小于从动锥齿轮720的尺寸,因此相对于彼此相邻的两个第一铰接件,旋转电机400可设置为更加靠近其所驱动的第一铰接件。但本公开不限于此,也可根据需求,选择其他传动比和其他尺寸的主动锥齿轮710 和从动锥齿轮720,由此调整旋转电机400的位置。此外,根据本实用新型的实施例,通过使用传动比大于1的锥齿轮组,能够增大扭矩,提高旋转电机400的输出功率或扭矩。
返回参照图4,根据本公开的第一铰接件可包括旋转支架810。旋转支架810的第一端可设置有朝向连接支架210的支架连接块210a延伸并结合到支架连接块210a的孔(即,铰接支点O的位置处的孔)的旋转支架转轴(未示出),旋转支架转轴可通过轴承(未示出)安装在支架连接块210a的孔中,以使连接支架210能够绕旋转支架转轴(即,第一轴线L1)相对于旋转支架810转动。旋转支架810的第二端可以可转动地结合到静平台110,以使旋转支架810能够绕第二轴线L2相对于静平台110转动。这里,第一轴线L1沿垂直于支链200的侧表面(与连接支架210的第一表面和第二表面垂直的表面)的方向设置,第二轴线L2垂直于第一轴线L1且垂直于运动支架的长度方向设置。
根据本公开的实施例,静平台110可包括支撑主体111、传动支架112和电机支架113。静平台110的主要支撑作用可由支撑主体111实现,传动支架112可用于支撑和安装从动锥齿轮720和旋转支架810,电机支架113可用于支撑和安装旋转电机400和主动锥齿轮710。
传动支架112可以以120°的间隔围绕支撑主体111的侧表面布置,并且传动支架112可大体具有L形形状,其一端固定地结合到支撑主体111的一个表面,以与支撑主体111的侧表面形成大致U形的容纳空间,可将从动锥齿轮720容纳在该容纳空间中。如图5中所示,传动支架112上形成有容纳孔112a,用于安装从动锥齿轮720的从动齿轮轴721。
电机支架113可包括从支撑主体111向外延伸的凸台113a以及安装在凸台113a上的支架主体113b,支架主体113b可呈板状,旋转电机400可通过紧固件(未示出)结合到支架主体113b。支架主体113b上还可设置有第一安装孔113d,以用于安装并支撑旋转电机400的输出轴。此外,支架主体113b与支撑主体111的侧表面间隔开,从而与之形成容纳空间,主动锥齿轮710可设置在该容纳空间中。
然而,根据本公开的传动支架112和电机支架113的结构不限于此,例如,如图4和图5中所示,为了提高支架主体113b的强度且便于电机支架113的安装,电机支架113还可包括从支架主体113b的一端沿平行于凸台113a 的方向延伸的延伸部113c。
根据本公开的实施例,支撑主体111可具有六边形的截面形状,并且其截面面积可在朝向动平台120的方向上渐缩,以与初始状态下的支链200的延伸方向平行,避免与支链200发生干涉。即,支撑主体111可包括六个侧表面,且每个侧表面可呈梯形。三个旋转支架810和三个旋转电机400可分别设置在该六个侧表面上。
结合图4和图5,从动锥齿轮720可位于传动支架112与支撑主体111的六个侧表面中的一个侧表面所形成的容纳空间中,并且从动锥齿轮720的从动齿轮轴721的两端可分别通过轴承(未示出)安装在支撑主体111和传动支架112上,以通过与主动锥齿轮710的啮合而旋转。
旋转支架810的第二端固定地结合到从动锥齿轮720,因而旋转支架810的第二端也被传动支架112可旋转地支撑,因此,旋转支架810可接收来自从动锥齿轮720的转矩而绕第二轴线L2转动。
根据本公开的实施例,主动锥齿轮710的主动齿轮轴(未示出)与从动锥齿轮720的从动齿轮轴721彼此垂直,而主动锥齿轮710所面对的支撑主体111的侧表面与从动锥齿轮720所面对的支撑主体111的侧表面不是彼此垂直的,因此,为了在使其与从动锥齿轮720啮合的情况下将主动锥齿轮710安装在静平台110上,可在支撑主体111的面对支架主体113b的表面上形成避让槽111a,以增大支撑主体111与电机支架113的支架主体113b之间的容纳空间,从而实现主动锥齿轮710的安装。
根据本公开的实施例,主动锥齿轮710的动齿轮轴的两端可分别通过轴承(未示出)安装在支撑主体111的避让槽111a和电机支架的支架主体113b上,以根据旋转电机400输出的转矩而旋转,进而带动从动锥齿轮720旋转。
因此,通过上述布置,旋转电机400输出的转矩可依次被传递到主动锥齿轮710、从动锥齿轮720、旋转支架810和支链200。
另外,如图4和图5所示,为了减轻主操作手100的重量,静平台110的支撑主体111的中心可设置成镂空形式,例如,如图所示,支撑主体111的中心可形成减重孔/槽111b。
再次参照图4,根据本公开的实施例的主操作手100还包括用于感测支链200相对于第一轴线L1的摆动角度的检测装置,例如,编码器820。
编码器820可通过编码器固定架830固定地安装在旋转支架810一侧, 并且编码器820可与设置在旋转支架810的第一端处的轴承同轴地设置,以记录支链200的摆动角度信息。当操作者通过移动手柄300带动支链200移动时,编码器820可采集支链的摆动角度。
图8示出了根据本公开的实施例的手柄300与动平台120之间的结合结构,图9示出了第二铰接件的结构示意图,图10示出了动平台的结构示意图。
参照图8、图9和图10,根据本公开的动平台120整体可具有圆环形状,三个第二铰接件可以以彼此间隔120°的角度连接到动平台120。根据本公开的实施例,每个第二铰接件可包括支杆连接块131、第一旋转块132和第二旋转块133,以使每条支链相对于动平台120能够实现彼此垂直的三个方向上的转动。
支杆连接块131的一端(图8中所示的支杆连接块131的下端)可通过紧固件(未示出)被固定地结合到移动支杆220,另一端(图8中所示的支杆连接块131的上端)可设置有与移动支杆220的长度方向平行的第一旋转轴(未示出)。
第一旋转块132可包括第一连接块132a和第二连接块132b,第一连接块132a设置有容纳支杆连接块131的第一旋转轴的孔,第一旋转轴可通过第一轴承131a安装在第一连接块132a的孔中,以使第一旋转块132能够绕第一旋转轴相对于支杆连接块131旋转。第二连接块132b可从第一连接块132a沿与第一连接块132a大致垂直的方向延伸并且可设置有用于容纳第二旋转块133的孔。
第二旋转块133的一端(图8中所示的第二旋转块133的下端)可设置有与第一旋转轴垂直的第二旋转轴,第二旋转轴可通过第二轴承133a安装在形成于第二连接块132b的孔中,以使第二旋转块133可绕第二旋转轴旋转。第二旋转块133的另一端(图8中所示的第二旋转块133的上端)可设置有容纳孔,以用于容纳动平台120上的第三旋转轴122a。
结合图8至图10,动平台120可包括从动平台120的圆环形主体向外突出的结合凸起122,结合凸起122可包括与第一旋转轴和第二旋转轴均垂直的第三旋转轴122a。第三旋转轴122a可沿动平台120的切线方向延伸并且可通过第三轴承122b安装在第二旋转块133的容纳孔中,以使动平台120可绕第三旋转轴122a旋转。
根据上面描述的第二铰接件的结构,动平台120上的每个第三旋转轴 122a可实现三个方向上的转动,例如,可实现分别绕图8中所示的旋转轴线a1、a2和a3的旋转。然而,第二铰接件的结构不限于此,能够实现S副的任何结构都是可行的。
此外,根据本公开的实施例,如图8和图9中所示,圆环形的动平台120可形成有缺口128,缺口128可形成在相邻的两个结合凸起122之间,手柄300可通过手柄固定块310紧固到与缺口128相邻的位置处,这样,在操作者在持握手柄300时,可在该缺口处随意活动手指,使得动平台120的设计满足人体工学要求。
图11和图12分别示出了根据本公开的主操作手的初始状态和一个工作状态的示意图。
根据本公开的主操作手100的初始状态如图11所示,当操作者操作手柄300,使手柄300带动动平台120移动的同时转动时,动平台120可位于如图11所示的位置处。下面将参照图11和图12中的方向和方位对根据本公开的主操作手100的操作及相关运动进行描述。
结合图11和图12,在上述操作中,支链200发生了沿其长度方向的移动(移动支杆220相对于连接支架210发生了移动),还发生了绕旋转电机400的输出轴的转动(严格地说,绕从动锥齿轮720的从动齿轮轴721的转动)以及相对于铰接支点O的摆动。动平台120通过第二铰接件带动移动支杆220向左移动,移动支杆220带动传送带/链232移动,传送带/链232带动磁轴电机500的滑块510向右移动,滑块510同时带动光栅尺读数头620在光栅主尺610上读取滑块510的位移量,即,移动支杆220的移动量。支链200通过锥齿轮组带动旋转电机400的输出轴发生转动,旋转电机400的转角即为支链200的转动量。支架连接块210a绕旋转支架转轴转动,编码器820记录旋转支架转轴的转角,即,支链200的摆动量。通过记录移动支杆220的移动量、支链200的转动量和摆动量,可获得动平台120在空间中的相应位置信息,以实现主操作手100的动作在从动端上的复现。
从动端的器械进入人体或对人体组织实施手术操作的过程中会遇到阻力,控制中心将从动端受到的环境力/力矩反馈给操作者,具体方式为:控制中心控制旋转电机400输出相应的转矩,控制中心控制磁轴电机500,使滑块510在磁轴520上滑动至对应的位置,三条支链200分别发生相应的伸缩、转动和摆动,以共同带动动平台120移动,操作者能根据感受的阻力调节手柄300 的移动方向与速度,从而使手术产生更真实的力反馈,有效降低手术风险,提高手术成功率。
在上述过程中,磁轴电机500的滑块510从静平台110的一侧运动到另一侧,从而能够利用杠杆原理平衡至少一部分重力。
根据本公开实施例,通过采用具有动子的直线驱动组件作为驱动支链组件伸长或缩短的驱动结构,在动子相对于铰接支点运动时,由动子的重力相对于铰接支点的力矩动态地变化,从而能够动态地平衡支链组件的至少一部分重力。本公开实施例的主操作手利用自身结构动态平衡重力,无需添加额外的机构,降低机构复杂度和空间尺寸,避免了各支链之间干涉的可能性。
此外,在使用根据本公开的实施例的自重力动态平衡结构的基础上,还可结合主动补偿来进一步平衡主操作手100的重力。这里,“主动补偿”指的是通过重力平衡算法控制旋转电机400/磁轴电机500输出反向力/力矩平衡主操作手100的自身的重力,使主操作手100有“悬浮”的效果。
结合使用主动补偿的方法时,支链200与静平台110的铰接支点O可设置在支链200的两个端点之间的位置处,以使动平台120与静平台110之间的距离缩短,进而通过这种结构的设置平衡一部分重力。基于此结构,旋转电机400的作用力作用于铰接支点O,减小了旋转电机400的输出力臂,从而减小了输出力矩;因此,降低了旋转电机400在自身重力补偿上的损耗,有利于旋转电机400实现力反馈。
此外,旋转电机400可设置在相邻的铰接支点O之间,由于能够最大限度的避免与支链200干涉,因此,即使选用功率较高(体积较大)的电机来进一步提供主动补偿的扭矩和功率,也不会限制支链200的运动范围。
根据本公开的实施例的主操作手,通过采用灵活性高、力反馈容易、支链之间不易干涉,承载能力强、占用空间小的3-UPS并联机构,能够实现六自由度的运动与六自由度的力反馈,满足了主操作手的工作需求,并且能够产生更真实的力反馈。
根据本公开的实施例,通过在3-UPS并联机构结构上采用直线电机,能够使主操作手具有自重力动态平衡的效果,电机无需输出较大扭矩即可进行重力补偿。
根据本公开的实施例,与手柄固定连接的动平台采用具有缺口的圆环形结构,使操作者在操作手柄时能够随意活动手指,提高了用户体验。
在本公开中,术语“第一”、“第二”等仅用于描述的目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“结合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
本公开所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在上面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的各方面。

Claims (20)

  1. 一种支链组件,其特征在于,所述支链组件包括支链(200)和设置在所述支链(200)上的驱动组件(500),
    其中,所述支链包括连接支架(210)和能够相对于所述连接支架(210)移动的移动支杆(220),
    所述连接支架(210)上设置有所述驱动组件(500),所述驱动组件(500)包括与连接支架(210)固定连接的定子(520)以及与所述移动支杆(220)连接的动子(510),
    其中,所述支链(200)包括设置在所述连接支架(210)上的铰接支点(O),所述动子(510)与所述移动支杆(220)能够在所述连接支架(210)上相对于所述铰接支点(O)沿相反的方向移动。
  2. 根据权利要求1所述的支链组件,其特征在于,所述驱动组件(500)的动子(510)通过传动机构连接到所述移动支杆(220),所述传动机构具有沿相反方向运动的第一运动部和第二运动部,所述第一运动部与所述第二运动部联动,所述动子(510)与所述第一运动部相连,所述移动支杆(220)与所述第二运动部相连。
  3. 根据权利要求1所述的支链组件,其特征在于,所述驱动组件(500)的所述动子(510)通过传动机构连接到所述移动支杆(220),所述传动机构包括:
    两个转轮(230a,230b),固定地安装在所述连接支架(210)的两端;以及
    传送带/链(232),缠绕在所述两个转轮(230a,230b)上,
    其中,所述动子(510)和所述移动支杆(220)分别固定地连接到所述传送带/链(232)的沿相反的方向移动的两侧。
  4. 根据权利要求1所述的支链组件,其特征在于,所述支链(200)上设置有感测所述驱动组件(500)的所述动子(510)的移动距离的位移传感器。
  5. 根据权利要求4所述的支链组件,其特征在于,所述位移传感器包括光栅主尺(610)和光栅尺读数头(620),
    其中,所述光栅主尺(610)固定地安装在所述连接支架(210)上,并 且与所述驱动组件(500)的定子(520)设置在相对应的位置处,
    所述光栅尺读数头(620)固定地安装到所述驱动组件(500)的动子(510)。
  6. 根据权利要求1所述的支链组件,其特征在于,所述驱动组件(500)为磁轴电机,所述磁轴电机包括作为动子(510)的滑块和作为定子(520)的磁轴,所述磁轴沿着所述连接支架(210)的长度方向固定安装在所述连接支架(210)上。
  7. 根据权利要求1所述的支链组件,其特征在于,
    所述连接支架(210)在长度方向上具有第一端部和第二端部,所述移动支杆(220)能够从所述第一端部伸出或缩回,
    所述铰接支点(O)设置在所述连接支架(210)的第一端部和第二端部之间,或者设置在所述第一端部上。
  8. 根据权利要求7所述的支链组件,其特征在于,以所述连接支架(210)的第一端部为起点,所述铰接支点(O)的位置位于所述连接支架(210)的长度位置为1/6的点至位置为2/3的点之间的范围内。
  9. 一种并联操作臂,其特征在于,所述并联操作臂包括静平台(110)、动平台(120)以及分别连接到所述动平台(120)和所述静平台(110)的至少三个支链组件,
    其中,所述至少三个支链组件中的至少一个支链组件为如权利要求1-8中任意一项所述的支链组件,
    其中,所述动平台(120)连接到所述移动支杆(220)上,所述至少一个支链组件的至少一条支链(200)通过设置在所述连接支架(210)上的所述铰接支点(O)连接到所述静平台(110)。
  10. 根据权利要求9所述的并联操作臂,其特征在于,所述连接支架(210)包括彼此背对的第一表面和第二表面,所述驱动组件(500)安装在所述连接支架(210)的第一表面上,所述移动支杆(220)安装在所述连接支架(210)的第二表面上,并且所述铰接支点(O)设置在所述第二表面上。
  11. 根据权利要求10所述的并联操作臂,其特征在于,所述连接支架(210)、所述移动支杆(220)、所述静平台(110)均设置成镂空的形式。
  12. 根据权利要求9所述的并联操作臂,其特征在于,所述并联操作臂还包括设置在所述静平台(110)上的用于驱动相应的支链(200)旋转的至少三个旋转驱动组件(400)。
  13. 根据权利要求12所述的并联操作臂,其特征在于,所述旋转驱动组件(400)沿圆周方向设置在相邻的两个铰接支点(O)之间,所述圆周方向是至少三条支链(200)与所述静平台(110)的铰接支点(O)所围成的圆的圆周方向。
  14. 根据权利要求13所述的并联操作臂,其特征在于,所述旋转驱动组件(400)与支链(200)之间设有传动组件,
    其中,所述旋转驱动组件(400)能够输出围绕第一旋转轴的第一旋转驱动力,所述传动组件能够将所述第一旋转驱动力转换为绕第二旋转轴的第二旋转驱动力,所述支链(200)从所述传动组件上接收所述第二旋转驱动力,所述第一旋转轴和所述第二旋转轴交叉设置。
  15. 根据权利要求14所述的并联操作臂,其特征在于,所述并联操作臂包括三条支链(200),所述至少三个旋转驱动组件(400)包括三个旋转电机,
    其中,所述三条支链(200)以120°的间隔通过传动支架(112)围绕所静平台(110)的述支撑主体(111)安装,所述三个旋转电机以120°的间隔通过电机支架(113)分别安装在相邻的两条支链(200)之间。
  16. 一种主操作手,其特征在于,所述主操作手(100)包括:
    如权利要求9-15中任意一项所述的并联操作臂;以及
    手柄(300),所述手柄安装在所述动平台(120)上。
  17. 根据权利要求16所述的主操作手,其特征在于,所述动平台(120)设置成圆环形状,并且在所述动平台(120)的与所述至少三个支链组件的支链(200)结合的至少三个铰接点中的相邻的两个铰接点之间设置有缺口(280),
    所述手柄(300)安装到所述动平台(120)的与所述缺口(280)相邻的位置处。
  18. 一种操控台,其特征在于,所述操控台包括如权利要求16或17所述的主操作手。
  19. 一种机器人,其特征在于,所述机器人包括根据权利要求18所述的操控台。
  20. 根据权利要求19所述的机器人,其特征在于,所述机器人为手术机器人。
PCT/CN2023/079285 2022-03-07 2023-03-02 支链组件、并联操作臂、主操作手、操控台以及机器人 WO2023169299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210216716.XA CN114734425A (zh) 2022-03-07 2022-03-07 支链组件、并联操作臂、主操作手、操控台以及机器人
CN202210216716.X 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023169299A1 true WO2023169299A1 (zh) 2023-09-14

Family

ID=82274817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079285 WO2023169299A1 (zh) 2022-03-07 2023-03-02 支链组件、并联操作臂、主操作手、操控台以及机器人

Country Status (2)

Country Link
CN (1) CN114734425A (zh)
WO (1) WO2023169299A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169377A1 (zh) * 2022-03-07 2023-09-14 诺创智能医疗科技(杭州)有限公司 多自由度主手、机器人、以及微创手术机器人系统
CN114734425A (zh) * 2022-03-07 2022-07-12 诺创智能医疗科技(杭州)有限公司 支链组件、并联操作臂、主操作手、操控台以及机器人
WO2023169306A1 (zh) * 2022-03-07 2023-09-14 诺创智能医疗科技(杭州)有限公司 主操作手的驱动力获取方法、装置及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122602A1 (en) * 2008-11-17 2010-05-20 Marcroft Sacha L Parallel kinematic positioning system
CN102699904A (zh) * 2012-07-03 2012-10-03 河北工业大学 一种六自由度三支链并联机器人机构
CN103144100A (zh) * 2013-03-21 2013-06-12 万新光学集团有限公司 三自由度移动并联机器人机构
CN104526684A (zh) * 2014-12-30 2015-04-22 天津大学 一种可实现重力自平衡的高刚度混联机器人
CN106493719A (zh) * 2015-09-08 2017-03-15 微创(上海)医疗机器人有限公司 机械臂及机器人
CN107263451A (zh) * 2017-07-31 2017-10-20 福州大学 2r1t三自由度过约束并联机构及其工作方法
CN108858134A (zh) * 2018-04-19 2018-11-23 河海大学常州校区 一种三自由度并联机器人控制方法
CN110711109A (zh) * 2019-09-24 2020-01-21 燕山大学 适用于踝关节康复的变胞并联机构
EP3858559A1 (de) * 2020-01-31 2021-08-04 MBDA Deutschland GmbH Richtplattform, sensorsystem, luftfahrzeug und verfahren zum betreiben einer richtplattform
CN114734425A (zh) * 2022-03-07 2022-07-12 诺创智能医疗科技(杭州)有限公司 支链组件、并联操作臂、主操作手、操控台以及机器人

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122602A1 (en) * 2008-11-17 2010-05-20 Marcroft Sacha L Parallel kinematic positioning system
CN102699904A (zh) * 2012-07-03 2012-10-03 河北工业大学 一种六自由度三支链并联机器人机构
CN103144100A (zh) * 2013-03-21 2013-06-12 万新光学集团有限公司 三自由度移动并联机器人机构
CN104526684A (zh) * 2014-12-30 2015-04-22 天津大学 一种可实现重力自平衡的高刚度混联机器人
CN106493719A (zh) * 2015-09-08 2017-03-15 微创(上海)医疗机器人有限公司 机械臂及机器人
CN107263451A (zh) * 2017-07-31 2017-10-20 福州大学 2r1t三自由度过约束并联机构及其工作方法
CN108858134A (zh) * 2018-04-19 2018-11-23 河海大学常州校区 一种三自由度并联机器人控制方法
CN110711109A (zh) * 2019-09-24 2020-01-21 燕山大学 适用于踝关节康复的变胞并联机构
EP3858559A1 (de) * 2020-01-31 2021-08-04 MBDA Deutschland GmbH Richtplattform, sensorsystem, luftfahrzeug und verfahren zum betreiben einer richtplattform
CN114734425A (zh) * 2022-03-07 2022-07-12 诺创智能医疗科技(杭州)有限公司 支链组件、并联操作臂、主操作手、操控台以及机器人

Also Published As

Publication number Publication date
CN114734425A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023169299A1 (zh) 支链组件、并联操作臂、主操作手、操控台以及机器人
CN109476020B (zh) 用于机器人关节的齿轮组件
US8950286B2 (en) Robot or haptic interface structure with parallel arms
KR890000737B1 (ko) 직접구동방식 로보트
JP4659098B2 (ja) 3自由度を有する姿勢変更機構を備えたパラレルリンクロボット
JP5560495B2 (ja) 2つのピボット連結部を有する電動関節およびこの関節を実装したヒューマノイドロボット
US9314934B2 (en) Gravity-counterbalanced robot arm
EP2152477B1 (en) Robotic manipulator using rotary drives
CN102528794B (zh) 并联机器人及手腕模块
JPS59161294A (ja) 二軸手首モジユ−ル
JP2020069631A (ja) パラレルリンク装置、マスタ−スレーブシステム、並びに医療用マスタ−スレーブシステム
CN112894780A (zh) 一种基于三自由度串并混联机构的绳驱动腕部模块及其使用方法
JP5543691B2 (ja) 医療画像受容体を含む医療画像装置及び、医療x線画像受容体を位置決めするための実行可能な命令をもつコンピュータアクセス可能な媒体
CN116098713A (zh) 主手手腕、主操作设备及手术机器人
CN220260997U (zh) 支链组件、并联操作臂、主操作手、操控台以及机器人
CN220404117U (zh) 并联操作臂、主操作手、操控台以及机器人
US6593907B1 (en) Tendon-driven serial distal mechanism
JP5394358B2 (ja) 3自由度を有する姿勢変更機構を備えたパラレルリンクロボット
JPH07214482A (ja) 多関節アーム機構
CN219946231U (zh) 主操作手、操控台以及机器人
CN111360786B (zh) 一种七自由度串并混联的机械臂构型和机械臂
CN114569247A (zh) 一种连接手术机器人机械臂与末端执行器间的关节
CN116058976A (zh) 机械臂、主操作台、手术机器人
CN113618699A (zh) 遥操作机械手及其传动结构、遥操作设备
WO2024002081A1 (zh) 操控台及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765877

Country of ref document: EP

Kind code of ref document: A1