WO2023169011A1 - 一种通信方法、装置及设备 - Google Patents

一种通信方法、装置及设备 Download PDF

Info

Publication number
WO2023169011A1
WO2023169011A1 PCT/CN2022/136241 CN2022136241W WO2023169011A1 WO 2023169011 A1 WO2023169011 A1 WO 2023169011A1 CN 2022136241 W CN2022136241 W CN 2022136241W WO 2023169011 A1 WO2023169011 A1 WO 2023169011A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
time
terminal device
information
message
Prior art date
Application number
PCT/CN2022/136241
Other languages
English (en)
French (fr)
Inventor
丁辉
周凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169011A1 publication Critical patent/WO2023169011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method, device and equipment.
  • 5G mobile communication systems for example, the 5th generation (5G) mobile communication system
  • 5G mobile communication system has been applied in industrial field fields.
  • a large number of industrial equipment such as programmable logic controller (PLC), input/output (IO) and other equipment
  • PLC programmable logic controller
  • IO input/output
  • other equipment can access the network through the 5G mobile communication system.
  • IO devices can communicate with PLC through 5G mobile communication system.
  • the terminal device connected to the IO device after receiving the message from the IO device, can send uplink resources pre-scheduled for the terminal device through the access network (AN) device. the message.
  • the message can then be transmitted to the PLC via the access network equipment and core network equipment.
  • control business-related messages need to be transmitted between industrial devices.
  • Control services have higher requirements on real-time performance. For example, the transmission delay of packets is required to be ten milliseconds or lower.
  • This application provides a communication method, device and equipment for reducing delay.
  • embodiments of the present application provide a communication method.
  • the method includes: after acquiring the first information indicating the first time difference, the AN device may adjust the first uplink resource scheduled for the terminal device to the second uplink resource according to the first time difference, and send the first uplink resource to the terminal device.
  • Resource configuration information is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message; the first resource configuration information is used to indicate the second uplink resource.
  • terminal equipment can periodically send uplink messages through periodic uplink resources scheduled by the AN equipment.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the first time difference, thereby reducing the first time difference of subsequent uplink messages, thereby reducing the transmission delay of subsequent uplink messages.
  • the AN device may obtain the first information indicating the first time difference in the following manner: the AN device receives the first information from at least one of the terminal device, the control plane network element, or the application function AF.
  • This design provides multiple ways for the AN device to obtain the first information, so that the AN device can flexibly obtain the first information.
  • the first uplink resource is a resource whose cycle is based on the sending cycle of uplink messages; the AN device can advance the first uplink resource by N time units to obtain the second uplink resource; where N is positive Integer, N time units are determined based on the first time difference.
  • the N time units may be less than or equal to the first time difference.
  • the AN device can adjust the uplink resources allocated to the terminal device according to the first time difference, so that the time when the terminal device prepares to send an uplink message is closer to the uplink resource that can send the uplink message, thereby reducing the cost of subsequent uplink messages.
  • the first time difference can reduce the transmission delay of subsequent uplink messages.
  • the AN device may receive from the control plane network element for adjusting the resource scheduled for the terminal device. Indication of upstream resources.
  • AN equipment can adjust uplink resources on demand based on instructions from control plane network elements.
  • embodiments of the present application provide a communication method.
  • the method includes: after acquiring the first information indicating the first time difference, the terminal device may send the first information so that the AN device adjusts the first uplink resource scheduled for the terminal device to the second uplink resource.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the terminal device After receiving the first resource configuration information indicating the second uplink resource from the AN device, the terminal device may send an uplink message through the second uplink resource.
  • terminal equipment can periodically send uplink messages through periodic uplink resources scheduled by the AN equipment.
  • the AN device can adjust the uplink resources allocated to the terminal device according to the first time difference, and the terminal device sends subsequent messages according to the adjusted uplink resources, thereby reducing the first time difference of subsequent uplink messages, thereby reducing the number of subsequent uplink messages.
  • the transmission delay of the text can be adjusted.
  • the terminal device may send the first information to at least one of the AN device, the control plane network element, or the AF. That is to say, the terminal device may directly send the first information to the AN device, or may send the first information to the AN device through at least one of the control plane network element or the AF. Through this design, the terminal device can flexibly send the first information to the AN device.
  • the terminal device may receive an instruction for instructing the terminal device to send the first information.
  • the terminal device reports the first information only after receiving an instruction instructing the terminal device to send the first information, thereby preventing the terminal device from reporting the first information all the time, thereby saving network resources for reporting the first information, and Save the power required by the terminal device to report the first information.
  • the terminal device may also receive information indicating the first threshold; when the first time difference is greater than or equal to the first threshold, the terminal device sends the first information.
  • the terminal device reports the first information, thereby preventing the terminal device from unnecessary reporting of the first information, thereby saving network resources for reporting the first information, and saving The amount of power required by the terminal device to report the first information.
  • embodiments of the present application provide a communication method.
  • the method includes: after acquiring the second information indicating the estimated value of the first time difference, the AN device may adjust the first uplink resource scheduled for the terminal device to the second uplink resource according to the estimated value of the first time difference, and Send first resource configuration information indicating the second uplink resource to the terminal device.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the estimated value of the first time difference, so that the difference between the time when the terminal device can send uplink messages and the time when the terminal device prepares to send subsequent uplink messages is smaller, thereby Reduce the first time difference of subsequent upstream messages, thereby reducing the transmission delay of subsequent upstream messages.
  • the terminal device may obtain the second information indicating the estimated value of the first time difference in the following manner:
  • Method 1 The AN device receives the second information from the user plane network element.
  • the AN device may receive the second information from the user plane network element after sending the second resource configuration information to the terminal device.
  • the second resource configuration information is used to indicate the first uplink resource.
  • the first uplink resource includes resources whose period is based on the transmission cycle of the uplink message. In at least one transmission cycle, the first uplink resource also includes multiple time units. H.
  • Method 2 The AN device determines the second information.
  • the AN device may determine the second information based on the time it takes to receive M uplink messages from the terminal device through the first uplink resource.
  • M is an integer greater than or equal to 2.
  • the second resource configuration information is used to indicate the first uplink resource.
  • the first uplink resource includes resources whose period is based on the transmission period of the uplink message. In at least one transmission period, the first uplink resource also includes resources on multiple time units. .
  • the AN device can flexibly obtain the second information indicating the estimated value of the first time difference.
  • the AN device may determine the estimated value of the first time difference as: Avg(a,b); thereby determining the second information indicating the estimated value of the first time difference.
  • a T1+CT-T2
  • b T3-T2-CT; among them, Avg represents the averaging operation
  • T1 is the time when the first uplink message among M uplink messages is received
  • T2 is the time when M uplink messages are received.
  • T3 is the time when the third uplink message among the M uplink messages is received
  • CT is the sending cycle.
  • the AN device may determine that the second uplink resource includes: a resource whose distance from the first resource is an integral multiple of the transmission period; where the first resource is the first time unit among multiple time units.
  • the resources on are obtained N time units in advance, N is a positive integer, and the N time units are determined based on the estimated value of the first time difference.
  • the N time units may be less than or equal to the first time difference.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the estimated value of the first time difference, so that the time when the terminal device prepares to send the uplink message is closer to the uplink resource that can send the uplink message, thereby reducing the subsequent uplink
  • the first time difference of the message can thereby reduce the transmission delay of subsequent uplink messages.
  • embodiments of the present application provide a communication method.
  • the method includes: after obtaining the second information indicating the estimated value of the first time difference, the user plane network element can send the second information to the access network AN device, so that the AN device schedules the first uplink resource for the terminal device. Adjust to the second uplink resource; wherein, the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the user plane network element sends the second information indicating the estimated value of the first time difference to the AN device.
  • the AN device can adjust the uplink resources allocated to the terminal device according to the estimated value of the first time difference, so that the terminal device The difference between the time when the uplink message can be sent and the time when the terminal device is ready to send the subsequent uplink message is smaller, thereby reducing the first time difference of the subsequent uplink message, thereby reducing the transmission delay of the subsequent uplink message.
  • the user plane network element may determine the second information based on the time it takes to receive M uplink messages from the terminal device; where M is an integer greater than or equal to 2.
  • the user plane network element can accurately determine the estimated value of the first time difference.
  • embodiments of the present application provide a communication method.
  • the method includes: after receiving the first indication, the first communication device may send the first message after receiving the first message through the first QoS flow for a first duration.
  • the first indication includes indication information of the first QoS flow.
  • the first communication device can delay and forward the message transmitted by the first QoS stream, thereby accurately controlling the transmission time and delay of the message, thereby achieving the effect of delay optimization. Moreover, in this method, the first communication device performs delayed forwarding based on the QoS flow, which can avoid air interface scheduling conflicts that occur when the uplink service flows of multiple communication devices arrive at the same time.
  • the first communication device may receive the first indication through one of the following implementation methods:
  • Implementation manner one the first communication device receives the first instruction from the session management function network element.
  • the first communication device receives a message from the control plane network element or AF for requesting the establishment or modification of the second QoS flow; wherein the message may include the first indication.
  • the first communication device can conveniently obtain the first indication, thereby delaying transmission of the message received through the first QoS flow.
  • the first message can be used to trigger the sending of the uplink message.
  • the application preparation response can be used to trigger the IO device to send an uplink message.
  • the IO device can be delayed to be triggered to send the uplink message, causing the time for the IO device to send the uplink message to be delayed; in this way, the time for the terminal device to receive the uplink message is also delayed, thereby reducing the terminal
  • the difference between the time when the device is able to send uplink messages and the time when it is ready to send uplink messages i.e., the first time difference
  • the IO device when the time for the IO device to send the uplink message is delayed by delaying the sending of the first message, the IO device does not need to be modified, that is, the IO device does not need to have the ability to adjust the packet sending time, which is more convenient to implement.
  • the first communication device may receive information indicating the first duration from the control plane network element or AF. Through this design, the first communication device can conveniently obtain the first duration.
  • the first communication device may determine the first duration based on the third information
  • the third information includes at least one of the following:
  • the access network AN device configures uplink resources for the terminal device to send uplink messages
  • the first transmission delay includes: the transmission delay between the first communication device and the input and output IO device used to send the uplink message, the processing delay of the IO device, and the transmission time between the IO device and the terminal device. extension.
  • the first communication device can determine the first duration, thereby saving time for transmitting information required for determining the first duration.
  • the first communication device may obtain the third information in one of the following ways:
  • the first communication device receives third information from at least one of the AN device, the control plane network element, and the AF.
  • Method 2 The first communication device obtains the preconfigured third information.
  • the first communication device can flexibly obtain the third information.
  • embodiments of the present application provide a communication device, including a unit for performing each step in any of the above aspects.
  • embodiments of the present application provide a communication device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to read and execute The storage element stores programs and data, so that the method provided by any of the above aspects of this application is implemented.
  • embodiments of the present application provide a communication system, including: an AN device configured to perform the method provided in the first aspect, and a terminal device configured to perform the method provided in the second aspect.
  • embodiments of the present application provide a communication system, including: an AN device configured to perform the method provided in the third aspect, and a user plane network element configured to perform the method provided in the fourth aspect.
  • embodiments of the present application also provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in any of the above aspects.
  • embodiments of the present application further provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium. When the computer program is executed by a computer, it causes the computer to perform any of the above tasks. method provided on one hand.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and execute the method provided in any of the above aspects.
  • embodiments of the present application also provide a chip system.
  • the chip system includes a processor and is used to support a computer device to implement the method provided in any of the above aspects.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • Figure 1 is an architecture diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an architecture diagram of another communication system provided by an embodiment of the present application.
  • Figure 3 is a flow chart of the communication method between the IO device and the PLC provided by the embodiment of the present application;
  • Figure 4 is a schematic diagram of delay offset provided by an embodiment of the present application.
  • Figure 5 is a flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of uplink message transmission in the first communication method provided by the embodiment of the present application.
  • Figure 7 is a flow chart of the second communication method provided by the embodiment of the present application.
  • Figure 8 is a flow chart of uplink message transmission in the second communication method provided by the embodiment of the present application.
  • Figure 9 is a flow chart of the third communication method provided by the embodiment of the present application.
  • Figure 10 is a flow chart of the fourth communication method provided by the embodiment of the present application.
  • Figure 11 is a flow chart of the fifth communication method provided by the embodiment of the present application.
  • Figure 12 is a flow chart of the sixth communication method provided by the embodiment of the present application.
  • Figure 13 is a flow chart of the seventh communication method provided by the embodiment of the present application.
  • Figure 14 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is a structural diagram of a communication device provided by an embodiment of the present application.
  • This application provides a communication method, device and equipment to reduce delay.
  • the method, device and equipment are based on the same technical concept. Since the principles of solving the problem are similar, the implementation of the device, device and method can be referred to each other, and the repeated points will not be repeated.
  • the access network (AN) device can adjust the first uplink resource scheduled for the terminal device according to the first time difference after acquiring the first information indicating the first time difference. is the second uplink resource and sends the first resource configuration information to the terminal device.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message; the first resource configuration information can be used to indicate the second uplink resource.
  • terminal equipment can periodically send uplink messages through periodic uplink resources scheduled by the AN equipment.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the first time difference, thereby reducing the first time difference of subsequent uplink messages, thereby reducing the transmission delay of subsequent uplink messages.
  • Communication equipment generally refers to equipment with communication functions.
  • the communication device may be, but is not limited to, a terminal device, an access network (AN) device, an access point, a core network (CN) device, an IO device, a PLC, etc.
  • Session which is the connection between terminal equipment, access network equipment, user plane network elements and data network (data network, DN) established by the session management network element in the mobile communication system for the terminal equipment, used to transmit all User plane data between the terminal device and the DN, such as a protocol data unit (PDU) session.
  • PDU protocol data unit
  • the terminal device can establish one or more PDU sessions with the mobile communication system (for example, 5G communication system), and one or more quality of service (QoS) flows can be established in each PDU session.
  • the mobile communication system for example, 5G communication system
  • QoS quality of service
  • QoS flow is used to transmit data with the same QoS requirements (reliability or delay) in a service.
  • QoS flow can be identified by QoS flow identifier (QoS flow identifier, QFI).
  • time unit generally refers to the unit of time.
  • the time unit may be, but is not limited to, a subframe, a slot, a symbol, a physical slot, an available slot, etc.
  • the symbols may be time domain symbols (for example, orthogonal frequency division multiplexing (OFDM) symbols), etc.
  • a slot can contain several symbols. For example, one slot may include 14 OFDM symbols; or, one slot may include 12 OFDM symbols; or, one slot may include 7 OFDM symbols.
  • OFDM symbols in a slot can be used entirely for uplink transmission; they can also be used entirely for downlink transmission; they can also be used partly for downlink transmission, partly for uplink transmission, and partly for flexible time domain symbols (which can be flexibly configured for uplink or uplink transmission). downlink transmission). It should be understood that the above examples are only illustrative and should not constitute any limitation on the present application.
  • the number of OFDM symbols contained in a slot and the use of the slot for uplink transmission and/or downlink transmission are not limited to the above examples.
  • the network side (for example, access network equipment or core network) sends data to the terminal device; in the uplink transmission direction, the terminal device sends data to the network side.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships.
  • a and/or B can mean: A alone exists, A and B exist simultaneously, and B alone exists.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items (items), including any combination of single item (items) or plural items (items).
  • Figure 1 shows the architecture of a possible communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system includes three parts: terminal equipment (user equipment (UE) is used as an example in the figure), mobile communication system and DN.
  • UE user equipment
  • DN mobile communication system
  • the mobile communication system provides access services and connection services for terminal devices.
  • the terminal device is an entity that can receive and transmit wireless signals on the user side and needs to access the DN through the mobile communication system.
  • the terminal device can serve as a relay device for other data collectors or other terminal devices, thereby enabling these devices to conduct business communications with the DN through the mobile communication system.
  • the terminal equipment can also be called UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • terminal devices are: mobile phones, tablet computers, notebook computers, PDAs, vehicle-mounted equipment, customer premise equipment (CPE), mobile Internet device (mobile internet device, MID), Wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self-driving, remote surgery Wireless terminals in medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home Terminal etc.
  • CPE customer premise equipment
  • MID mobile Internet device
  • VR virtual reality
  • AR augmented reality
  • a mobile communication system can access at least one DN, and the same DN can also be accessed by at least one mobile communication system.
  • the mobile communication system may include two parts: AN and CN.
  • the network equipment deployed in the AN is the AN equipment, which can be responsible for wireless access, wireless resource management on the air interface side, QoS management, data compression and encryption, user plane data forwarding and other functions.
  • AN equipment can also be called a base station, a radio access network (RAN) node (or device), or an access point (AP).
  • RAN radio access network
  • AP access point
  • gNB new generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC wireless network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B , HNB
  • BBU baseband unit
  • the AN device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • the network elements deployed in the CN can be collectively referred to as CN equipment.
  • CN equipment can connect terminal equipment to different data networks and perform services such as billing, mobility management, session management, and user plane forwarding.
  • the names of CN devices with the same functions may be different.
  • the embodiment of the present application does not limit the specific name of the CN device with each function.
  • the following takes the CN in the 5G mobile communication system as an example to give a detailed introduction to the functions of the main network elements in the CN.
  • the network elements in the CN of the 5G mobile communication system can be divided into two categories: control plane network elements and user plane network elements.
  • the user plane network element includes user plane function (UPF), which is mainly responsible for packet forwarding, QoS control, and accounting information statistics.
  • UPF user plane function
  • the embodiments of this application can also be used in the following scenarios: on-site sensors and other equipment access the core network through UE and AN, and perform data transmission on the user plane through UPF.
  • the control plane network element is mainly responsible for business process interaction, delivering data packet forwarding strategies, QoS control strategies, etc. to the user plane.
  • Control plane network elements mainly include: access and mobility management function (AMF), session management function (SMF), policy control function (policy and charging function, PCF), application function ( application function (AF), unified data management (UDM), network exposure function (NEF) (not shown in the figure).
  • AMF access and mobility management function
  • SMF session management function
  • policy control function policy control function
  • PCF policy control function
  • AF application function
  • UDM unified data management
  • NEF network exposure function
  • PCF is mainly responsible for policy control.
  • PCF can generate a control policy based on AF's request information, operator policies, user subscription information, etc.
  • the control policy can be used to control the behavior of communication devices in the network; PCF can also deliver the control policy to other control plane network elements so that Other control plane network elements implement corresponding policies.
  • AMF is the interface network element between core network elements and AN equipment, and is mainly responsible for UE access management and mobility management.
  • the AMF can perform access management and mobility management based on the UE mobility and network selection policies provided by the PCF. For example, it is responsible for the status maintenance of the UE, the reachability management of the UE, and the non-mobility management (MM) non-access management. Forwarding of non-access-stratum (NAS) messages, etc.
  • MM non-mobility management
  • NAS non-access-stratum
  • SMF is mainly responsible for session management of UE. SMF can perform session management based on the session and service flow control policies provided by PCF, for example, managing the establishment and deletion of PDU sessions, maintaining PDU session context, etc.
  • the AF is mainly responsible for providing the application side's requirements for the mobile communication system (which can also be called the network side), such as QoS requirements for business flows, mobility requirements for UEs, etc.
  • UDM is mainly responsible for user contract data management, user identification management, etc.
  • NEF is mainly responsible for providing frameworks, authentication and interfaces related to network capability opening, and transferring information between network functions of mobile communication systems and other network functions.
  • the DN is a network located outside the mobile communication system.
  • the DN may be a packet data network (PDN), such as the Internet (Internet), Internet protocol (IP) multimedia service (IP Multi-media Service, IMS) network, certain application-specific Data network, Ethernet, IP local network, etc.
  • PDN packet data network
  • IP Internet protocol
  • IMS Internet multimedia service
  • IP Multi-media Service IP Multi-media Service
  • a variety of services can be deployed on the DN, which can provide data and/or voice services to terminal devices.
  • Figure 1 shows the interactive relationship and corresponding interfaces between various network elements in the communication system.
  • the names and functions of the interfaces between each network element are as follows:
  • N7 The interface between PCF and SMF, used to issue protocol data unit (PDU) session granularity and control strategies for business data flow granularity.
  • PDU protocol data unit
  • N15 The interface between PCF and AMF, used to deliver UE mobility control policies and access control related policies.
  • N5 The interface between AF and PCF, used for issuing application service requests and reporting network events.
  • the application service request can carry the service's QoS requirements such as bandwidth and resource preemption priority.
  • Network events may include, but are not limited to, wireless access types (eg, 3rd generation (3G) or 4G access methods).
  • N4 The interface between SMF and UPF, used to transfer information between the control plane and the user plane, including controlling the delivery of forwarding rules, QoS control rules, traffic statistics rules, etc. for the user plane, as well as user plane information Report.
  • the user plane information may include but is not limited to: application information detected by the user plane, usage monitoring information, etc.
  • N11 The interface between SMF and AMF, used to transfer user plane tunnel information between AN equipment and UPF, transfer control messages sent to UE, transfer radio resource control information sent to AN equipment, etc.
  • N2 The interface between AMF and AN equipment, used to transmit wireless bearer control information from the core network side to AN equipment, etc.
  • N1 The interface between AMF and UE, independent of access, used to transmit QoS control rules to UE, etc.
  • N8 The interface between AMF and UDM, used for AMF to obtain access and mobility management-related subscription data and authentication data from UDM, and for AMF to register UE's current mobility management-related information with UDM.
  • N10 The interface between SMF and UDM, used for SMF to obtain session management-related subscription data from UDM, and for SMF to register UE current session-related information with UDM.
  • N3 The interface between AN equipment and UPF, used to transmit user plane data between AN equipment and UPF, etc.
  • N6 The interface between UPF and DN, used to transmit data between UPF and DN, etc.
  • the communication system can also include: IO devices and PLC.
  • IO equipment and PLC can be used in the field of industrial field networks and can also be used in other fields, which is not limited in this application.
  • the new communication equipment in the communication system shown in Figure 2 will be described in detail below.
  • the IO device is an entity that can receive and send signals, and can communicate with the mobile communication system through the terminal device.
  • the IO device can be a camera device.
  • Each camera device can access the 5G network through UE.
  • the camera equipment can periodically generate input frames (i.e. I frames) with large traffic.
  • IO devices can communicate with terminal devices in a wireless manner, for example, through Wireless Fidelity (WiFi), Bluetooth or wireless technology for industrial field networks; IO devices can also communicate with terminal devices in a wired manner.
  • WiFi Wireless Fidelity
  • Bluetooth Wireless Fidelity
  • IO devices can also communicate with terminal devices in a wired manner.
  • PLC can also be called IO controller and can be used to control IO devices.
  • PLC can be used to control the connection between PLC and IO devices, control IO devices to provide uplink messages, etc.
  • the communication system shown in Figure 1 does not constitute a limitation of the communication systems to which the embodiments of the present application can be applied. Therefore, the communication method provided by the embodiments of the present application can also be applied to communication systems of various standards, such as: long term evolution (LTE) communication system, 5G communication system, and sixth generation (The 6th Generation, 6G) communication system As well as future communication systems, vehicle to everything (V2X), long-term evolution - Internet of Vehicles (LTE-vehicle, LTE-V), vehicle to vehicle (V2V), Internet of Vehicles, machine communications (machine type communications (MTC), Internet of things (IoT), long-term evolution-machine to machine (LTE-machine to machine, LTE-M), machine to machine (machine to machine, M2M), Internet of Things, etc.
  • LTE long term evolution
  • 5G communication system Fifth Generation
  • 6G The 6th Generation, 6G communication system
  • future communication systems such as: long term evolution (LTE) communication system, 5G communication system, and sixth generation
  • each network element may have other names; for example, when multiple networks When metafusion is in the same physical device, the physical device can also have other names.
  • the 5G mobile communication system can guarantee the service quality of the business at QoS flow (QoS Flow) granularity.
  • QoS Flow QoS Flow
  • SMF can send the QoS Flow Identifier (QFI) and the QoS Profile corresponding to the QFI to the AN device, and send them to the UE and UPF respectively.
  • QFI and corresponding QoS rules can include uplink/downlink packet filter sets (Packet Filter Set, which can include flow matching information) and matching priority (Precedence) information.
  • UPF When receiving a downlink data packet, UPF can match the data packet according to the Packet Filter Set (flow matching information) and add the matching QFI to the header of the data packet.
  • the UE When an uplink data packet needs to be sent, the UE can add the QFI matched by the uplink data packet to the header of the uplink data packet according to the Packet Filter Set (flow matching information) in the QoS rule.
  • the AN device can perform corresponding QoS guarantees on the data packet based on the QoS Profile corresponding to the QFI in the packet header.
  • the terminal device When uplink data needs to be sent, the terminal device sends a scheduling request (SR) on the physical uplink control channel (PUCCH). After receiving the SR, the AN device can send uplink authorization to the terminal device. The terminal device may send uplink data at the location indicated by the uplink authorization (ie, the time-frequency resource indicated by the uplink authorization).
  • SR scheduling request
  • PUCCH physical uplink control channel
  • the terminal device can only send SR periodically according to the configuration; according to the protocol, the SR sending period can be up to 80 milliseconds (ms). Therefore, the delay for uplink data transmission through this process may be large.
  • the uplink pre-scheduling function is introduced.
  • the AN device can proactively authorize the terminal device. That is to say, the AN device can pre-configure uplink resources for the terminal device without waiting for an SR from the terminal device before performing uplink authorization.
  • the AN device will actively authorize the terminal device. Therefore, uplink resources may be wasted; and the AN device may preconfigure multiple terminal devices. The same uplink resources will introduce uplink interference.
  • the intelligent pre-scheduling function is introduced. This function can be triggered by downstream traffic. Specifically, after the AN device sends downlink data to the terminal device, considering that the terminal device will provide corresponding feedback to the downlink data to generate uplink data, the AN device can actively provide uplink data to the terminal within a certain period of time after sending the downlink data. Authorize and allocate uplink resources.
  • the 3rd generation partnership project (3GPP) protocol supports license-free scheduling.
  • AN equipment can periodically allocate authorization-free uplink resources to terminal equipment; in this way, when the terminal equipment needs to send uplink data, it can send uplink data through authorization-free uplink resources, thus reducing the transmission delay of uplink data.
  • the AN device can send the first radio resource control (RRC) signaling for configuring uplink scheduling-free resources to the terminal device; then, the AN device can send the second RRC signaling or downlink signaling to the terminal device.
  • RRC radio resource control
  • Control information downlink control information, DCI
  • the terminal device can directly send uplink data on the uplink scheduling-free resource without first sending an SR or buffer status report (BSR) to the AN device, and after receiving the Uplink data can be sent only after the uplink authorization is obtained, thereby achieving the purpose of shortening the delay.
  • BSR buffer status report
  • the AN device allocates downlink resources to the terminal device based on the channel status reported by the terminal device, combined with information such as UE capabilities, and sends a schedule indicating the allocated downlink resources to the terminal device through the physical downlink control channel (PDCCH). information.
  • the AN device can send downlink data to the terminal device on the downlink resources allocated to the terminal device; the terminal device determines the allocated downlink resources according to the scheduling information received from the PDCCH channel, receives the downlink data on the downlink resources and demodulates it.
  • the AN device may send third RRC signaling for configuring periodic downlink resources to the terminal device, and use the configured scheduling RNTI (CS- RNTI) to activate the periodic downlink resources.
  • the PDCCH identified by the CS-RNTI can carry the information required for scheduling the periodic downlink resources, and indicates that the downlink resources can be controlled according to radio connection control (radio resource control, RRC) (for example, third RRC signaling) Reuse according to the defined periodicity.
  • RRC radio resource control
  • the configured downlink resources can also be deactivated by the PDCCH identified by CS-RNTI. That is to say, the AN device can deactivate the periodic downlink resources by sending the PDCCH identified by CS-RNTI to the terminal device.
  • PLC can communicate with IO devices through mobile communication systems (for example, 5G core network (5G core, 5GC)).
  • the communication process may include the following steps A1-A5:
  • A1 The IO device establishes a connection with the PLC.
  • the IO device establishes a connection with the PLC.
  • S301-S308 in Figure 3 below. Not expanded here yet.
  • A2 When the IO device sends an uplink message (which can also be called an uplink service flow, uplink realtime (RT) stream, RT stream or uplink data packet, etc.), the IO device can send the uplink message to the IO device.
  • the UE to which the device is connected hereinafter referred to as the first UE).
  • the IO device may periodically send uplink messages to the first UE.
  • the cycle in which the IO device sends uplink messages can be cycle time (CT).
  • step A2 For the specific content of step A2, please refer to S309 in Figure 3 below. Not expanded here yet.
  • the first UE After receiving the uplink message, the first UE can send the uplink message to the AN device through the periodic resources allocated by the AN device.
  • the periodicity of the periodic resources allocated by the AN device is the same as the periodicity of the IO device periodically sending uplink messages.
  • the AN device can allocate periodic resources in the following manner: the AN device can perform uplink pre-scheduling for the above-mentioned uplink message based on the request of the AF or 5GC, and send a configuration grant configuration (ConfiguredGrantConfig) message to the first UE.
  • the ConfiguredGrantConfig message may include configuration information indicating uplink pre-scheduling resources.
  • the configuration information may include: period (the period may be CT), time domain resources, frequency domain resources, modulation and coding scheme and other information.
  • A4 The AN device sends the received uplink message to UPF.
  • A5 UPF sends the received uplink message to the PLC.
  • UPF can send the uplink message to the PLC in one of the following ways.
  • PLC serves as DN, therefore, the interface between UPF and PLC can be N6 interface.
  • UPF can send the uplink message to the PLC through the N6 interface.
  • the PLC is connected to the mobile communication system through the UE (hereinafter referred to as the second UE).
  • the UPF can send the uplink message to the PLC through the UPF on the PLC side, the AN device and the second UE.
  • the first UE may not be able to send the uplink message immediately. For example, after receiving the uplink message from the IO device at the first moment, the first UE may send the uplink message according to the uplink pre-scheduled time domain resources and frequency domain resources configured by the AN device. Specifically, if the AN device configures resources for the first UE at a second time after the first time, the first UE may send the uplink message at the second time. For another example, after receiving the uplink message from the IO device, the first UE completes preprocessing of the uplink message (for example, adding a packet header) at the first moment, and sends the uplink message at the second moment when the AN device is configured. Therefore, there is a time difference between the first UE preparing to send the uplink message and actually sending the message, thereby affecting the overall delay of the uplink message transmission.
  • the UE may send the uplink message according to the uplink pre-scheduled time domain resources and frequency domain resources configured by the AN device. Specifically
  • Figure 3 shows the connection establishment process between IO devices and PLC. This process will be described below with reference to Figure 3.
  • PLC also known as IO controller
  • connect req a connection request
  • connection response (connect rsp) to the PLC.
  • PLC sends a write request (write req) to the IO device.
  • the write req can be used to request the transfer of information between the PLC and the IO device.
  • S304 The IO device sends a write response (write rsp) to the PLC.
  • PLC sends parameter download end request (ParameterDownloadEnd req, namely PrmEnd req) to the IO device.
  • the IO device sends a parameter download end response (ParameterDownloadEnd rsp, namely PrmEnd rsp) to the PLC.
  • a parameter download end response (ParameterDownloadEnd rsp, namely PrmEnd rsp)
  • the IO device sends an application preparation request (ApplRdy req) to the PLC.
  • PLC sends application preparation response (ApplRdy rsp) to the IO device.
  • the CR input may include uplink messages.
  • the IO device After receiving the application ready response, the IO device starts sending CR input to the PLC.
  • the application preparation response can be used to trigger the IO device to send a CR input, that is, to trigger the IO device to send an uplink message.
  • the IO device can repeatedly execute S309 and S310 in CT intervals. That is to say, the IO device can send uplink messages in CT intervals.
  • Clocks used to determine time information may exist in multiple communications devices.
  • the initial phase of each communication device is different, and the phase will drift over time, which will cause the delay offset between communication devices to change.
  • the delay offset principle is applied to the communication system shown in Figure 2
  • the delay offset between the clock in the IO device and/or PLC and the absolute time will become larger and larger.
  • the delay offset between the clock of each IO device and the absolute time will drift monotonically, and the delay offset of the clocks of different IO devices relative to the absolute time is different at different speeds.
  • a PLC can control 8 IO devices (i.e. 1 master and 8 slaves).
  • the PLC's transmission clock is 1ms
  • the CT of the 8 IO devices is 8ms.
  • the text needs to be sent.
  • the horizontal axis is time, and the unit can be seconds (s); the vertical axis is the delay offset between the clock in the IO device and the absolute time (such as the PLC clock), and the unit can be milliseconds (ms).
  • the delay deviation of the clock in the IO device without clock synchronization relative to the absolute time becomes larger and larger; in this way, the delay deviation between different communication devices may also getting bigger.
  • the time deviation between the time when the IO device sends the uplink message according to the CT and the resource allocated by the AN device to the terminal device with the period of CT may also become larger and larger, resulting in the terminal device preparing to send the uplink message after completing the initial configuration.
  • the difference between the time of the message and the time when the terminal device can send the uplink message may also increase with time.
  • the time difference between the first UE preparing to send the uplink message and actually sending the message can be reduced.
  • the AF can send time-sensitive communication (TSC assistance information, TSCAI) information to the AN device through 5GC.
  • TSCAI information may include: TSC flow direction (for example, uplink and/or downlink), cycle, service flow arrival time (i.e. Burst Arrival time, for example, for downlink data, the first packet of the data burst arrives at the AN device entrance The latest possible time; for another example, for uplink data, the latest possible time when the first data packet of the data burst arrives at the UE egress), survival time (ST).
  • the AN device can configure resources for the UE based on the TSCAI information, the characteristics of each flow, and the arrival time of the service flow, thereby reducing the time difference between the UE preparing to send the uplink message and the actual sending of the message.
  • the service flow arrival time contained in the above TSCAI information is an optional parameter in the 3GPP protocol.
  • this parameter is determined by SMF.
  • the SMF may determine the parameter based on the following information: measurement results of UPF on communication equipment (eg, terminal equipment) inside or outside the mobile communication system, and measurement reports of communication equipment inside or outside the mobile communication system.
  • the above information may be obtained periodically. For example, communication equipment periodically reports measurement reports.
  • the time represented by the above information obtained periodically has a deviation, and the accuracy of the parameters determined based on the deviation time is not high. . Therefore, the accuracy of the resources adjusted through the above method is not high, and thus the delay may not be effectively reduced.
  • air interface scheduling conflicts may occur.
  • the embodiment of the present application provides a communication method, which can be applied to the communication system shown in Figures 1-2.
  • the AN device can adjust the uplink resources scheduled for the terminal device according to the first time difference determined by the terminal device, thereby reducing the first time difference of subsequent uplink messages sent by the terminal device. Referring to the flow chart shown in Figure 5, the flow of this method will be described in detail below.
  • the terminal device obtains first information indicating the first time difference.
  • the first time difference may be: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the time when the terminal device prepares to send the uplink message may be, but is not limited to, one of the following: the time when the terminal device receives the uplink message (for example, the time when the terminal device receives the uplink message from the IO device), the time when the terminal device receives the uplink message.
  • the time of the uplink message (for example, the time when the terminal device receives the uplink message from the IO device and completes the preprocessing of the uplink message).
  • the time when the terminal device can send the uplink message may be the time corresponding to the uplink resource after the terminal device prepares to send the uplink message. For example, if the terminal device prepares to send an uplink message at 4ms, and the AN device schedules uplink resources at 3ms, 7ms, 11ms, 15ms, etc. for the terminal device, then the time when the terminal device can send the uplink message can be 7ms, 11ms, or Uplink resources at 15ms.
  • the time when the terminal device can send the uplink message can be the time when the terminal device actually sends the uplink message. For example, if the terminal device prepares to send an uplink message at 4ms, the AN device schedules uplink resources at 3ms, 7ms, 11ms, 15ms, etc. for the terminal device, and the terminal device sends an uplink message at the uplink resource at 11ms, then the terminal device The time that can send uplink messages is the uplink resource at 11ms.
  • the terminal device receives the uplink message 1 from the IO device at time Ta and can send the uplink message 1 at time Tb. Then for the uplink message 1, the terminal device can determine the first time difference as Tb-Ta.
  • the first information used to indicate the first time difference may directly be the value of the first time difference (for example, 3 ms), or may be information that can indirectly indicate the first time difference (for example, when the information is the first value, the The time difference is 3ms).
  • the sending period of the uplink message is the same as the period of the uplink resource obtained by the terminal device for sending the uplink message.
  • the period (for example, CT) of the IO device sending the uplink message is the same as the period of the uplink resources scheduled by the AN device for the terminal device.
  • the period in which the terminal device generates the uplink message (which can also be said to be the period in which the terminal device prepares to send the uplink message) is consistent with the uplink schedule scheduled by the AN device for the terminal device.
  • the resources have the same life cycle.
  • the terminal device sends the first information to the AN device; accordingly, the AN device obtains the first information.
  • the terminal device may directly send the first information to the AN device, or may indirectly send the first information to the AN device (for example, send the first information to the AN device through at least one of the control plane network element (for example, SMF) or AF). a message). Therefore, the terminal device may send the first information to at least one of the AN device, the control plane network element, or the AF.
  • the AN device may receive the first information from at least one of the terminal device, the control plane network element, or the AF.
  • AF can be industrial field enable service (IFES).
  • the first information may be carried in an existing message (for example, a measurement report, etc.) or may be carried in a new message, which is not limited in this application.
  • the AN device adjusts the first uplink resource scheduled for the terminal device to the second uplink resource according to the first time difference.
  • the AN device can adjust the uplink resources scheduled for the terminal device based on the first time difference, so that the periodic uplink resources scheduled for the terminal device are closer to the time when the terminal device prepares to send uplink messages.
  • the terminal device can The difference between the time when the uplink message is sent and the time when the terminal device prepares to send the subsequent uplink message is smaller.
  • the AN device sends the first resource configuration information to the terminal device.
  • the first resource configuration information may be used to indicate the second uplink resource.
  • the terminal device receives the first resource configuration information.
  • the first resource configuration information may be carried in an existing message (for example, an RRC configuration message or an air interface configuration message) or in a new message, which is not limited in this application.
  • S505 The terminal device sends the uplink message through the second uplink resource.
  • the terminal device receives the uplink message 2 from the IO device at time Tc and can send the uplink message 2 at time Td. Then for the uplink message 2, the terminal device can determine the first time difference as Td-Tc. The first time difference of upstream message 2 is smaller than the first time difference of upstream message 1.
  • the AN device can adjust the uplink resources allocated to the terminal device according to the first time difference, so that the difference between the time when the terminal device can send uplink messages and the time when the terminal device prepares to send subsequent uplink messages is smaller, thereby reducing the subsequent uplink
  • the first time difference of the message can thereby reduce the transmission delay of subsequent uplink messages.
  • the AN device may adjust the first uplink resource scheduled for the terminal device to the second uplink resource in the following manner:
  • the AN device can advance the first uplink resource by N time units to obtain the second uplink resource.
  • N is a positive integer
  • N time units are determined based on the first time difference.
  • the first uplink resource is a resource whose period is the transmission period (for example, CT) of the uplink message.
  • the second uplink resource is also a resource whose period is the sending period of the uplink message.
  • the N time units may be less than or equal to the first time difference.
  • the AN device can advance the first uplink resource by N time units to obtain the second uplink resource, so that the difference between the time when the terminal device can send the uplink message and the time when the terminal device prepares to send the subsequent uplink message is smaller. This reduces the first time difference of subsequent upstream messages, thereby reducing the transmission delay of subsequent upstream messages.
  • the above method may further include: the AN device receiving an instruction from the control plane network element for adjusting the uplink resources scheduled for the terminal device.
  • control plane network element can be at least one of the following: SMF, AMF, and PCF.
  • the indication for adjusting the uplink resources scheduled for the terminal device may be a message or an information element in the message.
  • the indication for adjusting the uplink resource scheduled for the terminal device may reuse the cell in the existing message, or may be an existing message. new cells in .
  • the information element may be a first indication field, and when the value of this field is the second value, it may instruct the AN device to adjust the uplink resources scheduled for the terminal device.
  • the AN device may receive an instruction from the control plane network element for adjusting the uplink resources scheduled for the terminal device.
  • the AN device can adjust the uplink resources scheduled for the terminal device as needed according to the instructions of the control plane network element.
  • the above method may further include: the terminal device receiving an instruction for instructing the terminal device to send the first information.
  • the instruction for instructing the terminal device to send the first information may be a message or an information element in the message.
  • the indication for instructing the terminal device to send the first information may reuse an information element in an existing message, or may be an existing message. new cells in .
  • the information element may be a second indication field, and when the value of this field is a third value, the terminal device may be instructed to send the first information.
  • the terminal device may receive an instruction from the control plane network element or AN device for adjusting the uplink resources scheduled for the terminal device during the process of establishing a QoS flow for transmitting uplink messages.
  • the control plane network element can be at least one of the following: SMF, AMF, and PCF.
  • the terminal device reports the first information only after receiving the instruction for instructing the terminal device to send the first information, thereby preventing the terminal device from reporting the first information all the time, thereby saving network resources for reporting the first information, and Save the power required by the terminal device to report the first information.
  • the above method further includes: the terminal device receiving information indicating the first threshold.
  • the terminal device receives information indicating the first threshold.
  • the terminal device sends the first information.
  • the information indicating the first threshold may be the first threshold directly, or may be information indicating the first threshold indirectly.
  • the information used to indicate the first threshold may be included in an existing message or in a new message, and this application does not limit this.
  • the terminal device may receive information indicating the first threshold from the control plane network element during the process of establishing a QoS flow for transmitting uplink messages.
  • the control plane network element can be at least one of the following: SMF, AMF, and PCF.
  • This application does not limit the execution order of the terminal device receiving the instruction for instructing the terminal device to send the first information and receiving the information for indicating the first threshold.
  • the terminal device may first receive the instruction for instructing the terminal device to send the first information, Then receive information indicating the first threshold; you may also receive information indicating the first threshold first, and then receive an instruction instructing the terminal device to send the first information; you may also receive at the same time an instruction instructing the terminal device to send the first information.
  • An indication of the information and information indicating the first threshold may be used to send the first information.
  • the terminal device reports the first information, thereby preventing the terminal device from unnecessary reporting of the first information, thereby saving network resources for reporting the first information, and saving The amount of power required by the terminal device to report the first information.
  • the embodiment of the present application provides a communication method, which can be applied to the communication system shown in Figures 1-2.
  • the AN device can adjust the uplink resources scheduled for the terminal device according to the estimated value of the first time difference, thereby reducing the first time difference of subsequent uplink messages sent by the terminal device. Referring to the flow chart shown in Figure 7, the flow of this method will be described in detail below.
  • the AN device obtains second information indicating an estimated value of the first time difference.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the second information may be directly an estimated value of the first time difference (for example, 3 ms), or may be information that indirectly indicates an estimated value of the first time difference (for example, when the information is a fourth value, the first time difference The estimated value is 3ms).
  • the AN device adjusts the first uplink resource scheduled for the terminal device to the second uplink resource according to the estimated value of the first time difference.
  • the AN device can adjust the uplink resources scheduled for the terminal device based on the estimated value of the first time difference, so that the periodic uplink resources scheduled for the terminal device are closer to the time when the terminal device prepares to send uplink messages. In other words, so that The difference between the time when the terminal device is able to send uplink messages and the time when the terminal device is ready to send subsequent uplink messages is smaller.
  • the AN device sends the first resource configuration information to the terminal device.
  • the first resource configuration information may be used to indicate the second uplink resource.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the estimated value of the first time difference, so that the difference between the time when the terminal device can send uplink messages and the time when the terminal device prepares to send subsequent uplink messages is smaller, thereby Reduce the first time difference of subsequent upstream messages, thereby reducing the transmission delay of subsequent upstream messages.
  • the AN device may obtain second information indicating the estimated value of the first time difference in one of the following ways.
  • Method 1 The user plane network element sends the second information to the AN device.
  • the AN device receives the second information from the user plane network element.
  • method 1 may include step B1 to step B3:
  • the AN device sends the second resource configuration information to the terminal device.
  • the second resource configuration information may be used to indicate the first uplink resource, and the first uplink resource includes a resource whose period is a transmission period (for example, CT) of the uplink message.
  • the first uplink resource may also include resources on multiple time units. In this way, within one transmission cycle (for example, the first transmission cycle), the terminal device may have multiple uplink resources that can be used to transmit uplink messages; in the transmission cycle adjacent to the first transmission cycle (for example, the second transmission cycle) ), the terminal device can have an uplink resource for transmitting uplink messages.
  • the second resource configuration information can be carried in an existing message (for example, an RRC configuration message) or in a new message, which is not limited in this application.
  • the user plane network element can determine the second information based on the time it takes to receive M uplink messages from the terminal device through the first uplink resource, where M is an integer greater than or equal to 2.
  • the following is an example of a possible way for the terminal device to send an uplink message according to the first uplink resource with reference to FIG. 8 .
  • the terminal device can receive uplink message 1 at time Ta before the first sending cycle (for example, receive uplink message 1 from the IO device), on the first uplink resource of the first sending cycle (i.e., Tb time) sends the uplink message 1 to the AN device, and then the AN device can send the uplink message 1 to the user plane network element.
  • the user plane network element can receive the uplink message 1 at time T1.
  • the terminal device receives uplink message 2 at the Ta+CT time in the first sending cycle (for example, receives the uplink message 2 from the IO device), and the terminal device receives the uplink message 2 at the Ta+CT time in the first sending cycle.
  • the uplink message 2 is sent to the AN device on the nearest uplink resource, and then the AN device can send the uplink message 2 to the user plane network element.
  • the user plane network element can receive the uplink message 2 at time T2. in.
  • the terminal device receives uplink message 3 at Ta+2*CT time in the second sending cycle (for example, receives uplink message 3 from the IO device), and the uplink resources in the second sending cycle
  • the uplink message 3 is sent to the AN device on the network (that is, Tb+2*CT time), and then the AN device can send the uplink message 3 to the user plane network element.
  • the user plane network element can receive the uplink message 3 at time T3.
  • the user plane network element can estimate the first time difference for the terminal device to send the uplink message through periodic uplink resources through at least one of the following formulas: CT-T1+T2, T3-T2-CT. That is to say, the user plane network element can determine the estimated value of the first time difference according to at least one of the above formulas.
  • a T1+CT-T2
  • b T3-T2-CT
  • Avg represents the averaging operation
  • T1 is the time when the first uplink message among M uplink messages is received (for example, the above-mentioned uplink message 1)
  • T2 is the time when the second uplink message among M uplink messages is received.
  • the time of the message (for example, the above-mentioned uplink message 2)
  • T3 is the time when the third uplink message among the M uplink messages is received.
  • the user plane network element can more accurately determine the estimated value of the first time difference.
  • the user plane network element sends the second information to the AN device.
  • the second information may be carried in an existing message or in a new message, which is not limited in this application.
  • Method 2 The AN device determines the second information.
  • the AN device can perform steps C1 to C2:
  • the AN device sends the second resource configuration information to the terminal device.
  • the second resource configuration information may be used to indicate the first uplink resource, and the first uplink resource includes resources whose period is the transmission period of the uplink message.
  • the first uplink resource may also include resources on multiple time units.
  • the AN device can determine the second information based on the time it takes to receive M uplink messages from the terminal device through the first uplink resource, where M is an integer greater than or equal to 2.
  • the AN device may determine the estimated value of the first time difference as: Avg(a,b);
  • a T1+CT-T2
  • b T3-T2-CT
  • Avg represents the average operation
  • T1 is the time when the first uplink message is received among the M uplink messages
  • T2 is the time when the second uplink message is received among the M uplink messages
  • T3 is the time when the first uplink message among the M uplink messages is received.
  • the time of the third uplink message among the M uplink messages, CT is the sending cycle of the uplink message.
  • the AN device can accurately determine the estimate of the first time difference.
  • the AN device may adjust the first uplink resource scheduled for the terminal device to the second uplink resource in the following manner:
  • the AN device determines that the second uplink resource includes: a resource whose distance from the first resource is an integer multiple of the uplink message sending period (for example, CT).
  • the first resource is a resource obtained by advancing the resource on the first time unit among the plurality of time units in the first transmission cycle by N time units.
  • the AN device can advance the periodic uplink resources in the first uplink resources by N time units to obtain the second time unit.
  • N is a positive integer
  • the N time units are determined based on the estimated value of the first time difference.
  • N time units are less than or equal to the estimated value of the first time difference.
  • the AN device can advance the periodic uplink resources in the first uplink resource by N time units to obtain the second uplink resource, so that the time when the terminal device can send uplink messages coincides with the time when the terminal device is ready to send subsequent uplink messages.
  • the time difference is smaller. In this way, when the terminal transmits subsequent uplink messages through the second uplink resource, the first time difference of the subsequent uplink messages can be reduced, thereby reducing the transmission delay of subsequent uplink messages.
  • the embodiment of the present application provides a communication method, which can be applied to the communication system shown in Figures 1-2.
  • the first communication device may delay sending the message according to the first indication. Referring to the flow chart shown in Figure 9, the flow of this method will be described in detail below.
  • the first communication device receives the first instruction.
  • the first indication may include indication information of the first QoS flow.
  • the first communication device may include at least one of the following: user plane network element, AN device, and terminal device.
  • the first indication may be used to instruct to delay sending a packet (eg, the first packet) received through the first QoS flow.
  • the indication information of the first QoS flow may be the identifier of the first QoS flow.
  • the first indication may be a message or an information element in the message.
  • the first indication may reuse an information element in an existing message (for example, a message in a session establishment process or a session modification process), or may be an existing message. new cells in .
  • the information element may be a third indication field, and when the value of this field is a fifth value, the sending of the message received through the first QoS flow may be delayed.
  • the first communication device may send the first message after receiving the first message through the first QoS flow for a first duration. That is to say, after receiving the first indication, if the first communication device receives the first message through the first QoS flow, it will send the first message after the first duration of receiving the first message.
  • the first communication device can delay and forward the message transmitted by the first QoS stream, thereby accurately controlling the transmission time and delay of the message, thereby achieving the effect of delay optimization. Moreover, in this method, the first communication device performs delayed forwarding based on the QoS flow, which can avoid air interface scheduling conflicts that occur when the uplink service flows of multiple communication devices arrive at the same time.
  • the first communication device may receive the first indication through one of the following implementation methods:
  • Implementation manner one the first communication device receives the first instruction from the session management function network element.
  • the first communication device may receive the first indication from the session management function network element during the process of establishing or modifying the first QoS flow.
  • the first communication device receives a message from the control plane network element or AF for requesting to establish or modify the second QoS flow; wherein the message includes the first indication. That is to say, when the control plane network element or AF requests to establish or modify the second QoS flow, it may instruct the first communication device to delay sending the message transmitted by the first QoS flow associated with the second QoS flow.
  • control plane network element can be at least one of the following: SMF, AMF, PCF; AF can be IFES.
  • the association of the first QoS flow with the second QoS flow may mean that packets transmitted by the first QoS flow are used to trigger packets transmitted by the second QoS flow.
  • the message transmitted by the first QoS stream is the application preparation response
  • the message transmitted by the second QoS stream is the uplink message sent by the IO device.
  • the first communication device can conveniently obtain the first indication, so as to delay sending the message received through the first QoS flow.
  • the first message is used to trigger the sending of the uplink message.
  • the first communication device can delay triggering the sending of the uplink message by delaying sending the first message, thereby controlling the sending time of the uplink message, so as to reduce the transmission delay of the uplink message.
  • the application preparation response can be used to trigger the IO device to send an uplink message.
  • the IO device By delaying the sending of the first message, the IO device can be delayed to be triggered to send the uplink message, causing the time for the IO device to send the uplink message to be delayed; in this way, the time for the terminal device to receive the uplink message is also delayed, thereby reducing the terminal
  • the difference between the time when the device is able to send uplink messages and the time when it is ready to send uplink messages i.e., the first time difference
  • the first time difference can thereby reduce the transmission delay of uplink messages.
  • the IO device when the time for the IO device to send the uplink message is delayed by delaying the sending of the first message, the IO device does not need to be modified, that is, the IO device does not need to have the ability to adjust the packet sending time, which is more convenient to implement.
  • the first communication device may determine the first duration through one of the following implementation methods.
  • the first communication device can determine the first duration according to the third information.
  • the third information includes at least one of the following:
  • the first transmission delay may include: the transmission delay between the first communication device and the input and output IO device used to send uplink messages, the processing delay of the IO device, and the IO device The transmission delay between the device and the terminal device.
  • the uplink resources configured by the AN device for the terminal device to send uplink messages For example, the initial resources of the periodic resources configured by the AN for the terminal device to send uplink messages (for example, the initial uplink pre-scheduling time, the initial transmission time interval (transmission time) interval, TTI) (Initial TTI)), etc.
  • Uplink resource cycle This cycle can also be the uplink message sending cycle (for example, CT).
  • the first communication device may determine the first duration as: Initial TTI+n*CT-first transmission delay-the time when the first communication device receives the first message.
  • n is a non-negative integer.
  • the initial uplink pre-scheduling time allocated by the AN device is delayed by n cycles and is later than (first transmission delay + time when the first communication device receives the first message), that is, (Initial TTI + n*CT) is greater than or equal to (the first transmission delay + the time when the first communication device receives the first message), so that the first duration that can reduce the first time difference can be determined.
  • n can take the minimum value such that (Initial TTI+n*CT) is greater than or equal to (first transmission delay+time when the first communication device receives the first message).
  • the uplink resources configured by the AN device for the terminal device to send uplink messages include uplink resources located at 3ms, 7ms, 11ms, 15ms, and 19ms.
  • the period of the uplink resources is 4ms, and the sending period of the uplink messages is also 4ms; first The transmission delay is 2ms; the time for the first communication device to receive the first message is 7ms.
  • the terminal device can send the uplink message after 9ms at the earliest.
  • the AN device allocates uplink resources at 11ms, 15ms, etc. to the terminal device.
  • the terminal device may delay receiving the uplink message with a maximum delay of 2 ms; accordingly, the first communication device may delay sending the first message for triggering the uplink message with a maximum delay of 2 ms. arts.
  • the first duration may be 2 ms or a value less than 2 ms.
  • the terminal device can also send the uplink message through other uplink resources, for example, send the uplink message through the uplink resource located at 15ms or 19ms; at this time, the first communication device can delay 6ms or 10ms to send the first message, that is The first duration can be 6ms or 10ms.
  • the first communication device can obtain the third information in one of the following ways:
  • the first communication device receives third information from at least one of the AN device, the control plane network element, and the AF.
  • control plane network element can be at least one of the following: SMF, AMF, and PCF.
  • the third information can be carried in an existing message or in a new message, which is not limited in this application.
  • the first communication device can receive all the information in the third information from one communication device among the AN device, the control plane network element and the AF; it can also receive all the information in the third information from one or more of the AN device, the control plane network element and the AF.
  • the communication device receives part of the third information, and receives other information in the third information from the AN device, the control plane network element, and other communication devices in the AF.
  • Method 2 The first communication device obtains the preconfigured third information.
  • the third information can be pre-stored in the memory of the first communication device, and the first communication device can obtain the third information by reading the memory.
  • the first communication device may receive information indicating the first duration from the control plane network element or AF.
  • control plane network element can be at least one of the following: SMF, AMF, and PCF.
  • the information used to indicate the first duration may directly be the first duration, or may indirectly indicate the first duration.
  • the information used to indicate the first duration may be carried in an existing message (for example, QoS flow establishment/modification request) or in a new message, which is not limited in this application.
  • control plane network element or AF may determine the first duration through the method in Implementation Mode 1, or may receive information indicating the first duration from other communication devices.
  • this application does not limit the order in which the first communication device receives the information indicating the first duration and receives the first instruction.
  • the first communication device may first receive the information indicating the first duration, and then receive the first indication; it may also receive the first indication first, and then receive the information indicating the first duration; it may also receive the indication at the same time.
  • First duration information and first instructions may be first receive the information indicating the first duration, and then receive the first indication; it may also receive the first indication first, and then receive the information indicating the first duration; it may also receive the indication at the same time.
  • Implementation manner 3 The first communication device obtains the preconfigured first duration.
  • the first duration may be pre-stored in the memory of the first communication device, and the first communication device may obtain the first duration by reading the memory.
  • the embodiment of the present application also provides a communication method.
  • This method can be applied to the communication system shown in Figure 1 or Figure 2.
  • This method is a possible implementation of the method shown in Figure 5.
  • the following description takes the terminal device as UE and the AF as IFES as an example.
  • S1001 The UE initiates the PDU session establishment process; in this way, the IO device connected to the UE can communicate with the PLC through the PDU session.
  • the UE may initiate the PDU session establishment process by sending a PDU session establishment request.
  • IFES sends the policy authorization request corresponding to the RT flow to the 5GC.
  • the policy authorization request can be used to request the establishment of a QoS flow for transmitting the RT flow (for example, the QoS flow used for transmitting uplink messages in Figure 5).
  • the RT stream may include uplink messages to be sent by the IO device.
  • S1002 may include steps D1-D2:
  • D1 IFES sends a policy authorization request to PCF.
  • the policy authorization request may include at least one of the following: flow description information, QoS requirements, air interface scheduling parameters (for example, CT, ST) and other information.
  • the policy authorization request may also include an indication for instructing the UE to report the first time difference (which may also be called an offset (offset) reporting indication).
  • an indication for instructing the UE to report the first time difference which may also be called an offset (offset) reporting indication.
  • the policy authorization request may also include information indicating the first threshold.
  • information indicating the first threshold For the specific content of the information indicating the first threshold, reference may be made to the description of the information indicating the first threshold in the method shown in FIG. 5 , which will not be described again here.
  • PCF can send the policy to SMF in the form of PCC rules.
  • the PCC rule may include at least one of the following: flow description information, authorized QoS parameters, air interface scheduling parameters, an indication for instructing the UE to report the first time difference, and information for indicating the first threshold.
  • S1003 5GC sends a QoS flow establishment request to the AN device to request the establishment of a QoS flow corresponding to the RT flow.
  • the SMF can send the QoS flow establishment request to the AN device.
  • the SMF can send the QoS flow establishment request to the AN device.
  • the QoS flow establishment request may be the QoS configuration information (QoS Profile) sent by the SMF to the AN device during the QoS flow establishment/modification process.
  • QoS configuration information may include at least one of the following: QFI, air interface scheduling parameters, and QoS parameters.
  • the SMF can also send QoS rules (i.e. QoS Rule, for example, QFI or service data flow (SDF) description information, etc.) and QoS flow-level QoS parameters to the UE.
  • QoS Flow level QoS parameter for example, QoS parameter or offset reporting indication
  • PDR packet detection rule
  • FAR forwarding action rule
  • QoS enforcement rule QoS enforcement rule
  • URR usage reporting rule
  • the offset reporting indication can also be carried in the QoS rule.
  • the AN device performs uplink pre-scheduling based on the information from the SMF.
  • the AN device schedules uplink resources with a period of CT for the UE.
  • the AN device may send information indicating uplink pre-scheduled resources (for example, the first uplink resource in the method shown in Figure 5) to the UE through an air interface configuration message.
  • uplink pre-scheduled resources for example, the first uplink resource in the method shown in Figure 5
  • the information indicating the uplink pre-scheduled resources may include: uplink TTI information, that is, time domain information of the uplink pre-scheduled resources.
  • the information indicating the uplink pre-scheduled resources may also include at least one of the following: frequency domain information, coding method, etc. of the uplink pre-scheduled resources.
  • the IO device sends an uplink message to the UE.
  • the UE receives the uplink message from the IO device.
  • the IO device may send an uplink message to the UE after receiving the application preparation response.
  • the UE determines the first time difference.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message.
  • the UE may determine the first time difference based on the time when the uplink message is received and the uplink resources scheduled by the AN device for the UE (for example, the uplink TTI time).
  • S1008 The UE sends the first information indicating the first time difference to the AN device according to the offset reporting instruction.
  • the UE when the UE receives the information indicating the first threshold, the UE may send the first information indicating the first time difference to the AN device when the first time difference is greater than or equal to the first threshold.
  • the AN device adjusts the uplink pre-scheduled resources according to the first time difference, for example, adjusts the first uplink resource to the second uplink resource.
  • S1010 The AN device sends information indicating the second uplink resource to the UE (ie, the first resource configuration information in the method shown in Figure 5).
  • Each network element uses the second uplink resource to transmit uplink messages.
  • the UE uses the second uplink resource to forward the uplink message from the IO device.
  • the UE may repeatedly perform steps S1008-S1010, so that the first time difference can meet the service requirements.
  • the IFES may also send the above offset reporting indication to the UE through the AN device.
  • the QoS configuration information includes the offset reporting indication; then, the AN device may send the offset reporting indication to the UE through the air interface configuration parameters, where the air interface configuration parameters may be included in the air interface configuration message in S1005.
  • the UE can determine the first time difference and trigger the AN device to adjust the uplink pre-scheduling resources according to the first time difference, so that the difference between the time when the terminal device can send uplink messages and the time when the terminal device is ready to send subsequent uplink messages Smaller, thus reducing the delay on the UE side waiting to send uplink messages (i.e. reducing the delay on the UE side waiting to send uplink messages), thereby reducing the transmission delay of subsequent uplink messages to achieve end-to-end low latency business needs.
  • the embodiment of the present application also provides a communication method.
  • This method can be applied to the communication system shown in Figure 1 or Figure 2.
  • This method describes a possible implementation of the method shown in Figure 7.
  • the terminal device is a UE and the AF is an IFES as an example for explanation.
  • S1101 The UE initiates the PDU session establishment process.
  • the IFES sends the first message for establishing a QoS flow for transmitting the RT flow (ie, the uplink message in the method shown in Figure 7) to the 5GC. In other words, IFES initiates the establishment process of the QoS flow through 5GC.
  • the first message may include at least one of the following: flow description information, CT, ST, and an indication for instructing the AN device to adjust the uplink resources scheduled for the UE (which may also be called an offset adjustment indication).
  • the first message may be a policy authorization request in the method shown in Figure 10.
  • S1103 The 5GC sends a second message for establishing a QoS flow for transmitting the RT flow to the AN device.
  • the second message may include at least one of the following: flow description information, CT, time ST, and offset adjustment instruction.
  • the second message may be a QoS flow establishment request in the method shown in Figure 10.
  • S1104 The AN device sends a response (acknowledge, ACK) message to IFES through 5GC.
  • S1105 The AN device performs uplink pre-scheduling and allocates the first uplink resource to the UE.
  • the first uplink resource includes resources with CT as a period, and, within at least one period, the first uplink resource also includes resources on multiple time units.
  • the resources on multiple time units may be resources on multiple adjacent time units.
  • the AN device allocates uplink resources with a period of CT to the UE, and allocates uplink resources of multiple time slots to the UE near a time.
  • This application does not limit the execution order of S1104 and S1105.
  • S1106 The AN device sends the first RRC configuration message to the UE.
  • the first RRC configuration message includes information indicating the first uplink resource (ie, the second resource configuration information in the method shown in Figure 7).
  • the IO device sends an uplink message to the UE.
  • the UE receives the uplink message from the IO device.
  • the IO device may send an uplink message to the UE after receiving the application preparation response.
  • S1108 After receiving the uplink message from the IO device, the UE selects the nearest uplink resource from the first uplink resource to send the uplink message to the AN device.
  • the AN device After receiving the uplink message from the UE, the AN device can adjust the uplink pre-scheduled resources according to the estimated value of the first time difference, for example, adjust the first uplink resource scheduled for the UE to the second uplink resource.
  • the method for the AN device to determine the estimated value of the first time difference may refer to the second method in the method shown in FIG. 7 , which will not be described again here.
  • the AN device sends the second RRC configuration message to the UE.
  • the second RRC configuration message includes information indicating the second uplink resource (ie, the first resource configuration information in the method shown in Figure 7).
  • Each network element uses the second uplink resource to transmit uplink messages.
  • steps S1106-S1110 can be repeatedly performed to reduce the impact of clock offset and reduce the offset of the first time difference.
  • the estimated value of the first time difference in S1109 may also be notified to the AN device after the UPF is calculated.
  • the SMF may send an instruction to the UPF that triggers the UPF to calculate the estimated value of the first time difference.
  • UPF can calculate the estimated value of the first time difference through method 1 of the method shown in Figure 7.
  • the UPF may directly send information indicating the estimated value of the first time difference to the AN device, or may send information indicating the estimated value of the first time difference to the AN device through the control plane network element (for example, SMF). Information about the estimated value of the time difference.
  • the AN device can adjust the uplink resources allocated to the UE based on the estimated value of the first time difference, so that the difference between the time when the UE can send uplink messages and the time when the UE prepares to send subsequent uplink messages is smaller, thereby reducing the subsequent uplink
  • the first time difference of the message (that is, reducing the delay on the UE side waiting to send uplink messages) can thereby reduce the transmission delay of subsequent uplink messages to achieve end-to-end low-latency business requirements.
  • the communication device on the network side can determine the estimated value of the first time difference, the UE and the IO device do not need to perform enhancement processing, and the method is easy to implement.
  • the AN device can allocate multiple time slot resources to the UE in one cycle, and determine the final uplink pre-scheduled resources based on the time slot resources actually used by the UE.
  • the AN device can adjust the accuracy of the estimated value of the first time difference by adjusting the intervals between multiple time slot resources, and select an appropriate interval according to business requirements so that the first time difference is within an acceptable range (that is, meeting business requirements).
  • the embodiment of the present application also provides a communication method.
  • This method can be applied to the communication system shown in Figure 1 or Figure 2.
  • This method describes the first possible implementation of the method shown in Figure 9, that is, the AN device pre-schedules uplink resources for the UE; the length of time to delay sending the message (ie, the first time length) is determined based on the pre-scheduled uplink resources.
  • the terminal device is a UE
  • the AF is an IFES
  • the first communication device is a UPF.
  • S1201 The UE initiates the PDU session establishment process.
  • IFES sends the policy authorization request corresponding to the RT flow to the 5GC.
  • the policy authorization request can be used to request the establishment of a QoS flow for transmitting the RT flow (for example, the second QoS flow in the method shown in Figure 9).
  • S1202 the specific content of S1202 can be referred to S1002, and the repeated parts will not be repeated.
  • the IEFS may also send a reporting indication (which may also be called an uplink grant time subscription) to the 5GC.
  • the reporting indication may instruct the AN device to provide information on the uplink resources scheduled for the UE (for example, the TTI scheduled by the AN device for the UE).
  • S1203 5GC sends a QoS flow establishment request to the AN device.
  • 5GC can also send reporting instructions to AN equipment.
  • the AN device may send information to the IFES indicating the uplink resources scheduled by the AN device for the UE (for example, the TTI scheduled by the AN device for the UE).
  • the AN device can directly send the information used to indicate the uplink resources scheduled by the AN device for the UE to the IFES; it can also indirectly send the information used to indicate the uplink resources scheduled by the AN device for the UE to the IFES (for example, through the control plane network element). Send information used to indicate the uplink resources scheduled by the AN device for the UE to the IFES).
  • the information used to indicate the uplink resources scheduled by the AN device for the UE may include at least one of the following: uplink scheduling-free time domain resource information allocated by the AN device for the QoS flow (for example, the initial TTI scheduled by the AN device for the UE) ), frequency domain resource information, etc.
  • IFES can determine the first duration (also called delay duration) based on the third information.
  • the third information includes at least one of the following: the first transmission delay, the uplink resource configured by the AN device for sending the uplink message to the UE, the period of the uplink resource, and the time when the UPF receives the first message.
  • the third information includes at least one of the following: the first transmission delay, the uplink resource configured by the AN device for sending the uplink message to the UE, the period of the uplink resource, and the time when the UPF receives the first message.
  • IFES can determine the time when the UE can send the uplink message based on the period (for example, CT) and the initial TTI from the AN device, and then determine the UPF forwarding based on the transmission time of the link (i.e., the first transmission delay). The time of the message to determine the first duration.
  • the period for example, CT
  • the initial TTI from the AN device
  • S1206 IFES sends information indicating the first duration to UPF through 5GC.
  • the IFES may send a QoS flow establishment/modification request for the first QoS flow to the UPF through SMF.
  • the QoS flow establishment/modification request may include at least one of the following: packet matching rules and information indicating the first duration.
  • the first QoS flow is a QoS flow used to transmit application preparation responses.
  • the UPF receives the application preparation response through the first QoS flow (corresponding to the first message in the method shown in Figure 9).
  • the UPF After receiving the first duration of the application preparation response, the UPF sends the application preparation response to the IO device through the AN device and the UE in sequence. That is to say, the UPF performs delayed forwarding processing on the application preparation response passing the first QoS flow.
  • UPF can perform delayed forwarding based on FAR. For example, the UPF maps the application preparation response received through the first QoS flow to the corresponding QoS flow on the N3 interface according to the FAR, and after receiving the first duration of the application preparation response, sends the application preparation response through the corresponding QoS flow.
  • S1209 The IO device sends an RT stream (corresponding to the uplink message in the method shown in Figure 9) to the UE according to the received application preparation response, thereby realizing the transmission of the uplink message.
  • the above-mentioned first duration can also be determined by the control plane network element (for example, SMF, AMF or PCF).
  • the determination method is the same as IFES, which will not be described again here.
  • the control plane network element determines the first duration, in S1204, the AN device sends information indicating the uplink resources scheduled by the AN device for the UE to the control plane network element; in S1205-S1206, IFES can be replaced by the control plane network element .
  • the above-mentioned first duration can also be determined by UPF, and the determination method is the same as IFES, which will not be described again here.
  • the UPF determines the first duration in S1204, the AN device sends information to the UPF indicating the uplink resources scheduled by the AN device for the UE; in S1205, IFES may be replaced by UPF; S1206 is an optional step.
  • the UPF can also be other communication equipment used to transmit messages, such as AN equipment or UE.
  • the UPF may map the application preparation response received through the first QoS flow to the corresponding QoS flow on the N3 interface, and send the application preparation response through the corresponding QoS flow.
  • the AN device or UE sends the application preparation response after the first period of time after receiving the application preparation response.
  • UPF can delay sending the application preparation response, thereby delaying the triggering of the IO device to send the uplink message, that is, delaying the time when the IO device sends the uplink message.
  • the time when the UE receives the uplink message is also delayed, which can reduce the time difference between the time when the UE can send the uplink message and the time when it is ready to send the uplink message, that is, the first time difference can be reduced, thereby reducing the transmission of the uplink message. latency to achieve end-to-end low latency business requirements.
  • the embodiment of the present application also provides a communication method.
  • This method can be applied to the communication system shown in Figure 1 or Figure 2.
  • This method describes the second possible implementation of the method shown in Figure 9, that is, the AN device determines the length of time to delay sending the message (i.e., the first time length) and the uplink pre-scheduling resources based on the time when the IO device can send the uplink message.
  • the terminal device is a UE
  • the AF is an IFES
  • the first communication device is a UPF.
  • S1301 The UE initiates the PDU session establishment process.
  • IFES sends a policy authorization request corresponding to the RT flow to the 5GC.
  • the policy authorization request can be used to request the establishment of a QoS flow for transmitting the RT flow (for example, the second QoS flow in the method shown in Figure 9).
  • S1302 the specific content of S1302 can be referred to S1002, and the repeated parts will not be repeated.
  • the IFES may also send a delay request for the first QoS flow to the 5GC.
  • the delay request may include: indication information of the first QoS flow and a first indication to instruct to delay sending the packet received through the first QoS flow.
  • the first QoS flow is a QoS flow associated with the second QoS flow.
  • the association between the first QoS flow and the second QoS flow may mean that packets transmitted by the first QoS flow can trigger packets transmitted by the second QoS flow.
  • the 5GC may also send the indication information of the first QoS flow (for example, the QFI of the first QoS flow) and the first indication to the AN device to instruct to delay sending the packet received through the first QoS flow.
  • the indication information of the first QoS flow for example, the QFI of the first QoS flow
  • the first indication for example, the QFI of the first QoS flow
  • the AN device may instruct to delay sending the packet received through the first QoS flow.
  • S1304 The AN device sends an ACK message to IFES through 5GC.
  • the AN device receives the application preparation response through the first QoS flow (corresponding to the first message in the method shown in Figure 9).
  • the AN device determines the first duration and the uplink resources scheduled for the UE.
  • the way in which the AN device determines the first duration may refer to implementation mode 1 in the method shown in Figure 9, which will not be described again here.
  • the AN device receives the application preparation response through the first QoS flow at time T5. If the TTI in the time window T6 ⁇ T7 can be allocated to the second QoS flow used to transmit uplink messages, the AN device can adjust n so that (T5+first transmission delay+n*CT) belongs to the interval of T6 ⁇ T7 within, thereby determining the first length of time to delay sending the application preparation response.
  • the AN device receives the downlink message (for example, application preparation response) through the first QoS flow at 3 ms.
  • the AN device determines that the initial uplink pre-scheduling resources can be allocated between 6ms and 8ms based on local configuration information and available resources.
  • the first transmission delay is 2ms. In this way, the AN device can receive the uplink message sent by the UE at the earliest 5ms. Then, there are no uplink pre-scheduling resources to be allocated at this time, and the earliest allocable uplink pre-scheduling resources are time domain resources between 6ms and 8ms.
  • the AN device can determine the first duration to be 1 ms to 3 ms, and allocate corresponding uplink pre-scheduling resources to uplink messages. For example, allocate resources between 6 ms and 8 ms as initial uplink time domain resources, and 4 ms is a period.
  • the AN device may send information indicating uplink pre-scheduling resources (for example, uplink pre-scheduling configuration parameters) to the UE through an air interface configuration message.
  • uplink pre-scheduling resources for example, uplink pre-scheduling configuration parameters
  • the AN device After receiving the first duration of the application preparation response, the AN device sends the application preparation response to the IO device through the UE.
  • the IO device sends an RT stream (corresponding to the uplink message in the method shown in Figure 9) to the UE according to the received application preparation response, thereby realizing the transmission of the uplink message.
  • the AN device can delay sending the application preparation response, thereby delaying the triggering of the IO device to send the uplink message, that is, delaying the time when the IO device sends the uplink message.
  • the time when the UE receives the uplink message is also delayed, which can reduce the time difference between the time when the UE can send the uplink message and the time when it is ready to send the uplink message, that is, the first time difference can be reduced, thereby reducing the transmission of the uplink message. time delay.
  • the embodiment of the present application provides a communication device through Figure 14, which can be used to perform the functions of the relevant steps in the above method embodiment.
  • the functions described can be implemented by hardware, or can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device is shown in Figure 14, including a communication unit 1401 and a processing unit 1402.
  • the communication device 1400 can be applied to AN equipment, UPF or terminal equipment in the communication system shown in Figure 1, or applied to AN equipment, UPF or UE in the communication system shown in Figure 2, and can implement the above application.
  • Embodiments and communication methods provided by examples.
  • the functions of each unit in the communication device 1400 are introduced below.
  • the communication unit 1401 is used to receive and send data.
  • the communication unit 1401 can use physical interfaces, communication modules, communication interfaces, input Output interface implementation.
  • the communication device 1400 can connect to a network cable or cable through the communication unit to establish a physical connection with other devices.
  • the communication unit 1401 may be implemented by a transceiver, for example, a mobile communication module.
  • the mobile communication module may include at least one antenna, at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA), etc.
  • the AN device can communicate with the accessed terminal device through the mobile communication module.
  • the processing unit 1402 may be used to support the communication device 1400 in performing the processing actions in the above method embodiments.
  • the processing unit 1402 may be implemented by a processor.
  • the processor can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC) , field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the communication device 1400 is applied to the AN device in the embodiment of the present application shown in Figure 5 or Figure 10.
  • the specific functions of the processing unit 1402 in this embodiment will be introduced below.
  • the processing unit 1402 is configured to: obtain first information indicating a first time difference; wherein the first time difference is: the time when the terminal device can send the uplink message and the time when the terminal device prepares to send the uplink message. the time difference between messages; according to the first time difference, adjust the first uplink resource scheduled for the terminal device to the second uplink resource; send the first resource configuration information to the terminal device through the communication unit 1401; Wherein, the first resource configuration information is used to indicate the second uplink resource.
  • the processing unit 1402 is specifically configured to: receive the first information from at least one of the terminal device, the control plane network element, or the AF through the communication unit 1401.
  • the processing unit 1402 is specifically configured to: advance the first uplink resource by N time units to obtain the second uplink resource; where N is a positive integer, and the N time units are calculated according to the The first time difference is determined; the first uplink resource is a resource whose cycle is the transmission cycle of the uplink message.
  • the processing unit 1402 is specifically configured to: before adjusting the first uplink resource scheduled for the terminal device to the second uplink resource according to the first time difference, receive from the control unit 1401 through the communication unit 1401 An indication of the network element for adjusting the uplink resources scheduled for the terminal device.
  • the communication device 1400 is applied to the terminal device in the embodiment of the present application shown in FIG. 5 or the UE in the embodiment of the present application shown in FIG. 10 .
  • the specific functions of the processing unit 1402 in this embodiment will be introduced below.
  • the processing unit 1402 is configured to: obtain first information indicating a first time difference; wherein the first time difference is: the time when the terminal device can send the uplink message and the time when the terminal device prepares to send the uplink message.
  • the time difference between messages sending the first information through the communication unit 1401; wherein the first information is used for the access network AN device to adjust the first uplink resource scheduled for the terminal device to the second uplink resources; receiving the first resource configuration information from the AN device through the communication unit 1401; wherein the first resource configuration information is used to indicate the second uplink resource; through the communication unit 1401 through the third
  • the second uplink resource sends uplink messages.
  • the processing unit 1402 is specifically configured to send the first information to at least one of the AN device, the control plane network element, or the application function AF through the communication unit 1401.
  • the processing unit 1402 is specifically configured to: before sending the first information, receive an instruction for instructing the terminal device to send the first information through the communication unit 1401.
  • the processing unit 1402 is specifically configured to: receive information indicating the first threshold through the communication unit 1401; when the first time difference is greater than or equal to the first threshold, receive information through the communication unit 1401. 1401 Send the first information.
  • the communication device 1400 is applied to the AN device in the embodiment of the present application shown in Figure 7 or Figure 11.
  • the specific functions of the processing unit 1402 in this embodiment will be introduced below.
  • the processing unit 1402 is configured to: obtain second information indicating an estimated value of a first time difference; wherein the first time difference is: the time when the terminal device can send the uplink message and the time when the terminal device prepares to send the uplink message.
  • the time difference between the messages according to the estimated value of the first time difference, adjust the first uplink resource scheduled for the terminal device to the second uplink resource; send the first uplink resource to the terminal device through the communication unit 1401 Resource configuration information; wherein the first resource configuration information is used to indicate the second uplink resource.
  • the processing unit 1402 is specifically configured to: send second resource configuration information to the terminal device through the communication unit 1401; wherein the second resource configuration information is used to indicate the first uplink resource,
  • the first uplink resources include resources whose period is the transmission cycle of the uplink message. In at least one of the transmission cycles, the first uplink resources also include resources on multiple time units; according to the The time at which the first uplink resource receives M uplink messages from the terminal device determines the second information, where M is an integer greater than or equal to 2; or, the time when the first uplink resource receives the M uplink messages from the user plane network element. Second information.
  • T2 is the time when the second uplink message among the M uplink messages is received
  • T3 is the time when the third uplink message among the M uplink messages is received
  • CT is the time when the sending cycle.
  • the processing unit 1402 is specifically configured to: determine that the second uplink resource includes: a resource whose distance from the first resource is an integer multiple of the transmission period; wherein the first resource is the The resources on the first time unit among the plurality of time units are obtained by N time units in advance, where N is a positive integer, and the N time units are determined based on the estimated value of the first time difference.
  • the communication device 1400 is applied to the UPF in the embodiment of the present application shown in Figure 7 or Figure 11.
  • the specific functions of the processing unit 1402 in this embodiment will be introduced below.
  • the processing unit 1402 is configured to: obtain second information indicating an estimated value of a first time difference; wherein the first time difference is: the time when the terminal device can send the uplink message and the time when the terminal device prepares to send the uplink message. The time difference between the messages; sending the second information to the AN device through the communication unit 1401; wherein the second information is used by the AN device to adjust the first uplink resource scheduled for the terminal device to Second uplink resource.
  • the processing unit 1402 is specifically configured to determine the second information according to the time of receiving M uplink messages from the terminal device; wherein the M is an integer greater than or equal to 2.
  • T2 is the time when the second uplink message among the M uplink messages is received
  • T3 is the time when the third uplink message among the M uplink messages is received
  • CT is the time when the sending cycle.
  • the communication device 1400 is applied to the first communication device in the embodiment of the present application shown in Figure 9, or the UPF in the embodiment of the present application shown in Figure 12, or the UPF in the embodiment of the present application shown in Figure 13 AN equipment in the embodiment of this application.
  • the specific functions of the processing unit 1402 in this embodiment will be introduced below.
  • the processing unit 1402 is configured to: receive a first indication through the communication unit 1401; wherein the first indication includes indication information of a first quality of service QoS flow; according to the first indication, through the first After the QoS flow receives the first message for a first duration, the first message is sent.
  • the processing unit 1402 is specifically configured to: receive the first instruction from the session management function network element through the communication unit 1401; or, receive the first instruction from the control plane network element or application function through the communication unit 1401. A message from the AF used to request the establishment or modification of the second QoS flow; wherein the message contains the first indication.
  • the first message is used to trigger the sending of an uplink message.
  • the processing unit 1402 is specifically configured to: before sending the first message, receive information indicating the first duration from a control plane network element or AF through the communication unit 1401.
  • processing unit 1402 is specifically configured to: before sending the first message, determine the first duration according to the third information;
  • the third information includes at least one of the following:
  • the access network AN device configures uplink resources for the terminal device to send uplink messages
  • the first transmission delay includes: the transmission delay between the first communication device and the input and output IO device used to send the uplink message, the processing delay of the IO device, and the The transmission delay between the IO device and the terminal device.
  • the processing unit 1402 is specifically configured to: before determining the first duration according to the third information, receive at least one message from the AN device, the control plane network element and the AF through the communication unit 1401 the third information; or obtain the preconfigured third information.
  • each function in each embodiment of the present application can be integrated into one processing unit, or they can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • the embodiment of the present application provides a communication device as shown in Figure 15, which can be used to perform relevant steps in the above method embodiment.
  • the communication device can be applied to AN equipment, UPF or terminal equipment in the communication system shown in Figure 1, or applied to AN equipment, UPF or UE in the communication system shown in Figure 2, and can implement the above embodiments of the present application.
  • the communication method provided by the example has the function of the communication device shown in FIG. 14 .
  • the communication device 1500 includes: a communication module 1501 , a processor 1502 and a memory 1503 .
  • the communication module 1501, the processor 1502 and the memory 1503 are connected to each other.
  • the communication module 1501, the processor 1502 and the memory 1503 are connected to each other through a bus 1504.
  • the bus 1504 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the communication module 1501 is used to receive and send data to implement communication interaction with other devices.
  • the communication module 1501 can be implemented through a physical interface, a communication module, a communication interface, and an input and output interface.
  • the processor 1502 may be configured to support the communication device 1500 in performing the processing actions in the above method embodiment. When the communication device 1500 is used to implement the above method embodiment, the processor 1502 may also be used to implement the functions of the above processing unit 1402.
  • the processor 1502 may be a CPU, or other general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the communication device 1500 is applied to the AN device in the embodiment of the present application shown in Figure 5 or Figure 10.
  • the processor 1502 is specifically used for:
  • first information indicating a first time difference is: the difference between the time when the terminal device is able to send the uplink message and the time when the terminal device is ready to send the uplink message; according to the The first time difference is to adjust the first uplink resource scheduled for the terminal device to the second uplink resource; send the first resource configuration information to the terminal device through the communication module 1501; wherein, the first resource configuration information Used to indicate the second uplink resource.
  • the communication device 1500 is applied to the terminal device in the embodiment of the present application shown in FIG. 5 or the UE in the embodiment of the present application shown in FIG. 10 .
  • the processor 1502 is specifically used for:
  • first information indicating a first time difference is: the difference between the time when the terminal device is able to send the uplink message and the time when the terminal device is ready to send the uplink message; by The communication module 1501 sends the first information; wherein the first information is used for the access network AN device to adjust the first uplink resource scheduled for the terminal device to the second uplink resource; through the communication module 1501 receives the first resource configuration information from the AN device; wherein the first resource configuration information is used to indicate the second uplink resource; and uses the communication module 1501 to send an uplink message through the second uplink resource.
  • the communication device 1500 is applied to the AN device in the embodiment of the present application shown in Figure 7 or Figure 11.
  • the processor 1502 is specifically used for:
  • the first time difference is: the difference between the time when the terminal device is able to send the uplink message and the time when the terminal device is ready to send the uplink message;
  • the first uplink resource scheduled for the terminal device is adjusted to the second uplink resource; and the first resource configuration information is sent to the terminal device through the communication module 1501; wherein, The first resource configuration information is used to indicate the second uplink resource.
  • the communication device 1500 is applied to the UPF in the embodiment of the present application shown in Figure 7 or Figure 11.
  • the processor 1502 is specifically used for:
  • the first time difference is: the difference between the time when the terminal device is able to send the uplink message and the time when the terminal device is ready to send the uplink message;
  • the second information is sent to the AN device through the communication module 1501; wherein the second information is used by the AN device to adjust the first uplink resource scheduled for the terminal device to the second uplink resource.
  • the communication device 1500 is applied to the first communication device in the embodiment of the present application shown in Figure 9, or the UPF in the embodiment of the present application shown in Figure 12, or the UPF shown in Figure 13 AN equipment in the embodiment of this application.
  • the processor 1502 is specifically used for:
  • the first indication is received through the communication module 1501; wherein the first indication contains indication information of the first quality of service QoS flow; according to the first indication, after receiving the first report through the first QoS flow After the first duration of the message, the first message is sent.
  • processor 1502 For the specific functions of the processor 1502, please refer to the description of the communication method provided in the above embodiments of the present application and examples, as well as the specific functional description of the communication device 1400 in the embodiment of the present application shown in Figure 14, which will not be repeated here. Repeat.
  • the memory 1503 is used to store program instructions and data.
  • program instructions may include program code including computer operating instructions.
  • the memory 1503 may include RAM, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1502 executes the program instructions stored in the memory 1503, and uses the data stored in the memory 1503 to implement the above functions, thereby realizing the above communication method provided by the embodiment of the present application.
  • the memory 1503 in Figure 15 of this application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be ROM, programmable ROM (PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM) ,EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • embodiments of the present application also provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, it causes the computer to execute the method provided in the above embodiments. .
  • the storage medium may be any available medium that can be accessed by the computer. Taking this as an example but not limited to: computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures. Any other medium that contains the desired program code and is capable of being accessed by a computer.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and implement the method provided in the above embodiments.
  • the chip system includes a processor and is used to support the computer device to implement the functions involved in each device in the above embodiments.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the embodiments of the present application provide a communication method, device and equipment.
  • the AN device can, after acquiring the first information indicating the first time difference, provide the terminal with the first time difference based on the first time difference.
  • the first uplink resource scheduled by the device is adjusted to the second uplink resource, and the first resource configuration information is sent to the terminal device.
  • the first time difference is: the difference between the time when the terminal device can send the uplink message and the time when the terminal device is ready to send the uplink message; the first resource configuration information is used to indicate the second uplink resource.
  • terminal equipment can periodically send uplink messages through periodic uplink resources scheduled by the AN equipment.
  • the AN device can adjust the uplink resources allocated to the terminal device based on the first time difference, thereby reducing the first time difference of subsequent uplink messages, thereby reducing the transmission delay of subsequent uplink messages.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及设备,用于降低时延。该方法为:AN设备可在获取用于指示第一时间差的第一信息之后,根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源,并向终端设备发送第一资源配置信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差;第一资源配置信息用于指示第二上行资源。目前,终端设备可通过AN设备调度的周期上行资源,周期性的发送上行报文。通过该方案,AN设备可根据第一时间差调整为终端设备分配的上行资源,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。

Description

一种通信方法、装置及设备
相关申请的交叉引用
本申请要求在2022年03月11日提交中国专利局、申请号为202210236314.6、申请名称为“一种通信方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置及设备。
背景技术
目前,移动通信系统(例如,第五代(the 5 thgeneration,5G)移动通信系统)已应用于工业现场领域。大量工业设备(例如可编程逻辑控制器(programmable logic controller,PLC)、输入输出(input/output,IO)等设备)可通过5G移动通信系统接入网络。
例如,IO设备可通过5G移动通信系统与PLC进行通信。当IO设备发送报文时,与该IO设备连接的终端设备在接收到来自IO设备的该报文后,可通过接入网(access network,AN)设备为该终端设备预先调度的上行资源发送该报文。然后,该报文可经由接入网设备和核心网设备传输至PLC。
在工业现场领域中,工业设备之间需要传输控制业务相关的报文。而控制业务对业务的实时性要求较高,例如,要求报文的传输时延为十毫秒级或者更低。
因此,本领域需要一种能够降低时延的方案。
发明内容
本申请提供一种通信方法、装置及设备,用于降低时延。
第一方面,本申请实施例提供了一种通信方法。该方法包括:AN设备可在获取用于指示第一时间差的第一信息之后,根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源,并向终端设备发送第一资源配置信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差;第一资源配置信息用于指示第二上行资源。
目前,终端设备可通过AN设备调度的周期上行资源,周期性的发送上行报文。通过该方法,AN设备可根据第一时间差调整为终端设备分配的上行资源,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在一种可能的设计中,AN设备可通过如下方式获取用于指示第一时间差的第一信息:AN设备接收来自终端设备、控制面网元或应用功能AF中至少一项的第一信息。该设计提供了多种AN设备获取第一信息的方式,使得AN设备可灵活的获取第一信息。
在一种可能的设计中,第一上行资源为以上行报文的发送周期为周期的资源;AN设备可将第一上行资源提前N个时间单元,得到第二上行资源;其中,N为正整数,N个时间单元是根据第一时间差确定的。可选的,N个时间单元可小于或等于第一时间差。通过 该设计,AN设备可根据第一时间差调整为终端设备分配的上行资源,使得终端设备准备发送上行报文的时间与能够发送该上行报文的上行资源更接近,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在一种可能的设计中,在根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源之前,AN设备可接收来自控制面网元的用于调整为终端设备调度的上行资源的指示。通过该设计,AN设备可基于控制面网元的指示来按需调整上行资源。
第二方面,本申请实施例提供了一种通信方法。该方法包括:终端设备在获取用于指示第一时间差的第一信息之后,可发送第一信息,以便AN设备将为终端设备调度的第一上行资源调整为第二上行资源。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。终端设备在接收到来自AN设备的用于指示第二上行资源的第一资源配置信息之后,可通过第二上行资源发送上行报文。
目前,终端设备可通过AN设备调度的周期上行资源,周期性的发送上行报文。通过该方法,AN设备可根据第一时间差调整为终端设备分配的上行资源,终端设备根据调整后的上行资源发送后续报文,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在一种可能的设计中,终端设备可向AN设备、控制面网元或AF中的至少一项发送第一信息。也就是说,终端设备可直接向AN设备发送第一信息,也可以通过控制面网元或AF中的至少一项向AN设备发送第一信息。通过该设计,终端设备可灵活的向AN设备发送第一信息。
在一种可能的设计中,在发送第一信息之前,终端设备可接收用于指示终端设备发送第一信息的指示。通过该设计,在接收到用于指示终端设备发送第一信息的指示之后,终端设备才上报第一信息,从而避免终端设备一直上报第一信息,进而可以节省上报第一信息的网络资源,并节省终端设备上报第一信息所需的电量。
在一种可能的设计中,终端设备还可接收用于指示第一阈值的信息;当第一时间差大于或等于第一阈值时,终端设备发送第一信息。当第一时间差较小时,可能并不需要通过调整第一时间差来减小时延。在该设计中,当第一时间差大于或等于第一阈值时,终端设备才上报第一信息,从而避免终端设备不必要的上报第一信息,进而可以节省上报第一信息的网络资源,并节省终端设备上报第一信息所需的电量。
第三方面,本申请实施例提供了一种通信方法。该方法包括:AN设备可在获取用于指示第一时间差的估计值的第二信息之后,根据第一时间差的估计值,将为终端设备调度的第一上行资源调整为第二上行资源,并向终端设备发送用于指示第二上行资源的第一资源配置信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。
通过该方法,AN设备可根据第一时间差的估计值调整为终端设备分配的上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在一种可能的设计中,终端设备可通过以下方式获取用于指示第一时间差的估计值的第二信息:
方式一:AN设备接收来自用户面网元的第二信息。
在方式一中,AN设备可在向终端设备发送第二资源配置信息之后,接收来自用户面网元的第二信息。其中,第二资源配置信息用于指示第一上行资源,第一上行资源包括以上行报文的发送周期为周期的资源,在至少一个发送周期内,第一上行资源还包括多个时间单元上的资源。
方式二:AN设备确定第二信息。
在该方式二中,AN设备可在向终端设备发送第二资源配置信息之后,根据通过第一上行资源接收来自终端设备的M个上行报文的时间,确定第二信息。其中,M为大于或等于2的整数。第二资源配置信息用于指示第一上行资源,第一上行资源包括以上行报文的发送周期为周期的资源,在至少一个发送周期内,第一上行资源还包括多个时间单元上的资源。
通过该设计,AN设备可灵活的获取用于指示第一时间差的估计值的第二信息。
在一种可能的设计中,当M=3时,AN设备可确定第一时间差的估计值为:Avg(a,b);从而确定出用于指示第一时间差的估计值的第二信息。其中,a=T1+CT-T2,b=T3-T2-CT;其中,Avg表示取平均运算,T1为接收到M个上行报文中第一个上行报文的时间,T2为接收到M个上行报文中第二个上行报文的时间,T3为接收到M个上行报文中第三个上行报文的时间,CT为发送周期。通过该设计,AN设备可准确确定出第一时间差的估计值。
在一种可能的设计中,AN设备可确定第二上行资源包括:与第一资源的距离为发送周期的整数倍的资源;其中,第一资源为将多个时间单元中第一个时间单元上的资源提前N个时间单元得到的资源,N为正整数,N个时间单元是根据第一时间差的估计值确定的。可选的,N个时间单元可小于或等于第一时间差。通过该设计,AN设备可根据第一时间差的估计值调整为终端设备分配的上行资源,使得终端设备准备发送上行报文的时间与能够发送该上行报文的上行资源更接近,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
第四方面,本申请实施例提供了一种通信方法。该方法包括:用户面网元在获取用于指示第一时间差的估计值的第二信息之后,可向接入网AN设备发送第二信息,以便AN设备将为终端设备调度的第一上行资源调整为第二上行资源;其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。
通过该方法,用户面网元向AN设备发送用于指示第一时间差的估计值的第二信息,这样,AN设备可根据第一时间差的估计值调整为终端设备分配的上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在一种可能的设计中,用户面网元可根据接收来自终端设备的M个上行报文的时间,确定第二信息;其中,M为大于或等于2的整数。
可选的,当M=3时,用户面网元可确定第一时间差的估计值为:Avg(a,b);确定用于指示第一时间差的估计值的第二信息;其中,a=T1+CT-T2,b=T3-T2-CT;其中,Avg表示取平均运算,T1为接收到M个上行报文中第一个上行报文的时间,T2为接收到M个上行报文中第二个上行报文的时间,T3为接收到M个上行报文中第三个上行报文的时间,CT为发送周期。
通过该设计,用户面网元可准确确定出第一时间差的估计值。
第五方面,本申请实施例提供了一种通信方法。该方法包括:第一通信设备在接收第一指示之后,可在通过第一QoS流接收到第一报文的第一时长之后,发送第一报文。其中,第一指示中包含第一QoS流的指示信息。
通过该方法,第一通信设备可对第一QoS流传输的报文进行延迟转发,从而精确控制报文的传输时间和时延,进而达到时延优化的效果。并且,该方法中,第一通信设备基于QoS流来进行延迟转发,可避免多个通信设备的上行业务流同时到达时产生的空口调度冲突。
在一种可能的设计中,第一通信设备可通过以下实现方式之一来接收第一指示:
实现方式一:第一通信设备接收来自会话管理功能网元的第一指示。
实现方式二:第一通信设备接收来自控制面网元或AF的用于请求建立或修改第二QoS流的消息;其中,该消息中可包含第一指示。
通过该设计,第一通信设备可方便的获取到第一指示,从而对通过第一QoS流接收到的报文进行延迟发送。
在一种可能的设计中,第一报文可用于触发上行报文的发送。例如,第一报文为应用准备响应时,该应用准备响应可用于触发IO设备发送上行报文。通过延迟发送第一报文,可延迟触发IO设备发送上行报文,使得IO设备发送上行报文的时间发生延迟;这样,终端设备接收到该上行报文的时间也发生延迟,从而可以降低终端设备能够发送上行报文的时间和准备发送上行报文的时间差(即第一时间差),进而可减小上行报文的传输时延。另外,通过延迟发送第一报文来使IO设备发送上行报文的时间发生延迟时,不需要对IO设备进行改动,即不需要IO设备具有调整发包时刻的能力,实现较为方便。
在一种可能的设计中,在发送第一报文之前,第一通信设备可接收来自控制面网元或AF的用于指示第一时长的信息。通过该设计,第一通信设备可方便的获取第一时长。
在一种可能的设计中,在发送第一报文之前,第一通信设备可根据第三信息,确定第一时长;
其中,第三信息包括以下至少一项:
第一传输时延;
接入网AN设备为终端设备发送上行报文配置的上行资源;
上行资源的周期;
第一通信设备接收到第一报文的时间;
其中,第一传输时延包括:第一通信设备与用于发送上行报文的输入输出IO设备之间的传输时延,IO设备的处理时延,以及IO设备与终端设备之间的传输时延。
通过该设计,第一通信设备可确定第一时长,从而节省传输用于确定第一时长所需信息的时间。
在一种可能的设计中,在根据第三信息,确定第一时长之前,第一通信设备可通过以下方式之一来获取第三信息:
方式1:第一通信设备接收来自AN设备、控制面网元和AF中至少一项的第三信息。
方式2:第一通信设备获取预先配置的第三信息。
通过该设计,第一通信设备可灵活获取第三信息。
第六方面,本申请实施例提供了一种通信装置,包括用于执行以上任一方面中各个步骤的单元。
第七方面,本申请实施例提供了一种通信设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于读取并执行存储元件存储的程序和数据,以使得本申请以上任一方面提供的方法被实现。
第八方面,本申请实施例提供了一种通信系统,包括:用于执行第一方面提供的方法的AN设备,用于执行第二方面提供的方法的终端设备。
第九方面,本申请实施例提供了一种通信系统,包括:用于执行第三方面提供的方法的AN设备,用于执行第四方面提供的方法的用户面网元。
第十方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述任一方面提供的方法。
第十一方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行上述任一方面提供的方法。
第十二方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。
第十三方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
上述第六方面至第十三方面中任一方面可以达到的技术效果可以参照上述第一方面至第五方面中任一方面中任一种可能设计可以达到的技术效果说明,重复之处不予论述。
附图说明
图1为本申请实施例提供的一种通信系统的架构图;
图2为本申请实施例提供的另一种通信系统的架构图;
图3为本申请实施例提供的IO设备与PLC之间的通信方法的流程图;
图4为本申请实施例提供的时延偏移的示意图;
图5为本申请实施例提供的第一种通信方法的流程图;
图6为本申请实施例提供的第一种通信方法中上行报文传输的示意图;
图7为本申请实施例提供的第二种通信方法的流程图;
图8为本申请实施例提供的第二种通信方法中上行报文传输的流程图;
图9为本申请实施例提供的第三种通信方法的流程图;
图10为本申请实施例提供的第四种通信方法的流程图;
图11为本申请实施例提供的第五种通信方法的流程图;
图12为本申请实施例提供的第六种通信方法的流程图;
图13为本申请实施例提供的第七种通信方法的流程图;
图14为本申请实施例提供的一种通信装置的结构图;
图15为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种通信方法、装置及设备,用以降低时延。其中,方法、装置和设备是基于同一技术构思的,由于解决问题的原理相似,因此装置、设备与方法的实施可以相互参见,重复之处不再赘述。
通过本申请实施例提供的方案,接入网(access network,AN)设备可在获取用于指示第一时间差的第一信息之后,根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源,并向终端设备发送第一资源配置信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差;第一资源配置信息可用于指示第二上行资源。目前,终端设备可通过AN设备调度的周期上行资源,周期性的发送上行报文。通过该方案,AN设备可根据第一时间差调整为终端设备分配的上行资源,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、通信设备,泛指具有通信功能的设备。示例性的,所述通信设备可以但不限于为终端设备、接入网(access network,AN)设备、接入点、核心网(core network,CN)设备、IO设备、PLC等。
2)、会话,为移动通信系统中的会话管理网元针对终端设备建立的终端设备、接入网设备、用户面网元以及数据网络(data network,DN)之间的连接,用于传输所述终端设备和所述DN之间的用户面数据,例如协议数据单元(protocol data unit,PDU)会话。
终端设备可以与移动通信系统(例如,5G通信系统)建立一个或者多个PDU会话,每个PDU会话中可以建立一个或者多个服务质量(quality of service,QoS)流(flow)。
每个QoS流用于传输一个业务中同一QoS需求(可靠性或时延)的数据。QoS流可由QoS流标识(QoS flow identifier,QFI)来标识。
3)、时间单元,泛指时间的单位。示例性的,所述时间单元可以但不限于为子帧(subframe)、时隙(slot)、符号、物理时隙、可用时隙等。其中,所述符号可以是时域符号(例如,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)等。
4)、时隙(slot)
一个slot可以包含若干个符号。例如,一个slot可以包括14个OFDM符号;或者,一个slot可以包含12个OFDM符号;或者,一个slot可以包含7个OFDM符号。
一个slot中的OFDM符号可以全用于上行传输;也可以全用于下行传输;还可以一部分用于下行传输,一部分用于上行传输,一部分灵活时域符号(可以灵活的配置为用于上行或者下行传输)。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。
出于系统前向兼容性考虑,slot包含的OFDM符号的数目以及slot用于上行传输和/或下行传输不限于以上示例。
5)、下行传输方向中,网络侧(例如,接入网设备或核心网)向终端设备发送的数据;上行传输方向中,终端设备向网络侧发送数据。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即“一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指这些项(个)中 的任意组合,包括单项(个)或复数项(个)的任意组合。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不应理解为指示或暗示相对重要性,也不应理解为指示或暗示顺序。
另外,本申请实施例中的“大于或等于”可以替换为“大于”,“小于或等于”和“小于”可以互相替换。
下面将结合附图,对本申请实施例应用的通信系统进行描述。
图1示出了本申请实施例提供的通信方法适用的一种可能的通信系统的架构。如图1所示,所述通信系统包括三部分:终端设备(图中以用户设备(user equipment,UE)为例说明)、移动通信系统和DN。其中,所述移动通信系统为终端设备提供接入服务和连接服务。
终端设备为用户侧能够接收和发射无线信号的实体,需要通过移动通信系统访问DN。可选的,所述终端设备可以作为其他数据采集器或其他终端设备的中继设备,从而使这些设备能够通过移动通信系统与DN进行业务通信。
在本申请中,终端设备又可以称为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、车载设备、客户终端设备(customer premise equipment,CPE)、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
移动通信系统可以接入至少一个DN,同一个DN也可以被至少一个移动通信系统接入。其中,所述移动通信系统可包括AN和CN两部分。
部署在AN中的网络设备为AN设备,具体可以负责无线接入、空口侧的无线资源管理、QoS管理、数据压缩和加密、用户面数据转发等功能。
AN设备作为无线接入网中的节点,还可以称为基站、无线接入网(radio access network,RAN)节点(或设备)、接入点(access point,AP)。目前,一些AN设备的举例为:新一代节点B(generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB),或基带单元(base band unit,BBU)等。
另外,在一种网络结构中,所述AN设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将AN设备的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
部署在CN中的网元可以统称为CN设备。CN设备能够将终端设备接入到不同的数据网络,以及进行计费、移动性管理、会话管理、用户面转发等业务。在不同制式的移动通信系统中,具有相同功能的CN设备的名称可以存在差异。然而,本申请实施例不限定具 有每个功能的CN设备的具体名称。下面以5G移动通信系统中的CN为例,对CN中的主要网元的功能进行具体介绍。5G移动通信系统的CN中的网元可以分为控制面网元和用户面网元两类。
用户面网元包括用户面功能(user plane function,UPF),主要负责分组数据包转发、QoS控制、计费信息统计等。本申请实施例也可用于以下场景:现场传感器等设备通过UE以及AN接入核心网,通过UPF在用户面进行数据传输。
控制面网元主要负责业务流程交互、向用户面下发数据包转发策略、QoS控制策略等。控制面网元主要包括:接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy and charging function,PCF)、应用功能(application function,AF)、统一数据管理(unified data management,UDM)、网络暴露功能(network exposure function,NEF)(图中未示出)。
其中,PCF主要负责策略控制。例如,PCF可以根据AF的请求信息、运营商策略、用户签约信息等生成控制策略,控制策略可用于控制网络中通信设备的行为;PCF还可将控制策略下发至其他控制面网元,以便其他控制面网元执行相应的策略。
AMF是核心网网元与AN设备的接口网元,主要负责UE的接入管理和移动性管理。AMF可根据PCF提供的UE移动性以及网络选择策略来进行接入管理和移动性管理,例如,负责UE的状态维护、UE的可达性管理、非移动性管理(mobility management,MM)非接入层(non-access-stratum,NAS)消息的转发等。
SMF主要负责UE的会话管理。SMF可根据PCF提供的会话以及业务流控制策略来进行会话管理,例如,管理PDU会话的建立和删除、维护PDU会话上下文等。
AF主要负责提供应用侧对移动通信系统(也可以称为网络侧)的需求,例如,对业务流的QoS需求、对UE的移动性需求等。
UDM主要负责用户签约数据管理、用户标识管理等。
NEF主要负责提供网络能力开放相关的框架、鉴权和接口,在移动通信系统的网络功能和其他网络功能之间传递信息。
DN是位于移动通信系统之外的网络。例如,所述DN可以是分组数据网络(packet data network,PDN),如因特网(Internet)、因特网协议(internet protocol,IP)多媒体业务(IP Multi-media Service,IMS)网络、某些应用专用的数据网络、以太网、IP本地网络等,本申请对此不作限定。DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。
另外,图1中展示了通信系统中各个网元之间的交互关系以及对应的接口,各个网元之间的接口名称及功能如下:
1)、N7:PCF与SMF之间的接口,用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度的控制策略。
2)、N15:PCF与AMF之间的接口,用于下发UE移动性控制策略及接入控制相关策略。
3)、N5:AF与PCF之间的接口,用于应用业务请求下发以及网络事件上报。其中,应用业务请求可以携带业务对于带宽、资源抢占优先级等QoS的要求。网络事件可以包括但不限于用于无线接入类型(例如,第3代(3rd generation,3G)或4G等接入方式)。
4)、N4:SMF与UPF之间的接口,用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。其 中,用户面的信息可以包括但不限于:用户面所检测的应用信息、使用量监控信息等。
5)、N11:SMF与AMF之间的接口,用于传递AN设备和UPF之间的用户面隧道信息、传递发送给UE的控制消息、传递发送给AN设备的无线资源控制信息等。
6)、N2:AMF与AN设备之间的接口,用于传递核心网侧至AN设备的无线承载控制信息等。
7)、N1:AMF与UE之间的接口,接入无关,用于向UE传递QoS控制规则等。
8)、N8:AMF与UDM间的接口,用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册UE当前移动性管理相关信息等。
9)、N10:SMF与UDM间的接口,用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册UE当前会话相关信息等。
10)、N3:AN设备和UPF之间的接口,用于在AN设备和UPF之间传输用户面数据等。
11)、N6:UPF和DN之间的接口,用于在UPF和DN之间传输数据等。
可选的,如图2所示,在图1所示架构的基础上,通信系统还可以包括:IO设备和PLC。其中,IO设备和PLC可用于工业现场网领域,也可以用于其他领域,本申请对此不作限定。下面对图2所示的通信系统中新增的通信设备进行具体说明。
其中,IO设备为能够接收和发送信号的实体,可通过终端设备与移动通信系统进行通信。例如,在园区视频监控场景中,IO设备可为摄像设备。每个摄像设备可通过UE接入5G网络。摄像设备可周期性的生成流量较大的输入帧(即I帧)。
IO设备可通过无线的方式与终端设备进行通信,例如,通过无线保真(Wireless Fidelity,WiFi)、蓝牙或针对工业现场网的无线技术;IO设备也可以通过有线的方式与终端设备进行通信。
PLC也可称为IO控制器(IO controller),可用于控制IO设备。例如,PLC可用于控制PLC与IO设备的连接,控制IO设备提供上行报文等。
需要说明的是,图1所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。因此本申请实施例提供的通信方法还可以适用于各种制式的通信系统,例如:长期演进(long term evolution,LTE)通信系统、5G通信系统、第六代(The 6th Generation,6G)通信系统以及未来通信系统、车到万物(vehicle to everything,V2X)、长期演进-车联网(LTE-vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)、车联网、机器类通信(machine type communications,MTC)、物联网(internet of things,IoT)、长期演进-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)、物联网等。另外,还需要说明的是,本申请实施例也不对通信系统中各网元的名称进行限定,例如,在不同制式的通信系统中,各网元可以有其它名称;又例如,当多个网元融合在同一物理设备中时,该物理设备也可以有其他名称。
为便于理解本申请方案,下面对相关背景技术进行介绍说明。
一、用户面QoS保障机制
5G移动通信系统可以QoS流(QoS Flow)粒度来对业务的服务质量进行保障。具体的,SMF在建立QoS Flow或修改QoS Flow时,可向AN设备发送QoS流标识(QoS Flow  Identifier,QFI)以及该QFI所对应的QoS配置文件(QoS Profile),并分别向UE和UPF发送QFI及对应的QoS规则。其中,QoS规则中可包括上行/下行包过滤集(Packet Filter Set,可包含流匹配信息)及匹配优先级(Precedence)信息。当收到下行数据包时,UPF可根据Packet Filter Set(流匹配信息)对该数据包进行匹配,并在数据包的包头添加所匹配的QFI。当需发送上行数据包时,UE可根据QoS规则中的Packet Filter Set(流匹配信息)在上行数据包的包头中添加该上行数据包所匹配的QFI。当收到上行数据包或下行数据包时,AN设备可根据包头中的QFI所对应的QoS Profile,对数据包执行相应的QoS保障。
二、空口调度机制
1、传统的上行调度原理:当需要发送上行数据时,终端设备在物理上行控制信道(physical uplink control channel,PUCCH)上发送调度请求(scheduling request,SR)。AN设备在接收到SR之后,可向终端设备发送上行授权。终端设备可在上行授权指示的位置(即上行授权所指示的时频资源)发送上行数据。
在传统的上行调度流程中,终端设备只能根据配置周期性发送SR;根据协议,SR的发送周期最大可达80毫秒(ms)。因此,通过该流程进行上行数据传输,时延可能较大。
2、上行预调度原理:
为了降低上行时延,引入了上行预调度功能。在上行预调度流程中,AN设备可对终端设备进行主动授权,也就是说,AN设备可为终端设备预先配置上行资源,而不需要等待接收到来自终端设备的SR之后再进行上行授权。在上行预调度流程下,即使终端设备不需要发送上行数据,AN设备也会主动给终端设备进行主动授权,因此,可能会造成上行资源的浪费;并且,AN设备可能为多个终端设备预配置相同的上行资源,从而会引入上行干扰。
3、智能预配置原理:
为了避免上行资源的浪费和上行干扰,引入了智能预调度功能。该功能可由下行业务触发。具体的,在AN设备向终端设备发送下行数据之后,考虑到终端设备会对该下行数据进行相应的反馈,从而产生上行数据,AN设备可在发送下行数据之后的一定时间内主动给终端进行上行授权,分配上行资源。
4、上行免调度(grant free,也称为免授权调度)原理:
对于物理上行共享信道(physical uplink shared channel,PUSCH),第三代合作伙伴计划(3rd generation partnership project,3GPP)协议(例如,版本15(release 15,R15)协议)支持免授权调度。AN设备可以周期性的为终端设备分配免授权上行资源;这样,当终端设备需要发送上行数据时,可通过免授权上行资源发送上行数据,从而可减少上行数据的传输时延。具体的,AN设备可以向终端设备发送用于配置上行免调度资源的第一无线资源控制(radio resource control,RRC)信令;然后,AN设备可通过向终端设备发送第二RRC信令或下行控制信息(downlink control information,DCI)来激活配置的上行免调度资源。在上行免调度资源被激活后,终端设备可在上行免调度资源上直接发送上行数据,而无需先向AN设备发送SR或缓冲状态报告(buffer status report,BSR),且在收到AN设备发送的上行授权之后,才能发送上行数据,从而可以达到缩短时延的目的。
5、下行调度基本流程:
AN设备根据终端设备上报的信道状态,结合UE能力等信息,为终端设备分配下行资源,并通过物理下行控制信道(physical downlink control channel,PDCCH)向终端设备 发送用于指示分配的下行资源的调度信息。AN设备可在分配给终端设备的下行资源上向终端设备发送下行数据;终端设备根据从PDCCH信道接收到的调度信息确定分配的下行资源,在该下行资源上接收下行数据并进行解调。
6、下行半持续调度原理:
AN设备可向终端设备发送用于配置周期性的下行资源的第三RRC信令,并通过向终端设备发送使用配置调度无线网络临时标识(radio network temporary identifier,RNTI)(configured scheduling RNTI,CS-RNTI)标识的PDCCH来激活该周期性的下行资源。其中,该CS-RNTI标识的PDCCH上可承载调度该周期性的下行资源所需的信息,并指示该下行资源可以根据无线连接控制(radio resource control,RRC)(例如,第三RRC信令)所定义的周期性来进行复用。另外,所配置的下行资源也可以由CS-RNTI标识的PDCCH来进行去激活,也就是说,AN设备可通过向终端设备发送使用CS-RNTI标识的PDCCH来去激活该周期性的下行资源。
三、IO设备与PLC之间的通信
PLC可通过移动通信系统(例如,5G核心网(5G core,5GC))与IO设备进行通信。该通信过程可包括如下步骤A1-A5:
A1:IO设备与PLC建立连接。具体内容可参考下文图3中的S301-S308。此处暂不展开。
A2:当IO设备发送上行报文(也可以称为上行业务流、上行实时(realtime,RT)流、RT流或上行数据包等)时,IO设备可将该上行报文发送给与该IO设备连接的UE(下面简称为第一UE)。
其中,IO设备可以周期性的向第一UE发送上行报文。其中,IO设备发送上行报文的周期可为循环时间(cycle time,CT)。
步骤A2的具体内容可参考下文图3中的S309。此处暂不展开。
A3:第一UE在接收到该上行报文之后,可通过AN设备分配的周期性资源向AN设备发送上行报文。其中,AN设备分配的周期性资源的周期与IO设备周期性发送上行报文的周期相同。
可选的,AN设备可通过如下方式分配周期性的资源:AN设备可基于AF或5GC的请求为上述上行报文进行上行预调度,并向第一UE发送配置授权配置(ConfiguredGrantConfig)消息。其中,该ConfiguredGrantConfig消息可包含用于指示上行预调度资源的配置信息,该配置信息中可包括:周期(该周期可为CT)、时域资源、频域资源、调制编码方案等信息。
A4:AN设备向UPF发送接收到的上行报文。
A5:UPF向PLC发送接收到的上行报文。
其中,UPF可通过以下方式之一向PLC发送该上行报文。
1、PLC作为DN,因此,UPF和PLC之间的接口可以为N6接口。UPF可通过N6接口向PLC发送该上行报文。
2、PLC通过UE(下面简称为第二UE)连接至移动通信系统。UPF可通过PLC侧的UPF、AN设备和第二UE向PLC发送该上行报文。
在该方法中,第一UE在接收到来自IO设备的上行报文之后,可能不能马上就发送该上行报文。例如,第一UE在第一时刻接收到来自IO设备的上行报文之后,可根据AN设 备配置的上行预调度的时域资源和频域资源来发送该上行报文。具体的,若AN设备为第一UE配置了第一时刻之后的第二时刻的资源,则第一UE可在第二时刻发送该上行报文。又例如,第一UE接收到来自IO设备的上行报文之后,在第一时刻完成对上行报文的预处理(例如,添加包头),在AN设备配置的第二时刻发送该上行报文。因此,第一UE准备发送上行报文和实际发送报文之间存在时间差,从而影响了上行报文传输的整体时延。
四、IO设备与PLC之间的连接建立过程
图3示出了IO设备与PLC之间的连接建立过程。下面结合图3,对该过程进行说明。
S301:PLC(也称为IO控制器(IO controller))向IO设备发送连接请求(connect req),用于请求在PLC和IO设备之间建立连接。
S302:IO设备向PLC发送连接响应(connect rsp)。
S303:PLC向IO设备发送写请求(write req)。其中,该write req可用于请求在PLC和IO设备之间传递信息。
S304:IO设备向PLC发送写响应(write rsp)。
S305:PLC向IO设备发送参数下载结束请求(ParameterDownloadEnd req,即PrmEnd req)。
S306:IO设备向PLC发送参数下载结束响应(ParameterDownloadEnd rsp,即PrmEnd rsp)。
S307:IO设备向PLC发送应用准备请求(ApplRdy req)。
S308:PLC向IO设备发送应用准备响应(ApplRdy rsp)。
通过S307和S308,IO设备和PLC之间用于通信的应用已准备就绪。
S309:IO设备向PLC发送控制请求(control request,CR)输入(input)。
其中,CR输入中可包含上行报文。
另外,在接收到应用准备响应之后,IO设备开始向PLC发送CR输入。换句话说,到应用准备响应可用于触发IO设备发送CR输入,即触发IO设备发送上行报文。
S310:PLC向IO设备发送CR输出(output)。
另外,在接收到应用准备响应之后,IO设备可以CT为周期重复执行S309和S310,也就是说,IO设备可以CT为周期发送上行报文。
四、时延偏移(也称为时延偏差、时钟偏差)原理
多个通信设备中可能都存在用于确定时间信息的时钟。当多个通信设备中的时钟未进行时钟同步时,每个通信设备的初始相位不同,且相位会随着时间变化发生漂移,这将导致通信设备之间的时延偏移出现变化。时延偏移原理应用到图2所示的通信系统中时,IO设备和/或PLC中的时钟与绝对时刻的时延偏移将越来越大。每个IO设备的时钟与绝对时刻之间的时延偏移会单调漂移,并且,不同IO设备的时钟相对于绝对时刻的时延偏移的速度不一样。在图4所示的例子中,一个PLC可控制8个IO设备(即1主8从),PLC的发送时钟为1ms,8个IO设备的CT均为8ms,大约有50万个CR输入报文需要发送。图4中横轴为时间,单位可为秒(s);纵轴为IO设备中的时钟与绝对时刻(例如PLC的时钟)之间的时延偏移,单位可为毫秒(ms)。如图4所示,随着时间的推移,没有进行时钟同步的IO设备中的时钟相对于绝对时刻的时延偏移越来越大;这样,不同通信设备之间的时延偏移也可能越来越大。因此,IO设备根据CT发送上行报文的时间与AN设备分配给终端设备的周期为CT的资源之间的时间偏差也可能越来越大,从而导致在完成初 始配置后,终端设备准备发送上行报文的时间和终端设备能够发送上行报文的时间之差也可能随时间增加。
如上所述,第一UE准备发送上行报文和实际发送报文之间存在时间差,从而影响了上行报文传输的整体时延。为了降低时延,可以减小第一UE准备发送上行报文和实际发送报文之间存在时间差。
目前提供了一种减小该时间差的方法。具体的,AF可通过5GC向AN设备发送时间敏感通信(time sensitive communication,TSC)辅助信息(TSC assistance information,TSCAI)信息。该TSCAI信息可包括:TSC流方向(例如,上行和/或下行)、周期、业务流到达时间(即Burst Arrival time,例如,对于下行数据,数据突发的第一个数据包到达AN设备入口的最晚可能的时间;又例如,对于上行数据,数据突发的第一个数据包到达UE出口的最晚可能的时间)、生存时间(survival time,ST)。然后,AN设备可以根据TSCAI信息、各个流的特征以及业务流的到达时间来为UE配置资源,从而减小UE准备发送上行报文和实际发送报文之间存在时间差。
然而,上述TSCAI信息中所包含的业务流到达时间为3GPP协议中的可选参数。并且,该参数是由SMF来确定的。具体的,SMF可根据以下信息确定该参数:UPF对移动通信系统内部或外部的通信设备(例如,终端设备)的测量结果,以及移动通信系统内部或外部的通信设备的测量报告。上述信息可以是周期性获得的。例如,通信设备周期性的上报测量报告。当移动通信系统内外部不是一个时钟系统时或5GC与终端设备未启用时钟同步时,周期性获取的上述信息所表示的时间本身就存在偏差,基于偏差的时间确定的参数的准确性也不高。因此,通过上述方法调整的资源的准确性也不高,从而可能不能有效降低时延。
另外,当多个UE或者多个IO设备的上行业务流同时到达时,还会存在空口调度冲突。
下面结合附图对本申请提供的方案进行说明。
本申请实施例提供了一种通信方法,该方法可应用于图1-图2所示的通信系统中。在该方法中,AN设备可根据终端设备确定的第一时间差来调整为终端设备调度的上行资源,从而减小终端设备发送的后续上行报文的第一时间差。下面参阅图5所示的流程图,对该方法的流程进行具体说明。
S501:终端设备获取用于指示第一时间差的第一信息。其中,第一时间差可为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。
其中,终端设备准备发送上行报文的时间可以但不限于为以下之一:终端设备接收到该上行报文的时间(例如,终端设备接收到来自IO设备的上行报文的时间)、终端生成上行报文的时间(例如,终端设备接收到来自IO设备的上行报文,并完成对该上行报文的预处理的时间)。
在一些可能的方式中,终端设备能够发送上行报文的时间可以为终端设备准备发送上行报文之后的上行资源所对应的时间。例如,终端设备在4ms处准备发送上行报文,AN设备为终端设备调度了位于3ms、7ms、11ms、15ms等处的上行资源,则终端设备能够发送上行报文的时间可为7ms、11ms或15ms处的上行资源。
在另一些可能的方式中,终端设备能够发送上行报文的时间可以为终端设备实际发送 上行报文的时间。例如,终端设备在4ms处准备发送上行报文,AN设备为终端设备调度了位于3ms、7ms、11ms、15ms等处的上行资源,终端设备在11ms处的上行资源发送上行报文,则终端设备能够发送上行报文的时间为11ms处的上行资源。
例如,如图6所示,终端设备在Ta时刻接收到来自IO设备的上行报文1,在Tb时刻能够发送该上行报文1,则对于上行报文1,终端设备可确定第一时间差为Tb-Ta。
另外,用于指示第一时间差的第一信息可直接为第一时间差的值(例如,3ms),也可以为能够间接指示第一时间差的信息(例如,当该信息为第一值时,第一时间差为3ms)。
此外,该上行报文的发送周期和终端设备获取的用于发送该上行报文的上行资源的周期相同。例如,当终端设备从IO设备接收该上行报文时,IO设备发送该上行报文的周期(例如,CT)与AN设备为终端设备调度的上行资源的周期相同。又例如,当终端设备周期性的生成该上行报文时,终端设备生成该上行报文的周期(也可以说,终端设备准备发送该上行报文的周期)与AN设备为终端设备调度的上行资源的周期相同。
S502:终端设备向AN设备发送第一信息;相应地,AN设备获取第一信息。
可选的,终端设备可直接向AN设备发送第一信息,也可以间接向AN设备发送第一信息(例如,通过控制面网元(例如,SMF)或AF中至少一项向AN设备发送第一信息)。因此,终端设备可向AN设备、控制面网元或AF中的至少一项发送第一信息。相应地,AN设备可接收来自终端设备、控制面网元或AF中至少一项的第一信息。其中,AF可为工业现场使能服务(industry field enable service,IFES)。
另外,第一信息可承载在现有的消息(例如,测量报告等)中,也可以承载在新的消息中,本申请对此不做限定。
S503:AN设备根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源。
AN设备可根据该第一时间差,调整为终端设备调度的上行资源,使得为终端设备调度的周期性的上行资源与终端设备准备发送上行报文的时间更接近,换句话说,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小。
S504:AN设备向终端设备发送第一资源配置信息。其中,第一资源配置信息可用于指示第二上行资源。相应地,终端设备接收第一资源配置信息。
其中,第一资源配置信息可以携带在现有的消息(例如,RRC配置(RRC configuration)消息或空口配置消息)中,也可以携带在新的消息中,本申请对此不做限定。
S505:终端设备通过第二上行资源发送上行报文。
例如,如图6所示,终端设备在Tc时刻接收到来自IO设备的上行报文2,在Td时刻能够发送该上行报文2,则对于上行报文2,终端设备可确定第一时间差为Td-Tc。上行报文2的第一时间差小于上行报文1的第一时间差。
通过该方法,AN设备可根据第一时间差调整为终端设备分配的上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
可选的,在S503中,AN设备可通过如下方式来将为终端设备调度的第一上行资源调整为第二上行资源:
AN设备可将第一上行资源提前N个时间单元,得到第二上行资源。其中,N为正整 数,N个时间单元是根据第一时间差确定的。并且,第一上行资源为以上行报文的发送周期(例如,CT)为周期的资源。这样,第二上行资源也为以上行报文的发送周期为周期的资源。
可选的,N个时间单元可小于或等于第一时间差。
通过该方法,AN设备可将第一上行资源提前N个时间单元,得到第二上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
可选的,在S503之前,上述方法还可包括:AN设备接收来自控制面网元的用于调整为终端设备调度的上行资源的指示。
其中,该控制面网元可为以下至少一项:SMF、AMF、PCF。
可选的,该用于调整为终端设备调度的上行资源的指示可以为消息,也可以为消息中的信元。具体地,当用于调整为终端设备调度的上行资源的指示为信元时,用于调整为终端设备调度的上行资源的指示可以复用现有消息中的信元,也可以是现有消息中的新的信元。例如,所述信元可以为第一指示字段,当该字段取值为第二值时,可以指示AN设备调整为终端设备调度的上行资源。
另外,AN设备可在建立用于传输上行报文的QoS流的过程中,接收到来自控制面网元的用于调整为终端设备调度的上行资源的指示。
通过该方法,AN设备可根据控制面网元的指示,来按需来调整为终端设备调度的上行资源。
可选的,在S502之前,上述方法还可包括:终端设备接收用于指示终端设备发送第一信息的指示。
其中,该用于指示终端设备发送第一信息的指示可以是消息,也可以为消息中的信元。具体地,当该用于指示终端设备发送第一信息的指示为信元时,该用于指示终端设备发送第一信息的指示可以复用现有消息中的信元,也可以是现有消息中的新的信元。例如,所述信元可以为第二指示字段,当该字段取值为第三值时,可以指示终端设备发送第一信息。
另外,终端设备可在建立用于传输上行报文的QoS流的过程中,接收到来自控制面网元或AN设备的用于调整为终端设备调度的上行资源的指示。其中,该控制面网元可为以下至少一项:SMF、AMF、PCF。
通过该方法,在接收到用于指示终端设备发送第一信息的指示之后,终端设备才上报第一信息,从而避免终端设备一直上报第一信息,进而可以节省上报第一信息的网络资源,并节省终端设备上报第一信息所需的电量。
可选的,上述方法还包括:终端设备接收用于指示第一阈值的信息。在S502中,当第一时间差大于或等于第一阈值时,终端设备发送第一信息。
其中,用于指示第一阈值的信息可直接为该第一阈值,也可以为间接指示第一阈值的信息。用于指示第一阈值的信息可以包含在现有的消息中,也可以包含在新的消息中,本申请对此不做限制。
另外,终端设备可在建立用于传输上行报文的QoS流的过程中,接收到来自控制面网 元的用于指示第一阈值的信息。其中,该控制面网元可为以下至少一项:SMF、AMF、PCF。
本申请对终端设备接收用于指示终端设备发送第一信息的指示和接收用于指示第一阈值的信息的执行顺序不作限定,终端设备可以先接收用于指示终端设备发送第一信息的指示,再接收用于指示第一阈值的信息;也可以先接收用于指示第一阈值的信息,再接收用于指示终端设备发送第一信息的指示;还可以同时接收用于指示终端设备发送第一信息的指示和用于指示第一阈值的信息。
当第一时间差较小时,可能并不需要通过调整第一时间差来减小时延。在本方法中,当第一时间差大于或等于第一阈值时,终端设备才上报第一信息,从而避免终端设备不必要的上报第一信息,进而可以节省上报第一信息的网络资源,并节省终端设备上报第一信息所需的电量。
本申请实施例提供了一种通信方法,该方法可应用于图1-图2所示的通信系统中。在该方法中,AN设备可根据第一时间差的估计值来调整为终端设备调度的上行资源,从而减小终端设备发送的后续上行报文的第一时间差。下面参阅图7所示的流程图,对该方法的流程进行具体说明。
S701:AN设备获取用于指示第一时间差的估计值的第二信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。
其中,第一时间差的具体内容可参考S501,此处不再赘述。
可选的,第二信息可直接为第一时间差的估计值(例如,3ms),也可以为间接指示第一时间差的估计值的信息(例如,当该信息为第四值时,第一时间差的估计值为3ms)。
S702:AN设备根据第一时间差的估计值,将为终端设备调度的第一上行资源调整为第二上行资源。
AN设备可根据该第一时间差的估计值,调整为终端设备调度的上行资源,使得为终端设备调度的周期性的上行资源与终端设备准备发送上行报文的时间更接近,换句话说,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小。
S703:AN设备向终端设备发送第一资源配置信息。其中,第一资源配置信息可用于指示第二上行资源。
S703的具体内容可参考S504,此处不再赘述。在S703之后,终端设备可执行S505的操作,此处也不赘述。
通过该方法,AN设备可根据第一时间差的估计值调整为终端设备分配的上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
可选的,在S701中,AN设备可通过如下方式之一获取用于指示第一时间差的估计值的第二信息。
方式一:用户面网元向AN设备发送第二信息。相应的,AN设备接收来自用户面网元的第二信息。
可选的,该方式一可包括步骤B1-步骤B3:
B1:AN设备向终端设备发送第二资源配置信息。
其中,第二资源配置信息可用于指示第一上行资源,第一上行资源包括以上行报文的发送周期(例如,CT)为周期的资源。在至少一个发送周期内,第一上行资源还可包括多个时间单元上的资源。这样,在一个发送周期(例如,第一发送周期)内,终端设备可以有多个可用于传输上行报文的上行资源;在与第一发送周期相邻的发送周期(例如,第二发送周期)内,终端设备可以有一个用于传输上行报文的上行资源。
可选的,第二资源配置信息可以携带在现有的消息(例如,RRC配置消息)中,也可以携带在新的消息中,本申请对此不做限定。
B2:用户面网元可根据通过第一上行资源接收来自终端设备的M个上行报文的时间,确定第二信息,其中,M为大于或等于2的整数。
下面结合图8举例说明终端设备根据第一上行资源发送上行报文的可能的方式。
对于上行报文1:终端设备可在第一发送周期之前的Ta时刻接收到上行报文1(例如,接收来自IO设备的上行报文1),在第一发送周期的第一个上行资源上(即Tb时刻)向AN设备发送该上行报文1,然后,AN设备可将该上行报文1发送给用户面网元。用户面网元可在T1时刻接收到该上行报文1。
对于上行报文2:终端设备在第一发送周期中的Ta+CT时刻接收到上行报文2(例如,接收来自IO设备的上行报文2),在第一发送周期中距离Ta+CT时刻最近的上行资源上向AN设备发送该上行报文2,然后,AN设备可将该上行报文2发送给用户面网元。用户面网元可在T2时刻接收到该上行报文2。其中。
对于上行报文3:终端设备在第二发送周期中的Ta+2*CT时刻接收到上行报文3(例如,接收来自IO设备的上行报文3),在第二发送周期中的上行资源上(即Tb+2*CT时刻)向AN设备发送该上行报文3,然后,AN设备可将该上行报文3发送给用户面网元。用户面网元可在T3时刻接收到该上行报文3。
这样,用户面网元可通过如下公式至少之一估计终端设备通过周期性的上行资源发送上行报文的第一时间差:CT-T1+T2,T3-T2-CT。也就是说,用户面网元可根据上述公式至少一项确定第一时间差的估计值。
为了更准确的估计第一时间差,用户面网元可通过多个上行报文来确定第一时间差的估计值。例如,当M=3时,用户面网元可确定第一时间差的估计值为:Avg(a,b);
其中,a=T1+CT-T2,b=T3-T2-CT;
其中,Avg表示取平均运算,T1为接收到M个上行报文中第一个上行报文(例如,上述上行报文1)的时间,T2为接收到M个上行报文中第二个上行报文(例如,上述上行报文2)的时间,T3为接收到M个上行报文中第三个上行报文的时间。
通过该方法,用户面网元可以更准确的确定第一时间差的估计值。
B3:用户面网元向AN设备发送第二信息。
其中,第二信息可承载在现有的消息中,也可以承载在新的消息中,本申请对此不作限定。
方式二:AN设备确定第二信息。
在该方式二中,AN设备可执行步骤C1-步骤C2:
C1:AN设备向终端设备发送第二资源配置信息。
其中,第二资源配置信息可用于指示第一上行资源,第一上行资源包括以上行报文的发送周期为周期的资源。在至少一个发送周期内,第一上行资源还可包括多个时间单元上 的资源。
C1的具体内容可参考B1,此处不再赘述。
C2:AN设备可根据通过第一上行资源接收来自终端设备的M个上行报文的时间,确定第二信息,其中,M为大于或等于2的整数。
其中,AN设备确定第二信息的具体内容可参考B2,只是将其中的用户面网元替换为AN设备,此处不再赘述。
可选的,当M=3时,AN设备可确定第一时间差的估计值为:Avg(a,b);
其中,a=T1+CT-T2,b=T3-T2-CT;
其中,Avg表示取平均运算,T1为接收到M个上行报文中第一个上行报文的时间,T2为接收到M个上行报文中第二个上行报文的时间,T3为接收到M个上行报文中第三个上行报文的时间,CT为上行报文的发送周期。
通过该方式,AN设备可以准确确定第一时间差的估计值。
可选的,在S702中,AN设备可通过如下方式,将为终端设备调度的第一上行资源调整为第二上行资源:
AN设备确定第二上行资源包括:与第一资源的距离为上行报文的发送周期(例如,CT)的整数倍的资源。其中,第一资源为将第一发送周期内多个时间单元中第一个时间单元上的资源提前N个时间单元得到的资源。换句话说,AN设备可将第一上行资源中的周期性的上行资源提前N个时间单元,得到第二时间单元。其中,N为正整数,N个时间单元是根据第一时间差的估计值确定的。
可选的,N个时间单元小于或等于第一时间差的估计值。
通过该方法,AN设备可将第一上行资源中的周期性的上行资源提前N个时间单元,得到第二上行资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小。这样,终端在通过第二上行资源传输后续上行报文时,可以减小后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
本申请实施例提供了一种通信方法,该方法可应用于图1-图2所示的通信系统中。在该方法中,第一通信设备可根据第一指示延迟发送报文。下面参阅图9所示的流程图,对该方法的流程进行具体说明。
S901:第一通信设备接收第一指示。其中,第一指示中可包含第一QoS流的指示信息。
其中,第一通信设备可包括以下至少一项:用户面网元、AN设备、终端设备。
可选的,第一指示可用于指示延迟发送通过第一QoS流接收的报文(例如,第一报文)。第一QoS流的指示信息可以为第一QoS流的标识。
其中,第一指示可以为消息,也可以为消息中的信元。具体地,当所述第一指示为信元时,所述第一指示可以复用现有消息(例如,会话建立流程或会话修改流程中的消息)中的信元,也可以是现有消息中的新的信元。例如,所述信元可以为第三指示字段,当该字段取值为第五值时,可以延迟发送通过第一QoS流接收的报文。
S902:第一通信设备可根据第一指示,在通过第一QoS流接收到第一报文的第一时长之后,发送第一报文。也就是说,第一通信设备在接收到第一指示之后,若通过第一QoS流接收到第一报文,则在接收到第一报文的第一时长之后,发送第一报文。
通过该方法,第一通信设备可对第一QoS流传输的报文进行延迟转发,从而精确控制报文的传输时间和时延,进而达到时延优化的效果。并且,该方法中,第一通信设备基于QoS流来进行延迟转发,可避免多个通信设备的上行业务流同时到达时产生的空口调度冲突。
可选的,在S901中,第一通信设备可通过以下实现方式之一接收第一指示:
实现方式一:第一通信设备接收来自会话管理功能网元的第一指示。
可选的,第一通信设备可在建立或修改第一QoS流的过程中,接收来自会话管理功能网元的第一指示。
实现方式二:第一通信设备接收来自控制面网元或AF的用于请求建立或修改第二QoS流的消息;其中,该消息中包含第一指示。也就是说,控制面网元或AF在请求建立或修改第二QoS流时,可指示第一通信设备延迟发送与第二QoS流关联的第一QoS流传输的报文。
其中,控制面网元可为以下至少一项:SMF、AMF、PCF;AF可以为IFES。
可选的,第一QoS流与第二QoS流关联,可以是指第一QoS流传输的报文用于触发通过第二QoS流传输的报文。例如,第一QoS流传输的报文为应用准备响应,第二QoS流传输的报文为IO设备发送的上行报文。
通过上述方法,第一通信设备可方便的获取到第一指示,从而对通过第一QoS流接收到的报文进行延迟发送。
可选的,在上述方法的一种实施场景中,第一报文用于触发上行报文的发送。这样,第一通信设备可通过延迟发送第一报文来延迟触发上行报文的发送,从而可对上行报文的发送时间进行控制,以便减小上行报文的传输时延。
例如,第一报文为图3所示方法中的应用准备响应时,该应用准备响应可用于触发IO设备发送上行报文。通过延迟发送第一报文,可延迟触发IO设备发送上行报文,使得IO设备发送上行报文的时间发生延迟;这样,终端设备接收到该上行报文的时间也发生延迟,从而可以降低终端设备能够发送上行报文的时间和准备发送上行报文的时间差(即第一时间差),进而可减小上行报文的传输时延。另外,通过延迟发送第一报文来使IO设备发送上行报文的时间发生延迟时,不需要对IO设备进行改动,即不需要IO设备具有调整发包时刻的能力,实现较为方便。
可选的,在S902中,在发送第一报文之前,第一通信设备可通过以下实现方式之一确定第一时长。
实现方式1:第一通信设备可根据第三信息,确定第一时长。
其中,第三信息包括以下至少一项:
1、第一传输时延,该第一传输时延可包括:第一通信设备与用于发送上行报文的输入输出IO设备之间的传输时延,IO设备的处理时延,以及IO设备与终端设备之间的传输时延。
2、AN设备为终端设备发送上行报文配置的上行资源:例如,AN为终端设备发送上行报文配置的周期性资源的初始资源(例如,初始上行预调度时刻、初始传输时间间隔 (transmission time interval,TTI)(Initial TTI))等。
3、上行资源的周期:该周期也可以为上行报文的发送周期(例如,CT)。
4、第一通信设备接收到第一报文的时间。
可选的,第一通信设备可确定第一时长为:Initial TTI+n*CT-第一传输时延-第一通信设备接收到第一报文的时间。其中,n为非负整数。通过调整n,使得AN设备所分配的初始上行预调度时刻延迟n个周期之后,晚于(第一传输时延+第一通信设备接收到第一报文的时间),即使得(Initial TTI+n*CT)大于或等于(第一传输时延+第一通信设备接收到第一报文的时间),从而可以确定出能够降低第一时间差的第一时长。其中,n可以取使得(Initial TTI+n*CT)大于或等于(第一传输时延+第一通信设备接收到第一报文的时间)的最小值。
例如,AN设备为终端设备发送上行报文配置的上行资源包括位于3ms、7ms、11ms、15ms、19ms的上行资源,该上行资源的周期为4ms,上行报文的发送周期也为4ms;第一传输时延为2ms;第一通信设备接收到第一报文的时间为7ms。这样,终端设备最早可在9ms后发送上行报文。在9ms之后,AN设备为终端设备分配了位于11ms、15ms等处的上行资源。为了在位于11ms的上行资源上发送上行报文,因此,终端设备最多延迟2ms接收到该上行报文;相应的,第一通信设备最多可延迟2ms发送用于触发该上行报文的第一报文。这样,第一时长可为2ms或小于2ms的值。当然,终端设备也可以通过其他上行资源发送上行报文,例如,通过位于15ms或19ms的上行资源发送上行报文;此时,第一通信设备可延迟6ms或10ms来发送第一报文,即第一时长可为6ms或10ms。
另外,在实现方式1中,第一通信设备可通过以下方式之一获取第三信息:
方式1:第一通信设备接收来自AN设备、控制面网元和AF中至少一项的第三信息。
其中,控制面网元可为以下至少一项:SMF、AMF、PCF。
可选的,第三信息可承载在现有的消息中,也可以承载在新的消息中,本申请对此不做限定。
应理解,第一通信设备可从AN设备、控制面网元和AF中的一个通信设备接收第三信息中的全部信息;也可以从AN设备、控制面网元和AF中的一个或多个通信设备接收第三信息中的部分信息,从AN设备、控制面网元和AF中的其他通信设备接收第三信息中的其他信息。
方式2:第一通信设备获取预先配置的第三信息。
例如,第三信息可预先存储在第一通信设备的内存中,第一通信设备通过读取内存,可获取第三信息。
实现方式2:第一通信设备可接收来自控制面网元或AF的用于指示第一时长的信息。
其中,控制面网元可为以下至少一项:SMF、AMF、PCF。
其中,用于指示第一时长的信息可直接为第一时长,也可以间接指示第一时长。用于指示第一时长的信息可承载在现有的消息(例如,QoS流建立/修改请求)中,也可以承载在新的消息中,本申请对此不做限定。
可选的,控制面网元或AF可以通过实现方式1中的方法来确定第一时长,也可以从其他通信设备接收用于指示第一时长的信息。
另外,本申请对第一通信设备接收用于指示第一时长的信息和接收第一指示的执行顺序不做限定。例如,第一通信设备可先接收用于指示第一时长的信息,再接收第一指示; 也可以先接收第一指示,再接收用于指示第一时长的信息;还可同时接收用于指示第一时长的信息和第一指示。
实现方式3:第一通信设备获取预先配置的第一时长。
例如,第一时长可预先存储在第一通信设备的内存中,第一通信设备通过读取内存,可获取第一时长。
本申请实施例还提供了一种通信方法。该方法可以适用于图1或图2所示的通信系统中。该方法为图5所示方法的一种可能的实现方式。下面参阅图10所示的流程图,以所述终端设备为UE,AF为IFES为例进行说明。
S1001:UE发起PDU会话建立流程;这样,与该UE连接的IO设备可通过该PDU会话与PLC进行通信。
可选的,UE可通过发送PDU会话建立请求来发起PDU会话建立流程。
S1002:IFES向5GC发送RT流所对应的策略授权请求,该策略授权请求可用于请求建立用于传输RT流的QoS流(例如,图5中用于传输上行报文的QoS流)。
其中,该RT流可包括IO设备要发送的上行报文。
具体地,S1002可包括步骤D1-D2:
D1:IFES向PCF发送策略授权请求。
其中,该策略授权请求中可包含以下至少一项:流描述信息,QoS需求,以及空口调度参数(例如,CT、ST)等信息。
此外,该策略授权请求中还可包含用于指示UE上报第一时间差的指示(也可称为偏移(offset)上报指示)。其中第一时间差的具体内容可参考图5所示方法中的S501,在此不再赘述。
可选的,该策略授权请求中还可包含用于指示第一阈值的信息。其中,用于指示第一阈值的信息的具体内容可参考对图5所示方法中对用于指示第一阈值的信息的说明,此处不再赘述。
D2:PCF在接收到策略授权请求之后,可以PCC规则的形式向SMF发送策略。其中,该PCC规则中可包含以下至少一项:流描述信息,授权QoS参数,空口调度参数,用于指示UE上报第一时间差的指示,以及用于指示第一阈值的信息。
S1003:5GC向AN设备发送QoS流建立请求,以请求建立RT流对应的QoS流。
可选的,SMF可向AN设备发送该QoS流建立请求。例如,SMF可在接收到PCC规则,并根据该PCC规则执行QoS流绑定(即将该PCC规则关联至一个已有或新建的QoS流)之后,可向AN设备发送该QoS流建立请求。
其中,该QoS流建立请求可为在QoS流建立/修改流程中,SMF向AN设备发送的QoS配置信息(QoS Profile)。其中。该QoS配置信息可包含以下至少一项:QFI、空口调度参数、QoS参数。
此外,在QoS流建立/修改流程中,该SMF还可向UE发送QoS规则(即QoS Rule,例如,QFI或业务流数据(service data flow,SDF)描述信息等)及QoS流级别的QoS参数(即QoS Flow level QoS parameter,例如,QoS参数或offset上报指示);向UPF发送以下至少一项:包检测规则(packet detection rule,PDR)(对应于流描述信息)、转发动作规则(forwarding action rule,FAR)、QoS执行规则(QoS enforcement rule,QER)、使用报 告规则(usage reporting rule,URR)(对应用量统计、计费规则等)等N4规则。
可选的,该offset上报指示也可以携带在QoS规则中。
S1004:AN设备基于来自SMF的信息执行上行预调度。
可选的,AN设备为UE调度周期为CT的上行资源。
S1005:AN设备可通过空口配置消息向UE发送用于指示上行预调度资源(例如,图5所示方法中的第一上行资源)的信息。
其中,该用于指示上行预调度资源的信息可包含:上行TTI信息,即上行预调度资源的时域信息。此外,该用于指示上行预调度资源的信息中还可包含以下至少一项:上行预调度资源的频域信息、编码方式等。
S1006:IO设备向UE发送上行报文。相应的,UE接收来自IO设备的上行报文。
例如,IO设备可在接收到应用准备响应之后,向UE发送上行报文。
S1007:UE确定第一时间差。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差。
其中,第一时间差的具体内容可参考S501,此处不再赘述。
可选的,UE可根据接收到上行报文的时刻以及AN设备为UE调度的上行资源(例如,上行TTI时刻)来确定第一时间差。
S1008:UE根据offset上报指示,向AN设备发送用于指示第一时间差的第一信息。
S1008的具体内容可参考S502,此处不再赘述。
可选的,在S1008中,当UE接收到用于指示第一阈值的信息时,可在第一时间差大于或等于第一阈值时,向AN设备发送用于指示第一时间差的第一信息。
S1009:AN设备根据第一时间差,对上行预调度资源进行调整,例如,将第一上行资源调整为第二上行资源。
S1009的具体内容可参考S503,此处不再赘述。
S1010:AN设备向UE发送用于指示第二上行资源的信息(即图5所示方法中的第一资源配置信息)。
S1010的具体内容可参考S504,此处不再赘述。
S1011:各网元使用第二上行资源传输上行报文。
例如,UE使用第二上行资源转发来自IO设备的上行报文。
可选的,在IO设备发送上行报文的过程中,UE可重复执行步骤S1008-S1010,从而使得第一时间差能够满足业务需求。
在一些可能的实现方式中,IFES也可通过AN设备向UE发送上述offset上报指示。例如,在S1003中,QoS配置信息中包含offset上报指示;然后,AN设备可通过空口配置参数向UE发送offset上报指示,其中,空口配置参数可包含在S1005中的空口配置消息中。
在该方法中,UE可确定第一时间差,并触发AN设备根据该第一时间差调整上行预调度资源,使得终端设备能够发送上行报文的时间与终端设备准备发送后续上行报文的时间之差更小,从而降低UE侧等待发送上行报文的时延(即降低UE侧等待发送上行报文的时延),进而可降低后续上行报文的传输时延,以实现端到端低时延的业务需求。
本申请实施例还提供了一种通信方法。该方法可以适用于图1或图2所示的通信系统 中。该方法描述了图7所示方法的一种可能的实现方式。下面参阅图11所示的流程图,以所述终端设备为UE,AF为IFES为例进行说明。
S1101:UE发起PDU会话建立流程。
S1101的具体内容可参考S1001,此处不再赘述。
S1102:IFES向5GC发送用于建立用于传输RT流(即图7所示方法中的上行报文)的QoS流的第一消息。换句话说,IFES通过5GC发起该QoS流的建立流程。
其中,第一消息中可包含以下至少一项:流描述信息,CT,ST,以及用于指示AN设备调整为UE调度的上行资源的指示(也可以称为offset调整指示)。该第一消息可为图10所示方法中的策略授权请求。
S1103:5GC向AN设备发送用于建立用于传输RT流的QoS流的第二消息。
其中,第二消息中可包含以下至少一项:流描述信息,CT,时间ST,以及offset调整指示。该第二消息可为图10所示方法中的QoS流建立请求。
S1104:AN设备通过5GC向IFES发送响应(acknowledge,ACK)消息。
S1105:AN设备执行上行预调度,为该UE分配第一上行资源。
其中,第一上行资源包括以CT为周期的资源,并且,在至少一个周期内,第一上行资源还包括多个时间单元上的资源。其中,多个时间单元上的资源可为多个相邻的时间单元上的资源。例如,AN设备为UE分配以CT为周期的上行资源,并在一个时刻附近为UE分配多个时隙的上行资源。
本申请对S1104和S1105的执行顺序不作限定。
S1106:AN设备向UE发送第一RRC配置消息。
其中,第一RRC配置消息中包含用于指示第一上行资源的信息(即图7所示方法中的第二资源配置信息)。
S1007:IO设备向UE发送上行报文。相应的,UE接收来自IO设备的上行报文。
例如,IO设备可在接收到应用准备响应之后,向UE发送上行报文。
S1108:UE在接收到来自IO设备的上行报文之后,从第一上行资源中就近选择上行资源向AN设备发送该上行报文。
S1109:AN设备在接收到来自UE的上行报文后,可根据第一时间差的估计值,对上行预调度资源进行调整,例如,将为UE调度的第一上行资源调整为第二上行资源。
其中,AN设备确定第一时间差的估计值的方法可参考图7所示方法中的方式二,此处不再赘述。
S1110:AN设备向UE发送第二RRC配置消息。
其中,第二RRC配置消息中包含用于指示第二上行资源的信息(即图7所示方法中的第一资源配置信息)。
S1111:各网元使用第二上行资源传输上行报文。
当IO设备周期性的发送上行报文时(即上行报文对应的业务处于运行态),由于通信设备中可能存在时钟漂移,各通信设备(例如,IO设备或UE)本地的时间与初始调度时刻之间的偏移可能会出现偏差变大的问题,此时,可重复执行步骤S1106-S1110,从而降低时钟偏移带来的影响,减小第一时间差的偏移。
可选的,S1109中的第一时间差的估计值也可以是UPF计算后通知AN设备的。此时,SMF可向UPF发送触发UPF计算第一时间差的估计值的指示。UPF可通过图7所示方法 中的方式一来计算第一时间差的估计值。在计算第一时间差的估计值之后,UPF可直接向AN设备发送用于指示第一时间差的估计值的信息,也可以通过控制面网元(例如,SMF)向AN设备发送用于指示第一时间差的估计值的信息。
通过该方法,AN设备可根据第一时间差的估计值调整为UE分配的上行资源,使得UE能够发送上行报文的时间与UE准备发送后续上行报文的时间之差更小,从而降低后续上行报文的第一时间差(即降低UE侧等待发送上行报文的时延),进而可降低后续上行报文的传输时延,以实现端到端低时延的业务需求。
并且,该方法中,网络侧的通信设备可确定第一时间差的估计值,UE和IO设备不需要进行增强处理,易于实现该方法。
此外,AN设备在执行上行预调度时可为UE在一个周期内分配多个时隙资源,并基于UE实际使用的时隙资源确定最终上行预调度的资源。AN设备可通过调整多个时隙资源之间的间隔来调整第一时间差的估计值的精度,根据业务需求选择合适的间隔,使得第一时间差在可接受的范围内(即满足业务需求)。
本申请实施例还提供了一种通信方法。该方法可以适用于图1或图2所示的通信系统中。该方法描述了图9所示方法的第一种可能的实现方式,即AN设备为UE预调度上行资源;延迟发送报文的时长(即第一时长)是根据预调度上行资源确定的。下面参阅图12所示的流程图,以所述终端设备为UE,AF为IFES,第一通信设备为UPF为例进行说明。
S1201:UE发起PDU会话建立流程。
S1201的具体内容可参考S1001,此处不再赘述。
S1202:IFES向5GC发送RT流所对应的策略授权请求,该策略授权请求可用于请求建立用于传输RT流的QoS流(例如,图9所示方法中的第二QoS流)。
其中,S1202的具体内容可参考S1002,重复之处不再赘述。
此外,IEFS还可向5GC发送上报指示(还可称为上行授权时间订阅),该上报指示可指示AN设备提供为UE调度的上行资源的信息(例如,AN设备为UE调度的TTI)。
S1203:5GC向AN设备发送QoS流建立请求。
S1203的具体内容可参考S1003,重复之处不再赘述。
此外,5GC还可向AN设备发送上报指示。
S1204:AN设备在完成上行预调度后,可向IFES发送用于指示AN设备为UE调度的上行资源(例如,AN设备为UE调度的TTI)的信息。
其中,AN设备可直接向IFES发送用于指示AN设备为UE调度的上行资源的信息;也可以间接向IFES发送用于指示AN设备为UE调度的上行资源的信息(例如,通过控制面网元向IFES发送用于指示AN设备为UE调度的上行资源的信息)。
可选的,用于指示AN设备为UE调度的上行资源的信息可包括以下至少一项:AN设备为该QoS流分配的上行免调度时域资源信息(例如,AN设备为UE调度的初始TTI)、频域资源信息等。
S1205:IFES可根据第三信息,确定第一时长(也可称为延迟时长)。
其中,第三信息包括以下至少一项:第一传输时延,AN设备为UE发送上行报文配置的上行资源,上行资源的周期,UPF接收到第一报文的时间。第三信息的具体内容可参考图9所示方法中对第三信息的说明,此处不再赘述。
可选的,IFES可根据周期(例如,CT)和来自AN设备的初始TTI来确定UE能够发送上行报文的时刻,然后,根据链路的传输时间(即第一传输时延)确定UPF转发报文的时刻,从而确定出第一时长。IFES确定第一时长的具体内容可参考图9所示方法中的实现方式1,此处不再赘述。
S1206:IFES通过5GC向UPF发送用于指示第一时长的信息。
可选的,IFES可通过SMF向UPF发送针对第一QoS流的QoS流建立/修改请求。其中,QoS流建立/修改请求中可包含以下至少一项:报文匹配规则、用于指示第一时长的信息。第一QoS流为用于传输应用准备响应的QoS流。
S1207:UPF通过第一QoS流接收应用准备响应(与图9所示方法中的第一报文对应)。
S1208:UPF在接收到应用准备响应的第一时长之后,依次通过AN设备和UE向IO设备发送该应用准备响应。也就是说,UPF对通过第一QoS流的应用准备响应进行延迟转发处理。
其中,UPF可根据FAR执行延迟转发。例如,UPF根据FAR将通过第一QoS流接收的应用准备响应映射到N3接口上对应的QoS流中,在接收到应用准备响应的第一时长之后,通过该对应的QoS流发送应用准备响应。
S1209:IO设备根据接收到的应用准备响应,向UE发送RT流(与图9所示方法中的上行报文对应),从而实现上行报文的传输。
在一些可能的方式中,上述第一时长也可由控制面网元(例如,SMF、AMF或PCF)确定,确定的方式与IFES相同,此处不再赘述。当控制面网元确定第一时长时,在S1204中,AN设备向控制面网元发送用于指示AN设备为UE调度的上行资源的信息;S1205-S1206中,IFES可替换为控制面网元。
在另一些可能的方式中,上述第一时长也可由UPF确定,确定的方式与IFES相同,此处不再赘述。当UPF确定第一时长时,在S1204中,AN设备向UPF发送用于指示AN设备为UE调度的上行资源的信息;S1205中,IFES可替换为UPF;S1206为可选步骤。
可选的,在该方法中,UPF也可以为其他用于传输报文的通信设备,例如,AN设备或UE。此时,在S1208中,UPF可将通过第一QoS流接收的应用准备响应映射到N3接口上对应的QoS流中,通过该对应的QoS流发送应用准备响应。AN设备或UE在接收到该应用准备响应之后的第一时长后,发送该应用准备响应。
在该方法中,UPF可延迟发送应用准备响应,从而延迟触发IO设备发送上行报文,即使得IO设备发送上行报文的时刻发生延迟。这样,UE接收到该上行报文的时间也发生延迟,从而可以降低UE能够发送上行报文的时间和准备发送上行报文的时间差,即降低第一时间差,进而可减小上行报文的传输时延,以实现端到端低时延的业务需求。
本申请实施例还提供了一种通信方法。该方法可以适用于图1或图2所示的通信系统中。该方法描述了图9所示方法的第二种可能的实现方式,即AN设备根据IO设备可发送上行报文的时刻,确定延迟发送报文的时长(即第一时长)以及上行预调度资源。下面参阅图13所示的流程图,以所述终端设备为UE,AF为IFES,第一通信设备为UPF为例进行说明。
S1301:UE发起PDU会话建立流程。
S1301的具体内容可参考S1001,此处不再赘述。
S1302:IFES向5GC发送RT流所对应的策略授权请求,该策略授权请求可用于请求建立用于传输RT流的QoS流(例如,图9所示方法中的第二QoS流)。
其中,S1302的具体内容可参考S1002,重复之处不再赘述。
另外,IFES还可向5GC发送针对第一QoS流的延迟请求。其中,延迟请求可包含:第一QoS流的指示信息和第一指示,以指示延迟发送通过第一QoS流接收的报文。其中,第一QoS流为与第二QoS流关联的QoS流。第一QoS流与第二QoS流关联可以是指,第一QoS流传输的报文可触发第二QoS流传输的报文。
S1303:5GC向AN设备发送QoS流建立请求。
S1303的具体内容可参考S1003,重复之处不再赘述。
此外,5GC还可向AN设备发送第一QoS流的指示信息(例如,第一QoS流的QFI)和第一指示,以指示延迟发送通过第一QoS流接收的报文。其中,第一指示的具体内容可参考S901,此处不再赘述。
S1304:AN设备通过5GC向IFES发送ACK消息。
S1305:AN设备通过第一QoS流接收应用准备响应(与图9所示方法中的第一报文对应)。
S1306:AN设备确定第一时长和为UE调度的上行资源。
其中,AN设备确定第一时长的方式可参考图9所示方法中的实现方式1,此处不再赘述。
例如,AN设备在T5时刻通过第一QoS流接收到应用准备响应。若可为用于传输上行报文的第二QoS流分配时间窗T6~T7中的TTI,则AN设备可调整n,使(T5+第一传输时延+n*CT)属于T6~T7的区间内,从而确定出延迟发送应用准备响应的第一时长。
示例性的,AN设备在3ms通过第一QoS流接收下行报文(例如,应用准备响应)。AN设备基于本地配置信息以及可用资源等信息,确定可在6ms~8ms之间分配初始上行预调度资源。第一传输时延为2ms。这样,AN设备最早可接收到UE在5ms时发送的上行报文。然后,该时刻并无可分配的上行预调度资源,最早可分配的上行预调度资源为6ms~8ms之间的时域资源。因此,AN设备可确定第一时长为1ms~3ms,并为上行报文分配相应的上行预调度资源,例如,分配6ms~8ms之间的资源为初始上行时域资源,4ms为周期。
可选的,AN设备可通过空口配置消息向UE发送用于指示上行预调度资源的信息(例如,上行预调度配置参数)。
S1307:AN设备在接收到应用准备响应的第一时长之后,通过UE向IO设备发送该应用准备响应。
S1308:IO设备根据接收到的应用准备响应,向UE发送RT流(与图9所示方法中的上行报文对应),从而实现上行报文的传输。
在该方法中,AN设备可延迟发送应用准备响应,从而延迟触发IO设备发送上行报文,即使得IO设备发送上行报文的时刻发生延迟。这样,UE接收到该上行报文的时间也发生延迟,从而可以降低UE能够发送上行报文的时间和准备发送上行报文的时间差,即降低第一时间差,进而可减小上行报文的传输时延。
基于与图5至图13方法实施例相同的发明构思,本申请实施例通过图14提供了一种 通信装置,可用于执行上述方法实施例中相关步骤的功能。所述功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置的结构如图14所示,包括通信单元1401和处理单元1402。所述通信装置1400可以应用于图1所示的通信系统中的AN设备、UPF或终端设备,或者应用于图2所示的通信系统中的AN设备、UPF或UE,并可以实现以上本申请实施例以及实例提供的通信方法。下面对所述通信装置1400中的各个单元的功能进行介绍。
所述通信单元1401,用于接收和发送数据。
当所述通信装置1400应用于UPF或AN设备(在所述AN设备与核心网中的网元进行交互的场景中)时,所述通信单元1401可以通过物理接口、通信模块、通信接口、输入输出接口实现。所述通信装置1400可以通过该通信单元连接网线或电缆,进而与其他设备建立物理连接。
当所述通信装置1400应用于终端设备和AN设备(在所述AN设备与终端设备进行交互的场景中)时,所述通信单元1401可以通过收发器实现,例如,移动通信模块。其中,移动通信模块可以包括至少一个天线、至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。所述AN设备可以通过所述移动通信模块与接入的终端设备进行通信。
所述处理单元1402可用于支持所述通信装置1400执行上述方法实施例中的处理动作。所述处理单元1402可以是通过处理器实现。例如,所述处理器可以为中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在一种实施方式中,所述通信装置1400应用于图5或图10所示的本申请实施例中的AN设备中。下面对该实施方式中的所述处理单元1402的具体功能进行介绍。
所述处理单元1402,用于:获取用于指示第一时间差的第一信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;根据所述第一时间差,将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信单元1401向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
可选的,所述处理单元1402具体用于:通过所述通信单元1401接收来自所述终端设备、控制面网元或AF中至少一项的所述第一信息。
可选的,所述处理单元1402具体用于:将所述第一上行资源提前N个时间单元,得到所述第二上行资源;其中,N为正整数,所述N个时间单元是根据所述第一时间差确定的;所述第一上行资源为以所述上行报文的发送周期为周期的资源。
可选的,所述处理单元1402具体用于:在根据所述第一时间差,将为所述终端设备调度的第一上行资源调整为第二上行资源之前,通过所述通信单元1401接收来自控制面网元的用于调整为所述终端设备调度的上行资源的指示。
在一种实施方式中,所述通信装置1400应用于图5所示的本申请实施例中的终端设备或者图10所示的本申请实施例中的UE。下面对该实施方式中的所述处理单元1402的 具体功能进行介绍。
处理单元1402,用于:获取用于指示第一时间差的第一信息;其中,所述第一时间差为:所述终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;通过所述通信单元1401发送所述第一信息;其中,所述第一信息用于接入网AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信单元1401接收来自所述AN设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源;通过所述通信单元1401通过所述第二上行资源发送上行报文。
可选的,所述处理单元1402具体用于:通过所述通信单元1401向所述AN设备、控制面网元或应用功能AF中的至少一项发送所述第一信息。
可选的,所述处理单元1402具体用于:在发送所述第一信息之前,通过所述通信单元1401接收用于指示所述终端设备发送所述第一信息的指示。
可选的,所述处理单元1402具体用于:通过所述通信单元1401接收用于指示第一阈值的信息;当所述第一时间差大于或等于所述第一阈值时,通过所述通信单元1401发送所述第一信息。
在一种实施方式中,所述通信装置1400应用于图7或图11所示的本申请实施例中的AN设备。下面对该实施方式中的所述处理单元1402的具体功能进行介绍。
处理单元1402,用于:获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;根据所述第一时间差的估计值,将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信单元1401向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
可选的,所述处理单元1402具体用于:通过所述通信单元1401向所述终端设备发送第二资源配置信息;其中,所述第二资源配置信息用于指示所述第一上行资源,所述第一上行资源包括以所述上行报文的发送周期为周期的资源,在至少一个所述发送周期内,所述第一上行资源还包括多个时间单元上的资源;根据通过所述第一上行资源接收来自所述终端设备的M个上行报文的时间,确定所述第二信息,其中,所述M为大于或等于2的整数;或者,接收来自用户面网元的所述第二信息。
可选的,所述处理单元1402具体用于:当M=3时,确定所述第一时间差的估计值为:Avg(a,b);确定用于指示所述第一时间差的估计值的所述第二信息;其中,a=T1+CT-T2,b=T3-T2-CT;其中,Avg表示取平均运算,T1为接收到所述M个上行报文中第一个上行报文的时间,T2为接收到所述M个上行报文中第二个上行报文的时间,T3为接收到所述M个上行报文中第三个上行报文的时间,CT为所述发送周期。
可选的,所述处理单元1402具体用于:确定所述第二上行资源包括:与第一资源的距离为所述发送周期的整数倍的资源;其中,所述第一资源为将所述多个时间单元中第一个时间单元上的资源提前N个时间单元得到的资源,N为正整数,所述N个时间单元是根据所述第一时间差的估计值确定的。
在一种实施方式中,所述通信装置1400应用于图7或图11所示的本申请实施例中的UPF。下面对该实施方式中的所述处理单元1402的具体功能进行介绍。
处理单元1402,用于:获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;通过所述通信单元1401向AN设备发送所述第二信息;其中,所述第二信息用于所述AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源。
可选的,所述处理单元1402具体用于:根据接收来自所述终端设备的M个上行报文的时间,确定所述第二信息;其中,所述M为大于或等于2的整数。
可选的,所述处理单元1402具体用于:当M=3时,确定所述第一时间差的估计值为:Avg(a,b);确定用于指示所述第一时间差的估计值的所述第二信息;其中,a=T1+CT-T2,b=T3-T2-CT;其中,Avg表示取平均运算,T1为接收到所述M个上行报文中第一个上行报文的时间,T2为接收到所述M个上行报文中第二个上行报文的时间,T3为接收到所述M个上行报文中第三个上行报文的时间,CT为所述发送周期。
在一种实施方式中,所述通信装置1400应用于图9所示的本申请实施例中的第一通信设备,或者图12所示的本申请实施例中的UPF,或者图13所示的本申请实施例中的AN设备。下面对该实施方式中的所述处理单元1402的具体功能进行介绍。
处理单元1402,用于:通过所述通信单元1401接收第一指示;其中,所述第一指示中包含第一服务质量QoS流的指示信息;根据所述第一指示,在通过所述第一QoS流接收到第一报文的第一时长之后,发送所述第一报文。
可选的,所述处理单元1402具体用于:通过所述通信单元1401接收来自会话管理功能网元的所述第一指示;或者,通过所述通信单元1401接收来自控制面网元或应用功能AF的用于请求建立或修改第二QoS流的消息;其中,所述消息中包含所述第一指示。
可选的,所述第一报文用于触发上行报文的发送。
可选的,所述处理单元1402具体用于:在发送所述第一报文之前,通过所述通信单元1401接收来自控制面网元或AF的用于指示所述第一时长的信息。
可选的,所述处理单元1402具体用于:在发送所述第一报文之前,根据第三信息,确定所述第一时长;
其中,所述第三信息包括以下至少一项:
第一传输时延;
接入网AN设备为终端设备发送上行报文配置的上行资源;
所述上行资源的周期;
所述第一通信设备接收到所述第一报文的时间;
其中,所述第一传输时延包括:所述第一通信设备与用于发送所述上行报文的输入输出IO设备之间的传输时延,所述IO设备的处理时延,以及所述IO设备与所述终端设备之间的传输时延。
可选的,所述处理单元1402具体用于:在根据第三信息,确定所述第一时长之前,通过所述通信单元1401接收来自所述AN设备、控制面网元和AF中至少一项的所述第三信息;或者获取预先配置的所述第三信息。
需要说明的是,本申请以上实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可 以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于相同的技术构思,本申请实施例通过图15所示提供了一种通信设备,可用于执行上述方法实施例中相关的步骤。所述通信设备可以应用于图1所示的通信系统中的AN设备、UPF或终端设备,或者应用于图2所示的通信系统中的AN设备、UPF或UE,可以实现以上本申请实施例以及实例提供的通信方法,具有图14所示的通信装置的功能。参阅图15所示,所述通信设备1500包括:通信模块1501、处理器1502以及存储器1503。其中,所述通信模块1501、所述处理器1502以及所述存储器1503之间相互连接。
可选的,所述通信模块1501、所述处理器1502以及所述存储器1503之间通过总线1504相互连接。所述总线1504可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述通信模块1501,用于接收和发送数据,实现与其他设备之间的通信交互。例如,所述通信模块1501可以通过物理接口、通信模块、通信接口、输入输出接口实现。
所述处理器1502可用于支持所述通信设备1500执行上述方法实施例中的处理动作。当所述通信设备1500用于实现上述方法实施例时,处理器1502还可用于实现上述处理单元1402的功能。所述处理器1502可以是CPU,还可以是其它通用处理器、DSP、ASIC、FPGA或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
在一种实施方式中,所述通信设备1500应用于图5或图10所示的本申请实施例中的AN设备中。所述处理器1502具体用于:
获取用于指示第一时间差的第一信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;根据所述第一时间差,将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信模块1501向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
在一种实施方式中,所述通信设备1500应用于图5所示的本申请实施例中的终端设备或者图10所示的本申请实施例中的UE。所述处理器1502具体用于:
获取用于指示第一时间差的第一信息;其中,所述第一时间差为:所述终端设备能够 发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;通过所述通信模块1501发送所述第一信息;其中,所述第一信息用于接入网AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信模块1501接收来自所述AN设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源;通过所述通信模块1501通过所述第二上行资源发送上行报文。
在一种实施方式中,所述通信设备1500应用于图7或图11所示的本申请实施例中的AN设备。所述处理器1502具体用于:
获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;根据所述第一时间差的估计值,将为所述终端设备调度的第一上行资源调整为第二上行资源;通过所述通信模块1501向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
在一种实施方式中,所述通信设备1500应用于图7或图11所示的本申请实施例中的UPF。所述处理器1502具体用于:
获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;通过所述通信模块1501向AN设备发送所述第二信息;其中,所述第二信息用于所述AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源。
在一种实施方式中,所述通信设备1500应用于图9所示的本申请实施例中的第一通信设备,或者图12所示的本申请实施例中的UPF,或者图13所示的本申请实施例中的AN设备。所述处理器1502具体用于:
通过所述通信模块1501接收第一指示;其中,所述第一指示中包含第一服务质量QoS流的指示信息;根据所述第一指示,在通过所述第一QoS流接收到第一报文的第一时长之后,发送所述第一报文。
所述处理器1502的具体功能可以参考以上本申请实施例以及实例提供的通信方法中的描述,以及图14所示本申请实施例中对所述通信装置1400的具体功能描述,此处不再赘述。
所述存储器1503,用于存放程序指令和数据等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。存储器1503可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1502执行存储器1503所存放的程序指令,并使用所述存储器1503中存储的数据,实现上述功能,从而实现上述本申请实施例提供的通信方法。
可以理解,本申请图15中的存储器1503可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存 取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行以上实施例提供的方法。
其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现以上实施例中各设备所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
综上所述,本申请实施例提供了一种通信方法、装置及设备,在该方法中,AN设备可在获取用于指示第一时间差的第一信息之后,根据第一时间差,将为终端设备调度的第一上行资源调整为第二上行资源,并向终端设备发送第一资源配置信息。其中,第一时间差为:终端设备能够发送上行报文的时间与终端设备准备发送上行报文的时间之差;第一资源配置信息用于指示第二上行资源。目前,终端设备可通过AN设备调度的周期上行资源,周期性的发送上行报文。通过该方案,AN设备可根据第一时间差调整为终端设备分配的上行资源,从而降低后续上行报文的第一时间差,进而可降低后续上行报文的传输时延。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种通信方法,应用于接入网AN设备,其特征在于,包括:
    获取用于指示第一时间差的第一信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;
    根据所述第一时间差,将为所述终端设备调度的第一上行资源调整为第二上行资源;
    向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
  2. 如权利要求1所述的方法,其特征在于,获取用于指示第一时间差的第一信息,包括:
    接收来自所述终端设备、控制面网元或应用功能AF中至少一项的所述第一信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一上行资源为以所述上行报文的发送周期为周期的资源;根据所述第一信息,将为所述终端设备调度的第一上行资源调整为第二上行资源,包括:
    将所述第一上行资源提前N个时间单元,得到所述第二上行资源;其中,N为正整数,所述N个时间单元是根据所述第一时间差确定的。
  4. 如权利要求1至3任一项所述的方法,其特征在于,在根据所述第一时间差,将为所述终端设备调度的第一上行资源调整为第二上行资源之前,所述方法还包括:
    接收来自控制面网元的用于调整为所述终端设备调度的上行资源的指示。
  5. 一种通信方法,应用于终端设备,其特征在于,包括:
    获取用于指示第一时间差的第一信息;其中,所述第一时间差为:所述终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;
    发送所述第一信息;其中,所述第一信息用于接入网AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源;
    接收来自所述AN设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源;
    通过所述第二上行资源发送上行报文。
  6. 如权利要求5所述的方法,其特征在于,发送所述第一信息,包括:
    向所述AN设备、控制面网元或应用功能AF中的至少一项发送所述第一信息。
  7. 如权利要求5或6所述的方法,其特征在于,在发送所述第一信息之前,所述方法还包括:
    接收用于指示所述终端设备发送所述第一信息的指示。
  8. 如权利要求7所述的方法,其特征在于,
    所述方法还包括:接收用于指示第一阈值的信息;
    发送所述第一信息,包括:当所述第一时间差大于或等于所述第一阈值时,发送所述第一信息。
  9. 一种通信方法,应用于接入网AN设备,其特征在于,包括:
    获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备 能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;
    根据所述第一时间差的估计值,将为所述终端设备调度的第一上行资源调整为第二上行资源;
    向所述终端设备发送第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二上行资源。
  10. 如权利要求9所述的方法,其特征在于,获取用于指示第一时间差的估计值的第二信息,包括:
    向所述终端设备发送第二资源配置信息;其中,所述第二资源配置信息用于指示所述第一上行资源,所述第一上行资源包括以所述上行报文的发送周期为周期的资源,在至少一个所述发送周期内,所述第一上行资源还包括多个时间单元上的资源;
    根据通过所述第一上行资源接收来自所述终端设备的M个上行报文的时间,确定所述第二信息,其中,所述M为大于或等于2的整数;或者,接收来自用户面网元的所述第二信息。
  11. 如权利要求10所述的方法,其特征在于,当M=3时,根据通过所述第一上行资源接收来自所述终端设备的M个上行报文的时间,确定所述第二信息,包括:
    确定所述第一时间差的估计值为:Avg(a,b);
    确定用于指示所述第一时间差的估计值的所述第二信息;
    其中,a=T1+CT-T2,b=T3-T2-CT;
    其中,Avg表示取平均运算,T1为接收到所述M个上行报文中第一个上行报文的时间,T2为接收到所述M个上行报文中第二个上行报文的时间,T3为接收到所述M个上行报文中第三个上行报文的时间,CT为所述发送周期。
  12. 如权利要求10或11所述的方法,其特征在于,根据所述第一时间差的估计值,将为所述终端设备调度的第一上行资源调整为第二上行资源,包括:
    确定所述第二上行资源包括:与第一资源的距离为所述发送周期的整数倍的资源;其中,所述第一资源为将所述多个时间单元中第一个时间单元上的资源提前N个时间单元得到的资源,N为正整数,所述N个时间单元是根据所述第一时间差的估计值确定的。
  13. 一种通信方法,应用于用户面网元,其特征在于,包括:
    获取用于指示第一时间差的估计值的第二信息;其中,所述第一时间差为:终端设备能够发送上行报文的时间与所述终端设备准备发送所述上行报文的时间之差;
    向接入网AN设备发送所述第二信息;其中,所述第二信息用于所述AN设备将为所述终端设备调度的第一上行资源调整为第二上行资源。
  14. 如权利要求13所述的方法,其特征在于,获取用于指示第一时间差的估计值的第二信息,包括:
    根据接收来自所述终端设备的M个上行报文的时间,确定所述第二信息;其中,所述M为大于或等于2的整数。
  15. 如权利要求14所述的方法,其特征在于,当M=3时,根据接收来自所述终端设备的M个上行报文的时间,确定所述第二信息,包括:
    确定所述第一时间差的估计值为:Avg(a,b);
    确定用于指示所述第一时间差的估计值的所述第二信息;
    其中,a=T1+CT-T2,b=T3-T2-CT;
    其中,Avg表示取平均运算,T1为接收到所述M个上行报文中第一个上行报文的时间,T2为接收到所述M个上行报文中第二个上行报文的时间,T3为接收到所述M个上行报文中第三个上行报文的时间,CT为所述发送周期。
  16. 一种通信方法,应用于第一通信设备,其特征在于,包括:
    接收第一指示;其中,所述第一指示中包含第一服务质量QoS流的指示信息;
    根据所述第一指示,在通过所述第一QoS流接收到第一报文的第一时长之后,发送所述第一报文。
  17. 如权利要求16所述的方法,其特征在于,接收第一指示,包括:
    接收来自会话管理功能网元的所述第一指示;或者
    接收来自控制面网元或应用功能AF的用于请求建立或修改第二QoS流的消息;其中,所述消息中包含所述第一指示。
  18. 如权利要求16或17所述的方法,其特征在于,所述第一报文用于触发上行报文的发送。
  19. 如权利要求16至18任一项所述的方法,其特征在于,在发送所述第一报文之前,所述方法还包括:
    接收来自控制面网元或AF的用于指示所述第一时长的信息。
  20. 如权利要求16至18任一项所述的方法,其特征在于,在发送所述第一报文之前,所述方法还包括:
    根据第三信息,确定所述第一时长;
    其中,所述第三信息包括以下至少一项:
    第一传输时延;
    接入网AN设备为终端设备发送上行报文配置的上行资源;
    所述上行资源的周期;
    所述第一通信设备接收到所述第一报文的时间;
    其中,所述第一传输时延包括:所述第一通信设备与用于发送所述上行报文的输入输出IO设备之间的传输时延,所述IO设备的处理时延,以及所述IO设备与所述终端设备之间的传输时延。
  21. 如权利要求20所述的方法,其特征在于,在根据第三信息,确定所述第一时长之前,所述方法还包括:
    接收来自所述AN设备、控制面网元和AF中至少一项的所述第三信息;或者
    获取预先配置的所述第三信息。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于接收和发送数据;
    处理单元,用于通过所述通信单元,执行如权利要求1-21任一项所述的方法。
  23. 一种通信系统,其特征在于,包括:
    接入网AN设备,用于实现如权利要求1-4任一项所述的方法;
    终端设备,用于实现如权利要求5-8任一项所述的方法。
  24. 一种通信系统,其特征在于,包括:
    接入网AN设备,用于实现如权利要求9-12任一项所述的方法;
    用户面网元,用于实现如权利要求13-15任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-21任一项所述的方法。
  26. 一种芯片,其特征在于,所述芯片与存储器耦合,所述芯片读取所述存储器中存储的计算机程序,执行权利要求1-21任一项所述的方法。
PCT/CN2022/136241 2022-03-11 2022-12-02 一种通信方法、装置及设备 WO2023169011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210236314.6A CN116801405A (zh) 2022-03-11 2022-03-11 一种通信方法、装置及设备
CN202210236314.6 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023169011A1 true WO2023169011A1 (zh) 2023-09-14

Family

ID=87937163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136241 WO2023169011A1 (zh) 2022-03-11 2022-12-02 一种通信方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116801405A (zh)
WO (1) WO2023169011A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392392A (zh) * 2018-04-16 2019-10-29 华为技术有限公司 通信方法、通信装置及可读存储介质
CN110933742A (zh) * 2018-09-20 2020-03-27 华为技术有限公司 调度方法、设备与计算机可读存储介质
WO2020199731A1 (zh) * 2019-04-02 2020-10-08 华为技术有限公司 一种确定资源的方法及装置
WO2021134353A1 (zh) * 2019-12-30 2021-07-08 华为技术有限公司 通信方法、装置及系统
WO2022022014A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 QoS流控制方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392392A (zh) * 2018-04-16 2019-10-29 华为技术有限公司 通信方法、通信装置及可读存储介质
CN110933742A (zh) * 2018-09-20 2020-03-27 华为技术有限公司 调度方法、设备与计算机可读存储介质
WO2020199731A1 (zh) * 2019-04-02 2020-10-08 华为技术有限公司 一种确定资源的方法及装置
WO2021134353A1 (zh) * 2019-12-30 2021-07-08 华为技术有限公司 通信方法、装置及系统
WO2022022014A1 (zh) * 2020-07-31 2022-02-03 华为技术有限公司 QoS流控制方法及通信装置

Also Published As

Publication number Publication date
CN116801405A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
JP7108554B2 (ja) V2x通信を支援する通信システムで送信/受信のための設定情報を含む制御情報の送受信方法
WO2020143788A1 (zh) 支持时间敏感通信服务质量的方法及通信设备
WO2019228214A1 (zh) 一种无线承载建立、业务流的监测方法及装置
EP3902324A1 (en) Method, device, and system for implementing service continuity
WO2013134952A1 (zh) 调度请求资源配置方法、设备及系统
EP2474192A1 (en) Methods and arrangements for allocating scheduling request resources in a wireless communication system
WO2014110747A1 (zh) 功率余量的报告方法和装置
JP7477661B2 (ja) データ伝送方法および装置
JP7493077B2 (ja) Sl sr/bsr処理のための方法
WO2021022508A1 (zh) 边链路调度请求的触发方法、装置和系统
EP4088434A1 (en) Tsc-5g qos mapping with consideration of assistance traffic information and pcc rules for tsc traffic mapping and 5g qos flows binding
WO2011023036A1 (zh) 一种半静态调度上行激活及重激活的方法、系统及基站
JP2022536767A (ja) 送受信装置およびスケジューリング装置
WO2023169011A1 (zh) 一种通信方法、装置及设备
CN109923935A (zh) 上行传输方法、终端设备和网络设备
KR20220132975A (ko) 무선 통신 시스템에서의 상향링크 데이터 전송 방식 재설정 방법 및 장치
WO2021137039A1 (en) Deterministic quality of service
WO2024001171A1 (zh) 一种通信方法及装置
WO2023143255A1 (zh) 一种通信方法及装置
WO2024103315A1 (zh) 无线通信方法、网元和装置
WO2024093860A1 (zh) 信息确定方法及通信设备
WO2023185598A1 (zh) 通信方法及装置
WO2023179172A1 (zh) 通信方法及装置
WO2023103919A1 (zh) 数据传输方法和数据传输装置
WO2024104101A1 (zh) 数据处理方法、装置、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930634

Country of ref document: EP

Kind code of ref document: A1