WO2023168966A1 - 并联机构的位姿确定方法及装置 - Google Patents

并联机构的位姿确定方法及装置 Download PDF

Info

Publication number
WO2023168966A1
WO2023168966A1 PCT/CN2022/130396 CN2022130396W WO2023168966A1 WO 2023168966 A1 WO2023168966 A1 WO 2023168966A1 CN 2022130396 W CN2022130396 W CN 2022130396W WO 2023168966 A1 WO2023168966 A1 WO 2023168966A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
coordinate
axis
rotation
positions
Prior art date
Application number
PCT/CN2022/130396
Other languages
English (en)
French (fr)
Inventor
黄善灯
柏龙
潘鲁锋
陈晓红
Original Assignee
诺创智能医疗科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺创智能医疗科技(杭州)有限公司 filed Critical 诺创智能医疗科技(杭州)有限公司
Publication of WO2023168966A1 publication Critical patent/WO2023168966A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators

Definitions

  • the present disclosure relates to the field of parallel mechanisms, and in particular, to a method and device for determining the posture of a parallel mechanism.
  • a parallel mechanism (also known as a "parallel robot") is a kinematic mechanism with a dynamic platform and a static platform connected to each other. Joints can be formed on the dynamic platform and the static platform correspondingly, and corresponding joints can be formed on the dynamic platform and the static platform. Joints can be connected by connecting branches such as branch chains.
  • the kinematics of parallel mechanisms include forward kinematics and inverse kinematics. Forward kinematics refers to solving the position and posture of the end moving platform of the parallel mechanism based on some joint variables of the parallel mechanism. Inverse kinematics refers to solving the position and posture of the end moving platform of the parallel mechanism based on the end kinematics of the parallel mechanism. Platform position and posture, and solve some joint variables of the parallel mechanism.
  • the present disclosure provides a method for determining the posture of a parallel mechanism, a method and a device for controlling the parallel mechanism, so as to at least solve the complex problem of solving the kinematics of the parallel mechanism in the related art.
  • the technical solutions of the present disclosure are as follows:
  • a method for determining the posture of a parallel mechanism includes a static platform, a moving platform and a connecting branch chain.
  • the static platform is formed with at least three first positions, so
  • the moving platform is formed with at least three second positions corresponding to the at least three first positions, and each connecting branch corresponds to the corresponding first position and second position of the static platform and the moving platform.
  • position, and the span of each connecting branch chain between the corresponding first position and the second position is adjustable, and the posture determination method includes: according to each second position in the at least three second positions.
  • the position of each second position relative to the static platform based on one of the position parameters between the position and the corresponding first position and the pose parameter of the moving platform relative to the static platform; based on each The second position is relative to the position of the static platform, determining the other one of the position parameter and the pose parameter; based on the position parameter, determining the pose of the connecting branch of the parallel mechanism, or, Based on the posture parameters, the posture of the moving platform of the parallel mechanism is determined, wherein the position parameters include the distance between each second position of the at least three second positions and the corresponding first position. The distance in the adjustment direction of the corresponding connecting branch chain and the rotation change amount of each second position relative to the corresponding first position about the rotation axis.
  • the complex problem of solving the kinematics of the parallel mechanism can be solved, by taking into account the distance between the corresponding first position and the second position and taking into account the rotation change between the two, by determining each second position Relative to the position of the static platform, the pose of the connecting branch of the parallel mechanism can be determined based on the position parameters, or the pose of the moving platform of the parallel mechanism can be determined based on the pose parameters, which can simplify the kinematics solution process and increase the calculation speed. and efficiency.
  • a posture determination device of a parallel mechanism includes a static platform, a moving platform and a connecting branch chain.
  • the static platform is formed with at least three first positions, so
  • the moving platform is formed with at least three second positions corresponding to the at least three first positions, and each connecting branch corresponds to the corresponding first position and second position of the static platform and the moving platform.
  • position, and the span of each connecting branch chain between the corresponding first position and the second position is adjustable
  • the posture determination method includes: a first determination unit configured to determine the position according to the at least three third positions.
  • One of the position parameters between each second position in the two positions and the corresponding first position and the posture parameter of the moving platform relative to the static platform determines the relative position of each second position relative to the the position of the static platform; a second determination unit configured to determine the other one of the position parameter and the pose parameter based on each second position relative to the position of the static platform; a third determination unit, Configured to determine the posture of the connecting branch chain of the parallel mechanism based on the position parameter, or to determine the posture of the moving platform of the parallel mechanism based on the posture parameter, wherein the position parameter includes The distance between each second position of the at least three second positions and the corresponding first position in the adjustment direction of the corresponding connecting branch chain and the rotation of each second position relative to the corresponding first position The rotational change of the axis rotation.
  • a parallel manipulator includes a parallel mechanism.
  • the parallel mechanism includes a static platform, a moving platform and a connecting branch chain.
  • the static platform has at least three The first position
  • the moving platform has at least three second positions corresponding to the at least three first positions
  • each connecting branch chain is connected to the corresponding first position and the second position
  • each connecting branch chain is connected to the corresponding first position and the second position.
  • the span of the branch chain between the corresponding first position and the second position is adjustable
  • the parallel manipulator further includes: a memory, which stores a computer program; a processor, where the processor executes the stored
  • the computer program in the memory is used to implement the pose determination method of the parallel mechanism according to the present disclosure.
  • a surgical robot which includes a base, a series robotic arm, and a parallel robotic arm according to the present disclosure.
  • a computer-readable storage medium which when instructions in the computer-readable storage medium are executed by a processor of an electronic device, enables the electronic device to execute the teachings of the present disclosure.
  • a computer program product including computer instructions.
  • the computer instructions are executed by a processor, the posture determination method of a parallel mechanism according to the present disclosure is implemented.
  • the second, third, fourth, fifth and sixth aspects of the embodiments of the present disclosure have the same beneficial effects as the posture determination method of the parallel mechanism described in the first aspect of the embodiments of the present disclosure.
  • the beneficial effects will not be explained one by one here.
  • FIG. 1 is a simplified structural schematic diagram of a first example of a parallel mechanism according to an exemplary embodiment.
  • FIG. 2 is a schematic structural principle diagram of a first example of a parallel mechanism according to an exemplary embodiment.
  • FIG. 3 is a schematic flowchart of a method for determining the posture of a parallel mechanism according to an exemplary embodiment.
  • FIG. 4 is a schematic diagram of a first example of a coordinate system constructed in a method for determining the posture of a parallel mechanism according to an exemplary embodiment.
  • 5 to 7 are schematic diagrams of a parallel mechanism with an angle measuring device according to an exemplary embodiment.
  • FIG. 8 is a simplified structural schematic diagram of a second example of a parallel mechanism according to an exemplary embodiment.
  • FIG. 9 is a schematic diagram of a second example of a coordinate system constructed in a method for determining the posture of a parallel mechanism according to an exemplary embodiment.
  • FIG. 10 is a simplified structural schematic diagram of a third example of a parallel mechanism according to an exemplary embodiment.
  • Figure 11 is a schematic diagram of a third example of a coordinate system constructed in a method for determining the posture of a parallel mechanism according to an exemplary embodiment.
  • Figure 12 is a schematic diagram of a parallel mechanism with an actuator according to an exemplary embodiment.
  • FIG. 13 is a schematic diagram illustrating an example of a coordinate system constructed in a posture determination method of a parallel mechanism with an actuator according to an exemplary embodiment.
  • FIGS. 14 and 15 are schematic structural diagrams of a parallel mechanism with a rotary driving member according to an exemplary embodiment.
  • Figure 16 is a schematic block diagram of a posture determination device of a parallel mechanism according to an exemplary embodiment.
  • “at least one of the several items” appearing in this disclosure means including “any one of the several items”, “a combination of any of the several items”, The three types of juxtaposition of "all of the items”.
  • “including at least one of A and B” includes the following three parallel situations: (1) including A; (2) including B; (3) including A and B.
  • “perform at least one of step 1 and step 2” means the following three parallel situations: (1) execute step 1; (2) execute step 2; (3) execute step 1 and step 2.
  • the kinematic algorithm of the parallel mechanism is the basis for position control and trajectory planning of the parallel mechanism.
  • the solution process of the existing parallel mechanism pose determination method is complicated, and there may be non-unique solutions.
  • the end position and posture of the parallel mechanism will have multiple solutions, and the solution process is complicated, which is not conducive to fast and efficient solution;
  • the process of calculating the joint variables of the parallel mechanism based on the end position and posture of the parallel mechanism involves solving the nonlinear transcendental equations, which results in complex solutions and is not conducive to fast and efficient solutions.
  • Figures 1 and 2 are respectively a simplified structural schematic diagram and a schematic structural principle diagram of a first example of a parallel mechanism according to an exemplary embodiment.
  • the parallel mechanism may include a static platform 100, a moving platform 200 and a connecting branch chain 300.
  • the static platform 100 may be formed with at least three first positions S1, S2 and S3, and the moving platform 200 may be formed with At least three second positions M1, M2, and M3 correspond to at least three first positions S1, S2, and S3.
  • Each connection branch 300 corresponds to the corresponding first positions S1, S2, and S3 and the second position.
  • the first positions S1, S2 and S3 and the second positions M1, M2 and M3 can be respectively determined by connecting the branch chain 300 with respect to the rotation axis of the static platform 100 and the moving platform 200, for example, connecting the branch chain 300 Relative to the stationary platform 100, it can rotate around the first rotation axis and the second rotation axis respectively.
  • the first position can be the intersection point of the first rotation axis and the second rotation axis.
  • the connecting branch chain 300 can rotate around the third axis relative to the moving platform 200.
  • the axis, the fourth rotation axis and the line connecting the first position and the second position rotate, and the second position may be the intersection point of the third rotation axis and the fourth rotation axis.
  • the first positions S1, S2 and S3 and the second positions M1, M2 and M3 may be the positions where the hinge points of the connecting branch chain 300 are connected to the corresponding platform components, that is, the first positions S1, S2 and S3 and the second positions M1, M2 and M3 are located on the static platform 100 and the moving platform 200 respectively; in another example, the first positions S1, S2 and S3 and/or the second positions M1, M2 and M3 may not be located on the corresponding on the static platform 100 and/or the moving platform 200, but in the space outside the platform components.
  • the span of each connecting branch 300 between the corresponding first positions S1, S2 and S3 and second positions M1, M2 and M3 is adjustable.
  • the connecting branch 300 may be a linear actuating device such as an electric lead screw.
  • the parallel mechanism can have 6 degrees of freedom.
  • static and dynamic are relative concepts.
  • the parallel mechanism including the static platform and the dynamic platform can move as a whole, and the dynamic platform can move relative to the static platform. Platform movement.
  • each connecting branch chain 300 is connected to the static platform 100, and the second end is connected to the moving platform 200.
  • the two ends of each connecting branch chain 300 can be connected to the static platform 100 respectively. a first position on the moving platform 200 and a corresponding second position on the moving platform 200 .
  • the parallel mechanism may have a 3UPS structure, where U refers to a connection mechanism with two degrees of freedom such as a Hooke hinge (or cross hinge), and P refers to a connection mechanism with two degrees of freedom such as a moving pair.
  • the parallel mechanism can also have a 3UCU structure, where U refers to a connection mechanism with two degrees of freedom in two directions, such as a Hooke hinge, and C refers to a connection mechanism with two degrees of freedom in two directions, such as a cylindrical pair. Degree of freedom connection mechanism.
  • each connecting branch chain 300 can be connected to the moving platform 200 through a Hooke hinge or a ball hinge, and the second end of the connecting branch chain 300 can be connected to the static platform through a Hooke hinge.
  • the connecting branch chain 300 includes a moving pair or a cylindrical pair.
  • the connection method between the connecting branch chain 300 and the static platform 100 and the moving platform 200 is not limited to the above method. It can also be connected in other ways, as long as all the connecting branch chains 300 and the static platform 100 and the moving platform 200 can jointly realize the parallel mechanism. Just freedom of movement.
  • connection between the two ends of the connecting branch chain 300 described here with reference to Figures 1 and 2 and the static platform 100 and the moving platform 200 is only an example.
  • the connecting branch chain 300 can also be connected to the static platform 100 and the moving platform 200 at other positions.
  • the moving platform 200 will be described later using the structure shown in Figure 10 as an example.
  • the method for determining the posture of a parallel mechanism is described in this article by taking a three-branch structure as an example, the application scenarios of the method for determining the posture of a parallel mechanism according to exemplary embodiments of the present disclosure are not limited to This is intended to provide a method for determining the posture of a parallel mechanism, which is applicable to all 6-degree-of-freedom parallel mechanisms that meet the characteristics of the method. For example, it is also applicable to parallel structures with more than three branches. Technology in the art Personnel can make modifications according to the needs of actual application scenarios.
  • the parallel mechanism to which the method described in this article is applicable can be a separate device or a component of the device.
  • it can be used in surgical robots, welding robots, spraying robots and other equipment.
  • FIG. 3 is a schematic flowchart of a method for determining the posture of a parallel mechanism according to an exemplary embodiment.
  • the method for determining the posture of a parallel mechanism can be applied to a calculation or control device of a device that includes a parallel mechanism or to a separate calculation or control device that does not include a parallel mechanism.
  • the posture determination method of the parallel mechanism may include the following steps:
  • each second position may be determined based on one of the position parameters between each second position of the at least three second positions and the corresponding first position and the posture parameter of the moving platform relative to the static platform.
  • the position is relative to the position of the static platform; in step S20, the other one of the position parameter and the posture parameter can be determined based on the position of each second position relative to the static platform; in step S30, the position parameter of the parallel mechanism can be determined based on the position parameter.
  • the position parameter may include the distance between each second position of the at least three second positions and the corresponding first position in the adjustment direction of the corresponding connecting branch chain and the relative distance between each second position and the corresponding first position. The amount of rotation change around the rotation axis at the corresponding first position.
  • the posture determination method of the parallel mechanism by taking into account the distance between the corresponding first position and the second position and taking into account the amount of rotation change between the two, and by determining each
  • the position of the second position relative to the static platform can be determined based on the position parameters of the connecting branch chain of the parallel mechanism, or the posture of the moving platform of the parallel mechanism can be determined based on the position parameters, thereby simplifying the kinematics solution process. Improve computing speed and efficiency.
  • the calculation objects involved include the first position, the second position, the static platform and the dynamic platform.
  • the motion process of the platform involves the distance change of the second position relative to the first position and the rotation change of the second position relative to the first position around the rotation axis.
  • this disclosure considers the motion mechanism of the parallel mechanism and reasonably constructs the position conversion relationship between the first position, the second position, the static platform and the moving platform. In this way, the calculation process in forward kinematics and inverse kinematics can be simplified, Improve computing speed and efficiency.
  • a first position conversion relationship and a second position conversion relationship may be constructed, wherein the first position conversion relationship may be a position conversion relationship between the moving platform and the static platform.
  • the second position conversion relationship may be a position conversion relationship between each first position and the rotation axis as a reference object and the static platform.
  • the first position is constant relative to the position of the static platform
  • the second position is constant relative to the position of the moving platform
  • each third position can be determined based on the second position conversion relationship.
  • the position of the two positions relative to the static platform can then be determined based on the first position conversion relationship and the position of each second position relative to the static platform, thereby determining the position of the moving platform of the parallel mechanism.
  • step S10 specifically, the position of each second position relative to the static platform may be determined based on one of the position parameter and the posture parameter and one of the first position conversion relationship and the second position conversion relationship;
  • step S20 specifically, the other one of the position parameter and the pose parameter may be determined based on the position of each second position relative to the static platform and the other one of the first position conversion relationship and the second position conversion relationship.
  • a first coordinate system, a second coordinate system and a first position coordinate system may be constructed for performing the calculations in the above steps.
  • the position of the first coordinate system may be fixed relative to at least three first positions
  • the position of the second coordinate system may be fixed relative to at least three second positions. That is to say, during the movement of the parallel mechanism, the first coordinate system and the static platform remain relatively stationary, and the second coordinate system and the moving platform remain relatively stationary. In this way, when the moving platform 200 moves relative to the static platform 100, the second coordinate system The system moves relative to the first coordinate system.
  • the coordinate origin of the first position coordinate system may be located at the corresponding first position, and one of the coordinate axes of the first position coordinate system may be the first rotation axis of the second position relative to the corresponding first position or Second axis of rotation.
  • the other two coordinate axes of the first position coordinate system can be set arbitrarily, and the three coordinate axes satisfy the right-hand rule. In this way, since the origin of the first position coordinate system is located at the first position and one coordinate axis of the first position coordinate system is the rotation axis, and the second position rotates around the rotation axis relative to the first position, therefore, the second position is at the corresponding
  • the position in the first position coordinate system is easy to express, thus simplifying calculations.
  • the pose parameters may include the coordinates of the coordinate origin of the second coordinate system in the first coordinate system and the rotation angles of the second coordinate system around its own three coordinate axes.
  • the first position transformation relationship is a coordinate transformation relationship between the first coordinate system and the second coordinate system.
  • the position parameter can represent the position of the second position relative to the corresponding first position
  • the pose parameter can represent the pose of the second coordinate system in the first coordinate system, and since the first coordinate established here
  • the coordinate system always remains relatively stationary relative to the first position, and the established second coordinate system always remains relatively stationary relative to the second position. Therefore, the third coordinate system can be determined when one of the position parameter and the pose parameter is known. After determining the first position transformation relationship between a coordinate system and a second coordinate system, the other one of the position parameter and the posture parameter can be solved through coordinate transformation.
  • the second position transformation relationship may be a coordinate transformation relationship between the first coordinate system and the first position coordinate system at each first position.
  • At least three first positions may be located on the circumference of the first distribution circle C1, and the coordinate origin of the first coordinate system (such as OS ) may be located at the first
  • the center of the distribution circle C1 the third coordinate axis (such as the Z axis) of the first coordinate system is perpendicular to the first plane defined by at least three first positions and points to at least three second positions (such as M1, M2 and M3).
  • the first distribution circle may be a virtual circle, which may not be reflected on the static platform 100 , and which may not be located on the static platform 100 .
  • the first coordinate system is not limited to this.
  • It can be located at any position in the three-dimensional space where the parallel mechanism is located. It can be located on the static platform 100 or outside the static platform 100 , as long as it is stationary relative to the static platform 100 to be able to It suffices to represent the posture of the static platform 100.
  • At least three second positions may be located on the circumference of the second distribution circle C2, and the coordinate origin of the second coordinate system (such as O M ) may be located on the second distribution circle
  • the center of the circle C2 the third coordinate axis (such as the Z axis) of the second coordinate system is perpendicular to the side of the second plane defined by at least three second positions away from the first plane.
  • the second distribution circle may be a virtual circle, which may not be reflected on the moving platform 200 .
  • the second coordinate system is not limited to this. It can be located at any position in the three-dimensional space where the parallel mechanism is located. It can be located on the moving platform 200 or outside the moving platform 200 , as long as it is stationary relative to the moving platform 200 It suffices to represent the posture of the moving platform 200 .
  • the coordinate origin OS of the first coordinate system is the center of the hinge circle of each first position (that is, the center of the first distribution circle C1), and the positive direction of the XS axis points from the coordinate origin OS to the first position.
  • the Z S axis is perpendicular to the hinge circle plane (i.e., the first plane) of the first position and faces the moving platform.
  • the Y S axis conforms to the right-hand rule; the coordinate origin of the second coordinate system is fixed to the hinge circle center of each second position. , in the initial state, each coordinate axis of the second coordinate system is parallel to the corresponding coordinate axis of the first coordinate system.
  • each second position is rotatable relative to the corresponding first position about a first rotation axis r 1 and a second rotation axis r 2 , the first rotation axis r 1 and the second rotation axis r 2 r 2 are perpendicular to each other.
  • the rotation change amount may include a first rotation change amount of the second position relative to the corresponding first position about the first rotation axis and/or a first rotation change amount of the second position relative to the corresponding first position about the second rotation axis.
  • the second rotation change amount may include a first rotation change amount of the second position relative to the corresponding first position about the first rotation axis and/or a first rotation change amount of the second position relative to the corresponding first position about the second rotation axis.
  • both ends of the connecting branch chain 300 are connected between corresponding first positions and second positions, and each second position is connected to a corresponding
  • the distance between the first positions in the adjustment direction of the corresponding connecting branch chain may be, for example, the distance along the axis of linear movement of the connecting branch chain 300 .
  • the rotation change amount of each second position relative to the corresponding first position may be an angle of rotation of the connecting branch chain 300 around the first position with the first position as the origin.
  • the connecting branch chain 300 may be connected to the first position and/or the second position at a non-end position, and the distance may be from the first position in a direction parallel to the axis of linear movement of the connecting branch chain 300 .
  • the rotation change amount of each second position relative to the corresponding first position may be equal to the angle of rotation of the connecting branch chain 300 around the first position with the first position as the origin.
  • a rotary driving device can be installed on the static platform 100 to drive each connecting branch chain 300 around the corresponding first position (for example, the static connecting branch chain 300 and the static platform 100 ).
  • hinge point rotates, since the connecting branch chain 300 is connected to the second position (for example, the moving hinge point connecting the branch chain 300 and the moving platform 200), the rotation angle driven by the rotation driving device can be the above-mentioned rotation change amount, and the rotation driving device
  • the rotation axis of may be the rotation axis of the rotation variation.
  • the direction of the rotation axis of the driving device can be arbitrary. Take Figures 5 and 6 as examples.
  • the direction of the rotation axis r1 of the rotating driving device can be between the center of the first distribution circle and the first position. in the connecting direction; in Figure 6, the direction of the rotation axis r 1 of the rotation drive device may be in the tangential direction of the circumference of the first distribution circle.
  • a linear driving device can also be provided on each connecting branch chain 300 to drive the connecting branch chain 300 to extend and shorten, thereby changing the distance between the first position and the second position.
  • the first coordinate system and the second coordinate system may have the same coordinate axis direction.
  • the second coordinate system is in the first coordinate system.
  • the attitude under the system can be described as the attitude obtained by rotating the second coordinate system around its own X-axis through an angle ⁇ x , then around its own Y-axis through an angle ⁇ y , and then around its own Z-axis through an angle ⁇ z .
  • the default state refers to a state in which the first plane is parallel to the second plane, the distance between each second position and the corresponding first position is equal, and the distance between them is the shortest.
  • the solution process can be simplified by establishing the first position transformation relationship and the second position transformation relationship.
  • the above method is particularly advantageous in the process of solving the control or pose calculation of a parallel mechanism with a small number of connected branches.
  • calculations are usually performed only by determining the lengths of the six connecting branches, and the rotation change is not used as a calculation quantity.
  • the six connecting branches are modified to less With six connecting branches (for example, with three connecting branches), the existing kinematics cannot solve the three connecting branches.
  • the method according to the present disclosure is not limited to being applied to a parallel mechanism with less than six connecting branches, and it can also be applied to a parallel mechanism with six connecting branches.
  • the kinematics of a parallel mechanism involves forward kinematics and inverse kinematics.
  • exemplary embodiments of the solution processes of forward kinematics and inverse kinematics will be described based on each parameter given above. .
  • one of the position parameters and pose parameters described in step S10 may be a position parameter, and the other may be a pose parameter, where the rotation change amount It may include a first rotation change amount of the second position relative to the corresponding first position about the first rotation axis and a second rotation change amount of the second position relative to the corresponding first position about the second rotation axis, where the first The axis of rotation and the second axis of rotation are perpendicular to each other.
  • One of the first position conversion relationship and the second position conversion relationship is a second position conversion relationship
  • the other of the first position conversion relationship and the second position conversion relationship is a first position conversion relationship.
  • the first position coordinate system may include a third coordinate system and a fourth coordinate system.
  • one of the first coordinate axis and the third coordinate axis of the third coordinate system may be the first rotation axis
  • the other of the first coordinate axis and the third coordinate axis of the third coordinate system may be based on the first Determined by one of the first coordinate axis and the third coordinate axis of the coordinate system
  • the second coordinate axis of the third coordinate system complies with the right-hand rule relative to the first coordinate axis and the third coordinate axis of the third coordinate system.
  • the second coordinate axis of the fourth coordinate system may be the second rotation axis
  • the third coordinate axis of the fourth coordinate system may be determined based on the relative position between the second position and the corresponding first position
  • the third coordinate axis of the fourth coordinate system may be determined based on the relative position between the second position and the corresponding first position.
  • a coordinate axis complies with the right-hand rule relative to the second coordinate axis and the third coordinate axis of the fourth coordinate system.
  • the first rotation axis r 1 passes through the center of the first distribution circle, and the second rotation axis r 2 is tangent to the circumference of the first distribution circle.
  • the third coordinate system at any first position can be determined in the following way:
  • the direction from the coordinate origin OS of the first coordinate system to the first position is determined as the direction of the first coordinate axis XS1 of the third coordinate system, and the direction of the third coordinate axis ZS of the first coordinate system is determined as the direction of the third coordinate axis
  • the direction of the third coordinate axis Z S1 of the three coordinate system, and the direction that is perpendicular to the first coordinate axis X S1 and the third coordinate axis Z S1 of the third coordinate system and conforms to the right-hand rule is determined as the third coordinate axis of the third coordinate system.
  • the third coordinate system is determined based on the coordinate origin O S1 of the third coordinate system, the direction of the first coordinate axis X S1 , the direction of the second coordinate axis Y S1 and the direction of the third coordinate axis Z S1 .
  • the fourth coordinate system at any first position can be determined in the following way:
  • the fourth coordinate system is determined based on the coordinate origin O S1' of the fourth coordinate system, the direction of the first coordinate axis X S1' , the direction of the second coordinate axis Y S1' , and the direction of the third coordinate axis Z S1' .
  • the positive direction of the Y Si' axis coincides with Y Si
  • the positive direction of the Z Si' axis points from the first position Si to the first position Si .
  • the two positions M i and X Si' axis comply with the right-hand rule.
  • the coordinate system established based on the above principles is applicable to both the 3UPS structure and the 3UCU structure.
  • Establish the first position coordinate system at the first position establish the first coordinate system with the center of the distribution circle at the first position as the coordinate origin, and establish the second coordinate system with the center of the distribution circle at the second position as the coordinate origin, like this
  • the coordinate system establishment method can simplify calculations.
  • the position conversion relationship between each coordinate system can be expressed by the rotation change amount and distance between the corresponding first position and the second position.
  • the drive of the rotation drive device can be used
  • the quantity and the passive rotation angle at the first position i.e., the angle measured by the angle measuring device
  • the second position transformation relationship can be determined in the following way:
  • the third coordinate may be determined based on the first rotation change amount and the second rotation change amount of the second position relative to the corresponding first position.
  • the third coordinate transformation relationship from the first coordinate system to the third coordinate system can be expressed as the following coordinate transformation matrix T s_si :
  • the coordinates of the first position Si in the first coordinate system are (S ix , S iy , S iz ), which can be related to the radius of the first distribution circle and the rotation angles of at least three first positions, where, i are 1, 2, and 3.
  • the fourth coordinate transformation relationship between the fourth coordinate system and the third coordinate system can be expressed as the coordinate transformation matrix T si_si' :
  • ⁇ si is the first rotation change amount
  • i represents i ⁇ [1,N] at the first position Si
  • N is the number of the first position (or also the second position).
  • the first rotation change amount and the second rotation change amount can be determined by the driving amount of the rotation driving device and the measurement amount of the angle measuring device provided in the parallel mechanism, for example, as shown in FIGS. 5 and 6 , in FIG. 5, the first rotation change amount may be the driving amount of the rotation driving device 301, and the second rotation change amount may be the measurement amount of the angle measurement device 302; in FIG. 6, the first rotation change amount may be the angle measurement device 302.
  • the measured quantity, the second rotation change quantity may be the driving quantity of the rotation driving device 301 .
  • the means for determining the first rotation change amount or the second rotation change amount is not limited to the above method, and both can be determined by any means as long as they can be used for calculation.
  • the rotary drive device 301 here may be a drive device with an angle measuring device, and the angle measuring device 302 may be, for example, an angle encoder.
  • the parameters measured by the angle measurement device can be used in forward kinematics. If the actual application of the parallel mechanism only involves inverse kinematics and not forward kinematics. , the angle measuring device can also be omitted in the parallel mechanism.
  • coordinate transformation matrices are all homogeneous matrices, which are commonly used forms in coordinate transformation.
  • specific form of the coordinate transformation matrix given here is only an example, which can be changed according to the different construction positions of the first coordinate system, the third coordinate system and the fourth coordinate system, for example, the coordinate origin of the first coordinate system Also available in other locations.
  • establishing the coordinate transformation matrix between the two known coordinate systems and the operations of the matrix to be mentioned later are all accessible to those skilled in the art based on mathematical knowledge. Therefore, the specific calculation process of the coordinate transformation matrix will not be carried out here. A detailed description.
  • the second position transformation relationship may be determined based on the third coordinate transformation relationship and the fourth coordinate transformation relationship.
  • the coordinate transformation matrix T s_si from the first coordinate system to the third coordinate system can be left multiplied by the coordinate transformation matrix T si_si' from the third coordinate system to the fourth coordinate system to determine the relationship between the first coordinate system and the corresponding The second position transformation relationship between the first position coordinate system at the first position, that is, the coordinate transformation matrix T s_si' .
  • step S10 for any second position among the at least three second positions, according to the relationship between the second position and the corresponding first position, the distance in the adjustment direction of the corresponding connecting branch determines the position of each second position relative to the static platform.
  • this step it may be based on the distance between each second position of the at least three second positions and the corresponding first position in the adjustment direction of the corresponding connecting branch (for example, in the structure of FIG. 4 (the driving length of the linear drive device connecting the branch chain 300), determine the coordinates of each second position in the corresponding first position coordinate system, and thereby use the second position transformation relationship, that is, the coordinate transformation matrix T s_si' to left-multiply the second
  • the coordinates of the position in the corresponding first position coordinate system are connected to the branch chain to determine the coordinates s_mi of the second position in the first coordinate system. Specifically, it can be determined that the second positions M1, M2 and M3 are in the first coordinate system.
  • the first position coordinate system includes a third coordinate system and a fourth coordinate system
  • it can be based on the distance between each second position in the at least three second positions and the corresponding first position.
  • the distance in the adjustment direction of the corresponding connecting branch chain determines the coordinates of each second position in the corresponding fourth coordinate system, thereby using the coordinate transformation matrix T s_si' to left-multiply the second position in the corresponding fourth coordinate system coordinates under the first coordinate system to determine the coordinates s_m i of the second position under the first coordinate system.
  • the third coordinate axis of the fourth coordinate system is along the adjustment direction of the connecting branch chain, based on the distance between the second position and the corresponding first position in the adjusting direction of the corresponding connecting branch chain, it can be easily
  • the coordinates of the second position in the corresponding fourth coordinate system are determined, and the distance between the second position and the corresponding first position is the coordinate value of the second position on the third coordinate axis of the fourth coordinate system.
  • the length of the connecting branch chain can be changed by providing a linear drive device (that is, changing the distance between the corresponding first position and the second position in the adjustment direction of the connecting branch chain). ) and by arranging a rotary driving device to change the rotation amount of the connecting branch chain about an axis relative to the static platform (ie, changing one of the first rotation amount and the second rotation amount), between the active driving length and a rotation amount
  • the other rotation amount can be passively limited, without installing a drive device, and its value cannot be determined.
  • the method according to the present disclosure can obtain the passive rotation angle (the other of the first rotation change amount and the second rotation change amount) through means such as an angle measurement device, so that the passive rotation angle can be obtained based on the distance, the first rotation change amount and the second rotation change amount.
  • the three rotation changes determine the unique solution of the pose parameters, which is beneficial to determining the pose of the moving platform.
  • first position coordinate system including the third coordinate system and the fourth coordinate system
  • first position coordinate system may also include only one coordinate system or More than two coordinate systems, for example, may only include a third coordinate system or a fourth coordinate system, as long as the first coordinate transformation relationship can be determined through the transformation matrix between coordinate systems.
  • the construction method of the third coordinate system and/or the fourth coordinate system is not limited to the above method.
  • the third coordinate system and/or the fourth coordinate system can be constructed in different ways.
  • the fourth coordinate system; on the other hand, the third coordinate system and/or the fourth coordinate system can be used for different parallel mechanism structures to be more suitable for the adopted structure. Additional exemplary construction methods of the third coordinate system and the fourth coordinate system will be described below with reference to FIGS. 8 to 11 .
  • Figures 8 and 9 and Figures 10 and 11 show other examples of how the third coordinate system and the fourth coordinate system are constructed, respectively.
  • the parallel mechanism includes a static platform 100 and a moving platform 200, while in the examples of Figures 8 to 11, the parallel mechanism also includes a third platform assembly 400.
  • the three platform assembly 400 is fixed relative to the static platform 100 (in the example of FIG. 8 , the third platform assembly 400 is integrally formed with the static platform 100 ; in the example of FIG. 10 , the third platform assembly 400 and the static platform 100 are fixedly connected through connectors. ), and located on the side of the static platform 100 facing away from the side of the moving platform, the third platform assembly 400 may be formed with third positions S4, S5, and S6.
  • each connecting branch chain 300 includes a first connecting part 310 and a second connecting part 320 , the length of the first connecting part 310 is adjustable, and the first end of the first connecting part 310 is connected to the moving platform 200 , the second end of which is connected to the first end of the second connecting part 320.
  • the first connecting part 310 and the second connecting part 320 can be hinged to each other through the third position hinge 120, and the third position is hinged.
  • the member 120 can be, for example, a ball joint, and the second end of the second connecting portion 320 is connected to the third platform assembly 400, for example, through a hinge 130.
  • the hinge 130 can be, for example, a Hooke hinge (also known as a Hooke hinge).
  • the second connecting part 320 may be telescopic, and the lengths L4, L5, L6 of the third positions S4, S5, S6 relative to the fourth positions M4, M5, M6 may be adjusted by driving the length adjustment of the second connecting part 320. .
  • the static platform 100 is connected to the corresponding first connection part 310 through the first position hinge 110.
  • the first connection part 310 can be connected to the static platform 100 through the first position hinge 110 of the static platform 100, and can rotate around the first rotation axis r 1 and rotate around the second rotation axis r 2 via the first position hinge 110 , here, the first position is formed at the position where the first rotation axis r 1 intersects the second rotation axis r 2 , that is, it is not located on the static platform 100 and the first connection part 310 , therefore, the first position is distant from the corresponding third A connecting portion 310 exists at a certain distance.
  • the first position hinge 110 is formed such that the first positions S1 , S2 and S3 are located between the axes of the corresponding connection branches 300 (specifically, the first connection portion 310 ). Externally, that is, as shown in FIG. 9 , the distance from the first positions S4, S5, and S6 to the connecting branch chain 300 is l.
  • the angle at which the first connection part 310 rotates around the first rotation axis r 1 may be driven by the rotation driving device 301 connected to the first position hinge 110 , and the first connection part 310 rotates around the second rotation axis r .
  • the angle of rotation can be measured by an angle measuring device 302 connected to the first position hinge 110.
  • the second connection part 320 may include a linear drive device to drive the entire connection branch chain 300 to expand radially outward relative to the static platform 100 and the third platform assembly 400 .
  • the rotation about the second rotation axis r2 may be a passive rotation.
  • the rotation axis r1 of the rotary drive device is parallel to or in the first plane, while in the example of Figure 8, the first rotation axis r 1 can be on the line connecting the corresponding first and third positions of the third platform assembly and the static platform, and it can be tilted relative to the first plane, for example, it can be tilted relative to the third coordinate axis of the first coordinate system.
  • Angle ⁇ in addition, due to the existence of distance l, the direction of the third coordinate axis Z S1' of the fourth coordinate system is not located on the adjustment axis of the first connection part 310, but is parallel to the adjustment axis of the first connection part 310 .
  • the third coordinate system at any first position can be determined in the following way:
  • the directions in which the first coordinate axis X S and the third coordinate axis Z S of the first coordinate system are rotated by a first angle ⁇ around the second coordinate axis Y S of the first coordinate system are respectively determined as the first coordinate axis of the third coordinate system.
  • the third coordinate system is determined based on the coordinate origin O S1 of the third coordinate system, the direction of the first coordinate axis X S1 , the direction of the second coordinate axis Y S1 and the direction of the third coordinate axis Z S1 .
  • the fourth coordinate system at any first position can be determined in the following way:
  • the direction from the first position S1 toward the second plane along the axis direction of the corresponding connecting branch chain 300 is determined as the direction of the third coordinate axis Z S1' of the fourth coordinate system;
  • the direction of the second coordinate axis Y S1 of the third coordinate system in the default state of the parallel mechanism is determined as the direction of the second coordinate axis Y S1' of the fourth coordinate system, where, in the default state of the parallel mechanism, the first The plane is parallel to the second plane and the distance between each second position M1 and the corresponding first position S1 is equal, wherein the second coordinate axis Y S1' of the fourth coordinate system is along the second rotation axis;
  • the fourth coordinate system is determined based on the coordinate origin O S1' of the fourth coordinate system, the direction of the first coordinate axis X S1' , the direction of the second coordinate axis Y S1' , and the direction of the third coordinate axis Z S1' .
  • step S11 can be performed to determine the second position transformation relationship, where the coordinate transformation matrix T s_si from the first coordinate system to the third coordinate system and the third coordinate system
  • the coordinate transformation matrix T si_si' from the system to the fourth coordinate system can be known by those skilled in the art based on basic geometric knowledge, so it will not be listed one by one here.
  • the same reference numerals as in FIG. 8 indicate parts/components having the same function as described above with reference to FIG. 8 , with the difference that the first position hinge 110 is formed such that the first Positions S4, S5 and S6 are located on the axes of the corresponding connecting branches 300 (specifically, the first connecting portion 310).
  • the first axis of rotation may be on a line connecting the corresponding first and third positions of the third platform assembly and the static platform, which may be relative to the third position of the first coordinate system.
  • the coordinate axis is inclined by the first angle ⁇ , and the third coordinate system and the fourth coordinate system may be constructed in the same manner as described above with reference to FIGS. 8 and 9 .
  • step S20 determines the position parameter sum based on the position of each second position relative to the static platform. The other of the pose parameters.
  • the first position conversion relationship may be determined based on the position of each second position relative to the static platform.
  • the coordinate m 0 of the coordinate origin of the second coordinate system in the first coordinate system can be obtained:
  • the second position is explained here with an equilateral triangle uniformly distributed on the circumference as an example, the geometric relationship between the second position and the coordinate origin of the second coordinate system is fixed, so given any For any geometric relationship, the coordinates of the coordinate origin of the second coordinate system can be obtained through the coordinates of at least three second positions in the first coordinate system.
  • the above operation process can be understood by those skilled in the art based on basic geometric knowledge.
  • the unit direction vector of the first coordinate axis of the second coordinate system Unit direction vector of the second coordinate axis Unit direction vector of the third coordinate axis
  • the first coordinate axis of the second coordinate system points from the coordinate origin m 0 to the second position M1
  • the unit direction vector of the first coordinate axis can be obtained for:
  • the third coordinate axis of the second coordinate system is perpendicular to the second plane. Therefore, the unit direction vector of the third coordinate axis of the second coordinate system is the vector from the coordinate origin m 0 to the second position M1 The vector from the coordinate origin m 0 to the second position M2
  • the cross product of can be expressed as:
  • the first position transformation relationship T s_m between the first coordinate system and the second coordinate system can be determined:
  • the kth element in , k is 1, 2 and 3, for example, Represents a vector
  • the second element in represents vector
  • the direction vector and The vector solution formula is listed based on the coordinate relationship in Figure 4. This is only an example, not the only solution method.
  • the idea is to solve the second coordinate based on the coordinates of the second position in the first coordinate system.
  • the vectors of each coordinate axis of the system can be used to form the first coordinate transformation matrix.
  • step S22 pose parameters may be determined based on the first position conversion relationship.
  • step S22 based on the first position transformation relationship, that is, the coordinate transformation matrix T s_m , the coordinates of the coordinate origin O M of the second coordinate system in the first coordinate system can be determined (m 0x , m 0y , m 0z ).
  • the attitude parameters of the second coordinate system in the first coordinate system can be determined, that is, the rotation angles ⁇ x , ⁇ y and ⁇ z :
  • the rotation angles ⁇ x , ⁇ y and ⁇ z respectively represent the rotation angles of the second coordinate system rotating around its own three coordinate axes (ie, X axis, Y axis and Z axis),
  • T s_m (m,n) Represents the element of the m-th row and n-th column of the coordinate transformation matrix T s_m .
  • the parallel mechanism may also include an actuator 500 fixed to the moving platform 200 to execute
  • the component 500 has a preset execution position T.
  • the execution component 500 may be, for example, a load device LO carried by the moving platform 200 (as shown in FIG. 6 ), which may be a surgical instrument that needs to be actuated by a parallel mechanism. Execution tools.
  • the actuator carried on the parallel mechanism needs to pass through a narrow passage such as a hole, and extend into the internal space for operation. For example, in minimally invasive abdominal surgery, surgical instruments need to be passed through the abdomen.
  • a small hole extends into the abdominal cavity for surgical operation.
  • it is necessary to limit the telecentric immobile position F of the actuator 500 that is, to limit the part of the actuator 500 at a narrow channel position such as a hole from moving.
  • Such constraints can be called telecentric fixed position constraints, which are very meaningful in the application of parallel mechanisms such as surgical robots, welding robots, spraying robots, etc.
  • FIG. 12 to FIG. 13 are used as examples for description here, it should be understood that the actuator 500 and the execution position T and the telecentric fixed position thereon can be present in the structure of all parallel mechanisms to which the present disclosure is applicable.
  • F for example, the execution position T and the telecentric immobility position F are also shown in Figure 9 above.
  • the pose determination method of the parallel mechanism may also include the following steps: determine the position of the telecentric fixed position on the actuator relative to the static platform, where The position of the immobile position relative to the static platform remains unchanged during the movement of the moving platform; according to the posture parameters and the position of the telecentric immobile position relative to the static platform, the position of the execution position relative to the static platform is determined.
  • the posture parameters of the second coordinate system in the first coordinate system are known, and the actuator 500 can be determined based on the coordinates of the telecentric immobile position F.
  • the coordinates of the execution position T in the first coordinate system are known, and the actuator 500 can be determined based on the coordinates of the telecentric immobile position F.
  • the coordinates of the execution position T of the actuator 500 can be obtained as:
  • O M is the coordinate of the origin of the second coordinate system in the first coordinate system
  • T is the coordinate of the execution position in the first coordinate system
  • F is the coordinate of the telecentric fixed position in the first coordinate system.
  • the pose determination method of forward kinematics of a parallel mechanism is described above, and an exemplary embodiment of a pose determination method of inverse kinematics will be described below.
  • the main concept of inverse kinematics is similar to that of forward kinematics, and also involves the position parameters and posture parameters described above. Therefore, the following description of inverse kinematics involves the same or the same as the above forward kinematics. Similar components or parameters may have the same or similar meaning, and the inverse kinematics described here is applicable to all structural types of parallel mechanisms mentioned above.
  • one of the position parameter and the pose parameter described in step S10 is the pose parameter
  • the other of the position parameter and the pose parameter is the position parameter.
  • the rotation change amount includes a first rotation change amount of the second position relative to the corresponding first position about the first rotation axis and/or a second rotation change amount of the second position relative to the corresponding first position about the second rotation axis,
  • the first axis of rotation and the second axis of rotation are perpendicular to each other.
  • One of the first position conversion relationship and the second position conversion relationship is the first position conversion relationship
  • the other of the first position conversion relationship and the second position conversion relationship is the second position conversion relationship.
  • one of the first coordinate axis and the third coordinate axis of the coordinate axis of the first position coordinate system is the first rotation axis or the second rotation axis
  • the first coordinate axis and the third coordinate axis of the first position coordinate system The other of the axes is determined based on one of the first coordinate axis and the third coordinate axis of the first coordinate system, the second coordinate axis of the first position coordinate system being perpendicular to the first coordinate axis of the first position coordinate system and the third coordinate axis and conforms to the right-hand rule.
  • the second position conversion relationship can be determined in the following way:
  • any second position among the at least three second positions determine a third position between the first position coordinate system and the first coordinate system based on the coordinates of the first position corresponding to the second position in the first coordinate system. Two position conversion relationship.
  • step S10 may include the following steps:
  • step S11 the first position transformation relationship between the first coordinate system and the second coordinate system can be determined based on the pose parameters.
  • the pose parameters include the coordinates of the coordinate origin of the second coordinate system in the first coordinate system (m 0x , m 0y , m 0z ) and the rotation angles ⁇ x , ⁇ of the second coordinate system around its own three coordinate axes. y and ⁇ z .
  • the coordinate transformation matrix T s_m from the first coordinate system to the second coordinate system can be determined:
  • ⁇ x , ⁇ y and ⁇ z respectively represent the rotation angles of the second coordinate system around its own three coordinate axes.
  • the coordinate origin of the second coordinate system O M in the first coordinate system is (m x ,m y ,m z ).
  • step S12 the position of each second position relative to the static platform may be determined based on the first position conversion relationship and the position of each second position relative to the static platform.
  • step S121 according to the geometric relationship between the second position and the second coordinate system, the coordinates of the second position in the second coordinate system can be determined.
  • the first position transformation relationship of the system that is, the coordinate transformation matrix T s_m
  • T s_m the coordinate transformation matrix
  • step S20 the position parameter corresponding to each second position may be determined based on the position of each second position relative to the static platform and the second position conversion relationship.
  • the second position conversion relationship can be determined in the following manner: for any second position among at least three second positions, according to the coordinates of the first position corresponding to the second position in the first coordinate system, Determine a second position transformation relationship between the first position coordinate system and the first coordinate system.
  • one of the first coordinate axis and the third coordinate axis of the first position coordinate system is the first rotation axis or the second rotation axis
  • the other of the first coordinate axis and the third coordinate axis of the first position coordinate system is One is determined based on one of the first coordinate axis and the third coordinate axis of the first coordinate system
  • the second coordinate axis of the third coordinate system is perpendicular to the first coordinate axis and the third coordinate axis of the third coordinate system.
  • the first position coordinate system may be the first position coordinate system described above for forward kinematics, for example it may be a third coordinate system or a fourth coordinate system, and in inverse kinematics, the third coordinate system Or the construction method of the fourth coordinate system is the same as the various examples described above in forward kinematics, and will not be described again here.
  • the coordinates of the first position in the first coordinate system can be determined, so that the distance between the first position coordinate system and the first coordinate system at each first position can be determined.
  • Second position conversion relationship
  • the coordinate transformation matrix from the third coordinate system to the first coordinate system can be the above-mentioned coordinate transformation matrix from the first coordinate system to the third coordinate system.
  • step S211 the coordinates of the second position in the first position coordinate system can be determined based on the second position conversion relationship and the position of the second position relative to the static platform.
  • the coordinate representation of each second position can be converted from the first coordinate system to the first position coordinate system.
  • the inverse matrix T s_si -1 of the transformation matrix T s_si mentioned above from the first coordinate system to the third coordinate system is left multiplied by
  • the coordinates s_mi of the second position in the first coordinate system can be obtained as the coordinates si_mi of the second position in the third coordinate system.
  • step S212 the position parameter corresponding to the second position may be determined based on the coordinates of the second position in the first position coordinate system.
  • the coordinates of the second position in the first position coordinate system can be analyzed, so that the position parameters corresponding to the second position can be determined.
  • one coordinate axis of the first position coordinate system is the first rotation axis or the second rotation axis
  • the position of the corresponding second position is analyzed under the first position coordinate system at each first position, Compared with analyzing it in other coordinate systems, the calculation process can be simplified and the calculation speed can be improved.
  • the first position coordinate system as the third coordinate system shown in Figure 4 as an example
  • the vector representation between i and the origin of the corresponding first position coordinate system (ie, the corresponding first position S i ) Determine the distance between the two, that is, the distance between the i-th second position and the corresponding first position in the adjustment direction of the corresponding connecting branch chain Among them, i ⁇ [1,N], N is the number of the first position (or the second position).
  • the position of the second position relative to the origin of the first position coordinate system (ie, the corresponding first position) in each coordinate axis direction can be calculated.
  • the rotation angle for example, can calculate the first rotation change amount ⁇ Si of the second position relative to the corresponding first position around the first rotation axis and the second rotation of the second position around the second rotation axis relative to the corresponding first position.
  • first rotation change amount ⁇ Si and the second rotation change amount can be represented by the following expressions:
  • s i _m i (k) represents the k-th coordinate value of the coordinate s i _m i of the second position in the first position coordinate system, and k is 1, 2 and 3, that is, s i _m i (1) Represents the coordinate value of the second position on the first coordinate axis of the first position coordinate system, s i _m i (2) Represents the coordinate value of the second position on the second coordinate axis of the first position coordinate system, s i _m i (3) represents the coordinate value of the second position on the third coordinate axis of the first position coordinate system, and L i represents the adjustment direction of the corresponding connecting branch between the i-th second position and the corresponding first position. distance on.
  • the first rotation change amount ⁇ Si and the second rotation change amount The distance L i can be related to the rotational change amount (the first rotational change amount ⁇ Si and/or the second rotational change amount ⁇ Si ) is input into the control system of the parallel mechanism as the driving quantity to control the linear adjustment of the corresponding motor-driven connecting branch chain 300 and the rotational adjustment relative to the static platform, so that the moving platform moves to the target posture relative to the static platform, that is, above Under the pose represented by the pose parameters.
  • the parallel mechanism may further include an actuator 500 fixed to the moving platform 200 , the actuator 500 may have an execution position T, and the actuator 500 may be restricted The telecentric fixed position F.
  • the position parameters can be directly given to solve the position parameters.
  • the pose parameters can be calculated based on the execution position T and the telecentric stationary position F.
  • the pose parameters can be determined in the following way: based on the coordinates of the execution position T and the telecentric fixed position F in the first coordinate system, determine the coordinates of the origin of the second coordinate system in the first coordinate system; determine The coordinate axis rotation matrix between the first coordinate system and the second coordinate system, and determine the coordinates of the second coordinate system based on the coordinate axis rotation matrix and the coordinates of the execution position T and the telecentric fixed position F in the first coordinate system The rotation angle of the axis relative to the coordinate axis of the first coordinate system.
  • the execution position T and the telecentric fixed position F shown in Figure 13 are collinear, as an example, according to the coordinate origin OM of the second coordinate system.
  • the coordinates of the coordinate origin of the second coordinate system in the first coordinate system can be obtained. Specifically, it can be expressed as:
  • m 0 is the coordinate origin of the second coordinate system O M in the first coordinate system
  • F is the coordinate of the telecentric fixed position F in the first coordinate system
  • T is the telecentric fixed position T in the first coordinate system.
  • Coordinates in a coordinate system is the vector representation from the coordinate origin O M of the second coordinate system to the telecentric fixed position F, It is a vector representation from the execution position T to the telecentric fixed position F.
  • the coordinate axis rotation matrix between the first coordinate system and the second coordinate system can be expressed as:
  • ⁇ x , ⁇ y and ⁇ z respectively represent the rotation angles of the second coordinate system around its own three coordinate axes.
  • equations can be established based on the coordinate axis rotation matrix between the first coordinate system and the second coordinate system:
  • the rotation angle can be understood as the Euler angle through which the second coordinate system rotates based on a certain fixed point (ie, the coordinate origin of the second coordinate system).
  • a rotational driving member 510 can be provided on the moving platform.
  • the movement of the moving platform around its own Z-axis can be achieved by being installed on the moving platform.
  • the rotary drive member 510 is completed instead.
  • the rotary driving member 510 may be fixed to the moving platform, the actuator 500 may be installed to the moving platform via the rotary driving member 510 , the rotary driving member 510 may define the selection of the actuating member 500 relative to the moving platform, and
  • the rotation axis of the rotary driving member 510 may be along one or more of the first coordinate axis, the second coordinate axis and the third coordinate axis of the second coordinate system. In this way, at the above-mentioned coordinate origin O M according to the second coordinate system , the process of solving the coordinates of the execution position T and the telecentric fixed position F for the rotation angles ⁇ one or more.
  • the rotation axis of the rotation driving member 510 can be along the third coordinate axis Z M of the second coordinate system.
  • the rotation angle ⁇ z can be The rotational driving amount of the rotating driving member 510 is determined.
  • the coordinate axis rotation matrix R s_m can be written as:
  • the position and orientation determination method of the parallel mechanism according to the exemplary embodiment of the present disclosure is described above with reference to the example structures of FIGS. 1 to 15 .
  • the 3UPS structure is mainly used as an example for description here, but the method of the present disclosure can also be applied to similar applications.
  • the modified structure, such as the structure shown in Figures 8 to 11, can also be applied to the 3UCU structure mentioned above. As long as one of its position parameters and pose parameters can be obtained, the other can be obtained.
  • FIG. 16 is a schematic block diagram of a posture determination device of a parallel mechanism according to an exemplary embodiment.
  • a parallel mechanism may include a static platform 100 , a moving platform 200 and a connecting branch chain 300 .
  • the static platform 100 is formed with at least three first positions
  • the moving platform 200 is formed with at least three first positions.
  • the span between the corresponding first and second positions is adjustable.
  • the pose determination device may include a first determination unit 10 , a second determination unit 20 and a third determination unit 30 .
  • the first determination unit 10 may be configured to determine based on one of the position parameter between each second position of the at least three second positions and the corresponding first position and the posture parameter of the moving platform relative to the static platform. The position of each second position relative to the static platform.
  • the second determination unit 20 may be configured to determine the other one of the position parameter and the pose parameter based on the position of each second position relative to the static platform.
  • the third determination unit 30 may be configured to determine the posture of the connecting branch chain of the parallel mechanism based on the position parameter, or to determine the posture of the moving platform of the parallel mechanism based on the posture parameter.
  • the position parameter may include a distance between each second position of the at least three second positions and the corresponding first position in the adjustment direction of the corresponding connecting branch chain and the distance between each second position and the corresponding first position.
  • each second position is rotatable relative to the corresponding first position about a first axis of rotation and a second axis of rotation, the first axis of rotation and the second axis of rotation being perpendicular to each other, wherein the amount of rotational variation includes the second position relative to The first rotation change amount about the first rotation axis at the corresponding first position and/or the second rotation change amount about the second rotation axis at the second position relative to the corresponding first position.
  • the first determination unit 10 may be further configured to: determine each second position relative to the stationary position according to one of the position parameter and the posture parameter and one of the first position conversion relationship and the second position conversion relationship.
  • the position of the platform, where the first position conversion relationship is the position conversion relationship between the moving platform and the static platform; the second position conversion relationship is the position conversion relationship between each first position and the rotation axis as the reference object and the static platform relation.
  • the second determination unit 20 may also be configured to: determine the position parameter and the posture parameter based on the position of each second position relative to the static platform and the other of the first position conversion relationship and the second position conversion relationship. the other of.
  • the pose parameters include the coordinates of the coordinate origin of the second coordinate system in the first coordinate system and the rotation angles of the second coordinate system around its own three coordinate axes, where the position of the first coordinate system is relative to At least three first positions are fixed, and the position of the second coordinate system is fixed relative to at least three second positions, where the first position transformation relationship is a coordinate transformation relationship between the first coordinate system and the second coordinate system, where, The second position transformation relationship is a coordinate transformation relationship between the first coordinate system and the first position coordinate system at each first position, wherein the coordinate origin of the first position coordinate system is located at the corresponding first position, and One of the coordinate axes of a position coordinate system is a first rotation axis or a second rotation axis through which the second position rotates relative to the corresponding first position.
  • one of the position parameter and the pose parameter is a position parameter
  • the other of the position parameter and the pose parameter is a pose parameter
  • one of the first position transformation relationship and the second position transformation relationship is the Two position conversion relationships
  • the other one of the first position conversion relationship and the second position conversion relationship is the first position conversion relationship
  • the first position coordinate system includes a third coordinate system and a fourth coordinate system, wherein the second position transformation relationship is determined in the following manner: for any second position among at least three second positions, according to the The first rotation change amount and the second rotation change amount of the second position relative to the corresponding first position determine the third coordinate transformation relationship between the third coordinate system and the first coordinate system and the fourth coordinate system and the third coordinate system.
  • the fourth coordinate transformation relationship between coordinate systems based on the third coordinate transformation relationship and the fourth coordinate transformation relationship, determine the second position transformation relationship, wherein one of the first coordinate axis and the third coordinate axis of the third coordinate system is the first axis of rotation, the other of the first coordinate axis and the third coordinate axis of the third coordinate system is determined based on one of the first coordinate axis and the third coordinate axis of the first coordinate system, and the third
  • the second coordinate axis of the coordinate system is perpendicular to the first coordinate axis and the third coordinate axis of the third coordinate system and conforms to the right-hand rule, wherein the second coordinate axis of the fourth coordinate system is the second rotation axis, and the fourth coordinate system
  • the third coordinate axis is determined based on the relative position between the second position and the corresponding first position.
  • the first coordinate axis of the fourth coordinate system is perpendicular to the second coordinate axis and the third coordinate axis of the fourth coordinate system and conforms to Right hand rule
  • the first determination unit 10 may also be configured to: for any second position among the at least three second positions, adjust the corresponding connection branch chain between the second position and the corresponding first position.
  • the conversion relationship between the distance in the direction and the second position determines the position of each second position relative to the static platform.
  • At least three first positions are located on the circumference of the first distribution circle, the coordinate origin of the first coordinate system is located at the center of the first distribution circle, and the third coordinate axis of the first coordinate system is perpendicular to the at least three first positions.
  • the defined first plane points to the side of the second plane defined by at least three second positions, the first rotation axis passes through the center of the first distribution circle, and the second rotation axis is tangent to the circumference of the first distribution circle,
  • the third coordinate system at any first position is determined by: determining the first position as the coordinate origin of the third coordinate system; pointing the coordinate origin of the first coordinate system to the first position
  • the direction of is determined as the direction of the first coordinate axis of the third coordinate system
  • the direction of the third coordinate axis of the first coordinate system is determined as the direction of the third coordinate axis of the third coordinate system, and is perpendicular to the third coordinate system
  • the direction of the first coordinate axis and the third coordinate axis that conforms to the right-hand rule is determined as the direction of the second coordinate axis of the third coordinate system; based on the coordinate origin of the third coordinate system, the direction of the first coordinate axis, the second coordinate
  • the direction of the axis and the direction of the third coordinate axis determine the third coordinate system.
  • the fourth coordinate system at any first position can be determined by: determining the first position as the coordinate origin of the fourth coordinate system; pointing from the first position to the point corresponding to the first position
  • the direction of the second position is determined as the direction of the third coordinate axis of the fourth coordinate system
  • the direction of the second coordinate axis of the third coordinate system in the default state of the parallel mechanism is determined as the second coordinate axis of the fourth coordinate system direction, wherein, in the default state of the parallel mechanism, the first plane is parallel to the second plane and the distance between each second position and the corresponding first position is equal and the shortest distance
  • the direction in which the second coordinate axis and the third coordinate axis satisfy the right-hand rule is determined as the direction of the first coordinate axis of the fourth coordinate system; based on the coordinate origin of the fourth coordinate system, the direction of the first coordinate axis, the direction of the second coordinate axis direction and the direction of the third coordinate axis to determine the fourth coordinate system.
  • At least three first positions are located on the circumference of the first distribution circle, the coordinate origin of the first coordinate system is located at the center of the first distribution circle, and the third coordinate axis of the first coordinate system is perpendicular to the at least three first positions.
  • the defined first plane points to the side of the second plane defined by at least three second positions, and the first rotation axis is inclined at a first angle relative to the third coordinate axis of the first coordinate system,
  • the third coordinate system at any first position can be determined by: determining the first position as the coordinate origin of the third coordinate system; determining the second coordinate axis of the first coordinate system as the third coordinate system.
  • the direction of the second coordinate axis of the three-coordinate system; the directions in which the first coordinate axis and the third coordinate axis of the first coordinate system are rotated by a first angle around the second coordinate axis of the first coordinate system are respectively determined as the directions of the third coordinate system.
  • the fourth coordinate system at any first position can be determined in the following way: determine the first position as the coordinate origin of the fourth coordinate system; follow the corresponding connecting branch chain from the first position
  • the direction of the adjustment direction toward the second plane is determined as the direction of the third coordinate axis of the fourth coordinate system; the direction of the second coordinate axis of the third coordinate system in the default state of the parallel mechanism is determined as the direction of the fourth coordinate system.
  • the direction of the two coordinate axes where, in the default state of the parallel mechanism, the first plane is parallel to the second plane and the distance between each second position and the corresponding first position is equal and the shortest distance, where the fourth coordinate
  • the second coordinate axis of the system is along the second rotation axis; the direction satisfying the right-hand rule relative to the second coordinate axis and the third coordinate axis of the fourth coordinate system is determined as the direction of the first coordinate axis of the fourth coordinate system;
  • the fourth coordinate system is determined based on the coordinate origin of the fourth coordinate system, the direction of the first coordinate axis, the direction of the second coordinate axis, and the direction of the third coordinate axis.
  • the parallel mechanism further includes an actuator fixed to the moving platform, and the actuator has a preset execution position
  • the posture determination device of the parallel mechanism further includes a fourth determination unit, and the fourth determination unit may be configured to: determine The telecentric immobile position on the actuator is relative to the position of the static platform, where the telecentric immobile position remains unchanged relative to the static platform during the movement of the moving platform; according to the posture parameters and the telecentric immobile position relative to the static platform position to determine the execution position relative to the static platform.
  • one of the position parameter and the pose parameter is a pose parameter
  • the other of the position parameter and the pose parameter is a position parameter
  • one of the first position transformation relationship and the second position transformation relationship is the A position conversion relationship
  • the other of the first position conversion relationship and the second position conversion relationship is a second position conversion relationship
  • the first coordinate axis and the third coordinate axis of the coordinate axis of the first position coordinate system One is the first rotation axis or the second rotation axis
  • the other of the first coordinate axis and the third coordinate axis of the first position coordinate system is based on the first coordinate axis and the third coordinate axis of the first coordinate system.
  • One way to determine is that the second coordinate axis of the first position coordinate system is perpendicular to the first coordinate axis and the third coordinate axis of the first position coordinate system and conforms to the right-hand rule.
  • the second position conversion relationship can be determined in the following manner: for any second position among the at least three second positions, according to the coordinates of the first position corresponding to the second position in the first coordinate system , determine the second position transformation relationship between the first position coordinate system and the first coordinate system.
  • the second determination unit 20 may also be configured to: for any second position among the at least three second positions, according to the second position conversion relationship corresponding to the second position and the position of the second position in the first
  • the coordinates in the coordinate system determine the coordinates of the second position in the first position coordinate system; and the other one of the position parameter and the pose parameter is determined based on the coordinates of the second position in the first position coordinate system.
  • At least three first positions are located on the circumference of the first distribution circle, the coordinate origin of the first coordinate system is located at the center of the first distribution circle, and the third coordinate axis of the first coordinate system is perpendicular to the at least three first positions.
  • the defined first plane points to the side of the second plane defined by at least three second positions, the first rotation axis passes through the center of the first distribution circle, and the second rotation axis is tangent to the circumference of the first distribution circle.
  • the first position coordinate system at any first position can be determined by: determining the first position as the coordinate origin of the first position coordinate system; pointing from the coordinate origin of the first coordinate system to the The direction of the first position is determined as the direction of the first coordinate axis of the first position coordinate system, the direction of the third coordinate axis of the first coordinate system is determined as the direction of the third coordinate axis of the first position coordinate system, and the vertical The direction of the first coordinate axis and the third coordinate axis of the first position coordinate system and complying with the right-hand rule is determined as the direction of the second coordinate axis of the first position coordinate system; based on the coordinate origin of the first position coordinate system, the first The direction of the coordinate axis, the direction of the second coordinate axis and the direction of the third coordinate axis determine the first position coordinate system.
  • the parallel mechanism also includes an actuator fixed to the moving platform.
  • the actuator has a preset execution position and a telecentric fixed position, wherein the telecentric fixed position is relative to the position of the static platform during the movement of the moving platform.
  • the first determination unit 10 can determine the posture parameters in the following manner: according to the coordinates of the execution position and the telecentric fixed position in the first coordinate system, determine that the origin of the second coordinate system is in the first coordinate system coordinates; determine the coordinate axis rotation matrix between the first coordinate system and the second coordinate system, and determine the second coordinate system based on the coordinate axis rotation matrix and the coordinates of the execution position and the telecentric fixed position in the first coordinate system The rotation angle of the coordinate axis relative to the coordinate axis of the first coordinate system.
  • a parallel manipulator includes a parallel mechanism.
  • the parallel mechanism may include a static platform, a moving platform and a connecting branch chain.
  • the static platform has at least three first positions.
  • the moving platform has at least three second positions corresponding to at least three first positions, each connecting branch chain is connected to the corresponding first position and the second position, and each connecting branch chain is at the corresponding first position.
  • the span between the first position and the second position is adjustable.
  • the parallel mechanism may further include: a memory storing a computer program; and a processor executing the computer program stored in the memory to implement the posture determination method of the parallel mechanism according to the present disclosure.
  • the number of connecting branches of the parallel mechanism may be three.
  • the parallel mechanism may also include an angle measuring device provided corresponding to the connecting branch chains. The angle measuring device is used to measure the rotation of each second position relative to the corresponding first position.
  • a rotational variation of the axis rotation such as the first rotational variation or the second rotational variation described above in the exemplary embodiment of the first aspect of the present disclosure.
  • the memory and processor of the parallel mechanism do not have to be located in a single device, but can also be any collection of devices or circuits that can execute the above instructions (or instruction sets) individually or jointly.
  • the memory and processor of the parallel mechanism may also be part of an integrated control system or system manager, or may be configured as a server that interfaces locally or remotely (eg, via wireless transmission).
  • a processor may include a central processing unit (CPU), a graphics processing unit (GPU), a programmable logic device, a special purpose processor system, a microcontroller, or a microprocessor.
  • processors may also include analog processors, digital processors, microprocessors, multi-core processors, processor arrays, network processors, and the like.
  • the processor can execute instructions or code stored in memory, where the memory can also store data. Instructions and data may also be sent and received over the network via network interface devices, which may employ any known transmission protocol.
  • the memory may be integrated with the processor, for example, RAM or flash memory may be arranged within an integrated circuit microprocessor or the like. Additionally, memory may include a separate device such as an external disk drive, storage array, or any other storage device that may be used by a database system.
  • the memory and the processor may be operatively coupled or may communicate with each other, such as through an I/O port, a network connection, or the like, enabling the processor to read files stored in the memory.
  • the parallel mechanism may also include a video display (such as a liquid crystal display) and a user interaction interface (such as a keyboard, mouse, touch input device, etc.). All components of the parallel mechanism can be connected to each other via buses and/or networks.
  • a video display such as a liquid crystal display
  • a user interaction interface such as a keyboard, mouse, touch input device, etc.
  • a surgical robot may include a base, a series robot arm, and the above-described parallel robot arm.
  • a computer-readable storage medium that, when instructions in the computer-readable storage medium are executed by a processor of an electronic device, enables the electronic device to execute the method according to the present disclosure.
  • the computer-readable storage medium may be, for example, a memory including instructions.
  • the computer-readable storage medium may be: read-only memory (ROM), random-access memory (RAM), random-access programmable read-only memory (PROM). ), electrically erasable programmable read-only memory (EEPROM), dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, non-volatile memory, CD-ROM, CD-R, CD +R, CD-RW, CD+RW, DVD-ROM, DVD-R, DVD+R, DVD-RW, DVD+RW, DVD-RAM, BD-ROM, BD-R, BD-R LTH, BD- RE, Blu-ray or optical disk storage, hard disk drive (HDD), solid state drive (SSD), card storage (such as multimedia card, secure digital (SD) card or extreme digital (XD) card), magnetic tape, floppy disk, magneto-optical data Storage devices, optical data storage devices, hard disks, solid state drives, and any other device configured to store
  • the computer program in the above computer-readable storage medium can run in an environment deployed in computer equipment such as a client, a host, a proxy device, a server, etc.
  • the computer program and any associated data, data files and data structures are distributed over networked computer systems such that computer programs and any associated data, data files and data structures are stored, accessed and executed in a distributed fashion by one or more processors or computers.
  • a computer program product including computer instructions that, when executed by a processor, implement the posture determination method of a parallel mechanism according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

一种并联机构的位姿确定方法及装置,位姿确定方法包括:根据至少三个第二位置(M1、M2、M3)中的每个第二位置(M1、M2、M3)与对应的第一位置(S1、S2、S3)之间的位置参量和动平台(200)相对于静平台(100)的位姿参量中的一者,确定每个第二位置(M1、M2、M3)相对于静平台(100)的位置;基于每个第二位置(M1、M2、M3)相对于静平台(100)的位置,确定位置参量和位姿参量中的另一者;基于位置参量,确定并联机构的连接支链(300)的位姿,或者,基于位姿参量,确定并联机构的动平台(200)的位姿。

Description

并联机构的位姿确定方法及装置
相关申请的交叉引用
本公开要求于2022年03月07日提交的申请号为202210216260.7的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及并联机构领域,尤其涉及一种并联机构的位姿确定方法及装置。
背景技术
并联机构(也被称为“并联机器人”)是一种具有彼此连接的动平台和静平台的运动机构,动平台和静平台上可对应地形成有关节,动平台和静平台上的对应的关节可以通过支链等连接支链连接。并联机构的运动学包括正向运动学和逆向运动学,正向运动学是指根据并联机构的一些关节变量,求解并联机构的末端动平台位置姿态,逆向运动学是指根据并联机构的末端动平台位置姿态,求解并联机构的一些关节变量。
然而,在现有的并联机构的运动学中,无论对于正向运动学还是逆向运动学,由于并联机构的运动形式复杂,导致求解复杂,不利于快速、高效地求解。
发明内容
本公开提供一种并联机构的位姿确定方法、并联机构的控制方法及装置,以至少解决相关技术中并联机构的运动学的求解复杂的问题。本公开的技术方案如下:
根据本公开实施例的第一方面,提供一种并联机构的位姿确定方法,所述并联机构包括静平台、动平台和连接支链,所述静平台形成有至少三个第一位置,所述动平台形成有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链对应于所述静平台和所述动平台的对应的第一位置和第二位置,并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的,所述位姿确定方法包括:根据所述至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和所述动平台相对于所述静平台的位姿参量中的一者,确定每个第二位置相对于所述静平台的位置;基于每个第二位置相对于所述静平台的位置,确定所述位置参量和所述位姿参量中的另一者;基于所述位置参量,确定所述并联机构的连接支链的位姿,或者,基于所述位姿参量,确定所述并联机构的动平台的位姿,其中,所述位置参量包括所述至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
如此,可以解决并联机构的运动学的求解复杂的问题,通过考虑到对应的第一位置与第二位置之间的距离并且考虑到二者之间的旋转变化量,通过确定每个第二位置相对于静平台的位置,可以基于位置参量,确定并联机构的连接支链的位姿,或者,基于位姿参量,确定并联机构的动平台的位姿,从而可以简化运动学求解过程,提高计算速度和效率。
根据本公开实施例的第二方面,提供一种并联机构的位姿确定装置,所述并联机构包括静平台、动平台和连接支链,所述静平台形成有至少三个第一位置,所述动平台形成有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链对应于所述静平台和所述动平台的对应的第一位置和第二位置,并且每个连接支链在对应的第一位置和第二 位置之间的跨度是可调节的,所述位姿确定方法包括:第一确定单元,被配置为根据所述至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和所述动平台相对于所述静平台的位姿参量中的一者,确定每个第二位置相对于所述静平台的位置;第二确定单元,被配置为基于每个第二位置相对于所述静平台的位置,确定所述位置参量和所述位姿参量中的另一者;第三确定单元,被配置为基于所述位置参量,确定所述并联机构的连接支链的位姿,或者,基于所述位姿参量,确定所述并联机构的动平台的位姿,其中,所述位置参量包括所述至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
根据本公开实施例的第三方面,提供一种并联机械臂,所述并联机械臂包括并联机构,所述并联机构包括静平台、动平台和连接支链,所述静平台上具有至少三个第一位置,所述动平台上具有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链连接到对应的第一位置和第二位置并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的,所述并联机械臂还包括:存储器,所述存储器存储有计算机程序;处理器,所述处理器执行存储在所述存储器中的计算机程序以实现根据本公开所述的并联机构的位姿确定方法。
根据本公开实施例的第四方面,提供一种外科手术机器人,所述外科手术机器人包括底座、串联机械臂和根据本公开所述的并联机械臂。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由电子设备的处理器执行时,使得所述电子设备能够执行根据本公开所述的并联机构的位姿确定方法。
根据本公开实施例的第六方面,提供一种计算机程序产品,包括计算机指令,所述计算机指令被处理器执行时实现根据本公开所述的并联机构的位姿确定方法。
根据本公开实施例的第二方面、第三方面、第四方面、第五方面和第六方面具有与根据本公开实施例的第一方面所描述的并联机构的位姿确定方法的有益效果相同的有益效果,在此不再一一说明。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理,并不构成对本公开的不当限定。
图1是根据一示例性实施例示出的一种并联机构的第一示例的简化结构示意图。
图2是根据一示例性实施例示出的一种并联机构的第一示例的结构原理示意图。
图3是根据一示例性实施例示出的一种并联机构的位姿确定方法的示意性流程图。
图4是根据一示例性实施例示出的一种并联机构的位姿确定方法中构建的坐标系的第一示例的示意图。
图5至图7是根据一示例性实施例示出的一种具有角度测量装置的并联机构的示意图。
图8是根据一示例性实施例示出的一种并联机构的第二示例的简化结构示意图。
图9是根据一示例性实施例示出的一种并联机构的位姿确定方法中构建的坐标系的第二示例的示意图。
图10是根据一示例性实施例示出的一种并联机构的第三示例的简化结构示意图。
图11是根据一示例性实施例示出的一种并联机构的位姿确定方法中构建的坐标系的 第三示例的示意图。
图12是根据一示例性实施例示出的一种具有执行器的并联机构的示意图。
图13根据一示例性实施例示出的一种具有执行器的并联机构的位姿确定方法中构建的坐标系的示例的示意图。
图14和图15是根据一示例性实施例示出的一种具有旋转驱动件的并联机构的结构原理示意图。
图16是根据一示例性实施例示出的一种并联机构的位姿确定装置的示意性框图。
具体实施方式
为了使本领域普通人员更好地理解本公开的技术方案,下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在此需要说明的是,在本公开中出现的“若干项之中的至少一项”均表示包含“该若干项中的任意一项”、“该若干项中的任意多项的组合”、“该若干项的全体”这三类并列的情况。例如“包括A和B之中的至少一个”即包括如下三种并列的情况:(1)包括A;(2)包括B;(3)包括A和B。又例如“执行步骤一和步骤二之中的至少一个”,即表示如下三种并列的情况:(1)执行步骤一;(2)执行步骤二;(3)执行步骤一和步骤二。
并联机构的运动学算法是对并联机构进行位置控制和轨迹规划的基础。如上面所述,现有的并联机构的位姿确定方法的求解过程复杂,并且可能出现不唯一解的情况,例如,一方面,对于正向运动学而言,在动平台和静平台上的对应的关节之间的距离或旋转角度变量不确定的情况下,并联机构的末端位置姿态会出现多解的情况,并且求解过程复杂,不利于快速、高效地求解;另一方面,对于逆运动学而言,在根据并联机构的末端位置姿态计算并联机构的关节变量的过程中,涉及到非线性超越方程组的求解问题,导致求解复杂,不利于快速、高效地求解。
鉴于上述问题,下面将参考附图提供根据本公开示例性实施例的并联机构的位姿确定方法及装置、电子设备、计算机可读存储介质及计算机程序产品。
图1和图2分别是根据一示例性实施例示出的一种并联机构的第一示例的简化结构示意图和结构原理示意图。如图1和图2所示,并联机构可以包括静平台100、动平台200和连接支链300,静平台100可以形成有至少三个第一位置S1、S2和S3,动平台200可以形成有与至少三个第一位置S1、S2和S3一一对应的至少三个第二位置M1、M2和M3,每个连接支链300对应于对应的第一位置S1、S2和S3和第二位置M1、M2和M3,第一位置S1、S2和S3和第二位置M1、M2和M3可分别通过连接支链300相对于静平台100和动平台200的旋转轴线来确定,例如,连接支链300相对于静平台100可以分别绕第一旋转轴线和第二旋转轴线旋转,第一位置可以为第一旋转轴线和第二旋转轴线的交点,连接支链300相对于动平台200可以分别绕第三旋转轴线、第四旋转轴线以及第一位置与第二位置的连线旋转,第二位置可以为第三旋转轴线和第四旋转轴线的交点。因此,在一示例中,第一位置S1、S2和S3和第二位置M1、M2和M3可以是连接支链300连接到相应平台组件的铰接点所在位置,即,第一位置S1、S2和S3和第二位置M1、M2 和M3分别位于静平台100和动平台200上;在另一示例中,第一位置S1、S2和S3和/或第二位置M1、M2和M3可以不位于相应的静平台100和/或动平台200上,而是在平台组件之外的空间中。每个连接支链300在对应的第一位置S1、S2和S3和第二位置M1、M2和M3之间的跨度是可调节的。例如连接支链300可以是诸如电动丝杠等的直线致动装置。
并联机构可以具有6个自由度,对于静平台100和动平台200而言,“静”和“动”为相对的概念,包括静平台和动平台的并联机构整体可以运动,动平台可以相对于静平台运动。
如图1所示,每个连接支链300的第一端连接到静平台100,其第二端连接到动平台200,例如,每个连接支链300的两端可以分别连接到静平台100上的第一位置和动平台200上的对应的第二位置。
作为一示例,并联机构可以具有3UPS结构,其中,U指的是诸如虎克铰(或者称为十字铰)的具有两个方向上的自由度的连接机构,P指的是诸如移动副的具有一个方向上的自由度的连接机构,S指的是诸如球铰的具有三个方向上的自由度的连接机构。作为另一示例,并联机构也可以具有3UCU结构,其中,U指的是诸如虎克铰的具有两个方向上的自由度的连接机构,C指的是诸如圆柱副的具有两个方向上的自由度的连接机构。
具体来说,如图1所示,每个连接支链300的第一端可以通过虎克铰或球铰与动平台200连接,连接支链300的第二端可以通过虎克铰与静平台100连接,连接支链300包含一个移动副或圆柱副。这里,连接支链300与静平台100、动平台200的连接方式不限于上述方式,其也可以通过其他方式连接,只要所有连接支链300与静平台100、动平台200能够共同实现并联机构的运动自由度即可。
需要说明的是,这里参照图1和图2所描述的连接支链300的两端与静平台100、动平台200连接仅是示例,连接支链300也可以在其他位置连接到静平台100和动平台200,这在后文中将以图10所示结构为例进行说明。还需要说明的是,尽管本文中以三支链结构为例对并联机构的位姿确定方法进行了描述,然而根据本公开的示例性实施例的并联机构的位姿确定方法的应用场景不限于此,其意在于提供一种确定并联机构位姿的方法构思,其适用于所有符合方法特征的6自由度并联机构,例如对于具有多于三个支链的并联结构也可以适用,本领域技术人员可以根据实际应用场景的需要进行变型。
此外,本文中描述的方法所适用的并联机构可以是单独使用的设备,也可以是设备的组成部分,其例如可以用于手术机器人、焊接机器人、喷涂机器人等设备中。
图3是根据一示例性实施例示出的一种并联机构的位姿确定方法的示意性流程图。该并联机构的位姿确定方法可以应用于包括并联机构的设备的计算或控制装置或者应用于不包括并联机构的单独的计算或控制装置。如图3所示,该并联机构的位姿确定方法可以包括以下步骤:
在步骤S10,可以根据至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和动平台相对于静平台的位姿参量中的一者,确定每个第二位置相对于静平台的位置;在步骤S20,可以基于每个第二位置相对于静平台的位置,确定位置参量和位姿参量中的另一者;在步骤S30,可以基于位置参量,确定并联机构的连接支链的位姿,或者,基于位姿参量,确定并联机构的动平台的位姿。
在上面的步骤中,位置参量可以包括至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
根据本公开示例性实施例的并联机构的位姿确定方法,可以通过考虑到对应的第一位置与第二位置之间的距离并且考虑到二者之间的旋转变化量,并通过确定每个第二位 置相对于静平台的位置,可以基于位置参量,确定并联机构的连接支链的位姿,或者,基于位姿参量,确定并联机构的动平台的位姿,从而可以简化运动学求解过程,提高计算速度和效率。
具体来说,在并联机构的运动学算法中,无论是对于正运动学而言,还是对于逆运动学而言,其所涉及的计算对象均包括第一位置、第二位置、静平台和动平台,其运动过程涉及第二位置相对于第一位置的距离变化以及第二位置相对于第一位置绕旋转轴线的旋转变化量。
因此,本公开考虑了并联机构的运动机制,合理构建第一位置、第二位置、静平台和动平台之间的位置转换关系,如此,可以简化正运动学和逆运动学中的计算过程,提高计算速度和效率。
对此,根据本公开的示例性实施例,为了简化计算,可以构建第一位置转换关系和第二位置转换关系,其中,第一位置转换关系可以为动平台与静平台之间的位置转换关系,第二位置转换关系可以为以每个第一位置和旋转轴线为参照物与静平台之间的位置转换关系。
具体来说,由于静平台的位置在并联机构中是不变的,第一位置相对于静平台的位置是不变的,并且第二位置相对于动平台的位置是不变的,因此,通过设置上述的第一位置转换关系和第二位置转换关系,在逆运动学中,已知动平台相对于静平台的位姿,可基于第一位置转换关系确定每个第二位置相对于静平台的位置,然后可以基于第二位置转换关系和每个第二位置相对于静平台的位置,确定每个第二位置以每个第一位置和旋转轴线为参照物的位置,从而确定并联机构的连接支链的位姿;在正运动学中,已知第二位置相对于第一位置的在连接支链的调节方向上的距离以及绕旋转轴线的旋转变化量,可基于第二位置转换关系确定每个第二位置相对于静平台的位置,然后可以基于第一位置转换关系和每个第二位置相对于静平台的位置,确定动平台相对于静平台的位置,从而确定并联机构的动平台的位姿。
作为示例,在步骤S10中,具体可以根据位置参量和位姿参量中的一者以及第一位置转换关系和第二位置转换关系中的一者,确定每个第二位置相对于静平台的位置;在步骤S20中,具体可以基于每个第二位置相对于静平台的位置以及第一位置转换关系和第二位置转换关系中的另一者,确定位置参量和位姿参量中的另一者。
作为示例,可以构建第一坐标系、第二坐标系和第一位置坐标系用于执行上述步骤中的计算。
这里,第一坐标系的位置可以相对于至少三个第一位置固定,第二坐标系的位置可以相对于至少三个第二位置固定。也就是说,在并联机构的运动过程中,第一坐标系与静平台保持相对静止,第二坐标系与动平台保持相对静止,如此,在动平台200相对于静平台100运动时,第二坐标系相对于第一坐标系运动。
这里,第一位置坐标系的坐标原点可以位于对应的第一位置处,第一位置坐标系的坐标轴线中的一者可以为第二位置相对于对应的第一位置旋转的第一旋转轴线或第二旋转轴线。这里,第一位置坐标系的另外两个坐标轴线可以任意设置,三个坐标轴线满足右手定则。如此,由于第一位置坐标系的原点位于第一位置且第一位置坐标系的一个坐标轴线为旋转轴线,而第二位置绕旋转轴线相对于第一位置旋转,因此,第二位置在对应的第一位置坐标系下的位置是容易表示的,从而可以简化计算。
在该示例中,位姿参量可以包括第二坐标系的坐标原点在第一坐标系下的坐标以及第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度。
第一位置转换关系为第一坐标系与第二坐标系之间的坐标转换关系。这里,由于位置参量可以表征第二位置相对于对应的第一位置之间的位置,位姿参量可以表征第二坐 标系在第一坐标系下的位姿,而由于这里所建立的第一坐标系始终相对于第一位置保持相对静止,所建立的第二坐标系始终相对于第二位置保持相对静止,因此,可以在已知位置参量和位姿参量中的一者的情况下,确定第一坐标系与第二坐标系之间的第一位置转换关系,在确定第一位置转换关系后,则可以通过坐标转换而求解出位置参量和位姿参量中的另一者。
第二位置转换关系可以为第一坐标系与在每个第一位置处的第一位置坐标系之间的坐标转换关系。
下面将结合图4的示例对上面所述的第一坐标系和第二坐标系进行详细描述。
作为示例,如图4所示,至少三个第一位置(例如S1、S2和S3)可以位于第一分布圆C1的圆周上,第一坐标系的坐标原点(例如O S)可以位于第一分布圆C1的圆心,第一坐标系的第三坐标轴线(例如Z轴)垂直于至少三个第一位置所限定的第一平面指向至少三个第二位置(例如M1、M2和M3)所限定的第二平面所在侧。这里,第一分布圆可以是虚拟的圆,其可不体现在静平台100上,并且其可以不位于静平台100上。然而,第一坐标系不限于此,其可位于并联机构所在的三维空间中的任意位置,其可位于静平台100上,也可位于静平台100之外,只要其相对于静平台100静止以能够表征静平台100的位姿即可。
同样如图4所示,至少三个第二位置(例如M1、M2和M3)可以位于第二分布圆C2的圆周上,第二坐标系的坐标原点(例如O M)可以位于第二分布圆C2的圆心,第二坐标系的第三坐标轴线(例如Z轴)垂直于至少三个第二位置所限定的第二平面背离第一平面所在侧。这里,第二分布圆可以是虚拟的圆,其可不体现在动平台200上。类似地,第二坐标系不限于此,其可位于并联机构所在的三维空间中的任意位置,其可位于动平台200上,也可位于动平台200之外,只要其相对于动平台200静止以能够表征动平台200的位姿即可。
以图4为例,第一坐标系的坐标原点O S为各个第一位置的铰接圆心(即,第一分布圆C1的圆心),X S轴正向由坐标原点O S指向第一位置,Z S轴正向垂直于第一位置的铰接圆平面(即,第一平面)朝向动平台,Y S轴符合右手定则;第二坐标系的坐标原点固连于各个第二位置的铰接圆心处,在初始状态,第二坐标系的各坐标轴与第一坐标系的对应坐标轴平行。
此外,如图4的示例所示,每个第二位置相对于对应的第一位置能够绕第一旋转轴线r 1和第二旋转轴线r 2旋转,第一旋转轴线r 1和第二旋转轴线r 2彼此垂直。
在此示例中,旋转变化量可以包括第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量和/或第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量。
具体来说,在一情况下,如上文参照图1和图2描述的结构,连接支链300的两端连接在对应的第一位置与第二位置之间,每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离例如可以是沿着连接支链300的线性移动所在轴线上的距离。在此情况下,每个第二位置相对于对应的第一位置旋转的旋转变化量可以是以第一位置为原点连接支链300绕第一位置旋转的角度。
在另一情况下,连接支链300可以在非端部的位置连接到第一位置和/或第二位置,该距离可以是在平行于连接支链300的线性移动所在轴线的方向上从第一位置到第二平面的距离,例如下文中将参照图10描述的情况。在此情况下,每个第二位置相对于对应的第一位置旋转的旋转变化量可以等于以第一位置为原点连接支链300绕第一位置旋转的角度。
以图1所示的结构为例,可以在静平台100上安装旋转驱动装置,以用于驱动每个连 接支链300绕相应的第一位置(例如,连接支链300与静平台100的静铰接点)旋转,由于连接支链300连接到第二位置(例如,连接支链300与动平台200的动铰接点),因此旋转驱动装置驱动的旋转角度可以为上述旋转变化量,旋转驱动装置的旋转轴线可以是该旋转变化量的旋转轴线。这里,驱动装置的旋转轴线的方向可以是任意的,以图5和图6为例,在图5中,旋转驱动装置的旋转轴线r 1的方向可以在第一分布圆的圆心与第一位置的连线方向上;在图6中,旋转驱动装置的旋转轴线r 1的方向可以在第一分布圆的圆周的切线方向上。
此外,还可以在每个连接支链300上设置直线驱动装置,以驱动连接支链300伸长和缩短,从而改变第一位置与第二位置之间的距离。
在图4的示例中,在并联机构的默认状态(也可称为初始状态)下,第一坐标系和第二坐标系可以具有相同的坐标轴线方向,这里,第二坐标系在第一坐标系下的姿态可以描述为第二坐标系绕自身X轴转动角度θ x、再绕自身Y轴转动角度θ y、再绕自身Z轴旋转θ z所得到的姿态。这里,默认状态指的是第一平面平行于第二平面且每个第二位置与对应的第一位置之间的距离相等并且二者之间的距离最短的状态。
根据本公开的示例性实施例的位姿确定方法,由于考虑到对应的第一位置与第二位置之间的在连接支链的调节方向上的距离并且考虑到二者之间的旋转变化量,由此通过建立第一位置转换关系和第二位置转换关系可以简化求解过程。
这里,在对于连接支链的数量较少的并联机构的控制或位姿计算的求解过程中,上述方法是特别有利的,具体来说,以具有六个连接支链的并联机构为例,现有的运动学求解中,通常仅通过确定六个连接支链的长度的方式来进行计算,而旋转变化量不作为计算量,而出于简化结构的目的,将六个连接支链修改为少于六个连接支链(例如,具有三个连接支链),现有的运动学无法对三个连接支链进行求解。然而,根据本公开的方法不限于应用于少于六个连接支链的并联机构,其也可以应用于具有六个连接支链的并联机构。
如前面所述,在并联机构的运动学中,涉及正向运动学和逆向运动学,下面将基于上面给出的各个参量分别描述正向运动学和逆向运动学的求解过程的示例性实施例。
首先,对于正向运动学而言,上述步骤S10中所述的位置参量和位姿参量中的所述一者可以为位置参量,所述另一者可以为位姿参量,其中,旋转变化量可以包括第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量和第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量,这里,第一旋转轴线和第二旋转轴线彼此垂直。第一位置转换关系和第二位置转换关系中的一者为第二位置转换关系,第一位置转换关系和第二位置转换关系中的另一者为第一位置转换关系。
下面首先描述第一位置坐标系的示例构建方式。
在一示例中,第一位置坐标系可以包括第三坐标系和第四坐标系。
这里,第三坐标系的第一坐标轴线和第三坐标轴线中的一者可以为第一旋转轴线,第三坐标系的第一坐标轴线和第三坐标轴线中的另一者可以基于第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,第三坐标系的第二坐标轴线相对于第三坐标系的第一坐标轴线和第三坐标轴线符合右手定则。
第四坐标系的第二坐标轴线可以为第二旋转轴线,第四坐标系的第三坐标轴线可以基于第二位置与对应的第一位置之间的相对位置来确定,第四坐标系的第一坐标轴线相对于第四坐标系的第二坐标轴线和第三坐标轴线符合右手定则。
具体来说,以图1所示的结构为例,第一旋转轴线r 1经过第一分布圆的圆心,第二旋转轴线r 2与第一分布圆的圆周相切。
在该示例中,如图4所示,以对应的第一位置S1和第二位置M1为例进行描述,可以通过以下方式确定任一第一位置处的第三坐标系:
将第一位置S1确定为第三坐标系的坐标原点O S1
将从第一坐标系的坐标原点O S指向第一位置的方向确定为第三坐标系的第一坐标轴线X S1的方向,将第一坐标系的第三坐标轴线Z S的方向确定为第三坐标系的第三坐标轴线Z S1的方向,并且将垂直于第三坐标系的第一坐标轴线X S1和第三坐标轴线Z S1且符合右手定则的方向确定为第三坐标系的第二坐标轴线Y S1的方向;
基于第三坐标系的坐标原点O S1、第一坐标轴线X S1的方向、第二坐标轴线Y S1的方向和第三坐标轴线Z S1的方向,确定第三坐标系。
如图4所示,仍以对应的第一位置S1和第二位置M1为例进行描述,可以通过以下方式确定任一第一位置处的第四坐标系:
将第一位置S1确定为第四坐标系的坐标原点O S1’
将从第一位置S1指向与第一位置S1对应的第二位置M1的方向确定为第四坐标系的第三坐标轴线Z S1’的方向;
将在并联机构的默认状态下第三坐标系的第二坐标轴线Y S1的方向确定为第四坐标系的第二坐标轴线Y S1’的方向;
将相对于第四坐标系的第二坐标轴线Y S1’和第三坐标轴线Z S1’满足右手定则的方向确定为第四坐标系的第一坐标轴线X S1’的方向;
基于第四坐标系的坐标原点O S1’、第一坐标轴线X S1’的方向、第二坐标轴线Y S1’的方向和第三坐标轴线Z S1’的方向,确定第四坐标系。
具体来说,第三坐标系O Si-X SiY SiZ Si(i=1,2,3)的坐标原点位于第一位置S i处,X Si轴正向由第一坐标系的坐标原点O S指向第一位置S i,Z Si轴正向垂直于第一位置的铰接圆平面向上,Y Si轴符合右手定则;第四坐标系O Si’-X Si’Y Si’Z Si’(i=1,2,3)的坐标原点位于第一位置S i处,在初始状态下,Y Si’轴正向与Y Si重合,Z Si’轴正向由第一位置S i指向第二位置M i,X Si’轴符合右手定则。
上面参照图4中的第一位置S1和第二位置M1描述了建立在第一位置S1处的第三坐标系和第四坐标系的步骤,可以领会的是,在第一位置S2和S3处建立第三坐标系和第四坐标系的步骤与上述步骤相似,故在此不再赘述。
基于上述原理建立的坐标系,即适用于3UPS结构,也适用于3UCU结构。在第一位置处建立第一位置坐标系,以第一位置的分布圆的圆心为坐标原点建立第一坐标系,以第二位置的分布圆的圆心为坐标原点建立第二坐标系,这样的坐标系建立方式能够简化计算,各坐标系之间的位置转换关系可以用对应的第一位置与第二位置之间的旋转变化量和距离来表示,具体来说,可以用旋转驱动装置的驱动量和第一位置处的被动转角(即,通过角度测量装置测得的角度)表示。
基于上述建立的第三坐标系和第四坐标系,可以通过以下方式确定第二位置转换关系:
在步骤S111,可以针对至少三个第二位置中的任一第二位置,根据该第二位置相对于对应的第一位置旋转的第一旋转变化量和第二旋转变化量,确定第三坐标系与第一坐标系之间的第三坐标转换关系以及第四坐标系与第三坐标系之间的第四坐标转换关系。
在该步骤中,以图4为例,第一坐标系到第三坐标系的第三坐标转换关系可以表示为如下坐标转换矩阵T s_si
Figure PCTCN2022130396-appb-000001
其中,第一位置Si在第一坐标系下的坐标为(S ix,S iy,S iz),其可根据第一分布圆的半径及至少三个第一位置的旋转角度有关,其中,i为1、2、3,以图4为例,第一位置Si在第一坐标系下的可以表示为Si=(r Scosφ i,r Scosφ i,0,1) T,其中,r S为第一分布圆的半径,即,第一位置Si距圆心的距离,φ i为第一位置Si相对于圆心的旋转角度,T为矩阵转置。
第四坐标系与第三坐标系的第四坐标转换关系可以表示为坐标转换矩阵T si_si'
Figure PCTCN2022130396-appb-000002
其中,θ si为第一旋转变化量,
Figure PCTCN2022130396-appb-000003
为第二旋转变化量,其中,i表示在第一位置Si处,i∈[1,N],N为第一位置(或者也是第二位置)的数量。
这里,第一旋转变化量和第二旋转变化量可以通过旋转驱动装置的驱动量和设置在并联机构中的角度测量装置的测量量来确定,例如,如图5和图6所示,在图5中,第一旋转变化量可以为旋转驱动装置301的驱动量,第二旋转变化量可以为角度测量装置302的测量量;在图6中,第一旋转变化量可以为角度测量装置302的测量量,第二旋转变化量可以为旋转驱动装置301的驱动量。然而,确定第一旋转变化量或第二旋转变化量的手段不限于上述方法,也可以通过任意手段来确定二者,只要能用于计算即可。此外,这里的旋转驱动装置301可以是具有角度测量装置的驱动装置,角度测量装置302例如可以是角度编码器。在根据本公开实施例的并联机构位姿确定方法中,角度测量装置所测得的参数可以在正运动学中使用,若在并联机构的实际应用中仅涉及逆运动学而不涉及正运动学,则也可在并联机构中省略角度测量装置。
需要注意的是,上述坐标转换矩阵均为齐次矩阵,其是在坐标转换中常用的形式。此外,这里给出的坐标转换矩阵的具体形式仅是示例,其可根据第一坐标系、第三坐标系和第四坐标系的构建位置的不同而改变,例如,第一坐标系的坐标原点也可位于其他位置。此外,建立已知的两个坐标系之间的坐标转换矩阵以及后面将提到的矩阵的运算均是本领域技术人员根据数学知识可获知的,因此,这里不对坐标转换矩阵的具体计算过程进行详细描述。
在步骤S112,可以基于第三坐标转换关系和第四坐标转换关系,确定第二位置转换关系。
在该步骤中,可以利用第一坐标系到第三坐标系的坐标转换矩阵T s_si左乘第三坐标系到第四坐标系的坐标转换矩阵T si_si',确定第一坐标系与在对应的第一位置处的第一位置坐标系之间的第二位置转换关系,即,坐标转换矩阵T s_si'
基于在上述步骤S111和S112中确定的第二位置转换关系,在步骤S10中,可以针对至少三个第二位置中的任一第二位置,根据该第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离,确定每个第二位置相对于静平台的位置。
在该步骤中,可以基于至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离(例如,在图4的结构中为连接支链300的直线驱动装置的驱动长度),确定每个第二位置在对应的第一位置坐标系下的坐标,从而利用第二位置转换关系、即坐标转换矩阵T s_si'左乘第二位置在对应的第一位置坐标系下的坐标连接支链,确定第二位置在第一坐标系下的坐标s_m i,具体来说,可以确定第二位置M1、M2和M3在第一坐标系下的坐标s_m 1、s_m 2和s_m 3
具体来说,在上面描述的第一位置坐标系包括第三坐标系和第四坐标系的示例中,可 以基于至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离,确定每个第二位置在对应的第四坐标系下的坐标,从而利用坐标转换矩阵T s_si'左乘第二位置在对应的第四坐标系下的坐标,确定第二位置在第一坐标系下的坐标s_m i
这里,由于第四坐标系的第三坐标轴线沿着连接支链的调节方向,因此基于第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离,可以容易地确定第二位置在对应的第四坐标系下的坐标,第二位置与对应的第一位置之间的距离为第二位置在第四坐标系的第三坐标轴线上的坐标值。
这里,需要说明的是,在并联机构中,可通过设置直线驱动装置来改变连接支链的长度(即,改变对应的第一位置与第二位置之间在连接支链的调节方向上的距离)以及通过设置旋转驱动装置来改变连接支链相对于静平台的绕一个轴线的旋转量(即,改变第一旋转量和第二旋转量中的一者),在主动驱动长度和一个旋转量的情况下,另一旋转量可以是被动限定的,无需安装驱动装置,也无法确定其值。然而,在正运动学中,仅基于上述距离量和仅一个旋转量求解动平台的位姿,则可能求解出多组解,这导致计算复杂,不便于提高对并联机构的控制效率。而根据本公开的方法可以通过诸如角度测量装置等手段获得被动旋转角(第一旋转变化量和第二旋转变化量中的另一者),从而可以基于距离、第一旋转变化量和第二旋转变化量三者确定位姿参量的唯一解,以有利于确定动平台的位姿。
需要说明的是,尽管上面以第一位置坐标系包括第三坐标系和第四坐标系为例进行了示例性描述,但是可以领会的是,第一位置坐标系也可以仅包括一个坐标系或多于两个坐标系,例如可以仅包括第三坐标系或第四坐标系,只要能够通过坐标系之间的转换矩阵确定第一坐标变换关系即可。
此外,还需要说明的是,第三坐标系和/或第四坐标系的构建方式不限于上面的方式,一方面,对于同一并联机构结构,可以以不同的方式构建第三坐标系和/或第四坐标系;另一方面,可以针对不同的并联机构结构,以更适应于所采用的结构的第三坐标系和/或第四坐标系。下面将参照图8至图11描述第三坐标系和第四坐标系的另外的示例性构建方式。
图8和图9以及图10和图11分别示出了第三坐标系和第四坐标系的构建方式的其他示例。在上面图1、图5和图6中所示的结构中,并联机构包括静平台100和动平台200,而在图8至图11的示例中,并联机构还包括第三平台组件400,第三平台组件400相对于静平台100固定(在图8的示例中,第三平台组件400与静平台100一体形成;在图10的示例中,第三平台组件400与静平台100通过连接件固定连接),并且位于静平台100的背对动平台所在侧的一侧,第三平台组件400可以形成有第三位置S4、S5、S6。在该示例中,每个连接支链300包括第一连接部310和第二连接部320,第一连接部310的长度是可调的,第一连接部310的第一端连接到动平台200,其第二端连接到第二连接部320的第一端,例如如图8所示,第一连接部310与第二连接部320可通过第三位置铰接件120彼此铰接,第三位置铰接件120例如可以为球铰,第二连接部320的第二端连接到第三平台组件400,例如通过铰接件130连接到第三平台组件400,铰接件130例如可以为虎克铰(也称为十字铰)。第二连接部320可以是可伸缩的,第三位置S4、S5、S6相对于第四位置M4、M5、M6的长度L4、L5、L6可以通过驱动第二连接部320的长度调节而被调节。
静平台100通过第一位置铰接件110连接到相应的第一连接部310。第一连接部310可通过静平台100的第一位置铰接件110连接到静平台100,并且可以借由第一位置铰接件110绕第一旋转轴线r 1旋转以及绕第二旋转轴线r 2旋转,这里,第一位置形成在第一 旋转轴线r 1与第二旋转轴线r 2相交的位置,即,其不位于静平台100和第一连接部310上,因此,第一位置距离相应的第一连接部310存在一定距离。
在图8和图9所示的示例中,第一位置铰接件110形成为使得第一位置S1、S2和S3位于相应的连接支链300(具体来说,第一连接部310)的轴线之外,即,如图9所示,第一位置S4、S5和S6到连接支链300的距离为l。
如图8所示,第一连接部310绕第一旋转轴线r 1旋转的角度可以通过连接到第一位置铰接件110的旋转驱动装置301来驱动,第一连接部310绕第二旋转轴线r 2旋转的角度可以通过连接到第一位置铰接件110的角度测量装置302来测量。
在该示例中,第二连接部320可以包括直线驱动装置,以驱动整个连接支链300相对于静平台100和第三平台组件400径向向外张开。如此,在该示例中,绕第二旋转轴线r 2的旋转可以是被动旋转。
在上面图1、图5和图6中所示的结构中,旋转驱动装置的旋转轴线r 1平行于第一平面或在第一平面内,而在图8的示例中,第一旋转轴线r 1可以在第三平台组件和静平台的对应的第一位置和第三位置的连线上,其可以相对于第一平面倾斜,例如可以相对于第一坐标系的第三坐标轴线倾斜第一角度α,此外,由于距离l的存在,使得第四坐标系的第三坐标轴线Z S1’的方向不位于第一连接部310的调节轴线上,而是与第一连接部310的调节轴线平行。
在此示例中,以图9中的第一位置S1为例,可以通过以下方式确定任一第一位置处的第三坐标系:
将第一位置S1确定为第三坐标系的坐标原点O S1
将第一坐标系的第二坐标轴线Y S确定为第三坐标系的第二坐标轴线Y S1的方向;
将第一坐标系的第一坐标轴线X S和第三坐标轴线Z S绕第一坐标系的第二坐标轴线Y S旋转第一角度α的方向分别确定为第三坐标系的第一坐标轴线X S1和第三坐标轴线Z S1的方向,其中,第三坐标系的第三坐标轴线Z S1沿着第一旋转轴线;
基于第三坐标系的坐标原点O S1、第一坐标轴线X S1的方向、第二坐标轴线Y S1的方向和第三坐标轴线Z S1的方向,确定第三坐标系。
如图9所示,仍以对应的第一位置S1为例进行描述,可以通过以下方式确定任一第一位置处的第四坐标系:
将第一位置S1确定为第四坐标系的坐标原点O S1’
将从第一位置S1沿着对应的连接支链300的轴线方向朝向第二平面的方向确定为第四坐标系的第三坐标轴线Z S1’的方向;
将在并联机构的默认状态下第三坐标系的第二坐标轴线Y S1的方向确定为第四坐标系的第二坐标轴线Y S1’的方向,其中,在并联机构的默认状态下,第一平面平行于第二平面且每个第二位置M1与对应的第一位置S1之间的距离相等,其中,第四坐标系的第二坐标轴线Y S1’沿着第二旋转轴线;
将相对于第四坐标系的第二坐标轴线Y S1’和第三坐标轴线Z S1’满足右手定则的方向确定为第四坐标系的第一坐标轴线X S1’的方向;
基于第四坐标系的坐标原点O S1’、第一坐标轴线X S1’的方向、第二坐标轴线Y S1’的方向和第三坐标轴线Z S1’的方向,确定第四坐标系。
上面参照图9中的第一位置S1和第二位置M1描述了建立在第一位置S1处的第三坐标系和第四坐标系的步骤,可以领会的是,在第一位置S2和S3处建立第三坐标系和第四坐标系的步骤与上述步骤相似,故在此不再赘述。
基于上述建立的第三坐标系和第四坐标系,可以执行上面描述的步骤S11以确定第二位置转换关系,其中,第一坐标系到第三坐标系的坐标转换矩阵T s_si和第三坐标系到第 四坐标系的坐标转换矩阵T si_si'是本领域技术人员根据基本几何知识可以获知的,故在此不再一一列出。
在图10所示的示例中,与图8中相同的附图标记表示与上面参照图8所描述的部分/部件具有相同的作用,其区别在于:第一位置铰接件110形成为使得第一位置S4、S5和S6位于相应的连接支链300(具体来说,第一连接部310)的轴线上。在该示例中,如图11所示,第一旋转轴线可以在第三平台组件和静平台的对应的第一位置和第三位置的连线上,其可以相对于第一坐标系的第三坐标轴线倾斜第一角度α,第三坐标系和第四坐标系的构建方式可以与上文中参照图8和图9描述的相同。
上面描述了根据位置参量和第二位置转换关系中,确定每个第二位置相对于静平台的位置的过程,下面返回步骤S20,可以基于每个第二位置相对于静平台的位置,确定位置参量和位姿参量中的另一者。
具体来说,在步骤S21中,可以基于每个第二位置相对于静平台的位置,确定第一位置转换关系。
这里,基于每个第二位置在第一坐标系下的坐标s_m i,根据等边三角形外接圆圆心公式,可得到第二坐标系在第一坐标系下的坐标原点的坐标m 0
Figure PCTCN2022130396-appb-000004
需要说明的是,尽管这里以第二位置以等边三角形圆周均布为例进行了说明,但第二位置与第二坐标系的坐标原点之间的几何关系是固定的,因此给定任意的几何关系,均可以通过至少三个第二位置在第一坐标系下的坐标求出第二坐标系的坐标原点的坐标,上述运算过程是本领域技术人员根据基本几何知识可以获知的。
对于第二坐标系而言,假设第二坐标系的第一坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000005
第二坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000006
第三坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000007
以图4建立的坐标系为例,第二坐标系的第一坐标轴线由坐标原点m 0指向第二位置M1,则可得第一坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000008
为:
Figure PCTCN2022130396-appb-000009
第二坐标系的第三坐标轴线垂直于第二平面,因此,第二坐标系的第三坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000010
为坐标原点m 0到第二位置M1的向量
Figure PCTCN2022130396-appb-000011
与坐标原点m 0到第二位置M2的向量
Figure PCTCN2022130396-appb-000012
的叉积,可表示为:
Figure PCTCN2022130396-appb-000013
第二坐标系的第二坐标轴线的单位方向向量
Figure PCTCN2022130396-appb-000014
遵循右手螺旋定则,可表示为:
Figure PCTCN2022130396-appb-000015
根据第二坐标系的各个坐标轴线的方向向量和第二坐标系原点坐标,可确定第一坐标系与第二坐标系之间的第一位置转换关系T s_m
Figure PCTCN2022130396-appb-000016
其中,
Figure PCTCN2022130396-appb-000017
Figure PCTCN2022130396-appb-000018
分别表示方向向量
Figure PCTCN2022130396-appb-000019
Figure PCTCN2022130396-appb-000020
中的第k个元素,k为1、2和3, 例如,
Figure PCTCN2022130396-appb-000021
表示向量
Figure PCTCN2022130396-appb-000022
中的第1个元素,
Figure PCTCN2022130396-appb-000023
表示向量
Figure PCTCN2022130396-appb-000024
中的第2个元素,
Figure PCTCN2022130396-appb-000025
表示向量
Figure PCTCN2022130396-appb-000026
中的第3个元素。
这里,方向向量
Figure PCTCN2022130396-appb-000027
Figure PCTCN2022130396-appb-000028
的向量求解公式是基于图4的坐标建立关系列出的,这仅是一种示例,并不是唯一的求解方式,其构思是基于第二位置在第一坐标系下的坐标,求解第二坐标系的各个坐标轴线的向量,从而可利用坐标轴线的向量组成第一坐标转换矩阵。
在步骤S22中,可以基于第一位置转换关系,确定位姿参量。
具体来说,在步骤S22中,基于第一位置转换关系、即坐标转换矩阵T s_m,可以确定第二坐标系的坐标原点O M在第一坐标系下的坐标(m 0x,m 0y,m 0z)。
可以确定第二坐标系在第一坐标系下的姿态参量,即旋转角度θ x、θ y和θ z
θ y=arcsin(T s_m(1,3))
Figure PCTCN2022130396-appb-000029
Figure PCTCN2022130396-appb-000030
其中,旋转角度θ x、θ y和θ z分别表示第二坐标系绕自身的三个坐标轴线(即,X轴、Y轴和Z轴)依次旋转的旋转角度,T s_m(m,n)表示坐标转换矩阵T s_m的第m行第n列的元素。
上面描述了求解并列机构的动平台的位姿参量的步骤,如图12至图13所示,根据本公开的示例性实施例的并联机构还可以包括固定到动平台200的执行件500,执行件500具有预设的执行位置T,这里,执行件500例如可以是动平台200所承载的负载器件LO(如图6中所示),其可以是需并联机构致动的诸如手术器械等的执行工具。在一些应用场景下,承载在并联机构上的执行件需要穿过诸如孔等的狭小通道,而伸入到内部空间中进行作业,诸如在微创腹腔手术中,需要将手术器械通过腹部上的小孔伸入到腹腔内进行手术操作,在这样的应用中,需要限制执行件500的远心不动位置F,即,限制执行件在诸如孔等的狭小通道位置处的部分不会移动,以避免对该狭小通道造成碰撞或损伤。这样的约束可以被称为远心不动位置约束,其在手术机器人、焊接机器人、喷涂机器人等的并联机构的应用中是非常有意义的。尽管这里以图12至图13为例进行描述,但是应理解的是,在本公开所适用的所有并联机构的结构中均可存在执行件500以及其上的执行位置T和远心不动位置F,例如,上面的图9中也示出了执行位置T和远心不动位置F。
如此,在具有远心不动位置约束的正向运动学求解中,并联机构的位姿确定方法还可以包括以下步骤:确定执行件上的远心不动位置相对于静平台的位置,其中,远心不动位置在动平台的运动过程中相对于静平台的位置不变;根据位姿参量和远心不动位置相对于静平台的位置,确定执行位置相对于静平台的位置。
具体来说,在具有远心不动位置约束的应用中,如图已知第二坐标系在第一坐标系下的位姿参量,根据远心不动位置F的坐标,可以确定执行件500的执行位置T在第一坐标系下的坐标。
这里,以F、T、O M三个位置共线的几何关系为例,根据执行位置T和远心不动位置F之间的距离(如图9中所示的L TF)以及执行位置T到第一分布圆的圆心之间的距离(如图9中所示的L MT),根据向量关系可得到执行件500的执行位置T的坐标为:
Figure PCTCN2022130396-appb-000031
其中,O M为第二坐标系的原点在第一坐标系下的坐标,T为执行位置在第一坐标系下的坐标,F为远心不动位置在第一坐标系下的坐标。
需要说明的是,尽管这里以F、T、O M三个位置共线为例列出了上述表达式,然而,F、T、O M三个位置也可以不同线,然而,由于这三个位置之间的几何关系是固定的,因此给定任意的几何关系,均可以根据基本的几何学知识通过位置O M和F的坐标求出位置T的坐标,故在此不再列出其他示例。
上面描述了根据本公开的示例性实施例的并联机构的正向运动学的位姿确定方法,下面将描述逆向运动学的位姿确定方法的示例性实施例。逆向运动学与正向运动学的主要构思类似,并且也涉及到上面描述的位置参量和位姿参量,因此,在下面对逆向运动学的描述中所涉及到的与上面正向运动学相同或相似的组件或参量可具有相同或相似的含义,并且这里描述的逆向运动学适用于上面所提到的所有结构类型的并联机构。
对于逆向运动学而言,上述步骤S10中所述的位置参量和位姿参量中的一者为位姿参量,位置参量和位姿参量中的另一者为位置参量。旋转变化量包括第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量和/或第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量,第一旋转轴线和第二旋转轴线彼此垂直。第一位置转换关系和第二位置转换关系中的一者为第一位置转换关系,第一位置转换关系和第二位置转换关系中的另一者为第二位置转换关系。
作为示例,第一位置坐标系的坐标轴线的第一坐标轴线和第三坐标轴线中的一者为第一旋转轴线或第二旋转轴线,第一位置坐标系的第一坐标轴线和第三坐标轴线中的另一者基于第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,第一位置坐标系的第二坐标轴线垂直于第一位置坐标系的第一坐标轴线和第三坐标轴线并且符合右手定则。
这里,可以通过以下方式确定第二位置转换关系:
针对至少三个第二位置中的任一第二位置,根据与该第二位置对应的第一位置在第一坐标系下的坐标,确定第一位置坐标系与第一坐标系之间的第二位置转换关系。
基于上述构建的坐标系,步骤S10可以包括以下步骤:
在步骤S11,可以根据位姿参量,确定第一坐标系与第二坐标系之间的第一位置转换关系。
位姿参量包括第二坐标系的坐标原点在第一坐标系下的坐标(m 0x,m 0y,m 0z)以及第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度θ x、θ y和θ z
具体来说,以图4所示的结构为例,根据位姿参量,可确定第一坐标系到第二坐标系的坐标转换矩阵T s_m
Figure PCTCN2022130396-appb-000032
其中,θ x、θ y和θ z分别表示第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度,第二坐标系的坐标原点O M在第一坐标系下的坐标为(m x,m y,m z)。
在步骤S12,可以基于第一位置转换关系和每个第二位置相对于静平台的位置,确定每个第二位置相对于静平台的位置。
具体来说,在步骤S121,根据第二位置与第二坐标系的几何关系,可以确定第二位置在第二坐标系下的坐标,根据在步骤S11中得到的第一坐标系到第二坐标系的第一位置转换关系、即坐标转换矩阵T s_m,利用坐标转换矩阵T s_m左乘第二位置在第二坐标系下的坐标,可确定第二位置在第一坐标系下的坐标。
在步骤S20中,可以基于每个第二位置相对于静平台的位置和第二位置转换关系,确定与每个第二位置对应的位置参量。
作为示例,可以通过以下方式确定第二位置转换关系:可以针对至少三个第二位置中的任一第二位置,根据与该第二位置对应的第一位置在第一坐标系下的坐标,确定第一位置坐标系与第一坐标系之间的第二位置转换关系。
这里,第一位置坐标系的第一坐标轴线和第三坐标轴线中的一者为第一旋转轴线或第二旋转轴线,第一位置坐标系的第一坐标轴线和第三坐标轴线中的另一者基于第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,第三坐标系的第二坐标轴线垂直于第三坐标系的第一坐标轴线和第三坐标轴线。
在该步骤中,第一位置坐标系可以是在上面针对正运动学描述的第一位置坐标系,例如可以是第三坐标系或第四坐标系,并且在逆向运动学中,第三坐标系或第四坐标系的构建方式与上文中在正向运动学中描述的各个示例相同,在此不再赘述。
根据第一位置与第一坐标系的几何关系,可以确定第一位置在第一坐标系下的坐标,从而可确定每个第一位置处的第一位置坐标系与第一坐标系之间的第二位置转换关系。
这里,以第一位置坐标系为图4所示的第三坐标系为例,第三坐标系到第一坐标系的坐标转换矩阵可以为上面提到的第一坐标系到第三坐标系的转换矩阵T s_si的逆矩阵T s_si -1
在步骤S211,可以根据第二位置转换关系和该第二位置相对于静平台的位置,确定该第二位置在第一位置坐标系下的坐标。
在该步骤中,基于第一位置坐标系与第一坐标系之间的第二位置转换关系,可以将每个第二位置的坐标表示从第一坐标系转换到第一位置坐标系下。
这里,仍以第一位置坐标系为图4所示的第三坐标系为例,利用上面提到的第一坐标系到第三坐标系的转换矩阵T s_si的逆矩阵T s_si -1左乘第二位置在第一坐标系下的坐标s_m i,可得到第二位置在第三坐标系下的坐标s i_m i
在步骤S212,可以根据该第二位置在第一位置坐标系下的坐标,确定与该第二位置对应的位置参量。
在该步骤中,可以对第二位置在第一位置坐标系下的坐标进行分析,从而可以确定与第二位置对应的位置参量。这里,由于第一位置坐标系的一个坐标轴线为第一旋转轴线或第二旋转轴线,如此,在每个第一位置处的第一位置坐标系下对相应的第二位置的位置进行分析,与在其他坐标系下对其进行分析相比,可以简化计算过程,提高计算速度。
具体来说,仍以第一位置坐标系为图4所示的第三坐标系为例,根据第i个第二位置在第一位置坐标系下的坐标s i_m i,基于第二位置M i与对应的第一位置坐标系的原点(即,对应的第一位置S i)之间的向量表示
Figure PCTCN2022130396-appb-000033
确定二者之间的距离,即,第i个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离
Figure PCTCN2022130396-appb-000034
其中,i∈[1,N],N为第一位置(或者也是第二位置)的数量。
此外,根据第二位置在第一位置坐标系下的坐标s i_m i,可以计算第二位置相对于第一位置坐标系的原点(即,对应的第一位置)在各个坐标轴线方向上的旋转角度,例如可以计算出第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量θ Si和第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量
Figure PCTCN2022130396-appb-000035
具体地,第一旋转变化量θ Si和第二旋转变化量
Figure PCTCN2022130396-appb-000036
分别可以通过下面的表达式来表示:
Figure PCTCN2022130396-appb-000037
Figure PCTCN2022130396-appb-000038
其中, s i_m i(k)表示第二位置在第一位置坐标系下的坐标s i_m i的第k个坐标值,k为1、2和3,即,s i_m i(1)表示第二位置在第一位置坐标系的第一坐标轴线上的坐标值,s i_m i(2)表示第二位置在第一位置坐标系的第二坐标轴线上的坐标值,s i_m i(3)表示第二位置在第一位置坐标系的第三坐标轴线上的坐标值,L i表示第i个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离。
基于通过上述步骤得到的距离L i、第一旋转变化量θ Si和第二旋转变化量
Figure PCTCN2022130396-appb-000039
可以将距离L i与旋转变化量(第一旋转变化量θ Si和/或第二旋转变化量
Figure PCTCN2022130396-appb-000040
)作为驱动量输入到并联机构的控制系统中,以控制相应的电机驱动连接支链300的直线调节和相对于静平台的旋转调节,从而使得动平台相对于静平台运动到目标位姿,即,上面所述的位姿参量所表示的位姿下。
如上面参照图12至图13所述,根据本公开的示例性实施例的并联机构还可以包括固定到动平台200的执行件500,执行件500可以具有执行位置T,并且可以限制执行件500的远心不动位置F。
对于逆运动学而言,为了确定使得动平台相对于静平台运动到目标位姿的位置参量,即,上面求得的距离L i与旋转变化量(第一旋转变化量θ Si和/或第二旋转变化量
Figure PCTCN2022130396-appb-000041
),如上面的示例所述,可以直接给定位姿参量进行位置参量的求解,在具有远心不动位置F的约束情况下,位姿参量可以根据执行位置T和远心不动位置F来确定。
具体来说,可以通过以下方式确定位姿参量:根据执行位置T和远心不动位置F在第一坐标系下的坐标,确定第二坐标系的原点在第一坐标系下的坐标;确定第一坐标系与第二坐标系之间的坐标轴旋转矩阵,并根据坐标轴旋转矩阵以及执行位置T和远心不动位置F在第一坐标系下的坐标,确定第二坐标系的坐标轴相对于第一坐标系的坐标轴的旋转角。
例如,仍以图13中所示的第二坐标系的坐标原点O M、执行位置T和远心不动位置F三者共线的情况为例,根据第二坐标系的坐标原点O M、执行位置T和远心不动位置F在第一坐标系下的坐标,可以求得第二坐标系的坐标原点在第一坐标系下的坐标,具体可以表示为:
Figure PCTCN2022130396-appb-000042
其中,m 0为第二坐标系的坐标原点O M在第一坐标系下的坐标,F为远心不动位置F在第一坐标系下的坐标,T为远心不动位置T在第一坐标系下的坐标,
Figure PCTCN2022130396-appb-000043
为第二坐标系的坐标原点O M到远心不动位置F的向量表示,
Figure PCTCN2022130396-appb-000044
为执行位置T到远心不动位置F的向量表示。
在该步骤中,第一坐标系与第二坐标系之间的坐标轴旋转矩阵可以表示为:
Figure PCTCN2022130396-appb-000045
其中,θ x、θ y和θ z分别表示第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度。
根据已知向量
Figure PCTCN2022130396-appb-000046
在第一坐标系和第二坐标系下的表达式,可以基于第一坐标系与第二坐标系之间的坐标轴旋转矩阵建立方程:
Figure PCTCN2022130396-appb-000047
如此,通过求解上述方程,可以得到第二坐标系依次绕自身的第一坐标轴线(X轴)、第二坐标轴线(Y轴)和第三坐标轴线(Z轴)旋转的旋转角度θ x、θ y和θ z。这里,旋转角度可以理解为第二坐标系基于确定定点(即,第二坐标系的坐标原点)旋转的欧拉角。
这里,需要注意的是,确定第二坐标系的坐标原点在第一坐标系下的坐标的步骤和确定第二坐标系的坐标轴相对于第一坐标系的坐标轴的旋转角的步骤的顺序可以彼此调换,二者也可以同时执行。
上面描述了根据第二坐标系的坐标原点O M、执行位置T和远心不动位置F在第一坐标系下的坐标求解旋转角度θ x、θ y和θ z的示例性实施例,在另一示例性实施例中,为了增大并联机构的运动范围,可以在动平台上设置旋转驱动件510,并联平台运动自由度中动平台绕自身Z轴旋转的运动可以通过安装在动平台上的旋转驱动件510代替完成。
如图14和图15所示,旋转驱动件510可以固定到动平台,执行件500可以经由旋转驱动件510安装到动平台,旋转驱动件510可以限定执行件500相对于动平台的选择,并且旋转驱动件510的旋转轴线可以沿着第二坐标系的第一坐标轴线、第二坐标轴线和第三坐标轴线中的一个或多个,如此,在上述根据第二坐标系的坐标原点O M、执行位置T和远心不动位置F的坐标求解旋转角度θ x、θ y和θ z的过程中,可以通过旋转驱动件510的旋转驱动确定旋转角度θ x、θ y和θ z中的一个或多个。
具体来说,以图14至图15所示的结构为例,旋转驱动件510的旋转轴线可以沿着第二坐标系的第三坐标轴线Z M,在此情况下,旋转角度θ z可通过旋转驱动件510的旋转驱动量来确定,如此,在上述坐标轴旋转矩阵R s_m中,旋转角度θ z可以看作是0,因此,坐标轴旋转矩阵R s_m可以写作:
Figure PCTCN2022130396-appb-000048
上面参照图1至图15的示例结构描述了根据本公开的示例性实施例的并联机构的位姿确定方法,这里主要以3UPS结构为例进行了描述,但是本公开的方法也可适用于类似的变型结构,例如图8至图11所示的结构,并且还可以适用于前面提到的3UCU结构,只要可以获得其位置参量和位姿参量中的一者即可求出另一者。
图16是根据一示例性实施例示出的一种并联机构的位姿确定装置的示意性框图。如图1所示,根据本公开示例性实施例的并联机构可以包括静平台100、动平台200和连接支链300,静平台100形成有至少三个第一位置,动平台200形成有与至少三个第一位置一一对应的至少三个第二位置,每个连接支链300对应于所述静平台和所述动平台的对应 的第一位置和第二位置并且每个连接支链300在对应的第一位置和第二位置之间的跨度是可调节的。
如图16所示,该位姿确定装置可以包括第一确定单元10、第二确定单元20和第三确定单元30。
第一确定单元10可以被配置为根据至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和动平台相对于静平台的位姿参量中的一者,确定每个第二位置相对于静平台的位置。
第二确定单元20可以被配置为基于每个第二位置相对于静平台的位置,确定位置参量和位姿参量中的另一者。
第三确定单元30可以被配置为基于位置参量,确定并联机构的连接支链的位姿,或者,基于位姿参量,确定并联机构的动平台的位姿。
这里,位置参量可以包括至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
作为示例,每个第二位置相对于对应的第一位置能够绕第一旋转轴线和第二旋转轴线旋转,第一旋转轴线和第二旋转轴线彼此垂直,其中,旋转变化量包括第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量和/或第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量。
作为示例,第一确定单元10还可以被配置为:根据位置参量和位姿参量中的一者以及第一位置转换关系和第二位置转换关系中的一者,确定每个第二位置相对于静平台的位置,其中,第一位置转换关系为动平台与静平台之间的位置转换关系;第二位置转换关系为以每个第一位置和旋转轴线为参照物与静平台之间的位置转换关系。
作为示例,第二确定单元20还可以被配置为:基于每个第二位置相对于静平台的位置以及第一位置转换关系和第二位置转换关系中的另一者,确定位置参量和位姿参量中的另一者。
作为示例,位姿参量包括第二坐标系的坐标原点在第一坐标系下的坐标以及第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度,其中,第一坐标系的位置相对于至少三个第一位置固定,第二坐标系的位置相对于至少三个第二位置固定,其中,第一位置转换关系为第一坐标系与第二坐标系之间的坐标转换关系,其中,第二位置转换关系为第一坐标系与在每个第一位置处的第一位置坐标系之间的坐标转换关系,其中,第一位置坐标系的坐标原点位于对应的第一位置处,第一位置坐标系的坐标轴线中的一者为第二位置相对于对应的第一位置旋转的第一旋转轴线或第二旋转轴线。
作为示例,位置参量和位姿参量中的一者为位置参量,位置参量和位姿参量中的另一者为位姿参量,第一位置转换关系和第二位置转换关系中的一者为第二位置转换关系,第一位置转换关系和第二位置转换关系中的另一者为第一位置转换关系。
在该示例中,第一位置坐标系包括第三坐标系和第四坐标系,其中,通过以下方式确定第二位置转换关系:针对至少三个第二位置中的任一第二位置,根据该第二位置相对于对应的第一位置旋转的第一旋转变化量和第二旋转变化量,确定第三坐标系与第一坐标系之间的第三坐标转换关系以及第四坐标系与第三坐标系之间的第四坐标转换关系;基于第三坐标转换关系和第四坐标转换关系,确定第二位置转换关系,其中,第三坐标系的第一坐标轴线和第三坐标轴线中的一者为第一旋转轴线,第三坐标系的第一坐标轴线和第三坐标轴线中的另一者基于第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,第三坐标系的第二坐标轴线垂直于第三坐标系的第一坐标轴线和第三坐标轴线并且符合右手定则,其中,第四坐标系的第二坐标轴线为第二旋转轴线,第四坐标系的第三坐标轴线基 于第二位置与对应的第一位置之间的相对位置来确定,第四坐标系的第一坐标轴线垂直于第四坐标系的第二坐标轴线和第三坐标轴线并且符合右手定则。
作为示例,第一确定单元10还可以被配置为:针对至少三个第二位置中的任一第二位置,根据该第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和第二位置转换关系,确定每个第二位置相对于静平台的位置。
作为示例,至少三个第一位置位于第一分布圆的圆周上,第一坐标系的坐标原点位于第一分布圆的圆心,第一坐标系的第三坐标轴线垂直于至少三个第一位置所限定的第一平面指向至少三个第二位置所限定的第二平面所在侧,第一旋转轴线经过第一分布圆的圆心,第二旋转轴线与第一分布圆的圆周相切,
在该示例中,通过以下方式确定任一第一位置处的第三坐标系:将该第一位置确定为第三坐标系的坐标原点;将从第一坐标系的坐标原点指向该第一位置的方向确定为第三坐标系的第一坐标轴线的方向,将第一坐标系的第三坐标轴线的方向确定为第三坐标系的第三坐标轴线的方向,并且将垂直于第三坐标系的第一坐标轴线和第三坐标轴线且符合右手定则的方向确定为第三坐标系的第二坐标轴线的方向;基于第三坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定第三坐标系。
在该示例中,可以通过以下方式确定任一第一位置处的第四坐标系:将该第一位置确定为第四坐标系的坐标原点;将从该第一位置指向与该第一位置对应的第二位置的方向确定为第四坐标系的第三坐标轴线的方向;将在并联机构的默认状态下第三坐标系的第二坐标轴线的方向确定为第四坐标系的第二坐标轴线的方向,其中,在并联机构的默认状态下,第一平面平行于第二平面并且每个第二位置与对应的第一位置之间的距离相等且距离最短;将相对于第四坐标系的第二坐标轴线和第三坐标轴线满足右手定则的方向确定为第四坐标系的第一坐标轴线的方向;基于第四坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定第四坐标系。
作为示例,至少三个第一位置位于第一分布圆的圆周上,第一坐标系的坐标原点位于第一分布圆的圆心,第一坐标系的第三坐标轴线垂直于至少三个第一位置所限定的第一平面指向至少三个第二位置所限定的第二平面所在侧,第一旋转轴线相对于第一坐标系的第三坐标轴线倾斜第一角度,
在该示例中,可以通过以下方式确定任一第一位置处的第三坐标系:将该第一位置确定为第三坐标系的坐标原点;将第一坐标系的第二坐标轴线确定为第三坐标系的第二坐标轴线的方向;将第一坐标系的第一坐标轴线和第三坐标轴线绕第一坐标系的第二坐标轴线旋转第一角度的方向分别确定为第三坐标系的第一坐标轴线和第三坐标轴线的方向,其中,第三坐标系的第三坐标轴线沿着第一旋转轴线;基于第三坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定第三坐标系。
在该示例中,可以通过以下方式确定任一第一位置处的第四坐标系:将该第一位置确定为第四坐标系的坐标原点;将从该第一位置沿着对应的连接支链的调节方向朝向第二平面的方向确定为第四坐标系的第三坐标轴线的方向;将在并联机构的默认状态下第三坐标系的第二坐标轴线的方向确定为第四坐标系的第二坐标轴线的方向,其中,在并联机构的默认状态下,第一平面平行于第二平面并且每个第二位置与对应的第一位置之间的距离相等且距离最短,其中,第四坐标系的第二坐标轴线沿着第二旋转轴线;将相对于第四坐标系的第二坐标轴线和第三坐标轴线满足右手定则的方向确定为第四坐标系的第一坐标轴线的方向;基于第四坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定第四坐标系。
作为示例,并联机构还包括固定到动平台的执行件,执行件具有预设的执行位置,其中,并联机构的位姿确定装置还包括第四确定单元,第四确定单元可以被配置为:确定执 行件上的远心不动位置相对于静平台的位置,其中,远心不动位置在动平台的运动过程中相对于静平台的位置不变;根据位姿参量和远心不动位置相对于静平台的位置,确定执行位置相对于静平台的位置。
作为示例,位置参量和位姿参量中的一者为位姿参量,位置参量和位姿参量中的另一者为位置参量,第一位置转换关系和第二位置转换关系中的一者为第一位置转换关系,第一位置转换关系和第二位置转换关系中的另一者为第二位置转换关系,其中,第一位置坐标系的坐标轴线的第一坐标轴线和第三坐标轴线中的一者为第一旋转轴线或第二旋转轴线,第一位置坐标系的第一坐标轴线和第三坐标轴线中的另一者基于第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,第一位置坐标系的第二坐标轴线垂直于第一位置坐标系的第一坐标轴线和第三坐标轴线并且符合右手定则。
在该示例中,可以通过以下方式确定第二位置转换关系:针对至少三个第二位置中的任一第二位置,根据与该第二位置对应的第一位置在第一坐标系下的坐标,确定第一位置坐标系与第一坐标系之间的第二位置转换关系。
作为示例,第二确定单元20还可以被配置为:针对至少三个第二位置中的任一第二位置,根据该第二位置所对应的第二位置转换关系和该第二位置在第一坐标系下的坐标,确定该第二位置在第一位置坐标系下的坐标;根据该第二位置在第一位置坐标系下的坐标,确定位置参量和位姿参量中的另一者。
作为示例,至少三个第一位置位于第一分布圆的圆周上,第一坐标系的坐标原点位于第一分布圆的圆心,第一坐标系的第三坐标轴线垂直于至少三个第一位置所限定的第一平面指向至少三个第二位置所限定的第二平面所在侧,第一旋转轴线经过第一分布圆的圆心,第二旋转轴线与第一分布圆的圆周相切。
在该示例中,可以通过以下方式确定任一第一位置处的第一位置坐标系:将该第一位置确定为第一位置坐标系的坐标原点;将从第一坐标系的坐标原点指向该第一位置的方向确定为第一位置坐标系的第一坐标轴线的方向,将第一坐标系的第三坐标轴线的方向确定为第一位置坐标系的第三坐标轴线的方向,并且将垂直于第一位置坐标系的第一坐标轴线和第三坐标轴线且符合右手定则的方向确定为第一位置坐标系的第二坐标轴线的方向;基于第一位置坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定第一位置坐标系。
作为示例,并联机构还包括固定到动平台的执行件,执行件上具有预设的执行位置和远心不动位置,其中,远心不动位置在动平台的运动过程中相对于静平台的位置不变,其中,第一确定单元10可以通过以下方式确定位姿参量:根据执行位置和远心不动位置在第一坐标系下的坐标,确定第二坐标系的原点在第一坐标系下的坐标;确定第一坐标系与第二坐标系之间的坐标轴旋转矩阵,并根据坐标轴旋转矩阵以及执行位置和远心不动位置在第一坐标系下的坐标,确定第二坐标系的坐标轴相对于第一坐标系的坐标轴的旋转角。
根据本公开示例性实施例的第三方面,提供一种并联机械臂,并联机械臂包括并联机构,并联机构可以包括静平台、动平台和连接支链,静平台上具有至少三个第一位置,动平台上具有与至少三个第一位置一一对应的至少三个第二位置,每个连接支链连接到对应的第一位置和第二位置并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的。
并联机构还可以包括:存储器,存储器存储有计算机程序;处理器,处理器执行存储在所述存储器中的计算机程序以实现根据本公开所述的并联机构的位姿确定方法。
作为示例,并联机构的连接支链可以为三个,并联机构还可以包括与连接支链对应设置的角度测量装置,角度测量装置用于测量每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量,例如上面在本公开的第一方面的示例性实施例中所述的第一旋转变 化量或第二旋转变化量。
这里,并联机构的存储器和处理器并非必须位于单个的设备中,还可以是任何能够单独或联合执行上述指令(或指令集)的装置或电路的集合体。并联机构的存储器和处理器还可以是集成控制系统或系统管理器的一部分,或者可被配置为与本地或远程(例如,经由无线传输)以接口互联的服务器。
处理器可包括中央处理器(CPU)、图形处理器(GPU)、可编程逻辑装置、专用处理器系统、微控制器或微处理器。作为示例而非限制,处理器还可包括模拟处理器、数字处理器、微处理器、多核处理器、处理器阵列、网络处理器等。
处理器可运行存储在存储器中的指令或代码,其中,存储器还可以存储数据。指令和数据还可经由网络接口装置而通过网络被发送和接收,其中,网络接口装置可采用任何已知的传输协议。
存储器可与处理器集成为一体,例如,将RAM或闪存布置在集成电路微处理器等之内。此外,存储器可包括独立的装置,诸如,外部盘驱动、存储阵列或任何数据库系统可使用的其他存储装置。存储器和处理器可在操作上进行耦合,或者可例如通过I/O端口、网络连接等互相通信,使得处理器能够读取存储在存储器中的文件。
此外,并联机构还可以包括视频显示器(诸如,液晶显示器)和用户交互接口(诸如,键盘、鼠标、触摸输入装置等)。并联机构的所有组件可经由总线和/或网络而彼此连接。
根据本公开示例性实施例的第四方面,提供一种外科手术机器人,外科手术机器人可以包括底座、串联机械臂和上面所述的并联机械臂。
根据本公开示例性实施例的第五方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行根据本公开所述的并联机构的位姿确定方法。
计算机可读存储介质例如可以是包括指令的存储器,可选地,计算机可读存储介质可以是:只读存储器(ROM)、随机存取存储器(RAM)、随机存取可编程只读存储器(PROM)、电可擦除可编程只读存储器(EEPROM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存、非易失性存储器、CD-ROM、CD-R、CD+R、CD-RW、CD+RW、DVD-ROM、DVD-R、DVD+R、DVD-RW、DVD+RW、DVD-RAM、BD-ROM、BD-R、BD-R LTH、BD-RE、蓝光或光盘存储器、硬盘驱动器(HDD)、固态硬盘(SSD)、卡式存储器(诸如,多媒体卡、安全数字(SD)卡或极速数字(XD)卡)、磁带、软盘、磁光数据存储装置、光学数据存储装置、硬盘、固态盘以及任何其他装置,所述任何其他装置被配置为以非暂时性方式存储计算机程序以及任何相关联的数据、数据文件和数据结构并将所述计算机程序以及任何相关联的数据、数据文件和数据结构提供给处理器或计算机使得处理器或计算机能执行所述计算机程序。上述计算机可读存储介质中的计算机程序可在诸如客户端、主机、代理装置、服务器等计算机设备中部署的环境中运行,此外,在一个示例中,计算机程序以及任何相关联的数据、数据文件和数据结构分布在联网的计算机系统上,使得计算机程序以及任何相关联的数据、数据文件和数据结构通过一个或多个处理器或计算机以分布式方式存储、访问和执行。
根据本公开示例性实施例的第六方面,提供一种计算机程序产品,包括计算机指令,所述计算机指令被处理器执行时实现根据本公开所述的并联机构的位姿确定方法。
关于上述实施例中的装置,其中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或 惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种并联机构的位姿确定方法,所述并联机构包括静平台、动平台和连接支链,其中,所述静平台形成有至少三个第一位置,所述动平台形成有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链对应于所述静平台和所述动平台的对应的第一位置和第二位置,并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的,所述位姿确定方法包括:
    根据所述至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和所述动平台相对于所述静平台的位姿参量中的一者,确定每个第二位置相对于所述静平台的位置;
    基于每个第二位置相对于所述静平台的位置,确定所述位置参量和所述位姿参量中的另一者;
    基于所述位置参量,确定所述并联机构的连接支链的位姿,或者,基于所述位姿参量,确定所述并联机构的动平台的位姿,
    其中,所述位置参量包括所述至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
  2. 根据权利要求1所述的位姿确定方法,其中,每个第二位置相对于对应的第一位置能够绕第一旋转轴线和第二旋转轴线旋转,所述第一旋转轴线和所述第二旋转轴线彼此垂直,
    其中,所述旋转变化量包括第二位置相对于对应的第一位置绕第一旋转轴线的第一旋转变化量和/或第二位置相对于对应的第一位置绕第二旋转轴线的第二旋转变化量。
  3. 根据权利要求2所述的位姿确定方法,其中,根据所述至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和所述动平台相对于所述静平台的位姿参量中的一者,确定每个第二位置相对于所述静平台的位置的步骤包括:
    根据所述位置参量和所述位姿参量中的一者以及第一位置转换关系和第二位置转换关系中的一者,确定每个第二位置相对于所述静平台的位置,
    其中,所述第一位置转换关系为所述动平台与所述静平台之间的位置转换关系;所述第二位置转换关系为以每个第一位置和旋转轴线为参照物与所述静平台之间的位置转换关系。
  4. 根据权利要求3所述的位姿确定方法,其中,基于每个第二位置相对于所述静平台的位置,确定所述位置参量和所述位姿参量中的另一者的步骤包括:
    基于每个第二位置相对于所述静平台的位置以及所述第一位置转换关系和所述第二位置转换关系中的另一者,确定所述位置参量和所述位姿参量中的另一者。
  5. 根据权利要求4所述的位姿确定方法,其中,所述位姿参量包括第二坐标系的坐标原点在第一坐标系下的坐标以及第二坐标系绕自身的三个坐标轴线依次旋转的旋转角度,其中,所述第一坐标系的位置相对于所述至少三个第一位置固定,所述第二坐标系的位置相对于所述至少三个第二位置固定,
    其中,所述第一位置转换关系为所述第一坐标系与所述第二坐标系之间的坐标转换关系,
    其中,所述第二位置转换关系为所述第一坐标系与在每个第一位置处的第一位置坐标系之间的坐标转换关系,
    其中,所述第一位置坐标系的坐标原点位于对应的第一位置处,所述第一位置坐标系 的坐标轴线中的一者为第二位置相对于对应的第一位置旋转的所述第一旋转轴线或所述第二旋转轴线。
  6. 根据权利要求5所述的位姿确定方法,其中,所述位置参量和所述位姿参量中的一者为所述位置参量,所述位置参量和所述位姿参量中的另一者为所述位姿参量,所述第一位置转换关系和所述第二位置转换关系中的一者为所述第二位置转换关系,所述第一位置转换关系和所述第二位置转换关系中的另一者为所述第一位置转换关系,
    其中,所述第一位置坐标系包括第三坐标系和第四坐标系,
    其中,通过以下方式确定所述第二位置转换关系:
    针对所述至少三个第二位置中的任一第二位置,根据该第二位置相对于对应的第一位置旋转的所述第一旋转变化量和所述第二旋转变化量,确定所述第三坐标系与所述第一坐标系之间的第三坐标转换关系以及所述第四坐标系与所述第三坐标系之间的第四坐标转换关系;
    基于所述第三坐标转换关系和所述第四坐标转换关系,确定所述第二位置转换关系,
    其中,所述第三坐标系的第一坐标轴线和第三坐标轴线中的一者为所述第一旋转轴线,所述第三坐标系的第一坐标轴线和第三坐标轴线中的另一者基于所述第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,所述第三坐标系的第二坐标轴线垂直于所述第三坐标系的第一坐标轴线和第三坐标轴线并且符合右手定则,
    其中,所述第四坐标系的第二坐标轴线为所述第二旋转轴线,所述第四坐标系的第三坐标轴线基于第二位置与对应的第一位置之间的相对位置来确定,所述第四坐标系的第一坐标轴线垂直于所述第四坐标系的第二坐标轴线和第三坐标轴线并且符合右手定则。
  7. 根据权利要求6所述的位姿确定方法,其中,根据所述位置参量和所述位姿参量中的一者以及第一位置转换关系和第二位置转换关系中的一者,确定每个第二位置相对于所述静平台的位置的步骤包括:
    针对所述至少三个第二位置中的任一第二位置,根据该第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和所述第二位置转换关系,确定每个第二位置相对于所述静平台的位置。
  8. 根据权利要求7所述的位姿确定方法,其中,所述至少三个第一位置位于第一分布圆的圆周上,所述第一坐标系的坐标原点位于所述第一分布圆的圆心,所述第一坐标系的第三坐标轴线垂直于所述至少三个第一位置所限定的第一平面指向所述至少三个第二位置所限定的第二平面所在侧,所述第一旋转轴线经过所述第一分布圆的圆心,所述第二旋转轴线与所述第一分布圆的圆周相切,
    其中,通过以下方式确定任一第一位置处的第三坐标系:
    将该第一位置确定为第三坐标系的坐标原点;
    将从所述第一坐标系的坐标原点指向该第一位置的方向确定为所述第三坐标系的第一坐标轴线的方向,将所述第一坐标系的第三坐标轴线的方向确定为所述第三坐标系的第三坐标轴线的方向,并且将垂直于所述第三坐标系的第一坐标轴线和第三坐标轴线且符合右手定则的方向确定为所述第三坐标系的第二坐标轴线的方向;
    基于所述第三坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定所述第三坐标系。
  9. 根据权利要求8所述的位姿确定方法,其中,通过以下方式确定任一第一位置处的第四坐标系:
    将该第一位置确定为第四坐标系的坐标原点;
    将从该第一位置指向与该第一位置对应的第二位置的方向确定为所述第四坐标系的第三坐标轴线的方向;
    将在所述并联机构的默认状态下所述第三坐标系的第二坐标轴线的方向确定为所述第四坐标系的第二坐标轴线的方向,其中,在所述并联机构的默认状态下,所述第一平面平行于所述第二平面并且每个第二位置与对应的第一位置之间的距离相等且距离最短;
    将相对于所述第四坐标系的第二坐标轴线和第三坐标轴线满足右手定则的方向确定为所述第四坐标系的第一坐标轴线的方向;
    基于所述第四坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定所述第四坐标系。
  10. 根据权利要求7所述的位姿确定方法,其中,所述至少三个第一位置位于第一分布圆的圆周上,所述第一坐标系的坐标原点位于所述第一分布圆的圆心,所述第一坐标系的第三坐标轴线垂直于所述至少三个第一位置所限定的第一平面指向所述至少三个第二位置所限定的第二平面所在侧,所述第一旋转轴线相对于所述第一坐标系的第三坐标轴线倾斜第一角度,
    其中,通过以下方式确定任一第一位置处的第三坐标系:
    将该第一位置确定为第三坐标系的坐标原点;
    将所述第一坐标系的第二坐标轴线确定为所述第三坐标系的第二坐标轴线的方向;
    将所述第一坐标系的第一坐标轴线和第三坐标轴线绕所述第一坐标系的第二坐标轴线旋转所述第一角度的方向分别确定为所述第三坐标系的第一坐标轴线和第三坐标轴线的方向,其中,所述第三坐标系的第三坐标轴线沿着所述第一旋转轴线;
    基于所述第三坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定所述第三坐标系。
  11. 根据权利要求10所述的位姿确定方法,其中,通过以下方式确定任一第一位置处的第四坐标系:
    将该第一位置确定为第四坐标系的坐标原点;
    将从该第一位置沿着对应的连接支链的调节方向朝向所述第二平面的方向确定为所述第四坐标系的第三坐标轴线的方向;
    将在所述并联机构的默认状态下所述第三坐标系的第二坐标轴线的方向确定为所述第四坐标系的第二坐标轴线的方向,其中,在所述并联机构的默认状态下,所述第一平面平行于所述第二平面并且每个第二位置与对应的第一位置之间的距离相等且距离最短,其中,所述第四坐标系的第二坐标轴线沿着所述第二旋转轴线;
    将相对于所述第四坐标系的第二坐标轴线和第三坐标轴线满足右手定则的方向确定为所述第四坐标系的第一坐标轴线的方向;
    基于所述第四坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定所述第四坐标系。
  12. 根据权利要求3或4所述的位姿确定方法,其中,所述并联机构还包括固定到所述动平台的执行件,所述执行件具有预设的执行位置,
    其中,所述并联机构的位姿确定方法还包括:
    确定所述执行件上的远心不动位置相对于所述静平台的位置,其中,所述远心不动位置在所述动平台的运动过程中相对于所述静平台的位置不变;
    根据所述位姿参量和所述远心不动位置相对于所述静平台的位置,确定所述执行位置相对于所述静平台的位置。
  13. 根据权利要求5所述的位姿确定方法,其中,所述位置参量和所述位姿参量中的一者为所述位姿参量,所述位置参量和所述位姿参量中的另一者为所述位置参量,所述第一位置转换关系和所述第二位置转换关系中的一者为所述第一位置转换关系,所述第一位置转换关系和所述第二位置转换关系中的另一者为所述第二位置转换关系,
    其中,所述第一位置坐标系的坐标轴线的第一坐标轴线和第三坐标轴线中的一者为所述第一旋转轴线或所述第二旋转轴线,所述第一位置坐标系的第一坐标轴线和第三坐标轴线中的另一者基于所述第一坐标系的第一坐标轴线和第三坐标轴线中的一者来确定,所述第一位置坐标系的第二坐标轴线垂直于所述第一位置坐标系的第一坐标轴线和第三坐标轴线并且符合右手定则,
    其中,通过以下方式确定所述第二位置转换关系:
    针对所述至少三个第二位置中的任一第二位置,根据与该第二位置对应的第一位置在所述第一坐标系下的坐标,确定所述第一位置坐标系与所述第一坐标系之间的第二位置转换关系。
  14. 根据权利要求13所述的位姿确定方法,其中,基于每个第二位置相对于所述静平台的位置以及所述第一位置转换关系和所述第二位置转换关系中的另一者,确定所述位置参量和所述位姿参量中的另一者的步骤包括:
    针对所述至少三个第二位置中的任一第二位置,根据该第二位置所对应的第二位置转换关系和该第二位置在所述第一坐标系下的坐标,确定该第二位置在所述第一位置坐标系下的坐标;
    根据该第二位置在所述第一位置坐标系下的坐标,确定所述位置参量和所述位姿参量中的另一者。
  15. 根据权利要求14所述的位姿确定方法,其中,所述至少三个第一位置位于第一分布圆的圆周上,所述第一坐标系的坐标原点位于所述第一分布圆的圆心,所述第一坐标系的第三坐标轴线垂直于所述至少三个第一位置所限定的第一平面指向所述至少三个第二位置所限定的第二平面所在侧,所述第一旋转轴线经过所述第一分布圆的圆心,所述第二旋转轴线与所述第一分布圆的圆周相切,
    其中,通过以下方式确定任一第一位置处的第一位置坐标系:
    将该第一位置确定为第一位置坐标系的坐标原点;
    将从所述第一坐标系的坐标原点指向该第一位置的方向确定为所述第一位置坐标系的第一坐标轴线的方向,将所述第一坐标系的第三坐标轴线的方向确定为所述第一位置坐标系的第三坐标轴线的方向,并且将垂直于所述第一位置坐标系的第一坐标轴线和第三坐标轴线且符合右手定则的方向确定为所述第一位置坐标系的第二坐标轴线的方向;
    基于所述第一位置坐标系的坐标原点、第一坐标轴线的方向、第二坐标轴线的方向和第三坐标轴线的方向,确定所述第一位置坐标系。
  16. 根据权利要求13所述的位姿确定方法,其中,所述并联机构还包括固定到所述动平台的执行件,所述执行件上具有预设的执行位置和远心不动位置,其中,所述远心不动位置在所述动平台的运动过程中相对于所述静平台的位置不变,其中,通过以下方式确定所述位姿参量:
    根据所述执行位置和所述远心不动位置在所述第一坐标系下的坐标,确定所述第二坐标系的原点在所述第一坐标系下的坐标;
    确定所述第一坐标系与所述第二坐标系之间的坐标轴旋转矩阵,并根据所述坐标轴旋转矩阵以及所述执行位置和所述远心不动位置在所述第一坐标系下的坐标,确定所述第二坐标系的坐标轴相对于所述第一坐标系的坐标轴的旋转角。
  17. 一种并联机构的位姿确定装置,所述并联机构包括静平台、动平台和连接支链,其中,所述静平台形成有至少三个第一位置,所述动平台形成有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链对应于所述静平台和所述动平台的对应的第一位置和第二位置,并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的,所述位姿确定装置包括:
    第一确定单元,被配置为根据所述至少三个第二位置中的每个第二位置与对应的第一位置之间的位置参量和所述动平台相对于所述静平台的位姿参量中的一者,确定每个第二位置相对于所述静平台的位置;
    第二确定单元,被配置为基于每个第二位置相对于所述静平台的位置,确定所述位置参量和所述位姿参量中的另一者;
    第三确定单元,被配置为基于所述位置参量,确定所述并联机构的连接支链的位姿,或者,基于所述位姿参量,确定所述并联机构的动平台的位姿,
    其中,所述位置参量包括所述至少三个第二位置中的每个第二位置与对应的第一位置之间在对应的连接支链的调节方向上的距离和每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
  18. 一种并联机械臂,所述并联机械臂包括并联机构,所述并联机构包括静平台、动平台和连接支链,其中,所述静平台上具有至少三个第一位置,所述动平台上具有与所述至少三个第一位置一一对应的至少三个第二位置,每个连接支链连接到对应的第一位置和第二位置并且每个连接支链在对应的第一位置和第二位置之间的跨度是可调节的,所述并联机械臂还包括:
    存储器,所述存储器存储有计算机程序;
    处理器,所述处理器执行存储在所述存储器中的计算机程序以实现根据权利要求1至16中的任一项所述的并联机构的位姿确定方法。
  19. 根据权利要求18所述的并联机械臂,其中,所述连接支链为三个,所述并联机构还包括与所述连接支链对应设置的角度测量装置,所述角度测量装置用于测量每个第二位置相对于对应的第一位置绕旋转轴线旋转的旋转变化量。
  20. 一种外科手术机器人,其中,所述外科手术机器人包括底座、串联机械臂和根据权利要求18或19所述的并联机械臂。
  21. 一种计算机可读存储介质,其中,当所述计算机可读存储介质中的指令由电子设备的处理器执行时,使得所述电子设备能够执行根据权利要求1至16中的任一项所述的并联机构的位姿确定方法。
  22. 一种计算机程序产品,包括计算机指令,其中,所述计算机指令被处理器执行时实现根据权利要求1至16中的任一项所述的并联机构的位姿确定方法。
PCT/CN2022/130396 2022-03-07 2022-11-07 并联机构的位姿确定方法及装置 WO2023168966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210216260.7A CN114683249B (zh) 2022-03-07 2022-03-07 并联机构的位姿确定方法及装置
CN202210216260.7 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023168966A1 true WO2023168966A1 (zh) 2023-09-14

Family

ID=82136553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130396 WO2023168966A1 (zh) 2022-03-07 2022-11-07 并联机构的位姿确定方法及装置

Country Status (2)

Country Link
CN (1) CN114683249B (zh)
WO (1) WO2023168966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683249B (zh) * 2022-03-07 2024-03-22 诺创智能医疗科技(杭州)有限公司 并联机构的位姿确定方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186661A (zh) * 2019-05-14 2019-08-30 燕山大学 含up副支链的并联机构的运动学正解求解方法
AU2020201097A1 (en) * 2019-02-14 2020-09-03 Stryker Australia Pty Ltd Systems for assisting surgery
CN113561220A (zh) * 2020-01-23 2021-10-29 诺创智能医疗科技(杭州)有限公司 手术机械臂、计算机设备及计算机可读存储介质
CN113967906A (zh) * 2021-11-19 2022-01-25 伯朗特机器人股份有限公司 基于附加编码器的并联六轴机器人位姿正解方法
CN114131596A (zh) * 2021-11-22 2022-03-04 北京空间机电研究所 一种六自由度并联机构位姿分辨率分析方法
CN114683249A (zh) * 2022-03-07 2022-07-01 诺创智能医疗科技(杭州)有限公司 并联机构的位姿确定方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921325A1 (de) * 1998-09-17 2000-03-23 Heidenhain Gmbh Dr Johannes Kalibriervorrichtung für einen parallelkinematischen Manipulator
JP4638327B2 (ja) * 2005-10-17 2011-02-23 新日本工機株式会社 パラレルメカニズム装置、パラレルメカニズム装置のキャリブレーション方法、キャリブレーションプログラム、及び記録媒体
CN106813638B (zh) * 2017-03-15 2018-05-18 吉林大学 一种3rps并联机器人几何参数辨识方法
CN108161896B (zh) * 2017-11-22 2021-06-11 西安电子科技大学 6-pss并联机构
CN108446425B (zh) * 2018-02-02 2022-03-18 哈尔滨工程大学 基于混联机构的海浪主动补偿系统的运动学求解方法
CN112975916B (zh) * 2021-04-15 2021-07-30 中国科学院宁波材料技术与工程研究所 两转一移并联机构、其末端位姿确定方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020201097A1 (en) * 2019-02-14 2020-09-03 Stryker Australia Pty Ltd Systems for assisting surgery
CN110186661A (zh) * 2019-05-14 2019-08-30 燕山大学 含up副支链的并联机构的运动学正解求解方法
CN113561220A (zh) * 2020-01-23 2021-10-29 诺创智能医疗科技(杭州)有限公司 手术机械臂、计算机设备及计算机可读存储介质
CN113967906A (zh) * 2021-11-19 2022-01-25 伯朗特机器人股份有限公司 基于附加编码器的并联六轴机器人位姿正解方法
CN114131596A (zh) * 2021-11-22 2022-03-04 北京空间机电研究所 一种六自由度并联机构位姿分辨率分析方法
CN114683249A (zh) * 2022-03-07 2022-07-01 诺创智能医疗科技(杭州)有限公司 并联机构的位姿确定方法及装置

Also Published As

Publication number Publication date
CN114683249A (zh) 2022-07-01
CN114683249B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN107995885B (zh) 一种坐标系标定方法 、系统及装置
US20190143518A1 (en) Robot trajectory generation method, robot trajectory generation apparatus, product fabrication method, recording medium, program, and robot system
Vahrenkamp et al. Representing the robot’s workspace through constrained manipulability analysis
WO2023168966A1 (zh) 并联机构的位姿确定方法及装置
US20110093119A1 (en) Teaching and playback method based on control of redundancy resolution for robot and computer-readable medium controlling the same
Kolpashchikov et al. FABRIK-based inverse kinematics for multi-section continuum robots
CN106329399B (zh) 一种输电线路螺栓紧固机器人的控制方法及控制器
JP2019177436A (ja) ロボット制御装置、ロボットの関節の角度を求める方法、プログラム
WO2018035216A1 (en) Method and system for preserving privacy for cloud-based manufacturing analysis services
Wang et al. Inverse Kinematics of a 7R 6‐DOF Robot with Nonspherical Wrist Based on Transformation into the 6R Robot
Jiajia et al. A novel inverse kinematics algorithm using the Kepler oval for continuum robots
CN114800534A (zh) 一种机械臂控制方法及装置
Fazilat et al. A novel quantum model of forward kinematics based on quaternion/Pauli gate equivalence: Application to a six-jointed industrial robotic arm
Zhao et al. Inverse kinematics and workspace analysis of a novel SSRMS-type reconfigurable space manipulator with two lockable passive telescopic links
CN112476435B (zh) 重力加速度方向的标定方法、标定装置及存储介质
US11602846B2 (en) Search apparatus, search method, and search program
Diez et al. Insights into mechanism kinematics for protein motion simulation
Kolpashchikov et al. Inverse Kinematics for Steerable Concentric Continuum Robots
US10628533B2 (en) Global optimization of networks of locally fitted objects
US20200189094A1 (en) Device, method and system for teaching robot
US11235459B2 (en) Inverse kinematic solver for wrist offset robots
Ricardo Xavier da Silva et al. A Solution of the Inverse Kinematics Problem for a 7‐Degrees‐of‐Freedom Serial Redundant Manipulator Using Gröbner Bases Theory
Lei et al. A novel algorithm for fast grasping of unknown objects using C-shape configuration
US20150220666A1 (en) Simulation using coupling constraints
CN117921654A (zh) 并联主操作手的控制方法及装置、机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930589

Country of ref document: EP

Kind code of ref document: A1