WO2023168947A1 - 基于数字孪生技术的安全壳孪生系统及其建造方法 - Google Patents

基于数字孪生技术的安全壳孪生系统及其建造方法 Download PDF

Info

Publication number
WO2023168947A1
WO2023168947A1 PCT/CN2022/126711 CN2022126711W WO2023168947A1 WO 2023168947 A1 WO2023168947 A1 WO 2023168947A1 CN 2022126711 W CN2022126711 W CN 2022126711W WO 2023168947 A1 WO2023168947 A1 WO 2023168947A1
Authority
WO
WIPO (PCT)
Prior art keywords
containment
data
digital
feedback control
twin
Prior art date
Application number
PCT/CN2022/126711
Other languages
English (en)
French (fr)
Inventor
邢继
荆春宁
王宝树
李荣鹏
姚迪
蒋迪
孟剑
王黎丽
宋孟燕
刘蒙莎
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Publication of WO2023168947A1 publication Critical patent/WO2023168947A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present disclosure belongs to nuclear engineering technology, and specifically relates to a containment twin system based on digital twin technology and its construction method.
  • Nuclear power generation is a clean and efficient way of utilizing energy.
  • the design goal is to substantially eliminate large-scale radioactive material releases.
  • the design concept of defense in depth is adopted.
  • three physical barriers can be set up: first, the fuel cladding; second, a separate circuit for the cooling water in direct contact with the nuclear fuel, that is, the primary circuit pressure boundary. ; Third, a containment vessel that can withstand certain accident pressure and temperature. As the last physical boundary, the containment plays a vital role in ensuring nuclear safety in the nuclear power field.
  • the functions of the containment are further enhanced by setting up double-layer or multi-layer containment, cooling water tanks and spray systems, and overpressure filtration and emission protection systems. It not only has the function of responding to traditional high-temperature and high-pressure accident conditions, but also has advanced functions such as protecting against external aircraft impacts, tornadoes and missile impacts, protecting against internal hydrogen explosions, and facilitating the extraction of internal accident high temperatures and high pressures. It has evolved into a powerful Containment system.
  • Prestressed reinforced concrete structures are often used and lined with a layer of steel cladding.
  • the traditional method is to conduct a compression test before completion of construction and operation to verify its pressure-bearing capacity.
  • real-time monitoring of the actual overall pressure-bearing capacity of the containment is difficult to achieve, and it will not be known until overhaul or special inspection a few years later; the overall performance of the prestressed concrete containment Whether the deformation and concrete prestress level are consistent with the design calculation is also difficult to monitor in real time, and it is impossible to provide feedback and make design improvements.
  • the containment vessel Although some displacement and stress monitoring components are set up in the containment vessel, they are basically passive, that is, measuring personnel need to be dispatched regularly and additional measuring equipment is used to collect data, which cannot be actively sent; for the construction side , under the design concept of being as compact as possible, the containment system has dense steel bars, complex spherical shell configuration, and a variety of equipment embedded parts inside. In the later stage, the prestressed steel beams need to be tensioned, which makes the construction process complicated and difficult, and the dome hoisting , prestressed tendon tensioning and other construction mechanics calculations are complex, affecting the construction schedule and construction safety.
  • the containment is the last boundary for the containment of radioactive materials. Its real-time structural status and future prediction are important judgment indicators and basis for determining whether the emergency is upgraded.
  • the relevant information of the digital mapping body can be accessed by emergency stakeholders and provide them with important decision-making basis. For the public, being able to understand real-time information about the containment vessel, a barrier that prevents radioactive leakage, is obviously of positive significance for dispelling doubts and promoting nuclear science popularization.
  • the purpose of this disclosure is to address the problems existing in the prior art and provide a containment twin system and its construction method based on digital twin technology.
  • the containment twin system and its construction method can unblock information acquisition channels for all relevant parties and open up Information exchange channels between relevant parties can better improve the nuclear power plant's ability to respond to accidents, thereby improving nuclear power safety.
  • the present disclosure provides a containment twin system based on digital twin technology.
  • the containment twin system includes a physical entity containment system and a digital mapping body corresponding to the physical entity containment system.
  • the digital mapping body includes:
  • the virtual reality simulation module is structured to summarize the three-dimensional geometric information of each major, simulate and display the visual effects of actually walking in the physical entity containment system, and can display the visual effects in layers, parts, and construction stages;
  • the multi-physics coupling calculation module is structured to provide designers, construction parties, operation and maintenance parties with real-time mechanical, thermodynamic status and physical properties of the entire physical entity containment vessel;
  • the durability and life prediction calculation module is configured to obtain the aging status and remaining expected life of the physical physical containment system, and prompt maintenance and key parts that need attention;
  • the machine learning prediction calculation module is structured to conduct autonomous learning based on accumulated data, establish a correlation mapping relationship between the input and output of the calculation model, predict the state changes of the indicators of concern, and transmit it to the feedback control and early warning module in a timely manner;
  • the feedback control and early warning module is configured to feedback control instructions to the designer, construction party, operation and maintenance party in real time after each calculation module calculates and predicts or detects an abnormality, and provides a timely warning when the abnormality reaches a predetermined level.
  • the data source of the digital mapping body is the cognitive database of the physical entity containment system.
  • the cognitive database includes: spatial geometry information cognitive data and material property cognitive data. , mechanical and thermodynamic state cognitive data and durability aging state cognitive data.
  • the data in the cognitive database are collected by relying on the sensor system and the data feedback and collection system.
  • the sensors used to detect mechanical and thermodynamic physical states in the sensor system include: strain sensors, acceleration sensors, vibration sensors, displacement meters, GPS displacement monitors, connecting tube sensors, lasers Image monitor, inclinometer, inclinometer, temperature sensor; pressure gauges, pressure sensors, spectrum sensors, magnetic flux sensors, fiber grating sensors are used to monitor the stress of important prestressed steel cables; conductive conductive sensors are used to monitor cracks Paint, distributed optical fiber, ultrasonic, and image methods; for aging and corrosion monitoring, anode ladder, carbonization tester, and electrical monitoring methods are used.
  • the physical entity containment system transmits information to the digital mapping body through the cognitive database, and the digital mapping body notifies the operation and operation of real-time status data through calculations of each computing module.
  • the maintenance and repair party shall perform operations in the physical entity containment system after being confirmed by the operation and maintenance and repair party.
  • the digital mapping body transmits information to various relevant parties in different ways according to different characteristics.
  • a dedicated wired channel method of laying optical fiber and cable data channels is used;
  • Nuclear regulators and the public use the Internet and traditional mobile communications to share wireless methods, and develop corresponding personal computers and mobile phone clients; for construction parties, maintenance parties, and emergency disaster relief parties, use the development of personal handheld terminals that combine wireless and wired Way.
  • the feedback control and early warning module distinguishes feedback control methods according to different feedback control categories.
  • the feedback control categories include:
  • Feedback control can bring about changes in the signals monitored by the main control system in the main control room, or can directly lead to a significant increase in the risk of core melting or loss of cooling of stored spent fuel;
  • L2 There are no situations specified in L1 for feedback control, but it may lead to serious industrial accidents
  • L3 There are no circumstances specified in L1 and L2 for feedback control, but it may cause significant economic losses or off-site impacts;
  • L4 Feedback control has no situations specified in L1 to L3, and only controls active system actions that have nothing to do with nuclear safety;
  • the feedback control system achieves indirect control by reminding operators and operators with authority, operating suggestions and guidance, and issuing control instructions to people; in categories L4 to L6, the feedback control system can directly control related system actions.
  • the early warning function of the feedback control and early warning module includes early warning of abnormal parameters in daily operation for operation and maintenance parties, and early warning for nuclear regulatory departments, emergency and disaster relief in severe nuclear accidents.
  • Party and the public conduct early warning of the overall status of the containment system; the judgment index of the overall status early warning can be determined by the following formula:
  • p is the maximum pressure measured in the containment
  • p d is the design internal pressure of the containment
  • i is the most representative structural parameter when the containment exceeds the design internal pressure, reaches the ultimate bearing capacity and cracks
  • i d is The corresponding i value under the design internal pressure
  • the present disclosure also provides a method of building the containment twin system based on digital twin technology, the method includes:
  • the cognitive database of the physical entity containment vessel system is formed and used as the data input source of the digital mapping body;
  • the digital mapping body performs simulation calculations through each computing module, and transmits information to designers, construction parties, operation and maintenance parties, nuclear regulators, emergency disaster relief parties, and the public through wireless or wired transmission methods.
  • the designer starts from the functional requirements of the digital mapping body, designs the module composition of the digital mapping body, and infers the sensor system and data feedback and acquisition system from the demand data of each module. setting.
  • a digital mapping body is built based on the design drawings and data feedback from the construction party, which has some functions; after the construction of the physical containment is completed, the sensor The system began to work and output data. The data feedback and collection system began to collect data generated by all parties. The cognitive database of the physical entity containment system was gradually supplemented and improved. Each computing module of the digital mapping body obtained sufficient data and began to work.
  • the machine learning prediction calculation module of the digital mapping body can obtain sufficient data for learning and establish a relationship between the input and output of the calculation model.
  • the correlation mapping relationship predicts the status changes of the indicators of concern and promptly transmits them to the feedback control and early warning module for feedback control and early warning.
  • the beneficial effects of this disclosure are as follows:
  • the containment twin system and its construction method based on digital twin technology provided by this disclosure map the physical entity containment in the virtual digital world, and the constructed digital mapping body has system integration, multi-physics Field, multi-scale and other characteristics.
  • This disclosure realizes the accurate mapping of the physical entity containment by the digital mapping body through the accurate understanding of the physical entity containment system, and uses the sensor system deployed in the physical entity containment system to design the data feedback and collection system to achieve more in-depth Cognition breaks through the traditional way of cognition and has the characteristics of being holistic, systematic, cross-physics, and cross-scale.
  • the digital mapping body of the present disclosure relies on computers, large servers, digital centers or network distributed servers to transmit information to all relevant parties, smooth information acquisition channels for all relevant parties, and open up information exchange channels between relevant parties, so as to be able to Better improve the ability of nuclear power plants to respond to accidents, thereby improving the safety of nuclear power.
  • Figure 1 is a schematic diagram of the technical solution of the containment twin system and its construction method based on digital twin technology in a specific embodiment of the present disclosure.
  • the present disclosure provides a containment twin system based on digital twin technology, including a physical entity containment system and a digital mapping body corresponding to the physical entity containment system. Its core is the digital mapping body of the physical entity containment system.
  • the digital mapping The body has important characteristics such as modular composition, scalability, phased construction, step-by-step construction, cross-physics, and overall integration.
  • the data input of the digital mapping body comes from the cognitive database of the physical entity containment system, which relies on the sensor system and data feedback and collection system deployed in the physical entity containment system to recognize and collect data.
  • a digital containment system corresponding to the physical entity containment system is constructed, which can also be called a digital mapping body of the physical entity containment system.
  • the digital mapping body has a variety of functions that can be realized through its expandable modules.
  • Digital twin is a process that uses information technology to digitally define and model the composition, characteristics, functions and performance of physical entities.
  • the digital twin refers to an information model that is completely equivalent to the physical entity in the computer virtual space.
  • the physical entity can be simulated, analyzed and optimized based on the digital twin. Therefore, the digital map mentioned in this article is equivalent to the digital twin in meaning.
  • the correspondence between the digital mapping body and the physical entity containment system in this disclosure means that the relationship between the two is an equivalent relationship based on numerical simulation and simulation.
  • the digital mapping body 1 in this embodiment includes:
  • the virtual reality simulation module 2 is used to summarize the three-dimensional geometric information of various majors, simulate and display the visual effects of actually walking in the physical entity containment system, and can display the visual effects in layers, parts, and construction stages.
  • This virtual reality simulation module is mainly based on BIM (Building Information Modeling) technology and related software, such as software commonly used for pipelines, equipment three-dimensional synthesis, collision inspection in the nuclear power industry, software commonly used in the construction industry, etc. Each professional drawing and on-site construction modification file are used as its initial information input.
  • This preliminary BIM model can realize three-dimensional roaming, collision checking and other functions on the local server display.
  • augmented reality and virtual reality development tools and development engines are used to develop demand models for virtual reality hardware such as VR glasses and VR helmets.
  • the VR equipment can be used by various construction parties, operations and maintenance parties for mobile scenarios, and can also be used by nuclear regulatory authorities, emergency and disaster relief parties, and the public. Due to the large amount of data transmission, the VR device in the mobile scenario does not directly wirelessly transmit with the main server where the virtual reality simulation module is located, but exchanges data with the main server through a portable mobile server with a wired connection.
  • This virtual reality simulation module is the basis for other modules and the center for information collection. For example, operation and maintenance personnel can wear VR equipment to "see through” the distribution of steel bars inside concrete or the buried position of sensors to determine and confirm the corrosion areas of steel bars involved in durability warnings. .
  • the multi-physics coupling calculation module 3 is used to provide designers, construction parties, operation and maintenance parties with real-time mechanical, thermodynamic status and physical properties of the entire containment entity.
  • This multi-physics coupling calculation module is mainly implemented by local or cloud general finite element calculation software with strong computing capabilities. It can also incorporate the industry's more special thermal and hydraulic calculation software in the containment. Each software is called based on different calculation scenarios and needs, such as the stress of the prestressed tendons in the containment, concrete stress, overall displacement of the containment, temperature field in the space under the accident, hydrogen diffusion distribution, etc.
  • the server should already have a complete finite element model based on comprehensive information such as geometry and materials.
  • the temperature and pressure distribution in the shell can be pre-calculated Store a large amount of data that can be directly compared with sensor collection in the database.
  • Specific physical quantities in the linear elastic state can be directly obtained by combination and interpolation under different load conditions using stored data.
  • the calculation in the nonlinear state can make full use of the pre-stored results and continue the calculation from the end of the linear elastic state to reduce the result feedback time.
  • the durability and life prediction calculation module 4 is used to obtain the aging status and remaining expected life of the containment system, and prompts maintenance and key parts that need attention.
  • the main factors causing the durability damage of the containment include carbonization of concrete, aging and cracking of concrete caused by long-term exposure to salt spray and internal high-temperature cycles; corrosion of ordinary steel bars in concrete; corrosion of the steel lining on the inner wall of the shell, mechanical property degradation under the action of radiation, and The sealing performance is reduced; the function of the prestressed system is degraded and the internal prepressure of the concrete is reduced, etc. Because life prediction relies on the comprehensive judgment of various indicators, and the life extension effect can be obtained based on the actual maintenance status such as structural repairs and overhaul component replacement.
  • the durability and life prediction calculation module relies more on the data feedback system than other modules.
  • sensor transmission data such as steel corrosion potential and crack image observation, regular inspection crack records, leakage rate tests, and status after repair measures should be fed back to the durability and life prediction calculation module to achieve real-time Reflects the true durability status of the containment vessel.
  • the machine learning prediction calculation module 5 is used to conduct independent learning based on accumulated data, establish a correlation mapping relationship between the input and output of the calculation model, predict the state changes of the indicators of concern, and transmit it to the feedback control and early warning module in a timely manner.
  • Traditional structural response prediction such as finite element model calculation, etc., results cannot be verified in real time. Only scaled model tests or comparisons with theoretical solutions to abstract problems can be performed.
  • the digital mapping body relies on the structural response data collected in real time by the sensor system on the physical structure, providing basic data input for real-time verification and error analysis of structural finite element calculation results.
  • the feedback control and early warning module 6 is used to provide timely warnings after each calculation module calculates predictions or detects abnormalities. Feedback control of the active parts of the physical containment system by digital mapping bodies 1 rather than operators or operation and maintenance personnel may bring about a series of consequences. Therefore, feedback control categories can be defined, and feedback control methods can be distinguished according to different categories (to be described below).
  • the cognitive database of the physical entity containment system is the data input source for the digital mapping body. It includes: cognitive data of spatial geometric information, which is mainly used for the construction of visual models and simulation of virtual reality simulation modules; cognitive data of material properties, It is mainly used for the input of calculation modules such as mechanics and thermodynamics; the mechanical and thermodynamic state cognitive data is mainly used for the input and correction of the calculation module; the durability aging state cognitive data is mainly used for the input of the durability and life prediction calculation module.
  • the sensor system is mainly responsible for the data collection function after completion.
  • the sensor system should not be the traditional isolated and single one, but should be designed to reflect the overall mechanics, thermodynamics and aging state of the physical entity containment, and be targeted and coordinated. system of work.
  • the setting of the sensor system is closely related to the module composition of the digital mapping body, and the setting location and quantity have been optimized. For example, according to the design calculation, it is placed in weak links with pressure bearing capacity or at points where temperature is prone to concentration, and has the ability to reflect mechanics and thermodynamics. , Durability data collection function.
  • Sensors that can be used to detect physical states such as mechanics and thermodynamics include: strain sensors (resistive, vibrating wire, grating fiber, etc.), acceleration sensors (piezoelectric, piezoresistive, capacitive, force balance, etc.) , vibration sensors, displacement meters, GPS displacement monitoring, connecting tube sensors, laser image monitoring, inclinometers, inclinometers, temperature sensors (fiber grating, digital, thermocouple, thermal, thermal imaging, etc.).
  • strain sensors resistive, vibrating wire, grating fiber, etc.
  • acceleration sensors piezoelectric, piezoresistive, capacitive, force balance, etc.
  • vibration sensors displacement meters
  • GPS displacement monitoring connecting tube sensors
  • laser image monitoring laser image monitoring
  • inclinometers inclinometers
  • temperature sensors fiber grating, digital, thermocouple, thermal, thermal imaging, etc.
  • Conductive coatings, distributed optical fibers, ultrasonic waves, images, etc. can be used to monitor cracks.
  • the collected data is stored in the cognitive database of the physical entity containment system and input into the digital mapping body of the physical entity containment system as input data for each calculation module of the digital mapping body.
  • data such as geometric space, mechanics, thermodynamics, and durability are not isolated from each other.
  • durability data is used to evaluate the mechanical properties of materials, which is reflected in mechanical calculations; and if deformation such as displacement accumulates to a certain extent, it may also affect the geometric model. It is the aggregation of large amounts of interrelated data that makes it possible to gain a holistic, real-time understanding of the mechanical and durability status of the physical containment system.
  • the aggregation of a large amount of real-time, cross-physics, and cross-scale data also makes it possible to discover data that was previously impossible to obtain. For example, in the event of a typhoon, accidental impact, etc., the overall response data of the structure will be recorded in detail, which will help to detect hidden dangers in time and conduct corresponding investigation. If the prestress level decreases and cracks occur, the reasons can be found from the perspective of overall mechanics and material deterioration. And for designers, they often develop one nuclear power plant model and promote and build it at multiple sites. The centralized aggregation of more data also makes it possible to detect hidden dangers in time and predict in advance through artificial intelligence methods such as machine learning.
  • the virtual reality simulation module 2 of the digital mapping body can be built after the design drawings are generated and before the physical containment vessel is built.
  • the design of a nuclear power plant is very complex and requires the coordination of multiple types of work. Although there is a traditional multi-type collaboration mechanism, during the construction process, it is often found that components in the drawings overlap and collide, and the drawings can only be modified in coordination with each other.
  • the design drawings of civil structure professionals express three-dimensional objects based on the language of two-dimensional plane drawings, and it is often impossible to find unreasonable aspects in the actual design. Therefore, this module can summarize the three-dimensional geometric information of various disciplines. In addition to simulating the visual effects of actually walking in the containment system, it can also display the visual effects by layer, part, and construction stage.
  • the feedback control and early warning module 6 of the digital mapping body can feedback control instructions to the designer, construction party, operation and maintenance party in real time after each calculation module calculates predictions or detects abnormalities, and can provide timely warnings when the abnormalities reach a predetermined level.
  • the physical containment system transmits information to the digital mapping body through the cognitive database. However, the exchange of information between the physical containment system and the digital mapping body is not one-way.
  • the physical physical containment vessel has active and operable auxiliary systems, such as spraying and overpressure exhaust devices, and there are also many information collection sensors installed inside. However, for controls involving nuclear safety, the feedback control of the digital mapping body is executed after confirmation by the operation and maintenance party or on behalf of the operator.
  • overpressure protection needs to be turned on.
  • the digital mapper can perform calculations in advance based on real-time monitoring data, informing the user of the possible status of the physical containment vessel in a few hours or days. Or after spraying or turning on the overpressure filtration and exhaust system, the user can be informed of the possible status of the physical containment vessel.
  • controls that do not involve nuclear safety especially the control of sensors, they can be controlled individually by the digital mapping body and under the supervision of the operator. If an accident occurs or the possibility of cracking or prestress decline increases at a certain location based on machine learning predictions, the sensor can be controlled to increase the data collection density, and the optical, laser, and infrared sensors can be adjusted to align with key locations. At the same time, operation and maintenance personnel were notified to increase the frequency of inspections and key areas of concern.
  • the digital mapping body can transmit information to relevant parties in different ways according to different needs and characteristics.
  • the physical basis of the digital mapping body is high-performance servers or data centers, network distributed servers, etc. For example, the physical distance between the designer and the operator is relatively close, and the transmitted information is daily and large amounts of data.
  • the traditional dedicated wired channel method of laying optical fiber cables and other data channels can be used.
  • the density of receiving information is not high, so shared wireless methods such as the Internet and traditional mobile communications can be used, and corresponding PC and mobile phone clients can be developed.
  • construction parties, operation and maintenance parties, emergency disaster relief parties, etc. who are inconvenient to use in fixed locations, they can develop personal handheld terminals and combine wireless and wired methods to obtain information.
  • the feedback control and early warning module 6 distinguishes feedback control methods according to different feedback control categories.
  • the feedback control categories include:
  • Feedback control can bring about changes in the signals monitored by the main control system in the main control room, or can directly lead to a significant increase in the risk of core melting or loss of cooling of stored spent fuel;
  • L5 Feedback control only controls the action of the acquisition sensor, such as encrypting the signal acquisition density of the predicted dangerous area, mobilizing the image acquisition equipment to align the predicted areas of concern, etc.;
  • the feedback control system achieves indirect control by reminding operators and operators with authority, operating suggestions and guidance, and issuing control instructions to people; in categories L4 to L6, the feedback control system can directly control related system actions.
  • the early warning function of the feedback control and early warning module 6 includes early warning of abnormal parameters in daily operations for operation and maintenance parties, and safety inspection for nuclear regulatory authorities, emergency and disaster relief parties, and the public in the event of a serious nuclear accident.
  • Shell system overall status warning; the judgment index of the overall status warning can be determined by the following formula:
  • p is the maximum pressure measured in the containment
  • p d is the design internal pressure of the containment
  • i is the most representative structural parameter of the containment when it exceeds the design internal pressure, reaches the ultimate bearing capacity and cracks, such as the internal steel The tensile stress value of the dangerous part near the gate of the lining equipment
  • i d is the corresponding i value under the design internal pressure.
  • safety thresholds and safety margins corresponding to the quantified numerical ranges of different risk levels or accident levels can be set according to different risk levels or accident levels (for example, 1.1, 1.2...1.5, etc.) can be set, and
  • the safety level allowed for the containment system is expressed as the product of the safety threshold and the safety margin.
  • Digital mapping body is the mapping of physical objects in the virtual digital world, which has the characteristics of system integration, multi-physics, and multi-scale.
  • the physical entity of the digital mapping body is generally a computer, a large server, a digital center or a network distributed server.
  • To achieve accurate mapping of physical entities we must first achieve accurate knowledge of physical entities. This kind of cognition should break through tradition and be holistic, systematic, cross-physical fields, and cross-scale. Therefore, in order to achieve beyond traditional cognition, the designer who assumes the role of overall planning and design of the digital mapping body uses sensor systems deployed in the physical entity containment system to design data feedback and collection systems to achieve deeper cognition.
  • the designer in addition to himself, collects required functions from construction parties, operation and maintenance parties, nuclear regulatory authorities, emergency and disaster relief parties, and the public. Then, starting from the functional requirements, the main modules of the digital mapping body are designed, and the sensor and data feedback and collection system settings are deduced from the demand data of the main modules.
  • the construction party assumes the role of building the traditional physical containment system. After the digital mapping body design of the physical containment system is completed, it further assumes the functions of burying, testing, and acceptance of the sensor system. At the same time, the construction party is also the user and beneficiary of the digital mapping body.
  • a digital mapping body can be built based on the design drawings and data feedback from the construction party, which has some functions.
  • the designer it has functions such as collaborative conflict checking and three-dimensional display auxiliary design among various disciplines.
  • the constructor it has functions such as displaying the virtual construction environment and construction process to construction personnel, and simulating construction mechanics calculations.
  • the sensor system begins to work and output data, and other parts such as operation and maintenance parties are also involved.
  • the data feedback and collection system begins to collect data generated by all relevant parties.
  • the cognitive database of the physical containment system is gradually supplemented and improved.
  • Each calculation module of the digital mapping body can have sufficient data to start working.
  • the overall status of the physical physical containment vessel such as real-time prestress level and distribution, overall pressure limit, overall temperature distribution, overall deformation, vibration, damage, overall aging status, remaining life, etc. when encountering typhoons or external impact events, can obtained in real time.
  • the machine learning prediction calculation module 5 After the data has been accumulated to a certain extent, the machine learning prediction calculation module 5 will have sufficient data to learn, establish the correlation mapping relationship between the input and output of the calculation model, predict the status changes of the indicators of concern, and promptly pass it to the feedback control and The early warning module 6 performs feedback control and early warning.
  • the digital mapping body transmits information to all relevant parties through wireless or wired transmission methods. For designers and constructors, obtaining overall measured data facilitates verification of design and construction indicators, and design improvement and optimization. Due to the digital mapping body and the accumulation of rich data, designers can conduct preliminary experiments and design verification on the digital mapping body for the development of new models and the improvement of new functions.
  • the operation and maintenance party the overall status of the physical entity containment system can be obtained in real time. If operations such as spraying and pressure relief are performed, the feedback data of the containment entity can be obtained in time, and a period of time can be obtained. Prediction results after time. The aging status and remaining life expectancy of the physical containment system can be obtained, indicating maintenance and key areas that need attention.
  • the digital mapping body In an emergency, operators are alerted by digital mapping bodies. Because the digital mapping body includes a machine learning prediction calculation module and a feedback control and early warning module, it automatically encrypts the sensor collection frequency according to the design and concentrates detection on key parts, so the operator obtains more key data. For nuclear regulatory authorities, during operation, maintenance and accident conditions, data can be obtained in a timely manner through digital mapping to better perform their regulatory role. For emergency and disaster relief parties, getting early warning as soon as a disaster occurs makes it easier to organize timely response and rescue. Moreover, the sensors that the digital mapping body relies on are systematic and global. The loss of individual or partial sensors will not cause information transmission to be completely blocked, and timely assessment of damage can still be carried out.
  • the virtual reality simulation function allows emergency rescue parties to practice in advance and reduce losses.
  • the structural status and prediction of the containment vessel, whether its containment function for radioactive materials is intact, and its future development trend are important decision-making basis for whether to upgrade the emergency plan.
  • digital mapping provides the public with information in the form of popular science and timely release, which helps eliminate rum and fear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种基于数字孪生技术的安全壳孪生系统及其建造方法,在计算机或服务器的虚拟空间内,构建一个与物理实体安全壳系统相对应的数字映射体,数字映射体包括虚拟现实模拟模块,多物理场耦合计算模块、耐久性及寿命预测计算模块、机器学习预测计算模块、反馈控制及预警模块;通过在物理实体安全壳中布设的传感器系统和数据反馈及采集系统进行认知并收集数据,形成物理实体安全壳系统的认知数据库,作为数字映射体的数据输入来源;数字映射体通过各计算模块进行模拟计算,向各相关方进行信息传输,畅通各相关方信息获取渠道及打通各相关方之间的信息交换渠道,从而能够更好地提高核电厂应对事故的能力,同时提升核电安全性。

Description

基于数字孪生技术的安全壳孪生系统及其建造方法
相关申请的交叉引用
本申请要求于2022年3月8日提交的中国发明专利申请No.202210226937.5的优先权,该中国专利申请的全部内容在此以引用方式并入本文中。
技术领域
本公开属于核工程技术,具体涉及一种基于数字孪生技术的安全壳孪生系统及其建造方法。
背景技术
核能发电是一种清洁高效的能源利用方式,然而由于涉核特殊性,其安全性一直成为监管部门和公众关注的焦点。因此在核电厂设计中,以实质性消除大规模放射性物质释放为设计目标。同时,采用了纵深防御的设计思想,如对放射性核燃料的阻隔,可设置三道物理屏障:其一,燃料包壳;其二,与核燃料直接接触的冷却水单独设置回路,即一回路压力边界;其三,可承受一定事故压力和温度的安全壳。安全壳作为最后一道物理边界,对于保证核电领域的核安全起到至关重要的作用。
以往的核事故的实际经验教训验证了安全壳的重要意义。目前第三代和第四代核电站设计中,通过设置双层或多层安全壳、设置冷却水箱和喷淋系统、设置超压过滤排放保护系统等,将安全壳的功能进一步强化。不但具有应对传统的高温高压事故工况的功能,还具备防护外部飞机撞击、龙卷风及飞射物撞击、防护内部氢爆、便于导出内部事故高温、高压等先进功能,已经演化为具有强大功能的安全壳系统。
然而,目前的安全壳系统的设计和施工以及交付运营,是基于传统的工业体系和设计思想。对于设计方、施工方、运行及维护维修方(或称为运营方)、核监管部门、应急及救灾方、公众方等各个相关方,其对于这道把守放射性物质释放的最后一道物理屏障的实时状态并无通畅和高效的信息交换渠道。对于功能强大但日渐复杂的安全壳系统,各自也存在一些问题。
对于设计方而言,安全壳重要功能为承受内部压力,多采用预应力钢筋混凝土结构并内衬一层钢覆面,传统方法为在施工完毕运营之前进行打压试验, 验证其承压能力。但运行后,随着预应力钢筋的松弛、材料的劣化,安全壳的实际整体承压能力的实时监测难以实现,需要等到数年后大修或专门检测时才能知晓;预应力混凝土安全壳的整体变形、混凝土预应力水平是否与设计计算一致,也难以实时监控,无法反馈并进行设计改进。目前的设计中,虽在安全壳内设置了部分位移和应力监测部件,但基本是被动式的,即需要定期派出测量人员,采用附加的测量设备进行数据收集,无法主动发送;对于施工方而言,安全壳系统在尽量紧凑的设计理念下,钢筋密集,球壳构型复杂,内部设置多种设备埋件,后期需要张拉预应力钢束,造成施工工序复杂和难度增大,且穹顶吊装、预应力筋张拉等施工力学演算复杂,影响施工工期和施工安全。对于运营及维护维修方而言,虽能采用传统的控制方式对安全壳系统中的喷淋、过滤等能动系统进行控制,如在事故高压时进行水的喷淋降温降压,在内部超压时开启过滤排放系统降低压力,但核心的预应力钢筋混凝土壳体的整体力学和老化状态是无法获得的,无法以预应力钢筋混凝土壳体的实际状态作为操作控制的准则,也无法预判哪个部位和环节即将到达极限状态或即将开裂或失效。运营方对于安全壳系统的老化状态和实际剩余寿命,也只能依靠巡检观察和定期检修等方式进行粗略的评估。而且在运行状态下,安全壳内一些区域由于高温和辐射是不可达的,也可能造成隐患不能及时发现。对于核监管部门而言,其获得信息多采用接受上报的方式,无法了解实时状态。对于应急及救灾方而言,如果真实发生飞机撞击、外部恐袭,飓风等设计预设应对的极端情形,由于设计和运营方也无法提供实时的钢筋混凝土壳体整体上的力学状态、损伤情况等,所以可能耗费宝贵的应急或救援时间,也可能造成应急方案针对性不强。放射性物质是否已从安全壳中散逸出来是判断核事故是否影响到场外、甚至是更大范围的关键。由此可见,安全壳作为放射性物质包容的最后一道边界,其结构实时状态及未来预测,是确定应急是否升级的重要判断指标和依据。数字映射体的相关信息,可接入应急相关方,并为其提供重要决策依据。对于公众而言,能实时了解安全壳这一防止放射性外泄的屏障的实时信息,显然对于消除疑虑、推进核科普具有积极意义。
公开内容
本公开的目的是针对现有技术中存在的问题,提供一种基于数字孪生技术的安全壳孪生系统及其建造方法,该安全壳孪生系统及其建造方法能够畅通 各相关方信息获取渠道并打通各相关方之间的信息交换渠道,更好地提高核电厂应对事故的能力,从而提升核电安全性。
本公开提供一种基于数字孪生技术的安全壳孪生系统,所述安全壳孪生系统包括物理实体安全壳系统以及与所述物理实体安全壳系统相对应的数字映射体,所述数字映射体包括:
虚拟现实模拟模块,构造成汇总各专业的三维几何信息,模拟展示实际行走于物理实体安全壳系统中的视觉效果,并能够分层次、分部分、分建造阶段地展示视觉效果;
多物理场耦合计算模块,构造成向设计方、施工方、运行及维护维修方实时地提供物理实体安全壳整体的力学、热力学状态和物理性能;
耐久性及寿命预测计算模块,构造成获得物理实体安全壳系统的老化状态和剩余预期寿命,提示检修和需要关注的重点部位;
机器学习预测计算模块,构造成根据积累的数据进行自主学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态变化,并及时传递给反馈控制及预警模块;
所述反馈控制及预警模块,构造成在各计算模块计算预测或发现异常后实时地向设计方、施工方、运行及维护维修方反馈控制指令,并在异常达到预定程度后及时预警。
在本公开的安全壳孪生系统中,所述数字映射体的数据来源为所述物理实体安全壳系统的认知数据库,所述认知数据库包括:空间几何信息认知数据、材料特性认知数据,力学热力学状态认知数据以及耐久性老化状态认知数据。
在本公开的安全壳孪生系统中,所述认知数据库中的数据依靠传感器系统和数据反馈与采集系统进行采集。
在本公开的安全壳孪生系统中,所述传感器系统中对力学、热力学物理状态的探测采用的传感器包括:应变传感器、加速度传感器、振动传感器、位移计、GPS位移监测仪、连通管传感器、激光图像监测仪、倾角仪、测斜管、温度传感器;对于重要的预应力钢索的应力的监测采用压力表、压力传感器、频谱式传感器、磁通量传感器、光纤光栅式传 感器;对于裂缝的监测采用导电涂料、分布式光纤、超声波、图像方式;对于老化和腐蚀的监测,采用阳极梯、碳化测试仪、电学监测方式。
在本公开的安全壳孪生系统中,所述物理实体安全壳系统通过所述认知数据库传递信息给所述数字映射体,所述数字映射体通过各计算模块的演算将实时状态数据通知运行及维护维修方,由运行及维护维修方确认后在所述物理实体安全壳系统中执行操作。
在本公开的安全壳孪生系统中,数字映射体向各相关方的信息传输,根据不同特点设置不同的方式,对于设计方、运营方,采用铺设光纤光缆数据通道的专设有线通道方式;对于核监管方、公众,采用互联网、传统移动通讯共有无线方式,并开发对应的个人电脑、手机客户端;对于施工方、维修方、应急救灾方,采用开发个人手持终端,无线与有线相结合的方式。
在本公开的安全壳孪生系统中,所述反馈控制及预警模块根据不同的反馈控制类别区分反馈控制方式,所述反馈控制类别包括:
L1:反馈控制可带来主控室主控系统所监测的信号改变,或者可以直接导致堆芯熔融或存储乏燃料失去冷却风险显著上升;
L2:反馈控制无L1规定情形,但有可能导致严重工业事故;
L3:反馈控制无L1和L2规定情形,但有可能导致重大经济损失或场外影响;
L4:反馈控制无L1~L3规定情形,仅控制与核安全无关的能动系统动作;
L5:反馈控制仅操纵采集传感器的动作;
L6:反馈控制仅涉及长期影响;
其中L1~L3类,反馈控制系统通过对具备权限的操纵员、运行人员进行提醒、操作建议指导,下达对人的控制指令,实现间接控制;L4~L6类,可直接控制相关系统动作。
在本公开的安全壳孪生系统中,所述反馈控制及预警模块的预警功能包括对运行及维护维修方进行日常运行中参数异常的预警,以及在严重核事故下对核监管部门、应急及救灾方、公众进行安全壳系统整体状 态预警;所述整体状态预警的判断指标可由下式确定:
Figure PCTCN2022126711-appb-000001
其中,p为安全壳内测得的最大压力;p d为安全壳设计内压;i为安全壳在超过设计内压达到极限承载力并开裂过程中最具代表性的结构参数;i d为所在设计内压下对应的i值;
当W=0~1时,厂内应急,发生事故后仅根据相关法规规范进行检查,基本无需结构修复;
当W=1~1.2时,厂内应急,发生事故后可能需要进行整体打压试验检测和小范围结构修复;
当W=1.2~2时,泄露率可能超出法规规定限制,需要厂外应急,发生事故后除较大规模结构修复外,还可能需要其他补救措施消除厂外放射性影响;
当W>2时,可能出现较大规模的放射性物质释放,应根据相关法律法规向核监管部门及时通报,及时向公众披露相关信息,并及时通知应急及救灾方,及时启动堆芯冷却设计应对措施和预设方案,避免严重事故后果发生。
本公开还提供一种建造基于数字孪生技术的所述安全壳孪生系统的方法,所述方法包括:
在计算机或服务器的虚拟空间内,构建一个与物理实体安全壳系统相对应的数字映射体;
通过在物理实体安全壳中布设的传感器系统和数据反馈及采集系统进行认知并收集数据,形成物理实体安全壳系统的认知数据库,作为所述数字映射体的数据输入来源;
数字映射体通过各计算模块进行模拟计算,通过无线或有线的传输方式向设计方、施工方、运行及维护维修方、核监管方、应急救灾方、公众传递信息。
在本公开的建造安全壳孪生系统的方法中,设计方从所述数字映射体的功能需求出发,设计数字映射体的模块组成,从各模块的需求数据反推传感器系统和数据反馈及采集系统的设置。
在本公开的建造安全壳孪生系统的方法中,在物理实体安全壳构建完成前,根据设计图纸和施工方的数据反馈搭建数字映射体,具备部分功能;待物理实体安全壳构建完成后,传感器系统开始工作输出数据,数据反馈及采集系统开始搜集各方产生的数据,对物理实体安全壳系统的认知数据库逐渐补充完善,数字映射体的各计算模块获取充足的数据开始工作。
在本公开的建造安全壳孪生系统的方法中,待认知数据库的数据积累到一定程度后,数字映射体的机器学习预测计算模块能够获取充足数据进行学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态变化,及时传递给反馈控制及预警模块进行反馈控制和预警。
本公开的有益效果如下:本公开提供的基于数字孪生技术的安全壳孪生系统及其建造方法将物理实体安全壳在虚拟数字化世界进行映射,构建而成的数字映射体具有系统集成性、多物理场、多尺度等特点。本公开通过对物理实体安全壳准确的认知,实现数字映射体对物理实体安全壳准确的映射,采用在物理实体安全壳系统中布设的传感器系统,设计数据反馈及采集系统,实现更深入的认知,突破了传统认知方式,具有整体性、系统性、跨物理场、跨尺度等特点。本公开的数字映射体依托计算机、大型服务器、数字中心或网络分布式服务器等,向各相关方进行信息传输,畅通各相关方信息获取渠道及打通各相关方之间的信息交换渠道,从而能够更好地提高核电厂应对事故的能力,从而提升核电安全性。
附图说明
图1为本公开的具体实施例中的基于数字孪生技术的安全壳孪生系统及其建造方法的技术方案的示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
第一实施例
本公开提供一种基于数字孪生技术的安全壳孪生系统,包括物理实体安全壳系统以及与物理实体安全壳系统相对应的数字映射体,其核心为物理实体安全壳系统的数字映射体,数字映射体具有模块化组成、可扩展、可分期、逐步搭建、跨物理场、整体集成性等重要特征。
数字映射体的数据输入来源于对物理实体安全壳系统的认知数据库,该认知数据库依赖于在物理实体安全壳系统中布设的传感器系统和数据反馈及采集系统进行认知并收集数据。
在计算机或服务器的虚拟空间内,构建一个与物理实体安全壳系统相对应的数字化安全壳系统,也可称为物理实体安全壳系统的数字映射体。除了三维可视化特点外,数字映射体具备多种功能,可通过其可扩展模块实现。
数字孪生是采用信息技术对物理实体的组成、特征、功能和性能进行数字化定义和建模的过程。数字孪生体是指在计算机虚拟空间存在的与物理实体完全等价的信息模型,可以基于数字孪生体对物理实体进行仿真分析和优化。因此,本文中所提到的数字映射体在含义上等同于数字孪生体。本公开中的数字映射体与物理实体安全壳系统相对应是指二者之间的关系为基于数值模拟和仿真的等价关系。
如图1所示,本实施例中的数字映射体1包括:
虚拟现实模拟模块2,用于汇总各专业的三维几何信息,模拟展示实际行走于物理实体安全壳系统中的视觉效果,并能够分层次、分部分、分建造阶段的展示视觉效果。该虚拟现实模拟模块主要以BIM(建筑信息模型,Building Information Modeling)技术和相关软件作为基础,如核电行业管道、设备三维综合、碰撞检查常用的软件,建筑行业通用的软件等。各专业图纸,现场建造修改文件作为其初始信息输入。该初步的BIM模型可实现在本地服务器显示端上的三维漫游、碰撞检查等功能。与传统BIM模型不同的是,其依托数据反馈及采集系统,具备不断自我进化与物理实体安全壳系统不断接近对齐的功能。在BIM模型的基础上,采用增强现实、虚拟现实开发工具、开发引擎,进行对VR眼镜、VR头盔等虚拟现实硬件需求模型的开发。VR设备除可与本地服务器直接连接进行观察外,主要可提供各施工方、运行及维护维修方进行移动场景的使用,还可提供给核监管部门、应急及救灾方、公众使用。由于数据传输量 较大,移动场景下的VR设备不与该虚拟现实模拟模块所在主服务器直接无线传输,而通过有线连接的便携移动服务器与主服务器交换数据。该虚拟现实模拟模块是其他模块的基础和信息汇集的中心,如运行维护维修方,可佩带VR设备现场“透视”混凝土内部钢筋分布,或传感器埋设位置,判断确认耐久性预警涉及的钢筋锈蚀部位。
多物理场耦合计算模块3,用于向设计方、施工方、运行及维护维修方实时提供安全壳实体整体的力学、热力学状态和物理性能。该多物理场耦合计算模块主要依托具备较强运算能力的本地或云端通用有限元计算软件实现,也可将行业内较为特殊的安全壳内热工水力计算软件纳入其中。根据不同的计算场景和需求,如安全壳内预应力筋的应力、混凝土应力、安全壳整体位移、事故下壳内空间温度场、氢气扩散分布等问题,对各软件进行调用。服务器上应已具备根据各几何、材料等综合信息建立完善的有限元模型。出于减少反馈时间和节省实时计算资源的考虑,一些典型场景如打压试验、日常运行、设计考虑事故下,壳内温度、压力分布,尤其是已埋设传感器的位置的对应物理量,可进行预先计算将大量可与传感器采集直接对标的数据存储于数据库中。线弹性状态下的特定物理量可直接用已存储数据进行不同荷载工况下的组合、插值获得。非线性状态下的计算可充分利用预存结果,从线弹性状态末段接续计算,减少结果反馈时间。
耐久性及寿命预测计算模块4,用于获得安全壳系统的老化状态和剩余预期寿命,提示检修和需要关注的重点部位。安全壳耐久性损伤的主要因素包括混凝土碳化、长期受盐雾、内部高温循环作用的混凝土老化开裂等;混凝土内普通钢筋的锈蚀;壳体内壁钢衬里的锈蚀、辐射作用下的力学性能退化及密封性下降;预应力系统功能退化及导致的混凝土内部预压力的下降等。由于寿命预测依赖各指标的综合判断,且根据结构修补、大修构件替换等实际维修状态不同可获得寿命延长效果。所以该耐久性及寿命预测计算模块相较其他模块更为依赖数据反馈制度。除了对钢筋腐蚀电位、裂缝图像观测等传感器传输数据进行记录分析外,定期的巡检裂缝记录、泄漏率测试、修补措施后的状态都应反馈到该耐久性及寿命预测计算模块中,以实时反映安全壳的真实耐久性状态。
机器学习预测计算模块5,用于根据积累的数据进行自主学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态变化,并及时传递给反馈控制及预警模块。传统的结构响应预测,如采用有限元模型计算 等,所得到结果无法实时验证。只能进行缩比模型试验或与抽象问题的理论解进行对比。而数字映射体依托传感器系统在物理实体结构上实时采集的结构响应数据,为结构有限元计算结果的实时验证与误差分析提供了基础数据输入。通过机器学习领域的相关算法,如人工神经网络方法,建立计算模型的输入和输出的关联映射关系,实现对计算模型中相关参数取值对误差影响的分析,对各工况下参数选择进行迭代修正,从而确定最优计算模型。此外,结构裂缝分布不均匀,形态不规律,大多依赖传统的人力统计与分析,利用机器学习领域擅长的图像识别与分析技术,可以基于视觉技术实现对表面裂缝的定量统计分析,甚至预测裂缝的进一步发展趋势。
反馈控制及预警模块6,用于在各计算模块计算预测或发现异常后,及时预警。由数字映射体1而非操纵员或运行及维护维修人员对物理实体安全壳系统中的能动部分进行反馈控制,可能带来一系列后果。因此,可以对反馈控制类别进行定义,根据不同类别区分反馈控制方式(将在下文中描述)。
对物理实体安全壳系统的认知数据库是数字映射体的数据输入来源,其包括:空间几何信息认知数据,主要用于可视化模型的搭建与虚拟现实模拟模块的模拟;材料特性认知数据,主要用于力学、热力学等计算模块的输入;力学热力学状态认知数据,主要用于计算模块的输入和校正;耐久性老化状态认知数据,主要用于耐久性及寿命预测计算模块的输入。
这些认知数据的采集,除了依赖传感器系统外,还依赖于数据反馈及采集系统,尤其是在物理实体还未建成的设计、施工阶段。如传统的体现安全壳系统几何特性的设计图纸和采用材料的特性、施工过程中进行的修改和误差、运营巡检中发现的不符之处、维修中进行的改动等等。这些设计、建造、运营、维修中已经预设好或者实际实施的对实体的改动,没有必要再通过传感器系统进行采集,或只需要通过传感器系统部分验证和校正。因此应设计数据反馈制度,当各相关方在进行对物理实体安全壳系统进行建造和改动行为时,通过数据反馈及采集系统,将其反映到认知数据库,并最终输入到数字映射体中。最终目的是始终保持数字映射体对物理实体的准确反映。
传感器系统则主要在建成后承担数据采集功能,传感器系统不应是 传统的较为孤立、单一的,而应该设计为能反映物理实体安全壳的整体力学、热力学、老化状态的,有针对性和协同工作的系统体系。传感器系统的设置与数字映射体的模块组成密切相关,且设置位置、数量等经过优化,如根据设计计算,布设在承压能力的薄弱环节、或温度易集中的点位,具备体现力学、热力学、耐久性数据采集的功能。
对力学、热力学等物理状态的探测可采用的传感器有:应变传感器(电阻式、振弦式、光栅光纤式等)、加速度传感器(压电式、压阻式、电容式、力平衡式等)、振动传感器、位移计、GPS位移监测、连通管传感器、激光图像监测、倾角仪、测斜管、温度传感器(光纤光栅式、数字式、热电偶式、热敏式、热成像式等)。对于重要的预应力钢索的应力的监测可采用压力表、压力传感器、频谱式传感器、磁通量传感器、光纤光栅式传感器等等。对于裂缝的监测可采用导电涂料、分布式光纤、超声波、图像等方式。对于老化和腐蚀的监测,可采用阳极梯、碳化测试仪、电学监测等方式。
所采集到的数据存储于对物理实体安全壳系统系统的认知数据库,并输入到物理实体安全壳系统的数字映射体中,作为数字映射体的各个计算模块的输入数据。但几何空间、力学、热力学、耐久性等数据之间并非相互孤立的。如利用耐久性数据对材料的力学性质进行评估,体现于力学计算中;又如位移等变形积累到一定程度,也可能对几何模型造成影响。正是由于彼此关联的大量数据汇总到一起,才使得从整体上实时了解物理实体安全壳系统的力学和耐久性状态成为可能。
大量实时的、跨物理场、跨尺度数据汇总到一起,也为发现以往不可能获知的数据提供了可能。如在发生台风、偶然撞击等事件时,结构整体响应数据会被详细记录,有助于及时发现隐患,并对应排查。如预应力水平下降与裂缝产生后,可从整体力学和材料劣化的角度寻找原因。而且对于设计方,往往是研发一个核电站型号、多厂址推广建设的。这样更多数据的集中汇总,也为通过机器学习等人工智能方法及时发现隐患、提前预测提供了可能。如经常导致设计修改的错漏、施工困难和风险环节、壳体某部位混凝土集中出现的裂缝、位移的增加、一些恶劣天 气或运行工况的较大结构响应、维修的位置、项目和频次、可作为机器学习的输入,可提前预测并提出预警。
数字映射体的虚拟现实模拟模块2可在设计图纸产生后,安全壳实体还未建成之前就被搭建出来。核电站设计非常复杂,需要多工种协同配合完成。虽有传统的多工种协同机制,但在施工环节,还是经常发现图纸中部件交叠碰撞,只能互相协调进行图纸修改。而且如土建结构专业的设计图纸,基于二维平面图纸语言表达三维实物,往往无法发现实际设计中的不合理之处。因此这个模块可汇总各专业的三维几何信息,除了模拟展示实际行走于安全壳系统中的视觉效果之外,还可以分层次、分部分、分建造阶段的展示视觉效果。从最直观的角度,帮助设计和施工人员理解物理实体,增进设计施工质量。对核监管部门,可直观理解设计意图,增进沟通。在应急救灾环节,也可帮助非专业设计的人员迅速了解环境状态。建成后也可通过开放部分信息的方式提供给公众,增进核科普,消除大众恐惧心理。
数字映射体的反馈控制及预警模块6可在各计算模块计算预测或发现异常后实时地向设计方、施工方、运行及维护维修方反馈控制指令,并在异常达到预定程度后及时预警。物理实体安全壳系统通过认知数据库传递信息给数字映射体,然而物理实体安全壳系统和数字映射体的信息交换并非是单向的。物理实体安全壳是具有能动可操作的辅助系统的,如喷淋、超压排气装置,内部也设置了诸多的信息采集传感器。但对于涉及核安全的控制,数字映射体的反馈控制,通过运行和维护维修方进行确认后执行或代为执行。如发生事故后,压力即将超过承压极限,需要开启超压防护等。相比较于传统的监测控制方式,除了能从整体上获得物理实体安全壳的力学状态外,还具有预测功能。因传热和压力增加是需要时间的,尤其是混凝土内部的温度传递时间需要几小时甚至几天以上。由于具有跨物理场计算功能,数字映射体可根据实时监测数据提前进行演算,告知使用者在几个小时或几天后物理实体安全壳可能的状态。或者在采取喷淋、开启超压过滤排放系统后,告知使用者物理实体安全壳可能的状态。对于不涉及核安全的控制,尤其是对传感器的控制, 可由数字映射体单独控制并处于运营者监控之下。如其在发生事故时或者根据机器学习预测某处发生开裂或预应力下降的可能性增大,则可控制传感器增加数据采集密度、调整光学、激光、红外传感器等对准关键位置。同时,通知运营维修人员加密巡检频次、重点关注部位等。
数字映射体向各相关方的信息传输,可根据不同的需求特点设置不同的方式。数字映射体的实体依托为高性能服务器或者数据中心、网络分布式服务器等。如设计方、运营方物理距离较近,且传输信息为日常的、大量的数据。可采用传统的铺设光纤光缆等数据通道的专设有线通道方式。对于核监管方、公众等,接收信息密度不高,可采用互联网、传统移动通讯等共有无线方式,并可开发对应的个人电脑、手机客户端。对于施工方、运行及维护维修方、应急救灾方等不便在固定位置使用的,可采用开发个人手持终端,无线与有线相结合的方式,获取信息。传统移动无线传输方式用于大量数据传输容易受到带宽有线、数据丢失率高、数据延迟长等限制,新一代移动通讯技术的推广,为数据量大、低延迟的无线传输提供了更大的前景,可更有针对性地应用于远距离的、移动的信息传输渠道。
在本实施例中,反馈控制及预警模块6根据不同的反馈控制类别区分反馈控制方式,反馈控制类别包括:
L1:反馈控制可带来主控室主控系统所监测的信号改变,或者可以直接导致堆芯熔融或存储乏燃料失去冷却风险显著上升;
L2:反馈控制无上述规定情形,但有可能导致严重工业事故,如存储的可燃气体容器的阀门开闭;
L3:反馈控制无上述规定情形,但有可能导致重大经济损失或场外影响,如向壳内紧急注入冷却水、向周围公众、监管部门发送紧急疏散信号;
L4:反馈控制无上述规定情形,仅控制与核安全无关的能动系统动作;
L5:反馈控制仅操纵采集传感器的动作,如加密所预测危险区域的信号采集密度,调动图像采集设备对准预测关注部位等;
L6:反馈控制仅涉及长期影响,如加大金属腐蚀保护电流等。
其中L1~L3类,反馈控制系统通过对具备权限的操纵员、运行人员进行提醒、操作建议指导,下达对人的控制指令,实现间接控制;L4~L6类,可直接控制相关系统动作。
在本实施例中,反馈控制及预警模块6的预警功能包括对运行及维护维修方进行日常运行中参数异常的预警,以及在严重核事故下对核监管部门、应急及救灾方、公众进行安全壳系统整体状态预警;所述整体状态预警的判断指标可由下式确定:
Figure PCTCN2022126711-appb-000002
其中,p为安全壳内测得的最大压力;p d为安全壳设计内压;i为安全壳在超过设计内压达到极限承载力并开裂过程中最具代表性的结构参数,例如内部钢衬里设备闸门附近危险部位的拉应力值;i d为所在设计内压下对应的i值。
当W=0~1时,厂内应急,发生事故后仅根据相关法规规范进行检查,基本无需结构修复;
当W=1~1.2时,厂内应急,发生事故后可能需要进行整体打压试验检测和小范围结构修复;
当W=1.2~2时,泄露率可能超出法规规定限制,需要厂外应急,发生事故后除较大规模结构修复外,还可能需要其他补救措施消除厂外放射性影响;
当W>2时,可能出现较大规模的放射性物质释放,应根据相关法律法规向核监管部门及时通报,向公众披露相关信息,并及时通知应急及救灾方,及时启动堆芯冷却设计应对措施和预设方案,避免严重事故后果发生。
在本实施例中,可以根据不同的风险等级或事故等级设置与不同的风险等级或事故等级的量化数值范围对应的安全阈值和安全裕度(例如,可取1.1、1.2……1.5等),并以安全阈值和安全裕度的乘积来表示容许安全壳系统达到的安全程度。
第二实施例
下面,对本公开的基于数字孪生技术的安全壳孪生系统的建造方法进行具体描述。
在物理实体安全壳系统的设计之初,设计方即作为数字映射体的总体规划设计方,承担其规划设计功能。数字映射体即实物在虚拟数字化世界的映射,具有系统集成性、多物理场、多尺度等特点。数字映射体的物理实体依托,一般为计算机、大型服务器、数字中心或网络分布式服务器等。要实现对物理实体准确的映射,必须先做到对物理实体的准确认知。这种认知应该是突破传统的,具有整体性、系统性、跨物理场、跨尺度等特点。因此为实现超越传统的认知,承担数字映射体总体规划设计角色的设计方,采用在物理实体安全壳系统中布设的传感器系统,设计数据反馈及采集系统,实现更深入的认知。设计时,设计方除自己外,从施工方、运行及维护维修方、核监管部门、应急及救灾方、公众征集需求功能。然后,从功能需求出发,设计数字映射体的主要模块,从主要模块的需求数据反推传感器和数据反馈、采集系统设置。
施工方承担传统物理实体安全壳系统的搭建角色,在物理实体安全壳系统的数字映射体设计完成后,进一步承担传感器系统的埋设、测试、验收等功能。同时,施工方也是数字映射体的使用者和受益者。
在物理实体安全壳系统建造完成前,即可根据设计图纸和施工方的数据反馈搭建数字映射体,具备部分功能。对于设计方具有各专业协同检查冲突、三维显示辅助设计等功能,对于施工方具有向施工人员展示虚拟施工环境和施工过程、模拟施工力学计算等功能。
待物理实体安全壳系统建造完成后,传感器系统开始工作输出数据,运行和维护维修方等其他部分也都参与进来,数据反馈及采集系统开始搜集各相关方产生的数据。对物理实体安全壳系统的认知数据库逐渐补充完善。数字映射体的各计算模块可有充足的数据开始工作。物理实体安全壳的整体状态,如实时预应力水平和分布、整体承压极限、整体温度分布、整体变形、遭遇台风或外部撞击事件时的振动、损伤、整体老化状态、剩余寿命等等,能够实时获得。待数据积累到一定程度后,机 器学习预测计算模块5有充足数据可以进行学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态变化,及时传递给反馈控制及预警模块6进行反馈控制和预警。
数字映射体通过无线或有线的传输方式向各相关方传递信息。对于设计方和施工方而言,获得实测整体数据,便于验证设计和施工指标,进行设计改进和优化。由于具有了数字映射体,并积累了丰富的数据,设计方对于新型号的研发和新功能的改进,可在数字映射体上进行初步试验和设计验证。对于运行和维护维修方(运营方)而言,实时获得物理实体安全壳系统的整体状态,若进行了喷淋、排压等操作,则可及时获得安全壳实体的反馈数据,并能得到一段时间后的预测结果。能够获得物理实体安全壳系统的老化状态和剩余预期寿命,提示检修和需要关注的重点部位。在紧急状态下,运营方得到数字映射体发出的警报。因数字映射体包含机器学习预测计算模块和反馈控制及预警模块,根据设计其自动加密了传感器的采集频率并将探测集中于关键部位,因此运营方获得了更多的关键数据。对于核监管部门而言,在运行、检修和事故状态下,都可通过数字映射体及时获取数据,更好行使监管角色。对于应急和救灾方而言,在灾害发生的第一时间获得预警,便于及时组织应对救援。且数字映射体所依赖的传感器是系统性、全局性的,个别或部分传感器的损失不至于导致信息传递完全被阻隔,仍可进行损伤的适时评估。而且,虚拟现实模拟功能可使应急救援方提前演练,减少损失。安全壳的结构状态与预测,其对放射性物质的包容功能是否完好,及未来发展趋势,是应急方案是否升级的重要决策依据。对于公众而言,数字映射体在过滤掉敏感信息后,向公众以科普、及时发布的方式提供信息,有助于消除谣言和恐惧心理。
对于本领域技术人员而言,显然本发明的结构不限于上述示范性实施例的细节,而且在不背离本发明的精神或主旨的情况下,能够以其他的具体形式实现本公开。因此,无论从哪一点来看,均应将实施例看作是示范性的而非限制性的,本公开的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变 化囊括在本公开的范围内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (12)

  1. 一种基于数字孪生技术的安全壳孪生系统,所述安全壳孪生系统包括物理实体安全壳系统以及与所述物理实体安全壳系统相对应的数字映射体,所述数字映射体包括:
    虚拟现实模拟模块,构造成汇总各专业的三维几何信息,模拟展示实际行走于所述物理实体安全壳系统中的视觉效果,并能够分层次、分部分、分建造阶段地展示视觉效果;
    多物理场耦合计算模块,构造成向设计方、施工方、运行及维护维修方实时地提供所述物理实体安全壳整体的力学、热力学状态和物理性能;
    耐久性及寿命预测计算模块,构造成获得所述物理实体安全壳系统的老化状态和剩余预期寿命,提示检修和需要关注的重点部位;
    机器学习预测计算模块,构造成根据积累的数据进行自主学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态变化,并及时传递给反馈控制及预警模块;
    所述反馈控制及预警模块,构造成在各计算模块计算预测或发现异常后实时地向设计方、施工方、运行及维护维修方反馈控制指令,并在异常达到预定程度后及时预警。
  2. 如权利要求1所述的基于数字孪生技术的安全壳孪生系统,其中,所述数字映射体的数据来源为所述物理实体安全壳系统的认知数据库,所述认知数据库包括:空间几何信息认知数据、材料特性认知数据,力学热力学状态认知数据以及耐久性老化状态认知数据。
  3. 如权利要求2所述的基于数字孪生技术的安全壳孪生系统,其中,所述认知数据库中的数据依靠传感器系统和数据反馈与采集系统进行采集。
  4. 如权利要求3所述的基于数字孪生技术的安全壳孪生系统,其中,所述传感器系统中对力学、热力学物理状态的探测采用的传感器包括:应变传感器、加速度传感器、振动传感器、位移计、GPS位移监测仪、连通管传感器、激光图像监测仪、倾角仪、测斜管、温度传感器;对于重要的预应力钢索的应力的监测采用压力表、压力传感器、频谱式传感器、磁通量传感器、光纤光栅式传感器;对于裂缝的监测采用导电涂料、分布式光纤、超声波、图像方式;对于老化和腐蚀的监测,采用阳极梯、碳化测试仪、电学监测方式。
  5. 如权利要求2所述的基于数字孪生技术的安全壳孪生系统,其中,所述物理实体安全壳系统通过所述认知数据库传递信息给所述数字映射体,所述数字映射体通过各计算模块的演算将实时状态数据通知运行及维护维修方,由运行及维护维修方确认后在所述物理实体安全壳系统中执行操作。
  6. 如权利要求1所述的基于数字孪生技术的安全壳孪生系统,其中,所述数字映射体向各相关方的信息传输,根据不同特点设置不同的方式,对于设计方、运营方,采用铺设光纤光缆数据通道的专设有线通道方式;对于核监管方、公众,采用互联网、传统移动通讯共有无线方式,并开发对应的个人电脑、手机客户端;对于施工方、维修方、应急救灾方,采用开发个人手持终端,无线与有线相结合的方式。
  7. 如权利要求1所述的基于数字孪生技术的安全壳孪生系统,其中,所述反馈控制及预警模块根据不同的反馈控制类别区分反馈控制方式,所述反馈控制类别包括:
    L1:反馈控制可带来主控室主控系统所监测的信号改变,或者可以直接导致堆芯熔融或存储乏燃料失去冷却风险显著上升;
    L2:反馈控制无L1规定情形,但有可能导致严重工业事故;
    L3:反馈控制无L1和L2规定情形,但有可能导致重大经济损失或 场外影响;
    L4:反馈控制无L1~L3规定情形,仅控制与核安全无关的能动系统动作;
    L5:反馈控制仅操纵采集传感器的动作;
    L6:反馈控制仅涉及长期影响;
    其中L1~L3类,反馈控制系统通过对具备权限的操纵员、运行人员进行提醒、操作建议指导,下达对人的控制指令,实现间接控制;L4~L6类,可直接控制相关系统动作。
  8. 如权利要求1或7所述的基于数字孪生技术的安全壳孪生系统,其中,所述反馈控制及预警模块的预警功能包括对运行及维护维修方进行日常运行中参数异常的预警,以及在严重核事故下对核监管部门、应急及救灾方、公众进行安全壳系统整体状态预警;所述整体状态预警的判断指标可由下式确定:
    Figure PCTCN2022126711-appb-100001
    其中,p为安全壳内测得的最大压力;p d为安全壳设计内压;i为安全壳在超过设计内压达到极限承载力并开裂过程中最具代表性的结构参数;i d为所在设计内压下对应的i值;
    当W=0~1时,厂内应急,发生事故后仅根据相关法规规范进行检查,基本无需结构修复;
    当W=1~1.2时,厂内应急,发生事故后可能需要进行整体打压试验检测和小范围结构修复;
    当W=1.2~2时,泄露率可能超出法规规定限制,需要厂外应急,发生事故后除较大规模结构修复外,还可能需要其他补救措施消除厂外放射性影响;
    当W>2时,可能出现较大规模的放射性物质释放,应根据相关法律法规向核监管部门及时通报,及时向公众披露相关信息,并及时通知应急及救灾方,及时启动堆芯冷却设计应对措施和预设方案,避免严重事故后果发生。
  9. 一种建造如权利要求1-8中任意一项所述的基于数字孪生技术的安全壳孪生系统的方法,所述方法包括:
    在计算机或服务器的虚拟空间内,构建一个与所述物理实体安全壳系统相对应的所述数字映射体;
    通过在所述物理实体安全壳中布设的传感器系统和数据反馈及采集系统进行认知并收集数据,形成所述物理实体安全壳系统的认知数据库,作为所述数字映射体的数据输入来源;
    所述数字映射体通过各计算模块进行模拟计算,通过无线或有线的传输方式向设计方、施工方、运行及维护维修方、核监管方、应急救灾方、公众传递信息。
  10. 如权利要求9所述的建造基于数字孪生技术的安全壳孪生系统的方法,其中,设计方从所述数字映射体的功能需求出发,设计所述数字映射体的模块组成,从各模块的需求数据反推所述传感器系统和所述数据反馈及采集系统的设置。
  11. 如权利要求9所述的建造基于数字孪生技术的安全壳孪生系统的方法,其中,在所述物理实体安全壳构建完成前,根据设计图纸和施工方的数据反馈搭建所述数字映射体,具备部分功能;待所述物理实体安全壳构建完成后,所述传感器系统开始工作输出数据,所述数据反馈及采集系统开始搜集各方产生的数据,对所述物理实体安全壳系统的所述认知数据库逐渐补充完善,所述数字映射体的各计算模块获取充足的数据开始工作。
  12. 如权利要求10所述的建造基于数字孪生技术的安全壳孪生系统的方法,其中,待所述认知数据库的数据积累到一定程度后,所述数字映射体的所述机器学习预测计算模块能够获取充足数据进行学习,建立计算模型的输入和输出之间的关联映射关系,预测所关注的指标的状态 变化,及时传递给反馈控制及预警模块进行反馈控制和预警。
PCT/CN2022/126711 2022-03-08 2022-10-21 基于数字孪生技术的安全壳孪生系统及其建造方法 WO2023168947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210226937.5A CN114781241A (zh) 2022-03-08 2022-03-08 一种基于数字孪生技术的安全壳系统及设计方法
CN202210226937.5 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023168947A1 true WO2023168947A1 (zh) 2023-09-14

Family

ID=82422725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126711 WO2023168947A1 (zh) 2022-03-08 2022-10-21 基于数字孪生技术的安全壳孪生系统及其建造方法

Country Status (3)

Country Link
CN (1) CN114781241A (zh)
AR (1) AR128649A1 (zh)
WO (1) WO2023168947A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117131712A (zh) * 2023-10-26 2023-11-28 南开大学 一种虚实结合的应急救护模拟系统和方法
CN117252099A (zh) * 2023-09-21 2023-12-19 中山大学 一种基于数字孪生的损伤监测方法、系统、设备和介质
CN117421940A (zh) * 2023-12-19 2024-01-19 山东交通学院 数字孪生轻量化模型与物理实体之间全局映射方法及装置
CN117540518A (zh) * 2023-12-06 2024-02-09 北京城建勘测设计研究院有限责任公司 基于三维实景虚实融合的地下管线巡检装备及方法
CN117649166A (zh) * 2024-01-30 2024-03-05 安徽燧人物联网科技有限公司 一种基于大数据的物流信息管理方法及系统
CN117786761A (zh) * 2023-12-18 2024-03-29 西安电子科技大学广州研究院 一种数字孪生系统集成及其状态一致性实现方法和装置
CN118171475A (zh) * 2024-03-26 2024-06-11 常州润来科技有限公司 一种铜管内螺纹胀缩率控制方法及系统
CN118264570A (zh) * 2024-03-26 2024-06-28 广东云杰通信有限公司 一种基于数字孪生和云端控制的数据推送方法及系统
CN118332851A (zh) * 2024-04-08 2024-07-12 浙江工业大学 基于机器视觉和深度学习的碳纤维全缠绕气瓶爆破压力预测方法
CN118410302A (zh) * 2024-06-28 2024-07-30 中核四川环保工程有限责任公司 基于声音识别的核设施设备寿命预测方法和系统
CN118502338A (zh) * 2024-07-22 2024-08-16 山东天元安装集团有限公司 一种楼宇设备智慧管控方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114781241A (zh) * 2022-03-08 2022-07-22 中国核电工程有限公司 一种基于数字孪生技术的安全壳系统及设计方法
CN117131708B (zh) * 2023-10-26 2024-01-16 中核控制系统工程有限公司 核工业dcs设备数字孪生抗震机理模型建模方法及应用
CN118095657B (zh) * 2024-04-23 2024-07-19 国能信控互联技术有限公司 基于设备统一信息模型的数字化业务管理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488629A (zh) * 2019-07-02 2019-11-22 北京航空航天大学 一种基于数字孪生技术的混合动力汽车的管控方法
CN112417619A (zh) * 2020-11-23 2021-02-26 江苏大学 一种基于数字孪生的泵机组优化运行调节系统及方法
US20210109837A1 (en) * 2019-10-09 2021-04-15 International Business Machines Corporation Digital twin workflow simulation
CN113119937A (zh) * 2021-03-31 2021-07-16 南京航空航天大学 基于数字孪生的智能线控制动系统及其预测控制方法
US20220019212A1 (en) * 2020-07-15 2022-01-20 Endurica, LLC System and method for providing digital twin services from multiple digital twin providers
CN114021400A (zh) * 2021-09-23 2022-02-08 中铁第一勘察设计院集团有限公司 基于数字孪生的受电弓监控运维系统
CN114781241A (zh) * 2022-03-08 2022-07-22 中国核电工程有限公司 一种基于数字孪生技术的安全壳系统及设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488629A (zh) * 2019-07-02 2019-11-22 北京航空航天大学 一种基于数字孪生技术的混合动力汽车的管控方法
US20210109837A1 (en) * 2019-10-09 2021-04-15 International Business Machines Corporation Digital twin workflow simulation
US20220019212A1 (en) * 2020-07-15 2022-01-20 Endurica, LLC System and method for providing digital twin services from multiple digital twin providers
CN112417619A (zh) * 2020-11-23 2021-02-26 江苏大学 一种基于数字孪生的泵机组优化运行调节系统及方法
CN113119937A (zh) * 2021-03-31 2021-07-16 南京航空航天大学 基于数字孪生的智能线控制动系统及其预测控制方法
CN114021400A (zh) * 2021-09-23 2022-02-08 中铁第一勘察设计院集团有限公司 基于数字孪生的受电弓监控运维系统
CN114781241A (zh) * 2022-03-08 2022-07-22 中国核电工程有限公司 一种基于数字孪生技术的安全壳系统及设计方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117252099A (zh) * 2023-09-21 2023-12-19 中山大学 一种基于数字孪生的损伤监测方法、系统、设备和介质
CN117131712A (zh) * 2023-10-26 2023-11-28 南开大学 一种虚实结合的应急救护模拟系统和方法
CN117131712B (zh) * 2023-10-26 2024-01-16 南开大学 一种虚实结合的应急救护模拟系统和方法
CN117540518A (zh) * 2023-12-06 2024-02-09 北京城建勘测设计研究院有限责任公司 基于三维实景虚实融合的地下管线巡检装备及方法
CN117786761A (zh) * 2023-12-18 2024-03-29 西安电子科技大学广州研究院 一种数字孪生系统集成及其状态一致性实现方法和装置
CN117421940B (zh) * 2023-12-19 2024-03-19 山东交通学院 数字孪生轻量化模型与物理实体之间全局映射方法及装置
CN117421940A (zh) * 2023-12-19 2024-01-19 山东交通学院 数字孪生轻量化模型与物理实体之间全局映射方法及装置
CN117649166A (zh) * 2024-01-30 2024-03-05 安徽燧人物联网科技有限公司 一种基于大数据的物流信息管理方法及系统
CN117649166B (zh) * 2024-01-30 2024-04-16 安徽燧人物联网科技有限公司 一种基于大数据的物流信息管理方法及系统
CN118171475A (zh) * 2024-03-26 2024-06-11 常州润来科技有限公司 一种铜管内螺纹胀缩率控制方法及系统
CN118264570A (zh) * 2024-03-26 2024-06-28 广东云杰通信有限公司 一种基于数字孪生和云端控制的数据推送方法及系统
CN118332851A (zh) * 2024-04-08 2024-07-12 浙江工业大学 基于机器视觉和深度学习的碳纤维全缠绕气瓶爆破压力预测方法
CN118410302A (zh) * 2024-06-28 2024-07-30 中核四川环保工程有限责任公司 基于声音识别的核设施设备寿命预测方法和系统
CN118502338A (zh) * 2024-07-22 2024-08-16 山东天元安装集团有限公司 一种楼宇设备智慧管控方法及系统

Also Published As

Publication number Publication date
AR128649A1 (es) 2024-05-29
CN114781241A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023168947A1 (zh) 基于数字孪生技术的安全壳孪生系统及其建造方法
Wu et al. Critical review of data-driven decision-making in bridge operation and maintenance
CN109345148A (zh) 天然气管道及场站工艺装置安全隐患识别的智能诊断方法
Aven A semi-quantitative approach to risk analysis, as an alternative to QRAs
CA2477968C (en) Method for assessing the integrity of a structure
US20130190901A1 (en) Method and system for safely managing gas station
Sýkora et al. Bayesian network application for the risk assessment of existing energy production units
US12092269B2 (en) Method for troubleshooting potential safety hazards of compressor in smart gas pipeline network and internet of things system thereof
KR101853480B1 (ko) 해양플랜트 예지보전 시스템
CN118013268B (zh) 一种桥梁支座监测系统设计方法及装置
US20240046009A1 (en) Maximum impact measuring and forecast system for explosions in open steel and/or concrete structures and method thereof
CN117128448A (zh) 一种lng储罐结构智能监测系统
KR102238764B1 (ko) 위해도 평가를 이용한 실시간 사고 예측 시스템 및 그 방법
CN118430088A (zh) 一种基于融合音视频与物联网的电厂线上巡检系统
CN102722617A (zh) 石油石化厂站立体全信息可视化生产运行系统及其控制方法
KR20220017122A (ko) 스마트 가스 안전 제어 서비스 플랫폼 및 방법
CN111553061A (zh) 核电厂台风应急响应及预警装置及其构建方法
Kim et al. Computational platform for probabilistic optimum monitoring planning for effective and efficient service life management
Fang et al. Design and Development of Industrial Safety APPs
Gao et al. A mechanistic framework for the leakage risk reduction of mobile hydrogen refueling stations based on inherent safety concepts
Wang Research on improvement of PSO and CNN in intelligent classification technology of coal mine safety risk
KR20240043926A (ko) 화재폭발 안전수준을 실시간으로 평가하고 원격으로 대응하는 위험성평가 기반의 위험관리 플랫폼
Martinez Luengo Advanced structural health monitoring strategies for condition-based maintenance planning of offshore wind turbine support structures
Arnold Pressure vessel reliability as a function of allowable stress
Maturana et al. Risk Monitors Applied to Offshore Installations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930571

Country of ref document: EP

Kind code of ref document: A1