WO2023168863A1 - 利用熔盐储热实现火电机组黑启动的系统及方法 - Google Patents

利用熔盐储热实现火电机组黑启动的系统及方法 Download PDF

Info

Publication number
WO2023168863A1
WO2023168863A1 PCT/CN2022/102519 CN2022102519W WO2023168863A1 WO 2023168863 A1 WO2023168863 A1 WO 2023168863A1 CN 2022102519 W CN2022102519 W CN 2022102519W WO 2023168863 A1 WO2023168863 A1 WO 2023168863A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
turbine unit
temperature
unit
power
Prior art date
Application number
PCT/CN2022/102519
Other languages
English (en)
French (fr)
Inventor
居文平
马汀山
王伟
常东锋
雒青
张建元
耿如意
王东晔
祁文玉
Original Assignee
西安热工研究院有限公司
西安西热节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热节能技术有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023168863A1 publication Critical patent/WO2023168863A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure belongs to the technical field of thermal power generation, and relates to a system and method for utilizing molten salt heat storage to achieve black start of thermal power units.
  • the purpose of this disclosure is to overcome the shortcomings of the above-mentioned prior art and provide a system and method for utilizing molten salt heat storage to achieve black start of thermal power units.
  • the system and method can assist thermal power units to achieve black start and at the same time can calculate the required The electrical power of the back pressure steam turbine unit, the molten salt consumption of the heat storage system and the power of the diesel generator.
  • the present disclosure provides in a first aspect a system for realizing black start of thermal power units by utilizing molten salt heat storage, which includes a low-temperature tank, a molten salt heater, a high-voltage transformer of a thermal power unit, a thermal power unit, and a molten low-temperature tank.
  • molten salt heat storage which includes a low-temperature tank, a molten salt heater, a high-voltage transformer of a thermal power unit, a thermal power unit, and a molten low-temperature tank.
  • the output end of the thermal power generation unit and the output end of the back pressure steam turbine unit are connected to the busbar.
  • the busbar is connected to the power interface of the molten salt heater through the high-voltage transformer of the thermal power generation unit.
  • the outlet of the molten salt heater passes through the melting low-temperature tank and high-temperature tank.
  • the molten salt pump and the high-temperature molten salt valve are connected to the tube side inlet of the brine heat exchanger, the tube side outlet of the brine heat exchanger is connected to the inlet of the low-temperature tank, and the outlet of the low-temperature tank is connected to the inlet of the molten salt heater.
  • the outlet of the feed water boost pump is connected to the inlet of the back pressure turbine unit through the shell side of the brine heat exchanger and the back pressure turbine unit steam inlet control valve.
  • the output end of the diesel generator is connected to the feed water boost pump, high temperature molten salt pump,
  • the high-temperature molten salt valve is connected to the steam inlet control valve of the back-pressure turbine unit.
  • the present disclosure provides a method of utilizing molten salt heat storage to achieve black start of a thermal power unit, which aspect can be applied to the above system.
  • the method of the present disclosure includes the following steps:
  • the diesel generator When the thermal power generation unit with power P e needs to be started, the diesel generator is started to drive the high-temperature molten salt pump and the high-temperature molten salt valve to drive the high-temperature molten salt into the brine heat exchanger to release heat. At the same time, the diesel generator drives the water supply The boost pump sends the desalted water into the brine heat exchanger to absorb heat to reach the inlet steam pressure and temperature required by the back-pressure turbine unit, and then enters the back-pressure turbine unit to generate electricity;
  • the electrical power of the required back-pressure steam turbine unit, the amount of molten salt used in the heat storage system, and the power of the diesel generator are calculated based on the electrical power P e of the thermal power generation unit.
  • the electrical power required by the back pressure steam turbine unit is:
  • P by is the electric power of the back-pressure steam turbine unit
  • P e is the power of the thermal power generation unit
  • eta e is the ratio of the high variable power required when the thermal power generation unit is started to the unit power.
  • the feed water flow rate of the brine heat exchanger is calculated based on the electrical power of the back pressure turbine unit P by :
  • Q gs is the feed water flow rate of the brine heat exchanger
  • h gq and h pq are the inlet steam enthalpy and exhaust steam enthalpy of the back pressure steam turbine unit
  • eta by is the internal efficiency of the back pressure steam turbine unit
  • p gq is the back pressure steam turbine unit
  • the inlet steam pressure, t gq is the inlet steam temperature of the back-pressure turbine unit, p pq is the exhaust steam pressure of the back-pressure turbine unit, and t pq is the exhaust steam temperature of the back-pressure turbine unit.
  • the power P gs of the feed water boost pump is calculated based on the feed water flow rate Q gs of the brine heat exchanger and the inlet steam pressure p gq of the back-pressure turbine unit.
  • the flow rate Q ry of the molten salt is calculated based on the feed water flow rate Q gs as:
  • C is the specific heat capacity of the molten salt
  • t ry is the temperature of the high-temperature molten salt
  • t ly is the temperature of the low-temperature molten salt.
  • the required amount of molten salt m ry and the power P cf of the diesel generator are:
  • t is the time when the back-pressure turbine unit is required to supply power to the plant during the unit startup process
  • P fm is the sum of the electrical power of the high-temperature molten salt pump and the back-pressure turbine unit steam inlet control valve.
  • the system and method of utilizing molten salt heat storage to achieve black start of thermal power units described in the present disclosure starts the diesel generator to drive the high-temperature molten salt pump and the high-temperature molten salt valve to drive the high-temperature molten salt into the brine heat exchanger. It releases heat and at the same time drives the water supply boost pump to send the desalted water into the brine heat exchanger to absorb heat to reach the inlet steam pressure and temperature required by the back pressure steam turbine unit and then enter the back pressure steam turbine unit to generate electricity to assist the thermal power unit.
  • Figure 1 is a system structure diagram of the present disclosure.
  • 1 is a low-temperature tank
  • 2 is a molten salt heater
  • 3 is a high-temperature transformer of a thermal power generation unit
  • 4 is a thermal power generation unit
  • 5 is a low-temperature melting tank
  • 6 is a high-temperature molten salt pump
  • 7 is a high-temperature molten salt valve
  • 8 It is the brine heat exchanger
  • 9 is the steam inlet control valve of the back pressure steam turbine unit
  • 10 is the back pressure steam turbine unit
  • 11 is the feed water booster pump
  • 12 is the diesel generator.
  • FIG. 1 A schematic structural diagram according to a disclosed embodiment of the present disclosure is shown in the accompanying drawings.
  • the drawings are not drawn to scale, with certain details exaggerated and may have been omitted for purposes of clarity.
  • the shapes of the various regions and layers shown in the figures and the relative sizes and positional relationships between them are only exemplary. In practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art will base their judgment on actual situations. Additional regions/layers with different shapes, sizes, and relative positions can be designed as needed.
  • the system disclosed in the present disclosure for utilizing molten salt heat storage to achieve black start of thermal power units includes a low-temperature tank 1, a molten salt heater 2, a high-voltage transformer of the thermal power unit 3, a thermal power unit 4, and a molten low-temperature tank 5.
  • the output end of the thermal power generator unit 4 and the output end of the back pressure steam turbine unit 10 are connected to the busbar.
  • the busbar is connected to the power interface of the molten salt heater 2 through the high-voltage transformer 3 of the thermal power generator unit.
  • the outlet of the molten salt heater 2 is connected through The low-temperature melting tank 5, the high-temperature molten salt pump 6, and the high-temperature molten salt valve 7 are connected to the tube side inlet of the brine heat exchanger 8.
  • the tube side outlet of the brine heat exchanger 8 is connected to the inlet of the low-temperature tank 1.
  • the low-temperature tank 1 The outlet of is connected with the inlet of the molten salt heater 2, and the outlet of the feed water boost pump 11 is connected with the inlet of the back-pressure turbine unit 10 through the shell side of the brine heat exchanger 8 and the back-pressure turbine unit steam inlet control valve 9.
  • the output end of the diesel generator 12 is connected to the water supply boost pump 11, the high-temperature molten salt pump 6, the high-temperature molten salt valve 7 and the back-pressure turbine unit steam inlet control valve 9.
  • the above system can realize black start of thermal power units through the method in this disclosure.
  • the method of the present disclosure can be applied to the system of the present disclosure. This method will be described in detail below with reference to the accompanying drawings.
  • the method disclosed in the present disclosure for utilizing molten salt heat storage to achieve black start of thermal power units includes the following steps:
  • the diesel generator 12 drives The feed water boost pump 11 sends the desalted water into the brine heat exchanger 8 to absorb heat to reach the inlet steam pressure and temperature required by the back pressure steam turbine unit 10 and then enters the back pressure steam turbine unit 10 to generate electricity.
  • the back pressure steam turbine unit 10 The exhaust steam pressure and temperature can be selected as the low-parameter industrial steam supply of the thermal power unit or the pressure and temperature of the medium-pressure cylinder exhaust steam.
  • the electric power required by the back pressure steam turbine unit 10 is:
  • P by is the power of the back-pressure steam turbine unit 10
  • P e is the power of the thermal power generation unit 4
  • eta e is the ratio of the high variable power required when the thermal power generation unit 4 is started to the unit power, which is generally 5%.
  • Q gs is the feed water flow rate of the brine heat exchanger 8
  • h gq and h pq are the inlet steam enthalpy and exhaust steam enthalpy of the back-pressure turbine unit 10.
  • the temperature t gq , exhaust steam pressure p pq and exhaust steam temperature t pq are obtained by using the water steam function.
  • ⁇ by is the internal efficiency of the back pressure steam turbine unit 10.
  • the power of the water supply boost pump 11 can be calculated by the general method in this field: Q gs ⁇ head ⁇ 9.81 ⁇ medium specific gravity ⁇ 3600 ⁇ pump efficiency, where the head is converted by the inlet pressure p gq , and those skilled in the art can adjust it according to the actual situation.
  • the medium of this pump is water, so the specific gravity of the medium can be found based on the temperature and pressure through the water vapor parameter table. In the above formula, the flow unit is cubic/hour and the head unit is meters.
  • C is the specific heat capacity of the molten salt
  • t ry is the temperature of the high-temperature molten salt
  • t ly is the temperature of the low-temperature molten salt.
  • t is the time required for the back-pressure steam turbine unit 10 to supply power to the plant during the unit startup process
  • P fm is the sum of the electrical power of the high-temperature molten salt pump 6 and the back-pressure turbine unit steam inlet control valve 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种利用熔盐储热实现火电机组黑启动的系统及方法,火力发电机组(4)的输出端及背压汽轮机组(10)的输出端与母线相连接,母线经火力发电机组高厂变(3)与熔盐加热器(2)的电源接口相连接,熔盐加热器(2)的出口经熔低温罐(5)、高温熔盐泵(6)、高温熔盐阀(7)与盐水换热器(8)的管侧入口相连通,盐水换热器(8)的管侧出口与低温罐(1)的入口相连通,低温罐(1)的出口与熔盐加热器(2)的入口相连通,给水升压泵(11)的出口经盐水换热器(8)的壳侧及背压汽轮机组进汽控制阀(9)与背压汽轮机组(10)的入口相连通,该系统及方法能够辅助火电机组实现黑启动,同时能够计算得到所需背压汽轮机组(10)的电功率、储热系统的熔盐用量及柴油发电机(12)的功率。

Description

利用熔盐储热实现火电机组黑启动的系统及方法
相关申请的交叉引用
本申请基于申请号为202210243283.7、申请日为2022年3月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开属于火力发电技术领域,涉及一种利用熔盐储热实现火电机组黑启动的系统及方法。
背景技术
截至2020年底,全国发电装机容量22亿千瓦,火电以57%的装机容量占比发出了68%的电量,仍然是我国电源侧的中流砥柱。随着我国城市化进程加快及国民经济持续发展,电力稳定性要求不断提高,尤其是处于负荷中心的火电机组。如果出现区域电网故障失电,区域内的火电机组不能在电网失电状态下快速启动,则会对人民群众的生命安全、财产安全造成巨大损失。
目前,已有研究团队提出可再生能源发电的黑启动方案,但对于占发电绝对主力的火电机组,目前针对此类问题还没有合适的解决方案及所需背压汽轮机组的电功率、储热系统的熔盐用量及柴油发电机的功率的计算。
发明内容
本公开的目的在于克服上述现有技术的缺点,提供了一种利用熔盐储热实现火电机组黑启动的系统及方法,该系统及方法能够辅助火电机组实现黑启动,同时能够计算得到所需背压汽轮机组的电功率、储热系统的熔盐用量及柴油发电机的功率。
为达到上述目的,本公开在第一方面提供了利用熔盐储热实现火电机组黑启动的系统,其包括低温罐、熔盐加热器、火力发电机组高厂变、火力发电机组、熔低温罐、高温熔盐泵、高温熔盐阀、盐水换热器、背压汽轮机组进汽控制阀、背压汽轮机组、给水升压泵及柴油发电机;
火力发电机组的输出端及背压汽轮机组的输出端与母线相连接,母线经火力发电机组高厂变与熔盐加热器的电源接口相连接,熔盐加热器的出口经熔低温罐、高温熔盐泵、高温熔 盐阀与盐水换热器的管侧入口相连通,盐水换热器的管侧出口与低温罐的入口相连通,低温罐的出口与熔盐加热器的入口相连通,给水升压泵的出口经盐水换热器的壳侧及背压汽轮机组进汽控制阀与背压汽轮机组的入口相连通,柴油发电机的输出端与给水升压泵、高温熔盐泵、高温熔盐阀及背压汽轮机组进汽控制阀相连接。
本公开在第二方面提供了利用熔盐储热实现火电机组黑启动的方法,该方面可应用于上述系统中。本公开的方法包括以下步骤:
当功率为P e的火力发电机组需要启动时,则启动柴油发电机,以带动高温熔盐泵及高温熔盐阀驱动高温熔盐进入盐水换热器中放热,同时通过柴油发电机带动给水升压泵将除盐水送入盐水换热器中吸热,以达到背压汽轮机组需要的进汽压力及进汽温度后进入背压汽轮机组中发电;
其中,根据火力发电机组的电功率P e计算所需背压汽轮机组的电功率、储热系统的熔盐用量及柴油发电机的功率。
在一些实施例中,背压汽轮机组需要的电功率为:
P by=P e·η e  (1)
其中,P by为背压汽轮机组的电功率,P e为火力发电机组的功率,η e为火力发电机组启动时所需要的高厂变功率占机组功率的比例。
在一些实施例中,以下式根据背压汽轮机组的电功率P by计算盐水换热器的给水流量:
Figure PCTCN2022102519-appb-000001
h gq=h(p gq,t gq)  (3)
h pq=h(p pq,t pq)  (4)
其中,Q gs为盐水换热器的给水流量,h gq及h pq为背压汽轮机组的进汽焓及排汽焓,η by为背压汽轮机组的内效率,p gq为背压汽轮机组的进汽压力,t gq为背压汽轮机组的进汽温度,p pq为背压汽轮机组的排汽压力,t pq为背压汽轮机组的排汽温度。
在一些实施例中,根据盐水换热器的给水流量Q gs及背压汽轮机组的进汽压力p gq计算给水升压泵的功率P gs
在一些实施例中,根据给水流量Q gs计算熔盐的流量Q ry为:
Figure PCTCN2022102519-appb-000002
其中,C为熔盐的比热容,t ry为高温熔盐的温度,t ly为低温熔盐的温度。
在一些实施例中,所需要的熔盐量m ry以及柴油发电机的功率P cf为:
m ry=Q ry·t  (6)
P cf=P gs+P fm  (7)
其中,t为机组启动过程中需要背压汽轮机组供应厂用电的时间,P fm为高温熔盐泵及背压汽轮机组进汽控制阀的电功率之和。
本公开具有以下有益效果:
本公开所述的利用熔盐储热实现火电机组黑启动的系统及方法在具体工作时,启动柴油发电机,以带动高温熔盐泵及高温熔盐阀驱动高温熔盐进入盐水换热器中放热,同时带动给水升压泵将除盐水送入盐水换热器中吸热,以达到背压汽轮机组需要的进汽压力及进汽温度后进入背压汽轮机组中发电,以辅助火电机组实现黑启动,同时根据火力发电机组的电功率P e计算所需背压汽轮机组的电功率、储热系统的熔盐用量及柴油发电机的功率,操作简单、方便,实用性极强。
附图说明
图1为本公开的系统结构图。
其中,1为低温罐、2为熔盐加热器、3为火力发电机组高厂变、4为火力发电机组、5为熔低温罐、6为高温熔盐泵、7为高温熔盐阀、8为盐水换热器、9为背压汽轮机组进汽控制阀、10为背压汽轮机组、11为给水升压泵、12为柴油发电机。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,不是全部的实施例,而并非要限制本公开公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本公开公开的概念。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都应当属于本公开保护的范围。
在附图中示出了根据本公开公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1,本公开所述的利用熔盐储热实现火电机组黑启动的系统包括低温罐1、熔盐加热器2、火力发电机组高厂变3、火力发电机组4、熔低温罐5、高温熔盐泵6、高温熔盐阀7、盐水换热器8、背压汽轮机组进汽控制阀9、背压汽轮机组10、给水升压泵11及柴油发电机12;
火力发电机组4的输出端及背压汽轮机组10的输出端与母线相连接,母线经火力发电机组高厂变3与熔盐加热器2的电源接口相连接,熔盐加热器2的出口经熔低温罐5、高温熔盐泵6、高温熔盐阀7与盐水换热器8的管侧入口相连通,盐水换热器8的管侧出口与低温罐1的入口相连通,低温罐1的出口与熔盐加热器2的入口相连通,给水升压泵11的出口经盐水换热器8的壳侧及背压汽轮机组进汽控制阀9与背压汽轮机组10的入口相连通,柴油发电机12的输出端与给水升压泵11、高温熔盐泵6、高温熔盐阀7及背压汽轮机组进汽控制阀9相连接。
上述系统可以通过本公开中的方法实现火电机组黑启动。换言之,本公开的方法可以应用于本公开的系统。该方法将在下面参考附图进行详细描述。
本公开所述的利用熔盐储热实现火电机组黑启动的方法包括以下步骤:
考虑采用电加热及蒸汽加热熔盐两种方式进行储热,设定储热容量为Q y,背压汽轮机组10的电功率为P by,柴油发电机12的电功率为P cf,当功率为P e的火力发电机组4需要启动时,则启动柴油发电机12,以带动高温熔盐泵6及高温熔盐阀7驱动高温熔盐进入盐水换热器8中放热,同时通过柴油发电机12带动给水升压泵11将除盐水送入盐水换热器8中吸热,以达到背压汽轮机组10需要的进汽压力及进汽温度后进入背压汽轮机组10中发电,背压汽轮机组10的排汽压力及温度可以选择为火电机组的低参数工业供汽或者中压缸排汽的压力及温度。
其中,背压汽轮机组10需要的电功率为:
P by=P e·η e  (1)
其中,P by为背压汽轮机组10的功率,P e为火力发电机组4的功率,η e为火力发电机组4启动时所需要的高厂变功率占机组功率的比例,一般为5%。
当背压汽轮机组10的功率为P by时,则有
Figure PCTCN2022102519-appb-000003
h gq=h(p gq,t gq)  (3)
h pq=h(p pq,t pq)  (4)
其中,Q gs为盐水换热器8的给水流量,h gq及h pq为背压汽轮机组10的进汽焓及排汽焓,可以根据背压汽轮机组10的进汽压力p gq、进汽温度t gq、排汽压力p pq及排汽温度t pq利用查水蒸汽函数得到,η by为背压汽轮机组10的内效率,根据Q gs及p gq计算给水升压泵11的功率P gs。其中给水升压泵11的功率可由本领域一般方式计算:Q gs×扬程×9.81×介质比重÷3600÷泵效率,其中扬程由进汽压力p gq折算,本领域技术人员可根据实际情况调整。该泵的介质为水,由此介质比重可通过水蒸气参数表根据温度压力查到。上式中,流量单位为立方/小时,扬程单位为米。
根据给水流量Q gs计算熔盐的流量Q ry为:
Figure PCTCN2022102519-appb-000004
其中,C为熔盐的比热容,t ry为高温熔盐的温度,t ly为低温熔盐的温度。
则所需要的熔盐量m ry以及柴油发电机12的功率P cf为:
m ry=Q ry·t  (6)
P cf=P gs+P fm  (7)
其中,t为机组启动过程中需要背压汽轮机组10供应厂用电的时间,P fm为高温熔盐泵6及背压汽轮机组进汽控制阀9的电功率之和。

Claims (8)

  1. 一种利用熔盐储热实现火电机组黑启动的系统,包括低温罐(1)、熔盐加热器(2)、火力发电机组高厂变(3)、火力发电机组(4)、熔低温罐(5)、高温熔盐泵(6)、高温熔盐阀(7)、盐水换热器(8)、背压汽轮机组进汽控制阀(9)、背压汽轮机组(10)、给水升压泵(11)及柴油发电机(12);
    火力发电机组(4)的输出端及背压汽轮机组(10)的输出端与母线相连接,母线经火力发电机组高厂变(3)与熔盐加热器(2)的电源接口相连接,熔盐加热器(2)的出口经熔低温罐(5)、高温熔盐泵(6)、高温熔盐阀(7)与盐水换热器(8)的管侧入口相连通,盐水换热器(8)的管侧出口与低温罐(1)的入口相连通,低温罐(1)的出口与熔盐加热器(2)的入口相连通,给水升压泵(11)的出口经盐水换热器(8)的壳侧及背压汽轮机组进汽控制阀(9)与背压汽轮机组(10)的入口相连通,柴油发电机(12)的输出端与给水升压泵(11)、高温熔盐泵(6)、高温熔盐阀(7)及背压汽轮机组进汽控制阀(9)相连接。
  2. 一种利用熔盐储热实现火电机组黑启动的方法,包括以下步骤:
    当功率为P e的火力发电机组(4)需要启动时,则启动柴油发电机(12),以带动高温熔盐泵(6)及高温熔盐阀(7)驱动高温熔盐进入盐水换热器(8)中放热,同时通过柴油发电机(12)带动给水升压泵(11)将除盐水送入盐水换热器(8)中吸热,以达到背压汽轮机组(10)需要的进汽压力及进汽温度后进入背压汽轮机组(10)中发电;
    其中,根据火力发电机组(4)的电功率P e计算所需背压汽轮机组(10)的电功率、储热系统的熔盐用量及柴油发电机(12)的功率。
  3. 根据权利要求2所述的方法,其中背压汽轮机组(10)的电功率为:
    P by=P e·η e  (1)
    其中,P by为背压汽轮机组(10)的电功率,P e为火力发电机组(4)的功率,η e为火力发电机组(4)启动时所需要的高厂变功率占机组功率的比例。
  4. 根据权利要求3所述的方法,其中高厂变功率占机组功率的比例为5%。
  5. 根据权利要求3或4所述的方法,其中以下式根据背压汽轮机组(10)的电功率P by计算盐水换热器(8)的给水流量:
    Figure PCTCN2022102519-appb-100001
    h gq=h(p gq,t gq)  (3)
    h pq=h(p pq,t pq)  (4)
    其中,Q gs为盐水换热器(8)的给水流量,h gq及h pq为背压汽轮机组(10)的进汽焓及排汽焓,η by为背压汽轮机组(10)的内效率,p gq为背压汽轮机组(10)的进汽压力,t gq为背压汽轮机组(10)的进汽温度,p pq为背压汽轮机组(10)的排汽压力,t pq为背压汽轮机组(10)的排汽温度。
  6. 根据权利要求5所述的方法,其中根据盐水换热器(8)的给水流量Q gs及背压汽轮机组(10)的进汽压力p gq计算给水升压泵(11)的功率P gs
  7. 根据权利要求5或6所述的方法,其中根据给水流量Q gs计算熔盐的流量Q ry为:
    Figure PCTCN2022102519-appb-100002
    其中,C为熔盐的比热容,t ry为高温熔盐的温度,t ly为低温熔盐的温度。
  8. 根据权利要求7所述的方法,其中所需要的熔盐量m ry以及柴油发电机(12)的功率P cf为:
    m ry=Q ry·t  (6)
    P cf=P gs+P fm  (7)
    其中,t为机组启动过程中需要背压汽轮机组(10)供应厂用电的时间,P fm为高温熔盐泵(6)及背压汽轮机组进汽控制阀(9)的电功率之和。
PCT/CN2022/102519 2022-03-11 2022-06-29 利用熔盐储热实现火电机组黑启动的系统及方法 WO2023168863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210243283.7 2022-03-11
CN202210243283.7A CN114658503A (zh) 2022-03-11 2022-03-11 一种利用熔盐储热实现火电机组黑启动的系统及方法

Publications (1)

Publication Number Publication Date
WO2023168863A1 true WO2023168863A1 (zh) 2023-09-14

Family

ID=82029053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102519 WO2023168863A1 (zh) 2022-03-11 2022-06-29 利用熔盐储热实现火电机组黑启动的系统及方法

Country Status (2)

Country Link
CN (1) CN114658503A (zh)
WO (1) WO2023168863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658503A (zh) * 2022-03-11 2022-06-24 西安热工研究院有限公司 一种利用熔盐储热实现火电机组黑启动的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038581A1 (en) * 2006-12-13 2010-02-18 Solar Millennium Ag Multinary salt system for storing and transferring thermal energy
CN107635815A (zh) * 2015-04-06 2018-01-26 日光储备技术有限公司 包含热能存储器的电力系统
CN113315151A (zh) * 2021-05-28 2021-08-27 北京能高自动化技术股份有限公司 一种基于相变储能构建的综合能源调峰站及调峰方法
CN113864015A (zh) * 2021-10-26 2021-12-31 西安热工研究院有限公司 熔融盐储热背压机辅助火电黑启动系统
CN113864016A (zh) * 2021-10-26 2021-12-31 西安热工研究院有限公司 一种基于发电厂熔融盐储热的柴油发电机备用系统
CN114017147A (zh) * 2021-11-16 2022-02-08 西安热工研究院有限公司 一种供应黑启动电源的熔盐储热供汽系统及工作方法
CN114658503A (zh) * 2022-03-11 2022-06-24 西安热工研究院有限公司 一种利用熔盐储热实现火电机组黑启动的系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847586B (zh) * 2021-10-26 2024-06-18 西安热工研究院有限公司 火电熔融盐作为背压机后备热源系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038581A1 (en) * 2006-12-13 2010-02-18 Solar Millennium Ag Multinary salt system for storing and transferring thermal energy
CN107635815A (zh) * 2015-04-06 2018-01-26 日光储备技术有限公司 包含热能存储器的电力系统
CN113315151A (zh) * 2021-05-28 2021-08-27 北京能高自动化技术股份有限公司 一种基于相变储能构建的综合能源调峰站及调峰方法
CN113864015A (zh) * 2021-10-26 2021-12-31 西安热工研究院有限公司 熔融盐储热背压机辅助火电黑启动系统
CN113864016A (zh) * 2021-10-26 2021-12-31 西安热工研究院有限公司 一种基于发电厂熔融盐储热的柴油发电机备用系统
CN114017147A (zh) * 2021-11-16 2022-02-08 西安热工研究院有限公司 一种供应黑启动电源的熔盐储热供汽系统及工作方法
CN114658503A (zh) * 2022-03-11 2022-06-24 西安热工研究院有限公司 一种利用熔盐储热实现火电机组黑启动的系统及方法

Also Published As

Publication number Publication date
CN114658503A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2022267663A1 (zh) 熔盐储热辅助火电机组深度调峰的熔盐储量计算方法
CN113819659B (zh) 一种太阳能辅助加热凝结水的火电机组调峰系统及方法
CN214660744U (zh) 基于蓄热释热共用回路的压缩空气储能系统
WO2023168863A1 (zh) 利用熔盐储热实现火电机组黑启动的系统及方法
CN105429173A (zh) 一种基于燃料电池与风能的分布式能源系统
CN113324276B (zh) 基于熔融盐储热的调频调峰安全供热系统及其工作方法
CN215676608U (zh) 一种熔盐储能电力调峰系统
CN112983565A (zh) 一种基于储热的火电机组抽汽辅助调频调峰系统
CN109869205B (zh) 一种用于热电联产机组的储热、发电和供热系统
CN116779921A (zh) 一种高能效燃料电池热电联供装置和方法
CN201246193Y (zh) 利用太阳能及空气热能提取技术蓄热发电的装置
CN115031283B (zh) 一种热电灵活储供系统及其运行方法
CN217816970U (zh) 一种多能互补绿色能源热网首站
CN216047553U (zh) 火电熔融盐作为背压机后备热源系统
CN214625114U (zh) 一种液氢燃料电池余热回收系统
CN215170237U (zh) 一种基于储热的火电厂灵活调峰系统
CN215174935U (zh) 一种火电厂高低温储热调峰系统
CN115574305A (zh) 一种熔盐堆发电、储能与供热耦合运行系统及方法
CN111188996B (zh) 一种lng接收站浸没燃烧式气化器的低温余热回收装置
CN114076416A (zh) 一种光热发电及熔融盐结合制氢的热电综合储能系统
CN113847586A (zh) 火电熔融盐作为背压机后备热源系统
CN111465264A (zh) 一种基于液氢供能供冷的数据中心
CN219433883U (zh) 一种储电与储热系统
CN216198339U (zh) 一种光热耦合氢能储能调峰发电系统
CN217632782U (zh) 一种基于地热能发电的发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930492

Country of ref document: EP

Kind code of ref document: A1