WO2023168839A1 - 工程机械的铲刀控制方法、控制系统和工程机械 - Google Patents

工程机械的铲刀控制方法、控制系统和工程机械 Download PDF

Info

Publication number
WO2023168839A1
WO2023168839A1 PCT/CN2022/096812 CN2022096812W WO2023168839A1 WO 2023168839 A1 WO2023168839 A1 WO 2023168839A1 CN 2022096812 W CN2022096812 W CN 2022096812W WO 2023168839 A1 WO2023168839 A1 WO 2023168839A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
load
control
vertical
judgment result
Prior art date
Application number
PCT/CN2022/096812
Other languages
English (en)
French (fr)
Inventor
刘玉湘
李国林
何勤求
Original Assignee
湖南三一华源机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一华源机械有限公司 filed Critical 湖南三一华源机械有限公司
Publication of WO2023168839A1 publication Critical patent/WO2023168839A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams

Definitions

  • the present disclosure belongs to the technical field of construction machinery and relates to a blade control method, a control system and a construction machinery.
  • the blade In the field of construction machinery, during the construction process of machines with blades such as graders, the blade needs to be used to level the ground. Obstacles and status information of the blade are detected to control the lifting and lowering of the blade and adjust the attitude of the blade. To adapt to different road conditions and achieve automatic operation control.
  • the existing solutions mostly use parameters such as the height and position of obstacles, and the horizontal load of the blade as references to adjust the blade lift. The parameter selection is unreasonable and is limited to the process of mechanical travel. It is not suitable for setting the initial leveling benchmark. link, and when encountering large and hard obstacles such as rocks, the vehicle body may be lifted off the ground and an overturning accident may occur, posing a great safety hazard.
  • the present disclosure provides a blade control method, a control system and a construction machine of a construction machine.
  • the present disclosure provides a method for controlling a blade of an engineering machine, including: Step S100: receiving an automatic leveling instruction and initial parameter information; Step S200: controlling the blade of the engineering machine to enter an automatic leveling operation state according to the automatic leveling instruction, and using the initial parameters
  • the first leveling attitude corresponding to the information is used as the initial reference attitude to control the blade movement;
  • Step S400 According to the first vertical The load and the downward displacement of the blade determine the target reference attitude of the blade;
  • Step S500 Control the blade to perform an automatic leveling operation according to the target reference attitude.
  • Optimized the attitude adjustment process and control logic of the blade Taking the vertical load of the blade as a reference, automatic adjustment can be achieved during the process of setting the leveling benchmark.
  • the leveling benchmark is more accurate and can be used when encountering large-load obstacles. It can greatly reduce the possibility of overturning accidents, effectively improve the safety of the operation process, and at the same time help reduce the labor intensity of operators and improve construction efficiency.
  • FIG. 1 is a schematic flowchart of a blade control method for construction machinery provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for controlling a blade of a construction machine according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a blade control method for construction machinery provided by an embodiment of the present invention.
  • Figure 4 shows a schematic diagram of a construction machine provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for controlling a blade of a construction machine according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart showing some steps of a blade control method for construction machinery provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart showing some steps of a blade control method for construction machinery provided by an embodiment of the present invention.
  • Figure 8 shows a schematic block diagram of a control system provided by an embodiment of the present invention.
  • Figure 9 shows a schematic block diagram of a control system provided by an embodiment of the present invention.
  • Figure 10 shows a schematic block diagram of a construction machine provided by an embodiment of the present invention.
  • control system 11 main controller, 12 lifting control component, 121 first solenoid valve, 122 second solenoid valve, 13 first detection component, 131 first pressure sensor, 132 second pressure sensor, 14 second detection component, 141 first positioner, 142 second positioner, 15 display device, 2 construction machinery, 21 vehicle body, 211 lifting mechanism, 2111 left lifting cylinder, 2112 right lifting cylinder, 212 blade.
  • An embodiment of the present disclosure provides a method for controlling a blade of a construction machine, which can be applied to a construction machine having a blade.
  • the blade control methods of construction machinery include:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S400 Determine the target reference attitude of the blade based on the first vertical load and the downward displacement of the blade;
  • Step S500 Control the blade to perform automatic leveling operation according to the target reference attitude.
  • the automatic leveling operation state is entered according to the automatic leveling instruction.
  • the initial state the first leveling operation corresponding to the received initial parameter information is performed.
  • the attitude is used as the initial reference attitude to control the movement of the blade; through step S300, the first vertical load and the actual downward displacement received during the movement of the blade are obtained to determine whether the blade encounters any obstacles during the adjustment to the initial reference attitude. to higher-hardness obstacles (such as rocks).
  • the attitude of the blade at least includes the height of the blade (ie, the downward displacement of the blade), and of course may also include the position, inclination angle, etc. of the blade.
  • the initial parameter information corresponding to the first leveling attitude at least includes the initial position of the blade.
  • Descending displacement amount; in addition, the first leveling posture command can be a manual input command, such as the data of the first leveling posture manually input by the operator.
  • the first leveling posture command can also be preset data.
  • the target reference attitude of the blade is determined with the first vertical load and the downward displacement of the blade as references, so that the target reference attitude of the blade matches the first vertical load and prevents the first vertical Excessive load may cause safety accidents or affect normal operation of construction machinery. For example, when the blade encounters hard objects such as rocks while moving to the first leveling posture, the first vertical load on the blade increases. If the blade continues to move (such as descending), the body of the engineering machinery will It may be lifted off the ground, posing a risk of overturning. At this time, timely adjustment of the leveling attitude of the blade (including at least the target lowering displacement of the blade) according to the first vertical load can effectively prevent the above situation and at the same time correct the initial leveling reference. Afterwards, through step S500, the blade is automatically leveled, and the target reference attitude is used as a reference to maintain the appropriate attitude of the blade during the operation, thereby ensuring the quality of the blade's leveling operation on the ground.
  • the blade attitude adjustment process is optimized.
  • adaptive adjustment can be achieved in the process of setting the leveling benchmark, and the accuracy of the leveling benchmark can be achieved.
  • the blade is controlled to perform automatic leveling operations based on this leveling benchmark, which can significantly reduce the possibility of overturning accidents when encountering obstacles with large loads, effectively improve the safety of the operation process, and at the same time help reduce the labor of the operator. Strength and improve construction efficiency.
  • the construction machinery in this embodiment includes but is not limited to a grader, and may also be other machinery with a blade.
  • a blade control method for a construction machine includes:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S410 Determine whether the first vertical load is greater than or equal to the first load threshold, and generate a first judgment result
  • step S420 determine the second leveling posture according to the corresponding downward displacement of the blade when the first vertical load is equal to the first load threshold;
  • step S430 use the second leveling attitude as the target reference attitude of the blade
  • step S440 use the first leveling posture as the target reference posture of the blade;
  • Step S500 Control the blade to perform automatic leveling operation according to the target reference attitude.
  • the blade control method of the construction machinery in this embodiment improves step S400 based on the previous embodiment.
  • the first load threshold may be a preset value determined through experimentation or testing. Since the size of the vertical load is related to the height of the blade, the first load threshold is A load threshold may represent a critical value corresponding to the height of the blade above the ground. If the first vertical load is greater than or equal to the first load threshold, it means that the blade may be in contact with a hard object and the vehicle body may be lifted off the ground. It also means that the initial leveling reference does not match the actual road conditions.
  • step S420 and S430 the corresponding downward displacement of the blade when the first vertical load is equal to the first load threshold is used as the target displacement, and the second leveling posture corresponding to the target displacement is used as the target reference. Attitude to realize the correction of the initial leveling datum, so as to control the subsequent operation of the blade and reduce safety hazards. If the first vertical load is less than the first load threshold, it means that the initial leveling reference can match the actual road conditions, and no safety hazard that may lift the vehicle body off the ground is found. At this time, step S440 is used to set the first leveling posture as the target reference. posture as a reference for subsequent work. Complete the adaptive setting of the leveling benchmark through the above steps.
  • the blade control method of the construction machinery includes:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S410 Determine whether the first vertical load is greater than or equal to the first load threshold, and generate a first judgment result
  • step S420 determine the second leveling posture according to the corresponding downward displacement of the blade when the first vertical load is equal to the first load threshold;
  • step S421 control the display device of the construction machinery to display the correspondence information between the blade's descending displacement and the vertical load and the information to be confirmed whether to continue the automatic leveling operation;
  • Step S422 Receive control instructions corresponding to continuing the automatic leveling operation
  • Step S430 Use the second leveling posture as the target reference posture of the blade
  • step S440 use the first leveling posture as the target reference posture of the blade;
  • Step S500 Control the blade to perform automatic leveling operation according to the target reference attitude.
  • steps S421 to S422 are added based on the previous embodiment.
  • the corresponding relationship information (such as the corresponding relationship curve) between the downward displacement of the blade and the vertical load is fed back through step S421, and the display device of the construction machinery is used for visual display, so that the operator can intuitively understand the blade.
  • the actual status of the knife is used as an operating reference.
  • the display device also displays information to be confirmed whether to continue the automatic leveling operation, waiting for the operator to input operating instructions.
  • the corresponding relationship between the blade's descending displacement and the vertical load is different. For example, when the blade drops to the same height, the harder the road surface is, the greater the vertical load it receives.
  • step S422 After receiving the control instruction corresponding to continuing the automatic leveling operation, it means that the operator has confirmed and agreed to adjust the first leveling posture to the second leveling posture. At this time, step S430 is executed again to set the second leveling posture as the target. base attitude, and control the blade movement to the target base attitude.
  • step S421 and S422 the operations of feedback information and receiving input instructions are added, so that the operation of automatically adjusting the leveling reference posture is confirmed by the operator, preventing the occurrence of adjustment deviations and affecting subsequent construction operations, and improving the automatic adjustment of the leveling reference posture. the accuracy of the results.
  • the lifting mechanism of the engineering machine includes a left lifting cylinder and a right lifting cylinder, both of which are connected to the blade to drive the blade to perform lifting movements.
  • the first vertical load includes a first vertical left load of the left lifting cylinder and a first vertical right load of the right lifting cylinder.
  • the blade control methods of construction machinery include:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S411 Determine whether the first vertical left load or the first vertical right load is greater than or equal to the first load threshold, and generate a first judgment result
  • step S423 determine the second vertical load according to the corresponding downward displacement of the blade when the larger one of the first vertical left load and the first vertical right load is equal to the first load threshold. leveling posture;
  • step S430 use the second leveling attitude as the target reference attitude of the blade
  • step S440 use the first leveling posture as the target reference posture of the blade;
  • Step S500 Control the blade to perform automatic leveling operation according to the target reference attitude.
  • the first vertical load includes the first vertical left load and the first vertical right load.
  • step S411 the first vertical left load and the first vertical right load are respectively compared with the first load threshold. If the first vertical load If any one of the left load and the first vertical right load is greater than or equal to the first load threshold, it means that the first vertical load is greater than or equal to the first load threshold, and the first judgment result is yes; otherwise, it means the first vertical load is less than the first load threshold, the first judgment result is no.
  • step S423 the lowering displacement of the blade when the larger one of the first vertical left load and the first vertical right load is equal to the first load threshold is used as the target displacement,
  • the second leveling posture is determined to adjust the first leveling posture (ie, the initial leveling posture).
  • the posture of the blade is different, and the height (or amount of descent) of the left and right lifting cylinders may be different. The above steps can improve the accuracy of the first judgment result and ensure that the overall height of the blade is at Within normal range.
  • the blade control method of the construction machinery includes:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S411 Determine whether the first vertical left load or the first vertical right load is greater than or equal to the first load threshold, and generate a first judgment result
  • step S423 determine the second vertical load according to the corresponding downward displacement of the blade when the larger one of the first vertical left load and the first vertical right load is equal to the first load threshold. leveling posture;
  • step S430 use the second leveling attitude as the target reference attitude of the blade
  • step S440 use the first leveling posture as the target reference posture of the blade;
  • Step S510 While the construction machinery is traveling, obtain the second vertical left load of the left lifting cylinder, the second vertical right load of the right lifting cylinder, and the downward displacement and position information of the blade;
  • Step S520 Determine whether the second vertical left load or the second vertical right load is greater than the second load threshold, and generate a second judgment result
  • step S530 judge whether the second vertical left load or the second vertical right load is greater than or equal to the third load threshold, and generate a third judgment result;
  • step S540 control the blade to exit the automatic leveling operation state
  • step S550 mark the position of the blade as the position point for exiting automatic leveling, and control the display device to display the operation map information including the marked position point;
  • step S560 is executed: mark the positions of the blade as position points with poor flattening quality in order;
  • step S570 is executed: judge whether the current attitude of the blade is the target reference attitude, and a fourth judgment result is generated; step S570 is also executed after step S560;
  • step S580 control the blade to move to the target reference attitude, and then step S510 is executed again.
  • the blade control method of the construction machinery in this embodiment improves step S500 based on the previous embodiment.
  • the steps before step S500 have completed the adjustment and setting of the target leveling benchmark.
  • the blade After the construction machine starts driving, the blade begins to perform corresponding construction operations.
  • step S510 the left lifting cylinder and the right lifting cylinder are adjusted during the driving process.
  • the vertical load i.e., the second vertical left load and the second vertical right load
  • the obtained detection data is used as the basis for the automatic leveling operation of the blade during driving. in accordance with. Due to the complex road conditions at the construction site, the height of the blade from the ground may change when the construction machinery is traveling, which may affect the quality of the ground leveling operation and requires timely leveling operations.
  • the second vertical left load and the second vertical right load are respectively compared with the second load threshold. If the second vertical left load or the second vertical right load is greater than the second load threshold, Then it is compared with the third load threshold.
  • the third load threshold is greater than the second load threshold.
  • Both the second load threshold and the third load threshold can be preset values determined through experiments or tests.
  • the second load threshold represents a critical factor affecting the quality of the blade's smoothing operation on the ground. value
  • the third load threshold represents the critical value at which the body of the construction machinery is lifted off the ground and a safety accident may occur.
  • the first load threshold is less than or equal to the second load threshold. According to different job requirements, the first load threshold can be set equal to the second load threshold, or the first load threshold can be set less than the second load threshold.
  • the blade exits the automatic leveling operation state to stop.
  • the blade continues to descend and is changed to manual operation by the operator so that timely countermeasures can be taken to prevent safety accidents; the position of the blade is then marked as the point to exit automatic leveling and recorded in the main controller of the construction machinery.
  • the operation map information is then displayed through the display device to provide reference for the operator's subsequent operations and subsequent construction acceptance links, which is conducive to improving the work efficiency of the operator and acceptance personnel.
  • step S560 is used to mark the position of the blade as a position point with poor flattening quality as needed. Reference for subsequent construction acceptance procedures.
  • step S570 compare the current attitude of the blade with the target reference attitude, that is, compare whether the actual downward displacement of the blade during the operation is consistent with the downward displacement corresponding to the target reference attitude, to determine whether the blade Whether it deviates from the target reference posture; in addition, when the second judgment result of step S520 is no, that is, when neither the second vertical left load nor the second vertical right load is greater than the second load threshold, step S570 is also executed to Determine if the blade deviates from the target reference attitude.
  • step S510 is executed again, and the construction machine continues to work; if the current attitude of the blade deviates from the target reference attitude, step S580 is used to check the blade. Adjust the actual posture to move the blade to the target reference posture, and then execute step S510 again to continue the operation.
  • the above steps in this embodiment can, on the one hand, determine the status of the blade and construction machinery based on the vertical load. While preventing safety accidents, they can also mark the location of poor leveling quality and the location of exiting automatic leveling on the work surface. In the map, it can be used for subsequent operations and construction acceptance, which is helpful to improve work efficiency; on the other hand, it can monitor the actual attitude of the blade during the blade operation, and timely detect when the blade deviates from the target reference attitude. Adjust the attitude of the blade to restore the blade to the target reference attitude and realize automatic leveling operation to reduce the impact of road conditions on the quality of leveling operations, which is beneficial to improving operating efficiency and the pass rate of the working road surface.
  • the blade control method of the construction machinery includes:
  • Step S100 Receive automatic leveling instructions and initial parameter information
  • Step S200 Control the blade of the construction machine to enter the automatic leveling operation state according to the automatic leveling instruction, and control the movement of the blade using the first leveling attitude corresponding to the initial parameter information as the initial reference attitude;
  • Step S300 Obtain the first vertical load received by the blade during movement and the downward displacement of the blade;
  • Step S411 Determine whether the first vertical left load or the first vertical right load is greater than or equal to the first load threshold, and generate a first judgment result
  • step S423 determine the second vertical load according to the corresponding downward displacement of the blade when the larger one of the first vertical left load and the first vertical right load is equal to the first load threshold. leveling posture;
  • step S430 use the second leveling attitude as the target reference attitude of the blade
  • step S440 use the first leveling posture as the target reference posture of the blade;
  • Step S510 Control the driving of the construction machinery, and detect the second vertical left load of the left lifting cylinder, the second vertical right load of the right lifting cylinder, and the downward displacement and position information of the blade during driving;
  • Step S520 Determine whether the second vertical left load or the second vertical right load is greater than the second load threshold, and generate a second judgment result
  • step S530 judge whether the second vertical left load or the second vertical right load is greater than or equal to the third load threshold, and generate a third judgment result;
  • step S540 control the blade to exit the automatic leveling operation state
  • step S550 mark the position of the blade as the position point for exiting automatic leveling, and control the display device to display the operation map information including the marked position point;
  • step S560 is executed: mark the positions of the blade as position points with poor flattening quality in order;
  • step S570 is executed: judge whether the current attitude of the blade is the target reference attitude, and a fourth judgment result is generated; step S570 is also executed after step S560;
  • step S571 control the display device to display information to be confirmed whether to continue the automatic leveling operation
  • step S572 receive the confirmation control command, determine whether the confirmation control command is a control command to continue the automatic leveling operation, and generate a fifth judgment result;
  • step S510 is executed again;
  • step S573 control the blade to exit the automatic leveling operation state, and control the display device to display operation map information including marked position points;
  • step S580 control the blade to move to the target reference attitude, and then step S510 is executed again.
  • step S570 when the fourth determination result of step S570 is yes, steps S571 to S573 are added before executing step S510 again. After it is determined that the blade is still in the target reference posture, a feedback reminder is provided through step S571, and the display device of the construction machinery is used to display the information to be confirmed whether to continue the automatic leveling operation to provide feedback and reminder to the operator. At this time, the operator can determine whether to continue the automatic leveling operation and enter the corresponding control instructions. Through step S572, the control instruction is identified.
  • step S510 If the control instruction instructs to continue the automatic leveling operation, perform step S510 again to continue the automatic leveling operation in subsequent operations; if the control instruction instructs to stop the automatic leveling operation, perform step S510 again.
  • the blade exits the automatic leveling operation state and changes to manual operation, and uses the display device to display operation map information including marked position points to provide reference for subsequent operations and construction acceptance.
  • steps of the blade control method of the construction machinery of the present disclosure are not limited to the examples in the above embodiments. Different steps can also be reasonably combined as long as the technical effects of the present disclosure can be achieved. This is not the case here. Again.
  • control system 1 is also provided.
  • the control system 1 includes: a main controller 11 , a lifting control component 12 , a first detection component 13 , a second detection component 14 and a display device 15 .
  • the lifting control component 12 When applied to the construction machinery 2 with a blade 212, the lifting control component 12 is provided in the lifting mechanism 211 of the blade 212 for controlling the movement of the lifting mechanism 211; the lifting control component 12 is communicatively connected with the main controller 11 to control the movement of the lifting mechanism 211 according to the The control instructions of the main controller 11 work.
  • the first detection component 13 is used to detect the vertical load of the blade 212; the second detection component 14 is provided on the blade 212 and is used to detect the attitude information and position information of the blade 212, where the attitude information at least includes the position information of the blade 212. Descending displacement; the first detection component 13 and the second detection component 14 are both communicatively connected with the main controller 11 to transmit the detected data to the main controller 11 .
  • the display device 15 is communicatively connected with the main controller 11 to display corresponding images according to the control instructions of the main controller 11 so that the operator can obtain visual information.
  • the main controller 11 can execute the blade control method of the construction machine in any of the above embodiments to perform corresponding control operations on the blade 212 of the construction machine 2 .
  • the main controller 11, the first detection component 13 and the display device 15 can be installed at corresponding positions in the construction machine 2 according to usage requirements.
  • the display device 15 may be a liquid crystal display, a light emitting diode display, or other types of displays.
  • control system 1 in this embodiment When the control system 1 in this embodiment is applied to a construction machine 2 with a blade 212, it can detect parameters such as the attitude, position, and vertical load of the blade 212, and make corresponding adjustments to the construction machine 2 based on the above parameters.
  • the control operation realizes the blade control method of the construction machine in any of the above embodiments, thereby reducing the safety hazards of the construction machine 2, improving the accuracy of the leveling reference posture, and conducive to improving the work quality and work efficiency.
  • control system 1 in this embodiment also has all the beneficial effects of the blade control method of the construction machinery in any of the above embodiments, which will not be described again here.
  • the lifting mechanism 211 of the construction machine 2 includes a left lifting cylinder 2111 and a right lifting cylinder 2112 . Both the left lifting cylinder 2111 and the right lifting cylinder 2112 are connected to the blade 212 are connected to drive the blade 212 to perform lifting operations. As shown in Figure 4, the left lifting cylinder 2111 and the right lifting cylinder 2112 are both arranged at the bottom of the body 21 of the engineering machine 2 and are spaced apart in the transverse direction; the left lifting cylinder 2111 and the right lifting cylinder 2112 both extend in the vertical direction. The blade 212 is driven up and down by extending and retracting the piston.
  • the lifting control assembly 12 includes a first solenoid valve 121 and a second solenoid valve 122.
  • the first solenoid valve 121 is located in the oil circuit connected to the left lifting cylinder 2111
  • the second solenoid valve 122 is provided in the oil circuit connected to the right lifting cylinder 2112.
  • the first solenoid valve 121 and the second solenoid valve 122 are respectively communicatively connected with the main controller 11 to work under the control of the main controller 11 to respectively control the actions of the left lifting cylinder 2111 and the right lifting cylinder 2112; according to the blade 212
  • the target posture is different, and the height (or extension amount) of the left lifting cylinder 2111 and the right lifting cylinder 2112 can be different.
  • the first detection component 13 includes a first pressure sensor 131 and a second pressure sensor 132
  • the second detection component 14 includes a first positioner 141 and a second positioner.
  • Device 142 The first pressure sensor 131 is disposed in the rodless cavity of the left lifting cylinder 2111
  • the second pressure sensor 132 is disposed in the rodless cavity of the right lifting cylinder 2112 to respectively detect the oil pressure in the corresponding rodless cavity.
  • the first pressure sensor 131 and the second pressure sensor 132 are both communicatively connected with the main controller 11 to transmit detected data to the main controller 11 . Since the vertical load on the lifting cylinder is equal to the product of the oil pressure in the rodless cavity and the cross-sectional area of the rodless cavity, the main controller 11 can calculate the corresponding vertical load based on the oil pressure in the rodless cavity. size.
  • first positioner 141 and the second positioner 142 are respectively provided at the left and right ends of the blade 212 to respectively detect the attitude information and position information of the left and right ends of the blade 212; the first positioner 141 and the second positioner
  • the controller 142 is all communicatively connected with the main controller 11 to transmit the detected data to the main controller 11 .
  • the main controller 11 determines the actual attitude of the blade 212 according to the received data, and determines whether the blade 212 is in the target reference attitude. It can also set the location point for exiting automatic leveling and the leveling quality in the operation map in the main controller 11 Mark the poor location points for subsequent operations and construction acceptance.
  • the first locator 141 and the second locator 142 can be positioning devices using GPS (Global Positioning System, Global Positioning System), and of course can also be other types of positioning devices.
  • a construction machine 2 is provided, as shown in FIGS. 4 and 10 , including a vehicle body 21 and the control system 1 in any of the above embodiments.
  • the vehicle body 21 is provided with a lifting mechanism 211 and a blade 212.
  • the lifting mechanism 211 is connected to the blade 212 to drive the blade 212 to perform lifting operations.
  • the control system 1 is installed on the vehicle body 21 to control the operation of the vehicle body 21 and various devices on the vehicle body 21 (including but not limited to the lifting mechanism 211, the blade 212, etc.); in addition, the control system 1 can also control the construction machinery 2
  • Implementing the blade control method of the construction machine in any of the above embodiments can reduce the safety hazards of the construction machine 2, improve the accuracy of the leveling reference posture, and help improve the work quality and work efficiency.
  • construction machinery 2 in this embodiment includes but is not limited to a grader.
  • construction machine 2 in this embodiment should have all the beneficial effects of the control system 1 in any of the above embodiments, which will not be described again here.
  • An embodiment of the present disclosure also provides an electronic device.
  • the electronic device may include: a processor (processor), a communication interface (Communications Interface), a memory (memory), and a communication bus, wherein the processor, the communication interface, Memories communicate with each other through a communication bus.
  • the processor can call logical instructions in the memory to execute the blade control method of the construction machinery in any of the above embodiments.
  • the electronic device in this embodiment has all the beneficial effects of the blade control method of the construction machinery in any of the above embodiments, which will not be described again.
  • the above-mentioned logical instructions in the memory can be implemented in the form of software functional units.
  • the logic instructions When the logic instructions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the blade control method of the construction machinery in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to execute the blade control method of a construction machine provided in any of the above embodiments.
  • the computer-readable storage medium in this embodiment has all the beneficial effects of the blade control method for construction machinery in any of the above embodiments, which will not be described again.
  • any process or method description in a flowchart or otherwise described herein may be understood to represent an executable process that includes one or more steps for implementing the specified logical function or process.
  • Modules, fragments, or portions of the code of the instructions, and the scope of the preferred embodiments of the present disclosure includes additional implementations that may not be in the order shown or discussed, including in a substantially concurrent manner or in reverse order depending on the functionality involved.
  • the order to perform the functions should be understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the program may be printed, for example, by optical scanning of the paper or other medium, followed by editing, interpretation, or in other suitable manner if necessary Processing to obtain a program electronically and then store it in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware, or combinations thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
  • Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing module, each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. Integrated modules can also be stored in a computer-readable storage medium if they are implemented in the form of software function modules and sold or used as independent products.
  • the storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种工程机械的铲刀控制方法、控制系统和工程机械,其中工程机械的铲刀控制方法包括:接收自动找平指令和初始参数信息;根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;根据第一竖向负载以及铲刀的下降位移量确定铲刀的目标基准姿态;根据目标基准姿态控制铲刀进行自动找平操作。通过该技术方案,优化了铲刀姿态调整过程,能够实现找平基准的自适应调整,准确性更高,有效提高了作业过程的安全性,同时有利于降低操作人员的劳动强度、提高施工效率。

Description

工程机械的铲刀控制方法、控制系统和工程机械
本公开要求于2022年3月11日提交的申请号为202210243191.9,发明名称为“工程机械的铲刀控制方法、控制系统和工程机械”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开属于工程机械技术领域,涉及一种工程机械的铲刀控制方法、一种控制系统和一种工程机械。
背景技术
在工程机械领域中,平地机等具有铲刀的机械在施工过程中,需要通过铲刀对地面进行平整作业,通过检测障碍物以及铲刀的状态信息来控制铲刀升降,调整铲刀的姿态以适应不同的路况,实现自动作业控制。但现有的方案中多以障碍物的高度、位置、铲刀的水平负载等参数作为参照调整铲刀升降,参数选择不合理,且局限于机械行进过程中,不适用于设置初始找平基准的环节,且在遇到石块等体积大、硬度高的障碍物时,可能将车身顶离地面并发生倾覆事故,存在较大的安全隐患。
申请内容
为改善上述技术问题中的至少一个,本公开提供了一种工程机械的铲刀控制方法、一种控制系统和一种工程机械。
本公开提供一种工程机械的铲刀控制方法,包括:步骤S100:接收自动找平指令和初始参数信息;步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;步骤S400:根据第一竖向负载以及铲刀的下降位移量确定铲刀的目标基准姿态;步骤S500:根据目标基准姿态控制铲刀进行自动找平操作。
本公开的有益效果:
优化了铲刀的姿态调整过程和控制逻辑,以铲刀的竖向负载作为参照,在设置找平基准的过程中能够实现自动调整,找平基准的准确性更高,且在遇到大负载障碍物时能够大幅降低发生倾覆事故的可能性,有效提高了作业过程的安全性,同时有利于降低操作人员的劳动强度、提高施工效率。
附图说明
图1所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的流程示意图。
图2所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的流程示意图。
图3所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的流程示意图。
图4所示为本发明一个实施例提供的一种工程机械的示意图。
图5所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的流程示意图。
图6所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的部分步骤的流程示意图。
图7所示为本发明一个实施例提供的一种工程机械的铲刀控制方法的部分步骤的流程示意图。
图8所示为本发明一个实施例提供的一种控制系统的示意框图。
图9所示为本发明一个实施例提供的一种控制系统的示意框图。
图10所示为本发明一个实施例提供的一种工程机械的示意框图。
附图标记说明:
1控制系统,11主控制器,12升降控制组件,121第一电磁阀,122第二电磁阀,13第一检测组件,131第一压力传感器,132第二压力传感器,14第二检测组件,141第一定位器,142第二定位器,15显示装置,2工程机械,21车体,211升降机构,2111左升降油缸,2112右升降油缸,212铲刀。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
以下为本公开的工程机械的铲刀控制方法、控制系统和工程机械的一些实施例。
本公开的一个实施例中提供了一种工程机械的铲刀控制方法,可以应 用于具有铲刀的工程机械。如图1所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S400:根据第一竖向负载以及铲刀的下降位移量确定铲刀的目标基准姿态;
步骤S500:根据目标基准姿态控制铲刀进行自动找平操作。
在本实施例中的工程机械的铲刀控制方法中,通过步骤S100至步骤S200,根据自动找平指令进入自动找平作业状态,初始状态下,并以接收到的初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;通过步骤S300,获取铲刀运动过程中的受到的第一竖向负载和实际的下降位移量,以确定铲刀在调整至初始基准姿态的过程中是否遇到硬度较高的障碍物(例如石块)。其中,铲刀的姿态至少包括铲刀的高度(即铲刀的下降位移量),当然还可以包括铲刀的位置、倾角等,第一找平姿态所对应的初始参数信息至少包括铲刀的初始下降位移量;另外,第一找平姿态指令可以是手动输入指令,例如操作人员手动输入的第一找平姿态的数据,当然,第一找平姿态指令也可以是预设的数据。
通过步骤S400,以铲刀的第一竖向负载和下降位移量为参照,确定铲刀的目标基准姿态,以使铲刀的目标基准姿态与第一竖向负载相匹配,防止第一竖向负载过大使工程机械产生安全事故或影响正常作业。例如,当铲刀在向第一找平姿态运动过程中遇到石块等硬物时,铲刀受到的第一竖向负载增大,若铲刀继续运动(例如下降),工程机械的车体可能被顶离地面,存在发生倾覆事故的风险。此时,根据第一竖向负载及时调整铲刀的找平姿态(至少包括铲刀的目标下降位移量),能够有效防止出现上述情况,同时也对初始找平基准进行了修正。之后,通过步骤S500,对铲刀进行自动找平操作,以目标基准姿态为参照,在作业过程中使铲刀保持合适的姿态,从而保证铲刀对地面的平整作业质量。
通过本实施例中的工程机械的铲刀控制方法,优化了铲刀姿态调整过程,以铲刀的竖向负载作为参照,在设置找平基准的过程中能够实现自适应调整,找平基准的准确性更高,根据该找平基准控制铲刀进行自动找平操作,在遇到大负载障碍物时能够大幅降低发生倾覆事故的可能性,有效 提高了作业过程的安全性,同时有利于降低操作人员的劳动强度、提高施工效率。
本实施例中的工程机械包括但不限于平地机,也可以是其他具有铲刀的机械。
在本公开的一个实施例中,如图2所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S410:判断第一竖向负载是否大于或等于第一负载阈值,并生成第一判断结果;
若第一判断结果为是,执行步骤S420:根据第一竖向负载等于第一负载阈值时对应的铲刀的下降位移量,确定第二找平姿态;
然后执行步骤S430:以第二找平姿态作为铲刀的目标基准姿态;
若第一判断结果为否,执行步骤S440:以第一找平姿态作为铲刀的目标基准姿态;
步骤S500:根据目标基准姿态控制铲刀进行自动找平操作。
在本实施例中的工程机械的铲刀控制方法,在前述实施例的基础上对步骤S400做了改进。通过步骤S410比较第一竖向负载与第一负载阈值的大小,其中,第一负载阈值可以是经过试验或测试确定的预设值,由于竖向负载的大小与铲刀的高度相关,因而第一负载阈值可以表示对应于铲刀离地高度的一个临界值。若第一竖向负载大于或等于第一负载阈值,表示铲刀可能与硬物接触,并且可能发生车体被顶离地面的情况,同时表示初始找平基准与实际路况不匹配。此时,通过步骤S420和步骤S430,将第一竖向负载等于第一负载阈值时对应的铲刀的下降位移量作为目标位移量,并以该目标位移量对应的第二找平姿态作为目标基准姿态,以实现对初始找平基准的修正,以便于控制铲刀的后续操作,降低安全隐患。若第一竖向负载小于第一负载阈值,表示初始找平基准能够与实际路况匹配,未发现可能将车体顶离地面的安全隐患,此时,通过步骤S440,将第一找平姿态作为目标基准姿态,以作为后续作业过程中的参照。通过以上步骤完成找平基准的自适应设置。
在本公开的一个实施例中,如图3所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S410:判断第一竖向负载是否大于或等于第一负载阈值,并生成第一判断结果;
若第一判断结果为是,执行步骤S420:根据第一竖向负载等于第一负载阈值时对应的铲刀的下降位移量,确定第二找平姿态;
然后执行步骤S421:控制工程机械的显示装置显示铲刀的下降位移量量与竖向负载的对应关系信息以及是否继续自动找平作业的待确认信息;
步骤S422:接收对应于继续自动找平作业的控制指令;
步骤S430:以第二找平姿态作为铲刀的目标基准姿态;
若第一判断结果为否,执行步骤S440:以第一找平姿态作为铲刀的目标基准姿态;
步骤S500:根据目标基准姿态控制铲刀进行自动找平操作。
在本实施例中的工程机械的铲刀控制方法中,在前述实施例的基础上增加了步骤S421至步骤S422。在步骤S430之前,通过步骤S421反馈铲刀的下降位移量量与竖向负载的对应关系信息(例如对应关系曲线),利用工程机械的显示装置进行可视化显示,以便于操作人员能够直观地了解铲刀的实际状态,以作为操作参照,同时显示装置还显示是否继续自动找平作业的待确认信息,以待操作人员输入操作指令。针对于不同硬度的路面,铲刀的下降位移量与竖向负载的对应关系不同,例如,铲刀下降相同的高度时,路面硬度越大,所受到的竖向负载也越大。通过步骤S422,接收到对应于继续自动找平作业的控制指令后,表示操作人员已确认同意将第一找平姿态调整为第二找平姿态,此时,再执行步骤S430,将第二找平姿态作为目标基准姿态,并控制铲刀运动至该目标基准姿态。通过步骤S421和步骤S422,增加了反馈信息和接收输入指令的操作,使得自动调整找平基准姿态的操作经过操作人员的确认,防止发生调整偏差而影响后续的施工作业,提高了自动调整找平基准姿态的结果的准确性。
在本实施例中,若操作人员不认可自动调整基准姿态的结果,也可以 输入相应的控制指令,退出自动找平作业状态,通过手动操作调整找平基准姿态,可以根据实际情况进行自动和手动两种模式的切换,操作灵活性更高。
在本公开的一个实施例中,如图4所示,工程机械的升降机构包括左升降油缸和右升降油缸,均与铲刀相连接,以驱动铲刀进行升降运动。相应地,第一竖向负载包括左升降油缸的第一竖向左负载和右升降油缸的第一竖向右负载。
如图5所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S411:判断第一竖向左负载或第一竖向右负载是否大于或等于第一负载阈值,并生成第一判断结果;
若第一判断结果为是,执行步骤S423:根据第一竖向左负载和第一竖向右负载中数值较大的一个等于第一负载阈值时对应的铲刀的下降位移量,确定第二找平姿态;
然后执行步骤S430:以第二找平姿态作为铲刀的目标基准姿态;
若第一判断结果为否,执行步骤S440:以第一找平姿态作为铲刀的目标基准姿态;
步骤S500:根据目标基准姿态控制铲刀进行自动找平操作。
在本实施例中的工程机械的铲刀控制方法中,对上述实施例中的步骤S410和步骤S420做了改进。第一竖向负载包括第一竖向左负载和第一竖向右负载,通过步骤S411,将第一竖向左负载和第一竖向右负载分别与第一负载阈值比较,若第一竖向左负载和第一竖向右负载其中任意一个大于或等于第一负载阈值,则表示第一竖向负载大于或等于第一负载阈值,第一判断结果为是;否则表示第一竖向负载小于第一负载阈值,第一判断结果为否。当第一判断结果为是时,通过步骤S423,以第一竖向左负载和第一竖向右负载中数值较大的一个等于第一负载阈值时铲刀的下降位移量作为目标位移量,确定第二找平姿态,以对第一找平姿态(即初始找平姿态)进行调整。在实际作业过程中,铲刀的姿态不同,左升降油缸和右升降油缸的高度(或下降量)可能不同,以上步骤可以提高第一判断结果的准确 性,还可以保证铲刀的整体高度处于正常范围内。
在本公开的一个实施例中,如图5和图6所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S411:判断第一竖向左负载或第一竖向右负载是否大于或等于第一负载阈值,并生成第一判断结果;
若第一判断结果为是,执行步骤S423:根据第一竖向左负载和第一竖向右负载中数值较大的一个等于第一负载阈值时对应的铲刀的下降位移量,确定第二找平姿态;
然后执行步骤S430:以第二找平姿态作为铲刀的目标基准姿态;
若第一判断结果为否,执行步骤S440:以第一找平姿态作为铲刀的目标基准姿态;
步骤S510:在工程机械行驶过程中,获取左升降油缸的第二竖向左负载、右升降油缸的第二竖向右负载以及铲刀的下降位移量和位置信息;
步骤S520:判断第二竖向左负载或第二竖向右负载是否大于第二负载阈值,生成第二判断结果;
若第二判断结果为是,执行步骤S530:判断第二竖向左负载或第二竖向右负载是否大于或等于第三负载阈值,生成第三判断结果;
若第三判断结果为是,执行步骤S540:控制铲刀退出自动找平作业状态;
然后执行步骤S550:将铲刀所处的位置标记为退出自动找平的位置点,并控制显示装置显示包含标记位置点的作业地图信息;
若第三判断结果为否,执行步骤S560:将铲刀所处的位置按序标记为平整质量差的位置点;
若第二判断结果为否,执行步骤S570:判断铲刀的当前姿态是否为目标基准姿态,生成第四判断结果;步骤S560结束后也执行步骤S570;
若第四判断结果为是,再次执行步骤S510;
若第四判断结果为否,执行步骤S580:控制铲刀运动至目标基准姿态,然后再次执行步骤S510。
在本实施例中的工程机械的铲刀控制方法,在前述实施例的基础上对步骤S500做了改进。在步骤S500之前的步骤已完成了对目标找平基准的调整和设置,工程机械开始行驶后,铲刀开始进行相应的施工作业,通过步骤S510,在行驶过程中对左升降油缸和右升降油缸的竖向负载(即第二竖向左负载和第二竖向右负载)以及铲刀的下降位移量和位置信息进行检测,并将所获取的检测数据作为行驶过程中铲刀进行自动找平操作的依据。由于施工现场路况比较复杂,工程机械在行驶过程中可能导致铲刀的离地高度发生变化,可能影响对地面的平整作业质量,需要及时进行找平操作。
通过步骤S520和步骤S530,分别将第二竖向左负载和第二竖向右负载与第二负载阈值进行比较,若第二竖向左负载或第二竖向右负载大于第二负载阈值,则再与第三负载阈值进行比较。其中,第三负载阈值大于第二负载阈值,第二负载阈值和第三负载阈值均可以是通过试验或测试确定的预设值,第二负载阈值表示影响铲刀对地面的平整作业质量的临界值,而第三负载阈值表示发生工程机械的车体被顶离地面并可能发生安全事故的临界值。另外,第一负载阈值小于或等于第二负载阈值,可以根据不同作业需求,设置第一负载阈值等于第二负载阈值,或者设置第一负载阈值小于第二负载阈值。
若第二竖向左负载或第二竖向右负载大于或等于第三负载阈值,表示此时工程机械已存在安全隐患,通过步骤S540和步骤S550,使铲刀退出自动找平作业状态,以停止铲刀继续下降,改为操作人员手动操作,以便于及时采取应对措施,防止发生安全事故;之后将铲刀所处的位置标记为退出自动找平的位置点,并记录在工程机械的主控制器中的作业地图中,然后通过显示装置显示该作业地图信息,以为操作人员的后续操作以及后续的施工验收环节提供参照,有利于提高操作人员以及验收人员的工作效率。
若第二竖向左负载或第二竖向右负载大于第二负载阈值但小于第三负载阈值,则通过步骤S560将铲刀所处的位置按需标记为平整质量差的位置点,以作为后续施工验收环节的参照。在步骤S560之后,通过步骤S570,对比铲刀的当前姿态与目标基准姿态,即对比铲刀在作业过程中的实际下降位移量与目标基准姿态所对应的下降位移量是否一致,以确定铲刀是否偏离了目标基准姿态;另外,在步骤S520的第二判断结果为否时,即第二竖向左负载和第二竖向右负载均不大于第二负载阈值时,也执行步骤S570,以确定铲刀是否偏离了目标基准姿态。若铲刀的当前姿态为目标基准姿态,表示铲刀未偏离目标基准姿态,则再次执行步骤S510,工程机械继续作业; 若铲刀的当前姿态偏离了目标基准姿态,通过步骤S580,对铲刀的实际姿态进行调整,使铲刀运动至目标基准姿态,然后再次执行步骤S510,继续作业。
本实施例中的上述步骤,一方面能够根据竖向负载确定铲刀以及工程机械的状态,在防止发生安全事故的同时,能够将平整质量差的位置点和退出自动找平的位置点标记在作业地图中,以备后续操作以及施工验收时使用,有利于提高工作效率;另一方面,能够在铲刀作业过程中,对铲刀的实际姿态进行监测,并在铲刀偏离目标基准姿态时及时对铲刀进行姿态调整,使铲刀恢复至目标基准姿态,实现自动找平操作,以降低路况对平整作业质量的影响,有利于提高作业效率和作业路面的合格率。
在本公开的一个实施例中,如图5至图7所示,工程机械的铲刀控制方法包括:
步骤S100:接收自动找平指令和初始参数信息;
步骤S200:根据自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以初始参数信息所对应的第一找平姿态作为初始基准姿态控制铲刀运动;
步骤S300:获取铲刀在运动过程中受到的第一竖向负载以及铲刀的下降位移量;
步骤S411:判断第一竖向左负载或第一竖向右负载是否大于或等于第一负载阈值,并生成第一判断结果;
若第一判断结果为是,执行步骤S423:根据第一竖向左负载和第一竖向右负载中数值较大的一个等于第一负载阈值时对应的铲刀的下降位移量,确定第二找平姿态;
然后执行步骤S430:以第二找平姿态作为铲刀的目标基准姿态;
若第一判断结果为否,执行步骤S440:以第一找平姿态作为铲刀的目标基准姿态;
步骤S510:控制工程机械行驶,并检测行驶过程中左升降油缸的第二竖向左负载、右升降油缸的第二竖向右负载以及铲刀的下降位移量和位置信息;
步骤S520:判断第二竖向左负载或第二竖向右负载是否大于第二负载阈值,生成第二判断结果;
若第二判断结果为是,执行步骤S530:判断第二竖向左负载或第二竖向右负载是否大于或等于第三负载阈值,生成第三判断结果;
若第三判断结果为是,执行步骤S540:控制铲刀退出自动找平作业状 态;
然后执行步骤S550:将铲刀所处的位置标记为退出自动找平的位置点,并控制显示装置显示包含标记位置点的作业地图信息;
若第三判断结果为否,执行步骤S560:将铲刀所处的位置按序标记为平整质量差的位置点;
若第二判断结果为否,执行步骤S570:判断铲刀的当前姿态是否为目标基准姿态,生成第四判断结果;步骤S560结束后也执行步骤S570;
若第四判断结果为是,执行步骤S571:控制显示装置显示是否继续自动找平作业的待确认信息;
然后执行步骤S572:接收确认控制指令,并判断确认控制指令是否为继续自动找平作业的控制指令,生成第五判断结果;
若第五判断结果为是,则再次执行步骤S510;
若第五判断结果为否,则执行步骤S573:控制铲刀退出自动找平作业状态,并控制显示装置显示包含标记位置点的作业地图信息;
若第四判断结果为否,执行步骤S580:控制铲刀运动至目标基准姿态,然后再次执行步骤S510。
在本实施例中的工程机械的铲刀控制方法中,在前述实施例的基础上,当步骤S570的第四判断结果为是时,在再次执行步骤S510之前,增加了步骤S571至步骤S573。当确定铲刀仍然处于目标基准姿态后,通过步骤S571进行反馈提醒,利用工程机械的显示装置显示是否继续自动找平作业的待确认信息,以对操作人员进行反馈和提醒。此时,操作人员可以确定是否继续进行自动找平作业,并输入相应的控制指令。通过步骤S572,对控制指令进行识别,若控制指令指示继续进行自动找平操作,则再次执行步骤S510,以在后续作业过程中继续进行自动找平操作;若控制指令指示停止自动找平作业,则通过步骤S573,使铲刀退出自动找平作业状态,改为手动操作,并利用显示装置显示包含标记位置点的作业地图信息,以为后续操作以及施工验收提供参照。
本实施例中的上述步骤,在确认铲刀处于目标基准姿态后,增加了反馈提醒和操作人员确认的环节,增强了作业过程中的灵活性,操作人员可以根据实际情况进行自动和手动操作的切换,操作更加便捷。
需要说明的是,本公开的工程机械的铲刀控制方法的步骤不限于上述实施例中的示例,也可以对不同的步骤进行合理的组合,能够实现本公开的技术效果即可,在此不再赘述。
在本公开的一个实施例中还提供了一种控制系统1。
如图4和图8所示,控制系统1包括:主控制器11、升降控制组件12、第一检测组件13、第二检测组件14和显示装置15。在应用于具有铲刀212的工程机械2时,升降控制组件12设置在铲刀212的升降机构211中,用于控制升降机构211运动;升降控制组件12与主控制器11通信连接,以根据主控制器11的控制指令工作。第一检测组件13用于检测铲刀212的竖向负载;第二检测组件14设置在铲刀212上,用于检测铲刀212的姿态信息和位置信息,其中姿态信息至少包括铲刀212的下降位移量;第一检测组件13和第二检测组件14均与主控制器11通信连接,以向主控制器11传输检测到的数据。显示装置15与主控制器11通信连接,以根据主控制器11的控制指令显示相应的画面,以使操作人员能够获取可视化的信息。主控制器11能够执行上述任一实施例中的工程机械的铲刀控制方法,以对工程机械2的铲刀212进行相应的控制操作。其中,主控制器11、第一检测组件13和显示装置15可以根据使用需求安装于工程机械2中对应的位置。此外,显示装置15可以是液晶显示器、发光二极管显示器或其他类型的显示器。
本实施例中的控制系统1,在应用于具有铲刀212的工程机械2时,能够对铲刀212的姿态、位置以及竖向负载等参数进行检测,并根据上述参数对工程机械2进行相应的控制操作,实现上述任一实施例中的工程机械的铲刀控制方法,从而降低工程机械2的安全隐患,提高找平基准姿态的准确性,有利于提高作业质量和作业效率。
此外,本实施例中的控制系统1还具有上述任一实施例中的工程机械的铲刀控制方法的全部有益效果,在此不再赘述。
在本公开的一些实施例中,如图4和图9所示,工程机械2的升降机构211包括左升降油缸2111和右升降油缸2112,左升降油缸2111和右升降油缸2112均与铲刀212相连接,以驱动铲刀212进行升降操作。如图4中,左升降油缸2111和右升降油缸2112均设置在工程机械2的车体21底部,并沿横向方向上间隔设置;左升降油缸2111和右升降油缸2112均沿竖直方向延伸,以通过活塞的伸出、收回带动铲刀212进行升降。
升降控制组件12包括第一电磁阀121和第二电磁阀122,第一电磁阀121设于连接左升降油缸2111的油路中,第二电磁阀122设于连接右升降油缸2112的油路中,且第一电磁阀121和第二电磁阀122分别与主控制器11通信连接,以在主控制器11的控制下工作,分别控制左升降油缸2111和右升降油缸2112动作;根据铲刀212的目标姿态不同,左升降油缸2111和右升降油缸2112的高度(或伸出量)可以不同。
在本公开的一些实施例中,如图4和图9中,第一检测组件13包括第一压力传感器131和第二压力传感器132,第二检测组件14包括第一定位器141和第二定位器142。第一压力传感器131设于左升降油缸2111的无杆腔内,第二压力传感器132设于右升降油缸2112的无杆腔内,以分别检测对应的无杆腔内的油压。第一压力传感器131和第二压力传感器132均与主控制器11通信连接,以向主控制器11传输检测到的数据。由于升降油缸所受到的竖向负载的大小等于无杆腔内的油压与无杆腔横截面积的乘积,主控制器11可以通过无杆腔内的油压计算出对应的竖向负载的大小。
此外,第一定位器141和第二定位器142分别设于铲刀212的左端和右端,以分别检测铲刀212的左端和右端的姿态信息以及位置信息;第一定位器141和第二定位器142均与主控制器11通信连接,以向主控制器11传输检测到的数据。主控制器11根据接收到的数据,确定铲刀212的实际姿态,确定铲刀212是否处于目标基准姿态,也可以在主控制器11中的作业地图中对退出自动找平的位置点和平整质量差的位置点进行标记,以备后续操作及施工验收环节使用。其中,第一定位器141和第二定位器142可以是应用GPS(Global Positioning System,全球定位系统)的定位装置,当然也可以是其他类型的定位装置。
在本公开的一个实施例中提供了一种工程机械2,如图4和图10所示,包括车体21和上述任一实施例中的控制系统1。其中,车体21设有升降机构211和铲刀212,升降机构211与铲刀212相连接,以驱动铲刀212进行升降操作。控制系统1设置在车体21上,以控制车体21及车体21上的各个装置(包括但不限于升降机构211、铲刀212等)运行;此外,控制系统1还能够控制工程机械2实现上述任一实施例中的工程机械的铲刀控制方法,从而降低工程机械2的安全隐患,提高找平基准姿态的准确性,有利于提高作业质量和作业效率。
需要说明的是,本实施例中的工程机械2包括但不限于平地机。
此外,本实施例中的工程机械2应具有上述任一实施例中的控制系统1的全部有益效果,在此不再赘述。
本公开的一个实施例中还提供了一种电子设备,该电子设备可以包括:处理器(processor)、通信接口(Communications Interface)、存储器(memory)和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行上述任一实施例中的工程机械的铲刀控制方法。本实施例中的电子设备具有上述任一实施例中的工程机械的铲刀控制方法的全部有益效果,在此不再赘述。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现。当逻辑指令通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例的工程机械的铲刀控制方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开的一个实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述任一实施例中提供的工程机械的铲刀控制方法。本实施例中的计算机可读存储介质具有上述任一实施例中的工程机械的铲刀控制方法的全部有益效果,在此不再赘述。
在本公开中,可以理解的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进 行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成的,程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种工程机械的铲刀控制方法,包括:
    步骤S100:接收自动找平指令和初始参数信息;
    步骤S200:根据所述自动找平指令控制工程机械的铲刀进入自动找平作业状态,并以所述初始参数信息所对应的第一找平姿态作为初始基准姿态控制所述铲刀运动;
    步骤S300:获取所述铲刀在运动过程中受到的第一竖向负载以及所述铲刀的下降位移量;
    步骤S400:根据所述第一竖向负载以及所述铲刀的下降位移量确定所述铲刀的目标基准姿态;
    步骤S500:根据所述目标基准姿态控制所述铲刀进行自动找平操作。
  2. 根据权利要求1所述的工程机械的铲刀控制方法,其中,所述步骤S400包括:
    步骤S410:判断所述第一竖向负载是否大于或等于第一负载阈值,并生成第一判断结果;
    若所述第一判断结果为是,执行步骤S420:根据所述第一竖向负载等于所述第一负载阈值时对应的所述铲刀的下降位移量,确定第二找平姿态;
    步骤S430:以所述第二找平姿态作为所述铲刀的目标基准姿态;
    若所述第一判断结果为否,执行步骤S440:以所述第一找平姿态作为所述铲刀的目标基准姿态。
  3. 根据权利要求2所述的工程机械的铲刀控制方法,其中,
    当所述第一判断结果为是时,在所述步骤S430之前,所述工程机械的铲刀控制方法还包括:
    步骤S421:控制所述工程机械的显示装置显示所述铲刀的下降位移量与竖向负载的对应关系信息以及是否继续自动找平作业的待确认信息;
    步骤S422:接收对应于继续自动找平作业的控制指令,然后执行所述步骤S430。
  4. 根据权利要求2所述的工程机械的铲刀控制方法,其中,
    所述工程机械设有与所述铲刀相连接的左升降油缸和右升降油缸,所述第一竖向负载包括所述左升降油缸的第一竖向左负载和所述右升降油缸的第一竖向右负载;
    所述步骤S410包括:
    步骤S411:判断所述第一竖向左负载或所述第一竖向右负载是否大于 或等于所述第一负载阈值,并生成所述第一判断结果;
    所述步骤S420包括:
    步骤S423:根据所述第一竖向左负载和所述第一竖向右负载中数值较大的一个等于所述第一负载阈值时对应的所述铲刀的下降位移量,确定所述第二找平姿态。
  5. 根据权利要求4所述的工程机械的铲刀控制方法,其中,所述步骤S500包括:
    步骤S510:在所述工程机械行驶过程中,获取所述左升降油缸的第二竖向左负载、所述右升降油缸的第二竖向右负载以及所述铲刀的下降位移量和位置信息;
    步骤S520:判断所述第二竖向左负载或所述第二竖向右负载是否大于第二负载阈值,生成第二判断结果;
    若所述第二判断结果为是,执行步骤S530:判断所述第二竖向左负载或所述第二竖向右负载是否大于或等于第三负载阈值,生成第三判断结果;
    若所述第三判断结果为是,执行步骤S540:控制所述铲刀退出自动找平作业状态;
    步骤S550:将所述铲刀所处的位置标记为退出自动找平的位置点,并控制所述工程机械的显示装置显示包含标记位置点的作业地图信息;
    若所述第三判断结果为否,执行步骤S560:将所述铲刀所处的位置按序标记为平整质量差的位置点;
    若所述第二判断结果为否,执行步骤S570:判断所述铲刀的当前姿态是否为所述目标基准姿态,生成第四判断结果;
    若所述第四判断结果为是,再次执行所述步骤S510;
    若所述第四判断结果为否,执行步骤S580:控制所述铲刀运动至所述目标基准姿态,然后再次执行所述步骤S510;
    其中,所述第三负载阈值大于所述第二负载阈值,所述步骤S560结束后执行所述步骤S570。
  6. 根据权利要求5所述的工程机械的铲刀控制方法,其中,
    当所述第四判断结果为是时,在执行所述步骤S510之前,所述工程机械的铲刀控制方法还包括:
    步骤S571:控制所述显示装置显示是否继续自动找平作业的待确认信息;
    步骤S572:接收确认控制指令,并判断所述确认控制指令是否为继续自动找平作业的控制指令,生成第五判断结果;
    若所述第五判断结果为是,再次执行所述步骤S510;
    若所述第五判断结果为否,执行步骤S573:控制所述铲刀退出自动找平作业状态,并控制所述显示装置显示包含标记位置点的作业地图信息。
  7. 一种控制系统,包括:
    主控制器,用于执行如权利要求1至6中任一项所述的工程机械的铲刀控制方法;
    升降控制组件,设于工程机械的升降机构中,所述升降控制组件与所述主控制器通信连接,并根据所述主控制器的指令控制所述升降机构运动,以驱动所述工程机械的铲刀进行升降运动;
    第一检测组件,用于检测所述铲刀的竖向负载,所述第一检测组件与所述主控制器通信连接;
    第二检测组件,设于所述铲刀上,以检测所述铲刀的姿态信息和位置信息,所述第二检测组件与所述主控制器通信连接;
    显示装置,与所述主控制器通信连接,以根据所述主控制器的指令显示画面。
  8. 根据权利要求7所述的控制系统,其中,
    所述升降机构包括左升降油缸和右升降油缸,所述左升降油缸和所述右升降油缸均与所述铲刀相连接;
    所述升降控制组件包括第一电磁阀和第二电磁阀,所述第一电磁阀设于连接所述左升降油缸的油路中,所述第二电磁阀设于连接所述右升降油缸的油路中。
  9. 根据权利要求8所述的控制系统,其中,
    所述第一检测组件包括第一压力传感器和第二压力传感器,所述第一压力传感器设于所述左升降油缸的无杆腔内,以检测所述左升降油缸的油压,所述第二压力传感器设于所述右升降油缸的无杆腔内,以检测所述右升降油缸的油压;
    所述第二检测组件包括第一定位器和第二定位器,所述第一定位器设于所述铲刀的左端,以检测所述铲刀的左端的姿态信息和位置信息,所述第二定位器设于所述铲刀的右端,以检测所述铲刀的右端的姿态信息和位置信息,且所述第一定位器和所述第二定位器均与所述主控制器通信连接。
  10. 一种工程机械,包括:
    车体,所述车体设有升降机构,所述升降机构的底部设有铲刀;
    如权利要求7至9中任一项所述的控制系统。
  11. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可 在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述的工程机械的铲刀控制方法。
  12. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的工程机械的铲刀控制方法。
PCT/CN2022/096812 2022-03-11 2022-06-02 工程机械的铲刀控制方法、控制系统和工程机械 WO2023168839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210243191.9 2022-03-11
CN202210243191.9A CN114575399B (zh) 2022-03-11 2022-03-11 工程机械的铲刀控制方法、控制系统和工程机械

Publications (1)

Publication Number Publication Date
WO2023168839A1 true WO2023168839A1 (zh) 2023-09-14

Family

ID=81775510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096812 WO2023168839A1 (zh) 2022-03-11 2022-06-02 工程机械的铲刀控制方法、控制系统和工程机械

Country Status (2)

Country Link
CN (1) CN114575399B (zh)
WO (1) WO2023168839A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE749923A (fr) * 1969-05-07 1970-11-04 Caterpillar Tractor Co Dispositif de commande a distance d'un vehicule, notamment un vehicule chargeur
CN1165225A (zh) * 1996-02-07 1997-11-19 株式会社小松制作所 推土机的推土装置
WO2008115546A2 (en) * 2007-03-20 2008-09-25 Deere & Company Method and system for controlling a vehicle for loading or digging material
CN106032673A (zh) * 2015-03-20 2016-10-19 徐工集团工程机械股份有限公司 一种铲刀负载控制系统、平地机以及方法
US20170325393A1 (en) * 2015-07-31 2017-11-16 Agco International Gmbh Vehicle Control System
CN107642120A (zh) * 2016-07-22 2018-01-30 常州摩登医疗用品科技有限公司 一种用于工程机械中铲刀的智能提升方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071715B (zh) * 2010-12-30 2012-09-05 三一重工股份有限公司 一种用于工程机械中铲刀的智能提升方法及装置
CN107816079A (zh) * 2017-10-20 2018-03-20 中国人民解放军陆军工程大学 用于无人化土方机械的位姿测量与负载感知装置
US20210025140A1 (en) * 2019-07-22 2021-01-28 Danfoss Power Solutions Inc. Automatic tool tilt command system
CN113846715B (zh) * 2021-09-30 2022-09-06 湖南三一华源机械有限公司 一种平地机控制方法、装置及平地机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE749923A (fr) * 1969-05-07 1970-11-04 Caterpillar Tractor Co Dispositif de commande a distance d'un vehicule, notamment un vehicule chargeur
CN1165225A (zh) * 1996-02-07 1997-11-19 株式会社小松制作所 推土机的推土装置
WO2008115546A2 (en) * 2007-03-20 2008-09-25 Deere & Company Method and system for controlling a vehicle for loading or digging material
CN106032673A (zh) * 2015-03-20 2016-10-19 徐工集团工程机械股份有限公司 一种铲刀负载控制系统、平地机以及方法
US20170325393A1 (en) * 2015-07-31 2017-11-16 Agco International Gmbh Vehicle Control System
CN107642120A (zh) * 2016-07-22 2018-01-30 常州摩登医疗用品科技有限公司 一种用于工程机械中铲刀的智能提升方法及装置

Also Published As

Publication number Publication date
CN114575399A (zh) 2022-06-03
CN114575399B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
EP2072691B1 (en) Shock absorption device and control method thereof for small swing radius excavator
EP3399109B1 (en) Excavator
US7530185B2 (en) Electronic parallel lift and return to carry on a backhoe loader
US11391011B2 (en) Hydraulic excavator
US8500387B2 (en) Electronic parallel lift and return to carry or float on a backhoe loader
CN111042245B (zh) 一种挖掘机辅助作业控制方法及系统
US20130103247A1 (en) Apparatus and Method for Controlling Work Trajectory of Construction Equipment
EP2832932A1 (en) Control device and construction equipment provided therewith
EP3730699B1 (en) Work machine
US10156061B2 (en) Work machine control device, work machine, and work machine control method
US9014923B2 (en) Position control apparatus and method for working machine of construction machinery
US10995472B2 (en) Grading mode integration
KR20210039449A (ko) 건설 기계
WO2023168839A1 (zh) 工程机械的铲刀控制方法、控制系统和工程机械
US11959247B2 (en) Shovel and information processing apparatus
CN104294871B (zh) 铲刀倾角的控制方法及控制系统
KR20150114842A (ko) 지게차의 포크 수평유지시스템 및 그 제어방법
CN109996924B (zh) 工程机械
JP2007107311A (ja) 作業機械の干渉防止装置
WO2020045017A1 (ja) 作業機械のブレード制御装置
CN107542118A (zh) 铲刀倾角的控制方法及控制系统
KR101716499B1 (ko) 데이터 베이스를 이용한 건설기계의 작업궤적 제어 장치 및 그 방법
WO2024075716A1 (ja) 作業機械
KR20210001268A (ko) 건설 기계
JP3744798B2 (ja) バックホウ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930468

Country of ref document: EP

Kind code of ref document: A1