WO2023168714A1 - 信息传输方法、装置、设备及存储介质 - Google Patents

信息传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023168714A1
WO2023168714A1 PCT/CN2022/080465 CN2022080465W WO2023168714A1 WO 2023168714 A1 WO2023168714 A1 WO 2023168714A1 CN 2022080465 W CN2022080465 W CN 2022080465W WO 2023168714 A1 WO2023168714 A1 WO 2023168714A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal resource
direction angle
subset
resource
Prior art date
Application number
PCT/CN2022/080465
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/080465 priority Critical patent/WO2023168714A1/zh
Priority to CN202280000709.4A priority patent/CN117063512A/zh
Publication of WO2023168714A1 publication Critical patent/WO2023168714A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of mobile communications, and in particular to an information transmission method, device, equipment and storage medium.
  • the network device configures periodic reference signal resources for beam measurement for the terminal, and the terminal performs measurements based on the configured reference signal resources and feeds back the measured reference signal quality to the network device.
  • the reference signal resources configured in the above manner are single, resulting in poor accuracy of measured reference signal quality.
  • Embodiments of the present application provide an information transmission method, device, equipment and storage medium, which expands the information of at least one reference signal resource sent, and the first device also performs beam measurement quality based on the beam information of at least one reference signal resource. prediction and improve the accuracy of beam measurement.
  • the technical solutions are as follows:
  • an information transmission method is provided, the method is performed by a first device, and the method includes:
  • Receive beam information sent by the second device where the beam information indicates beam information corresponding to at least one reference signal resource, where the at least one reference signal resource is a resource used for beam measurement.
  • an information transmission method is provided, the method is performed by a second device, and the method includes:
  • the beam information indicates beam information corresponding to at least one reference signal resource, where the at least one reference signal resource is a resource used for beam measurement.
  • an information transmission device includes:
  • a receiving module configured to receive beam information sent by the second device, where the beam information indicates beam information corresponding to at least one reference signal resource, where the at least one reference signal resource is a resource used for beam measurement.
  • an information transmission device includes:
  • a sending module configured to send beam information to the first device, where the beam information indicates beam information corresponding to at least one reference signal resource, where the at least one reference signal resource is a resource used for beam measurement.
  • a device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute executable instructions. Execute instructions to implement the information transmission method as described above.
  • a computer-readable storage medium stores executable program code.
  • the executable program code is loaded and executed by a processor to implement the information transmission method in the above aspect.
  • the second device sends the beam information indicating the correspondence of at least one reference signal resource used for beam measurement to the first device, so that the first device determines the relationship between the at least one reference signal resource and the corresponding beam.
  • the information of the transmitted at least one reference signal resource is expanded, and the first device also predicts the beam measurement quality based on the beam information of the at least one reference signal resource to improve the accuracy of the beam measurement.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • Figure 2 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application
  • Figure 3 shows a schematic diagram of the beam direction provided by an exemplary embodiment of the present application
  • Figure 4 shows a schematic diagram of the beam direction provided by an exemplary embodiment of the present application
  • Figure 5 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application
  • Figure 6 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application
  • Figure 7 shows a block diagram of an information transmission device provided by an exemplary embodiment of the present application.
  • Figure 8 shows a block diagram of an information transmission device provided by an exemplary embodiment of the present application.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • the information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • signals involved in this application All are authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
  • Figure 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20.
  • the number of terminals 10 is usually multiple, and one or more terminals 10 can be distributed in the cell managed by each network device 20 .
  • the terminal 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal 10.
  • the above-mentioned devices that provide wireless communication functions for the terminal 10 are collectively referred to as network equipment.
  • a connection can be established between the network device 20 and the terminal 10 through an air interface, so that communication, including signaling and data interaction, can be performed through the connection.
  • the number of network devices 20 may be multiple, and communication between two adjacent network devices 20 may also be carried out in a wired or wireless manner.
  • the terminal 10 can switch between different network devices 20 , that is, establish connections with different network devices 20 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communications technology evolves, the name “network device” may change.
  • the first device in the embodiment of the present application may be the terminal in the above embodiment, and the second device may be the network device in the above embodiment, or the first device may be the network device in the above embodiment. , the second device may be the terminal in the above embodiment.
  • a gNB can contain one or more Transmission Reception Points (TRP), or a gNB can contain one or more panels (antenna panels).
  • Figure 2 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application, which can be executed by the first device and the second device as shown in Figure 1.
  • the method includes at least part of the following content content:
  • Step 201 The second device sends beam information to the first device, where the beam information indicates beam information corresponding to at least one reference signal resource, and the at least one reference signal resource is a resource used for beam measurement.
  • Step 202 The first device receives the beam information sent by the second device.
  • the second device sends beam information indicating that at least one reference signal resource corresponds to the first device, then the first device can receive the beam information sent by the second device, and the at least one reference signal resource is used for beam Measured resources. That is to say, after the second device sends beam information to the first device, the first device can determine relevant information of the reference signal resources of the second device based on the beam information, so that the first device can determine at least one reference signal resource based on at least one reference signal resource. After measuring the reference signal and obtaining the signal quality of at least one reference signal, predict the unmeasured signal quality other than the at least one reference signal based on the measured signal quality of the at least one reference signal and the beam information corresponding to the corresponding reference signal resource. Signal quality of other reference signals.
  • the second device can send different reference signals to the first device based on at least one reference signal resource, and the first device measures the reference signal based on at least one reference signal resource to determine the quality of each reference signal sent by the second device.
  • the beam measurement in the embodiment of this application refers to measuring at least one reference signal to obtain the L1-RSRP (Layer 1 Reference Signal Received Power, Layer 1 Reference Signal Received Power) and/or of at least one reference signal.
  • L1-RSRP Layer 1 Reference Signal Received Power, Layer 1 Reference Signal Received Power
  • L1-SINR Layer 1 Signal to Interference plus Noise Ratio, layer 1 signal to interference plus noise ratio
  • the reference signal includes SSB (Synchronization Signal Block, synchronization signal block), CSI-RS (Channel State Information Reference Signal, channel state information reference signal), SRS (Sounding Reference Signal, detection reference signal).
  • Beam indication refers to the indication of TCI state.
  • TCI Transmission Configuration Indication, transmission indication configuration
  • TCI Transmission Configuration Indication, transmission indication configuration
  • QCL Quadrature Co-Location, quasi co-location
  • QCL Type A quadsi co-location type A
  • QCL Type B quadsi co-location type B
  • QCL Type C quadsi-co-location type C
  • QCL Type D quadsi-co-location type D
  • Type A, Type B, and Type C include at least one of Doppler frequency shift, Doppler spread, average delay, and delay spread related parameters.
  • the first device is a terminal and the second device is a network device.
  • the first device is a terminal and the second device is a network device
  • the network device sends beam information to the terminal
  • the terminal receives the beam information to determine at least one reference signal resource for beam measurement and Beam information corresponding to at least one reference signal resource
  • the terminal can measure the signal quality of at least one reference signal based on the at least one reference signal resource, and refer to the beam information sent by the network device and the measured signal quality of the at least one reference signal to predict future Measured signal quality of other reference signals.
  • the reference signal resources include SSB (Synchronization Signal Block, synchronization signal block) resources or CSI-RS (Channel State Information Reference Signal, channel state information reference signal) resources.
  • SSB Synchronization Signal Block, synchronization signal block
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • the network device configures reference signal resources for the terminal, and sends SSB or CSI-RS to the terminal through the reference signal resources, so that the terminal can receive the SSB or CSI-RS sent by the network device, and then respond to the SSB or CSI-RS.
  • the RS performs measurements to obtain the signal quality of at least one reference signal, and also predicts the signal quality of other unmeasured reference signals based on the measured signal quality of at least one reference signal and beam information.
  • the first device is a network device
  • the second device is a terminal
  • the first device is a network device and the second device is a terminal
  • the network device can determine at least one reference signal resource for beam measurement by receiving the beam information.
  • the beam information corresponding to at least one reference signal resource and then the network device can measure the signal quality of at least one reference signal based on the at least one reference signal resource, and refer to the beam information sent by the terminal and the signal quality of the measured reference signal to predict the unmeasured the signal quality of other reference signals.
  • the reference signal resources are SRS resources.
  • the terminal when the reference signal resource configured by the network device for the terminal is an SRS resource, the terminal can send the SRS to the network device based on the configured reference signal resource, so that the network device can measure the SRS and obtain the signal of the reference signal. quality, and also predicts the signal quality of other unmeasured reference signals based on the signal quality of the measured reference signal and the beam information.
  • the second device sends beam information indicating at least one reference signal resource used for beam measurement to the first device, so that the first device determines the relationship between the at least one reference signal resource and the corresponding beam, and extends
  • the first device also obtains the information of the transmitted at least one reference signal resource, and the first device also predicts the beam measurement quality based on the beam information of the at least one reference signal resource to improve the accuracy of the beam measurement.
  • the beam information corresponding to at least one reference signal resource is used for the signal quality of the reference signal and the beam information of the first device based on part of the reference signal resource. Predict the signal quality of other reference signals that were not measured.
  • the first device measures at least one reference signal based on at least one reference signal resource to obtain the signal quality of the at least one reference signal, and the first device also measures the at least one reference signal based on the received beam information and the measured at least one
  • the signal quality of a reference signal predicts the signal quality of other reference signals that are not measured.
  • the predicted signal quality of other unmeasured reference signals may include signal quality corresponding to all combinations of receiving beams and reference signals corresponding to the first device; or may be a portion of all combinations of receiving beams and reference signals corresponding to the first device.
  • the combination corresponds to signal quality. For example, only the strongest signal quality of each reference signal that can be obtained when all receiving beams are used to receive each reference signal is predicted.
  • the second device 32 is a network device, and the second device 32 sends different reference signals.
  • the first device 31 is a terminal, and the first device 31 uses at least one of its own receiving beams to receive each reference signal sent by the second device respectively.
  • the second device 32 is a terminal, and the second device 32 sends different reference signals.
  • the first device 31 is a network device, and the first device 31 uses at least one receiving beam of itself to receive each reference signal sent by the second device respectively.
  • the second device 32 includes transmitting beam 1, transmitting beam 2, transmitting beam 3 and transmitting beam 4, respectively transmits reference signal 1, reference signal 2, reference signal 3 and reference signal 4.
  • the first device 31 includes receiving beam 5, receiving beam 6, receiving beam 7, and receiving beam 8.
  • the first device 31 receives the reference signal sent by the second device 32 through receiving beam 5, receiving beam 6, receiving beam 7, and receiving beam 8 respectively, and also That is to say, the first device 31 can receive the reference signal 1, reference signal 2, reference signal 3 and reference signal 4 sent by the second device 32 through the receiving beam 5, and can also receive the reference signal sent by the second device 32 through the receiving beam 6. 1.
  • Each receiving beam of the first device 31 will receive reference signal 1, reference signal 2, reference signal 3 and reference signal sent by the second device 32 4, and measure the signal quality of each reference signal received by each receive beam.
  • the above description is that the first device 31 measures all combinations of reference signals and receiving beams. In different embodiments, the first device 31 may measure a part of all combinations of reference signals and receiving beams. After measuring the signal quality of the reference signal, the first device 31 also predicts the signal quality of other unmeasured reference signals based on the beam information and the combination of the reference signal and the received beam.
  • the first device determines the signal quality of other unmeasured reference signals except the at least one reference signal based on the signal quality of the at least one reference signal and the beam information corresponding to the at least one reference signal resource.
  • the first device sorts the signal quality of the at least one reference signal according to the transmit beam identifier and/or the at least one receive beam identifier corresponding to the at least one reference signal resource, based on the sorted reference signal quality and the signal quality prediction model. , determine the signal quality of other reference signals that were not measured.
  • each receiving beam of the first device has a corresponding identifier, and other unmeasured reference signals are determined based on the beam information of at least one reference signal resource and the signal quality of the reference signal received through the receiving beam.
  • the first device sorts the signal quality of the reference signal according to the identification of the receiving beam, or the first device sorts the signal quality of the reference signal according to the identification of the transmitting beam corresponding to the reference signal, or the first device sorts the signal quality according to the identification of the transmitting beam corresponding to the reference signal.
  • the identification of the receiving beam and the identification of the transmitting beam corresponding to the reference signal rank the signal quality of the reference signal.
  • the signal quality of the sorted reference signals is input into the signal quality prediction model to determine the signal quality of other unmeasured reference signals.
  • the signal quality of at least one reference signal is sorted to obtain a sorted matrix sequence, and the matrix sequence is input into the signal quality prediction model, that is, Signal quality of reference signals other than at least one reference signal may be obtained.
  • the signal quality of the reference signal when ranking the signal quality of at least one reference signal, if there is a reference signal whose signal quality is not measured, the signal quality of the reference signal is set to 0.
  • the matrix sequence of the signal quality prediction model includes 8 parameters.
  • These 8 parameters form a matrix sequence of 1 column and 8 rows, which are respectively the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 1 of the second device; the first device The signal quality corresponding to the receiving beam 1 of the second device and the transmitting beam 2 of the second device; the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 3 of the second device; the receiving beam 1 of the first device and the transmitting beam of the second device The signal quality corresponding to beam 4; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 1 of the second device; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 2 of the second device; the first device The signal quality corresponding to the receiving beam 2 of the second device and the transmitting beam 3 of the second device; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 4 of the second device.
  • the eight signal quality settings in the matrix are as follows: For the reference signal and receiving beam combination in which the first device has measured the signal quality of the reference signal, the corresponding The parameters of are set to the signal quality of the reference signal. For the reference signal and receiving beam combination whose signal quality has not been measured by the first device, the corresponding parameters in the matrix are set to 0, and the subsequent signal quality prediction model evaluates the input The matrix is processed to obtain an output matrix, through which the signal quality of all reference signals can be determined.
  • the obtained matrix is:
  • This matrix can represent the signal quality of each reference signal.
  • the first device groups the signal quality of the at least one reference signal according to the transmit beam identifier and/or the at least one receive beam identifier corresponding to the at least one reference signal resource, based on the signal quality and signal quality of the grouped reference signal. Predictive models that determine the signal quality of other reference signals that are not measured.
  • each receiving beam has a corresponding identifier.
  • the signal quality of the reference signals received through these receiving beams is first measured according to the identifier of the receiving beam. Grouping to obtain the signal quality of reference signals belonging to different groups, and then based on the signal quality of the grouped reference signals and the signal quality prediction model, determine other unmeasured references that are the same as the beam information of the receiving beam corresponding to at least one reference signal The signal quality of the signal.
  • the signal quality of other unmeasured reference signals when determining the signal quality of other unmeasured reference signals, first group the signal qualities of the reference signals sent through these transmit beams according to the identifiers of the transmit beams to obtain the signal qualities of the reference signals belonging to different groups, and then Based on the signal quality of the grouped reference signals and the signal quality prediction model, the signal quality of other unmeasured reference signals that are the same as the beam information of the transmission beam corresponding to the at least one reference signal is determined.
  • the signal quality belonging to the receiving beam 1 is grouped into one group, that is, the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 1 of the second device is divided into one group;
  • the signal quality corresponding to transmit beam 4 is divided into one group.
  • the signal quality corresponding to the transmit beam 3 of the second device; the signal quality corresponding to the receive beam 2 of the first device and the transmit beam 4 of the second device are divided into another group.
  • the signal quality prediction model in the embodiment of the present application is stored in the first device in advance.
  • the signal quality prediction model in the embodiment of the present application is stored in the server, and is sent by the server to the first device, and then the first device predicts the signal quality of the reference signal based on the signal quality prediction model.
  • the beam information includes information on the associated reference signal resource subset of at least one reference signal resource.
  • the beam information indicates at least one reference signal resource used for beam measurement, and may also be configured with a subset of associated reference signal resources associated with at least one reference signal resource, then the beam information may include at least Information about the associated reference signal resource subset of a reference signal resource, so as to indicate the associated reference signal resource.
  • the reference signal resource is configured with an associated associated reference signal resource subset. That is to say, if at least one reference signal resource is multiple, and Each reference signal resource is associated with an associated reference signal resource subset, and multiple reference signal resources are associated with multiple associated reference signal resource subsets.
  • the information about the associated reference signal resource subset includes an associated reference signal resource subset identifier and an identifier of the reference signal resource included in the associated reference signal resource subset.
  • the beam information since the beam information includes a subset of associated reference signal resources associated with at least one reference signal resource, that is to say, the beam information needs to include information indicating a subset of associated reference signal resources, through the associated reference signal resources Subset identifiers are used to indicate a subset of associated reference signal resources, and reference signal resources in each associated reference signal resource subset are indicated by identifiers of reference signal resources.
  • the identifiers of the associated reference signal resource subsets included in the beam information are associated reference signal resource subset A, associated reference signal resource subset B, and associated reference signal resource subset C, and, associated reference signal resource subset A includes associated reference signal resource 1, associated reference signal resource 2 and associated reference signal resource 3.
  • the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in the same reference signal resource set.
  • the reference signal resources included in the associated reference signal resource subset are in different reference signal resource sets from at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in different reference signal resource sets.
  • the reference signal resources included in these associated reference signal resource subsets may belong to the same reference signal resource set as the at least one reference signal resource. , or they may not belong to the same reference signal resource set, which is not limited in the embodiment of this application.
  • the reference signal resource and the associated reference signal resource subset can belong to the same reference signal resource set, or the reference signal resource and the associated reference Signal resource subsets may belong to different reference signal resource sets.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is within the beam direction range of at least one reference signal resource.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction range of the at least one reference signal resource covers the reference signal resources included in the associated reference signal resource subset.
  • the beam direction of at least one reference signal resource is very wide, and the beam corresponding to the reference signal resource included in the associated reference signal resource subset is narrow, so the beam direction of the reference signal resource included in the associated reference signal resource subset Within the beam direction range of at least one reference signal resource.
  • the beam direction range of beam 1 corresponding to reference signal resource 1 is large, and the beam direction and reference signal resource of beam 2 of reference signal resource 2 included in the associated reference signal subset associated with this reference signal resource 1
  • the beam direction of beam 3 of 3 and the beam direction of beam 4 of reference signal resource 4 are both within the range of the beam direction of beam 1.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset in the embodiment of the present application is within the beam direction range of at least one reference signal resource, then based on the signal quality of the at least one reference signal and at least When a reference signal resource predicts the signal quality of other reference signals that have not been measured, the signal quality of the reference signal of at least one reference signal resource in the associated reference signal resource subset is predicted based on the reference signal quality of the reference signal resource with a larger beam direction range. .
  • the associated reference signal resource subset associated with reference signal resource 1 includes 3 reference signal resources, namely reference signal resource 2, reference signal resource 3 and reference signal resource 4, and reference signal resource 2, reference signal resource If the beam directions of signal resource 3 and reference signal resource 4 belong to the beam direction range of reference signal resource 1, the associated reference signal resource sub-unit will be output based on the signal quality of the reference signal of input reference signal resource 1 and the signal quality prediction model.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is adjacent to the beam direction of at least one reference signal resource.
  • adjacent beam directions means that the beam directions of two reference signal resources are adjacent.
  • the beam directions of the reference signal resource include beam direction 2, beam direction 3 and beam direction 4, where beam direction 2 and beam direction 3 are in an adjacent relationship, and beam direction 3 and beam direction 4 are in an adjacent relationship. That is to say, the beam directions of the reference signal resources included in the associated reference signal resource subset are beam 2, beam direction 3 and beam direction 4, and the beam direction of at least one reference signal resource is beam 3, it means that the associated reference signal resource subset
  • the set includes reference signal resources whose beam directions are adjacent to the beam direction of at least one reference signal resource.
  • the beam directions of these associated reference signal resources may be within the beam direction range of the at least one reference signal resource, or may not be at least Within the beam direction range of a reference signal resource, this is not limited in the embodiment of this application.
  • the first dimension direction angle and/or the second dimension direction angle are also different from at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and/or the reference signal included in the associated reference signal resource subset
  • the second dimensional direction angle of the resource is within the second dimensional direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource actually refers to the first dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the first dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the first dimensional direction angle of the beam corresponding to the reference signal resource.
  • the second dimensional direction angle of the reference signal resource actually refers to the second dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the second dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the second dimensional direction angle of the beam corresponding to the reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource.
  • the first-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the first-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the first dimension direction angle of reference signal resource 1 is 30 degrees
  • the first dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the first dimension direction angle of reference signal resource 3 is 90 degrees, it means that the first dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the first dimension direction of at least one reference signal resource. within the angle range.
  • the second type the second dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the second dimensional direction angle range of at least one reference signal resource.
  • the second-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the second-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the second dimension direction angle of reference signal resource 1 is 30 degrees
  • the second dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the second dimension direction angle of reference signal resource 3 is 90 degrees, it means that the second dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the second dimension direction of at least one reference signal resource. within the angle range.
  • the third type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are The second dimension direction angle is within a second dimension direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and/or the reference signal included in the associated reference signal resource subset
  • the second dimensional direction angle of the resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource.
  • the directional and angular adjacency in the first dimension refers to the directional and angular adjacency of the two reference signal resources in the first dimension.
  • the direction angles in the first dimension include 0 degrees, 30 degrees, 60 degrees and 90 degrees, then 0 degrees and 30 degrees are adjacent, 30 degrees and 60 degrees are adjacent, and 60 degrees and 90 degrees are adjacent.
  • the reference signal resource subset included in the associated reference signal resource subset all has a first dimensional direction angle of 30 degrees, and the first dimensional direction angle of at least one reference signal resource is 60 degrees.
  • the reference signal resource subset included in the associated reference signal resource subset The first dimensional direction angle of the signal resource is adjacent to the first dimensional direction angle of the at least one reference signal resource.
  • the second type the second dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the adjacency in the direction and angle in the second dimension means that the two reference signal resources are adjacent in the direction and angle in the second dimension.
  • the direction angles in the second dimension include 0 degrees, 40 degrees, 80 degrees and 120 degrees, then 0 degrees and 40 degrees are adjacent, 40 degrees and 80 degrees are adjacent, and 80 degrees and 120 degrees are adjacent.
  • the reference signal resources included in the subset of associated reference signal resources all have a second dimension direction angle of 80 degrees, and the second dimension direction angle of at least one reference signal resource is 40 degrees.
  • the reference signal resources included in the subset of associated reference signal resources have The second dimensional direction angle of the signal resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the third type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and the reference signal resource included in the associated reference signal resource subset is The second dimension direction angle is adjacent to the second dimension direction angle of at least one reference signal resource.
  • information of associated reference signal resources associated with at least one reference signal resource is added to the beam information, thereby increasing the amount of information in the beam information and thereby improving the accuracy of beam measurement.
  • the beam information also includes a reference signal resource subset corresponding to at least one reference signal resource.
  • the beam information includes a subset of reference signal resources to which at least one reference signal resource belongs.
  • each reference signal resource in at least one reference signal resource has its own reference signal resource subset, and at least one reference signal resource in the beam information also has its own reference signal resource subset, and further The reference signal subset may be indicated by the beam information.
  • the beam information includes an identification of a reference signal resource subset to which each of the at least one reference signal resource belongs.
  • At least one reference signal resource includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the reference signal resource 1 and reference signal resource 2 belong to the reference signal resource subset 1, and the reference signal resource 3 belongs to the reference signal resource subset.
  • the beam direction of each reference signal resource in the reference signal resource subset is adjacent.
  • the beam directions of each reference signal resource in the reference signal resource subset are adjacent. That is to say, the beam direction of each reference signal resource is narrow and does not cover the beam directions of other reference signal resources.
  • the first dimensional direction angle of each reference signal resource in the reference signal resource subset is the same, and/or the second dimensional direction angle of each reference signal resource in the reference signal resource subset is different.
  • the reference signal resource subset includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal resource
  • the second dimension direction angle corresponding to 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the dimension direction angle is angle 4.
  • the number of reference signal resource subsets is at least two, and the first dimension direction angles corresponding to the at least two reference signal resource subsets are different.
  • the first dimension direction angle corresponding to the reference signal resource subset 1 is 30 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 2 is 60 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 3 is 90 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 4 is 120 degrees.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction of the at least one reference signal resource is the same as the beam direction of the reference signal resource included in the associated reference signal resource subset.
  • the directions are adjacent, that is to say, the beam direction of at least one reference signal resource does not cover the beam direction of the reference signal resource included in the associated reference signal resource subset, and the beam direction of the at least one reference signal resource is consistent with the beam direction of the associated reference signal resource subset.
  • the directions are all narrow, thus forming a beam adjacent relationship.
  • At least one reference signal resource is associated with 4 associated reference signal resource subsets, each associated reference signal resource subset includes 4 reference signal resources, and these 4 reference signal resources correspond to different second dimension direction angles.
  • reference signal resource subset 1 includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal
  • the second dimension direction angle corresponding to resource 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the two-dimensional direction angle is angle 4.
  • Reference signal resource subset 2 includes reference signal resource 5, reference signal resource 6, reference signal resource 7, and reference signal resource 8.
  • the first dimension direction angles corresponding to these four reference signal resources are all 60 degrees, and reference signal resource 5
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to reference signal resource 6 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 7 is angle 3
  • the second dimension corresponding to reference signal resource 8 is angle 3.
  • the direction angle is angle 4.
  • Reference signal resource subset 3 includes reference signal resource 9, reference signal resource 10, reference signal resource 11, and reference signal resource 12.
  • the first dimension direction angles corresponding to these four reference signal resources are all 90 degrees, and reference signal resource 9
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to the reference signal resource 10 is angle 2
  • the second dimension direction angle corresponding to the reference signal resource 11 is angle 3
  • the second dimension corresponding to the reference signal resource 12 The direction angle is angle 4.
  • Reference signal resource subset 4 includes reference signal resource 13, reference signal resource 14, reference signal resource 15, and reference signal resource 16.
  • the first dimension direction angles corresponding to these four reference signal resources are all 120 degrees, and reference signal resource 13
  • the corresponding second dimension direction angle is angle 1
  • the reference signal resource 16 corresponds to the second dimension The direction angle is angle 4.
  • the first dimension direction angle of the reference signal resource subset is proportional to the identifier of the reference signal resource subset. That is to say, the greater the identifier of the reference signal resource subset, the larger the reference signal resource subset. The greater the first dimension direction angle.
  • the second dimension direction angle of the reference signal resource included in the reference signal resource subset is proportional to the identifier of the reference signal resource. That is to say, the greater the identifier of the reference signal resource in the reference signal resource subset, the higher the reference signal resource identifier. The larger the angle in the two-dimensional direction.
  • the first dimensional direction of the reference signal resource subset can be determined angle.
  • the angular interval of the first dimensional directional angle between two adjacent reference signal resource subsets based on the first dimensional directional angle range and the number of reference signal resource subsets, and then determine each angular interval based on the angular interval.
  • the value of the first dimension direction angle of the reference signal resource subset is the value of the first dimension direction angle of the reference signal resource subset.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the first dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the first dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the first dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the angle of the first dimension direction angle of the set is 0 degrees
  • the angle of the first dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the angle of the first dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • each reference signal resource subset in the reference signal resource subset can be determined The second dimension direction angle.
  • the angle range of the second dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the second dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the second dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the second dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the second dimension direction angle of the set is 0 degrees
  • the second dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the second dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • the beam information includes parameter information of at least one reference signal resource.
  • the parameter information includes at least one of the following:
  • Each reference signal resource corresponds to a beam, and each beam can be indicated by an identifier.
  • the beam identifier corresponding to the reference signal resource is the ID of the beam.
  • each reference signal resource corresponds to a first dimensional direction angle
  • the first dimensional direction angle has a numerical value
  • the beam information includes the first dimensional direction angle corresponding to each reference signal resource.
  • each reference signal resource corresponds to a second-dimensional direction angle
  • the second-dimensional direction angle has a numerical value
  • the beam information includes the second-dimensional direction angle corresponding to each reference signal resource.
  • the number of first-dimensional direction angles used by the second device when sending the reference signal means the number of first-dimensional direction angles of different values used by the second device.
  • the first dimensional direction angle is the first dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of first dimensional direction angles used, so that the first device determines the number of first dimensional direction angles used by the second device.
  • the first device may also determine based on the number of first dimensional direction angles. The numerical value of each first dimension direction angle.
  • the value of each first-dimensional direction angle can be determined based on the angular range of the first-dimensional direction angle and the number of first-dimensional direction angles.
  • obtain the number of first dimensional direction angles obtain the angular range of the first dimensional directional angles to determine the angular interval between two adjacent first dimensional directional angles, and then determine the angle of each first dimensional directional angle based on the angular interval. numerical value.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of first dimension direction angles is 5, then it is determined that the angular interval between two adjacent first dimension direction angles is 45 degrees, and the first one The angle of the first dimension direction angle is 90 degrees, the angle of the second first dimension direction angle is 45 degrees, the angle of the third first dimension direction angle is 0 degrees, and the angle of the fourth first dimension direction angle is -45 degrees, the fifth first dimension direction angle is -90 degrees.
  • the angle range of the first dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the first dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the number of second-dimensional direction angles used by the second device when sending the reference signal means the number of second-dimensional direction angles of different values used by the second device.
  • the second dimensional direction angle is the second dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of second dimension direction angles used, so that the first device determines the number of second dimension direction angles used by the second device.
  • the first device may also determine based on the number of second dimension direction angles. The numerical value of each second dimension direction angle.
  • the value of each second-dimensional direction angle can be determined based on the angle range of the second-dimensional direction angle and the number of second-dimensional direction angles.
  • obtain the number of second dimensional direction angles then obtain the angular range of the second dimensional directional angles, determine the angular interval between two adjacent second dimensional directional angles, and then determine each second dimensional directional angle based on the angular interval. value.
  • the angle range of the second-dimensional direction angle is 0 to 90 degrees, and the number of second-dimensional direction angles is 4, then it is determined that the angular interval between two adjacent second-dimensional direction angles is 30 degrees, and the first and second The angle of the second dimension direction angle is 0 degrees, the angle of the second second dimension direction angle is 30 degrees, the angle of the third second dimension direction angle is 60 degrees, and the angle of the fourth second dimension direction angle is 90 degrees. .
  • the angle range of the second dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the second dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the first-dimensional direction angle there is an invisible correspondence between the first-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the first-dimensional direction angle or the identification of the first-dimensional direction angle, the first device The identifier of the corresponding transmit beam can be determined based on the value of the first dimension direction angle or the identifier of the first dimension direction angle. Subsequently, the first device can predict other unmeasured signals based on the determined identifier of the transmit beam and the signal quality prediction model. The signal quality of the reference signal.
  • the second-dimensional direction angle there is an invisible correspondence between the second-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the second-dimensional direction angle or the identification of the second-dimensional direction angle, the first device The identifier of the corresponding transmit beam can be determined based on the value of the second dimension direction angle or the identifier of the second dimension direction angle. Subsequently, the first device can predict other unmeasured signals based on the determined identifier of the transmit beam and the signal quality prediction model. The signal quality of the reference signal.
  • the first dimensional direction angle is a horizontal direction angle
  • the second dimensional direction angle is a vertical direction angle
  • the first dimensional direction angle is a vertical direction angle
  • the second dimensional direction angle is a horizontal direction angle. direction angle.
  • the azimuth angle is determined based on the north of the geographical location, and the elevation angle is determined based on the zenith and horizontal direction, that is, elevation is 0 degrees to identify the sky. Top, relative to the horizontal direction is 90 degrees.
  • the azimuth angle is determined based on the X axis of the LCS
  • the elevation angle is based on the Z axis of the LCS, that is, the elevation is 0 and the relative Z axis is 0 degrees
  • the relative X and Y planes are 90 Spend.
  • the antenna array is an antenna array provided in the second device.
  • the antenna array includes antenna elements, and the antenna elements are arranged in a matrix to form the antenna array.
  • the number of antenna elements carried in the beam information indicates how many antenna elements constitute the antenna array.
  • the antenna elements are arranged in a matrix to form an antenna array, and the beam information carries the number of rows of antenna elements to indicate how many rows of antenna elements constitute the antenna array.
  • the beam information carries the number of columns of the antenna elements to indicate how many columns of antenna elements constitute the antenna array.
  • row identifiers in the antenna array are used to represent the row positions of the antenna array in the antenna array elements.
  • the column identifier in the antenna array is used to indicate the column position of the antenna array in the antenna element.
  • multiple antenna array elements are used to form an antenna array.
  • communication is performed through multiple antenna arrays, and for two adjacent antenna arrays, there is a spacing between the two antenna arrays, and the spacing indicates the distance between the antenna arrays.
  • the number of antenna arrays included in the second device is indicated through beam information.
  • the number of antenna arrays is 2, 4 or other values.
  • the position of each antenna array in the second device can be determined through the positions of the above-mentioned antenna array elements in the antenna array and the parameters between the antenna arrays, and different antenna arrays correspond to different Therefore, the transmit beam identity can be determined based on the antenna array, and then the first device can predict the signal quality of other unmeasured reference signals based on the determined transmit beam identity and the signal quality prediction model. In addition, different spacing between antenna elements and different spacing between antenna arrays will affect the antenna gain. After determining the antenna gain based on the above parameters, the subsequent first device can predict the model based on the determined antenna gain and signal quality. , predicting the signal quality of other reference signals that were not measured.
  • the beam information is also used to indicate the energy of the reference signal resource.
  • the beam information includes energy information of at least one reference signal resource, the energy information indicating energy of each of the at least one reference signal resource.
  • the energy of the reference signal resource is represented by power.
  • different reference signal resources correspond to different beam directions. That is to say, the energy of the reference signal resource can also be called the antenna gain in each beam direction.
  • the beam information indicates the energy of one reference signal resource, and the energy information is a differential value relative to the energy of the reference signal resource, through each The difference value represented by the energy information of the reference signal resources indicates the energy of each reference signal resource.
  • the energy of each reference signal resource is indicated through beam information, which improves the accuracy of beam measurement.
  • Figure 5 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application. Referring to Figure 5, the method includes:
  • Step 501 The first device receives beam information sent by the second device.
  • the beam information indicates beam information corresponding to at least one reference signal resource, and the at least one reference signal resource is a resource used for beam measurement.
  • the second device sends beam information indicating that at least one reference signal resource corresponds to the first device, then the first device can receive the beam information sent by the second device, and the at least one reference signal resource is used for beam Measured resources. That is to say, after the second device sends beam information to the first device, the first device can determine relevant information of the reference signal resources of the second device based on the beam information, so that the first device can determine at least one reference signal resource based on at least one reference signal resource. After measuring the reference signal and obtaining the signal quality of at least one reference signal, predict the unmeasured signal quality other than the at least one reference signal based on the measured signal quality of the at least one reference signal and the beam information corresponding to the corresponding reference signal resource. Signal quality of other reference signal resources.
  • the second device may send different reference signals to the first device based on at least one reference signal resource, and the first device measures at least one reference signal based on the at least one reference signal resource to determine each reference signal sent by the second device. the quality of.
  • the beam measurement in the embodiment of this application refers to measuring at least one reference signal to obtain the L1-RSRP (Layer 1 Reference Signal Received Power, Layer 1 Reference Signal Received Power) and/or the L1-RSRP (Layer 1 Reference Signal Received Power) of at least one reference signal resource. Or L1-SINR (Layer 1 Signal to Interference plus Noise Ratio, layer 1 signal to interference plus noise ratio).
  • the reference signal includes SSB (Synchronization Signal Block, synchronization signal block), CSI-RS (Channel State Information Reference Signal, channel state information reference signal), SRS (Sounding Reference Signal, detection reference signal).
  • Beam indication refers to the indication of TCI state.
  • the TCI (Transmission Configuration Indication, transmission indication configuration) state contains at least one QCL (Quasi Co-Location, quasi co-location) type, QCL Type A, QCL Type B, QCL Type C, QCL Type D, where QCL Type D is Receive parameter information, which may be called a beam.
  • Type A, Type B, and Type C include at least one of Doppler frequency shift, Doppler spread, average delay, and delay spread related parameters.
  • the first device is a terminal and the second device is a network device.
  • the first device is a terminal and the second device is a network device
  • the network device sends beam information to the terminal
  • the terminal receives the beam information to determine at least one reference signal resource for beam measurement and Beam information corresponding to at least one reference signal resource
  • the terminal can measure the signal quality of at least one reference signal based on the at least one reference signal resource, and refer to the beam information sent by the network device and the measured signal quality of the at least one reference signal to predict future Measured signal quality of other reference signals.
  • the reference signal resources include SSB (Synchronization Signal Block, synchronization signal block) resources or CSI-RS (Channel State Information Reference Signal, channel state information reference signal) resources.
  • SSB Synchronization Signal Block, synchronization signal block
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • the network device configures reference signal resources for the terminal, and sends SSB or CSI-RS to the terminal through the reference signal resources, so that the terminal can receive the SSB or CSI-RS sent by the network device, and then respond to the SSB or CSI-RS.
  • the RS performs measurements to obtain the signal quality of at least one reference signal, and also predicts the signal quality of other unmeasured reference signals based on the measured signal quality of at least one reference signal and beam information.
  • the first device is a network device
  • the second device is a terminal
  • the network device can determine at least one reference signal resource for beam measurement by receiving the beam information. and the beam information corresponding to the at least one reference signal resource, and then the network device can measure the signal quality of the at least one reference signal based on the at least one reference signal resource, and predict with reference to the beam information sent by the terminal and the measured signal quality of the at least one reference signal. Signal quality of other reference signals not measured.
  • the reference signal resources are SRS resources.
  • the terminal when the reference signal resources configured by the network device for the terminal are SRS resources, the terminal can send SRS to the network device based on the configured reference signal resources, so that the network device can measure the SRS and obtain at least one reference signal. signal quality, and also predicts the signal quality of other unmeasured reference signals based on the measured signal quality of at least one reference signal and beam information.
  • the second device sends beam information indicating at least one reference signal resource used for beam measurement to the first device, so that the first device determines the relationship between the at least one reference signal resource and the corresponding beam, and extends
  • the first device also obtains the information of the transmitted at least one reference signal resource, and the first device also predicts the beam measurement quality based on the beam information of the at least one reference signal resource to improve the accuracy of the beam measurement.
  • the beam information corresponding to at least one reference signal resource is used for the signal quality of the reference signal and the beam information of the first device based on part of the reference signal resource. Predict the signal quality of other reference signals that were not measured.
  • the first device measures at least one reference signal based on at least one reference signal resource to obtain the signal quality of the at least one reference signal, and the first device also measures the at least one reference signal based on the received beam information and the measured at least one
  • the signal quality of a reference signal predicts the signal quality of other reference signals that are not measured.
  • the predicted signal quality of other unmeasured reference signals may include signal quality corresponding to all combinations of receiving beams and reference signals corresponding to the first device; or may be a portion of all combinations of receiving beams and reference signals corresponding to the first device.
  • the combination corresponds to signal quality. For example, only the strongest signal quality of each reference signal that can be obtained when all receiving beams are used to receive each reference signal is predicted.
  • the second device 32 is a network device, and the second device 32 sends different reference signals.
  • the first device 31 is a terminal, and the first device 31 uses at least one receiving beam of itself to receive each reference signal sent by the second device 32 respectively.
  • the second device 32 is a terminal device, and the second device 32 sends different reference signals.
  • the first device 31 is a network device, and the first device 31 uses at least one receiving beam of itself to receive each reference signal sent by the second device respectively.
  • the second device 32 includes transmitting beam 1, transmitting beam 2, transmitting beam 3 and transmitting beam 4, respectively transmits reference signal 1, reference signal 2, reference signal 3 and reference signal 4.
  • the first device 31 includes receiving beam 5, receiving beam 6, receiving beam 7, and receiving beam 8.
  • the first device 31 receives the reference signal sent by the second device 32 through receiving beam 5, receiving beam 6, receiving beam 7, and receiving beam 8 respectively, and also That is to say, the first device 31 can receive the reference signal 1, reference signal 2, reference signal 3 and reference signal 4 sent by the second device 32 through the receiving beam 5, and can also receive the reference signal sent by the second device 32 through the receiving beam 6. 1.
  • Each receiving beam of the first device 31 will receive reference signal 1, reference signal 2, reference signal 3 and reference signal sent by the second device 32 4, and measure the signal quality of each reference signal received by each receive beam.
  • the above description is that the first device 31 measures all combinations of reference signals and receiving beams. In different embodiments, the first device 31 may measure a part of all combinations of reference signals and receiving beams. After measuring the signal quality of the reference signal, the first device 31 also predicts the signal quality of other unmeasured reference signals based on the beam information and the combination of the reference signal and the received beam.
  • the first device determines the signal quality of other unmeasured reference signals except the at least one reference signal based on the signal quality of the at least one reference signal and the beam information corresponding to the at least one reference signal resource.
  • the first device sorts the signal quality of the at least one reference signal according to the transmit beam identifier and/or the at least one receive beam identifier corresponding to the at least one reference signal resource, based on the sorted reference signal quality and the signal quality prediction model. , determine the signal quality of other reference signals that were not measured.
  • each receiving beam of the first device has a corresponding identifier, and other unmeasured reference signals are determined based on the beam information of at least one reference signal resource and the signal quality of the reference signal received through the receiving beam.
  • the first device sorts the signal quality of the reference signal according to the identification of the receiving beam, or the first device sorts the signal quality of the reference signal according to the identification of the transmitting beam corresponding to the reference signal, or the first device sorts the signal quality according to the identification of the transmitting beam corresponding to the reference signal.
  • the identification of the receiving beam and the identification of the transmitting beam corresponding to the reference signal rank the signal quality of the reference signal.
  • the signal quality of the sorted reference signals is input into the signal quality prediction model to determine the signal quality of other reference signals except these reference signals.
  • the signal quality of at least one reference signal is sorted to obtain a sorted matrix sequence, and the matrix sequence is input into the signal quality prediction model, that is, The signal quality of other reference signals that were not measured can be obtained.
  • the signal quality of the reference signal when ranking the signal quality of at least one reference signal, if there is a reference signal whose signal quality is not measured, the signal quality of the reference signal is set to 0.
  • the matrix sequence of the signal quality prediction model includes 8 parameters.
  • These 8 parameters form a matrix sequence of 1 column and 8 rows, which are respectively the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 1 of the second device; the first device The signal quality corresponding to the receiving beam 1 of the second device and the transmitting beam 2 of the second device; the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 3 of the second device; the receiving beam 1 of the first device and the transmitting beam of the second device The signal quality corresponding to beam 4; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 1 of the second device; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 2 of the second device; the first device The signal quality corresponding to the receiving beam 2 of the second device and the transmitting beam 3 of the second device; the signal quality corresponding to the receiving beam 2 of the first device and the transmitting beam 4 of the second device.
  • the eight signal quality settings in the matrix are as follows: For the reference signal and receiving beam combination in which the first device has measured the signal quality of the reference signal, the corresponding The parameters of are set to the signal quality of the reference signal. For the reference signal and receiving beam combination whose signal quality has not been measured by the first device, the corresponding parameters in the matrix are set to 0, and the subsequent signal quality prediction model evaluates the input The matrix is processed to obtain an output matrix, through which the signal quality of all reference signals can be determined.
  • the obtained matrix is:
  • This matrix can represent the signal quality of each reference signal.
  • the first device groups the signal quality of the at least one reference signal according to the transmit beam identifier and/or the at least one receive beam identifier corresponding to the at least one reference signal resource, based on the signal quality and signal quality of the grouped reference signal. Predictive models that determine the signal quality of other reference signals that are not measured.
  • each receiving beam has a corresponding identifier.
  • the signal quality of the reference signals received through these receiving beams is first measured according to the identifier of the receiving beam. Grouping to obtain the signal quality of reference signals belonging to different groups, and then based on the signal quality of the grouped reference signals and the signal quality prediction model, determine other unmeasured references that are the same as the beam information of the receiving beam corresponding to at least one reference signal The signal quality of the signal.
  • the signal quality of other unmeasured reference signals when determining the signal quality of other unmeasured reference signals, first group the signal qualities of the reference signals sent through these transmit beams according to the identifiers of the transmit beams to obtain the signal qualities of the reference signals belonging to different groups, and then Based on the signal quality of the grouped reference signals and the signal quality prediction model, the signal quality of other unmeasured reference signals that are the same as the beam information of the transmission beam corresponding to the at least one reference signal is determined.
  • the signal quality belonging to the receiving beam 1 is grouped into one group, that is, the signal quality corresponding to the receiving beam 1 of the first device and the transmitting beam 1 of the second device is divided into one group;
  • the signal quality corresponding to transmit beam 4 is divided into one group.
  • the signal quality corresponding to the transmit beam 3 of the second device; the signal quality corresponding to the receive beam 2 of the first device and the transmit beam 4 of the second device are divided into another group.
  • the signal quality prediction model in the embodiment of the present application is stored in the first device in advance.
  • the signal quality prediction model in the embodiment of the present application is stored in the server, and is sent by the server to the first device, and then the first device predicts the signal quality of the reference signal based on the signal quality prediction model.
  • the beam information includes information associated with a subset of the reference signal resources of at least one reference signal resource.
  • the beam information indicates at least one reference signal resource used for beam measurement, and may also be configured with a reference signal resource associated with at least one reference signal resource, then the beam information may include at least one reference signal. Information about the associated reference signal resource subset of the resource, in order to indicate the associated reference signal resource.
  • the reference signal resource is configured with an associated associated reference signal resource subset. That is to say, if at least one reference signal resource is multiple, and Each reference signal resource is associated with an associated reference signal resource subset, and multiple reference signal resources are associated with multiple associated reference signal resource subsets.
  • the information about the associated reference signal resource subset includes an associated reference signal resource subset identifier and an identifier of the reference signal resource included in the associated reference signal resource subset.
  • the beam information since the beam information includes a subset of associated reference signal resources associated with at least one reference signal resource, that is to say, the beam information needs to include information indicating a subset of associated reference signal resources, through the associated reference signal resources
  • the subset identifier is used to indicate the associated reference signal resource subset, and the reference signal resource in each associated reference signal resource subset is indicated by the identifier of the reference signal resource.
  • the identifiers of the associated reference signal resource subsets included in the beam information are associated reference signal resource subset A, associated reference signal resource subset B, and associated reference signal resource subset C, and, associated reference signal resource subset A includes associated reference signal resource 1, associated reference signal resource 2 and associated reference signal resource 3.
  • the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in the same reference signal resource set.
  • the reference signal resources included in the associated reference signal resource subset are in different reference signal resource sets from at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in different reference signal resource sets.
  • the reference signal resources included in these associated reference signal resource subsets may belong to the same reference signal resource set as the at least one reference signal resource. , or they may not belong to the same reference signal resource set, which is not limited in the embodiment of this application.
  • the reference signal resource and the associated reference signal resource subset can belong to the same reference signal resource set, or the reference signal resource and the associated reference Signal resource subsets may belong to different reference signal resource sets.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is within the beam direction range of at least one reference signal resource.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction range of the at least one reference signal resource covers the reference signal resources included in the associated reference signal resource subset.
  • the beam direction of at least one reference signal resource is very wide, and the beam corresponding to the reference signal resource included in the associated reference signal resource subset is narrow, so the beam direction of the reference signal resource included in the associated reference signal resource subset Within the beam direction range of at least one reference signal resource.
  • the beam direction range of beam 1 corresponding to reference signal resource 1 is large, and the beam direction and reference signal resource of beam 2 of reference signal resource 2 included in the associated reference signal subset associated with this reference signal resource 1
  • the beam direction of beam 3 of 3 and the beam direction of beam 4 of reference signal resource 4 are both within the range of the beam direction of beam 1.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset in the embodiment of the present application is within the beam direction range of at least one reference signal resource, then based on the signal quality of the at least one reference signal and at least When a reference signal resource predicts the signal quality of other reference signals that have not been measured, the signal quality of the reference signal of at least one reference signal resource in the associated reference signal resource subset is predicted based on the reference signal quality of the reference signal resource with a larger beam direction range. .
  • the associated reference signal resource subset associated with reference signal resource 1 includes 3 reference signal resources, namely reference signal resource 2, reference signal resource 3 and reference signal resource 4, and reference signal resource 2, reference signal resource If the beam directions of signal resource 3 and reference signal resource 4 belong to the beam direction range of reference signal resource 1, the associated reference signal resource sub-unit will be output based on the signal quality of the reference signal of input reference signal resource 1 and the signal quality prediction model.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is adjacent to the beam direction of at least one reference signal resource.
  • adjacent beam directions means that the beam directions of two reference signal resources are adjacent.
  • the beam directions of the reference signal resource include beam direction 2, beam direction 3 and beam direction 4, where beam direction 2 and beam direction 3 are in an adjacent relationship, and beam direction 3 and beam direction 4 are in an adjacent relationship. That is to say, if the beam directions of the reference signal resources included in the associated reference signal resource subset are beam direction 2, beam direction 3 and beam direction 4, and the beam direction of at least one reference signal resource is beam 3, it means that the associated reference signal resource The beam direction of the reference signal resources included in the subset is adjacent to the beam direction of at least one reference signal resource.
  • the beam directions of these associated reference signal resources may be within the beam direction range of the at least one reference signal resource, or may not be at least Within the beam direction range of a reference signal resource, this is not limited in the embodiment of this application.
  • the first dimensional direction angle and the second dimensional direction angle are also different from at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and/or the associated reference signal resource subset includes The second dimensional direction angle of the reference signal resource is within the second dimensional direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource actually refers to the first dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the first dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the first dimensional direction angle of the beam corresponding to the reference signal resource.
  • the second dimensional direction angle of the reference signal resource actually refers to the second dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the second dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the second dimensional direction angle of the beam corresponding to the reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource.
  • the first-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the first-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the first dimension direction angle of reference signal resource 1 is 30 degrees
  • the first dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the first dimension direction angle of reference signal resource 3 is 90 degrees, it means that the first dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the first dimension direction of at least one reference signal resource. within the angle range.
  • the second type the second dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the second dimensional direction angle range of at least one reference signal resource.
  • the second-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the second-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the second dimension direction angle of reference signal resource 1 is 30 degrees
  • the second dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the second dimension direction angle of reference signal resource 3 is 90 degrees, it means that the second dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the second dimension direction of at least one reference signal resource. within the angle range.
  • the third type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are The second dimension direction angle is within a second dimension direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and/or the reference signal included in the associated reference signal resource subset
  • the second dimensional direction angle of the resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource.
  • the directional and angular adjacency in the first dimension refers to the directional and angular adjacency of the two reference signal resources in the first dimension.
  • the direction angles in the first dimension include 0 degrees, 30 degrees, 60 degrees and 90 degrees, then 0 degrees and 30 degrees are adjacent, 30 degrees and 60 degrees are adjacent, and 60 degrees and 90 degrees are adjacent.
  • the reference signal resource subset included in the associated reference signal resource subset all has a first dimensional direction angle of 30 degrees, and the first dimensional direction angle of at least one reference signal resource is 60 degrees.
  • the reference signal resource subset included in the associated reference signal resource subset The first dimensional direction angle of the signal resource is adjacent to the first dimensional direction angle of the at least one reference signal resource.
  • the second type the second dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the adjacency in the direction and angle in the second dimension means that the two reference signal resources are adjacent in the direction and angle in the second dimension.
  • the direction angles in the second dimension include 0 degrees, 40 degrees, 80 degrees and 120 degrees, then 0 degrees and 40 degrees are adjacent, 40 degrees and 80 degrees are adjacent, and 80 degrees and 120 degrees are adjacent.
  • the reference signal resources included in the subset of associated reference signal resources all have a second dimension direction angle of 80 degrees, and the second dimension direction angle of at least one reference signal resource is 40 degrees.
  • the reference signal resources included in the subset of associated reference signal resources have The second dimensional direction angle of the signal resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the third type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and the reference signal resource included in the associated reference signal resource subset is The second dimension direction angle is adjacent to the second dimension direction angle of at least one reference signal resource.
  • the beam information includes a subset of reference signal resources to which at least one reference signal resource belongs.
  • each reference signal resource in at least one reference signal resource has its own reference signal resource subset, and at least one reference signal resource in the beam information also has its own reference signal resource subset, and further The reference signal subset may be indicated by the beam information.
  • the beam information includes an identification of the reference signal resource subset to which each of the at least one reference signal resource belongs.
  • At least one reference signal resource includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the reference signal resource 1 and reference signal resource 2 belong to the reference signal resource subset 1, and the reference signal resource 3 belongs to the reference signal resource subset.
  • the beam direction of each reference signal resource in the reference signal resource subset is adjacent.
  • the beam directions of each reference signal resource in the reference signal resource subset are adjacent. That is to say, the beam direction of each reference signal resource is narrow and does not cover the beam directions of other reference signal resources.
  • the first dimensional direction angle of each reference signal resource in the reference signal resource subset is the same, and the second dimensional direction angle of each reference signal resource in the reference signal resource subset is different.
  • the reference signal resource subset includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal resource
  • the second dimension direction angle corresponding to 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the dimension direction angle is angle 4.
  • the number of reference signal resource subsets is at least two, and the first dimension direction angles corresponding to the at least two reference signal resource subsets are different.
  • the first dimension direction angle corresponding to the reference signal resource subset 1 is 30 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 2 is 60 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 3 is 90 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 4 is 120 degrees.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction of the at least one reference signal resource is the same as the beam direction of the reference signal resource included in the associated reference signal resource subset.
  • the directions are adjacent, that is to say, the beam direction of at least one reference signal resource does not cover the beam direction of the reference signal resource included in the associated reference signal resource subset, and the beam direction of the at least one reference signal resource is consistent with the beam direction of the associated reference signal resource subset.
  • the directions are all narrow, thus forming a beam adjacent relationship.
  • At least one reference signal resource is associated with 4 associated reference signal resource subsets, each associated reference signal resource subset includes 4 reference signal resources, and these 4 reference signal resources correspond to different second dimension direction angles.
  • reference signal resource subset 1 includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal
  • the second dimension direction angle corresponding to resource 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the two-dimensional direction angle is angle 4.
  • Reference signal resource subset 2 includes reference signal resource 5, reference signal resource 6, reference signal resource 7, and reference signal resource 8.
  • the first dimension direction angles corresponding to these four reference signal resources are all 60 degrees, and reference signal resource 5
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to reference signal resource 6 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 7 is angle 3
  • the second dimension corresponding to reference signal resource 8 is angle 3.
  • the direction angle is angle 4.
  • Reference signal resource subset 3 includes reference signal resource 9, reference signal resource 10, reference signal resource 11, and reference signal resource 12.
  • the first dimension direction angles corresponding to these four reference signal resources are all 90 degrees, and reference signal resource 9
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to the reference signal resource 10 is angle 2
  • the second dimension direction angle corresponding to the reference signal resource 11 is angle 3
  • the second dimension corresponding to the reference signal resource 12 The direction angle is angle 4.
  • Reference signal resource subset 4 includes reference signal resource 13, reference signal resource 14, reference signal resource 15, and reference signal resource 16.
  • the first dimension direction angles corresponding to these four reference signal resources are all 120 degrees, and reference signal resource 13
  • the corresponding second dimension direction angle is angle 1
  • the reference signal resource 16 corresponds to the second dimension The direction angle is angle 4.
  • the first dimension direction angle of the reference signal resource subset is proportional to the identifier of the reference signal resource subset. That is to say, the greater the identifier of the reference signal resource subset, the larger the reference signal resource subset. The greater the first dimension direction angle.
  • the second dimension direction angle of the reference signal resource included in the reference signal resource subset is proportional to the identifier of the reference signal resource. That is to say, the greater the identifier of the reference signal resource in the reference signal resource subset, the higher the reference signal resource identifier. The larger the angle in the two-dimensional direction.
  • the first dimensional direction of the reference signal resource subset can be determined angle.
  • the angular interval of the first dimensional directional angle between two adjacent reference signal resource subsets based on the first dimensional directional angle range and the number of reference signal resource subsets, and then determine each angular interval based on the angular interval.
  • the value of the first dimension direction angle of the reference signal resource subset is the value of the first dimension direction angle of the reference signal resource subset.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the first dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the first dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the first dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the angle of the first dimension direction angle of the set is 0 degrees
  • the angle of the first dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the angle of the first dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • each reference signal resource subset in the reference signal resource subset can be determined The second dimension direction angle.
  • the angle range of the second dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the second dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the second dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the second dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the second dimension direction angle of the set is 0 degrees
  • the second dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the second dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • the beam information includes parameter information of at least one reference signal resource.
  • the parameter information includes at least one of the following:
  • Each reference signal resource corresponds to a beam, and each beam can be indicated by an identifier.
  • the beam identifier corresponding to the reference signal resource is the ID of the beam.
  • each reference signal resource corresponds to a first dimensional direction angle
  • the first dimensional direction angle has a numerical value
  • the beam information includes the first dimensional direction angle corresponding to each reference signal resource.
  • each reference signal resource corresponds to a second-dimensional direction angle
  • the second-dimensional direction angle has a numerical value
  • the beam information includes the second-dimensional direction angle corresponding to each reference signal resource.
  • the number of first-dimensional direction angles used by the second device when sending the reference signal means the number of first-dimensional direction angles of different values used by the second device.
  • the first dimensional direction angle is the first dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of first dimensional direction angles used, so that the first device determines the number of first dimensional direction angles used by the second device.
  • the first device may also determine based on the number of first dimensional direction angles. The numerical value of each first dimension direction angle.
  • the value of each first-dimensional direction angle can be determined based on the angle range of the first-dimensional direction angle and the number of first-dimensional direction angles.
  • obtain the number of first dimensional direction angles obtain the angular range of the first dimensional directional angles to determine the angular interval between two adjacent first dimensional directional angles, and then determine the angle of each first dimensional directional angle based on the angular interval. numerical value.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of first dimension direction angles is 5, then it is determined that the angular interval between two adjacent first dimension direction angles is 45 degrees, and the first one The angle of the first dimension direction angle is 90 degrees, the angle of the second first dimension direction angle is 45 degrees, the angle of the third first dimension direction angle is 0 degrees, and the angle of the fourth first dimension direction angle is -45 degrees, the fifth first dimension direction angle is -90 degrees.
  • the angle range of the first dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the first dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the second device indicates the number of second-dimensional direction angles, that is to say, the number of second-dimensional direction angles with different values used by the second device.
  • the second dimensional direction angle is the second dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of second dimension direction angles used, so that the first device determines the number of second dimension direction angles used by the second device.
  • the first device may also determine based on the number of second dimension direction angles. The numerical value of each second dimension direction angle.
  • the value of each second-dimensional direction angle can be determined based on the angle range of the second-dimensional direction angle and the number of second-dimensional direction angles.
  • obtain the number of second dimensional direction angles then obtain the angular range of the second dimensional directional angles, determine the angular interval between two adjacent second dimensional directional angles, and then determine each second dimensional directional angle based on the angular interval. value.
  • the angle range of the second-dimensional direction angle is 0 to 90 degrees, and the number of second-dimensional direction angles is 4, then it is determined that the angular interval between two adjacent second-dimensional direction angles is 30 degrees, and the first and second The angle of the second dimension direction angle is 0 degrees, the angle of the second second dimension direction angle is 30 degrees, the angle of the third second dimension direction angle is 60 degrees, and the angle of the fourth second dimension direction angle is 90 degrees. .
  • the angle range of the second dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the second dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the first-dimensional direction angle there is an invisible correspondence between the first-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the first-dimensional direction angle or the identification of the first-dimensional direction angle, the first device The identifier of the corresponding transmit beam can be determined based on the value of the first dimension direction angle or the identifier of the first dimension direction angle. Subsequently, the first device can predict other unmeasured signals based on the determined identifier of the transmit beam and the signal quality prediction model. The signal quality of the reference signal.
  • the second-dimensional direction angle there is an invisible correspondence between the second-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the second-dimensional direction angle or the identification of the second-dimensional direction angle, the first device The identifier of the corresponding transmit beam can be determined based on the value of the second dimension direction angle or the identifier of the second dimension direction angle. Subsequently, the first device can predict other unmeasured signals based on the determined identifier of the transmit beam and the signal quality prediction model. The signal quality of the reference signal.
  • the first dimensional direction angle is a horizontal direction angle
  • the second dimensional direction angle is a vertical direction angle
  • the first dimensional direction angle is a vertical direction angle
  • the second dimensional direction angle is a horizontal direction angle. direction angle.
  • the azimuth angle is determined based on the north of the geographical location, and the elevation angle is determined based on the zenith and horizontal direction, that is, elevation is 0 degrees to identify the sky. Top, relative to the horizontal direction is 90 degrees.
  • the azimuth angle is determined based on the X axis of the LCS
  • the elevation angle is based on the Z axis of the LCS, that is, the elevation is 0 and the relative Z axis is 0 degrees
  • the relative X and Y planes are 90 Spend.
  • the antenna array is an antenna array provided in the second device.
  • the antenna array includes antenna elements, and the antenna elements are arranged in a matrix to form the antenna array.
  • the number of antenna elements carried in the beam information indicates how many antenna elements constitute the antenna array.
  • the antenna elements are arranged in a matrix to form an antenna array, and the beam information carries the number of rows of antenna elements to indicate how many rows of antenna elements constitute the antenna array.
  • the beam information carries the number of columns of the antenna elements to indicate how many columns of antenna elements constitute the antenna array.
  • row identifiers in the antenna array are used to represent the row positions of the antenna array in the antenna array elements.
  • the column identifier in the antenna array is used to indicate the column position of the antenna array in the antenna element.
  • multiple antenna array elements are used to form an antenna array.
  • communication is performed through multiple antenna arrays, and for two adjacent antenna arrays, there is a spacing between the two antenna arrays, and the spacing indicates the distance between the antenna arrays.
  • the number of antenna arrays included in the second device is indicated through beam information.
  • the number of antenna arrays is 2, 4 or other values.
  • the beam information includes energy information of at least one reference signal resource, the energy information indicating energy of each of the at least one reference signal resource.
  • the position of each antenna array in the second device can be determined through the positions of the above-mentioned antenna array elements in the antenna array and the parameters between the antenna arrays, and different antenna arrays correspond to different Therefore, the transmit beam identity can be determined based on the antenna array, and then the first device can predict the signal quality of other unmeasured reference signals based on the determined transmit beam identity and the signal quality prediction model. In addition, different spacing between antenna elements and different spacing between antenna arrays will affect the antenna gain. After determining the antenna gain based on the above parameters, the subsequent first device can predict the model based on the determined antenna gain and signal quality. , predicting the signal quality of other reference signals that were not measured.
  • the energy of the reference signal resource is represented by power.
  • different reference signal resources correspond to different beam directions. That is to say, the energy of the reference signal resource can also be called the antenna gain in each beam direction.
  • the beam information indicates the energy of one reference signal resource, and the energy information is a differential value relative to the energy of the reference signal resource, through each The difference value represented by the energy information of the reference signal resources indicates the energy of each reference signal resource.
  • Figure 6 shows a flow chart of an information transmission method provided by an exemplary embodiment of the present application. Referring to Figure 6, the method includes:
  • Step 601 The second device sends beam information to the first device, where the beam information indicates beam information corresponding to at least one reference signal resource, and the at least one reference signal resource is a resource used for beam measurement.
  • the second device sends beam information indicating that at least one reference signal resource corresponds to the first device, then the first device can receive the beam information sent by the second device, and the at least one reference signal resource is used for beam Measured resources. That is to say, after the second device sends beam information to the first device, the first device can determine relevant information of the reference signal resources of the second device based on the beam information, so that the first device can determine at least one reference signal resource based on at least one reference signal resource. After measuring the reference signal and obtaining the signal quality of at least one reference signal, predict the unmeasured signal quality other than the at least one reference signal based on the measured signal quality of the at least one reference signal and the beam information corresponding to the corresponding reference signal resource. The signal quality of the reference signal resource.
  • the second device can send different reference signals to the first device based on at least one reference signal resource, and the first device measures the reference signal based on at least one reference signal resource to determine the quality of each reference signal sent by the second device.
  • the beam measurement in the embodiment of this application refers to measuring at least one reference signal to obtain the L1-RSRP (Layer 1 Reference Signal Received Power, Layer 1 Reference Signal Received Power) and/or of at least one reference signal.
  • L1-RSRP Layer 1 Reference Signal Received Power, Layer 1 Reference Signal Received Power
  • L1-SINR Layer 1 Signal to Interference plus Noise Ratio, layer 1 signal to interference plus noise ratio
  • the reference signal includes SSB (Synchronization Signal Block, synchronization signal block), CSI-RS (Channel State Information Reference Signal, channel state information reference signal), SRS (Sounding Reference Signal, detection reference signal).
  • Beam indication refers to the indication of TCI state.
  • the TCI (Transmission Configuration Indication, transmission indication configuration) state contains at least one QCL (Quasi Co-Location, quasi co-location) type, QCL Type A, QCL Type B, QCL Type C, QCL Type D, where QCL Type D is Receive parameter information, which may be called a beam.
  • Type A, Type B, and Type C include at least one of Doppler frequency shift, Doppler spread, average delay, and delay spread related parameters.
  • the first device is a terminal and the second device is a network device.
  • the first device is a terminal and the second device is a network device
  • the network device sends beam information to the terminal
  • the terminal receives the beam information to determine at least one reference signal resource for beam measurement and Beam information corresponding to at least one reference signal resource
  • the terminal can measure the signal quality of the reference signal based on the at least one reference signal resource, and predict the unmeasured signal quality with reference to the beam information sent by the network device and the measured signal quality of the at least one reference signal. Signal quality of other reference signals.
  • the reference signal resources include SSB (Synchronization Signal Block, synchronization signal block) resources or CSI-RS (Channel State Information Reference Signal, channel state information reference signal) resources.
  • SSB Synchronization Signal Block, synchronization signal block
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • the network device configures reference signal resources for the terminal, and sends SSB or CSI-RS to the terminal through the reference signal resources, so that the terminal can receive the SSB or CSI-RS sent by the network device, and then respond to the SSB or CSI-RS.
  • the RS performs measurements to obtain the signal quality of at least one reference signal, and also predicts the signal quality of other unmeasured reference signals based on the measured signal quality of at least one reference signal and beam information.
  • the first device is a network device
  • the second device is a terminal
  • the first device is a network device and the second device is a terminal
  • the network device can determine at least one reference signal resource for beam measurement by receiving the beam information.
  • the beam information corresponding to at least one reference signal resource and then the network device can measure the signal quality of the reference signal based on the at least one reference signal resource, and refer to the beam information sent by the terminal and the signal quality of the measured reference signal to predict other unmeasured The signal quality of the reference signal.
  • the reference signal resources are SRS resources.
  • the terminal when the reference signal resource configured by the network device for the terminal is an SRS resource, the terminal can send the SRS to the network device based on the configured reference signal resource, so that the network device can measure the SRS and obtain the signal of the reference signal. quality, and also predicts the signal quality of other unmeasured reference signals based on the signal quality of the measured reference signal and the beam information.
  • the beam information includes information associated with a subset of the reference signal resources of at least one reference signal resource.
  • the beam information indicates at least one reference signal resource used for beam measurement, and may also be configured with a reference signal resource associated with at least one reference signal resource, then the beam information may include at least one reference signal. Information about the associated reference signal resource subset of the resource, in order to indicate the associated reference signal resource.
  • the reference signal resource is configured with an associated associated reference signal resource subset. That is to say, if at least one reference signal resource is multiple, and Each reference signal resource is associated with an associated reference signal resource subset, and multiple reference signal resources are associated with multiple associated reference signal resource subsets.
  • the information about the associated reference signal resource subset includes an associated reference signal resource subset identifier and an identifier of the reference signal resource included in the associated reference signal resource subset.
  • the beam information since the beam information includes a subset of associated reference signal resources associated with at least one reference signal resource, that is to say, the beam information needs to include information indicating a subset of associated reference signal resources, through the associated reference signal resources
  • the subset identifier is used to indicate the associated reference signal resource subset, and the reference signal resource in each associated reference signal resource subset is indicated by the identifier of the reference signal resource.
  • the identifiers of the associated reference signal resource subsets included in the beam information are associated reference signal resource subset A, associated reference signal resource subset B, and associated reference signal resource subset C, and, associated reference signal resource subset A includes associated reference signal resource 1, associated reference signal resource 2 and associated reference signal resource 3.
  • the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in the same reference signal resource set.
  • the reference signal resources included in the associated reference signal resource subset are in different reference signal resource sets from at least one reference signal resource.
  • At least one reference signal resource is associated with an associated reference signal resource subset, and each associated reference signal resource subset includes at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are related to at least A reference signal resource is in different reference signal resource sets.
  • the reference signal resources included in these associated reference signal resource subsets may belong to the same reference signal resource set as the at least one reference signal resource. , or they may not belong to the same reference signal resource set, which is not limited in the embodiment of this application.
  • the reference signal resource and the associated reference signal resource subset can belong to the same reference signal resource set, or the reference signal resource and the associated reference Signal resource subsets may belong to different reference signal resource sets.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is within the beam direction range of at least one reference signal resource.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction range of the at least one reference signal resource covers the reference signal resources included in the associated reference signal resource subset.
  • the beam direction of at least one reference signal resource is very wide, and the beam corresponding to the reference signal resource included in the associated reference signal resource subset is narrow, so the beam direction of the reference signal resource included in the associated reference signal resource subset Within the beam direction range of at least one reference signal resource.
  • the beam direction range of beam 1 corresponding to reference signal resource 1 is large, and the beam direction and reference signal resource of beam 2 of reference signal resource 2 included in the associated reference signal subset associated with this reference signal resource 1
  • the beam direction of beam 3 of 3 and the beam direction of beam 4 of reference signal resource 4 are both within the range of the beam direction of beam 1.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is adjacent to the beam direction of at least one reference signal resource.
  • adjacent beam directions means that the beam directions of two reference signal resources are adjacent.
  • the beam directions of the reference signal resource include beam direction 2, beam direction 3 and beam direction 4, where beam direction 2 and beam direction 3 are in an adjacent relationship, and beam direction 3 and beam direction 4 are in an adjacent relationship. That is to say, the beam directions of the reference signal resources included in the associated reference signal resource subset are beam 2, beam direction 3 and beam direction 4, and the beam direction of at least one reference signal resource is beam 3, it means that the associated reference signal resource subset
  • the set includes reference signal resources whose beam directions are adjacent to the beam direction of at least one reference signal resource.
  • the beam directions of these associated reference signal resources may be within the beam direction range of the at least one reference signal resource, or may not be at least Within the beam direction range of a reference signal resource, this is not limited in the embodiment of this application.
  • the first dimensional direction angle and the second dimensional direction angle are also different from at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and/or the associated reference signal resource subset includes The second dimensional direction angle of the reference signal resource is within the second dimensional direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource actually refers to the first dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the first dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the first dimensional direction angle of the beam corresponding to the reference signal resource.
  • the second dimensional direction angle of the reference signal resource actually refers to the second dimensional direction angle of the beam corresponding to the reference signal resource. That is to say, the second dimensional direction angle of the reference signal resource in the embodiment of the present application can be replaced by the second dimensional direction angle of the beam corresponding to the reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource.
  • the first-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the first-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the first dimension direction angle of reference signal resource 1 is 30 degrees
  • the first dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the first dimension direction angle of reference signal resource 3 is 90 degrees, it means that the first dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the first dimension direction of at least one reference signal resource. within the angle range.
  • the second type the second dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the second dimensional direction angle range of at least one reference signal resource.
  • the second-dimensional direction angle range of at least one reference signal resource is 0-120 degrees
  • the second-dimensional direction angles of the reference signal resources included in the associated reference signal resource subset are all within the range of 0-120 degrees.
  • the associated reference signal resource subset includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the second dimension direction angle of reference signal resource 1 is 30 degrees
  • the second dimension direction angle of reference signal resource 2 is 60 degrees. degree
  • the second dimension direction angle of reference signal resource 3 is 90 degrees, it means that the second dimension direction angles of the three reference signal resources included in the associated reference signal resource subset all belong to the second dimension direction of at least one reference signal resource. within the angle range.
  • the third type the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and the reference signal resources included in the associated reference signal resource subset are The second dimension direction angle is within a second dimension direction angle range of at least one reference signal resource.
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and/or the reference signal included in the associated reference signal resource subset
  • the second dimensional direction angle of the resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the first type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource.
  • the directional and angular adjacency in the first dimension refers to the directional and angular adjacency of the two reference signal resources in the first dimension.
  • the direction angles in the first dimension include 0 degrees, 30 degrees, 60 degrees and 90 degrees, then 0 degrees and 30 degrees are adjacent, 30 degrees and 60 degrees are adjacent, and 60 degrees and 90 degrees are adjacent.
  • the reference signal resource subset included in the associated reference signal resource subset all has a first dimensional direction angle of 30 degrees, and the first dimensional direction angle of at least one reference signal resource is 60 degrees.
  • the reference signal resource subset included in the associated reference signal resource subset The first dimensional direction angle of the signal resource is adjacent to the first dimensional direction angle of the at least one reference signal resource.
  • the second type the second dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the adjacency in the direction and angle in the second dimension means that the two reference signal resources are adjacent in the direction and angle in the second dimension.
  • the direction angles in the second dimension include 0 degrees, 40 degrees, 80 degrees and 120 degrees, then 0 degrees and 40 degrees are adjacent, 40 degrees and 80 degrees are adjacent, and 80 degrees and 120 degrees are adjacent.
  • the reference signal resources included in the subset of associated reference signal resources all have a second dimension direction angle of 80 degrees, and the second dimension direction angle of at least one reference signal resource is 40 degrees.
  • the reference signal resources included in the subset of associated reference signal resources have The second dimensional direction angle of the signal resource is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the third type the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and the reference signal resource included in the associated reference signal resource subset is The second dimension direction angle is adjacent to the second dimension direction angle of at least one reference signal resource.
  • the beam information includes a subset of reference signal resources to which at least one reference signal resource belongs.
  • each reference signal resource in at least one reference signal resource has its own reference signal resource subset, and at least one reference signal resource in the beam information also has its own reference signal resource subset, and further The reference signal subset may be indicated by the beam information.
  • the beam information includes an identification of a reference signal resource subset to which each of the at least one reference signal resource belongs.
  • At least one reference signal resource includes reference signal resource 1, reference signal resource 2 and reference signal resource 3.
  • the reference signal resource 1 and reference signal resource 2 belong to the reference signal resource subset 1, and the reference signal resource 3 belongs to the reference signal resource subset.
  • the beam direction of each reference signal resource in the reference signal resource subset is adjacent.
  • the beam directions of each reference signal resource in the reference signal resource subset are adjacent. That is to say, the beam direction of each reference signal resource is narrow and does not cover the beam directions of other reference signal resources.
  • the first dimensional direction angle of each reference signal resource in the reference signal resource subset is the same, and the second dimensional direction angle of each reference signal resource in the reference signal resource subset is different.
  • the reference signal resource subset includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal resource
  • the second dimension direction angle corresponding to 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the dimension direction angle is angle 4.
  • the number of reference signal resource subsets is at least two, and the first dimension direction angles corresponding to the at least two reference signal resource subsets are different.
  • the first dimension direction angle corresponding to the reference signal resource subset 1 is 30 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 2 is 60 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 3 is 90 degrees
  • the first dimension direction angle corresponding to the reference signal resource subset 4 is 120 degrees.
  • each reference signal resource corresponds to a beam direction.
  • the beam direction of the at least one reference signal resource is the same as the beam direction of the reference signal resource included in the associated reference signal resource subset.
  • the directions are adjacent, that is to say, the beam direction of at least one reference signal resource does not cover the beam direction of the reference signal resource included in the associated reference signal resource subset, and the beam direction of the at least one reference signal resource is consistent with the beam direction of the associated reference signal resource subset.
  • the directions are all narrow, thus forming a beam adjacent relationship.
  • At least one reference signal resource is associated with 4 associated reference signal resource subsets, each associated reference signal resource subset includes 4 reference signal resources, and these 4 reference signal resources correspond to different second dimension direction angles.
  • reference signal resource subset 1 includes reference signal resource 1, reference signal resource 2, reference signal resource 3, and reference signal resource 4.
  • the first dimension direction angles corresponding to these four reference signal resources are all 30 degrees, and the reference signal
  • the second dimension direction angle corresponding to resource 1 is angle 1
  • the second dimension direction angle corresponding to reference signal resource 2 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 3 is angle 3
  • the second dimension direction angle corresponding to reference signal resource 4 is angle 3.
  • the two-dimensional direction angle is angle 4.
  • Reference signal resource subset 2 includes reference signal resource 5, reference signal resource 6, reference signal resource 7, and reference signal resource 8.
  • the first dimension direction angles corresponding to these four reference signal resources are all 60 degrees, and reference signal resource 5
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to reference signal resource 6 is angle 2
  • the second dimension direction angle corresponding to reference signal resource 7 is angle 3
  • the second dimension corresponding to reference signal resource 8 is angle 3.
  • the direction angle is angle 4.
  • Reference signal resource subset 3 includes reference signal resource 9, reference signal resource 10, reference signal resource 11, and reference signal resource 12.
  • the first dimension direction angles corresponding to these four reference signal resources are all 90 degrees, and reference signal resource 9
  • the corresponding second dimension direction angle is angle 1
  • the second dimension direction angle corresponding to the reference signal resource 10 is angle 2
  • the second dimension direction angle corresponding to the reference signal resource 11 is angle 3
  • the second dimension corresponding to the reference signal resource 12 The direction angle is angle 4.
  • Reference signal resource subset 4 includes reference signal resource 13, reference signal resource 14, reference signal resource 15, and reference signal resource 16.
  • the first dimension direction angles corresponding to these four reference signal resources are all 120 degrees, and reference signal resource 13
  • the corresponding second dimension direction angle is angle 1
  • the reference signal resource 16 corresponds to the second dimension The direction angle is angle 4.
  • the first dimension direction angle of the reference signal resource subset is proportional to the identifier of the reference signal resource subset. That is to say, the greater the identifier of the reference signal resource subset, the larger the reference signal resource subset. The greater the first dimension direction angle.
  • the second dimension direction angle of the reference signal resource included in the reference signal resource subset is proportional to the identifier of the reference signal resource. That is to say, the greater the identifier of the reference signal resource in the reference signal resource subset, the higher the reference signal resource identifier. The larger the angle in the two-dimensional direction.
  • the first dimensional direction of the reference signal resource subset can be determined angle.
  • the angular interval of the first dimensional directional angle between two adjacent reference signal resource subsets based on the first dimensional directional angle range and the number of reference signal resource subsets, and then determine each angular interval based on the angular interval.
  • the value of the first dimension direction angle of the reference signal resource subset is the value of the first dimension direction angle of the reference signal resource subset.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the first dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the first dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the first dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the angle of the first dimension direction angle of the set is 0 degrees
  • the angle of the first dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the angle of the first dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • each reference signal resource subset in the reference signal resource subset can be determined The second dimension direction angle.
  • the angle range of the second dimension direction angle is -90 degrees to 90 degrees, and the number of reference signal resource subsets is 5, then the angular interval of the second dimension direction angles of two adjacent reference signal resource subsets is determined as 45 degrees, the angle of the second dimension direction angle of the first reference signal resource subset is 90 degrees, the angle of the second dimension direction angle of the second reference signal resource subset is 45 degrees, and the angle of the third reference signal resource subset is 45 degrees.
  • the second dimension direction angle of the set is 0 degrees
  • the second dimension direction angle of the fourth reference signal resource subset is -45 degrees
  • the second dimension direction angle of the fifth reference signal resource subset is is -90 degrees.
  • the beam information includes parameter information of at least one reference signal resource.
  • the parameter information includes at least one of the following:
  • Each reference signal resource corresponds to a beam, and each beam can be indicated by an identifier.
  • the beam identifier corresponding to the reference signal resource is the ID of the beam.
  • each reference signal resource corresponds to a first-dimensional direction angle
  • the first-dimensional direction angle has a numerical value
  • the beam information includes the first-dimensional direction angle corresponding to each reference signal resource.
  • each reference signal resource corresponds to a second-dimensional direction angle
  • the second-dimensional direction angle has a numerical value
  • the beam information includes the second-dimensional direction angle corresponding to each reference signal resource.
  • the number of first-dimensional direction angles used by the second device when sending the reference signal means the number of first-dimensional direction angles of different values used by the second device.
  • the first dimensional direction angle is the first dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of first dimensional direction angles used, so that the first device determines the number of first dimensional direction angles used by the second device.
  • the first device may also determine based on the number of first dimensional direction angles. The numerical value of each first dimension direction angle.
  • the value of each first-dimensional direction angle can be determined based on the angle range of the first-dimensional direction angle and the number of first-dimensional direction angles.
  • obtain the number of first dimensional direction angles obtain the angular range of the first dimensional directional angles to determine the angular interval between two adjacent first dimensional directional angles, and then determine the angle of each first dimensional directional angle based on the angular interval. numerical value.
  • the angle range of the first dimension direction angle is -90 degrees to 90 degrees, and the number of first dimension direction angles is 5, then it is determined that the angular interval between two adjacent first dimension direction angles is 45 degrees, and the first one The angle of the first dimension direction angle is 90 degrees, the angle of the second first dimension direction angle is 45 degrees, the angle of the third first dimension direction angle is 0 degrees, and the angle of the fourth first dimension direction angle is -45 degrees, the fifth first dimension direction angle is -90 degrees.
  • the angle range of the first dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the first dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the second device indicates the number of second dimensional direction angles, that is to say, the number of second dimensional direction angles with different values used by the second device.
  • the second dimensional direction angle is the second dimensional direction angle corresponding to the transmission beam of the second device.
  • the second device may indicate the number of second dimension direction angles used, so that the first device determines the number of second dimension direction angles used by the second device.
  • the first device may also determine based on the number of second dimension direction angles. The numerical value of each second dimension direction angle.
  • the value of each second-dimensional direction angle can be determined based on the angle range of the second-dimensional direction angle and the number of second-dimensional direction angles.
  • obtain the number of second dimensional direction angles then obtain the angular range of the second dimensional directional angles, determine the angular interval between two adjacent second dimensional directional angles, and then determine each second dimensional directional angle based on the angular interval. value.
  • the angle range of the second-dimensional direction angle is 0 to 90 degrees, and the number of second-dimensional direction angles is 4, then it is determined that the angular interval between two adjacent second-dimensional direction angles is 30 degrees, and the first and second The angle of the second dimension direction angle is 0 degrees, the angle of the second second dimension direction angle is 30 degrees, the angle of the third second dimension direction angle is 60 degrees, and the angle of the fourth second dimension direction angle is 90 degrees. .
  • the angle range of the second dimensional direction angle in the embodiment of the present application is included in the beam information, or the angular range of the second dimensional direction angle is specified by the protocol, which is not limited in the embodiment of the present application.
  • the first-dimensional direction angle there is an invisible correspondence between the first-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the first-dimensional direction angle or the identification of the first-dimensional direction angle, the first device The identity of the corresponding transmit beam may be determined according to the value of the first dimensional direction angle or the identity of the first dimensional directional angle.
  • the second-dimensional direction angle there is an invisible correspondence between the second-dimensional direction angle and the transmission beam in the embodiment of the present application. That is to say, after the second device indicates the value of the second-dimensional direction angle or the identification of the second-dimensional direction angle, the first device The identity of the corresponding transmit beam may be determined according to the value of the second dimensional direction angle or the identity of the second dimensional directional angle.
  • the first dimensional direction angle is a horizontal direction angle
  • the second dimensional direction angle is a vertical direction angle
  • the first dimensional direction angle is a vertical direction angle
  • the second dimensional direction angle is a horizontal direction angle. direction angle.
  • the azimuth angle is determined based on the north of the geographical location, and the elevation angle is determined based on the zenith and horizontal direction, that is, elevation is 0 degrees to identify the sky. Top, relative to the horizontal direction is 90 degrees.
  • the azimuth angle is determined based on the X axis of the LCS
  • the elevation angle is based on the Z axis of the LCS, that is, the elevation is 0 and the relative Z axis is 0 degrees
  • the relative X and Y planes are 90 Spend.
  • the antenna array is an antenna array provided in the second device.
  • the antenna array includes antenna elements, and the antenna elements are arranged in a matrix to form the antenna array.
  • the number of antenna elements carried in the beam information indicates how many antenna elements constitute the antenna array.
  • the antenna elements are arranged in a matrix to form an antenna array, and the beam information carries the number of rows of antenna elements to indicate how many rows of antenna elements constitute the antenna array.
  • the beam information carries the number of columns of the antenna elements to indicate how many columns of antenna elements constitute the antenna array.
  • row identifiers in the antenna array are used to represent the row positions of the antenna array in the antenna array elements.
  • the column identifier in the antenna array is used to indicate the column position of the antenna array in the antenna element.
  • multiple antenna array elements are used to form an antenna array.
  • communication is performed through multiple antenna arrays, and for two adjacent antenna arrays, there is a spacing between the two antenna arrays, and the spacing indicates the distance between the antenna arrays.
  • the number of antenna arrays included in the second device is indicated through beam information.
  • the number of antenna arrays is 2, 4 or other values.
  • the position of each antenna array in the second device can be determined through the positions of the above-mentioned antenna array elements in the antenna array and the parameters between the antenna arrays, and different antenna arrays correspond to different Therefore, the transmit beam identity can be determined based on the antenna array, and then the first device can predict the signal quality of other unmeasured reference signals based on the determined transmit beam identity and the signal quality prediction model. In addition, different spacing between antenna elements and different spacing between antenna arrays will affect the antenna gain. After determining the antenna gain based on the above parameters, the subsequent first device can predict the model based on the determined antenna gain and signal quality. , predicting the signal quality of other reference signals that were not measured.
  • the beam information includes energy information of at least one reference signal resource, the energy information indicating energy of each of the at least one reference signal resource.
  • the energy of the reference signal resource is represented by power.
  • different reference signal resources correspond to different beam directions. That is to say, the energy of the reference signal resource can also be called the antenna gain in each beam direction.
  • the beam information indicates the energy of one reference signal resource, and the energy information is a differential value relative to the energy of the reference signal resource, through each The difference value represented by the energy information of the reference signal resources indicates the energy of each reference signal resource.
  • Figure 7 shows a block diagram of an information transmission device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 701 is configured to receive beam information sent by the second device, where the beam information indicates beam information corresponding to at least one reference signal resource, and the at least one reference signal resource is a resource used for beam measurement.
  • the beam information includes information associated with a subset of the reference signal resources of at least one reference signal resource.
  • the information about the associated reference signal resource subset includes an associated reference signal resource subset identifier and an identifier of the reference signal resource included in the associated reference signal resource subset.
  • the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource; or the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource.
  • the resources are in different reference signal resource sets.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is within the beam direction range of at least one reference signal resource; or, the beam direction of the reference signal resource included in the associated reference signal resource subset is consistent with at least one The beam directions of one reference signal resource are adjacent.
  • the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and/or the associated reference signal resource subset includes The second dimensional direction angle of the reference signal resource is within the second dimensional direction angle range of at least one reference signal resource;
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and/or the second dimensional direction angle of the reference signal resource included in the associated reference signal resource subset
  • the dimensional direction angle is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the beam information includes a subset of reference signal resources to which at least one reference signal resource belongs.
  • the beam directions of each reference signal within the reference signal resource subset are adjacent.
  • the corresponding first dimensional direction angle of each reference signal in the reference signal resource subset is the same, and the corresponding second dimensional direction angle of each reference signal in the reference signal resource subset is different.
  • the number of reference signal resource subsets is at least two, and the first dimension direction angles corresponding to the at least two reference signal resource subsets are different.
  • the beam information includes parameter information of at least one reference signal resource
  • the parameter information includes at least one of the following:
  • each antenna array The number of antenna elements contained in each antenna array
  • each antenna array The number of rows of antenna elements contained in each antenna array
  • the beam information includes energy information of at least one reference signal resource, the energy information indicating energy of each of the at least one reference signal resource.
  • the first device is a terminal and the second device is a network device.
  • the reference signal resources include SSB or CSI-RS.
  • the first device is a network device and the second device is a terminal.
  • the reference signal resource is SRS.
  • beam measurement refers to measuring L1-RSRP and/or L1-SINR of at least one reference signal resource.
  • Figure 8 shows a block diagram of an information transmission device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 801 is configured to send beam information to the first device, where the beam information indicates beam information corresponding to at least one reference signal resource, and the at least one reference signal resource is a resource used for beam measurement.
  • the beam information includes information associated with a subset of the reference signal resources of at least one reference signal resource.
  • the information about the associated reference signal resource subset includes an associated reference signal resource subset identifier and an identifier of the reference signal resource included in the associated reference signal resource subset.
  • the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource; or the reference signal resources included in the associated reference signal resource subset are in the same reference signal resource set as the at least one reference signal resource.
  • the resources are in different reference signal resource sets.
  • the beam direction of the reference signal resource included in the associated reference signal resource subset is within the beam direction range of at least one reference signal resource; or, the beam direction of the reference signal resource included in the associated reference signal resource subset is consistent with at least one The beam directions of one reference signal resource are adjacent.
  • the first dimensional direction angle of the reference signal resources included in the associated reference signal resource subset is within the first dimensional direction angle range of at least one reference signal resource, and/or the associated reference signal resource subset includes The second dimensional direction angle of the reference signal resource is within the second dimensional direction angle range of at least one reference signal resource;
  • the first dimensional direction angle of the reference signal resource included in the associated reference signal resource subset is adjacent to the first dimensional direction angle of at least one reference signal resource, and/or the second dimensional direction angle of the reference signal resource included in the associated reference signal resource subset
  • the dimensional direction angle is adjacent to the second dimensional direction angle of at least one reference signal resource.
  • the beam information includes a subset of reference signal resources to which at least one reference signal resource belongs.
  • the beam directions of each reference signal within the reference signal resource subset are adjacent.
  • the corresponding first dimensional direction angle of each reference signal in the reference signal resource subset is the same, and the corresponding second dimensional direction angle of each reference signal in the reference signal resource subset is different.
  • the number of reference signal resource subsets is at least two, and the first dimension direction angles corresponding to the at least two reference signal resource subsets are different.
  • the beam information includes parameter information of at least one reference signal resource
  • the parameter information includes at least one of the following:
  • each antenna array The number of antenna elements contained in each antenna array
  • each antenna array The number of rows of antenna elements contained in each antenna array
  • the beam information includes energy information of at least one reference signal resource, the energy information indicating energy of each of the at least one reference signal resource.
  • the first device is a terminal and the second device is a network device.
  • the reference signal resource is SSB or CSI-RS.
  • the first device is a network device and the second device is a terminal.
  • the reference signal resource is SRS.
  • beam measurement refers to measuring L1-RSRP and/or L1-SINR of at least one reference signal resource.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 901, a receiver 902, a transmitter 903, a memory 904 and a bus 905.
  • the processor 901 includes one or more processing cores.
  • the processor 901 executes various functional applications and information processing by running software programs and modules.
  • the receiver 902 and the transmitter 903 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 904 is connected to the processor 901 through a bus 905.
  • the memory 904 can be used to store at least one program code, and the processor 901 is used to execute the at least one program code to implement each step in the above method embodiment.
  • Memory 904 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable read-only Memory (EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Read-Only Memory (SRAM), Read-Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read-Only Memory (PROM).
  • EEPROM electrically erasable programmable read-only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • SRAM Static Read-Only Memory
  • ROM Read-Only Memory
  • Magnetic Memory Flash Memory
  • PROM Programmable Read-Only Memory
  • a computer-readable storage medium is also provided, with executable program code stored in the readable storage medium, and the executable program code is loaded and executed by the processor to implement each of the above methods.
  • the information transmission method performed by the communication device provided by the example.
  • a chip is provided, the chip including programmable logic circuits and/or program instructions, when the chip is run on a first device or a second device, for implementing each method.
  • the information transmission method provided by the example.
  • a computer program product is provided.
  • the computer program product is executed by a processor of a terminal or a network device, it is used to implement the information transmission method provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:第一设备接收第二设备发送的波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源,第一设备确定至少一个参考信号资源及对应的波束的关系,扩展了发送的至少一个参考信号资源的信息,并且第一设备还会基于至少一个参考信号资源的波束信息进行波束测量质量的预测,提高波束测量的准确性。

Description

信息传输方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种信息传输方法、装置、设备及存储介质。
背景技术
在移动通信系统中,网络设备为终端配置用于波束测量的周期性参考信号资源,并且终端基于配置的参考信号资源进行测量,向网络设备反馈测量得到的参考信号质量。但是,采用上述方式配置的参考信号资源单一,导致测量的参考信号质量的准确性差。
发明内容
本申请实施例提供了一种信息传输方法、装置、设备及存储介质,扩展了发送的至少一个参考信号资源的信息,并且第一设备还会基于至少一个参考信号资源的波束信息进行波束测量质量的预测,提高波束测量的准确性。所述技术方案如下:
根据本申请的一个方面,提供了一种信息传输方法,所述方法由第一设备执行,所述方法包括:
接收第二设备发送的波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
根据本申请的一个方面,提供了一种信息传输方法,所述方法由第二设备执行,所述方法包括:
向第一设备发送波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
根据本申请的一个方面,提供了一种信息传输装置,所述装置包括:
接收模块,用于接收第二设备发送的波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
根据本申请的一个方面,提供了一种信息传输装置,所述装置包括:
发送模块,用于向第一设备发送波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
根据本申请的一个方面,提供了一种设备,设备包括:处理器;与处理器相连的收发器;用于存储处理器的可执行指令的存储器;其中,处理器被配置为加载并执行可执行指令以实现如上述方面的信息传输方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,可读存储介质中存储有可执行程序代码,可执行程序代码由处理器加载并执行以实现如上述方面的信息传输方法。
本申请实施例提供的方案中,第二设备向第一设备发送指示用于波束测量的至少一个参考信号资源对应的波束信息,以便于第一设备确定至少一个参考信号资源及对应的波束的关系,扩展了发送的至少一个参考信号资源的信息,并且第一设备还会基于至少一个参考信号资源的波束信息进行波束测量质量的预测,提高波束测量的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图;
图2示出了本申请一个示例性实施例提供的信息传输方法的流程图;
图3示出了本申请一个示例性实施例提供的波束方向示意图;
图4示出了本申请一个示例性实施例提供的波束方向示意图;
图5示出了本申请一个示例性实施例提供的信息传输方法的流程图;
图6示出了本申请一个示例性实施例提供的信息传输方法的流程图;
图7示出了本申请一个示例性实施例提供的信息传输装置的框图;
图8示出了本申请一个示例性实施例提供的信息传输装置的框图;
图9示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
下面,对本申请的应用场景进行说明:
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
网络设备20是一种部署在接入网中用以为终端10提供无线通信功能的装 置。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为网络设备。网络设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。网络设备20的数量可以有多个,两个邻近的网络设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的网络设备20之间进行切换,也即与不同的网络设备20建立连接。
该网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。
需要说明的是,本申请实施例中的第一设备可以为上述实施例中的终端,第二设备可以为上述实施例中的网络设备,或者,第一设备可以为上述实施例中的网络设备,第二设备可以为上述实施例中的终端。一个gNB可以包含一个或多个发送接收点(Transmission Reception Point,TRP),或一个gNB可以包含一个或多个panel(天线面板)。
图2示出了本申请一个示例性实施例提供的信息传输方法的流程图,示例性的可以由如图1所示的第一设备和第二设备执行,该方法包括以下内容中的至少部分内容:
步骤201:第二设备向第一设备发送波束信息,波束信息指示至少一个参考信号资源对应的波束信息,至少一个参考信号资源为用于波束测量的资源。
步骤202:第一设备接收第二设备发送的波束信息。
在本申请实施例中,第二设备向第一设备发送指示至少一个参考信号资源对应的波束信息,则第一设备可以接收第二设备发送的波束信息,并且至少一个参考信号资源是用于波束测量的资源。也就是说,第二设备向第一设备发送波束信息后,第一设备可以根据该波束信息确定第二设备的参考信号资源的相关信息,以便于第一设备基于至少一个参考信号资源对至少一个参考信号进行测量,得到至少一个参考信号的信号质量后,根据测量得到的至少一个参考信号的信号质量,以及对应的参考信号资源对应的波束信息,预测未测量的除至少一个参考信号之外的其它参考信号的信号质量。
其中,第二设备可以基于至少一个参考信号资源,向第一设备发送不同的参考信号,第一设备基于至少一个参考信号资源对参考信号进行测量,以确定 第二设备发送的各个参考信号的质量。
需要说明的是,本申请实施例中的波束测量是指对至少一个参考信号进行测量,得到至少一个参考信号的L1-RSRP(Layer 1 Reference Signal Received Power,层1参考信号接收功率)和/或L1-SINR(Layer 1 Signal to Interference plus Noise Ratio,层1信号与干扰加噪声比)。
该参考信号包括SSB(Synchronization Signal Block,同步信号块),CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号),SRS(Sounding Reference Signal,探测参考信号)。波束指示是指TCI state的指示。其中TCI(Transmission Configuration Indication,传输指示配置)state包含至少一种QCL(Quasi Co-Location,准共址)类型,QCL Type A(准共址类型A),QCL Type B(准共址类型B),QCL Type C(准共址类型C),QCL Type D(准共址类型D),其中QCL Type D为接收参数信息,该接收参数信息可以称为波束。Type A,Type B,Type C包括多普勒频移,多普勒扩展,平均时延和时延扩展相关的参数的至少一项。
在一些实施例中,第一设备为终端,第二设备为网络设备。
在本申请实施例中,若第一设备为终端,第二设备为网络设备,也就是网络设备向终端发送波束信息,终端接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而终端可以基于至少一个参考信号资源测量至少一个参考信号的信号质量,并参考网络设备发送的波束信息以及已测量的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源包括SSB(Synchronization Signal Block,同步信号块)资源或CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)资源。
在本申请实施例中,网络设备为终端配置参考信号资源,通过该参考信号资源向终端发送SSB或CSI-RS,以便于终端接收网络设备发送的SSB或CSI-RS,进而对SSB或CSI-RS进行测量,获取至少一个参考信号的信号质量,并且还会基于已测量的至少一个参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
在另一些实施例中,第一设备为网络设备,第二设备为终端。
在本申请实施例中,若第一设备为网络设备,第二设备为终端,也就是终 端向网络设备发送波束信息,网络设备接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而网络设备可以基于至少一个参考信号资源测量至少一个参考信号的信号质量,并参考终端发送的波束信息以及已测量的参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源为SRS资源。在本申请实施例中,网络设备为终端配置的参考信号资源为SRS资源时,终端可以基于已配置的参考信号资源向网络设备发送SRS,以便于网络设备对SRS进行测量,获取参考信号的信号质量,并且还会基于已测量的参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
需要说明的是,本申请实施例中的终端执行的步骤可以单独实现以形成一个新的实施例,网络设备执行的步骤可以单独实现以形成一个新的实施例。
本申请提供的方案中,第二设备向第一设备发送指示用于波束测量的至少一个参考信号资源对应的波束信息,以便于第一设备确定至少一个参考信号资源及对应的波束的关系,扩展了发送的至少一个参考信号资源的信息,并且第一设备还会基于至少一个参考信号资源的波束信息进行波束测量质量的预测,提高波束测量的准确性。
下面,针对第一设备如何预测未测量的其它参考信号的信号质量进行说明,至少一个参考信号资源对应的波束信息用于第一设备基于部分参考信号资源的参考信号的信号质量和该波束信息,预测未测量的其它参考信号的信号质量。换一种表达方式,第一设备基于至少一个参考信号资源对至少一个参考信号进行测量,得到至少一个参考信号的信号质量,并且第一设备还基于已接收的波束信息,以及测量得到的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
其中,预测的未测量的其它参考信号的信号质量可以是包含对应第一设备的所有接收波束和参考信号组合对应的信号质量;或是对应第一设备的所有接收波束和参考信号组合中的部分组合对应的信号质量。比如只预测出使用所有接收波束接收各个参考信号时,能获得的各个参考信号的最强的信号质量。
在一些实施例中,第二设备32为网络设备,第二设备32发送不同的参考信号。第一设备31为终端,第一设备31使用自身的至少一个接收波束分别接 收第二设备发送的每个参考信号。或第二设备32为终端,第二设备32发送不同的参考信号。第一设备31为网络设备,第一设备31使用自身的至少一个接收波束分别接收第二设备发送的每个参考信号。
例如,如图3所示,第二设备32包括发送波束1、发送波束2、发送波束3和发送波束4,分别发送参考信号1、参考信号2、参考信号3和参考信号4,第一设备31包括接收波束5、接收波束6、接收波束7、接收波束8,第一设备31通过接收波束5、接收波束6、接收波束7、接收波束8分别接收第二设备32发送的参考信号,也就是说,第一设备31可以通过接收波束5接收第二设备32发送的参考信号1、参考信号2、参考信号3和参考信号4,还可以通过接收波束6接收第二设备32发送的参考信号1、参考信号2、参考信号3和参考信号4,以此类推,第一设备31的每个接收波束均会接收第二设备32发送的参考信号1、参考信号2、参考信号3和参考信号4,并测量每个接收波束接收的每个参考信号的信号质量。以上描述是第一设备31测量了所有的参考信号和接收波束的组合,在不同实施例中,第一设备31可以测量所有的参考信号和接收波束的组合的一部分。第一设备31测量参考信号的信号质量后,还会根据波束信息以及参考信号和接收波束的组合,预测未测量的其它参考信号的信号质量。
在一些实施例中,第一设备基于至少一个参考信号的信号质量和至少一个参考信号资源对应的波束信息,确定除至少一个参考信号以外的未测量的其它参考信号的信号质量。
可选地,第一设备按照至少一个参考信号资源对应的发送波束标识和/或至少一个接收波束标识,对至少一个参考信号的信号质量进行排序,基于排序后的参考信号质量和信号质量预测模型,确定未测量的其它参考信号的信号质量。
在本申请实施例中,每个第一设备的接收波束均对应有标识,则在基于至少一个参考信号资源的波束信息以及通过接收波束接收的参考信号的信号质量确定未测量的其它参考信号的信号质量时,第一设备按照接收波束的标识对参考信号的信号质量进行排序,或者,第一设备按照参考信号对应的发送波束的标识对参考信号的信号质量进行排序,或者,第一设备按照接收波束的标识和参考信号对应的发送波束的标识对参考信号的信号质量进行排序。后续再将排序后的参考信号的信号质量输入信号质量预测模型,以确定未测量的其它参考信号的信号质量。
例如,按照第一设备的接收波束的标识和/或发送波束的标识,对至少一个 参考信号的信号质量进行排序,得到排序后的矩阵序列,将该矩阵序列输入到信号质量预测模型中,即可得到除至少一个参考信号以外的其它参考信号的信号质量。
需要说明的是,本申请实施例中在对至少一个参考信号的信号质量进行排序时,若存在未测量到信号质量的参考信号时,将该参考信号的信号质量设置为0。
例如,同时按照接收波束的标识和发送波束的标识对参考信号的信号质量进行排序,第一设备存在2个接收波束,而第二设备通过4个发送波束发送4个参考信号,则此时输入信号质量预测模型的矩阵序列包括8个参数,这8个参数构成1列8行的矩阵序列,分别为第一设备的接收波束1、第二设备的发送波束1对应的信号质量;第一设备的接收波束1、第二设备的发送波束2对应的信号质量;第一设备的接收波束1、第二设备的发送波束3对应的信号质量;第一设备的接收波束1、第二设备的发送波束4对应的信号质量;第一设备的接收波束2、第二设备的发送波束1对应的信号质量;第一设备的接收波束2、第二设备的发送波束2对应的信号质量;第一设备的接收波束2、第二设备的发送波束3对应的信号质量;第一设备的接收波束2、第二设备的发送波束4对应的信号质量。
对于输入信号质量预测模型的矩阵来说,该矩阵中的8个信号质量设置方式为:对于第一设备测量了参考信号的信号质量的参考信号和接收波束组合来说,则将该矩阵中对应的参数设置为该参考信号的信号质量,而对于第一设备未测量信号质量的参考信号和接收波束组合来说,则将该矩阵中对应的参数设置为0,后续信号质量预测模型对输入的矩阵进行处理,得到输出的矩阵,通过该矩阵即可确定所有参考信号的信号质量。
例如,第一设备根据接收波束的标识和发送波束的标识对参考信号的信号质量进行排序后,得到的矩阵为:
Figure PCTCN2022080465-appb-000001
将得到的矩阵输入信号质量预测模型中,基于该信号质量预测模型即可输出处理后的矩阵:
Figure PCTCN2022080465-appb-000002
该矩阵即可表示各个参考信号的信号质量。
可选地,第一设备按照至少一个参考信号资源对应的发送波束标识和/或至少一个接收波束标识,对至少一个参考信号的信号质量进行分组,基于分组后的参考信号的信号质量和信号质量预测模型,确定未测量的其它参考信号的信号质量。
在本申请实施例中,每个接收波束均对应有标识,则在确定未测量的其它参考信号的信号质量时,先按照接收波束的标识,对通过这些接收波束接收的参考信号的信号质量进行分组,以得到属于不同分组的参考信号的信号质量,再基于分组后的参考信号的信号质量和信号质量预测模型,确定与至少一个参考信号对应的接收波束的波束信息相同的未测量的其它参考信号的信号质量。或者,在确定未测量的其它参考信号的信号质量时,先按照发送波束的标识,对通过这些发送波束发送的参考信号的信号质量进行分组,以得到属于不同分组的参考信号的信号质量,再基于分组后的参考信号的信号质量和信号质量预测模型,确定与至少一个参考信号对应的发送波束的波束信息相同的未测量的其它参考信号的信号质量。
根据本申请实施例提供的方案,将同属于接收波束1的信号质量分为一组,也就是说,将第一设备的接收波束1、第二设备的发送波束1对应的信号质量;第一设备的接收波束1、第二设备的发送波束2对应的信号质量;第一设备的接收波束1、第二设备的发送波束3对应的信号质量;第一设备的接收波束1、第二设备的发送波束4对应的信号质量分为一组。将第一设备的接收波束2、第二设备的发送波束1对应的信号质量;第一设备的接收波束2、第二设备的发送波束2对应的信号质量;第一设备的接收波束2、第二设备的发送波束3对应的信号质量;第一设备的接收波束2、第二设备的发送波束4对应的信号质量分为另一组。
其中,本申请实施例对参考信号的信号质量进行预测的方案与上述实施例类似,在此不再赘述。
需要说明的是,本申请实施例中的信号质量预测模型预先存储在第一设备中。或者,本申请实施例中的信号质量预测模型存储在服务器中,由服务器发送给第一设备,进而由第一设备基于该信号质量预测模型预测参考信号的信号质量。
在图2所示的实施例的基础上,波束信息包括至少一个参考信号资源的关联参考信号资源子集的信息。
在本申请实施例中,该波束信息指示用于进行波束测量的至少一个参考信号资源,并且还可以配置有与至少一个参考信号资源关联的关联参考信号资源子集,则该波束信息可以包括至少一个参考信号资源的关联参考信号资源子集的信息,以便于指示关联参考信号资源。
其中,对于至少一个参考信号资源中的每个参考信号资源来说,该参考信号资源均配置有一个关联的关联参考信号资源子集,也就是说,若至少一个参考信号资源为多个,而每个参考信号资源关联有关联参考信号资源子集,则多个参考信号资源关联有多个关联参考信号资源子集。
在一些实施例中,关联参考信号资源子集的信息包括关联参考信号资源子集标识以及关联参考信号资源子集包含的参考信号资源的标识。
在本申请实施例中,由于波束信息包括与至少一个参考信号资源关联的关联参考信号资源子集,也就是说,波束信息中需要包括指示关联参考信号资源子集的信息,通过关联参考信号资源子集标识来指示关联参考信号资源子集, 通过参考信号资源的标识指示每个关联参考信号资源子集中的参考信号资源。
例如,该波束信息中包括的关联参考信号资源子集的标识为关联参考信号资源子集A,关联参考信号资源子集B和关联参考信号资源子集C,并且,关联参考信号资源子集A中包括关联参考信号资源1、关联参考信号资源2和关联参考信号资源3。关联参考信号资源子集B中包括关联参考信号资源4、关联参考信号资源5。关联参考信号资源子集C中包括关联参考信号资源6。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集,并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集,并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
也就是说,对于配置的与至少一个参考信号资源关联的关联参考信号资源子集来说,这些关联参考信号资源子集中包括的参考信号资源可以与至少一个参考信号资源属于同一个参考信号资源集合,或者也可以不属于同一个参考信号资源集合,本申请实施例不做限定。换一种表达方式,对于具有关联关系的参考信号资源和关联参考信号资源子集来说,参考信号资源和关联参考信号资源子集可以同属于一个参考信号资源集合,或者参考信号资源和关联参考信号资源子集可以属于不同的参考信号资源集合。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向范围覆盖了关联参考信号资源子集包括的参考信号资源的波束方向,也就是说至少一个参考信号资源的波束很宽,而关联参考信号资源子集包括的参考信号资源对应的波束较 窄,所以关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内。
例如,参考图4,参考信号资源1对应的波束1的波束方向范围大,并且与该参考信号资源1关联的关联参考信号子集中包括的参考信号资源2的波束2的波束方向、参考信号资源3的波束3的波束方向、参考信号资源4的波束4的波束方向均位于波束1的波束方向范围内。
需要说明的是,若本申请实施例中的关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内,则在基于至少一个参考信号的信号质量以及至少一个参考信号资源预测未测量的其它参考信号的信号质量时,会根据波束方向范围较大的参考信号资源的参考信号质量,预测关联参考信号资源子集中至少一个参考信号资源的参考信号的信号质量。
例如,参考图4,与参考信号资源1关联的关联参考信号资源子集包括3个参考信号资源,分别为参考信号资源2、参考信号资源3和参考信号资源4,并且参考信号资源2、参考信号资源3和参考信号资源4的波束方向属于参考信号资源1的波束方向范围内,则会基于输入的参考信号资源1的参考信号的信号质量,以及信号质量预测模型,输出关联参考信号资源子集包括的参考信号资源2、参考信号资源3和参考信号资源4的参考信号的信号质量。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
其中,波束方向相邻是指两个参考信号资源的波束方向为相邻关系。例如,参考图4,参考信号资源的波束方向包括波束方向2、波束方向3和波束方向4,其中波束方向2与波束方向3为相邻关系,波束方向3和波束方向4为相邻关系。也就是说,关联参考信号资源子集包括的参考信号资源的波束方向为波束2、波束方向3和波束方向4,而至少一个参考信号资源的波束方向为波束3,则说明关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
在本申请实施例中,对于配置与至少一个参考信号资源关联的关联参考信号资源来说,这些关联参考信号资源的波束方向可以在至少一个参考信号资源的波束方向范围内,或者也可以不在至少一个参考信号资源的波束方向范围内,本申请实施例不做限定。
另外,对于关联参考信号资源子集来说,第一维度方向角度和/或第二维度 方向角度与至少一个参考信号资源也不同。
可选地,关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
需要说明的是,本申请实施例中参考信号资源的第一维度方向角度实际上是指参考信号资源对应的波束的第一维度方向角度。也就是说,本申请实施例中参考信号资源的第一维度方向角度均可以替换为参考信号资源对应的波束的第一维度方向角度。本申请实施例中参考信号资源的第二维度方向角度实际上是指参考信号资源对应的波束的第二维度方向角度。也就是说,本申请实施例中参考信号资源的第二维度方向角度均可以替换为参考信号资源对应的波束的第二维度方向角度。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内。
例如,至少一个参考信号资源的第一维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第一维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第一维度方向角度为30度,参考信号资源2的第一维度方向角度为60度,参考信号资源3的第一维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第一维度方向角度均属于至少一个参考信号资源的第一维度方向角度范围内。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
例如,至少一个参考信号资源的第二维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第二维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第二维度方向角度为30度,参考信号资源2的 第二维度方向角度为60度,参考信号资源3的第二维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第二维度方向角度均属于至少一个参考信号资源的第二维度方向角度范围内。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
其中,本申请实施例中两种情况与上述实施例类似,在此不再赘述。
可选地,关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
其中,第一维度方向角度相邻是指两个参考信号资源的第一维度方向角度相邻。例如,第一维度方向角度包括0度、30度、60度和90度,那么0度和30度为相邻,30度和60度为相邻,60度和90度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第一维度方向角度均为30度,至少一个参考信号资源的第一维度方向角度为60度,则说明关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
其中,第二维度方向角度相邻是指两个参考信号资源的第二维度方向角度相邻。例如,第二维度方向角度包括0度、40度、80度和120度,那么0度和40度为相邻,40度和80度为相邻,80度和120度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第二维度方向角度均为80度,至少一个参考信号资源的第二维度方向角度为40度,则说明关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
本申请实施例提供的方案中,在波束信息中新增与至少一个参考信号资源关联的关联参考信号资源的信息,提高波束信息的信息量,进而提高进行波束测量的准确性。
在图2所示的实施例的基础上,波束信息还包括至少一个参考信号资源对应的参考信号资源子集。
在一些实施例中,波束信息包括至少一个参考信号资源所属的参考信号资源子集。
在本申请实施例中,至少一个参考信号资源中的每个参考信号资源均具有所属的参考信号资源子集,该波束信息中通过至少一个参考信号资源也具有所属的参考信号资源子集,还可以通过该波束信息指示参考信号子集。
例如,该波束信息中包括至少一个参考信号资源中每个参考信号资源所属的参考信号资源子集的标识。
例如,至少一个参考信号资源包括参考信号资源1、参考信号资源2和参考信号资源3,该参考信号资源1和参考信号资源2属于参考信号资源子集1,参考信号资源3属于参考信号资源子集2。
可选地,参考信号资源子集内的每个参考信号资源的波束方向为相邻。
在本申请实施例中,参考信号资源子集中的每个参考信号资源的波束方向为相邻,也就是说每个参考信号资源的波束方向较窄,不会覆盖其它参考信号资源的波束方向。
其中,参考信号资源子集内每个参考信号资源的波束方向为相邻与上述实施例中关联参考信号资源子集内每个参考信号资源的波束方向为相邻类似,在此不再赘述。
可选地,参考信号资源子集内的每个参考信号资源的第一维度方向角度相同,和/或参考信号资源子集内的每个参考信号资源的第二维度方向角度不同。
例如,参考信号资源子集包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的 第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
在一些实施例中,参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
例如,参考信号资源子集1对应的第一维度方向角度为30度,参考信号资源子集2对应的第一维度方向角度为60度,参考信号资源子集3对应的第一维度方向角度为90度,参考信号资源子集4对应的第一维度方向角度为120度。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向与关联参考信号资源子集包括的参考信号资源的波束方向相邻,也就是说至少一个参考信号资源的波束方向并未覆盖关联参考信号资源子集包括的参考信号资源的波束方向,至少一个参考信号资源的波束方向与关联参考信号资源子集的波束方向均较窄,因此形成了波束相邻关系。
例如,至少一个参考信号资源关联有4个关联参考信号资源子集,每个关联参考信号资源子集包括4个参考信号资源,并且这4个参考信号资源对应不同的第二维度方向角度。
其中,参考信号资源子集1包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
参考信号资源子集2包括参考信号资源5、参考信号资源6、参考信号资源7、参考信号资源8,这4个参考信号资源对应的第一维度方向角度均为60度,而参考信号资源5对应的第二维度方向角度为角1、参考信号资源6对应的第二维度方向角度为角2、参考信号资源7对应的第二维度方向角度为角3、参考信号资源8对应的第二维度方向角度为角4。
参考信号资源子集3包括参考信号资源9、参考信号资源10、参考信号资源11、参考信号资源12,这4个参考信号资源对应的第一维度方向角度均为90度,而参考信号资源9对应的第二维度方向角度为角1、参考信号资源10对应的第二维度方向角度为角2、参考信号资源11对应的第二维度方向角度为角3、参考信号资源12对应的第二维度方向角度为角4。
参考信号资源子集4包括参考信号资源13、参考信号资源14、参考信号资源15、参考信号资源16,这4个参考信号资源对应的第一维度方向角度均为120度,而参考信号资源13对应的第二维度方向角度为角1、参考信号资源14对应的第二维度方向角度为角2、参考信号资源15对应的第二维度方向角度为角3、参考信号资源16对应的第二维度方向角度为角4。
需要说明的是,上述实施例中参考信号资源子集的第一维度方向角度与参考信号资源子集的标识成正比,也就是说,参考信号资源子集的标识越大,参考信号资源子集的第一维度方向角度越大。另外,参考信号资源子集中包括的参考信号资源的第二维度方向角度与参考信号资源的标识成正比,也就是说,参考信号资源子集中的参考信号资源的标识越大,参考信号资源的第二维度方向角度越大。
在本申请实施例中,若波束信息指示了至少一个参考信号资源的第一维度方向角度范围,并且还包括参考信号资源子集的个数,则可以确定参考信号资源子集的第一维度方向角度。
可选地,根据第一维度方向角度范围与参考信号资源子集的个数,确定相邻两个参考信号资源子集之间的第一维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,参考信号资源子集的数量为5个,则确定相邻两个参考信号资源子集的第一维度方向角度的角度间隔为45度,第一个参考信号资源子集的第一维度方向角度的角度为90度,第二个参考信号资源子集的第一维度方向角度的角度为45度,第三个参考信号资源子集的第一维度方向角度的角度为0度,第四个参考信号资源子集的第一维度方向角度的角度为-45度,第五个参考信号资源子集的第一维度方向角度的角度为-90度。
若波束信息指示了至少一个参考信号资源的第二维度方向角度范围,并且还包括参考信号资源子集中包括的参考信号资源的个数,则可以确定参考信号资源子集中每个参考信号资源子集的第二维度方向角度。
可选地,根据第二维度方向角度范围与参考信号资源子集的个数,确定相邻两个参考信号资源子集之间的第二维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为-90度到90度,参考信号资源子集 的数量为5个,则确定相邻两个参考信号资源子集的第二维度方向角度的角度间隔为45度,第一个参考信号资源子集的第二维度方向角度的角度为90度,第二个参考信号资源子集的第二维度方向角度的角度为45度,第三个参考信号资源子集的第二维度方向角度的角度为0度,第四个参考信号资源子集的第二维度方向角度的角度为-45度,第五个参考信号资源子集的第二维度方向角度的角度为-90度。
在图2所示的实施例的基础上,波束信息包括至少一个参考信号资源的参数信息。其中,参数信息包括以下至少一项:
(1)每个参考信号资源对应的波束标识。
其中,每个参考信号资源对应一个波束,而每个波束均可以采用标识指示。例如,参考信号资源对应的波束标识为该波束的ID。
(2)所有参考信号资源对应的波束总数量。
其中,需要说明的是,本申请实施例中是指第二设备用于发送参考信号的波束信息。
(3)每个参考信号资源对应的第一维度方向角度。
在本申请实施例中,每个参考信号资源对应第一维度方向角度,该第一维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第一维度方向角度。
(4)每个参考信号资源对应的第二维度方向角度。
在本申请实施例中,每个参考信号资源对应第二维度方向角度,该第二维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第二维度方向角度。
(5)第一维度方向角度的数量。
在本申请实施例中,第二设备发送参考信号时使用的第一维度方向角度的数量,也就是说第二设备使用的不同数值的第一维度方向角度的个数。其中,该第一维度方向角度为第二设备的发送波束对应的第一维度方向角度。第二设备可以指示使用的第一维度方向角度的数量,以便于第一设备确定第二设备使用的第一维度方向角度的数量,另外,第一设备还可以基于第一维度方向角度的数量确定每个第一维度方向角度的数值。
在一些实施例中,在确定了第一维度方向角度的数量后,即可根据第一维 度方向角度的角度范围以及第一维度方向角度的数量,确定每个第一维度方向角度的数值。
可选地,获取第一维度方向角度的数量,再获取第一维度方向角度的角度范围确定相邻两个第一维度方向角度的角度间隔,再基于角度间隔确定每个第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,第一维度方向角度的数量为5个,则确定相邻两个第一维度方向角度的角度间隔为45度,第一个第一维度方向角度的角度为90度,第二个第一维度方向角度的角度为45度,第三个第一维度方向角度的角度为0度,第四个第一维度方向角度的角度为-45度,第五个第一维度方向角度的角度为-90度。
需要说明的是,本申请实施例中的第一维度方向角度的角度范围包含于波束信息中,或者,第一维度方向角度的角度范围由协议规定,本申请实施例不作限定。
(6)第二维度方向角度的数量。
在本申请实施例中,第二设备发送参考信号时使用的第二维度方向角度的数量,也就是说第二设备使用的不同数值的第二维度方向角度的个数。其中,该第二维度方向角度为第二设备的发送波束对应的第二维度方向角度。第二设备可以指示使用的第二维度方向角度的数量,以便于第一设备确定第二设备使用的第二维度方向角度的数量,另外,第一设备还可以基于第二维度方向角度的数量确定每个第二维度方向角度的数值。
在一些实施例中,在确定了第二维度方向角度的数量后,即可根据第二维度方向角度的角度范围以及第二维度方向角度的数量,确定每个第二维度方向角度的数值。
可选地,获取第二维度方向角度的数量,再获取第二维度方向角度的角度范围,确定相邻两个第二维度方向角度的角度间隔,再基于角度间隔确定每个第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为0到90度,第二维度方向角度的数量为4个,则确定相邻两个第二维度方向角度的角度间隔为30度,第一个第二维度方向角度的角度为0度,第二个第二维度方向角度的角度为30度,第三个第二维度方向角度的角度为60度,第四个第二维度方向角度的角度为90度。
需要说明的是,本申请实施例中的第二维度方向角度的角度范围包含于波 束信息中,或者,第二维度方向角度的角度范围由协议规定,本申请实施例不作限定。
另外,本申请实施例中的第一维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第一维度方向角度的值或者第一维度方向角度的标识以后,第一设备即可根据该第一维度方向角度的值或者第一维度方向角度的标识确定对应的发送波束的标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
并且,本申请实施例中的第二维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第二维度方向角度的值或者第二维度方向角度的标识以后,第一设备即可根据该第二维度方向角度的值或者第二维度方向角度的标识确定对应的发送波束的标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
需要说明的是,本申请实施例中的第一维度方向角度为水平方向角度,第二维度方向角度为垂直方向角度,或者,第一维度方向角度为垂直方向角度,第二维度方向角度为水平方向角度。
例如,对于GCS(Global Coordinate System,全球协作系统),azimuth angle(方向角)是基于地理位置的北确定,elevation angle(倾斜角)基于天顶和水平方向来确定,即elevation为0度标识天顶,相对水平方向是90度。
对于LCS(Local Coordinate System,本地协作系统),azimuth angle基于LCS的X轴确定,elevation angle是基于LCS的Z轴,即elevation为0标识与相对Z轴为0度,相对X,Y平面为90度。
(7)每个天线阵列包含的天线阵元的数量。
其中,天线阵列为第二设备中设置的天线阵列。天线阵列中包括天线阵元,并且天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的数量,已表示由多少数量的天线阵元构成天线阵列。
(8)每个天线阵列包含的天线阵元的行数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的行数,以表示由多少行数的天线阵元构成天线阵列。
(9)每个天线阵列包含的天线阵元的列数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的列数,以表示由多少列数的天线阵元构成天线阵列。
(10)天线阵元在对应的天线阵列中的行标识。
在本申请实施例中,采用天线阵列中的行标识来表示天线阵列在天线阵元中的行位置。
(11)天线阵元在对应的天线阵列中的列标识。
在本申请实施例中,采用天线阵列中的列标识来表示天线阵列在天线阵元中的列位置。
(12)相邻天线阵元之间的间距。
在本申请实施例中,采用多个天线阵元构成天线阵列,而对于相邻的两个天线阵元来说,这两个天线阵元之间具有间距,通过间距来指示天线阵元之间的距离。
(13)相邻天线阵列之间的间距。
在本申请实施例中,通过多个天线阵列进行通信,而对于相邻的两个天线阵列来说,这两个天线阵列之间具有间距,通过间距来指示天线阵列之间的距离。
(14)天线阵列的数量。
在本申请实施例中,通过波束信息来指示第二设备中包括的天线阵列的数量。例如,该天线阵列的数量为2、4或者其它数值。
需要说明的是,本申请实施例中通过上述天线阵元在天线阵列中的位置,以及天线阵列之间的参数,可以确定第二设备中每个天线阵列的位置,并且不同的天线阵列对应不同的波束,因此基于天线阵列可以确定发送波束标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。另外,天线阵元之间的间距不同,以及天线阵列之间的间距不同,均会影响天线增益,基于上述参数确定天线增益后,后续第一设备即可根据确定的天线增益以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
在图2所示的实施例的基础上,波束信息还用于指示参考信号资源的能量。
在一些实施例中,波束信息包括至少一个参考信号资源的能量信息,能量信息指示至少一个参考信号资源中每个参考信号资源的能量。
在本申请实施例中,参考信号资源的能量采用power表示,另外不同的参考信号资源对应不同的波束方向,也就是说参考信号资源的能量也可以称为是 每个波束方向上的天线增益。
可选地,对于多个参考信号资源中的每个参考信号资源来说,该波束信息指示一个参考信号资源的能量,而能量信息均为相对于该参考信号资源的能量的差分值,通过每个参考信号资源的能量信息表示的差分值来指示每个参考信号资源的能量。
本申请实施例提供的方案中,通过波束信息指示每个参考信号资源的能量,提高了波束测量的准确性。
需要说明的是,上述实施例可以拆分为新实施例,或与其它实施例互相组合为新实施例,本申请对实施例之间的组合不做限定。
图5示出了本申请一个示例性实施例提供的信息传输方法的流程图,参见图5,该方法包括:
步骤501:第一设备接收第二设备发送的波束信息,波束信息指示至少一个参考信号资源对应的波束信息,至少一个参考信号资源为用于波束测量的资源。
在本申请实施例中,第二设备向第一设备发送指示至少一个参考信号资源对应的波束信息,则第一设备可以接收第二设备发送的波束信息,并且至少一个参考信号资源是用于波束测量的资源。也就是说,第二设备向第一设备发送波束信息后,第一设备可以根据该波束信息确定第二设备的参考信号资源的相关信息,以便于第一设备基于至少一个参考信号资源对至少一个参考信号进行测量,得到至少一个参考信号的信号质量后,根据测量得到的至少一个参考信号的信号质量,以及对应的参考信号资源对应的波束信息,预测未测量的除至少一个参考信号之外的其它参考信号资源的信号质量。
其中,第二设备可以基于至少一个参考信号资源,向第一设备发送不同的参考信号,第一设备基于至少一个参考信号资源对至少一个参考信号进行测量,以确定第二设备发送的各个参考信号的质量。
需要说明的是,本申请实施例中的波束测量是指对至少一个参考信号进行测量,得到至少一个参考信号资源的L1-RSRP(Layer 1 Reference Signal Received Power,层1参考信号接收功率)和/或L1-SINR(Layer 1 Signal to Interference plus Noise Ratio,层1信号与干扰加噪声比)。
该参考信号包括SSB(Synchronization Signal Block,同步信号块),CSI-RS (Channel State Information Reference Signal,信道状态信息参考信号),SRS(Sounding Reference Signal,探测参考信号)。波束指示是指TCI state的指示。其中TCI(Transmission Configuration Indication,传输指示配置)state包含至少一种QCL(Quasi Co-Location,准共址)类型,QCL Type A,QCL Type B,QCL Type C,QCL Type D,其中QCL Type D为接收参数信息,该接收参数信息可以称为波束。Type A,Type B,Type C包括多普勒频移,多普勒扩展,平均时延和时延扩展相关的参数的至少一项。
在一些实施例中,第一设备为终端,第二设备为网络设备。
在本申请实施例中,若第一设备为终端,第二设备为网络设备,也就是网络设备向终端发送波束信息,终端接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而终端可以基于至少一个参考信号资源测量至少一个参考信号的信号质量,并参考网络设备发送的波束信息以及已测量的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源包括SSB(Synchronization Signal Block,同步信号块)资源或CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)资源。
在本申请实施例中,网络设备为终端配置参考信号资源,通过该参考信号资源向终端发送SSB或CSI-RS,以便于终端接收网络设备发送的SSB或CSI-RS,进而对SSB或CSI-RS进行测量,获取至少一个参考信号的信号质量,并且还会基于已测量的至少一个参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
在另一些实施例中,第一设备为网络设备,第二设备为终端。
在本申请实施例中,若第一设备为网络设备,第二设备为终端,也就是终端向网络设备发送波束信息,网络设备接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而网络设备可以基于至少一个参考信号资源测量至少一个参考信号的信号质量,并参考终端发送的波束信息以及已测量的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源为SRS资源。在本申请实施例中,网络设备为终端配置的参考信号资源为SRS资源时,终端可以基于已配置的参考信号资源向网 络设备发送SRS,以便于网络设备对SRS进行测量,获取至少一个参考信号的信号质量,并且还会基于已测量的至少一个参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
需要说明的是,本申请实施例中的终端执行的步骤可以单独实现以形成一个新的实施例,网络设备执行的步骤可以单独实现以形成一个新的实施例。
本申请提供的方案中,第二设备向第一设备发送指示用于波束测量的至少一个参考信号资源对应的波束信息,以便于第一设备确定至少一个参考信号资源及对应的波束的关系,扩展了发送的至少一个参考信号资源的信息,并且第一设备还会基于至少一个参考信号资源的波束信息进行波束测量质量的预测,提高波束测量的准确性。
下面,针对第一设备如何预测未测量的其它参考信号的信号质量进行说明,至少一个参考信号资源对应的波束信息用于第一设备基于部分参考信号资源的参考信号的信号质量和该波束信息,预测未测量的其它参考信号的信号质量。换一种表达方式,第一设备基于至少一个参考信号资源对至少一个参考信号进行测量,得到至少一个参考信号的信号质量,并且第一设备还基于已接收的波束信息,以及测量得到的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
其中,预测的未测量的其它参考信号的信号质量可以是包含对应第一设备的所有接收波束和参考信号组合对应的信号质量;或是对应第一设备的所有接收波束和参考信号组合中的部分组合对应的信号质量。比如只预测出使用所有接收波束接收各个参考信号时,能获得的各个参考信号的最强的信号质量。
在一些实施例中,第二设备32为网络设备,第二设备32发送不同的参考信号。第一设备31为终端,第一设备31使用自身的至少一个接收波束分别接收第二设备32发送的每个参考信号。或第二设备32为终端设备,第二设备32发送不同的参考信号。第一设备31为网络设备,第一设备31使用自身的至少一个接收波束分别接收第二设备发送的每个参考信号。
例如,如图3所示,第二设备32包括发送波束1、发送波束2、发送波束3和发送波束4,分别发送参考信号1、参考信号2、参考信号3和参考信号4,第一设备31包括接收波束5、接收波束6、接收波束7、接收波束8,第一设备31通过接收波束5、接收波束6、接收波束7、接收波束8分别接收第二设备32发送的参考信号,也就是说,第一设备31可以通过接收波束5接收第二设备32 发送的参考信号1、参考信号2、参考信号3和参考信号4,还可以通过接收波束6接收第二设备32发送的参考信号1、参考信号2、参考信号3和参考信号4,以此类推,第一设备31的每个接收波束均会接收第二设备32发送的参考信号1、参考信号2、参考信号3和参考信号4,并测量每个接收波束接收的每个参考信号的信号质量。以上描述是第一设备31测量了所有的参考信号和接收波束的组合,在不同实施例中,第一设备31可以测量所有的参考信号和接收波束的组合的一部分。第一设备31测量参考信号的信号质量后,还会根据波束信息以及参考信号和接收波束的组合,预测未测量的其它参考信号的信号质量。
在一些实施例中,第一设备基于至少一个参考信号的信号质量和至少一个参考信号资源对应的波束信息,确定除至少一个参考信号以外的未测量的其它参考信号的信号质量。
可选地,第一设备按照至少一个参考信号资源对应的发送波束标识和/或至少一个接收波束标识,对至少一个参考信号的信号质量进行排序,基于排序后的参考信号质量和信号质量预测模型,确定未测量的其它参考信号的信号质量。
在本申请实施例中,每个第一设备的接收波束均对应有标识,则在基于至少一个参考信号资源的波束信息以及通过接收波束接收的参考信号的信号质量确定未测量的其它参考信号的信号质量时,第一设备按照接收波束的标识对参考信号的信号质量进行排序,或者,第一设备按照参考信号对应的发送波束的标识对参考信号的信号质量进行排序,或者,第一设备按照接收波束的标识和参考信号对应的发送波束的标识对参考信号的信号质量进行排序。后续再将排序后的参考信号的信号质量输入信号质量预测模型,以确定除这些参考信号以外的其它参考信号的信号质量。
例如,按照第一设备的接收波束的标识和/或发送波束的标识,对至少一个参考信号的信号质量进行排序,得到排序后的矩阵序列,将该矩阵序列输入到信号质量预测模型中,即可得到未测量的其它参考信号的信号质量。
需要说明的是,本申请实施例中在对至少一个参考信号的信号质量进行排序时,若存在未测量到信号质量的参考信号时,将该参考信号的信号质量设置为0。
例如,同时按照接收波束的标识和发送波束的标识对参考信号的信号质量进行排序,第一设备存在2个接收波束,而第二设备通过4个发送波束发送4个参考信号,则此时输入信号质量预测模型的矩阵序列包括8个参数,这8个 参数构成1列8行的矩阵序列,分别为第一设备的接收波束1、第二设备的发送波束1对应的信号质量;第一设备的接收波束1、第二设备的发送波束2对应的信号质量;第一设备的接收波束1、第二设备的发送波束3对应的信号质量;第一设备的接收波束1、第二设备的发送波束4对应的信号质量;第一设备的接收波束2、第二设备的发送波束1对应的信号质量;第一设备的接收波束2、第二设备的发送波束2对应的信号质量;第一设备的接收波束2、第二设备的发送波束3对应的信号质量;第一设备的接收波束2、第二设备的发送波束4对应的信号质量。
对于输入信号质量预测模型的矩阵来说,该矩阵中的8个信号质量设置方式为:对于第一设备测量了参考信号的信号质量的参考信号和接收波束组合来说,则将该矩阵中对应的参数设置为该参考信号的信号质量,而对于第一设备未测量信号质量的参考信号和接收波束组合来说,则将该矩阵中对应的参数设置为0,后续信号质量预测模型对输入的矩阵进行处理,得到输出的矩阵,通过该矩阵即可确定所有参考信号的信号质量。
例如,第一设备根据接收波束的标识和发送波束的标识对参考信号的信号质量进行排序后,得到的矩阵为:
Figure PCTCN2022080465-appb-000003
将得到的矩阵输入信号质量预测模型中,基于该信号质量预测模型即可输出处理后的矩阵:
Figure PCTCN2022080465-appb-000004
该矩阵即可表示各个参考信号的信号质量。
可选地,第一设备按照至少一个参考信号资源对应的发送波束标识和/或至少一个接收波束标识,对至少一个参考信号的信号质量进行分组,基于分组后的参考信号的信号质量和信号质量预测模型,确定未测量的其它参考信号的信号质量。
在本申请实施例中,每个接收波束均对应有标识,则在确定未测量的其它参考信号的信号质量时,先按照接收波束的标识,对通过这些接收波束接收的参考信号的信号质量进行分组,以得到属于不同分组的参考信号的信号质量,再基于分组后的参考信号的信号质量和信号质量预测模型,确定与至少一个参考信号对应的接收波束的波束信息相同的未测量的其它参考信号的信号质量。或者,在确定未测量的其它参考信号的信号质量时,先按照发送波束的标识,对通过这些发送波束发送的参考信号的信号质量进行分组,以得到属于不同分组的参考信号的信号质量,再基于分组后的参考信号的信号质量和信号质量预测模型,确定与至少一个参考信号对应的发送波束的波束信息相同的未测量的其它参考信号的信号质量。
根据本申请实施例提供的方案,将同属于接收波束1的信号质量分为一组,也就是说,将第一设备的接收波束1、第二设备的发送波束1对应的信号质量;第一设备的接收波束1、第二设备的发送波束2对应的信号质量;第一设备的接收波束1、第二设备的发送波束3对应的信号质量;第一设备的接收波束1、第二设备的发送波束4对应的信号质量分为一组。将第一设备的接收波束2、第二设备的发送波束1对应的信号质量;第一设备的接收波束2、第二设备的发送波束2对应的信号质量;第一设备的接收波束2、第二设备的发送波束3对应的信号质量;第一设备的接收波束2、第二设备的发送波束4对应的信号质量分为另一组。
其中,本申请实施例对参考信号的信号质量进行预测的方案与上述实施例类似,在此不再赘述。
需要说明的是,本申请实施例中的信号质量预测模型预先存储在第一设备中。或者,本申请实施例中的信号质量预测模型存储在服务器中,由服务器发送给第一设备,进而由第一设备基于该信号质量预测模型预测参考信号的信号质量。
在一些实施例中,波束信息包括至少一个参考信号资源的关联参考信号资源子集的信息。
在本申请实施例中,该波束信息指示用于进行波束测量的至少一个参考信号资源,并且还可以配置有与至少一个参考信号资源关联的参考信号资源,则该波束信息可以包括至少一个参考信号资源的关联参考信号资源子集的信息,以便于指示关联参考信号资源。
其中,对于至少一个参考信号资源中的每个参考信号资源来说,该参考信号资源均配置有一个关联的关联参考信号资源子集,也就是说,若至少一个参考信号资源为多个,而每个参考信号资源关联有关联参考信号资源子集,则多个参考信号资源关联有多个关联参考信号资源子集。
在一些实施例中,关联参考信号资源子集的信息包括关联参考信号资源子集标识以及关联参考信号资源子集包含的参考信号资源的标识。
在本申请实施例中,由于波束信息包括与至少一个参考信号资源关联的关联参考信号资源子集,也就是说,波束信息中需要包括指示关联参考信号资源子集的信息,通过关联参考信号资源子集标识来指示关联参考信号资源子集,通过参考信号资源的标识在指示每个关联参考信号资源子集中的参考信号资源。
例如,该波束信息中包括的关联参考信号资源子集的标识为关联参考信号资源子集A,关联参考信号资源子集B和关联参考信号资源子集C,并且,关联参考信号资源子集A中包括关联参考信号资源1、关联参考信号资源2和关联参考信号资源3。关联参考信号资源子集B中包括关联参考信号资源4、关联参考信号资源5。关联参考信号资源子集C中包括关联参考信号资源6。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集, 并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集,并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
也就是说,对于配置的与至少一个参考信号资源关联的关联参考信号资源子集来说,这些关联参考信号资源子集中包括的参考信号资源可以与至少一个参考信号资源属于同一个参考信号资源集合,或者也可以不属于同一个参考信号资源集合,本申请实施例不做限定。换一种表达方式,对于具有关联关系的参考信号资源和关联参考信号资源子集来说,参考信号资源和关联参考信号资源子集可以同属于一个参考信号资源集合,或者参考信号资源和关联参考信号资源子集可以属于不同的参考信号资源集合。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向范围覆盖了关联参考信号资源子集包括的参考信号资源的波束方向,也就是说至少一个参考信号资源的波束很宽,而关联参考信号资源子集包括的参考信号资源对应的波束较窄,所以关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内。
例如,参考图4,参考信号资源1对应的波束1的波束方向范围大,并且与该参考信号资源1关联的关联参考信号子集中包括的参考信号资源2的波束2的波束方向、参考信号资源3的波束3的波束方向、参考信号资源4的波束4的波束方向均位于波束1的波束方向范围内。
需要说明的是,若本申请实施例中的关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内,则在基于至少一个参考信号的信号质量以及至少一个参考信号资源预测未测量的其它参考信 号的信号质量时,会根据波束方向范围较大的参考信号资源的参考信号质量,预测关联参考信号资源子集中至少一个参考信号资源的参考信号的信号质量。
例如,参考图4,与参考信号资源1关联的关联参考信号资源子集包括3个参考信号资源,分别为参考信号资源2、参考信号资源3和参考信号资源4,并且参考信号资源2、参考信号资源3和参考信号资源4的波束方向属于参考信号资源1的波束方向范围内,则会基于输入的参考信号资源1的参考信号的信号质量,以及信号质量预测模型,输出关联参考信号资源子集包括的参考信号资源2、参考信号资源3和参考信号资源4的参考信号的信号质量。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
其中,波束方向相邻是指两个参考信号资源的波束方向为相邻关系。例如,参考图4,参考信号资源的波束方向包括波束方向2、波束方向3和波束方向4,其中波束方向2与波束方向3为相邻关系,波束方向3和波束方向4为相邻关系。也就是说,关联参考信号资源子集包括的参考信号资源的波束方向为波束方向2、波束方向3和波束方向4,而至少一个参考信号资源的波束方向为波束3,则说明关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
在本申请实施例中,对于配置与至少一个参考信号资源关联的关联参考信号资源来说,这些关联参考信号资源的波束方向可以在至少一个参考信号资源的波束方向范围内,或者也可以不在至少一个参考信号资源的波束方向范围内,本申请实施例不做限定。
另外,对于关联参考信号资源子集来说,第一维度方向角度和第二维度方向角度与至少一个参考信号资源也不同。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
需要说明的是,本申请实施例中参考信号资源的第一维度方向角度实际上是指参考信号资源对应的波束的第一维度方向角度。也就是说,本申请实施例中参考信号资源的第一维度方向角度均可以替换为参考信号资源对应的波束的第一维度方向角度。本申请实施例中参考信号资源的第二维度方向角度实际上 是指参考信号资源对应的波束的第二维度方向角度。也就是说,本申请实施例中参考信号资源的第二维度方向角度均可以替换为参考信号资源对应的波束的第二维度方向角度。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内。
例如,至少一个参考信号资源的第一维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第一维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第一维度方向角度为30度,参考信号资源2的第一维度方向角度为60度,参考信号资源3的第一维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第一维度方向角度均属于至少一个参考信号资源的第一维度方向角度范围内。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
例如,至少一个参考信号资源的第二维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第二维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第二维度方向角度为30度,参考信号资源2的第二维度方向角度为60度,参考信号资源3的第二维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第二维度方向角度均属于至少一个参考信号资源的第二维度方向角度范围内。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
其中,本申请实施例中两种情况与上述实施例类似,在此不再赘述。
可选地,关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,和/或,关联参考信号资源 子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
其中,第一维度方向角度相邻是指两个参考信号资源的第一维度方向角度相邻。例如,第一维度方向角度包括0度、30度、60度和90度,那么0度和30度为相邻,30度和60度为相邻,60度和90度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第一维度方向角度均为30度,至少一个参考信号资源的第一维度方向角度为60度,则说明关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
其中,第二维度方向角度相邻是指两个参考信号资源的第二维度方向角度相邻。例如,第二维度方向角度包括0度、40度、80度和120度,那么0度和40度为相邻,40度和80度为相邻,80度和120度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第二维度方向角度均为80度,至少一个参考信号资源的第二维度方向角度为40度,则说明关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在一些实施例中,波束信息包括至少一个参考信号资源所属的参考信号资源子集。
在本申请实施例中,至少一个参考信号资源中的每个参考信号资源均具有所属的参考信号资源子集,该波束信息中通过至少一个参考信号资源也具有所属的参考信号资源子集,还可以通过该波束信息指示参考信号子集。
例如,该波束信息中包括至少一个参考信号资源中每个参考信号资源所属 的参考信号资源子集的标识。
例如,至少一个参考信号资源包括参考信号资源1、参考信号资源2和参考信号资源3,该参考信号资源1和参考信号资源2属于参考信号资源子集1,参考信号资源3属于参考信号资源子集2。
可选地,参考信号资源子集内的每个参考信号资源的波束方向为相邻。
在本申请实施例中,参考信号资源子集中的每个参考信号资源的波束方向为相邻,也就是说每个参考信号资源的波束方向较窄,不会覆盖其它参考信号资源的波束方向。
其中,参考信号资源子集内每个参考信号资源的波束方向为相邻与上述实施例中关联参考信号资源子集内每个参考信号资源的波束方向为相邻类似,在此不再赘述。
可选地,参考信号资源子集内的每个参考信号资源的第一维度方向角度相同,参考信号资源子集内的每个参考信号资源的第二维度方向角度不同。
例如,参考信号资源子集包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
在一些实施例中,参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
例如,参考信号资源子集1对应的第一维度方向角度为30度,参考信号资源子集2对应的第一维度方向角度为60度,参考信号资源子集3对应的第一维度方向角度为90度,参考信号资源子集4对应的第一维度方向角度为120度。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向与关联参考信号资源子集包括的参考信号资源的波束方向相邻,也就是说至少一个参考信号资源的波束方向并未覆盖关联参考信号资源子集包括的参考信号资源的波束方向,至少一个参考信号资源的波束方向与关联参考信号资源子集的波束方向均较窄,因此形成了波束相邻关系。
例如,至少一个参考信号资源关联有4个关联参考信号资源子集,每个关联参考信号资源子集包括4个参考信号资源,并且这4个参考信号资源对应不 同的第二维度方向角度。
其中,参考信号资源子集1包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
参考信号资源子集2包括参考信号资源5、参考信号资源6、参考信号资源7、参考信号资源8,这4个参考信号资源对应的第一维度方向角度均为60度,而参考信号资源5对应的第二维度方向角度为角1、参考信号资源6对应的第二维度方向角度为角2、参考信号资源7对应的第二维度方向角度为角3、参考信号资源8对应的第二维度方向角度为角4。
参考信号资源子集3包括参考信号资源9、参考信号资源10、参考信号资源11、参考信号资源12,这4个参考信号资源对应的第一维度方向角度均为90度,而参考信号资源9对应的第二维度方向角度为角1、参考信号资源10对应的第二维度方向角度为角2、参考信号资源11对应的第二维度方向角度为角3、参考信号资源12对应的第二维度方向角度为角4。
参考信号资源子集4包括参考信号资源13、参考信号资源14、参考信号资源15、参考信号资源16,这4个参考信号资源对应的第一维度方向角度均为120度,而参考信号资源13对应的第二维度方向角度为角1、参考信号资源14对应的第二维度方向角度为角2、参考信号资源15对应的第二维度方向角度为角3、参考信号资源16对应的第二维度方向角度为角4。
需要说明的是,上述实施例中参考信号资源子集的第一维度方向角度与参考信号资源子集的标识成正比,也就是说,参考信号资源子集的标识越大,参考信号资源子集的第一维度方向角度越大。另外,参考信号资源子集中包括的参考信号资源的第二维度方向角度与参考信号资源的标识成正比,也就是说,参考信号资源子集中的参考信号资源的标识越大,参考信号资源的第二维度方向角度越大。
在本申请实施例中,若波束信息指示了至少一个参考信号资源的第一维度方向角度范围,并且还包括参考信号资源子集的个数,则可以确定参考信号资源子集的第一维度方向角度。
可选地,根据第一维度方向角度范围与参考信号资源子集的个数,确定相 邻两个参考信号资源子集之间的第一维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,参考信号资源子集的数量为5个,则确定相邻两个参考信号资源子集的第一维度方向角度的角度间隔为45度,第一个参考信号资源子集的第一维度方向角度的角度为90度,第二个参考信号资源子集的第一维度方向角度的角度为45度,第三个参考信号资源子集的第一维度方向角度的角度为0度,第四个参考信号资源子集的第一维度方向角度的角度为-45度,第五个参考信号资源子集的第一维度方向角度的角度为-90度。
若波束信息指示了至少一个参考信号资源的第二维度方向角度范围,并且还包括参考信号资源子集中包括的参考信号资源的个数,则可以确定参考信号资源子集中每个参考信号资源子集的第二维度方向角度。
可选地,根据第二维度方向角度范围与参考信号资源子集的个数,确定相邻两个参考信号资源子集之间的第二维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为-90度到90度,参考信号资源子集的数量为5个,则确定相邻两个参考信号资源子集的第二维度方向角度的角度间隔为45度,第一个参考信号资源子集的第二维度方向角度的角度为90度,第二个参考信号资源子集的第二维度方向角度的角度为45度,第三个参考信号资源子集的第二维度方向角度的角度为0度,第四个参考信号资源子集的第二维度方向角度的角度为-45度,第五个参考信号资源子集的第二维度方向角度的角度为-90度。
在图2所示的实施例的基础上,波束信息包括至少一个参考信号资源的参数信息。
其中,参数信息包括以下至少一项:
(1)每个参考信号资源对应的波束标识。
其中,每个参考信号资源对应一个波束,而每个波束均可以采用标识指示。例如,参考信号资源对应的波束标识为该波束的ID。
(2)所有参考信号资源对应的波束总数量。
其中,需要说明的是,本申请实施例中是指第二设备用于发送参考信号的波束信息。
(3)每个参考信号资源对应的第一维度方向角度。
在本申请实施例中,每个参考信号资源对应第一维度方向角度,该第一维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第一维度方向角度。
(4)每个参考信号资源对应的第二维度方向角度。
在本申请实施例中,每个参考信号资源对应第二维度方向角度,该第二维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第二维度方向角度。
(5)第一维度方向角度的数量。
在本申请实施例中,第二设备发送参考信号时使用的第一维度方向角度的数量,也就是说第二设备使用的不同数值的第一维度方向角度的个数。其中,该第一维度方向角度为第二设备的发送波束对应的第一维度方向角度。第二设备可以指示使用的第一维度方向角度的数量,以便于第一设备确定第二设备使用的第一维度方向角度的数量,另外,第一设备还可以基于第一维度方向角度的数量确定每个第一维度方向角度的数值。
在一些实施例中,在确定了第一维度方向角度的数量后,即可根据第一维度方向角度的角度范围以及第一维度方向角度的数量,确定每个第一维度方向角度的数值。
可选地,获取第一维度方向角度的数量,再获取第一维度方向角度的角度范围确定相邻两个第一维度方向角度的角度间隔,再基于角度间隔确定每个第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,第一维度方向角度的数量为5个,则确定相邻两个第一维度方向角度的角度间隔为45度,第一个第一维度方向角度的角度为90度,第二个第一维度方向角度的角度为45度,第三个第一维度方向角度的角度为0度,第四个第一维度方向角度的角度为-45度,第五个第一维度方向角度的角度为-90度。
需要说明的是,本申请实施例中的第一维度方向角度的角度范围包含于波束信息中,或者,第一维度方向角度的角度范围由协议规定,本申请实施例不作限定。
(6)第二维度方向角度的数量。
在本申请实施例中,第二设备指示第二维度方向角度的数量,也就是说第 二设备使用的不同数值的第二维度方向角度的个数。其中,该第二维度方向角度为第二设备的发送波束对应的第二维度方向角度。第二设备可以指示使用的第二维度方向角度的数量,以便于第一设备确定第二设备使用的第二维度方向角度的数量,另外,第一设备还可以基于第二维度方向角度的数量确定每个第二维度方向角度的数值。
在一些实施例中,在确定了第二维度方向角度的数量后,即可根据第二维度方向角度的角度范围以及第二维度方向角度的数量,确定每个第二维度方向角度的数值。
可选地,获取第二维度方向角度的数量,再获取第二维度方向角度的角度范围,确定相邻两个第二维度方向角度的角度间隔,再基于角度间隔确定每个第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为0到90度,第二维度方向角度的数量为4个,则确定相邻两个第二维度方向角度的角度间隔为30度,第一个第二维度方向角度的角度为0度,第二个第二维度方向角度的角度为30度,第三个第二维度方向角度的角度为60度,第四个第二维度方向角度的角度为90度。
需要说明的是,本申请实施例中的第二维度方向角度的角度范围包含于波束信息中,或者,第二维度方向角度的角度范围由协议规定,本申请实施例不作限定。
另外,本申请实施例中的第一维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第一维度方向角度的值或者第一维度方向角度的标识以后,第一设备即可根据该第一维度方向角度的值或者第一维度方向角度的标识确定对应的发送波束的标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
并且,本申请实施例中的第二维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第二维度方向角度的值或者第二维度方向角度的标识以后,第一设备即可根据该第二维度方向角度的值或者第二维度方向角度的标识确定对应的发送波束的标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
需要说明的是,本申请实施例中的第一维度方向角度为水平方向角度,第二维度方向角度为垂直方向角度,或者,第一维度方向角度为垂直方向角度,第二维度方向角度为水平方向角度。
例如,对于GCS(Global Coordinate System,全球协作系统),azimuth angle(方向角)是基于地理位置的北确定,elevation angle(倾斜角)基于天顶和水平方向来确定,即elevation为0度标识天顶,相对水平方向是90度。
对于LCS(Local Coordinate System,本地协作系统),azimuth angle基于LCS的X轴确定,elevation angle是基于LCS的Z轴,即elevation为0标识与相对Z轴为0度,相对X,Y平面为90度。
(7)每个天线阵列包含的天线阵元的数量。
其中,天线阵列为第二设备中设置的天线阵列。天线阵列中包括天线阵元,并且天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的数量,已表示由多少数量的天线阵元构成天线阵列。
(8)每个天线阵列包含的天线阵元的行数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的行数,以表示由多少行数的天线阵元构成天线阵列。
(9)每个天线阵列包含的天线阵元的列数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的列数,以表示由多少列数的天线阵元构成天线阵列。
(10)天线阵元在对应的天线阵列中的行标识。
在本申请实施例中,采用天线阵列中的行标识来表示天线阵列在天线阵元中的行位置。
(11)天线阵元在对应的天线阵列中的列标识。
在本申请实施例中,采用天线阵列中的列标识来表示天线阵列在天线阵元中的列位置。
(12)相邻天线阵元之间的间距。
在本申请实施例中,采用多个天线阵元构成天线阵列,而对于相邻的两个天线阵元来说,这两个天线阵元之间具有间距,通过间距来指示天线阵元之间的距离。
(13)相邻天线阵列之间的间距。
在本申请实施例中,通过多个天线阵列进行通信,而对于相邻的两个天线阵列来说,这两个天线阵列之间具有间距,通过间距来指示天线阵列之间的距离。
(14)天线阵列的数量。
在本申请实施例中,通过波束信息来指示第二设备中包括的天线阵列的数量。例如,该天线阵列的数量为2、4或者其它数值。
在一些实施例中,波束信息包括至少一个参考信号资源的能量信息,能量信息指示至少一个参考信号资源中每个参考信号资源的能量。
需要说明的是,本申请实施例中通过上述天线阵元在天线阵列中的位置,以及天线阵列之间的参数,可以确定第二设备中每个天线阵列的位置,并且不同的天线阵列对应不同的波束,因此基于天线阵列可以确定发送波束标识,后续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。另外,天线阵元之间的间距不同,以及天线阵列之间的间距不同,均会影响天线增益,基于上述参数确定天线增益后,后续第一设备即可根据确定的天线增益以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
在本申请实施例中,参考信号资源的能量采用power表示,另外不同的参考信号资源对应不同的波束方向,也就是说参考信号资源的能量也可以称为是每个波束方向上的天线增益。
可选地,对于多个参考信号资源中的每个参考信号资源来说,该波束信息指示一个参考信号资源的能量,而能量信息均为相对于该参考信号资源的能量的差分值,通过每个参考信号资源的能量信息表示的差分值来指示每个参考信号资源的能量。
需要说明的是,本申请实施例中所执行的步骤与上述实施例中所执行的步骤类似,在此不再赘述。
图6示出了本申请一个示例性实施例提供的信息传输方法的流程图,参见图6,该方法包括:
步骤601:第二设备向第一设备发送波束信息,波束信息指示至少一个参考信号资源对应的波束信息,至少一个参考信号资源为用于波束测量的资源。
在本申请实施例中,第二设备向第一设备发送指示至少一个参考信号资源对应的波束信息,则第一设备可以接收第二设备发送的波束信息,并且至少一个参考信号资源是用于波束测量的资源。也就是说,第二设备向第一设备发送波束信息后,第一设备可以根据该波束信息确定第二设备的参考信号资源的相关信息,以便于第一设备基于至少一个参考信号资源对至少一个参考信号进行 测量,得到至少一个参考信号的信号质量后,根据测量得到的至少一个参考信号的信号质量,以及对应的参考信号资源对应的波束信息,预测未测量的除至少一个参考信号之外的参考信号资源的信号质量。
其中,第二设备可以基于至少一个参考信号资源,向第一设备发送不同的参考信号,第一设备基于至少一个参考信号资源对参考信号进行测量,以确定第二设备发送的各个参考信号的质量。
需要说明的是,本申请实施例中的波束测量是指对至少一个参考信号进行测量,得到至少一个参考信号的L1-RSRP(Layer 1 Reference Signal Received Power,层1参考信号接收功率)和/或L1-SINR(Layer 1 Signal to Interference plus Noise Ratio,层1信号与干扰加噪声比)。
该参考信号包括SSB(Synchronization Signal Block,同步信号块),CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号),SRS(Sounding Reference Signal,探测参考信号)。波束指示是指TCI state的指示。其中TCI(Transmission Configuration Indication,传输指示配置)state包含至少一种QCL(Quasi Co-Location,准共址)类型,QCL Type A,QCL Type B,QCL Type C,QCL Type D,其中QCL Type D为接收参数信息,该接收参数信息可以称为波束。Type A,Type B,Type C包括多普勒频移,多普勒扩展,平均时延和时延扩展相关的参数的至少一项。
在一些实施例中,第一设备为终端,第二设备为网络设备。
在本申请实施例中,若第一设备为终端,第二设备为网络设备,也就是网络设备向终端发送波束信息,终端接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而终端可以基于至少一个参考信号资源测量参考信号的信号质量,并参考网络设备发送的波束信息以及已测量的至少一个参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源包括SSB(Synchronization Signal Block,同步信号块)资源或CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)资源。
在本申请实施例中,网络设备为终端配置参考信号资源,通过该参考信号资源向终端发送SSB或CSI-RS,以便于终端接收网络设备发送的SSB或CSI-RS,进而对SSB或CSI-RS进行测量,获取至少一个参考信号的信号质量, 并且还会基于已测量的至少一个参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
在另一些实施例中,第一设备为网络设备,第二设备为终端。
在本申请实施例中,若第一设备为网络设备,第二设备为终端,也就是终端向网络设备发送波束信息,网络设备接收该波束信息即可确定用于波束测量的至少一个参考信号资源以及至少一个参考信号资源对应的波束信息,进而网络设备可以基于至少一个参考信号资源测量参考信号的信号质量,并参考终端发送的波束信息以及已测量的参考信号的信号质量,预测未测量的其它参考信号的信号质量。
可选地,参考信号资源为SRS资源。在本申请实施例中,网络设备为终端配置的参考信号资源为SRS资源时,终端可以基于已配置的参考信号资源向网络设备发送SRS,以便于网络设备对SRS进行测量,获取参考信号的信号质量,并且还会基于已测量的参考信号的信号质量以及波束信息,预测未测量的其它参考信号的信号质量。
在一些实施例中,波束信息包括至少一个参考信号资源的关联参考信号资源子集的信息。
在本申请实施例中,该波束信息指示用于进行波束测量的至少一个参考信号资源,并且还可以配置有与至少一个参考信号资源关联的参考信号资源,则该波束信息可以包括至少一个参考信号资源的关联参考信号资源子集的信息,以便于指示关联参考信号资源。
其中,对于至少一个参考信号资源中的每个参考信号资源来说,该参考信号资源均配置有一个关联的关联参考信号资源子集,也就是说,若至少一个参考信号资源为多个,而每个参考信号资源关联有关联参考信号资源子集,则多个参考信号资源关联有多个关联参考信号资源子集。
在一些实施例中,关联参考信号资源子集的信息包括关联参考信号资源子集标识以及关联参考信号资源子集包含的参考信号资源的标识。
在本申请实施例中,由于波束信息包括与至少一个参考信号资源关联的关联参考信号资源子集,也就是说,波束信息中需要包括指示关联参考信号资源子集的信息,通过关联参考信号资源子集标识来指示关联参考信号资源子集,通过参考信号资源的标识在指示每个关联参考信号资源子集中的参考信号资源。
例如,该波束信息中包括的关联参考信号资源子集的标识为关联参考信号资源子集A,关联参考信号资源子集B和关联参考信号资源子集C,并且,关联参考信号资源子集A中包括关联参考信号资源1、关联参考信号资源2和关联参考信号资源3。关联参考信号资源子集B中包括关联参考信号资源4、关联参考信号资源5。关联参考信号资源子集C中包括关联参考信号资源6。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集,并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中。
可选地,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
在本申请实施例中,至少一个参考信号资源关联的关联参考信号资源子集,并且每个关联参考信号资源子集中包括至少一个参考信号资源,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
也就是说,对于配置的与至少一个参考信号资源关联的关联参考信号资源子集来说,这些关联参考信号资源子集中包括的参考信号资源可以与至少一个参考信号资源属于同一个参考信号资源集合,或者也可以不属于同一个参考信号资源集合,本申请实施例不做限定。换一种表达方式,对于具有关联关系的参考信号资源和关联参考信号资源子集来说,参考信号资源和关联参考信号资源子集可以同属于一个参考信号资源集合,或者参考信号资源和关联参考信号资源子集可以属于不同的参考信号资源集合。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向范围覆盖了关联参考信号资源子集包括的参考信号资源的波束方向,也就是说至少一个参考信号资源的波束很宽,而关联参考信号资源子集包括的参考信号资源对应的波束较窄,所以关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参 考信号资源的波束方向范围内。
例如,参考图4,参考信号资源1对应的波束1的波束方向范围大,并且与该参考信号资源1关联的关联参考信号子集中包括的参考信号资源2的波束2的波束方向、参考信号资源3的波束3的波束方向、参考信号资源4的波束4的波束方向均位于波束1的波束方向范围内。
可选地,关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
其中,波束方向相邻是指两个参考信号资源的波束方向为相邻关系。例如,参考图4,参考信号资源的波束方向包括波束方向2、波束方向3和波束方向4,其中波束方向2与波束方向3为相邻关系,波束方向3和波束方向4为相邻关系。也就是说,关联参考信号资源子集包括的参考信号资源的波束方向为波束2、波束方向3和波束方向4,而至少一个参考信号资源的波束方向为波束3,则说明关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
在本申请实施例中,对于配置与至少一个参考信号资源关联的关联参考信号资源来说,这些关联参考信号资源的波束方向可以在至少一个参考信号资源的波束方向范围内,或者也可以不在至少一个参考信号资源的波束方向范围内,本申请实施例不做限定。
另外,对于关联参考信号资源子集来说,第一维度方向角度和第二维度方向角度与至少一个参考信号资源也不同。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
需要说明的是,本申请实施例中参考信号资源的第一维度方向角度实际上是指参考信号资源对应的波束的第一维度方向角度。也就是说,本申请实施例中参考信号资源的第一维度方向角度均可以替换为参考信号资源对应的波束的第一维度方向角度。本申请实施例中参考信号资源的第二维度方向角度实际上是指参考信号资源对应的波束的第二维度方向角度。也就是说,本申请实施例中参考信号资源的第二维度方向角度均可以替换为参考信号资源对应的波束的第二维度方向角度。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内。
例如,至少一个参考信号资源的第一维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第一维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第一维度方向角度为30度,参考信号资源2的第一维度方向角度为60度,参考信号资源3的第一维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第一维度方向角度均属于至少一个参考信号资源的第一维度方向角度范围内。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
例如,至少一个参考信号资源的第二维度方向角度范围为0-120度,则关联参考信号资源子集包括的参考信号资源的第二维度方向角度均位于0-120度的范围内。
例如该关联参考信号资源子集包括参考信号资源1、参考信号资源2和参考信号资源3,参考信号资源1的第二维度方向角度为30度,参考信号资源2的第二维度方向角度为60度,参考信号资源3的第二维度方向角度为90度,则说明该关联参考信号资源子集中包括的3个参考信号资源的第二维度方向角度均属于至少一个参考信号资源的第二维度方向角度范围内。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内。
其中,本申请实施例中两种情况与上述实施例类似,在此不再赘述。
可选地,关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在本申请实施例中,主要包括三种情况:
第一种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
其中,第一维度方向角度相邻是指两个参考信号资源的第一维度方向角度相邻。例如,第一维度方向角度包括0度、30度、60度和90度,那么0度和30度为相邻,30度和60度为相邻,60度和90度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第一维度方向角度均为30度,至少一个参考信号资源的第一维度方向角度为60度,则说明关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻。
第二种:关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
其中,第二维度方向角度相邻是指两个参考信号资源的第二维度方向角度相邻。例如,第二维度方向角度包括0度、40度、80度和120度,那么0度和40度为相邻,40度和80度为相邻,80度和120度为相邻。
例如,关联参考信号资源子集包括的参考信号资源的第二维度方向角度均为80度,至少一个参考信号资源的第二维度方向角度为40度,则说明关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
第三种:关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,并且,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在一些实施例中,波束信息包括至少一个参考信号资源所属的参考信号资源子集。
在本申请实施例中,至少一个参考信号资源中的每个参考信号资源均具有所属的参考信号资源子集,该波束信息中通过至少一个参考信号资源也具有所属的参考信号资源子集,还可以通过该波束信息指示参考信号子集。
例如,该波束信息中包括至少一个参考信号资源中每个参考信号资源所属的参考信号资源子集的标识。
例如,至少一个参考信号资源包括参考信号资源1、参考信号资源2和参考信号资源3,该参考信号资源1和参考信号资源2属于参考信号资源子集1,参 考信号资源3属于参考信号资源子集2。
可选地,参考信号资源子集内的每个参考信号资源的波束方向为相邻。
在本申请实施例中,参考信号资源子集中的每个参考信号资源的波束方向为相邻,也就是说每个参考信号资源的波束方向较窄,不会覆盖其它参考信号资源的波束方向。
其中,参考信号资源子集内每个参考信号资源的波束方向为相邻与上述实施例中关联参考信号资源子集内每个参考信号资源的波束方向为相邻类似,在此不再赘述。
可选地,参考信号资源子集内的每个参考信号资源的第一维度方向角度相同,参考信号资源子集内的每个参考信号资源的第二维度方向角度不同。
例如,参考信号资源子集包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
在一些实施例中,参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
例如,参考信号资源子集1对应的第一维度方向角度为30度,参考信号资源子集2对应的第一维度方向角度为60度,参考信号资源子集3对应的第一维度方向角度为90度,参考信号资源子集4对应的第一维度方向角度为120度。
在本申请实施例中,每个参考信号资源均对应有波束方向,对于上述至少一个参考信号资源来说,至少一个参考信号资源的波束方向与关联参考信号资源子集包括的参考信号资源的波束方向相邻,也就是说至少一个参考信号资源的波束方向并未覆盖关联参考信号资源子集包括的参考信号资源的波束方向,至少一个参考信号资源的波束方向与关联参考信号资源子集的波束方向均较窄,因此形成了波束相邻关系。
例如,至少一个参考信号资源关联有4个关联参考信号资源子集,每个关联参考信号资源子集包括4个参考信号资源,并且这4个参考信号资源对应不同的第二维度方向角度。
其中,参考信号资源子集1包括参考信号资源1、参考信号资源2、参考信号资源3、参考信号资源4,这4个参考信号资源对应的第一维度方向角度均为 30度,而参考信号资源1对应的第二维度方向角度为角1、参考信号资源2对应的第二维度方向角度为角2、参考信号资源3对应的第二维度方向角度为角3、参考信号资源4对应的第二维度方向角度为角4。
参考信号资源子集2包括参考信号资源5、参考信号资源6、参考信号资源7、参考信号资源8,这4个参考信号资源对应的第一维度方向角度均为60度,而参考信号资源5对应的第二维度方向角度为角1、参考信号资源6对应的第二维度方向角度为角2、参考信号资源7对应的第二维度方向角度为角3、参考信号资源8对应的第二维度方向角度为角4。
参考信号资源子集3包括参考信号资源9、参考信号资源10、参考信号资源11、参考信号资源12,这4个参考信号资源对应的第一维度方向角度均为90度,而参考信号资源9对应的第二维度方向角度为角1、参考信号资源10对应的第二维度方向角度为角2、参考信号资源11对应的第二维度方向角度为角3、参考信号资源12对应的第二维度方向角度为角4。
参考信号资源子集4包括参考信号资源13、参考信号资源14、参考信号资源15、参考信号资源16,这4个参考信号资源对应的第一维度方向角度均为120度,而参考信号资源13对应的第二维度方向角度为角1、参考信号资源14对应的第二维度方向角度为角2、参考信号资源15对应的第二维度方向角度为角3、参考信号资源16对应的第二维度方向角度为角4。
需要说明的是,上述实施例中参考信号资源子集的第一维度方向角度与参考信号资源子集的标识成正比,也就是说,参考信号资源子集的标识越大,参考信号资源子集的第一维度方向角度越大。另外,参考信号资源子集中包括的参考信号资源的第二维度方向角度与参考信号资源的标识成正比,也就是说,参考信号资源子集中的参考信号资源的标识越大,参考信号资源的第二维度方向角度越大。
在本申请实施例中,若波束信息指示了至少一个参考信号资源的第一维度方向角度范围,并且还包括参考信号资源子集的个数,则可以确定参考信号资源子集的第一维度方向角度。
可选地,根据第一维度方向角度范围与参考信号资源子集的个数,确定相邻两个参考信号资源子集之间的第一维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,参考信号资源子集 的数量为5个,则确定相邻两个参考信号资源子集的第一维度方向角度的角度间隔为45度,第一个参考信号资源子集的第一维度方向角度的角度为90度,第二个参考信号资源子集的第一维度方向角度的角度为45度,第三个参考信号资源子集的第一维度方向角度的角度为0度,第四个参考信号资源子集的第一维度方向角度的角度为-45度,第五个参考信号资源子集的第一维度方向角度的角度为-90度。
若波束信息指示了至少一个参考信号资源的第二维度方向角度范围,并且还包括参考信号资源子集中包括的参考信号资源的个数,则可以确定参考信号资源子集中每个参考信号资源子集的第二维度方向角度。
可选地,根据第二维度方向角度范围与参考信号资源子集的个数,确定相邻两个参考信号资源子集之间的第二维度方向角度的角度间隔,再基于角度间隔确定每个参考信号资源子集的第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为-90度到90度,参考信号资源子集的数量为5个,则确定相邻两个参考信号资源子集的第二维度方向角度的角度间隔为45度,第一个参考信号资源子集的第二维度方向角度的角度为90度,第二个参考信号资源子集的第二维度方向角度的角度为45度,第三个参考信号资源子集的第二维度方向角度的角度为0度,第四个参考信号资源子集的第二维度方向角度的角度为-45度,第五个参考信号资源子集的第二维度方向角度的角度为-90度。
在图2所示的实施例的基础上,波束信息包括至少一个参考信号资源的参数信息。
其中,参数信息包括以下至少一项:
(1)每个参考信号资源对应的波束标识。
其中,每个参考信号资源对应一个波束,而每个波束均可以采用标识指示。例如,参考信号资源对应的波束标识为该波束的ID。
(2)所有参考信号资源对应的波束总数量。
其中,需要说明的是,本申请实施例中是指第二设备用于发送参考信号的波束信息。
(3)每个参考信号资源对应的第一维度方向角度。
在本申请实施例中,每个参考信号资源对应第一维度方向角度,该第一维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第一维度方 向角度。
(4)每个参考信号资源对应的第二维度方向角度。
在本申请实施例中,每个参考信号资源对应第二维度方向角度,该第二维度方向角度具有数值,该波束信息中包括每个参考信号资源对应的第二维度方向角度。
(5)第一维度方向角度的数量。
在本申请实施例中,第二设备发送参考信号时使用的第一维度方向角度的数量,也就是说第二设备使用的不同数值的第一维度方向角度的个数。其中,该第一维度方向角度为第二设备的发送波束对应的第一维度方向角度。第二设备可以指示使用的第一维度方向角度的数量,以便于第一设备确定第二设备使用的第一维度方向角度的数量,另外,第一设备还可以基于第一维度方向角度的数量确定每个第一维度方向角度的数值。
在一些实施例中,在确定了第一维度方向角度的数量后,即可根据第一维度方向角度的角度范围以及第一维度方向角度的数量,确定每个第一维度方向角度的数值。
可选地,获取第一维度方向角度的数量,再获取第一维度方向角度的角度范围确定相邻两个第一维度方向角度的角度间隔,再基于角度间隔确定每个第一维度方向角度的数值。
例如,第一维度方向角度的角度范围为-90度到90度,第一维度方向角度的数量为5个,则确定相邻两个第一维度方向角度的角度间隔为45度,第一个第一维度方向角度的角度为90度,第二个第一维度方向角度的角度为45度,第三个第一维度方向角度的角度为0度,第四个第一维度方向角度的角度为-45度,第五个第一维度方向角度的角度为-90度。
需要说明的是,本申请实施例中的第一维度方向角度的角度范围包含于波束信息中,或者,第一维度方向角度的角度范围由协议规定,本申请实施例不作限定。
(6)第二维度方向角度的数量。
在本申请实施例中,第二设备指示第二维度方向角度的数量,也就是说第二设备使用的不同数值的第二维度方向角度的个数。其中,该第二维度方向角度为第二设备的发送波束对应的第二维度方向角度。第二设备可以指示使用的第二维度方向角度的数量,以便于第一设备确定第二设备使用的第二维度方向 角度的数量,另外,第一设备还可以基于第二维度方向角度的数量确定每个第二维度方向角度的数值。
在一些实施例中,在确定了第二维度方向角度的数量后,即可根据第二维度方向角度的角度范围以及第二维度方向角度的数量,确定每个第二维度方向角度的数值。
可选地,获取第二维度方向角度的数量,再获取第二维度方向角度的角度范围,确定相邻两个第二维度方向角度的角度间隔,再基于角度间隔确定每个第二维度方向角度的数值。
例如,第二维度方向角度的角度范围为0到90度,第二维度方向角度的数量为4个,则确定相邻两个第二维度方向角度的角度间隔为30度,第一个第二维度方向角度的角度为0度,第二个第二维度方向角度的角度为30度,第三个第二维度方向角度的角度为60度,第四个第二维度方向角度的角度为90度。
需要说明的是,本申请实施例中的第二维度方向角度的角度范围包含于波束信息中,或者,第二维度方向角度的角度范围由协议规定,本申请实施例不作限定。
另外,本申请实施例中的第一维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第一维度方向角度的值或者第一维度方向角度的标识以后,第一设备即可根据该第一维度方向角度的值或者第一维度方向角度的标识确定对应的发送波束的标识。
并且,本申请实施例中的第二维度方向角度与发送波束存在隐形对应关系,也就是说,第二设备指示第二维度方向角度的值或者第二维度方向角度的标识以后,第一设备即可根据该第二维度方向角度的值或者第二维度方向角度的标识确定对应的发送波束的标识。
需要说明的是,本申请实施例中的第一维度方向角度为水平方向角度,第二维度方向角度为垂直方向角度,或者,第一维度方向角度为垂直方向角度,第二维度方向角度为水平方向角度。
例如,对于GCS(Global Coordinate System,全球协作系统),azimuth angle(方向角)是基于地理位置的北确定,elevation angle(倾斜角)基于天顶和水平方向来确定,即elevation为0度标识天顶,相对水平方向是90度。
对于LCS(Local Coordinate System,本地协作系统),azimuth angle基于LCS的X轴确定,elevation angle是基于LCS的Z轴,即elevation为0标识与相对Z 轴为0度,相对X,Y平面为90度。
(7)每个天线阵列包含的天线阵元的数量。
其中,天线阵列为第二设备中设置的天线阵列。天线阵列中包括天线阵元,并且天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的数量,已表示由多少数量的天线阵元构成天线阵列。
(8)每个天线阵列包含的天线阵元的行数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的行数,以表示由多少行数的天线阵元构成天线阵列。
(9)每个天线阵列包含的天线阵元的列数。
天线阵元按照矩阵方式排列形成天线阵列,则在波束信息中携带天线阵元的列数,以表示由多少列数的天线阵元构成天线阵列。
(10)天线阵元在对应的天线阵列中的行标识。
在本申请实施例中,采用天线阵列中的行标识来表示天线阵列在天线阵元中的行位置。
(11)天线阵元在对应的天线阵列中的列标识。
在本申请实施例中,采用天线阵列中的列标识来表示天线阵列在天线阵元中的列位置。
(12)相邻天线阵元之间的间距。
在本申请实施例中,采用多个天线阵元构成天线阵列,而对于相邻的两个天线阵元来说,这两个天线阵元之间具有间距,通过间距来指示天线阵元之间的距离。
(13)相邻天线阵列之间的间距。
在本申请实施例中,通过多个天线阵列进行通信,而对于相邻的两个天线阵列来说,这两个天线阵列之间具有间距,通过间距来指示天线阵列之间的距离。
(14)天线阵列的数量。
在本申请实施例中,通过波束信息来指示第二设备中包括的天线阵列的数量。例如,该天线阵列的数量为2、4或者其它数值。
需要说明的是,本申请实施例中通过上述天线阵元在天线阵列中的位置,以及天线阵列之间的参数,可以确定第二设备中每个天线阵列的位置,并且不同的天线阵列对应不同的波束,因此基于天线阵列可以确定发送波束标识,后 续第一设备即可根据确定的发送波束的标识以及信号质量预测模型,预测未测量的其它参考信号的信号质量。另外,天线阵元之间的间距不同,以及天线阵列之间的间距不同,均会影响天线增益,基于上述参数确定天线增益后,后续第一设备即可根据确定的天线增益以及信号质量预测模型,预测未测量的其它参考信号的信号质量。
在一些实施例中,波束信息包括至少一个参考信号资源的能量信息,能量信息指示至少一个参考信号资源中每个参考信号资源的能量。
在本申请实施例中,参考信号资源的能量采用power表示,另外不同的参考信号资源对应不同的波束方向,也就是说参考信号资源的能量也可以称为是每个波束方向上的天线增益。
可选地,对于多个参考信号资源中的每个参考信号资源来说,该波束信息指示一个参考信号资源的能量,而能量信息均为相对于该参考信号资源的能量的差分值,通过每个参考信号资源的能量信息表示的差分值来指示每个参考信号资源的能量。
需要说明的是,本申请实施例中所执行的步骤与上述实施例中所执行的步骤类似,在此不再赘述。
图7示出了本申请一个示例性实施例提供的信息传输装置的框图,参见图7,该装置包括:
接收模块701,用于接收第二设备发送的波束信息,波束信息指示至少一个参考信号资源对应的波束信息,至少一个参考信号资源为用于波束测量的资源。
在一些实施例中,波束信息包括至少一个参考信号资源的关联参考信号资源子集的信息。
在一些实施例中,关联参考信号资源子集的信息包括关联参考信号资源子集标识以及关联参考信号资源子集包含的参考信号资源的标识。
在一些实施例中,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中;或者,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内;或者,关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的第一维度方向角度在至少一个参考信号资源的第一维度方向角度范围内,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内;
或者,
关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在一些实施例中,波束信息包括至少一个参考信号资源所属的参考信号资源子集。
在一些实施例中,参考信号资源子集内的每个参考信号的波束方向为相邻。
在一些实施例中,参考信号资源子集内的每个参考信号的对应的第一维度方向角度相同,且参考信号资源子集内的每个参考信号的对应的第二维度方向角度不同。
在一些实施例中,参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
在一些实施例中,波束信息包括至少一个参考信号资源的参数信息;
其中,参数信息包括以下至少一项:
每个参考信号资源对应的波束标识;
所有参考信号资源对应的波束总数量;
每个参考信号资源对应的第一维度方向角度;
每个参考信号资源对应的第二维度方向角度;
第一维度方向角度的数量;
第二维度方向角度的数量;
每个天线阵列包含的天线阵元的数量;
每个天线阵列包含的天线阵元的行数;
每个天线阵列包含的天线阵元的列数;
天线阵元在对应的天线阵列中的行标识;
天线阵元在对应的天线阵列中的列标识;
相邻天线阵元之间的间距;
相邻天线阵列之间的间距;
天线阵列的数量。
在一些实施例中,波束信息包括至少一个参考信号资源的能量信息,能量信息指示至少一个参考信号资源中每个参考信号资源的能量。
在一些实施例中,第一设备为终端,第二设备为网络设备。
在一些实施例中,参考信号资源包括SSB或CSI-RS。
在一些实施例中,第一设备为网络设备,第二设备为终端。
在一些实施例中,参考信号资源为SRS。
在一些实施例中,波束测量是指测量至少一个参考信号资源的L1-RSRP和/或L1-SINR。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图8示出了本申请一个示例性实施例提供的信息传输装置的框图,参见图8,该装置包括:
发送模块801,用于向第一设备发送波束信息,波束信息指示至少一个参考信号资源对应的波束信息,至少一个参考信号资源为用于波束测量的资源。
在一些实施例中,波束信息包括至少一个参考信号资源的关联参考信号资源子集的信息。
在一些实施例中,关联参考信号资源子集的信息包括关联参考信号资源子集标识以及关联参考信号资源子集包含的参考信号资源的标识。
在一些实施例中,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在同一个参考信号资源集合中;或者,关联参考信号资源子集包括的参考信号资源与至少一个参考信号资源在不同的参考信号资源集合中。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的波束方向在至少一个参考信号资源的波束方向范围内;或者,关联参考信号资源子集包括的参考信号资源的波束方向与至少一个参考信号资源的波束方向相邻。
在一些实施例中,关联参考信号资源子集包括的参考信号资源的第一维度 方向角度在至少一个参考信号资源的第一维度方向角度范围内,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度在至少一个参考信号资源的第二维度方向角度范围内;
或者,
关联参考信号资源子集包括的参考信号资源的第一维度方向角度与至少一个参考信号资源的第一维度方向角度相邻,和/或,关联参考信号资源子集包括的参考信号资源的第二维度方向角度与至少一个参考信号资源的第二维度方向角度相邻。
在一些实施例中,波束信息包括至少一个参考信号资源所属的参考信号资源子集。
在一些实施例中,参考信号资源子集内的每个参考信号的波束方向为相邻。
在一些实施例中,参考信号资源子集内的每个参考信号的对应的第一维度方向角度相同,且参考信号资源子集内的每个参考信号的对应的第二维度方向角度不同。
在一些实施例中,参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
在一些实施例中,波束信息包括至少一个参考信号资源的参数信息;
其中,参数信息包括以下至少一项:
每个参考信号资源对应的波束标识;
所有参考信号资源对应的波束总数量;
每个参考信号资源对应的第一维度方向角度;
每个参考信号资源对应的第二维度方向角度;
第一维度方向角度的数量;
第二维度方向角度的数量;
每个天线阵列包含的天线阵元的数量;
每个天线阵列包含的天线阵元的行数;
每个天线阵列包含的天线阵元的列数;
天线阵元在对应的天线阵列中的行标识;
天线阵元在对应的天线阵列中的列标识;
相邻天线阵元之间的间距;
相邻天线阵列之间的间距;
天线阵列的数量。
在一些实施例中,波束信息包括至少一个参考信号资源的能量信息,能量信息指示至少一个参考信号资源中每个参考信号资源的能量。
在一些实施例中,第一设备为终端,第二设备为网络设备。
在一些实施例中,参考信号资源为SSB或CSI-RS。
在一些实施例中,第一设备为网络设备,第二设备为终端。
在一些实施例中,参考信号资源为SRS。
在一些实施例中,波束测量是指测量至少一个参考信号资源的L1-RSRP和/或L1-SINR。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图9示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器901、接收器902、发射器903、存储器904和总线905。
处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器902和发射器903可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器904通过总线905与处理器901相连。
存储器904可用于存储至少一个程序代码,处理器901用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
此外,通信设备可以为第一设备或第二设备。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现 上述各个方法实施例提供的由通信设备执行的信息传输方法。
在示例性实施例中,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在第一设备或第二设备上运行时,用于实现如各个方法实施例提供的信息传输方法。
在示例性实施例中,提供了计算机程序产品,当所述计算机程序产品被终端或网络设备的处理器执行时,其用于实现上述各个方法实施例提供的信息传输方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (39)

  1. 一种信息传输方法,其特征在于,所述方法由第一设备执行,所述方法包括:
    接收第二设备发送的波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源的关联参考信号资源子集的信息。
  3. 根据权利要求2所述的方法,其特征在于,所述关联参考信号资源子集的信息包括关联参考信号资源子集标识以及所述关联参考信号资源子集包含的参考信号资源的标识。
  4. 根据权利要求2所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源与所述至少一个参考信号资源在同一个参考信号资源集合中;或者,所述关联参考信号资源子集包括的参考信号资源与所述至少一个参考信号资源在不同的参考信号资源集合中。
  5. 根据权利要求2所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源的波束方向在所述至少一个参考信号资源的波束方向范围内;或者,所述关联参考信号资源子集包括的参考信号资源的波束方向与所述至少一个参考信号资源的波束方向相邻。
  6. 根据权利要求2所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源的第一维度方向角度在所述至少一个参考信号资源的第一维度方向角度范围内,和/或,所述关联参考信号资源子集包括的参考信号资源的第二维度方向角度在所述至少一个参考信号资源的第二维度方向角度范围内;
    或者,
    所述关联参考信号资源子集包括的参考信号资源的第一维度方向角度与所 述至少一个参考信号资源的第一维度方向角度相邻,和/或,所述关联参考信号资源子集包括的参考信号资源的第二维度方向角度与所述至少一个参考信号资源的第二维度方向角度相邻。
  7. 根据权利要求1所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源所属的参考信号资源子集。
  8. 根据权利要求7所述的方法,其特征在于,所述参考信号资源子集内的每个参考信号资源的波束方向为相邻。
  9. 根据权利要求7所述的方法,其特征在于,所述参考信号资源子集内的每个参考信号资源的第一维度方向角度相同,且所述参考信号资源子集内的每个参考信号资源的第二维度方向角度不同。
  10. 根据权利要求9所述的方法,其特征在于,所述参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
  11. 根据权利要求1所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源的参数信息;
    其中,所述参数信息包括以下至少一项:
    每个参考信号资源对应的波束标识;
    所有参考信号资源对应的波束总数量;
    所述每个参考信号资源对应的第一维度方向角度;
    所述每个参考信号资源对应的第二维度方向角度;
    所述第一维度方向角度的数量;
    所述第二维度方向角度的数量;
    每个天线阵列包含的天线阵元的数量;
    所述每个天线阵列包含的天线阵元的行数;
    所述每个天线阵列包含的天线阵元的列数;
    所述天线阵元在对应的天线阵列中的行标识;
    所述天线阵元在对应的天线阵列中的列标识;
    相邻所述天线阵元之间的间距;
    相邻所述天线阵列之间的间距;
    所述天线阵列的数量。
  12. 根据权利要求1所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源的能量信息,所述能量信息指示所述至少一个参考信号资源中每个参考信号资源的能量。
  13. 根据权利要求1所述的方法,其特征在于,所述第一设备为终端,所述第二设备为网络设备。
  14. 根据权利要求13所述的方法,其特征在于,所述参考信号资源包括同步信号块SSB资源或信道状态信息参考信号CSI-RS资源。
  15. 根据权利要求1所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端。
  16. 根据权利要求15所述的方法,其特征在于,所述参考信号资源为SRS资源。
  17. 根据权利要求1所述的方法,其特征在于,所述波束测量是指测量所述至少一个参考信号资源的层1参考信号接收功率L1-RSRP和/或层1信号与干扰加噪声比L1-SINR。
  18. 一种信息传输方法,其特征在于,所述方法由第二设备执行,所述方法包括:
    向第一设备发送波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
  19. 根据权利要求18所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源的关联参考信号资源子集的信息。
  20. 根据权利要求19所述的方法,其特征在于,所述关联参考信号资源子集的信息包括关联参考信号资源子集标识以及所述关联参考信号资源子集包含的参考信号资源的标识。
  21. 根据权利要求19所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源与所述至少一个参考信号资源在同一个参考信号资源集合中;或者,所述关联参考信号资源子集包括的参考信号资源与所述至少一个参考信号资源在不同的参考信号资源集合中。
  22. 根据权利要求19所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源的波束方向在所述至少一个参考信号资源的波束方向范围内;或者,所述关联参考信号资源子集包括的参考信号资源的波束方向与所述至少一个参考信号资源的波束方向相邻。
  23. 根据权利要求19所述的方法,其特征在于,所述关联参考信号资源子集包括的参考信号资源的第一维度方向角度在所述至少一个参考信号资源的第一维度方向角度范围内,和/或,所述关联参考信号资源子集包括的参考信号资源的第二维度方向角度在所述至少一个参考信号资源的第二维度方向角度范围内;
    或者,
    所述关联参考信号资源子集包括的参考信号资源的第一维度方向角度与所述至少一个参考信号资源的第一维度方向角度相邻,和/或,所述关联参考信号资源子集包括的参考信号资源的第二维度方向角度与所述至少一个参考信号资源的第二维度方向角度相邻。
  24. 根据权利要求18所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源所属的参考信号资源子集。
  25. 根据权利要求24所述的方法,其特征在于,所述参考信号资源子集内的每个参考信号资源的波束方向为相邻。
  26. 根据权利要求24所述的方法,其特征在于,所述参考信号资源子集内的每个参考信号资源的第一维度方向角度相同,且所述参考信号资源子集内的每个参考信号资源的第二维度方向角度不同。
  27. 根据权利要求26所述的方法,其特征在于,所述参考信号资源子集的数量为至少两个,至少两个参考信号资源子集分别对应的第一维度方向角度不同。
  28. 根据权利要求18所述的方法,其特征在于,所述波束信息包括所述至少一个参考信号资源的参数信息;
    其中,所述参数信息包括以下至少一项:
    每个参考信号资源对应的波束标识;
    所有参考信号资源对应的波束总数量;
    所述每个参考信号资源对应的第一维度方向角度;
    所述每个参考信号资源对应的第二维度方向角度;
    所述第一维度方向角度的数量;
    所述第二维度方向角度的数量;
    每个天线阵列包含的天线阵元的数量;
    所述每个天线阵列包含的天线阵元的行数;
    所述每个天线阵列包含的天线阵元的列数;
    所述天线阵元在对应的天线阵列中的行标识;
    所述天线阵元在对应的天线阵列中的列标识;
    相邻所述天线阵元之间的间距;
    相邻所述天线阵列之间的间距;
    所述天线阵列的数量。
  29. 根据权利要求18所述的方法,其特征在于,所述波束信息包括所述至少 一个参考信号资源的能量信息,所述能量信息指示所述至少一个参考信号资源中每个参考信号资源的能量。
  30. 根据权利要求18所述的方法,其特征在于,所述第一设备为终端,所述第二设备为网络设备。
  31. 根据权利要求30所述的方法,其特征在于,所述参考信号资源为SSB或CSI-RS。
  32. 根据权利要求18所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端。
  33. 根据权利要求32所述的方法,其特征在于,所述参考信号资源为SRS。
  34. 根据权利要求18所述的方法,其特征在于,所述波束测量是指测量所述至少一个参考信号资源的L1-RSRP和/或L1-SINR。
  35. 一种信息传输装置,其特征在于,所述装置包括:
    接收模块,用于接收第二设备发送的波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
  36. 一种信息传输装置,其特征在于,所述装置包括:
    发送模块,用于向第一设备发送波束信息,所述波束信息指示至少一个参考信号资源对应的波束信息,所述至少一个参考信号资源为用于波束测量的资源。
  37. 一种设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至34任一所述的信息传输方法。
  38. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如权利要求1至34任一所述的信息传输方法。
  39. 一种计算机程序产品,其特征在于,当所述计算机程序产品被终端或网络设备的处理器执行时,其用于实现如权利要求1至34任一所述的信息传输方法。
PCT/CN2022/080465 2022-03-11 2022-03-11 信息传输方法、装置、设备及存储介质 WO2023168714A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/080465 WO2023168714A1 (zh) 2022-03-11 2022-03-11 信息传输方法、装置、设备及存储介质
CN202280000709.4A CN117063512A (zh) 2022-03-11 2022-03-11 信息传输方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080465 WO2023168714A1 (zh) 2022-03-11 2022-03-11 信息传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023168714A1 true WO2023168714A1 (zh) 2023-09-14

Family

ID=87936962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080465 WO2023168714A1 (zh) 2022-03-11 2022-03-11 信息传输方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117063512A (zh)
WO (1) WO2023168714A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983820A (zh) * 2017-07-25 2019-07-05 联发科技股份有限公司 波束成形无线通信系统中具有波束指示的波束管理方法
CN110299981A (zh) * 2017-01-06 2019-10-01 华为技术有限公司 一种参考信号传输方法及装置
CN113228727A (zh) * 2021-03-31 2021-08-06 北京小米移动软件有限公司 波束恢复方法、装置、用户设备、网络侧设备及存储介质
CN113728692A (zh) * 2019-04-30 2021-11-30 高通股份有限公司 用于新无线电定位的波束组报告的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299981A (zh) * 2017-01-06 2019-10-01 华为技术有限公司 一种参考信号传输方法及装置
CN109983820A (zh) * 2017-07-25 2019-07-05 联发科技股份有限公司 波束成形无线通信系统中具有波束指示的波束管理方法
CN113728692A (zh) * 2019-04-30 2021-11-30 高通股份有限公司 用于新无线电定位的波束组报告的系统和方法
CN113228727A (zh) * 2021-03-31 2021-08-06 北京小米移动软件有限公司 波束恢复方法、装置、用户设备、网络侧设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2102441, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177149 *

Also Published As

Publication number Publication date
CN117063512A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2020164637A1 (zh) 一种定位信息上报的方法及装置
CN111867049B (zh) 定位方法、装置及存储介质
CN112218330B (zh) 定位方法及通信装置
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
CN112312301A (zh) 用户终端定位方法、装置、设备及计算机存储介质
CN113965942A (zh) 一种网络配置方法及装置
US20220353715A1 (en) Signal measurement method, terminal, and network side device
CN113518302B (zh) 一种定位参考信号配置方法、lmf、基站及终端
CN109842890A (zh) 信号测量方法、相关装置及系统
CN107636983B (zh) 用于无线网络中有效链路发现的系统与方法
WO2023168714A1 (zh) 信息传输方法、装置、设备及存储介质
KR20190128371A (ko) 위치 측정 장치 및 방법, 위치 측정을 위한 데이터베이스 구축 장치 및 방법
CN115053585A (zh) 定位方法及装置
CN113840224A (zh) 通信方法及装置
CN106658711A (zh) 一种目标终端定位方法以及设备
CN114557013B (zh) 信息上报、信息接收方法、装置、设备及存储介质
WO2023173384A1 (zh) 信息配置方法、装置、设备及存储介质
WO2023206174A1 (zh) 基于码本的预编码确定方法、装置、设备及存储介质
CN115022961B (zh) 定位方法及设备
CN112929907B (zh) 天线参数的确定方法及装置
WO2023168710A1 (zh) 信息传输方法、装置、设备及存储介质
CN114731485A (zh) 一种定位信息的确定方法及通信装置
WO2023173419A1 (zh) 上报方法、装置、设备及存储介质
CN111818552A (zh) 一种基于cu-du架构的定位方法及装置
WO2023207526A1 (zh) 波束度量参数反馈方法和接收方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000709.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930352

Country of ref document: EP

Kind code of ref document: A1