WO2023167404A1 - 소형 연료집합체를 포함하는 소형모듈원전 - Google Patents

소형 연료집합체를 포함하는 소형모듈원전 Download PDF

Info

Publication number
WO2023167404A1
WO2023167404A1 PCT/KR2023/000217 KR2023000217W WO2023167404A1 WO 2023167404 A1 WO2023167404 A1 WO 2023167404A1 KR 2023000217 W KR2023000217 W KR 2023000217W WO 2023167404 A1 WO2023167404 A1 WO 2023167404A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel assembly
nuclear
fuel
nuclear fuel
cross
Prior art date
Application number
PCT/KR2023/000217
Other languages
English (en)
French (fr)
Inventor
이은기
조유권
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Publication of WO2023167404A1 publication Critical patent/WO2023167404A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/06Reflecting shields, i.e. for minimising loss of neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a small module nuclear power plant including a small fuel assembly.
  • the fuel assembly used in the existing SMR nuclear power plant is a square with a length of about 20 cm, and fuel rods are loaded inside by 15x15, 16x16, or 17x17.
  • the number of assemblies is only 37 to 64. Therefore, the control rod assembly must be installed on most of the fuel for power control, and there is a problem in that the cycle length is shortened due to a decrease in fuel efficiency due to large neutron leakage.
  • an object of the present invention is to provide a small module nuclear power plant including a small fuel assembly.
  • the object of the present invention is in the small module nuclear power plant including a small fuel assembly, the reactor body; and a nuclear fuel body accommodated in the reactor body, including a plurality of fuel assemblies, and having a cross-section arrangement area, wherein the cross-section arrangement area includes: a first arrangement area; and a plurality of second disposition areas located outside the first disposition area and spaced apart from each other, wherein the fuel assemblies each have a first size and are closely arranged in the first disposition area. ; and second fuel assemblies each having a second size smaller than the first size and disposed in the second placement region.
  • Each of the fuel assemblies is shaped like an elongated hexahedron having a rectangular cross section, and the cross sectional size of the second nuclear fuel assembly may be 15% to 50% of the cross sectional size of the first nuclear fuel assembly.
  • Each of the fuel assemblies has a square cross-section, and the cross-sectional size of the second nuclear fuel assembly may be 20% to 30% of the cross-sectional size of the first nuclear fuel assembly.
  • An outer portion of the first placement region may have a corner region in which the first nuclear fuel assemblies are arranged stepwise, and the second placement region may be disposed to face the two first fuel assemblies constituting the corner region.
  • the reactor may further include a reflector disposed between the nuclear fuel body and the reactor body, wherein the second nuclear fuel assembly includes a plurality of fuel rods and a plurality of stainless steel rods, and the stainless steel rods are arranged to face the reflector.
  • the second fuel assembly includes a plurality of fuel rods and a plurality of stainless steel rods, wherein the stainless steel The rod is disposed to face the reflector, and may not be disposed in a region connecting the out-of-furnace instrument and the central region of the second fuel assembly.
  • It may further include any one of an induction pipe into which a control rod installed in the second fuel assembly can be inserted and a furnace instrument.
  • An object of the present invention is to provide a small modular nuclear reactor including a small fuel assembly, comprising: a reactor body; and a nuclear fuel body accommodated in the reactor body, including a plurality of fuel assemblies, and having a sectional arrangement area, wherein the fuel assembly includes: a first nuclear fuel assembly; It includes a second nuclear fuel assembly having a smaller cross-sectional area than the first nuclear fuel assembly, and the sectional disposition area includes: a first disposition area in which the first fuel assembly is disposed; and a plurality of second placement areas in which the second nuclear fuel assemblies are disposed, located outside the first placement area and spaced apart from each other, and around the circumference of the first placement area, the second fuel assemblies are arranged in a line. a straight line area arranged as; and a corner region in which the second fuel assemblies are arranged stepwise, and the second placement region is achieved by being located in the corner region.
  • a small module nuclear power plant including a small fuel assembly.
  • FIG. 1 shows a small module nuclear power plant according to a first embodiment of the present invention
  • Figure 2 shows a cross section along II-II' of Figure 1
  • FIG. 3 is an enlarged view of part C of Figure 2
  • FIG. 4 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a second embodiment of the present invention
  • FIG. 5 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a third embodiment of the present invention
  • FIG. 6 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a fourth embodiment of the present invention
  • FIG. 7 shows a nuclear fuel body in a small module nuclear power plant according to a fourth embodiment of the present invention.
  • FIG. 8 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a fifth embodiment of the present invention
  • FIG 9 shows a nuclear fuel body in a small module nuclear power plant according to a fifth embodiment of the present invention.
  • the present invention uses the existing fuel assembly shape as it is, but uses a small fuel assembly capable of increasing the cycle length, providing flexibility in control rod position setting, and improving the performance of the neutron flux monitoring system.
  • a small module nuclear power plant according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3 .
  • Figure 1 shows a small module nuclear power plant according to a first embodiment of the present invention
  • Figure 2 shows a cross section along II-II 'of Figure 1
  • Figure 3 is shown in Figure 2 C portion is enlarged.
  • the small module nuclear power plant 1 includes a reactor body 10, a nuclear fuel body 20 and a steam generator 30.
  • the small module nuclear power plant 1 may further include a shroud and/or a riser for controlling the flow of cooling water.
  • a control rod for controlling the reactivity of the nuclear fuel body 20 may be further included.
  • the cooling water passes through the nuclear fuel body 20 while rising, it is heated by the nuclear fuel body 20 .
  • the heated coolant is cooled by exchanging heat with the steam generator 30 while descending, moved to the lower part of the nuclear fuel body 20, and then supplied to the nuclear fuel body 20 again.
  • the flow of cooling water can be controlled using a pump or through natural circulation.
  • the nuclear fuel body 20 is also called a core, and includes a first fuel assembly 210 and a second fuel assembly 220 .
  • Each of the fuel assemblies 210 and 220 has a rectangular parallelepiped shape having a square cross section in a horizontal direction, and fuel rods 221 are arranged in a matrix form inside.
  • the cross-section or cross-sectional area refers to a cross-section or cross-sectional area in a horizontal direction, which is a horizontal cross-section in the vertical direction, when the longitudinal direction of the reactor body 10 is viewed in the vertical direction.
  • the length L1 of one side of the first nuclear fuel assembly 210 is about twice the length L2 of the sum of the sides of the second nuclear fuel assembly 220, and the cross-sectional area of the second fuel assembly 220 is the first nuclear fuel assembly ( 210) is about 25%.
  • the length L1 of one side of the first fuel assembly 210 may be 1.3 to 4 times or 1.5 to 2.5 times the length L2 of the second fuel assembly 220 .
  • the cross-sectional area of the second fuel assembly 220 may be 15% to 50% or 20% to 30% of the cross-sectional area of the first nuclear fuel assembly 210 .
  • the cross section of the second fuel assembly 220 may be rectangular or triangular rather than square.
  • first fuel assemblies 210 are provided, and 8 second fuel assemblies 220 are provided.
  • the area where the first nuclear fuel assembly 210 is located is the first placement area, and the area where the second fuel assembly 220 is located is the second placement area.
  • the first nuclear fuel assemblies 210 are densely arranged and are arranged to have a substantially circular shape.
  • the circumference of the first arrangement area is composed of a straight area like A and a stepped area like B.
  • the second fuel assembly 220 is arranged to be in contact with two adjacent first fuel assemblies 210 at the step area at the same time. Due to the second nuclear fuel assembly 220, the fuel body 20 has a shape closer to a circle.
  • the second nuclear fuel assembly 220 includes 8*8 fuel rods 221 .
  • the first nuclear fuel assembly may include 16*16 fuel rods 221, but some of the fuel rods 221 are replaced with control rods 1 to SD or in-furnace gauges (dots). Control rods marked with numbers 1 to 4 are for controlling the reactor, and those with an S, such as SA to SD, are for stopping the reactor.
  • control rods or in-furnace gauges are disposed in all first fuel assemblies 210 .
  • a small second nuclear fuel assembly 220 can be additionally loaded outside the first nuclear fuel assembly 210, into which nuclear fuel could not enter in the past.
  • the second fuel assembly 220 may be modified in various ways, and this will be described through the second to fifth embodiments.
  • FIG 4 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a second embodiment of the present invention.
  • the small module nuclear power plant 1 further includes a reflector 40.
  • the reflector 40 surrounds the nuclear fuel body 20 inside the reactor body 10 and reflects neutrons irradiated from the nuclear fuel body 20 back to the nuclear fuel body 20 .
  • the second nuclear fuel assembly 220 includes fuel rods 221 and stainless steel rods 222, and the stainless steel rods 222 are disposed on the outside so as to face the reflector 40.
  • the neutron fluence in the reactor main body 10 may be increased due to the added nuclear fuel.
  • the stainless steel rod 222 positioned at a portion facing the reflector 40 serves as a shield to reduce neutron fluence applied to the reactor body 10 .
  • FIG 5 shows the configuration of a second nuclear fuel assembly in a small module nuclear power plant according to a third embodiment of the present invention.
  • the small module nuclear power plant 1 further includes an off-road instrument 50.
  • the off-furnace instrument 50 is located outside the reactor body 10 and monitors neutron irradiation from the nuclear fuel body 20 .
  • the second nuclear fuel assembly 220 includes fuel rods 221 and stainless steel rods 222 .
  • the stainless steel rods 222 are disposed on the outer periphery to face the reflector 40, they connect the outer furnace instrument 50 and the central region of the second fuel assembly 220 so as not to interfere with neutron irradiation to the outer instrument 50. It is not arranged in the area (D) to do.
  • the amount of neutrons of the out-of-furnace instrument 50 can be increased through fuel rod arrangement without a separate neutron induction pipe.
  • Figure 6 shows the configuration of the second nuclear fuel assembly in the small module nuclear power plant according to the fourth embodiment of the present invention
  • Figure 7 shows the nuclear fuel body in the small module nuclear power plant according to the fourth embodiment of the present invention.
  • a guide tube 223 into which control rods can be inserted is provided in the second fuel assembly 220.
  • Figure 8 shows the configuration of the second nuclear fuel assembly in the small module nuclear power plant according to the fifth embodiment of the present invention
  • Figure 9 shows the nuclear fuel body in the small module nuclear power plant according to the fifth embodiment of the present invention.
  • an in-furnace instrument 224 is provided in the second fuel assembly 220.
  • the fourth or fifth embodiment it is possible to additionally insert a control rod or additionally load an instrument in a furnace, and thus contribute to improving safety by bringing a margin to driving a control rod in a reactor core or by additionally loading an instrument in a furnace.
  • the greatest effect of the present invention described above is to extend the cycle length by increasing the number of fuels in the core.
  • the cycle length can be extended without a significant effect on the output distribution.
  • the present invention can be used as a way to increase the cycle length. Small-sized second fuel assemblies are loaded in the enclosure where the existing first nuclear fuel assemblies cannot enter, and depending on the size of the SMR, 4 to 16 fuel assemblies, that is, 1 to 4 additional fuel assemblies converted into conventional fuel assemblies are transferred. As a result, the cycle length is extended by approximately 3% compared to before installation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 발명은 소형 연료집합체를 포함하는 소형모듈원전에 관한 것으로, 원자로 본체; 및 상기 원자로 본체 내에 수용되어 있으며 복수의 연료집합체를 포함하며 단면배치영역을 가지는 핵연료체를 포함하며, 상기 단면배치영역은, 제1배치영역; 및 상기 제1배치영역의 외곽에 위치하며 서로 이격되어 있는 복수의 제2배치영역을 포함하며, 상기 연료집합체는, 각각 제1크기를 가지며 상기 제1배치영역에서 밀접 배치되어 있는 제1핵연료집합체; 및 각각 상기 제1크기보다 작은 제2크기를 가지며 상기 제2배치영역에 배치되어 있는 제2핵연료집합체를 포함한다.

Description

소형 연료집합체를 포함하는 소형모듈원전
본 발명은 소형 연료집합체를 포함하는 소형모듈원전에 관한 것이다.
기존 SMR 원전에 사용되는 연료집합체는 가로세로 약 20cm 길이의 정사각형이고 내부에 연료봉이 15x15 혹은 16x16 혹은 17x17 만큼 장전되어 있다.
SMR 원전의 원통형 노심 베셀 내부에 이들 연료집합체가 장전되면 SMR의 출력이나 크기에 따라 특정한 형태로 장전된다.
기존 상용 PWR도 유사한 장전모형을 사용하지만 연료집합체수가 177개~241개로 많기 때문에 설계가 용이하다.
그러나, SMR 등 소형모듈형 원자로의 경우 집합체수가 37~64개에 불과하다. 따라서, 출력조절을 위해 대부분의 연료 위에 제어봉집합체를 설치해야 하며, 중성자 누설이 많아 연료효율성이 감소하여 주기길이가 짧아지는 문제가 있다.
이를 해소하려면 농축도 증가, 가연성독물질 봉 사용의 방안이 있으나 연료제조성 등에서 장기간 검증이 필요하다.
따라서 본 발명의 목적은 소형 연료집합체를 포함하는 소형모듈원전을 제공하는 것이다.
상기 본 발명의 목적은 소형 연료집합체를 포함하는 소형모듈원전에 있어서, 원자로 본체; 및 상기 원자로 본체 내에 수용되어 있으며 복수의 연료집합체를 포함하며 단면배치영역을 가지는 핵연료체를 포함하며, 상기 단면배치영역은, 제1배치영역; 및 상기 제1배치영역의 외곽에 위치하며 서로 이격되어 있는 복수의 제2배치영역을 포함하며, 상기 연료집합체는, 각각 제1크기를 가지며 상기 제1배치영역에서 밀접 배치되어 있는 제1핵연료집합체; 및 각각 상기 제1크기보다 작은 제2크기를 가지며 상기 제2배치영역에 배치되어 있는 제2핵연료집합체를 포함하는 것에 의해 달성된다.
상기 각 연료집합체는 사각형 단면을 가지는 길게 연장된 육면체 형상이며, 상기 제2핵연료집합체의 단면 크기는 상기 제1핵연료집합체의 단면 크기의 15% 내지 50%일 수 있다.
상기 각 연료집합체는 정사각형 단면을 가지며, 상기 제2핵연료집합체의 단면 크기는 상기 제1핵연료집합체의 단면 크기의 20% 내지 30%일 수 있다.
상기 제1배치영역의 외곽은 상기 제1핵연료집합체가 계단식으로 배치된 모서리 영역을 가지며, 상기 제2배치영역은 상기 모서리 영역을 이루는 2개의 상기 제1핵연료집합체에 마주하도록 배치되어 있을 수 있다.
상기 핵연료체와 상기 원자로 본체의 사이에 위치하는 반사체를 더 포함하고, 상기 제2핵연료집합체는 복수의 연료봉 및 복수의 스텐리스스틸봉을 포함하며, 상기 스텐리스스틸봉은 상기 반사체를 마주하도록 배치될 수 있다.
상기 핵연료체와 상기 원자로 본체의 사이에 위치하는 반사체; 및 상기 원자로 본체의 외부에 위치하며 상기 제2핵연료집합체에 인접하게 배치되는 노외계측기를 더 포함하며, 상기 제2핵연료집합체는 복수의 연료봉 및 복수의 스텐리스스틸봉을 포함하며, 상기 스텐리스스틸봉은 상기 반사체를 마주하도록 배치되며, 상기 노외계측기와 상기 제2핵연료집합체의 중심영역을 연결하는 영역에는 배치되지 않을 수 있다.
상기 제2핵연료집합체에 설치되는 제어봉을 삽입할 수 있는 유도관 및 노내계측기 중 어느 하나를 더 포함할 수 있다.
상기 본 발명의 목적은 소형 연료집합체를 포함하는 소형모듈형 원자로에 있어서, 원자로 본체; 및 상기 원자로 본체 내에 수용되어 있으며 복수의 연료집합체를 포함하며 단면배치영역을 가지는 핵연료체를 포함하며, 상기 연료집합체는, 제1핵연료집합체와; 상기 제1핵연료집합체에 비해 단면적이 작은 제2핵연료집합체를 포함하며, 상기 단면배치영역은, 상기 제1핵연료집합체가 배치되어 있는 제1배치영역; 및 상기 제2핵연료집합체가 배치되어 있으며 상기 제1배치영역의 외곽에 위치하며 서로 이격되어 있는 복수의 제2배치영역을 포함하며, 상기 제1배치영역의 둘레는, 상기 제2핵연료집합체가 일렬로 배치된 직선 영역; 및 상기 제2핵연료집합체가 계단식으로 배치된 모서리 영역을 포함하며, 상기 제2배치영역은 상기 모서리 영역에 위치하는 것에 의해 달성된다.
본 발명에 따르면 소형 연료집합체를 포함하는 소형모듈원전이 제공된다.
도 1은 본 발명의 제1실시예에 따른 소형모듈원전을 나타낸 것이고,
도 2는 도 1의 II-II'를 따른 단면을 나타낸 것이고,
도 3은 도 2의 C부분을 확대하여 나타낸 것이고,
도 4는 본 발명의 제2실시예에 따른 소형모듈원전에서 제2핵연료집합체를 구성을 나타낸 것이고,
도 5는 본 발명의 제3실시예에 따른 소형모듈원전에서 제2핵연료집합체를 구성을 나타낸 것이고,
도 6은 본 발명의 제4실시예에 따른 소형모듈원전에서 제2핵연료집합체의 구성을 나타낸 것이고,
도 7은 본 발명의 제4실시예에 따른 소형모듈원전에서 핵연료체를 나타낸 것이고,
도 8은 본 발명의 제5실시예에 따른 소형모듈원전에서 제2핵연료집합체의 구성을 나타낸 것이고,
도 9는 본 발명의 제5실시예에 따른 소형모듈원전에서 핵연료체를 나타낸 것이다.
본원 발명은 기존 연료집합체 형태를 그대로 사용하지만 주기길이를 늘리고, 제어봉위치 설정에 융통성을 부여하고 중성자속감시계통 성능을 올릴 수 있는 소형 연료집합체를 사용한다.
도 1 내지 도 3을 참조하여 본 발명의 제1실시예에 따른 소형모듈원전을 설명한다.
도 1은 본 발명의 제1실시예에 따른 소형모듈원전을 나타낸 것이고, 도 2는 도 1의 II-II'를 따른 단면을 나타낸 것이고, 도 3은 도 2의 C부분을 확대하여 나타낸 것이다.
소형모듈원전(1)는 원자로 본체(10), 핵연료체(20) 및 증기발생기(30)를 포함한다.
도시하지는 않았지만 소형모듈원전(1)은 냉각수의 흐름을 조절하기 위한 쉬라우드 및/또는 라이저를 더 포함할 수 있다. 또한 핵연료체(20)의 반응도를 제어하기 위한 제어봉 등을 더 포함할 수 있다.
냉각수는 상승하면서 핵연료체(20)를 거치게 되면, 핵연료체(20)에 의해 가열된다. 가열된 냉각수는 하강하면서 증기발생기(30)에 열교환하여 냉각된 후 핵연료체(20)의 하부로 이동 후 다시 핵연료체(20)로 공급된다.
냉각수의 흐름은 펌프를 이용하여 조절하거나, 자연순환을 통해 조절할 수 있다.
핵연료체(20)는 노심이라고도 불리며, 제1핵연료집합체(210)와 제2핵연료집합체(220)를 포함한다. 각 연료집합체(210, 220)는 수평방향의 단면이 정사각형 형상인 길게 연장된 직육면체 형상이며, 내부에는 연료봉(221)이 행렬형태로 배치되어 있다.
본 발명에서 단면 또는 단면적은, 원자로 본체(10)의 길이방향이 수직방향으로 볼 때, 수직방향의 가로 단면인 수평방향에서의 단면 또는 단면적을 말한다.
제1핵연료집합체(210)의 한 변의 길이(L1)는 제2핵연료집합체(220)의 합 변의 길이(L2)의 약 2배이며, 제2핵연료집합체(220)의 단면적은 제1핵연료집합체(210)의 약 25%이다. 다른 실시예에서는 제1핵연료집합체(210)의 한 변의 길이(L1)는 제2핵연료집합체(220)의 한 변의 길이(L2)의 1.3배 내지 4배 또는 1.5 배 내지 2.5배일 수 있다. 또는, 제2핵연료집합체(220)의 단면적은 제1핵연료집합체(210)의 단면적의 15% 내지 50% 또는 20% 내지 30%일 수 있다. 또 다른 실시예에서 제2핵연료집합체(220)의 단면은 정사각형이 아닌 직사각형이거나 삼각형일 수도 있다.
제1실시예에서 제1핵연료집합체(210)는 52개로 마련되어 있으며, 제2핵연료집합체(220)는 8개로 마련되어 있다. 제1핵연료집합체(210)가 위치하는 영역이 제1배치영역이며, 제2핵연료집합체(220)가 위치하는 영역이 제2배치영역이다.
제1핵연료집합체(210)는 밀집배치되어 있으며, 대략 원 형상에 가깝도록 배치되어 있다. 제1배치영역의 둘레는 A와 같은 직선 영역과 B와 같은 계단영역으로 이루어져 있다.
제2핵연료집합체(220)는 계단영역에서 인접한 2개의 제1핵연료집합체(210)에 동시에 접하도록 배치되어 있다. 제2핵연료집합체(220)에 의해 핵연료체(20)는 더욱 원에 가까운 형태가 된다.
제2핵연료집합체(220)는 8*8개의 연료봉(221)을 포함하고 있다. 제1핵연료집합체는 16*16개의 연료봉(221)을 포함할 수 있으나, 일부 연료봉(221)은 제어봉(1~SD) 또는 노내계측기(점 표시)로 대체되어 있다. 제어봉에서 1~4의 숫자로 표시된 것은 원자로 제어용이고 SA~SD 등 S가 붙은 것은 원자로 정지용을 의미한다.
제1실시예에서는 모든 제1핵연료집합체(210)에 제어봉 또는 노내계측기가 배치되어 있다.
본 발명에 따르면 기존에 핵연료가 들어갈 수 없었던, 제1핵연료집합체(210)의 외곽에 추가로 소형의 제2핵연료집합체(220)를 장전할 수 있다.
이상 설명한 제1실시예에서 제2핵연료집합체(220)는 다양하게 변형될 수 있으며, 이를 제2실시예 내지 제5실시예를 통해 설명한다.
도 4는 본 발명의 제2실시예에 따른 소형모듈원전에서 제2핵연료집합체를 구성을 나타낸 것이다.
제2실시예에서는 소형모듈원전(1)은 반사체(40)를 더 포함한다. 반사체(40)는 원자로 본체(10) 내부에서 핵연료체(20)를 둘러싸고 있으며, 핵연료체(20)에서 조사되는 중성자를 다시 핵연료체(20)로 반사시킨다.
제2핵연료집합체(220)는 연료봉(221)과 스테인리스스틸봉(222)를 포함하며, 스테인리스스틸봉(222)이 반사체(40)와 마주하도록 외곽에 배치되어 있다.
본 발명에 따르면 추가되는 핵연료로 인해 원자로 본체(10)에 중성자플루언스가 증가할 수 있다. 제2실시예에 따르면 반사체(40)와 면하는 부분에 위치하는 스텐리스스틸봉(222)이 차폐역할을 수행하여, 원자로 본체(10)에 가해지는 중성자플루언스를 감소시킨다.
도 5는 본 발명의 제3실시예에 따른 소형모듈원전에서 제2핵연료집합체를 구성을 나타낸 것이다.
제3실시예에서는 소형모듈원전(1)은 노외계측기(50)를 더 포함한다. 노외계측기(50)는 원자로 본체(10)의 외부에 위치하며 핵연료체(20)로부터의 중성자 조사를 감시한다.
제2핵연료집합체(220)는 연료봉(221)과 스테인리스스틸봉(222)를 포함한다. 스테인리스스틸봉(222)이 반사체(40)와 마주하도록 외곽에 배치되어 있으나, 노외계측기(50)로의 중성자 조사를 방해하지 않도록 노외계측기(50)와 제2핵연료집합체(220)의 중심영역을 연결하는 영역(D)에는 배치되어 있지 않다.
제3실시예에 따르면 별도의 중성자 유도관없이 연료봉 배열을 통해 노외계측기(50)의 중성자량을 늘릴 수 있다.
노외계측기(50)는 통상 원자로 본체(10)의 외부에 45도, 135도, 225도, 315도 위치에 4개를 놓는다. 본 실시예에 따르면 제2핵연료집합체(220)에 의해 반사체(40)가 줄어들어 노외계측기(50)의 신호 계측이 유리해진다.
도 6은 본 발명의 제4실시예에 따른 소형모듈원전에서 제2핵연료집합체의 구성을 나타낸 것이고, 도 7은 본 발명의 제4실시예에 따른 소형모듈원전에서 핵연료체를 나타낸 것이다.
제4실시예에서는 제2핵연료집합체(220) 내에 제어봉을 삽입할 수 있는 안내관(223)이 마련되어 있다.
도 8은 본 발명의 제5실시예에 따른 소형모듈원전에서 제2핵연료집합체의 구성을 나타낸 것이고, 도 9은 본 발명의 제5실시예에 따른 소형모듈원전에서 핵연료체를 나타낸 것이다.
제5실시예에서는 제2핵연료집합체(220) 내에 노내계측기(224)가 마련되어 있다.
제4실시예 또는 제5실시예에 따르면 제어봉 추가 삽입 혹은 노내계측기 추가 장전 등이 가능하므로 노심내 제어봉구동에 여유를 가져오거나 노내계측기 추가장전으로 안전성 향상에 기여할 수 있다.
이상 설명한 본 발명의 가장 큰 효과는 노심내 연료갯수를 늘려 주기길이를 연장시키는 것이다. 또한 출력분포에 큰 영향없이 주기길이를 연장할 수 있다. 가연성흡수봉을 많이 사용해야하는 SMR의 경우는 주기길이를 늘릴 수 있는 방법으로 본 발명을 사용할 수 있다. 소형의 제2핵연료집합체는 기존의 제1핵연료집합체가 들어갈 수 없는 외곽에 장전되며, SMR의 크기에 따라 4개 내지 16개까지, 즉 기존 연료집합체로 환산하면 1개 내지 4개의 추가 연료장전이 가능하여 설치전 대비 대략 3% 정도 주기길이가 확장된다.
한편 소형의 제2핵연료집합체를 사용해도 노심해석에는 문제가 없다. 현재 노심해석방법은 제1핵연료집합체 하나를 1/4 연료집합체크기로 세분하여 평가하기 때문에 제2핵연료집합체를 추가하여도 해석방법이나 코드개선은 필요하지 않다. 또한 열수력 관점에선 기존 연료대비 크기가 줄었지만 임계열속시험을 제2핵연료집합체 수준에서 시행하기 때문에 적용성에 문제가 없다.
이상과 같이 본 발명에서는 발전기간 증가, 노내계측기 추가 설치로 인한 감시능력 향상 또는 제어봉 확장으로 안전성 강화, 노외계측기 신호세기 증가 등을 도모할 수 있다.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (8)

  1. 소형 연료집합체를 포함하는 소형모듈원전에 있어서,
    원자로 본체; 및
    상기 원자로 본체 내에 수용되어 있으며 복수의 연료집합체를 포함하며 단면배치영역을 가지는 핵연료체를 포함하며,
    상기 단면배치영역은,
    제1배치영역; 및
    상기 제1배치영역의 외곽에 위치하며 서로 이격되어 있는 복수의 제2배치영역을 포함하며,
    상기 연료집합체는,
    각각 제1크기를 가지며 상기 제1배치영역에서 밀접 배치되어 있는 제1핵연료집합체; 및
    각각 상기 제1크기보다 작은 제2크기를 가지며 상기 제2배치영역에 배치되어 있는 제2핵연료집합체를 포함하는 소형모듈형 원자로.
  2. 제1항에 있어서,
    상기 각 연료집합체는 사각형 단면을 가지는 길게 연장된 육면체 형상이며,
    상기 제2핵연료집합체의 단면 크기는 상기 제1핵연료집합체의 단면 크기의 15% 내지 50%인 소형모듈형 원자로.
  3. 제1항에 있어서,
    상기 각 연료집합체는 정사각형 단면을 가지며,
    상기 제2핵연료집합체의 단면 크기는 상기 제1핵연료집합체의 단면 크기의 20% 내지 30%인 소형모듈형 원자로.
  4. 제3항에 있어서,
    상기 제1배치영역의 외곽은 상기 제1핵연료집합체가 계단식으로 배치된 모서리 영역을 가지며,
    상기 제2배치영역은 상기 모서리 영역을 이루는 2개의 상기 제1핵연료집합체에 마주하도록 배치되어 있는 소형모듈형 원자로.
  5. 제1항에 있어서,
    상기 핵연료체와 상기 원자로 본체의 사이에 위치하는 반사체를 더 포함하고,
    상기 제2핵연료집합체는 복수의 연료봉 및 복수의 스텐리스스틸봉을 포함하며,
    상기 스텐리스스틸봉은 상기 반사체를 마주하도록 배치된 소형모듈형 원자로.
  6. 제1항에 있어서,
    상기 핵연료체와 상기 원자로 본체의 사이에 위치하는 반사체; 및
    상기 원자로 본체의 외부에 위치하며 상기 제2핵연료집합체에 인접하게 배치되는 노외계측기를 더 포함하며,
    상기 제2핵연료집합체는 복수의 연료봉 및 복수의 스텐리스스틸봉을 포함하며,
    상기 스텐리스스틸봉은 상기 반사체를 마주하도록 배치되며, 상기 노외계측기와 상기 제2핵연료집합체의 중심영역을 연결하는 영역에는 배치되지 않는 소형모듈형 원자로.
  7. 제1항에 있어서,
    상기 제2핵연료집합체에 설치되는 제어봉을 삽입할 수 있는 유도관 및 노내계측기 중 어느 하나를 더 포함하는 소형모듈형 원자로.
  8. 소형 연료집합체를 포함하는 소형모듈형 원자로에 있어서,
    원자로 본체; 및
    상기 원자로 본체 내에 수용되어 있으며 복수의 연료집합체를 포함하며 단면배치영역을 가지는 핵연료체를 포함하며,
    상기 연료집합체는,
    제1핵연료집합체와;
    상기 제1핵연료집합체에 비해 단면적이 작은 제2핵연료집합체를 포함하며,
    상기 단면배치영역은,
    상기 제1핵연료집합체가 배치되어 있는 제1배치영역; 및
    상기 제2핵연료집합체가 배치되어 있으며 상기 제1배치영역의 외곽에 위치하며 서로 이격되어 있는 복수의 제2배치영역을 포함하며,
    상기 제1배치영역의 둘레는,
    상기 제2핵연료집합체가 일렬로 배치된 직선 영역; 및
    상기 제2핵연료집합체가 계단식으로 배치된 모서리 영역을 포함하며,
    상기 제2배치영역은 상기 모서리 영역에 위치하는 소형모듈형 원자로.
PCT/KR2023/000217 2022-03-02 2023-01-05 소형 연료집합체를 포함하는 소형모듈원전 WO2023167404A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220026645A KR102632044B1 (ko) 2022-03-02 2022-03-02 소형 연료집합체를 포함하는 소형모듈원전
KR10-2022-0026645 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167404A1 true WO2023167404A1 (ko) 2023-09-07

Family

ID=87883941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000217 WO2023167404A1 (ko) 2022-03-02 2023-01-05 소형 연료집합체를 포함하는 소형모듈원전

Country Status (2)

Country Link
KR (1) KR102632044B1 (ko)
WO (1) WO2023167404A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305190A (ja) * 1991-04-01 1992-10-28 Toshiba Corp 原子炉の炉心
JPH09274093A (ja) * 1996-04-08 1997-10-21 Hitachi Ltd 沸騰水型原子炉
JP2005274316A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 原子炉
KR101082061B1 (ko) * 2010-05-13 2011-11-10 한국원자력연구원 대형 원자로
JP2017044703A (ja) * 2011-12-20 2017-03-02 日本ネイチャーセル株式会社 小型電子力発電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101717942B1 (ko) * 2016-02-03 2017-04-04 세종대학교산학협력단 소형 모듈형 원자로 노심 및 이를 갖는 원자로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305190A (ja) * 1991-04-01 1992-10-28 Toshiba Corp 原子炉の炉心
JPH09274093A (ja) * 1996-04-08 1997-10-21 Hitachi Ltd 沸騰水型原子炉
JP2005274316A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 原子炉
KR101082061B1 (ko) * 2010-05-13 2011-11-10 한국원자력연구원 대형 원자로
JP2017044703A (ja) * 2011-12-20 2017-03-02 日本ネイチャーセル株式会社 小型電子力発電システム

Also Published As

Publication number Publication date
KR20230129710A (ko) 2023-09-11
KR102632044B1 (ko) 2024-01-31

Similar Documents

Publication Publication Date Title
US20060126775A1 (en) Reactivity control rod for core, core of nuclear reactor, nuclear reactor and nuclear power plant
ES8702019A1 (es) Conjunto modular de cabezal para reactor nuclear
SE7906249L (sv) Metlans for kokvattenreaktorer
US6519308B1 (en) Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
WO2023167404A1 (ko) 소형 연료집합체를 포함하는 소형모듈원전
CN105190773B (zh) 一种反应堆堆芯内仪器操纵系统
Jevremovic et al. Core design of a direct-cycle, supercritical-water-cooled fast breeder reactor
JP2703428B2 (ja) 小型高速炉
JP2923269B2 (ja) 高速増殖炉の炉心
WO2023090744A1 (ko) 이중벽단일통과-증기발생기
US3802962A (en) Neutron flux measurement installation for liquid-cooled nuclear reactors
WO2023136544A1 (ko) 중수로 원전의 계통제염 방법
WO2023172096A1 (ko) 소형원자로 장치 및 그 운용방법
WO2019160174A1 (ko) 납냉각 피동형 소형모듈화원전의 안전성 검증을 위한 풀형 종합 실험 장비
WO2014137024A1 (ko) 원자로의 출구노즐
Yongchang et al. Some features of the nuclear heating reactor (NHR) design in China
JP3874310B2 (ja) 液体金属冷却高速炉
WO2019203582A1 (ko) 원자력 시설의 해체 방법
Grandy et al. FASTER Test Reactor Preconceptual Design
Utsuro et al. Operational safety and reactor life improvements of Kyoto University Reactor
CN114530262A (zh) 一种用于小型无可溶硼压水堆的堆芯装置
SHIELDING 4. Thermal Neutron Capture After the fast neutrons have been slowed down, the shield designer must make provisions for thermal neutron cap-ture. This is usually a relatively easy
Nosovskij Issues of the safety culture at the nuclear power plants
Kiryushin et al. Design of the advanced reactor BN-600M
MITCHEL et al. PRELIMINARY DESIGN STUDY OF AN EXPERIMENTAL ACCCELERATOR DRIVEN SYSTEM DESCRIPTION OF THE GAS-COOLED PRIMARY SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763603

Country of ref document: EP

Kind code of ref document: A1