WO2023167394A1 - Method for estimating state of battery - Google Patents

Method for estimating state of battery Download PDF

Info

Publication number
WO2023167394A1
WO2023167394A1 PCT/KR2022/019495 KR2022019495W WO2023167394A1 WO 2023167394 A1 WO2023167394 A1 WO 2023167394A1 KR 2022019495 W KR2022019495 W KR 2022019495W WO 2023167394 A1 WO2023167394 A1 WO 2023167394A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pulse current
soc
current
charging
Prior art date
Application number
PCT/KR2022/019495
Other languages
French (fr)
Korean (ko)
Inventor
홍영진
이영재
주유진
최성호
명석한
김두리
정지현
김태훈
Original Assignee
주식회사 민테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 민테크 filed Critical 주식회사 민테크
Publication of WO2023167394A1 publication Critical patent/WO2023167394A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to a method and apparatus capable of estimating the state of a battery.
  • Batteries are used as power sources for mobile devices and electric vehicles, and demand for them is explosively increasing with the recent popularization of electric vehicles.
  • demand for methods for recycling/reusing batteries or stably using batteries for a long period of time is increasing as demand for medium and large-sized batteries with high unit prices increases.
  • Accurately diagnosing the state of the battery is important in order to re-use the battery or to use the battery stably and for a long time. If the state of the battery can be accurately diagnosed, the direction can be set to efficiently reuse the battery, and the lifespan of the battery can be improved by preventing overcharging or overdischarging during charging and discharging of the battery. .
  • OCV open circuit voltage
  • SOC state of charge
  • OCV is the voltage of the battery measured in a state in which the circuit is open, and means the voltage of the battery measured in a state in which the current applied to the battery is zero.
  • the OCV of the battery may simply mean the voltage measured in the open circuit state or the voltage measured in the electrochemically equilibrated state after a long time in the circuit open state.
  • the voltage measured in the state can be defined as Nernst OCV (Nernst OCV).
  • Nernst OCV is a voltage measured in an electrochemical equilibrium state, it can be considered to provide information about the thermodynamic state of the battery.
  • a method of estimating the Nernst OCV of a battery is a method of estimating using a voltage value that converges when the battery is stabilized for a certain period of time (eg, 2 hours or more) in a state where no external electrical stimulation is applied.
  • a certain period of time e.g. 2 hours or more
  • the internal state of the battery must reach electrochemical equilibrium in order to estimate the Nernst OCV in this way, there is a disadvantage in that a lot of cost and time are incurred.
  • the problem to be solved by the present invention is to provide a method for quickly and accurately estimating the Nernst OCV of a battery within minutes.
  • An object to be solved by the present invention is to provide a method for calculating SOC of a battery based on the estimated Nernst OCV and calculating State of Health (SOH) using the calculated SOC.
  • a battery state estimation method according to an aspect of the present invention
  • a charging current is applied in step (S200), and if the SOC of the battery determined in step (S100) is greater than or equal to the reference SOC, (S200 ) step, the discharge current can be applied.
  • the reference SOC may be at a point between 20% and 80%.
  • At least one charge pulse current and at least one discharge pulse current applied in step (S300) may be applied alternately.
  • the pulse current applied in step (S300) may first be applied with a pulse current having an opposite sign to the current applied in step (S200).
  • the total charge capacity (Ah) by at least one charging pulse current applied in step (S300) and the total discharge capacity (Ah) by at least one discharge pulse current may be equal to each other.
  • the size of the pulse current applied in step (S300) is 0.1 C-rate to 10.0 C-rate, and the time for applying the pulse current may be 0.1 second to 500 seconds.
  • At least one pause step may be inserted between the step of applying at least one charge pulse current and at least one discharge pulse current in step S300.
  • the pause step inserted between the applying of the at least one charge pulse current and the at least one discharge pulse current may be maintained for 0.1 second to 500 seconds, or 0.1 second to 120 seconds.
  • the total time ( ⁇ A ) during which at least one charge pulse current is applied and the total time ( ⁇ B ) during which at least one discharge pulse is applied may be equal to each other in step S300 .
  • the rest step inserted between the applying of the at least one charge pulse current and the at least one discharge pulse current may be maintained for 0.1 ⁇ A to 10 ⁇ A.
  • the average of step (S500) may be calculated by any one or combination of arithmetic average, geometric average, and harmonic average.
  • the step of calculating the SOC of the battery using the estimated Nernst OCV may further be included, and the step of calculating the SOC refers to a reference table corresponding to the estimated Nernst OCV. You can calculate the SOC using a specific formula.
  • the above-described SOC calculation of the battery may be performed multiple times in different charging states of the battery.
  • a step of calculating a capacity lifetime (SOH) based on the calculated SOC of multiple times may be further included (S700).
  • the SOC of the battery is determined, the charging current or the discharging current is applied based on the SOC determination result, at least one charging pulse current and at least one discharging pulse current are applied to the battery, and the charging pulse current is applied.
  • a battery state including a processor that measures the voltage V c changed when current is applied, measures the voltage V d changed when discharge pulse current is applied, and estimates the average value of the V c and V d as Nernst OCV.
  • An estimation device can be provided.
  • a method for calculating the SOC of a battery changed during partial charge and discharge using the Nernst OCV value estimated before and after partial charge and discharge and calculating the capacity life (SOH) of the battery using the calculated SOC change amount is provided.
  • FIG. 1 is a flowchart illustrating a method for estimating a battery state according to an embodiment of the present invention.
  • FIG. 2 shows that the application profiles of the charging pulse current and the discharging pulse current according to an embodiment of the present invention and the total charge/discharge capacity by each pulse current are equal to each other.
  • FIG. 3 is a flowchart of application of charging current and discharging current according to an embodiment of the present invention.
  • FIG. 4 shows an example of a method for estimating a battery state according to an embodiment of the present invention, and is a graph showing a change in voltage when current is applied.
  • Nernst OCV is estimated by the method of the present invention in a module or pack type battery and an error rate with an actual Nernst OCV is calculated.
  • FIG. 6 shows an example of a battery state estimation method according to an embodiment of the present invention, and is a graph showing estimating Nernst OCV and SOC before and after partial discharge at different time points.
  • first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from another.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element.
  • FIG. 1 is a flowchart illustrating a method for estimating a state of a battery according to an embodiment of the present invention.
  • the battery in the present invention includes a capacitor or a secondary battery that stores power by charging, and a device employing the battery can receive power from the battery as a load.
  • the battery includes a battery pack composed of a plurality of battery modules, at least one battery module in the battery pack, a battery module composed of a plurality of battery cells, at least one battery cell in the battery module, a representative module representing a plurality of battery modules, and a plurality of battery modules. It may include at least one of representative cells representing battery cells of , and hereinafter, a battery may be interpreted as referring to these examples.
  • a method for estimating a battery state includes determining a state of charge (SOC) of a battery (S100).
  • SOC is a parameter indicating the state of charge of the battery. Since SOC indicates how much energy is stored in the battery, the amount can be expressed as 0 to 100% using a percentage (%) unit. For example, 0% may mean a fully discharged state and 100% may mean a fully charged state, and this expression method may be modified and defined in various ways according to design intentions or embodiments.
  • the battery state estimation method may include determining the SOC of a battery in a rest state.
  • the dormant state means a state in which the battery is not being charged or discharged, and the battery may be a battery stored for a long time after being collected for reuse.
  • the SOC determination of the battery through the step (S100) is a step for roughly estimating the initial state of the battery before diagnosing the state of the battery, and is distinguished from the SOC calculation in the step (S600) described later. Unlike the step (S600) of calculating the exact SOC of the battery, the SOC determination of the step (S100) has the purpose of determining the current sign of the subsequent current application step (S200).
  • the SOC measurement of the battery in step (S100) may use a known method such as a voltage measurement method or a resistance measurement method, and is not limited to a specific SOC measurement method.
  • the battery state estimation method may further include a visual inspection step of determining whether at least one state of damage, swelling, or discoloration of the battery is within a predetermined effective range prior to the step of determining the SOC of the battery (S100).
  • the external inspection for sensing at least one of damage, swelling, and discoloration of the battery may be performed through a camera, optical sensor, or electrochemical impedance spectroscopy, and if it is determined that the inspection result is within a preset effective range, the next step may be performed. there is.
  • the battery state estimation method of the present invention may include applying a charging current or a discharging current to the battery (S200).
  • the magnitude of the charge current or discharge current applied to the battery may be 0.1 C-rate to 1 C-rate, preferably 0.2 C-rate to 0.5 C-rate, and the charge current or discharge current is the nominal capacity of the battery. It may be applied within the range of 0 to 40% of (nominal capacity) and preferably 0 to 20%.
  • the battery state estimation method of the present invention may further include a battery rest step (S201) after the step (S200).
  • the resting step can be maintained for 1 to 60 minutes, preferably 2 to 30 minutes. A short amount of time is enough.
  • the battery is charged or discharged in advance through the steps (S200) and (S201), and the dormant phase is maintained for a predetermined time, thereby activating the battery and making the internal state of the battery uniform before the Nernst OCV estimation step.
  • pre-conditioning the process of pre-charging/discharging the battery before the Nernst OCV estimation step to maintain the idle step is defined as pre-conditioning.
  • Pre-conditioning can be performed with only a low C-rate, which has the advantage of high versatility.
  • the application of the charging current or the discharging current in step S200 is determined by determining the battery SOC in step S100.
  • the charging current may be applied first, and when determined to be greater than or equal to the reference SOC, the discharge current may be applied first.
  • the battery can be charged by applying a charging current, and the SOC of the battery to be measured is the SOC If it is higher than 50%, the battery can be discharged by applying a discharge current.
  • the reference SOC may be a point in the range of 20% to 80%, preferably 30% to 70%.
  • the battery state estimation method of the present invention may further include measuring electrochemical impedance spectroscopy (EIS) after the step (S201) (S202).
  • EIS electrochemical impedance spectroscopy
  • the step of measuring the electrochemical impedance may be performed under a frequency condition between 4 kHz and 0.1 Hz.
  • the electrochemical impedance measurement step (S202) is preferably performed after the rest time of (S201), but may be performed before the step (S201), and is not limited to a specific order.
  • the step of measuring the electrochemical impedance is a step for measuring the resistance in the battery and can be used as an index to increase the accuracy of Nernst OCV estimation.
  • the battery state estimation method of the present invention includes applying at least one charge pulse current and at least one discharge pulse current to the battery (S300).
  • the charging pulse current and the discharging pulse current are applied in a manner in which the charging pulse current and the discharging pulse current are applied by applying the current profile to the battery.
  • the current profile refers to a policy for determining a method or command for applying current/voltage to a battery, and may be designed to include at least one charging pulse and at least one discharging pulse.
  • FIG. 2 illustrates an embodiment of a current profile including one charge pulse current and one discharge pulse current, and a rest time inserted between the application of the charge pulse current and the discharge pulse current.
  • the current profile may be designed in a form in which at least one charge pulse current and at least one discharge pulse current are alternately included. For example, if the charging pulse current is applied to the battery first, the discharging pulse current may be applied next, and if the discharging pulse current is applied first, the charging pulse current may be applied next.
  • the order of applying the charge pulse current or discharge pulse current in step (S300) is determined by the type (sign of current) of the current applied in step (S200), and the pulse current opposite to the sign of the current applied in step (S200) is may be authorized. For example, if the current applied in step (S200) is the charging current, the discharge pulse current may be applied first, and if the current applied in step (S200) is the discharge current, the charging pulse current is applied first. can be designed to be
  • the applied charge pulse current and discharge pulse current may range from 0.1 C-rate to 10.0 C-rate, preferably from 0.1 C-rate to 3.0 C-rate.
  • the charge pulse current and the discharge pulse current may be applied for 0.1 seconds to 500 seconds, preferably 0.1 seconds to 60 seconds, and more preferably 0.1 seconds to 10 seconds. there is.
  • the total charge capacity (Ah) by at least one charging pulse current applied to the battery and the total discharge capacity (Ah) by at least one discharge pulse current applied to the battery may be the same (FIG. 2).
  • the total charge capacity (Ah) by the charge pulse current and the total discharge capacity (Ah) by the discharge pulse current By equalizing the total charge capacity (Ah) by the charge pulse current and the total discharge capacity (Ah) by the discharge pulse current, the non-faradaic current inside the battery is canceled, and the faradaic current Only reactions can be detected.
  • the current profile applied in step S300 may be designed in a form in which a rest step is inserted between at least one charge pulse current and at least one discharge pulse current.
  • a rest step is inserted between at least one charge pulse current and at least one discharge pulse current.
  • the pause step may be included one or more times, may be modified and applied according to design intent, and is not particularly limited (see FIG. 2).
  • the pause step inserted between the at least one charging pulse current and the at least one discharging pulse current may be maintained for 0.1 to 500 seconds, preferably 0.1 to 120 seconds.
  • the total time ⁇ A for which at least one charging pulse current is applied and the total time ( ⁇ B ) for which at least one discharge pulse is applied may be equal to each other.
  • the pause step inserted between the at least one charge pulse current and the at least one discharge pulse current may be set to be maintained for a time ranging from 0.1 ⁇ A to 10 ⁇ A.
  • the method for estimating a battery state includes measuring a change in voltage of a battery that appears when a charge pulse current and a discharge pulse current are applied to the battery (S400).
  • the charging pulse current or the discharging pulse current according to the above-described current profile is applied to the battery, the voltage of the battery is changed, and the changed voltage according to the application of the pulse current is measured.
  • the voltage at this time is a closed circuit voltage (CCV) because it is measured in a state where current is applied.
  • a voltage measured when a charging pulse current is applied may be defined as a charging voltage (V c ), and a voltage measured when a discharge pulse is applied may be defined as a discharge voltage (V d ).
  • V c charging voltage
  • V d discharge voltage
  • 4 illustrates a voltage change pattern of a battery appearing when a pulse current is applied according to an embodiment of the present invention.
  • voltage V c due to application of a charging pulse may be 3.558 V
  • voltage V d due to application of a discharging pulse may be measured as 3.494 V.
  • the battery state estimation method includes calculating an average value based on the V c and V d values and estimating the average value as the Nernst OCV of the battery (S500).
  • the average of V c and V d may be any one of an arithmetic average, a geometric average, and a harmonic average.
  • V c is 3.558 V
  • V d is 3.494 V
  • (3.558 V+3.494 V)/2 3.526 V is calculated using the arithmetic mean, which is one embodiment.
  • 3.526V can be estimated as the Nernst OCV of the battery.
  • Nernst OCV of the battery may be estimated based on a value at which the voltage of the battery converges.
  • the Nernst OCV stabilization time is the time required to estimate the Nernst OCV of the battery, and refers to the time required for the voltage of the battery in a resting state to converge and stabilize to a constant level enough to estimate the Nernst OCV.
  • the Nernst OCV stabilization time may be approximately 12 hours or more or 24 hours or more. As the Nernst OCV stabilization time increases, cost and time are consumed, so it needs to be shortened.
  • the present invention measures the voltage (V c ) after applying the charging pulse current and the voltage (V d ) after applying the discharging pulse, and the average voltage values of the V c and V d are not significantly different from the actual Nernst OCV of the battery. Confirmed.
  • the present invention has technical significance in that the Nernst OCV can be estimated through the CCV without passing through the Nernst OCV stabilization time.
  • An electrochemical reaction means an oxidation or reduction reaction in which electrons are involved.
  • a current is applied (electrons flow) for an electrochemical reaction
  • an electrochemical reaction in which electrons are involved occurs, as well as an electrochemical reaction in which charges are accumulated on the surface of an electrode, such as an electric double-layer Electrons are also used for other purposes.
  • the current required for the electrochemical reaction is referred to as faradaic current
  • the current required for purposes other than the electrochemical reaction, such as generating an electrical double layer is referred to as non-faradaic current.
  • a reaction by the Faraday current may be an oxidation/reduction reaction of a battery electrode, and a thermodynamic state of a corresponding electrode may change due to the oxidation/reduction reaction. Therefore, the reaction by the Faraday current can be interpreted as a change in the energy level of the electrode, that is, the thermodynamic energy level of the electrode.
  • the reaction by the non-Faraday current may be an electric double layer generation reaction generated on the surface of the battery electrode, and this reaction is when electrons are consumed (current is applied) but electrons are transferred to the electrode. Since it is not oxidized/reduced while moving, the energy level of the battery does not change. Therefore, the reaction by the non-Faraday current can be interpreted as a reaction in which the energy level of the electrode, that is, the thermodynamic energy level of the electrode does not change.
  • thermodynamic energy information of the battery when a current is applied to the battery, it is necessary to measure the energy level change value due to the Faraday current. Since they appear simultaneously, it is difficult to detect only the state change of the battery based on the Faraday current.
  • a charge pulse current and a discharge pulse current having the same charge capacity/discharge capacity are alternately flowed, and an average voltage value of voltage values changed accordingly is estimated as Nernst OCV.
  • the average value of the voltage changed according to the application of the pulse current can be considered as the thermodynamic information (OCV) of the battery, and it is considered that there is no large error when this value is compared with the actual Nernst OCV.
  • 5 shows a comparison between the Nernst OCV estimated through the method of the present invention and the actual Nernst OCV.
  • 5 shows an example of an experiment using a battery in the form of a pack and a module.
  • the actual Nernst OCV is a measurement of the convergence voltage by storing the battery under the same conditions in an open circuit state for 24 hours, and the estimated Nernst OCV shows the Nernst OCV estimated using the method of the present invention.
  • the battery state estimation method includes calculating the SOC using the Nernst OCV estimated by the method of the present invention (S600).
  • calculating the SOC using the estimated Nernst OCV may include calculating the SOC by referring to a reference table corresponding to the estimated Nernst OCV.
  • a reference table corresponding to the estimated Nernst OCV may be made into a database and stored in the charge/discharge device in advance, and SOC may be calculated by matching the estimated Nernst OCV to the previously stored reference table.
  • the database may be implemented as a memory included in the charging/discharging device or as an external device such as a server that can be connected to the battery state estimation device by wire, wireless, or network.
  • Reference table corresponding to the OCV estimated by the method of the present invention Since the reference table is used, it is possible to eliminate the hassle of separately managing a reference table corresponding to the previous battery state, and to reduce an error in estimating the battery state due to OCV hysteresis.
  • SOC may be calculated by substituting the Nernst OCV estimated in the present invention into a specific formula.
  • the above formula may use a known formula, and is not limited to a specific formula.
  • the battery state estimation method may perform the above-described Nernst OCV estimation step and SOC calculation step multiple times.
  • the battery state estimation method of the present invention may perform Nernst OCV estimation and SOC calculation multiple times (one time, two times, three times, etc.) in different SOC intervals.
  • the battery may be partially charged or discharged between each cycle (see FIG. 6). For example, as shown in FIG. 6 , after calculating SOC 1 in section A, the battery may be discharged for a certain period of time, and then SOC 2 may be calculated in section B.
  • a method for estimating a battery state includes calculating ⁇ SOC using SOC calculated by performing multiple times, and calculating a capacity life (SOH) of a battery using ⁇ SOC. Do (S700).
  • capacity life represents the degree of aging of a battery.
  • SOH capacity life
  • a battery that is not aged at all is represented by SOH 100%, and conversely, a state in which the battery is unusable due to continued aging can be represented by SOH 0%.
  • the capacity life (SOH) may be calculated through the formula below, but is not limited to a specific formula.
  • Capacity lifetime (SOH) Q occupied /(Capacity nominal ⁇ SOC)
  • Q occupied Means the total amount of applied current
  • Capacity nominal means nominal capacity.
  • the battery state estimation method according to the present invention may be implemented and used in at least one software module.
  • the battery state estimation method may be implemented by a battery management system (BMS).
  • BMS battery management system
  • the present invention determines the SOC of the battery, applies a charging current or a discharging current based on the SOC determination result, applies at least one charging pulse current and at least one discharging pulse current to the battery, and applies the charging pulse current.
  • a battery state including a processor that measures the voltage V c changed when current is applied, measures the voltage V d changed when discharge pulse current is applied, and estimates the average value of the V c and V d as Nernst OCV. Estimation device is provided.
  • the battery state estimation apparatus of the present invention may include a processor and a memory, and the processor may perform the battery state estimation method of the present invention.
  • the memory may store a reference table corresponding to the stabilized Nernst OCV or may store a program in which a battery state estimation method is implemented.
  • the memory may be volatile memory or non-volatile memory.
  • the processor may execute the program and control the battery state estimation device. Program codes executed by the processor may be stored in memory.
  • the battery state estimation device may be connected to an external device (eg, a personal computer or network) through an input/output device (not shown) and exchange data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed are a method for estimating the state of a battery and an apparatus for estimating the state of a battery. The present invention comprises the steps of: determining the SOC of the battery; applying a charging current or a discharging current to the battery on the basis of the result of determining the SOC; applying at least one charging pulse current and at least one discharging pulse current to the battery; measuring the voltage Vc changed when the charging pulse current is applied and measuring the voltage Vd changed when the discharging pulse current is applied; and estimating the average value of Vc and Vd as the Nernst OCV of the battery, wherein the Nernst OCV is estimated, and the SOC is calculated so that the capacity life (SOH) of the battery can be calculated.

Description

배터리 상태 추정 방법How to estimate battery health
본 발명은 배터리의 상태를 추정할 수 있는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus capable of estimating the state of a battery.
배터리는 모바일 기기 및 전기자동차 등의 전력원으로 사용되는데, 최근 전기자동차의 대중화와 함께 그 수요가 폭발적으로 늘고 있다. 특히, 단가가 낮은 소형 배터리와 달리, 단가가 높은 중대형 배터리의 수요가 늘어남에 따라, 배터리를 재활용/재사용하거나, 배터리를 안정적으로 오랫동안 사용하고자 하는 방법에 대한 수요가 증가하고 있다.Batteries are used as power sources for mobile devices and electric vehicles, and demand for them is explosively increasing with the recent popularization of electric vehicles. In particular, unlike small batteries with low unit prices, demand for methods for recycling/reusing batteries or stably using batteries for a long period of time is increasing as demand for medium and large-sized batteries with high unit prices increases.
배터리를 재사용(re-use)하거나 배터리를 안정적이고 오랫동안 사용하기 위해서는 배터리의 상태를 정확히 진단하는 것이 중요하다. 배터리의 상태를 정확하게 진단할 수 있다면, 배터리의 재사용에 있어서 효율적으로 배터리를 재사용하도록 방향을 설정할 수 있고, 배터리의 충방전 시, 과충전 또는 과방전을 미연에 방지하여 배터리의 수명이 향상될 수 있다.Accurately diagnosing the state of the battery is important in order to re-use the battery or to use the battery stably and for a long time. If the state of the battery can be accurately diagnosed, the direction can be set to efficiently reuse the battery, and the lifespan of the battery can be improved by preventing overcharging or overdischarging during charging and discharging of the battery. .
배터리의 상태를 추정하기 위해서 배터리의 열역학적인 정보를 나타낼 수 있는 개방회로전압 (Open Circuit Voltage; OCV) 또는 SOC (State of Charge)가 이용되고 있다. OCV는 회로가 개방(open)된 상태에서 측정된 배터리의 전압으로, 배터리에 인가되는 전류가 0인 상태에서 측정한 배터리의 전압을 의미한다. 여기서, 배터리의 OCV는 단순히 회로가 개방된 상태에서 측정한 전압 또는 회로가 개방된 상태에서 오랜 시간이 지나 전기화학적으로 평형을 이룬 상태에서 측정된 전압을 의미할 수 있는데, 전기화학적으로 평형을 이룬 상태에서 측정된 전압을 Nernst OCV (네른스트 OCV)라고 정의할 수 있다. 여기서, Nernst OCV는 전기화학적 평형을 이룬 상태에서 측정되는 전압이므로, 배터리의 열역학적인 상태에 관한 정보를 제공하는 것으로 고려될 수 있다. In order to estimate the state of the battery, open circuit voltage (OCV) or state of charge (SOC) that can represent thermodynamic information of the battery is used. OCV is the voltage of the battery measured in a state in which the circuit is open, and means the voltage of the battery measured in a state in which the current applied to the battery is zero. Here, the OCV of the battery may simply mean the voltage measured in the open circuit state or the voltage measured in the electrochemically equilibrated state after a long time in the circuit open state. The voltage measured in the state can be defined as Nernst OCV (Nernst OCV). Here, since the Nernst OCV is a voltage measured in an electrochemical equilibrium state, it can be considered to provide information about the thermodynamic state of the battery.
배터리의 상태를 정확히 추정하기 위해 배터리의 Nernst OCV 및 SOC를 측정하는 다양한 방식들이 제안되고 있다. 통상적으로 배터리의 Nernst OCV를 추정하는 방법은 배터리에 외부적인 전기 자극을 가하지 않은 상태에서 일정 시간 (예: 2시간 이상)동안 안정화하였을 때 수렴하는 전압 값을 이용하여 추정하는 방법이 있다. 다만, 이와 같은 방법으로 Nernst OCV를 추정하기 위해서는 배터리의 내부 상태가 전기화학적 평형에 도달하여야 하므로, 많은 비용과 시간이 발생한다는 단점이 있었다. Various methods of measuring Nernst OCV and SOC of a battery have been proposed to accurately estimate the state of the battery. In general, a method of estimating the Nernst OCV of a battery is a method of estimating using a voltage value that converges when the battery is stabilized for a certain period of time (eg, 2 hours or more) in a state where no external electrical stimulation is applied. However, since the internal state of the battery must reach electrochemical equilibrium in order to estimate the Nernst OCV in this way, there is a disadvantage in that a lot of cost and time are incurred.
따라서, Nernst OCV를 정확하고 빠르게 추정하고, 이를 기초로 배터리 상태를 정확하게 추정할 수 있는 방법 및 장치의 개발이 요구되고 있다.Accordingly, there is a demand for development of a method and apparatus capable of accurately and quickly estimating the Nernst OCV and accurately estimating the battery state based thereon.
본 발명이 해결하고자 하는 과제는 배터리의 Nernst OCV를 수분 이내로 신속하고 정확하게 추정할 수 있는 방법을 제공하는 것이다. The problem to be solved by the present invention is to provide a method for quickly and accurately estimating the Nernst OCV of a battery within minutes.
본 발명이 해결하고자 하는 과제는 추정된 Nernst OCV를 기초로 배터리의 SOC를 계산하고, 계산된 SOC를 이용하여 용량 수명(State of Health; SOH)을 산출하는 방법을 제공하는 것이다.An object to be solved by the present invention is to provide a method for calculating SOC of a battery based on the estimated Nernst OCV and calculating State of Health (SOH) using the calculated SOC.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned above can be understood by the following description and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by means of the instrumentalities and combinations indicated in the claims.
본 발명의 일 측면에 따른 배터리 상태 추정 방법은 A battery state estimation method according to an aspect of the present invention
(S100) 배터리의 SOC를 판단하는 단계; (S100) determining the SOC of the battery;
(S200) SOC 판단 결과에 기초하여, 배터리에 충전전류 또는 방전전류를 인가하는 단계; (S200) based on the SOC determination result, applying a charging current or a discharging current to the battery;
(S300) 배터리에 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 배터리에 인가하는 단계; (S300) applying at least one charging pulse current and at least one discharging pulse current to the battery;
(S400) 충전 펄스 전류를 인가했을 때 변화된 전압 Vc를 측정하고, 방전 펄스 전류를 인가했을 때 변화된 전압 Vd를 측정하는 단계; (S400) measuring the changed voltage V c when the charging pulse current is applied, and measuring the changed voltage V d when the discharge pulse current is applied;
(S500) 상기 Vc와 Vd의 평균 값을 배터리의 Nernst OCV로 추정하는 단계; 를 포함하는 것을 특징으로 한다.(S500) estimating the average value of V c and V d as the Nernst OCV of the battery; It is characterized in that it includes.
본 발명에 따르면, (S100) 단계에서 판단되는 배터리의 SOC가 기준 SOC 이하인 경우, (S200) 단계에서 충전전류를 인가하고, (S100) 단계에서 판단되는 배터리의 SOC가 기준 SOC 이상인 경우, (S200) 단계에서 방전전류를 인가할 수 있다. 상기 기준 SOC는 20% 내지 80% 중 일 지점일 수 있다.According to the present invention, when the SOC of the battery determined in step (S100) is less than or equal to the reference SOC, a charging current is applied in step (S200), and if the SOC of the battery determined in step (S100) is greater than or equal to the reference SOC, (S200 ) step, the discharge current can be applied. The reference SOC may be at a point between 20% and 80%.
본 발명에 따르면, (S300) 단계에서 인가되는 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류는 교대로 인가될 수 있다. According to the present invention, at least one charge pulse current and at least one discharge pulse current applied in step (S300) may be applied alternately.
본 발명에 따르면, (S300) 단계에서 인가되는 펄스 전류는 (S200) 단계에서 인가된 전류와 반대 부호의 펄스 전류가 먼저 인가될 수 있다. According to the present invention, the pulse current applied in step (S300) may first be applied with a pulse current having an opposite sign to the current applied in step (S200).
본 발명에 따르면, (S300) 단계에서 인가되는 적어도 하나의 충전 펄스 전류에 의한 총 충전 용량(Ah)과 적어도 하나의 방전 펄스 전류에 의한 총 방전 용량(Ah)은 서로 같을 수 있다.According to the present invention, the total charge capacity (Ah) by at least one charging pulse current applied in step (S300) and the total discharge capacity (Ah) by at least one discharge pulse current may be equal to each other.
본 발명에 따르면, (S300) 단계에서 인가되는 펄스 전류 크기는 0.1C-rate 내지 10.0C-rate이고, 펄스 전류가 인가되는 시간은 0.1초 내지 500초일 수 있다.According to the present invention, the size of the pulse current applied in step (S300) is 0.1 C-rate to 10.0 C-rate, and the time for applying the pulse current may be 0.1 second to 500 seconds.
본 발명에 따르면, (S300) 단계의 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류 인가 단계 사이에 적어도 하나의 휴지 단계가 삽입될 수 있다.According to the present invention, at least one pause step may be inserted between the step of applying at least one charge pulse current and at least one discharge pulse current in step S300.
본 발명에 따르면, 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류 인가 단계 사이에 삽입되는 휴지 단계는 0.1초 내지 500초, 또는 0.1초 내지 120초 동안 유지될 수 있다.According to the present invention, the pause step inserted between the applying of the at least one charge pulse current and the at least one discharge pulse current may be maintained for 0.1 second to 500 seconds, or 0.1 second to 120 seconds.
본 발명에 따르면, (S300) 단계의 적어도 하나의 충전 펄스 전류가 인가되는 총 시간(τA)과 적어도 하나의 방전 펄스가 인가되는 총 시간(τB)은 서로 같을 수 있다.According to the present invention, the total time (τ A ) during which at least one charge pulse current is applied and the total time (τ B ) during which at least one discharge pulse is applied may be equal to each other in step S300 .
본 발명에 따르면, 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류 인가 단계 사이에 삽입되는 휴지 단계는 0.1·τA 내지 10·τA 동안 유지될 수 있다.According to the present invention, the rest step inserted between the applying of the at least one charge pulse current and the at least one discharge pulse current may be maintained for 0.1·τ A to 10·τ A.
본 발명에 따르면, (S500) 단계의 평균은, 산술평균, 기하평균, 조화평균 중 어느 하나 또는 그 조합으로 계산되는 것일 수 있다. According to the present invention, the average of step (S500) may be calculated by any one or combination of arithmetic average, geometric average, and harmonic average.
본 발명에 따르면, 추정된 Nernst OCV를 사용하여 배터리의 SOC를 계산하는 단계(S600)를 더 포함할 수 있고, SOC를 계산하는 단계는 추정된 Nernst OCV에 대응하는 레퍼런스 테이블(Reference table)을 참조하여 계산하거나 특정 수식을 사용하여 SOC를 계산할 수 있다.According to the present invention, the step of calculating the SOC of the battery using the estimated Nernst OCV (S600) may further be included, and the step of calculating the SOC refers to a reference table corresponding to the estimated Nernst OCV. You can calculate the SOC using a specific formula.
본 발명에 따르면, 상술한 배터리의 SOC 계산은 배터리의 다른 충전 상태에서 복수회차 수행될 수 있다. According to the present invention, the above-described SOC calculation of the battery may be performed multiple times in different charging states of the battery.
본 발명에 따르면, 상기 계산된 복수회차의 SOC에 기초하여, 용량 수명(SOH)을 산출하는 단계(S700)을 더 포함할 수 있다. According to the present invention, a step of calculating a capacity lifetime (SOH) based on the calculated SOC of multiple times may be further included (S700).
본 발명에 따르면, 배터리의 SOC를 판단하고, 상기 SOC 판단 결과에 기초하여, 충전전류 또는 방전전류를 인가하고, 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 배터리에 인가하고, 충전 펄스 전류를 인가했을 때 변화된 전압 Vc를 측정하고, 방전 펄스 전류를 인가했을 때 변화된 전압 Vd를 측정하고, 상기 Vc와 Vd의 평균 값을 Nernst OCV로 추정하는 프로세서를 포함하는, 배터리 상태 추정 장치를 제공할 수 있다.According to the present invention, the SOC of the battery is determined, the charging current or the discharging current is applied based on the SOC determination result, at least one charging pulse current and at least one discharging pulse current are applied to the battery, and the charging pulse current is applied. A battery state including a processor that measures the voltage V c changed when current is applied, measures the voltage V d changed when discharge pulse current is applied, and estimates the average value of the V c and V d as Nernst OCV. An estimation device can be provided.
상기 과제의 해결 수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시예를 참조하여 보다 상세하게 이해될 수 있을 것이다.The solution to the above problems does not enumerate all the features of the present invention. Various features of the present invention and the advantages and effects thereof will be understood in more detail with reference to the following specific examples.
본 발명에 따르면, 배터리의 Nernst OCV를 신속하고 정확하게 추정하는 방법을 제공할 수 있다.According to the present invention, it is possible to provide a method for quickly and accurately estimating the Nernst OCV of a battery.
본 발명에 따르면, 부분 충방전 전후로 추정된 Nernst OCV 값을 이용하여 부분 충방전 동안 변화된 배터리의 SOC를 계산하고, 계산된 SOC 변화량을 이용하여 배터리의 용량 수명(SOH)을 산출하는 방법을 제공할 수 있다. According to the present invention, a method for calculating the SOC of a battery changed during partial charge and discharge using the Nernst OCV value estimated before and after partial charge and discharge and calculating the capacity life (SOH) of the battery using the calculated SOC change amount is provided. can
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 내용을 설명하면서 함께 기술한다.In addition to the above effects, specific effects of the present invention will be described together while explaining specific details for carrying out the present invention.
도 1은 본 발명의 일 실시예에 따른 배터리 상태 추정 방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method for estimating a battery state according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 충전 펄스 전류 및 방전 펄스 전류 인가 프로파일과 각 펄스 전류에 의한 총 충전/방전 용량이 서로 같음을 나타낸 것이다.FIG. 2 shows that the application profiles of the charging pulse current and the discharging pulse current according to an embodiment of the present invention and the total charge/discharge capacity by each pulse current are equal to each other.
도 3은 본 발명의 일 실시예에 따른 충전전류 및 방전전류의 인가의 순서도를 도시한 것이다.3 is a flowchart of application of charging current and discharging current according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예 따른 배터리 상태 추정 방법의 예시를 나타낸 것으로, 전류를 인가하였을 때 전압 변화를 도시한 그래프이다.4 shows an example of a method for estimating a battery state according to an embodiment of the present invention, and is a graph showing a change in voltage when current is applied.
도 5는 모듈, 팩 형태의 배터리에서 본 발명의 방법으로 Nernst OCV를 추정하고, 실제 Nernst OCV와의 오차율을 계산한 것을 도시한 표이다.5 is a table showing that Nernst OCV is estimated by the method of the present invention in a module or pack type battery and an error rate with an actual Nernst OCV is calculated.
도 6은 본 발명의 일 실시예에 따른 배터리 상태 추정 방법의 예시를 나타낸 것으로, 각기 다른 시점에서 부분 방전 전후로 Nernst OCV 및 SOC를 추정하는 것을 나타낸 그래프이다.6 shows an example of a battery state estimation method according to an embodiment of the present invention, and is a graph showing estimating Nernst OCV and SOC before and after partial discharge at different time points.
이하 첨부된 도면과 설명을 참조하여 본 발명의 바람직한 실시예에 대한 원리를 상세히 설명한다. 다만, 하기에 도시되는 도면과 후술되는 설명은 본 발명의 특징을 효과적으로 설명하기 위한 여러 가지 방법 중에서 바람직한 실시 방법에 대한 것이며, 본 발명이 하기의 도면과 설명만으로 한정되는 것은 아니다.Hereinafter, the principles of preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings and description. However, the drawings shown below and the description below relate to preferred implementation methods among various methods for effectively explaining the features of the present invention, and the present invention is not limited to only the drawings and description below.
한편, 제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.Meanwhile, terms such as first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "comprise" or "have" are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, but one or more other features or numbers, It should be understood that the presence or addition of steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this specification, it should not be interpreted in an ideal or excessively formal meaning. don't
도 1은 본 발명의 일 실시예에 따른 배터리의 상태 추정 방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method for estimating a state of a battery according to an embodiment of the present invention.
본 발명에서의 배터리는 충전에 의해 전력을 저장하는 축전기 또는 2차 전지를 포함하고, 배터리를 채용한 장치는 배터리로부터 부하로 전력을 공급받을 수 있다. 여기서, 배터리는 복수의 배터리 모듈로 구성된 배터리 팩, 배터리 팩 내의 적어도 하나의 배터리 모듈, 복수의 배터리 셀로 구성된 배터리 모듈, 배터리 모듈 내의 적어도 하나의 배터리 셀, 복수의 배터리 모듈을 대표하는 대표 모듈 및 복수의 배터리 셀을 대표하는 대표 셀 중 적어도 하나를 포함할 수 있고, 이하에서 배터리는 이러한 예시들을 지칭하는 것으로 해석될 수도 있다.The battery in the present invention includes a capacitor or a secondary battery that stores power by charging, and a device employing the battery can receive power from the battery as a load. Here, the battery includes a battery pack composed of a plurality of battery modules, at least one battery module in the battery pack, a battery module composed of a plurality of battery cells, at least one battery cell in the battery module, a representative module representing a plurality of battery modules, and a plurality of battery modules. It may include at least one of representative cells representing battery cells of , and hereinafter, a battery may be interpreted as referring to these examples.
먼저 도 1을 참조하면, 본 발명에 따른 배터리 상태 추정 방법은 배터리의 SOC(State of Charge)를 판단하는 단계를 포함한다 (S100). First, referring to FIG. 1 , a method for estimating a battery state according to the present invention includes determining a state of charge (SOC) of a battery (S100).
여기서, SOC는 배터리의 충전 상태를 나타내는 파라미터이다. SOC는 배터리에 저장된 에너지가 어느 정도인지 나타내므로, 퍼센트(%) 단위를 사용하여 0 내지 100%로 그 양이 표시될 수 있다. 예를 들면, 0%는 완전 방전 상태이고, 100%는 완전 충전 상태를 의미할 수 있는데, 이러한 표현 방식은 설계의도나 실시예에 따라 다양하게 변형되어 정의될 수 있다.Here, SOC is a parameter indicating the state of charge of the battery. Since SOC indicates how much energy is stored in the battery, the amount can be expressed as 0 to 100% using a percentage (%) unit. For example, 0% may mean a fully discharged state and 100% may mean a fully charged state, and this expression method may be modified and defined in various ways according to design intentions or embodiments.
구체적으로, 본 발명에 따른 배터리 상태 추정 방법은 휴지(rest) 상태 배터리의 SOC를 판단하는 단계를 포함할 수 있다. 휴지 상태는 배터리가 충전 또는 방전되고 있지 않은 상태를 의미하는 것으로, 배터리는 재사용 목적으로 수집된 뒤, 장시간 보관된 배터리일 수 있다. Specifically, the battery state estimation method according to the present invention may include determining the SOC of a battery in a rest state. The dormant state means a state in which the battery is not being charged or discharged, and the battery may be a battery stored for a long time after being collected for reuse.
한편, (S100) 단계를 통한 배터리의 SOC 판단은 배터리의 상태 진단에 앞서 배터리의 최초 상태를 대략적으로 추정하기 위한 단계로, 후술하는 (S600) 단계의 SOC 계산과는 구분된다. 배터리의 정확한 SOC를 계산하고자 하는 (S600) 단계와는 달리, (S100) 단계의 SOC 판단은 후속하는 전류 인가 단계인 (S200) 단계의 전류 부호를 결정하기 위한 목적을 갖는다. Meanwhile, the SOC determination of the battery through the step (S100) is a step for roughly estimating the initial state of the battery before diagnosing the state of the battery, and is distinguished from the SOC calculation in the step (S600) described later. Unlike the step (S600) of calculating the exact SOC of the battery, the SOC determination of the step (S100) has the purpose of determining the current sign of the subsequent current application step (S200).
본 발명의 일 실시예에 따른 배터리의 (S100) 단계의 SOC 측정은 전압 측정법, 저항 측정법 등 공지의 방법을 사용할 수 있으며, 특정한 SOC 측정 기법에 제한되지 않는다. The SOC measurement of the battery in step (S100) according to an embodiment of the present invention may use a known method such as a voltage measurement method or a resistance measurement method, and is not limited to a specific SOC measurement method.
본 발명에 따른 배터리 상태 추정 방법은 배터리의 SOC를 판단하는 단계 (S100) 이전에 배터리의 파손, 팽창, 변색 중 적어도 하나의 상태가 기 설정된 유효 범위 내에 포함되는지 판단하는 외관 검사 단계를 더 포함할 수 있다. 배터리의 파손, 팽창, 변색 중 적어도 하나를 센싱하는 외관 검사는 카메라, 광학 센서 또는 전기화학 임피던스 분광법을 통해 수행될 수 있고, 해당 검사 결과가 기 설정된 유효 범위 내에 포함된다고 판단되면 다음 단계를 진행할 수 있다.The battery state estimation method according to the present invention may further include a visual inspection step of determining whether at least one state of damage, swelling, or discoloration of the battery is within a predetermined effective range prior to the step of determining the SOC of the battery (S100). can The external inspection for sensing at least one of damage, swelling, and discoloration of the battery may be performed through a camera, optical sensor, or electrochemical impedance spectroscopy, and if it is determined that the inspection result is within a preset effective range, the next step may be performed. there is.
다시 도 1을 참조하면, 본 발명의 배터리 상태 추정 방법은 배터리에 충전전류 또는 방전전류를 인가하는 단계를 포함할 수 있다 (S200). Referring back to FIG. 1 , the battery state estimation method of the present invention may include applying a charging current or a discharging current to the battery (S200).
여기서, 배터리에 인가해주는 충전전류 또는 방전전류의 크기는 0.1 C-rate 내지 1 C-rate, 바람직하게는 0.2 C-rate 내지 0.5 C-rate일 수 있고, 충전전류 또는 방전전류는 전지의 공칭 용량(nominal capacity)의 0 내지 40% 바람직하게는 0 내지 20%의 범위 내에서 인가될 수 있다. Here, the magnitude of the charge current or discharge current applied to the battery may be 0.1 C-rate to 1 C-rate, preferably 0.2 C-rate to 0.5 C-rate, and the charge current or discharge current is the nominal capacity of the battery. It may be applied within the range of 0 to 40% of (nominal capacity) and preferably 0 to 20%.
한편, 본 발명의 배터리 상태 추정 방법은 (S200) 단계 이후, 배터리의 휴지 (rest) 단계를 더 포함할 수 있다 (S201). 여기서 휴지 단계는 1 내지 60분, 바람직하게는 2 내지 30분동안 휴지 단계를 유지할 수 있으며, (S201)의 휴지 단계는 충전전류 및 방전전류 인가에 따른 배터리의 내부 과전압(overpotential)이 남아있을 정도로 짧은 시간이면 충분하다.Meanwhile, the battery state estimation method of the present invention may further include a battery rest step (S201) after the step (S200). Here, the resting step can be maintained for 1 to 60 minutes, preferably 2 to 30 minutes. A short amount of time is enough.
(S200) 및 (S201) 단계를 통해 배터리를 미리 충전 또는 방전하고 일정 시간동안 휴지 단계를 유지하여, Nernst OCV 추정 단계 이전에 배터리를 활성화하고 배터리 내부 상태를 균일하게 만들 수 있는 효과가 있다. The battery is charged or discharged in advance through the steps (S200) and (S201), and the dormant phase is maintained for a predetermined time, thereby activating the battery and making the internal state of the battery uniform before the Nernst OCV estimation step.
본 발명에서는, Nernst OCV 추정 단계 이전에 배터리를 미리 충전/방전하여 휴지 단계를 유지하는 과정을 pre-conditioning으로 정의한다. Pre-conditioning은 낮은 C-rate만으로도 실시가 가능하여 범용성이 높은 장점이 있다. In the present invention, the process of pre-charging/discharging the battery before the Nernst OCV estimation step to maintain the idle step is defined as pre-conditioning. Pre-conditioning can be performed with only a low C-rate, which has the advantage of high versatility.
한편, (S200) 단계에서 충전전류 또는 방전전류 인가는 (S100) 단계의 배터리 SOC 판단에 의해 결정된다. 여기서, 판단된 SOC가 기준 SOC 이하로 판단되는 경우, 충전전류가 먼저 인가되도록 설계할 수 있고, 기준 SOC 이상으로 판단되는 경우, 방전전류가 먼저 인가되도록 설계할 수 있다.Meanwhile, the application of the charging current or the discharging current in step S200 is determined by determining the battery SOC in step S100. Here, when the determined SOC is determined to be less than or equal to the reference SOC, the charging current may be applied first, and when determined to be greater than or equal to the reference SOC, the discharge current may be applied first.
예컨대, 기준 SOC가 50%로 설계된 경우, (S100) 단계에서 판단된 배터리의 SOC가 SOC 50% 보다 낮다면, 충전전류를 인가하여 배터리를 충전할 수 있고, 측정 대상이 되는 배터리의 SOC가 SOC 50%보다 높다면, 방전전류를 인가하여 배터리를 방전할 수 있다.For example, if the standard SOC is designed to be 50%, and the SOC of the battery determined in step (S100) is lower than the SOC of 50%, the battery can be charged by applying a charging current, and the SOC of the battery to be measured is the SOC If it is higher than 50%, the battery can be discharged by applying a discharge current.
본 발명의 일 실시예에 따르면, 상기 기준 SOC는 20% 내지 80%, 바람직하게는 30% 내지 70% 범위 중 일 지점일 수 있다.According to an embodiment of the present invention, the reference SOC may be a point in the range of 20% to 80%, preferably 30% to 70%.
본 발명의 배터리 상태 추정 방법은 (S201) 단계 이후 전기화학 임피던스 (Electrochemical Impedance Spectroscopy; EIS)를 측정하는 단계를 더 포함할 수 있다 (S202). 이 때, 전기화학 임피던스는 측정 단계는 4kHz 내지 0.1Hz 사이의 주파수 조건에서 수행될 수 있다. 전기화학 임피던스 측정 단계 (S202)는 (S201)의 휴지 단계 (rest time) 이후에 수행되는 것이 바람직하나, (S201) 단계 이전에 수행될 수도 있으며, 특정한 순서에 제한되지 않는다. 여기서, 전기화학 임피던스 측정 단계는 배터리 내 저항을 측정하기 위한 단계로 Nernst OCV 추정의 정확도를 높이는 지표로 활용될 수 있다.The battery state estimation method of the present invention may further include measuring electrochemical impedance spectroscopy (EIS) after the step (S201) (S202). In this case, the step of measuring the electrochemical impedance may be performed under a frequency condition between 4 kHz and 0.1 Hz. The electrochemical impedance measurement step (S202) is preferably performed after the rest time of (S201), but may be performed before the step (S201), and is not limited to a specific order. Here, the step of measuring the electrochemical impedance is a step for measuring the resistance in the battery and can be used as an index to increase the accuracy of Nernst OCV estimation.
다시 도 1을 참조하면, 본 발명의 배터리 상태 추정 방법은 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 배터리에 인가하는 단계를 포함한다 (S300). 여기서, 충전 펄스 전류 및 방전 펄스 전류의 인가는 전류 프로파일을 배터리에 적용하여 충전 펄스 전류 및 방전 펄스 전류를 인가하는 방식으로 진행된다. 전류 프로파일은 배터리에 전류/전압을 인가하는 방식 또는 명령을 결정하는 정책을 의미하며, 적어도 하나의 충전 펄스 및 적어도 하나의 방전 펄스를 포함하는 형태로 설계될 수 있다. Referring back to FIG. 1 , the battery state estimation method of the present invention includes applying at least one charge pulse current and at least one discharge pulse current to the battery (S300). Here, the charging pulse current and the discharging pulse current are applied in a manner in which the charging pulse current and the discharging pulse current are applied by applying the current profile to the battery. The current profile refers to a policy for determining a method or command for applying current/voltage to a battery, and may be designed to include at least one charging pulse and at least one discharging pulse.
이 때, 충전 펄스 전류, 방전 펄스 전류의 인가 순서 및 횟수를 설정하는 것은 설계 의도에 따라 변형되어 적용될 수 있다. 충전 펄스 전류의 인가 및 방전 펄스 전류의 인가를 포함하는 전류 프로파일의 일 실시예를 도 2에 나타내었다. 도 2는, 하나의 충전 펄스 전류 및 하나의 방전 펄스 전류를 포함하고, 충전 펄스 전류 및 방전 펄스 전류 인가 사이에 휴지기 (rest time)가 삽입되어 있는 전류 프로파일의 일 실시예를 나타낸 것이다. At this time, setting the order and frequency of application of the charge pulse current and the discharge pulse current may be modified and applied according to the design intention. An embodiment of the current profile including the application of the charging pulse current and the application of the discharging pulse current is shown in FIG. 2 . FIG. 2 illustrates an embodiment of a current profile including one charge pulse current and one discharge pulse current, and a rest time inserted between the application of the charge pulse current and the discharge pulse current.
본 발명의 일 실시예에 따르면, 전류 프로파일은 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류가 교대로 포함된 형태로 설계될 수 있다. 예컨대, 배터리에 충전 펄스 전류가 먼저 인가되면, 다음은 방전 펄스 전류가 인가될 수 있고, 방전 펄스 전류가 먼저 인가되면 다음은 충전 펄스 전류가 인가될 수 있다. According to one embodiment of the present invention, the current profile may be designed in a form in which at least one charge pulse current and at least one discharge pulse current are alternately included. For example, if the charging pulse current is applied to the battery first, the discharging pulse current may be applied next, and if the discharging pulse current is applied first, the charging pulse current may be applied next.
(S300) 단계에서 충전 펄스 전류 또는 방전 펄스 전류 인가 순서는 (S200) 단계에서 인가된 전류의 종류(전류의 부호)에 의해 결정되며, (S200) 단계에서 인가된 전류 부호와 반대되는 펄스 전류가 인가될 수 있다. 예를 들어, (S200) 단계에서 인가된 전류가 충전 전류인 경우, 방전 펄스 전류가 먼저 인가되도록 설계할 수 있고, (S200) 단계에서 인가된 전류가 방전 전류인 경우, 충전 펄스 전류가 먼저 인가되도록 설계할 수 있다.The order of applying the charge pulse current or discharge pulse current in step (S300) is determined by the type (sign of current) of the current applied in step (S200), and the pulse current opposite to the sign of the current applied in step (S200) is may be authorized. For example, if the current applied in step (S200) is the charging current, the discharge pulse current may be applied first, and if the current applied in step (S200) is the discharge current, the charging pulse current is applied first. can be designed to be
본 발명의 일 실시예에 따른 배터리 상태 추정 방법에서, 인가해주는 충전펄스 전류 및 방전 펄스 전류의 크기는 0.1 C-rate 내지 10.0 C-rate, 바람직하게는 0.1 C-rate 내지 3.0C-rate 범위일 수 있다. 본 발명의 일 실시예에 따른 배터리 상태 추정 방법에서, 충전 펄스 전류 및 방전 펄스 전류는 0.1초 내지 500초, 바람직하게는 0.1초 내지 60초, 더 바람직하게는 0.1초 내지 10초 동안 인가될 수 있다. In the battery state estimation method according to an embodiment of the present invention, the applied charge pulse current and discharge pulse current may range from 0.1 C-rate to 10.0 C-rate, preferably from 0.1 C-rate to 3.0 C-rate. can In the battery state estimation method according to an embodiment of the present invention, the charge pulse current and the discharge pulse current may be applied for 0.1 seconds to 500 seconds, preferably 0.1 seconds to 60 seconds, and more preferably 0.1 seconds to 10 seconds. there is.
한편, (S300) 단계에서 배터리에 인가되는 적어도 하나의 충전 펄스 전류에 의한 총 충전 용량(Ah) 및 적어도 하나의 방전 펄스 전류에 의한 총 방전 용량(Ah)은 서로 같을 수 있다 (도 2). 충전 펄스 전류에 의한 총 충전 용량(Ah) 및 방전 펄스 전류에 의한 총 방전 용량(Ah)을 같게 함으로써, 배터리 내부의 비-패러데이(non-faradaic) 전류가 상쇄되고, 패러데이(faradaic) 전류에 의한 반응만을 검출할 수 있다.Meanwhile, in step S300, the total charge capacity (Ah) by at least one charging pulse current applied to the battery and the total discharge capacity (Ah) by at least one discharge pulse current applied to the battery may be the same (FIG. 2). By equalizing the total charge capacity (Ah) by the charge pulse current and the total discharge capacity (Ah) by the discharge pulse current, the non-faradaic current inside the battery is canceled, and the faradaic current Only reactions can be detected.
본 발명의 일 실시예에 따르면, (S300) 단계에서 적용되는 전류 프로파일은 적어도 하나의 충전 펄스 전류와 적어도 하나의 방전 펄스 전류 사이에 휴지 (rest) 단계가 삽입된 형태로 설계될 수 있다. 휴지 단계가 삽입됨으로써, 해당 펄스 전류 인가에 따른 배터리 내부의 상태를 안정화할 수 있고, 이어지는 후속 펄스 전류 인가에 따른 전압 변화 측정에 있어서 보다 정확한 전압 변화 값을 측정할 수 있다. 휴지 단계는 1회 이상 포함될 수 있으며, 설계 의도에 따라 변형되어 적용될 수 있고, 특별히 제한되지 않는다 (도 2 참조). According to an embodiment of the present invention, the current profile applied in step S300 may be designed in a form in which a rest step is inserted between at least one charge pulse current and at least one discharge pulse current. By inserting the pause step, the internal state of the battery according to the application of the corresponding pulse current can be stabilized, and a more accurate voltage change value can be measured in measuring the voltage change according to the subsequent application of the pulse current. The pause step may be included one or more times, may be modified and applied according to design intent, and is not particularly limited (see FIG. 2).
본 발명의 배터리 상태 추정 방법에 있어서, 적어도 하나의 충전 펄스 전류와 적어도 하나의 방전 펄스 전류 사이에 삽입되는 휴지 단계는 0.1초 내지 500초, 바람직하게는 0.1초 내지 120초 동안 유지될 수 있다.In the battery state estimation method of the present invention, the pause step inserted between the at least one charging pulse current and the at least one discharging pulse current may be maintained for 0.1 to 500 seconds, preferably 0.1 to 120 seconds.
한편, 본 발명의 또 다른 일 실시예에 따르면, 적어도 하나의 충전 펄스 전류가 인가되는 총 시간(τA)과 적어도 하나의 방전 펄스가 인가되는 총 시간(τB)도 서로 같을 수 있다. 이 때, 적어도 하나의 충전 펄스 전류와 적어도 하나의 방전 펄스 전류 사이에 삽입되는 휴지 단계는 0.1·τA 내지 10·τA 범위의 시간 동안 유지되도록 설정될 수 있다.Meanwhile, according to another embodiment of the present invention, the total time τ A for which at least one charging pulse current is applied and the total time (τ B ) for which at least one discharge pulse is applied may be equal to each other. At this time, the pause step inserted between the at least one charge pulse current and the at least one discharge pulse current may be set to be maintained for a time ranging from 0.1·τ A to 10·τ A.
다시 도 1을 참조하면, 본 발명에 따른 배터리 상태 추정 방법은 배터리에 충전 펄스 전류 및 방전 펄스 전류를 인가했을 때 나타나는 배터리의 전압 변화를 측정하는 단계를 포함한다 (S400). 상술한 전류 프로파일에 따른 충전 펄스 전류 또는 방전 펄스 전류를 배터리에 인가하면 배터리의 전압이 변화하며, 해당 펄스 전류 인가에 따른 변화된 전압을 측정한다. 이 때의 전압은 전류가 인가된 상태에서 측정되므로 폐회로 전압(Closed Circuit Voltage; CCV)이다. Referring back to FIG. 1 , the method for estimating a battery state according to the present invention includes measuring a change in voltage of a battery that appears when a charge pulse current and a discharge pulse current are applied to the battery (S400). When the charging pulse current or the discharging pulse current according to the above-described current profile is applied to the battery, the voltage of the battery is changed, and the changed voltage according to the application of the pulse current is measured. The voltage at this time is a closed circuit voltage (CCV) because it is measured in a state where current is applied.
예컨대, 충전 펄스 전류를 인가했을 때 측정되는 전압을 충전 전압(Vc)라 고 정의할 수 있고, 방전 펄스를 인가했을 때 측정되는 전압을 방전 전압(Vd)이라고 정의할 수 있다. 도 4는 본 발명의 일 실시예에 따른 펄스 전류를 인가했을 때 나타나는 배터리의 전압 변화 양상을 나타낸 것이다. 도 4의 예시에 따르면, 충전 펄스 인가에 의한 전압 Vc는 3.558 V이고, 방전 펄스 인가에 의한 전압 Vd는 3.494 V로 측정될 수 있다. For example, a voltage measured when a charging pulse current is applied may be defined as a charging voltage (V c ), and a voltage measured when a discharge pulse is applied may be defined as a discharge voltage (V d ). 4 illustrates a voltage change pattern of a battery appearing when a pulse current is applied according to an embodiment of the present invention. According to the example of FIG. 4 , voltage V c due to application of a charging pulse may be 3.558 V, and voltage V d due to application of a discharging pulse may be measured as 3.494 V.
다시 도 1을 참조하면, 본 발명에 따른 배터리 상태 추정 방법은 상기 Vc 와 Vd값을 기초로 평균 값을 계산하고, 상기 평균 값을 배터리의 Nernst OCV로 추정하는 단계를 포함한다 (S500). 이 때, Vc, Vd의 평균은 산술 평균, 기하 평균, 조화 평균 중 어느 하나일 수 있다. Referring back to FIG. 1 , the battery state estimation method according to the present invention includes calculating an average value based on the V c and V d values and estimating the average value as the Nernst OCV of the battery (S500). . In this case, the average of V c and V d may be any one of an arithmetic average, a geometric average, and a harmonic average.
도 4의 예시에 따르면, Vc는 3.558 V이고, Vd는 3.494 V이며, 하나의 실시예인 산술 평균을 사용하여 계산하면 (3.558 V+3.494 V)/2 =3.526V이 계산된다. 도 4의 예시에서는 3.526V가 배터리의 Nernst OCV로 추정될 수 있다. According to the example of FIG. 4 , V c is 3.558 V, V d is 3.494 V, and (3.558 V+3.494 V)/2 = 3.526 V is calculated using the arithmetic mean, which is one embodiment. In the example of FIG. 4 , 3.526V can be estimated as the Nernst OCV of the battery.
일반적으로, 배터리에 전류가 인가되면 전기화학 반응이 일어나고, 전기화학반응으로 인해 배터리의 에너지 상태 (전압)가 변할 수 있다. 그리고 어느 시점에서 인가해주는 전류가 0이 되면 배터리의 전압은 일정 전압으로 수렴한다. 여기서 배터리의 전압이 수렴하는 값에 기초하여 배터리의 Nernst OCV가 추정될 수 있다. Nernst OCV 안정화 시간은 배터리의 Nernst OCV를 추정하기 위해 소요되는 시간으로서, 휴지 상태인 배터리의 전압이 Nernst OCV를 추정할 수 있을 정도로 일정하게 수렴하여 안정화되는데 걸리는 시간을 가리킨다. 예를 들면, Nernst OCV 안정화 시간은 대략 12시간 이상 또는 24시간 이상일 수 있는데, Nernst OCV 안정화 시간이 길어질수록 많은 비용과 시간이 소모되므로 이를 단축할 필요가 있다.In general, when a current is applied to a battery, an electrochemical reaction occurs, and an energy state (voltage) of the battery may change due to the electrochemical reaction. At some point, when the applied current becomes 0, the voltage of the battery converges to a certain voltage. Here, Nernst OCV of the battery may be estimated based on a value at which the voltage of the battery converges. The Nernst OCV stabilization time is the time required to estimate the Nernst OCV of the battery, and refers to the time required for the voltage of the battery in a resting state to converge and stabilize to a constant level enough to estimate the Nernst OCV. For example, the Nernst OCV stabilization time may be approximately 12 hours or more or 24 hours or more. As the Nernst OCV stabilization time increases, cost and time are consumed, so it needs to be shortened.
본 발명은 충전 펄스 전류 인가 후의 전압 (Vc)과 방전 펄스 인가 후 전압 (Vd)을 측정하고, 상기 Vc와 Vd의 평균 전압 값이 해당 배터리의 실제 Nernst OCV와 큰 오차가 없음을 확인하였다. 본 발명은 Nernst OCV 안정화 시간을 거치지 않고도, CCV를 통해 Nernst OCV를 추정할 수 있다는 점에서 기술적 의의가 있다.The present invention measures the voltage (V c ) after applying the charging pulse current and the voltage (V d ) after applying the discharging pulse, and the average voltage values of the V c and V d are not significantly different from the actual Nernst OCV of the battery. Confirmed. The present invention has technical significance in that the Nernst OCV can be estimated through the CCV without passing through the Nernst OCV stabilization time.
본 발명의 기술적 의미를 설명하면 다음과 같다.The technical meaning of the present invention is explained as follows.
전기화학 반응 (electrochemical reaction)이란 전자가 관여된 산화 또는 환원 반응을 의미한다. 일반적으로 전기화학 반응을 위해 전류를 인가하면(전자를 흘려주면), 전자가 관여되는 전기화학 반응이 일어날 뿐만 아니라, 전기 이중층(electric double-layer)과 같이 전극 표면에 전하가 축적되는 전기화학 반응이 아닌 다른 용도에 전자가 쓰이기도 한다. 이 때, 전기화학 반응에 소요되는 전류를 패러데이 전류(faradaic current)라고 하고, 전기 이중층 생성과 같이 전기화학 반응이 아닌 다른 용도에 소요된 전류를 비-패러데이 전류(non-faradaic current)라고 한다.An electrochemical reaction means an oxidation or reduction reaction in which electrons are involved. In general, when a current is applied (electrons flow) for an electrochemical reaction, an electrochemical reaction in which electrons are involved occurs, as well as an electrochemical reaction in which charges are accumulated on the surface of an electrode, such as an electric double-layer Electrons are also used for other purposes. At this time, the current required for the electrochemical reaction is referred to as faradaic current, and the current required for purposes other than the electrochemical reaction, such as generating an electrical double layer, is referred to as non-faradaic current.
예를 들어, 배터리에 전류를 인가했을 때, 패러데이 전류에 의한 반응은 배터리 전극의 산화/환원 반응일 수 있고, 산화/환원 반응으로 인해 해당 전극의 열역학적인 상태가 변화할 수 있다. 따라서 패러데이 전류에 의한 반응은 전극의 에너지 준위, 다시 말해 전극의 열역학적인 에너지 준위가 변화하는 것으로 해석할 수 있다.For example, when a current is applied to a battery, a reaction by the Faraday current may be an oxidation/reduction reaction of a battery electrode, and a thermodynamic state of a corresponding electrode may change due to the oxidation/reduction reaction. Therefore, the reaction by the Faraday current can be interpreted as a change in the energy level of the electrode, that is, the thermodynamic energy level of the electrode.
이와 달리, 배터리에 전류를 인가했을 때, 비-패러데이 전류에 의한 반응은 배터리 전극 표면에서 생성되는 전기 이중층 생성 반응일 수 있고, 이 반응은 전자는 소모되었지만 (전류는 인가되었지만) 전극으로 전자가 이동하면서 산화/환원된 것이 아니므로, 배터리의 에너지 준위가 변화하지 못한다. 따라서, 비-패러데이 전류에 의한 반응은 전극의 에너지 준위, 다시 말해 전극의 열역학적인 에너지 준위가 변하지 않는 반응으로 해석될 수 있다. In contrast, when a current is applied to the battery, the reaction by the non-Faraday current may be an electric double layer generation reaction generated on the surface of the battery electrode, and this reaction is when electrons are consumed (current is applied) but electrons are transferred to the electrode. Since it is not oxidized/reduced while moving, the energy level of the battery does not change. Therefore, the reaction by the non-Faraday current can be interpreted as a reaction in which the energy level of the electrode, that is, the thermodynamic energy level of the electrode does not change.
따라서, 배터리 내 전류를 인가했을 때 해당 배터리의 열역학적인 에너지 정보만을 얻기 위해서는 패러데이 전류에 의한 에너지 준위 변화 값을 측정해야 하는데, 배터리에 전류를 가하면, 배터리의 특성으로 인해 패러데이 반응과 비-패러데이 반응이 동시에 나타나므로 패러데이 전류에 기초한 배터리의 상태 변화만을 검출하기는 어려운 점이 있었다.Therefore, in order to obtain only the thermodynamic energy information of the battery when a current is applied to the battery, it is necessary to measure the energy level change value due to the Faraday current. Since they appear simultaneously, it is difficult to detect only the state change of the battery based on the Faraday current.
본 발명에서는 동일한 충전용량/방전용량을 갖는 충전 펄스 전류와 방전 펄스 전류를 교대로 흘려주고, 그에 따라 변화된 전압 값의 평균 전압 값을 Nernst OCV로서 추정한다. 이 때, 인가되는 충전 펄스 전류 및 방전 펄스 전류의 총량이 동일하므로, 펄스 전류의 인가로 인해 발생하는 다양한 전기화학 반응들 중 비-패러데이 전류에 의한 반응은 상쇄되고, 패러데이 전류에 의한 반응만 관측되는 것으로 생각할 수 있다. In the present invention, a charge pulse current and a discharge pulse current having the same charge capacity/discharge capacity are alternately flowed, and an average voltage value of voltage values changed accordingly is estimated as Nernst OCV. At this time, since the total amount of the applied charge pulse current and discharge pulse current is the same, among the various electrochemical reactions caused by the application of the pulse current, the reaction caused by the non-Faraday current is canceled out, and only the reaction caused by the Faraday current is observed. can be thought of as being
따라서, 펄스 전류 인가에 따라 변화된 전압의 평균 값은 배터리의 열역학적인 정보(OCV)로 고려될 수 있고, 이 값이 실제 Nernst OCV와 비교하였을 때 큰 오차가 없는 것이라고 생각된다.Therefore, the average value of the voltage changed according to the application of the pulse current can be considered as the thermodynamic information (OCV) of the battery, and it is considered that there is no large error when this value is compared with the actual Nernst OCV.
본 발명의 방법을 통해 Nernst OCV를 추정한 값과, 실제 Nernst OCV를 비교한 것을 도 5에 나타내었다. 도 5는 팩 및 모듈 형태의 배터리를 사용하여 실험한 예시를 나타낸 것이다. 실제 Nernst OCV는 동일한 조건의 배터리를 24시간 동안 개방회로 상태로 보관하여 수렴하는 전압을 측정한 것이고, 추정 Nernst OCV는 본 발명의 방법을 사용하여 추정한 Nernst OCV를 나타낸 것이다. 도 5를 참조하면, 실제 Nernst OCV와 추정 Nernst OCV는 오차율이 100ppm 단위로 매우 적은 것을 확인할 수 있고, 이를 통해 본 발명의 방법을 사용하여 추정한 Nernst OCV가 신뢰성이 높은 값임을 확인할 수 있다. 5 shows a comparison between the Nernst OCV estimated through the method of the present invention and the actual Nernst OCV. 5 shows an example of an experiment using a battery in the form of a pack and a module. The actual Nernst OCV is a measurement of the convergence voltage by storing the battery under the same conditions in an open circuit state for 24 hours, and the estimated Nernst OCV shows the Nernst OCV estimated using the method of the present invention. Referring to FIG. 5 , it can be confirmed that the error rates of the actual Nernst OCV and the estimated Nernst OCV are very small in units of 100 ppm, and through this, it can be confirmed that the Nernst OCV estimated using the method of the present invention is a highly reliable value.
한편, 본 발명의 일 실시예에 따른 배터리 상태 추정 방법은 본 발명의 방법으로 추정한 Nernst OCV를 사용하여 SOC를 계산하는 단계를 포함한다 (S600). Meanwhile, the battery state estimation method according to an embodiment of the present invention includes calculating the SOC using the Nernst OCV estimated by the method of the present invention (S600).
구체적인 본 발명의 일 실시예에 있어서, 추정된 Nernst OCV를 사용하여 SOC를 계산하는 단계는 추정된 Nernst OCV에 대응하는 레퍼런스 테이블(Reference table)을 참조하여 SOC를 계산하는 단계를 포함할 수 있다. 예를 들면, 추정된 Nernst OCV에 대응하는 레퍼런스 테이블(Reference table)을 데이터베이스화 하여 미리 충방전 장치에 저장할 수 있고, 추정된 Nernst OCV를 미리 저장한 레퍼런스 테이블에 대응시켜 SOC를 계산할 수 있다. 데이터베이스는 충방전 장치에 포함된 메모리로 구현되거나 배터리 상태 추정 장치와 유선, 무선, 또는 네트워크 등으로 연결 가능한 서버 등의 외부 장치로 구현될 수 있다 본 발명의 방법으로 추정된 OCV에 대응하는 레퍼런스 테이블(Reference table)을 이용하기 때문에, 직전 배터리의 상태에 대응하는 레퍼런스 테이블을 별도로 관리하는 번거로움을 없앨 수 있고, OCV 히스테리시스로 인해 배터리 상태 추정의 오차를 줄일 수 있다.In a specific embodiment of the present invention, calculating the SOC using the estimated Nernst OCV may include calculating the SOC by referring to a reference table corresponding to the estimated Nernst OCV. For example, a reference table corresponding to the estimated Nernst OCV may be made into a database and stored in the charge/discharge device in advance, and SOC may be calculated by matching the estimated Nernst OCV to the previously stored reference table. The database may be implemented as a memory included in the charging/discharging device or as an external device such as a server that can be connected to the battery state estimation device by wire, wireless, or network. Reference table corresponding to the OCV estimated by the method of the present invention Since the reference table is used, it is possible to eliminate the hassle of separately managing a reference table corresponding to the previous battery state, and to reduce an error in estimating the battery state due to OCV hysteresis.
본 발명의 또 다른 실시예는 본 발명에서 추정된 Nernst OCV를 특정 수식에 대입하여 SOC를 계산할 수 있다. 상술한 수식은 공지의 수식을 사용할 수 있으며, 특정한 수식에 제한되지 않는다.In another embodiment of the present invention, SOC may be calculated by substituting the Nernst OCV estimated in the present invention into a specific formula. The above formula may use a known formula, and is not limited to a specific formula.
본 발명의 일 실시예에 따른 배터리 상태 추정 방법은 상술한 Nernst OCV 추정 단계 및 SOC 계산 단계를 복수회차 수행할 수 있다. 구체적으로, 본 발명의 배터리 상태 추정 방법은, 다른 충전상태 구간에서 Nernst OCV 추정 및 SOC 계산을 복수회차 (1회, 2회, 3회차 등) 수행할 수 있다. Nernst OCV 추정 및 SOC 계산을 다른 충전상태 구간에서 수행하기 위해, 각 회차 사이에는 배터리를 부분적으로 충전 또는 방전할 수 있다 (도 6 참조). 예컨대, 도 6에서 나타낸 바와 같이, A 구간에서 SOC 1을 계산한 뒤, 배터리를 일정 시간 동안 방전하고, B 구간에서 SOC 2를 계산할 수 있다.The battery state estimation method according to an embodiment of the present invention may perform the above-described Nernst OCV estimation step and SOC calculation step multiple times. Specifically, the battery state estimation method of the present invention may perform Nernst OCV estimation and SOC calculation multiple times (one time, two times, three times, etc.) in different SOC intervals. In order to perform Nernst OCV estimation and SOC calculation in different SOC intervals, the battery may be partially charged or discharged between each cycle (see FIG. 6). For example, as shown in FIG. 6 , after calculating SOC 1 in section A, the battery may be discharged for a certain period of time, and then SOC 2 may be calculated in section B.
여기서, 복수회차의 SOC 계산 사이에는 배터리의 전체 용량 대비 일부분의 용량만 충전 또는 방전을 수행하여 다른 충전 상태에서 SOC를 계산한다. 이 때 배터리의 충전 또는 방전은 배터리 전체 용량의 10% 내지 50% 범위에서만 수행될 수 있다. Here, between the plurality of rounds of SOC calculation, only a portion of the total capacity of the battery is charged or discharged to calculate the SOC in a different state of charge. At this time, charging or discharging of the battery may be performed only in the range of 10% to 50% of the total capacity of the battery.
한편, 본 발명의 일 실시예에 따른 배터리 상태 추정 방법은 복수회차 수행을 통해 계산된 SOC를 사용하여 △SOC를 계산하고, △SOC를 사용하여 배터리의 용량 수명(SOH)을 산출하는 단계를 포함한다 (S700). Meanwhile, a method for estimating a battery state according to an embodiment of the present invention includes calculating ΔSOC using SOC calculated by performing multiple times, and calculating a capacity life (SOH) of a battery using ΔSOC. Do (S700).
본 발명에서 용량 수명 (SOH)은 배터리의 노화 정도를 나타낸다. 용량수명(SOH)과 관련하여, 전혀 노화되지 않은 배터리는 SOH 100%로 나타내고, 반대로 노화가 지속되어 배터리의 사용이 불가능한 상태는 SOH 0%로 나타낼 수 있다.In the present invention, capacity life (SOH) represents the degree of aging of a battery. Regarding the capacity life (SOH), a battery that is not aged at all is represented by SOH 100%, and conversely, a state in which the battery is unusable due to continued aging can be represented by SOH 0%.
여기서, 용량 수명(SOH)은 아래 수식을 통해 계산될 수 있으나, 특정 수식에 제한되는 것은 아니다.Here, the capacity life (SOH) may be calculated through the formula below, but is not limited to a specific formula.
[수학식 1][Equation 1]
용량 수명(SOH)=Qoccupied/(Capacitynominal·△SOC)Capacity lifetime (SOH)=Q occupied /(Capacity nominal △SOC)
여기서, Qoccupied 인가된 전류 총량을 의미하고, Here, Q occupied is Means the total amount of applied current,
Capacitynominal은 공칭용량을 의미한다.Capacity nominal means nominal capacity.
ΔSOC = SOC2 - SOC1ΔSOC = SOC2 - SOC1
본 발명에 따른 배터리 상태 추정 방법은 적어도 하나의 소프트웨어 모듈에 구현되어 사용될 수 있다. 예를 들어, 배터리 상태 추정 방법은 BMS(Battery Management System)에 의해 구현될 수 있다.The battery state estimation method according to the present invention may be implemented and used in at least one software module. For example, the battery state estimation method may be implemented by a battery management system (BMS).
한편, 본 발명은 배터리의 SOC를 판단하고, 상기 SOC 판단 결과에 기초하여, 충전전류 또는 방전전류를 인가하고, 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 배터리에 인가하고, 충전 펄스 전류를 인가했을 때 변화된 전압 Vc를 측정하고, 방전 펄스 전류를 인가했을 때 변화된 전압 Vd를 측정하고, 상기 Vc와 Vd의 평균 값을 Nernst OCV로 추정하는 프로세서를 포함하는, 배터리 상태 추정 장치를 제공한다. Meanwhile, the present invention determines the SOC of the battery, applies a charging current or a discharging current based on the SOC determination result, applies at least one charging pulse current and at least one discharging pulse current to the battery, and applies the charging pulse current. A battery state including a processor that measures the voltage V c changed when current is applied, measures the voltage V d changed when discharge pulse current is applied, and estimates the average value of the V c and V d as Nernst OCV. Estimation device is provided.
여기서, 본 발명의 배터리 상태 추정 장치는 프로세서 및 메모리를 포함할 수 있고, 상기 프로세서는 본 발명의 배터리 상태 추정 방법을 수행할 수 있다. 메모리는 안정화된 Nernst OCV에 대응하는 레퍼런스 테이블(Reference table)을 저장하거나 배터리 상태 추정 방법이 구현된 프로그램을 저장할 수 있다. 메모리는 휘발성 메모리 또는 비휘발성 메모리일 수 있다. 프로세서는 프로그램을 실행하고, 배터리 상태 추정 장치를 제어할 수 있다. 프로세서에 의하여 실행되는 프로그램의 코드는 메모리에 저장될 수 있다. 배터리 상태 추정 장치는 입출력 장치(도면 미표시)를 통하여 외부 장치(예를 들어, 퍼스널 컴퓨터 또는 네트워크)에 연결되고, 데이터를 교환할 수 있다.Here, the battery state estimation apparatus of the present invention may include a processor and a memory, and the processor may perform the battery state estimation method of the present invention. The memory may store a reference table corresponding to the stabilized Nernst OCV or may store a program in which a battery state estimation method is implemented. The memory may be volatile memory or non-volatile memory. The processor may execute the program and control the battery state estimation device. Program codes executed by the processor may be stored in memory. The battery state estimation device may be connected to an external device (eg, a personal computer or network) through an input/output device (not shown) and exchange data.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다 른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태 로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.As described above, although the embodiments have been described with limited drawings, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques may be performed in an order different from the methods described, and/or components of the described systems, structures, devices, circuits, etc. may be combined or combined in a different form than the methods described, or in a different configuration. Appropriate results can be achieved even when substituted or substituted by elements or equivalents. Therefore, other implementations, other embodiments, and equivalents of the claims are within the scope of the following claims.

Claims (17)

  1. (S100) 배터리의 SOC를 판단하는 단계;(S100) determining the SOC of the battery;
    (S200) SOC 판단 결과에 기초하여, 배터리에 충전전류 또는 방전전류를 인가하는 단계;(S200) based on the SOC determination result, applying a charging current or a discharging current to the battery;
    (S300) 배터리에 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 인가하는 단계; (S300) applying at least one charge pulse current and at least one discharge pulse current to the battery;
    (S400) 충전 펄스 전류를 인가했을 때 변화된 전압 Vc를 측정하고, 방전 펄스 전류를 인가했을 때 변화된 전압 Vd를 측정하는 단계;(S400) measuring the changed voltage V c when the charging pulse current is applied, and measuring the changed voltage V d when the discharge pulse current is applied;
    (S500) Vc와 Vd의 평균 값을 배터리의 Nernst OCV로 추정하는 단계;(S500) estimating the average value of V c and V d as the Nernst OCV of the battery;
    를 포함하는, 배터리 상태 추정 방법.Including, battery state estimation method.
  2. 제1항에 있어서, According to claim 1,
    (S100) 단계에서 판단되는 배터리의 SOC가 기준 SOC 이하인 경우, (S200) 단계에서 충전전류를 인가하고, When the SOC of the battery determined in step (S100) is less than the reference SOC, a charging current is applied in step (S200),
    (S100) 단계에서 판단되는 배터리의 SOC가 기준 SOC 이상인 경우, (S200) 단계에서 방전전류를 인가하는 것인, 배터리 상태 추정 방법.If the SOC of the battery determined in step (S100) is greater than or equal to the reference SOC, a discharge current is applied in step (S200).
  3. 제2항에 있어서, According to claim 2,
    기준 SOC는 SOC 20% 내지 80% 중 일 지점인, 배터리 상태 추정 방법.The reference SOC is a point between 20% and 80% SOC, battery state estimation method.
  4. 제1항에 있어서, According to claim 1,
    (S300) 단계의 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류는 교대로 인가되는 것인, 배터리 상태 추정 방법. At least one charging pulse current and at least one discharging pulse current of step (S300) are alternately applied, the battery state estimation method.
  5. 제4항에 있어서, According to claim 4,
    (S300) 단계에서 인가되는 펄스 전류는 (S200) 단계에서 인가된 전류와 반대 부호의 펄스 전류가 먼저 인가되는 것인, 배터리 상태 추정 방법.The pulse current applied in step (S300) is that the pulse current of the opposite sign to the current applied in step (S200) is first applied.
  6. 제1항에 있어서, According to claim 1,
    (S300) 단계에서 인가되는 적어도 하나의 충전 펄스 전류에 의한 총 충전 용량(Ah)과 적어도 하나의 방전 펄스 전류에 의한 총 방전 용량(Ah)은 서로 같은 것인, 배터리 상태 추정 방법.The total charging capacity (Ah) by at least one charging pulse current applied in step (S300) and the total discharging capacity (Ah) by at least one discharging pulse current are equal to each other.
  7. 제1항에 있어서, According to claim 1,
    (S300) 단계에서 인가되는 적어도 하나의 펄스 전류 크기는 0.1C-rate 내지 10.0C-rate이고, 각 펄스 전류가 인가되는 시간은 0.1초 내지 500초인, 배터리 상태 추정 방법.The magnitude of at least one pulse current applied in step (S300) is 0.1 C-rate to 10.0 C-rate, and the time for applying each pulse current is 0.1 second to 500 seconds.
  8. 제1항에 있어서, According to claim 1,
    (S300) 단계의 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류 인가 단계 사이에 적어도 하나의 휴지 단계가 삽입되는 것인, At least one pause step is inserted between the at least one charge pulse current and at least one discharge pulse current applying step of step (S300),
    배터리 상태 추정 방법.How to estimate battery health.
  9. 제8항에 있어서, According to claim 8,
    휴지 단계는 0.1초 내지 500초, 또는 0.1초 내지 120초 동안 유지되는 것인, 배터리 상태 추정 방법.wherein the idle step is maintained for 0.1 to 500 seconds, or 0.1 to 120 seconds.
  10. 제8항에 있어서, According to claim 8,
    (S300) 단계의 적어도 하나의 충전 펄스 전류가 인가되는 총 시간(τA)과 적어도 하나의 방전 펄스가 인가되는 총 시간(τB)은 서로 같은 것인, 배터리 상태 추정 방법.The total time (τ A ) during which at least one charging pulse current is applied in step S300 and the total time (τ B ) during which at least one discharging pulse is applied are equal to each other.
  11. 제10항에 있어서, According to claim 10,
    휴지 단계는 0.1·τA 내지 10·τA 동안 유지되는 것인, 배터리 상태 추정 방법.Wherein the idle step is maintained for 0.1·τ A to 10·τ A.
  12. 제1항에 있어서, According to claim 1,
    (S500) 단계의 평균은, 산술평균, 기하평균, 조화평균 중 어느 하나 또는 그 조합으로 계산되는 것인, 배터리 상태 추정 방법.The average of step (S500) is calculated by any one or a combination of arithmetic average, geometric average, and harmonic average, battery state estimation method.
  13. 제1항에 있어서, According to claim 1,
    (S600) 추정된 Nernst OCV를 사용하여 배터리의 SOC를 계산하는 단계를 더 포함하는, 배터리 상태 추정 방법.(S600) A method for estimating a battery state, further comprising calculating an SOC of the battery using the estimated Nernst OCV.
  14. 제13항에 있어서, According to claim 13,
    배터리의 SOC를 계산하는 단계는 추정된 Nernst OCV에 대응하는 레퍼런스 테이블(Reference table)을 참조하여 SOC를 계산하는 것인, 배터리 상태 추정 방법.The step of calculating the SOC of the battery is to calculate the SOC by referring to a reference table corresponding to the estimated Nernst OCV.
  15. 제13항에 있어서, According to claim 13,
    배터리의 SOC를 계산하는 단계는 복수회차 수행하는 것인, 배터리 상태 추정 방법. Wherein the step of calculating the SOC of the battery is performed multiple times.
  16. 제15항에 있어서, According to claim 15,
    (S700) 계산된 복수회차의 SOC에 기초하여 용량 수명(SOH)을 산출하는 단계를 더 포함하는, 배터리 상태 추정 방법. (S700) The battery state estimation method further comprises calculating a capacity life (SOH) based on the calculated SOC multiple times.
  17. 배터리의 SOC를 판단하고, determine the SOC of the battery,
    SOC 판단 결과에 기초하여, 배터리에 충전전류 또는 방전전류를 인가하고, Based on the SOC determination result, a charging current or a discharging current is applied to the battery,
    배터리에 적어도 하나의 충전 펄스 전류 및 적어도 하나의 방전 펄스 전류를 배터리에 인가하고, applying at least one charge pulse current and at least one discharge pulse current to the battery;
    충전 펄스 전류를 인가했을 때 변화된 전압 Vc를 측정하고, 방전 펄스 전류를 인가했을 때 변화된 전압 Vd를 측정하고, Measuring the voltage V c changed when the charging pulse current was applied, and measuring the voltage V d changed when the discharge pulse current was applied,
    Vc와 Vd의 평균 값을 Nernst OCV로 추정하는 프로세서를 포함하는, 배터리 상태 추정 장치. An apparatus for estimating battery state, including a processor for estimating an average value of V c and V d as Nernst OCV.
PCT/KR2022/019495 2022-03-03 2022-12-02 Method for estimating state of battery WO2023167394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0027147 2022-03-03
KR1020220027147A KR20230130238A (en) 2022-03-03 2022-03-03 Battery state estimation method

Publications (1)

Publication Number Publication Date
WO2023167394A1 true WO2023167394A1 (en) 2023-09-07

Family

ID=87883975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019495 WO2023167394A1 (en) 2022-03-03 2022-12-02 Method for estimating state of battery

Country Status (2)

Country Link
KR (1) KR20230130238A (en)
WO (1) WO2023167394A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209237A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The State-of-charge estimation method and device, and secondary-battery power system
KR20150024561A (en) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR101550304B1 (en) * 2014-12-26 2015-09-04 경북대학교 산학협력단 Appratus for portable self-electric generation
KR20180055123A (en) * 2016-11-16 2018-05-25 삼성전자주식회사 Method and apparatus for estimating battery state
JP2019124612A (en) * 2018-01-18 2019-07-25 日立オートモティブシステムズ株式会社 Secondary battery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017367A (en) 2018-08-08 2020-02-18 주식회사 민테크 Apparatus for battery diagnosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209237A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The State-of-charge estimation method and device, and secondary-battery power system
KR20150024561A (en) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 Battery management system and driving method thereof
KR101550304B1 (en) * 2014-12-26 2015-09-04 경북대학교 산학협력단 Appratus for portable self-electric generation
KR20180055123A (en) * 2016-11-16 2018-05-25 삼성전자주식회사 Method and apparatus for estimating battery state
JP2019124612A (en) * 2018-01-18 2019-07-25 日立オートモティブシステムズ株式会社 Secondary battery system

Also Published As

Publication number Publication date
KR20230130238A (en) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2018124511A1 (en) Device and method for managing battery to calibrate state of charge of battery
WO2019172527A1 (en) Method and apparatus for estimating soc-ocv profile
WO2018190508A1 (en) Apparatus and method for calculating state of charge of battery by reflecting noise
WO2010016661A2 (en) Apparatus and method for cell balancing using the voltage variation behavior of battery cell
WO2017095066A1 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
WO2012148070A1 (en) Device and method for estimating the degradation of battery capacity
WO2019050330A1 (en) Device and method for estimating state-of-charge of battery
WO2022055080A1 (en) Method for estimating state of charge of battery
WO2019098576A1 (en) Battery reserve capacity estimation device
WO2021049753A1 (en) Battery diagnosis apparatus and method
WO2018074807A1 (en) Method and system for effective battery cell balancing through duty control
EP2321663A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2021230533A1 (en) Device for diagnosing battery, and method therefor
CN1228540A (en) Monitoring technique for accurately determining residual capacity of battery
WO2012060597A2 (en) Device and method for announcing the replacement time of a battery
WO2020262789A1 (en) Method for detecting abnormal battery cell
WO2019088746A1 (en) Apparatus and method for estimating soc of battery
WO2021107323A1 (en) Apparatus and method for diagnosing abnormal degradation of battery cell
WO2019078658A1 (en) Device and method for estimating degree of deterioration of battery on basis of big data
WO2022075618A1 (en) Battery device and method for predicting battery output
WO2020054924A1 (en) Apparatus and method for diagnosing state of battery in cell unit
WO2022092621A1 (en) Apparatus and method for diagnosing battery
WO2023287180A1 (en) Battery diagnosis device, battery pack, electric vehicle, and battery diagnosis method
WO2019088504A1 (en) Device and method for diagnosing battery deterioration
WO2018131874A1 (en) Charging control apparatus and method capable of energy saving and quick cell balancing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930036

Country of ref document: EP

Kind code of ref document: A1