WO2023167314A1 - Method for hydrolyzing nylon - Google Patents

Method for hydrolyzing nylon Download PDF

Info

Publication number
WO2023167314A1
WO2023167314A1 PCT/JP2023/008043 JP2023008043W WO2023167314A1 WO 2023167314 A1 WO2023167314 A1 WO 2023167314A1 JP 2023008043 W JP2023008043 W JP 2023008043W WO 2023167314 A1 WO2023167314 A1 WO 2023167314A1
Authority
WO
WIPO (PCT)
Prior art keywords
nylon
solution
acid
hydrolyzing
dispersion
Prior art date
Application number
PCT/JP2023/008043
Other languages
French (fr)
Japanese (ja)
Inventor
太一郎 加藤
雄樹 白石
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Publication of WO2023167314A1 publication Critical patent/WO2023167314A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for hydrolyzing nylon.
  • Nylon a type of polyamide, is widely used as fibers and plastics due to its toughness, heat resistance, and chemical resistance. Nylon, on the other hand, is incinerated or landfilled after use because it hardly undergoes biodegradation.
  • Non-Patent Document 1 a method of hydrolyzing nylon using a nylon hydrolase to monomerize it has been reported.
  • Non-Patent Document 1 The method for hydrolyzing nylon in Non-Patent Document 1 cannot be said to have high enzymatic decomposition efficiency, and there is still room for improvement.
  • the present invention has been made in view of the above matters, and its object is to provide a method for hydrolyzing nylon that can improve the enzymatic decomposition efficiency of nylon.
  • the method for hydrolyzing nylon comprises: A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising: a step of dissolving the nylon in an organic solvent capable of dissolving the nylon to prepare a nylon solution; a step of adding the nylon solution to a precipitation solvent for precipitating the nylon into particles to prepare a nylon precipitation solution; removing the organic solvent and the precipitation solvent from the nylon precipitation solution; adding an aqueous solution to the nylon obtained by removing the organic solvent and the precipitation solvent to prepare a nylon dispersion; adding the nylon hydrolase to the nylon dispersion to hydrolyze the nylon; It is characterized by
  • the nylon dispersion may be prepared by adding the aqueous solution to the nylon obtained by removing the oxidizing agent or the acid.
  • nylon 4 nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, nylon 4,6, nylon 6T, nylon 6I, nylon M5T, nylon 6i, or , Nylon 6i-11 may be used.
  • a phosphate buffer solution containing glycerol as the aqueous solution.
  • the method for hydrolyzing nylon according to the second aspect of the present invention comprises: A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising: a step of adding the nylon to a solution containing an oxidizing agent or an acid capable of decomposing the nylon and heating to reduce the molecular weight of the nylon; removing the oxidizing agent or the acid from the heated solution; adding an aqueous solution to the nylon obtained by removing the oxidizing agent or the acid to prepare a nylon dispersion; adding a nylon hydrolase to the nylon dispersion to hydrolyze the nylon; It is characterized by
  • the nylon obtained by removing the organic solvent and the precipitation solvent may be added to a solution containing the oxidizing agent or the acid and heated to reduce the molecular weight of the nylon.
  • a hydrogen peroxide solution as the oxidizing agent.
  • a phosphate buffer solution containing glycerol is preferably used as the aqueous solution.
  • FIG. 1 is a process chart showing a method for hydrolyzing nylon according to Embodiment 1.
  • FIG. It is process drawing which shows the hydrolysis method of nylon which concerns on another form.
  • FIG. 4 is a process chart showing a method for hydrolyzing nylon according to Embodiment 2.
  • FIG. It is process drawing which shows the hydrolysis method of nylon which concerns on another form. 4 is a photograph showing the TLC analysis results of Experiment 1.
  • FIG. 1 is a graph showing measurement results of free amino concentration by TNBS method in Experiment 1.
  • FIG. 2 is a photograph showing the TLC analysis results when nylon 6 was hydrolyzed as it was in Experiment 2.
  • FIG. 2 is a graph showing the measurement results of free amino concentration by TNBS method when nylon 6 is hydrolyzed as it is in Experiment 2.
  • FIG. 10 is a photograph showing the results of TLC analysis when the nylon dispersion was hydrolyzed in Experiment 2.
  • FIG. 10 is a graph showing the measurement results of the free amino concentration by the TNBS method when the nylon dispersion was hydrolyzed in Experiment 2.
  • FIG. 4 is a graph showing the measurement results of free amino concentration by the TNBS method in Experiment 3.
  • FIG. 10 is a graph showing the measurement results of the free amino concentration by the TNBS method in the case of hydrolyzing a nylon dispersion prepared by treating with nylon 6 and formic acid at 120° C. in Experiment 4.
  • 10 is a graph showing the measurement results of the free amino concentration by the TNBS method when a nylon dispersion prepared by treating nylon 6,6 and formic acid at 100° C. in Experiment 4 is hydrolyzed.
  • 10 is a graph showing the measurement results of the free amino concentration by the TNBS method when a nylon dispersion prepared by treating nylon 6 and hydrogen peroxide water at 100° C. in Experiment 4 is hydrolyzed.
  • 10 is a graph showing measurement results of free amino concentration by TNBS method when nylon 6i-11 (50%) and nylon dispersion prepared by treatment with formic acid at 100° C. in Experiment 4 were hydrolyzed.
  • the method for hydrolyzing nylon according to Embodiment 1 is a method for hydrolyzing nylon in which nylon is monomerized using a nylon hydrolase, and as shown in FIG. It comprises a preparation step, a solvent removal step, a nylon dispersion preparation step, and a hydrolysis step.
  • nylon solution preparation process In the nylon solution preparing step, a nylon solution is prepared by dissolving nylon in an organic solvent capable of dissolving nylon. By allowing nylon to intervene in an organic solvent, the hydrogen bonds of nylon are cut and each molecule becomes dispersed in the organic solvent. In addition, dissolution of nylon can be performed at room temperature.
  • the nylon used for preparing the solution may be pulverized into pellets.
  • Nylons used include nylon 4, nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, nylon 4,6, nylon 6T, nylon 6I, nylon M5T nylon 6i, nylon 6i- 11 are mentioned.
  • Nylon is preferably finely crushed before use so that it can be easily dissolved in a short time.
  • organic solvent to be used should be capable of dissolving nylon, and examples thereof include trifluoroethanol and hexafluoroisopropanol.
  • nylon precipitate preparation process In the nylon deposit preparation step, a nylon deposit is obtained by adding a nylon solution to a solvent for depositing dissolved nylon.
  • nylon solution is dropped little by little into the precipitation solvent. Since nylon is basically insoluble in solvents other than the organic solvents mentioned above, when it is added dropwise to the precipitation solvent, the dissolved nylon aggregates and precipitates in the form of fine particles. As a result, a nylon precipitate liquid in which the nylon precipitated in the form of fine particles is dispersed is obtained.
  • the precipitation solvent is not limited as long as it can precipitate nylon in the form of particles, and examples include methanol, ethanol, and ethylene glycol, with ethanol and ethylene glycol being preferred.
  • solvent removal step In the solvent removal step, the organic solvent and the precipitation solvent are removed from the nylon precipitation solution. Any method can be used as long as the organic solvent and the precipitation solvent can be separated and removed. For example, the nylon precipitation solution is centrifuged and the supernatant is removed to remove the organic solvent and the precipitation solvent. In this case, the precipitated nylon is recovered as a precipitate.
  • the solvent removal step it is preferable to add an aqueous solution to this, perform centrifugation, and remove the supernatant several times for washing. By performing this washing operation multiple times, the organic solvent and the precipitation solvent can be sufficiently separated and removed.
  • nylon dispersion liquid preparation process By separating the organic solvent and the precipitation solvent and adding an aqueous solution to the removed nylon, a nylon dispersion liquid in which nylon is dispersed can be obtained.
  • a phosphate buffer to which glycerol has been added.
  • the pH of the phosphate buffer to which glycerol is added is 7.2-7.4, preferably 7.3, and the content of glycerol is 5-15% by weight, preferably 9-11% by weight.
  • Hydrolysis step In the hydrolysis step, a nylon hydrolase is added to the nylon dispersion to hydrolyze the nylon. Nylon hydrolase cleaves the polymer chain of nylon, decomposing it into oligomers, dimers, and monomers.
  • nylon hydrolase As a nylon hydrolase, a combination of both an endo-type nylonase that cleaves the polymer chain from the intermediate site of the repeating unit of the nylon molecule and an exo-type nylonase that cleaves the polymer chain from the end of the repeating unit. Good to use. Efficient nylon monomerization can be achieved by using both.
  • the compounding ratio may be arbitrary, for example, 1:9 to 9:1. Hydrolysis should be carried out for 2 hours or more, preferably 24 hours or more.
  • the efficiency of the enzymatic hydrolysis reaction of nylon is increased by preparing a nylon dispersion liquid in which nylon is dissolved and precipitated in fine particles, and then allowing the nylon hydrolase to act.
  • the improved enzymatic degradation efficiency of nylon enables the recycling of nylon as a monomer.
  • nylon solution preparation step after the above-described nylon solution preparation step, nylon precipitation solution preparation step, and solvent removal step are performed, the below-described low-molecular-weighting step and oxidizing agent or acid removing step are performed, and the oxidizing agent Alternatively, it is preferable to perform the above-described nylon dispersion preparation step and hydrolysis step using nylon after the acid removal step.
  • the nylon after solvent removal from the above-described nylon precipitation solution is added to a solution containing an oxidizing agent or an acid capable of decomposing nylon, followed by heating.
  • an oxidizing agent When an oxidizing agent is used, the oxidizing agent becomes a nucleophilic agent, hydrolyzing nylon, and reducing the molecular weight.
  • the oxidizing agent is not limited as long as it can promote the decomposition of nylon, and examples thereof include hydrogen peroxide water and hypohalites such as sodium hypochlorite.
  • the acid acts as a catalyst to hydrolyze the nylon and reduce the molecular weight.
  • acids include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid and citric acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid.
  • the heating temperature is preferably 75 to 120.degree.
  • the heating time is sufficient as long as the nylon is sufficiently decomposed, and is 96 hours or longer, preferably 168 hours or longer, more preferably 336 hours or longer, depending on the type of nylon and the oxidizing agent.
  • Step of removing oxidizing agent or acid the oxidizing agent or acid used in the molecular weight reduction step is removed.
  • the method for removing the oxidizing agent or acid is not limited as long as the oxidizing agent or acid can be removed, and examples thereof include a removal method using a freeze-drying method.
  • nylon dispersion preparation step and hydrolysis step are performed. After dissolving nylon and precipitating it in the form of fine particles, further improvement in enzymatic decomposition efficiency can be achieved by allowing a nylon hydrolase to act on nylon that has been further reduced in molecular weight.
  • the method for hydrolyzing nylon according to Embodiment 2 is a method for hydrolyzing nylon in which nylon is monomerized using a nylon hydrolase, and as shown in FIG. , a nylon dispersion preparation step, and a hydrolysis step.
  • the nylon to be hydrolyzed those mentioned in the first embodiment are used.
  • nylon is added to a solution containing an oxidizing agent or acid capable of decomposing nylon and heated.
  • an oxidizing agent When an oxidizing agent is used, the oxidizing agent becomes a nucleophilic agent, hydrolyzing nylon, and reducing the molecular weight.
  • the solution containing the oxidizing agent is not limited as long as it can accelerate the decomposition of nylon, and examples thereof include hydrogen peroxide water and hypohalites such as sodium hypochlorite.
  • the acid acts as a catalyst to hydrolyze the nylon and reduce the molecular weight.
  • acids include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid and citric acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid.
  • the heating temperature is preferably 75 to 120.degree.
  • the heating time is sufficient as long as the nylon is sufficiently decomposed, and is 96 hours or longer, preferably 168 hours or longer, more preferably 336 hours or longer, depending on the type of nylon and the oxidizing agent.
  • Step of removing oxidizing agent or acid the oxidizing agent or acid used in the molecular weight reduction step is removed.
  • the method for removing the oxidizing agent or acid is not limited as long as the oxidizing agent or acid can be removed, and examples thereof include a removal method using a freeze-drying method.
  • nylon dispersion liquid preparation process In the nylon dispersion preparation step, an aqueous solution is added to nylon after removal of the oxidizing agent or acid to prepare a nylon dispersion.
  • the amount of water to be added should be such that the nylon is sufficiently dispersed.
  • As the aqueous solution to be added it is preferable to use the phosphate buffer added with glycerol described in Embodiment 1.
  • Hydrolysis step In the hydrolysis step, a nylon hydrolase is added to the nylon dispersion to hydrolyze the nylon. Others are the same as those of the first embodiment described above, so the description is omitted.
  • the efficiency of the enzymatic hydrolysis reaction of nylon is increased by decomposing nylon with an oxidizing agent or acid to reduce the molecular weight and then allowing nylon hydrolase to act.
  • the improved enzymatic degradation efficiency of nylon enables the recycling of nylon as a monomer.
  • the nylon solution preparation step, the nylon precipitate preparation step, and the solvent removal step are performed, and the nylon after the solvent removal step may be used to perform the nylon dispersion preparation step and the hydrolysis step.
  • the description of the nylon solution preparation process, the nylon precipitation liquid preparation process, and the solvent removal process is the same as that of the first embodiment, so the description is omitted. Further improvement of enzymatic decomposition efficiency can be achieved by further dissolving the low-molecular-weight nylon and allowing a nylon hydrolase to act on the nylon precipitated in the form of fine particles.
  • Acetone, ethyl acetate, ethanol, methanol, water, and ethylene glycol were used as the nylon deposition liquid.
  • the enzyme solution was prepared so that the final concentrations of endo-type nylon hydrolase (hereinafter referred to as GYAQ) and hexo-type nylon hydrolase (hereinafter referred to as DNY) were each 1.0 mg/mL. .
  • GYAQ endo-type nylon hydrolase
  • DNY hexo-type nylon hydrolase
  • GYAQ an enzyme with a His-tag added to the N-terminus of EC number 3.5.1.117
  • DNY an enzyme with a His-tag added to the N-terminus of EC number 3.5.1.46
  • FIG. 6 shows the measurement results of free amino group concentration by the TNBS method. It can be seen that nylon 6 is decomposed and monomerized over time in all the cases where a nylon deposition solution other than water is used. Among them, the decomposition efficiency was high when ethylene glycol and ethanol were used. When the free amino group concentration was measured 2 hours after the hydrolysis was started, it was almost the same as the amino group concentration after 24 hours.
  • nylon 6 pellets (5 mg) were directly added to the above three types of enzyme solutions (400 ⁇ L). Then, TLC analysis and quantification of free amino groups by the TNBS method were performed in the same manner as described above.
  • Figures 7 and 8 show the results of TLC analysis when the nylon 6 dispersion was hydrolyzed and the measurement results of the concentration of free amino groups by the TNBS method.
  • Figures 9 and 10 show the results of TLC analysis when nylon 6 is hydrolyzed as it is and the measurement results of the free amino group concentration by the TNBS method, respectively.
  • nylon 6 dispersion When the nylon 6 dispersion was hydrolyzed, detection by TLC analysis was possible, whereas when nylon 6 was hydrolyzed as it was, it did not reach a level at which detection by TLC analysis was possible.
  • the estimated free amino group concentration when the used nylon 6 is completely decomposed is 44.2 mM in the case of the nylon 6 dispersion, and 110.5 mM in the case of hydrolyzing the nylon 6 as it is, according to the TNBS method.
  • Table 1 summarizes the decomposition rate of nylon 6 after the reaction for 72 hours calculated based on the analysis. Compared to the hydrolysis of nylon 6 as it is, hydrolysis efficiency of nylon 6 dispersion was about 4 to 7 times higher.
  • Table 2 summarizes the decomposition rate of each nylon after 72 hours of reaction based on analysis by the TNBS method. All nylons were hydrolyzed, and nylon 6,6 and nylon 6 had higher decomposition efficiency.
  • nylon 6i-11 is a nylon obtained from 1-aminohexyl-2-pyrrolidone-4-carboxylic acid (hereinafter referred to as 6i monomer unit) and 11 aminoundecanoic acid (hereinafter referred to as 11 monomer unit), nylon 6i -11 (50%) was obtained at a compounding ratio of 6i monomer units and 11 monomer units of 50:50. This nylon 6i-11 (50%) was provided by Mr.
  • Yoshiro Kaneko of National University Corporation Kagoshima University The mixture was heated at the set temperature for 96 hours while stirring with a stirrer. After heating, distilled water (25 mL) was added and freeze-dried to remove formic acid. After removing formic acid, 20 mM phosphate buffer (pH 7.3) containing 10% glycerol was added and resuspended to prepare a nylon dispersion. The final concentration of each nylon was adjusted to 10 mg/mL. The set temperatures were set to 75° C., 100° C., and 120° C., and the test was performed at each set temperature.
  • nylon dispersion was prepared in the same manner as above, except that 30% hydrogen peroxide water (6.8 mL) was used instead of formic acid.
  • Table 3 shows the decomposition rate of nylon when a nylon dispersion prepared using formic acid is hydrolyzed for 72 hours, and the decomposition rate of nylon when a nylon dispersion prepared using hydrogen peroxide water is hydrolyzed for 72 hours. are summarized in Table 4.
  • a nylon dispersion prepared by treating nylon 6 with formic acid at 120 ° C. nylon 6,6, a nylon dispersion prepared by treating with formic acid at 100 ° C., nylon 6, and hydrogen peroxide solution and nylon 6i-11 (50%), prepared by treatment with formic acid at 100°C.
  • the measurement results of amino group concentrations are shown in FIGS. 12, 13, 14 and 15, respectively. Both nylons are hydrolyzed.
  • the enzymatic decomposition efficiency was high when treated at 100°C, and when hydrogen peroxide was used, the enzymatic decomposition efficiency was high when treated at 75°C.
  • the free amino group concentration was measured 2 hours after the hydrolysis was started, it was almost the same as the amino group concentration after 24 hours.
  • nylon dispersion was prepared in the same manner as in Experiment 4, except that nylon 6,6 (1 g) and formic acid (6.8 mL) were used, and the heating time was set at 100°C for 168 hours.
  • nylon 6i-11 (50%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 168 hours at 100°C.
  • a nylon dispersion was also prepared in the same manner as in Experiment 4, except that nylon 6 (50 mg) and 30% hydrogen peroxide solution (5 mL) were used, and the heating time was set at 75°C for 192 hours.
  • nylon 6i-11 (50%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 336 hours at 100°C.
  • nylon 6i-11 (75%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 168 hours at 100°C.
  • nylon 6i-11 (75%) was obtained at a compounding ratio of 6i monomer units and 11 monomer units of 25:75. This nylon 6i-11 (75%) was provided by Mr. Yoshiro Kaneko of Kagoshima University.
  • the decomposition rate of nylon is summarized in Tables 5 and 6. Enzymatic decomposition efficiency tended to increase with longer heating time.
  • the enzyme solution (200 ⁇ L) was added to the nylon dispersion (200 ⁇ L) and allowed to stand at 37°C. Then, in the same manner as in Experiment 1, free amino groups were quantified by the TNBS method to determine the decomposition rate of nylon 6.
  • As the enzyme solution three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
  • Table 7 summarizes the decomposition rate of nylon 6 72 hours after adding the enzyme solution. It was demonstrated that the degradation rate of nylon can be increased by allowing a nylon hydrolase to act on a nylon dispersion prepared by further reducing the molecular weight of nylon precipitated in the form of fine particles. In particular, a high decomposition rate (88 to 97%) was exhibited when ethanol was used as the nylon depositing solution and heating was performed using formic acid for 168 hours.
  • the enzyme solution (200 ⁇ L) was added to the nylon dispersion (200 ⁇ L) and allowed to stand at 37°C. Then, in the same manner as in Experiment 1, free amino groups were quantified by the TNBS method to determine the decomposition rate of nylon 6,6.
  • As the enzyme solution three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
  • Table 8 shows the decomposition rate of nylon 6,6 72 hours after adding the enzyme solution. The combination of GYAQ and DNY achieved 100% decomposition rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This method for hydrolyzing nylon involves monomerizing nylon using nylon hydrolase, and comprises: a step for dissolving nylon in an organic solvent in which nylon is soluble so as to prepare a nylon solution; a step for preparing a nylon precipitation liquid by adding the nylon solution to a precipitating solvent for precipitating nylon in the form of particles; a step for removing the organic solvent and the precipitating solvent from the nylon precipitation liquid; a step for adding an aqueous solution so as to prepare a nylon dispersion liquid; and a step for adding nylon hydrolase to the nylon dispersion liquid so as to hydrolyze the nylon.

Description

ナイロンの加水分解方法Nylon hydrolysis method
 本発明は、ナイロンの加水分解方法に関する。 The present invention relates to a method for hydrolyzing nylon.
 ポリアミドの一種であるナイロンは、強靱かつ耐熱性、耐薬品性に優れていることから繊維やプラスチックとして広く利用されている。一方で、ナイロンは生物分解をほとんど受けないため、使用後に焼却や埋め立て処分をされている。 Nylon, a type of polyamide, is widely used as fibers and plastics due to its toughness, heat resistance, and chemical resistance. Nylon, on the other hand, is incinerated or landfilled after use because it hardly undergoes biodegradation.
 このように、ナイロンは利用価値の高い素材である一方で、環境への負荷が高い素材でもある。環境負荷を抑えるべく、ナイロンのリサイクル手法の確立が望まれている。ナイロンのリサイクル手法として、ナイロン加水分解酵素を用いてナイロンを加水分解し、モノマー化する方法が報じられている(非特許文献1)。 In this way, while nylon is a material with high utility value, it is also a material with a high environmental impact. Establishment of a nylon recycling method is desired in order to reduce the environmental load. As a method for recycling nylon, a method of hydrolyzing nylon using a nylon hydrolase to monomerize it has been reported (Non-Patent Document 1).
 非特許文献1のナイロンの加水分解方法は酵素分解効率が高いとは言えず、未だ改良の余地がある。 The method for hydrolyzing nylon in Non-Patent Document 1 cannot be said to have high enzymatic decomposition efficiency, and there is still room for improvement.
 本発明は上記事項に鑑みてなされたものであり、その目的はナイロンの酵素分解効率を向上させ得るナイロンの加水分解方法を提供することにある。 The present invention has been made in view of the above matters, and its object is to provide a method for hydrolyzing nylon that can improve the enzymatic decomposition efficiency of nylon.
 本発明の第1の観点に係るナイロンの加水分解方法は、
 ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、
 前記ナイロンが溶解可能な有機溶媒に前記ナイロンを溶解させてナイロン溶解液を調製する工程と、
 前記ナイロンを粒子状に析出させる析出溶媒に前記ナイロン溶解液を加え、ナイロン析出液を調製する工程と、
 前記ナイロン析出液から前記有機溶媒及び前記析出溶媒を除去する工程と、
 前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンに水溶液を加えてナイロン分散液を調製する工程と、
 前記ナイロン分散液に前記ナイロン加水分解酵素を加え、前記ナイロンを加水分解する工程と、を備える、
 ことを特徴とする。
The method for hydrolyzing nylon according to the first aspect of the present invention comprises:
A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising:
a step of dissolving the nylon in an organic solvent capable of dissolving the nylon to prepare a nylon solution;
a step of adding the nylon solution to a precipitation solvent for precipitating the nylon into particles to prepare a nylon precipitation solution;
removing the organic solvent and the precipitation solvent from the nylon precipitation solution;
adding an aqueous solution to the nylon obtained by removing the organic solvent and the precipitation solvent to prepare a nylon dispersion;
adding the nylon hydrolase to the nylon dispersion to hydrolyze the nylon;
It is characterized by
 ここで、前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンを分解可能な酸化剤又は酸を含有する溶液に加えて加熱し、前記ナイロンを低分子化する工程と、
 加熱後の前記溶液から前記酸化剤又は前記酸を除去する工程と、を更に備え、
 前記酸化剤又は前記酸を除去して得られた前記ナイロンに前記水溶液を加えることにより前記ナイロン分散液が調製されてもよい。
Here, a step of adding the nylon obtained by removing the organic solvent and the precipitation solvent to a solution containing a decomposable oxidizing agent or acid and heating to reduce the molecular weight of the nylon;
removing the oxidizing agent or the acid from the solution after heating;
The nylon dispersion may be prepared by adding the aqueous solution to the nylon obtained by removing the oxidizing agent or the acid.
 また、前記ナイロンとしてナイロン4、ナイロン6、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12、ナイロン4,6、ナイロン6T、ナイロン6I、ナイロンM5T、ナイロン6i、又は、ナイロン6i-11を用いてもよい。 As the nylon, nylon 4, nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, nylon 4,6, nylon 6T, nylon 6I, nylon M5T, nylon 6i, or , Nylon 6i-11 may be used.
 また、前記有機溶媒としてトリフルオロエタノール又はヘキサフルオロイソプロパノールを用いることが好ましい。 Also, it is preferable to use trifluoroethanol or hexafluoroisopropanol as the organic solvent.
 また、前記析出溶媒としてエタノール又はエチレングリコールを用いることが好ましい。 Also, it is preferable to use ethanol or ethylene glycol as the precipitation solvent.
 また、前記水溶液としてグリセロールを含有するリン酸緩衝液を用いることが好ましい。 In addition, it is preferable to use a phosphate buffer solution containing glycerol as the aqueous solution.
 本発明の第2の観点に係るナイロンの加水分解方法は、
 ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、
 前記ナイロンを分解可能な酸化剤又は酸を含有する溶液に前記ナイロンを加えて加熱し、前記ナイロンを低分子化する工程と、
 加熱後の前記溶液から前記酸化剤又は前記酸を除去する工程と、
 前記酸化剤又は前記酸を除去して得られた前記ナイロンに水溶液を加えてナイロン分散液を調製する工程と、
 前記ナイロン分散液にナイロン加水分解酵素を加え、前記ナイロンを加水分解する工程と、を備える、
 ことを特徴とする。
The method for hydrolyzing nylon according to the second aspect of the present invention comprises:
A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising:
a step of adding the nylon to a solution containing an oxidizing agent or an acid capable of decomposing the nylon and heating to reduce the molecular weight of the nylon;
removing the oxidizing agent or the acid from the heated solution;
adding an aqueous solution to the nylon obtained by removing the oxidizing agent or the acid to prepare a nylon dispersion;
adding a nylon hydrolase to the nylon dispersion to hydrolyze the nylon;
It is characterized by
 また、前記ナイロンが溶解可能な有機溶媒に前記ナイロンを溶解させてナイロン溶解液を調製する工程と、
 前記ナイロンを粒子状に析出させる析出溶媒に前記ナイロン溶解液を加え、ナイロン析出液を調製する工程と、
 前記ナイロン析出液から前記有機溶媒及び前記析出溶媒を除去する工程と、を更に備え、
 前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンを、前記酸化剤又は前記酸を含有する溶液に加えて加熱し、前記ナイロンを低分子化してもよい。
a step of dissolving the nylon in an organic solvent capable of dissolving the nylon to prepare a nylon solution;
a step of adding the nylon solution to a precipitation solvent for precipitating the nylon into particles to prepare a nylon precipitation solution;
and removing the organic solvent and the precipitation solvent from the nylon precipitation solution,
The nylon obtained by removing the organic solvent and the precipitation solvent may be added to a solution containing the oxidizing agent or the acid and heated to reduce the molecular weight of the nylon.
 また、前記酸化剤として過酸化水素水を用いることが好ましい。 Also, it is preferable to use a hydrogen peroxide solution as the oxidizing agent.
 また、前記酸としてギ酸を用いることが好ましい。 Also, it is preferable to use formic acid as the acid.
 また、75~120℃に加熱して前記ナイロンを低分子化することが好ましい。 It is also preferable to heat the nylon to 75 to 120°C to reduce the molecular weight of the nylon.
 前記水溶液としてグリセロールを含有するリン酸緩衝液を用いることが好ましい。 A phosphate buffer solution containing glycerol is preferably used as the aqueous solution.
 また、凍結乾燥して前記酸化剤又は前記酸を除去することが好ましい。 It is also preferable to remove the oxidizing agent or acid by freeze-drying.
 本発明によれば、ナイロンの酵素分解効率を向上させ得るナイロンの加水分解方法を提供することができる。 According to the present invention, it is possible to provide a method for hydrolyzing nylon that can improve the enzymatic decomposition efficiency of nylon.
実施の形態1に係るナイロンの加水分解方法を示す工程図である。1 is a process chart showing a method for hydrolyzing nylon according to Embodiment 1. FIG. 他の形態に係るナイロンの加水分解方法を示す工程図である。It is process drawing which shows the hydrolysis method of nylon which concerns on another form. 実施の形態2に係るナイロンの加水分解方法を示す工程図である。FIG. 4 is a process chart showing a method for hydrolyzing nylon according to Embodiment 2. FIG. 他の形態に係るナイロンの加水分解方法を示す工程図である。It is process drawing which shows the hydrolysis method of nylon which concerns on another form. 実験1のTLC分析結果を示す写真である。4 is a photograph showing the TLC analysis results of Experiment 1. FIG. 実験1のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。1 is a graph showing measurement results of free amino concentration by TNBS method in Experiment 1. FIG. 実験2においてナイロン6をそのまま加水分解した場合のTLC分析結果を示す写真である。2 is a photograph showing the TLC analysis results when nylon 6 was hydrolyzed as it was in Experiment 2. FIG. 実験2においてナイロン6をそのまま加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。2 is a graph showing the measurement results of free amino concentration by TNBS method when nylon 6 is hydrolyzed as it is in Experiment 2. FIG. 実験2においてナイロン分散液を加水分解した場合のTLC分析結果を示す写真である。10 is a photograph showing the results of TLC analysis when the nylon dispersion was hydrolyzed in Experiment 2. FIG. 実験2においてナイロン分散液を加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。10 is a graph showing the measurement results of the free amino concentration by the TNBS method when the nylon dispersion was hydrolyzed in Experiment 2. FIG. 実験3のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。4 is a graph showing the measurement results of free amino concentration by the TNBS method in Experiment 3. FIG. 実験4においてナイロン6、ギ酸を用いて120℃で処理して調製したナイロン分散液を加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。10 is a graph showing the measurement results of the free amino concentration by the TNBS method in the case of hydrolyzing a nylon dispersion prepared by treating with nylon 6 and formic acid at 120° C. in Experiment 4. FIG. 実験4においてナイロン6,6、ギ酸を用いて100℃で処理して調製したナイロン分散液を加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。FIG. 10 is a graph showing the measurement results of the free amino concentration by the TNBS method when a nylon dispersion prepared by treating nylon 6,6 and formic acid at 100° C. in Experiment 4 is hydrolyzed. 実験4においてナイロン6、過酸化水素水を用いて100℃で処理して調製したナイロン分散液を加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。10 is a graph showing the measurement results of the free amino concentration by the TNBS method when a nylon dispersion prepared by treating nylon 6 and hydrogen peroxide water at 100° C. in Experiment 4 is hydrolyzed. 実験4においてナイロン6i-11(50%)、ギ酸を用いて100℃で処理して調製したナイロン分散液を加水分解した場合のTNBS法による遊離アミノ濃度の測定結果を示すグラフである。10 is a graph showing measurement results of free amino concentration by TNBS method when nylon 6i-11 (50%) and nylon dispersion prepared by treatment with formic acid at 100° C. in Experiment 4 were hydrolyzed.
<実施の形態1>
 実施の形態1に係るナイロンの加水分解方法は、ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、図1に示すように、ナイロン溶解液調製工程、ナイロン析出液調製工程、溶媒除去工程、ナイロン分散液調製工程、加水分解工程を備える。
<Embodiment 1>
The method for hydrolyzing nylon according to Embodiment 1 is a method for hydrolyzing nylon in which nylon is monomerized using a nylon hydrolase, and as shown in FIG. It comprises a preparation step, a solvent removal step, a nylon dispersion preparation step, and a hydrolysis step.
(ナイロン溶解液調製工程)
 ナイロン溶解液調製工程では、ナイロンを溶解可能な有機溶媒にナイロンを溶解させてナイロン溶解液を調製する。ナイロンを有機溶媒に介在させることで、ナイロンの水素結合が切断され、それぞれの分子が有機溶媒中に分散した形態になる。なお、ナイロンの溶解は常温で行い得る。溶解液作成に供されるナイロンはペレット状に粉砕されたものであってもよい。
(Nylon solution preparation process)
In the nylon solution preparing step, a nylon solution is prepared by dissolving nylon in an organic solvent capable of dissolving nylon. By allowing nylon to intervene in an organic solvent, the hydrogen bonds of nylon are cut and each molecule becomes dispersed in the organic solvent. In addition, dissolution of nylon can be performed at room temperature. The nylon used for preparing the solution may be pulverized into pellets.
 用いるナイロンとして、ナイロン4、ナイロン6、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12、ナイロン4,6、ナイロン6T、ナイロン6I、ナイロンM5Tナイロン6i、ナイロン6i-11が挙げられる。ナイロンは短時間で溶解しやすいよう、細かく破砕して用いることが好ましい。 Nylons used include nylon 4, nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, nylon 4,6, nylon 6T, nylon 6I, nylon M5T nylon 6i, nylon 6i- 11 are mentioned. Nylon is preferably finely crushed before use so that it can be easily dissolved in a short time.
 また、用いる有機溶媒はナイロンを溶解可能であればよく、例えば、トリフルオロエタノール、ヘキサフルオロイソプロパノールが挙げられる。 In addition, the organic solvent to be used should be capable of dissolving nylon, and examples thereof include trifluoroethanol and hexafluoroisopropanol.
(ナイロン析出液調製工程)
 ナイロン析出液調製工程では、溶解したナイロンを析出させる析出溶媒にナイロン溶解液を加え、ナイロン析出液を得る。
(Nylon precipitate preparation process)
In the nylon deposit preparation step, a nylon deposit is obtained by adding a nylon solution to a solvent for depositing dissolved nylon.
 具体的には、析出溶媒にナイロン溶解液を少量ずつ滴下する。ナイロンは上述した有機溶媒以外には基本的に不溶であるため、析出溶媒に滴下すると溶解しているナイロンが凝集し、微粒子状に析出する。これにより、この微粒子状に析出したナイロンが分散したナイロン析出液が得られる。 Specifically, the nylon solution is dropped little by little into the precipitation solvent. Since nylon is basically insoluble in solvents other than the organic solvents mentioned above, when it is added dropwise to the precipitation solvent, the dissolved nylon aggregates and precipitates in the form of fine particles. As a result, a nylon precipitate liquid in which the nylon precipitated in the form of fine particles is dispersed is obtained.
 析出溶媒として、ナイロンを粒子状に析出させ得る溶媒であれば制限はなく、メタノール、エタノール、エチレングリコールなどが挙げられ、エタノール、エチレングリコールであることが好ましい。 The precipitation solvent is not limited as long as it can precipitate nylon in the form of particles, and examples include methanol, ethanol, and ethylene glycol, with ethanol and ethylene glycol being preferred.
(溶媒除去工程)
 溶媒除去工程では、ナイロン析出液から有機溶媒及び析出溶媒を除去する。有機溶媒及び析出溶媒を分離、除去できればどのような手法で行ってもよく、例えば、ナイロン析出液を遠心分離し、上清を除去することで有機溶媒及び析出溶媒を除去することができる。この場合、析出したナイロンは沈殿物として回収される。
(Solvent removal step)
In the solvent removal step, the organic solvent and the precipitation solvent are removed from the nylon precipitation solution. Any method can be used as long as the organic solvent and the precipitation solvent can be separated and removed. For example, the nylon precipitation solution is centrifuged and the supernatant is removed to remove the organic solvent and the precipitation solvent. In this case, the precipitated nylon is recovered as a precipitate.
 溶媒除去工程は更に、これに水溶液を加えて、遠心分離、上清除去の操作を複数回行い洗浄することが好ましい。この洗浄操作を複数回行うことで、十分に有機溶媒及び析出溶媒を分離、除去することができる。 Further, in the solvent removal step, it is preferable to add an aqueous solution to this, perform centrifugation, and remove the supernatant several times for washing. By performing this washing operation multiple times, the organic solvent and the precipitation solvent can be sufficiently separated and removed.
(ナイロン分散液調製工程)
 有機溶媒及び析出溶媒を分離、除去後のナイロンに水溶液を加えることでナイロンを分散させたナイロン分散液が得られる。上記の水溶液として、グリセロールを添加したリン酸緩衝液を用いることが好ましい。グリセロールを添加したリン酸緩衝液を用いることで、後述の加水分解工程において、pHを一定に保つことができ、ナイロン加水分解酵素の活性が保たれる。グリセロールを添加したリン酸緩衝液のpHは7.2~7.4、好ましくは7.3であり、グリセロールの含有量は5~15重量%、好ましくは9~11重量%である。
(Nylon dispersion liquid preparation process)
By separating the organic solvent and the precipitation solvent and adding an aqueous solution to the removed nylon, a nylon dispersion liquid in which nylon is dispersed can be obtained. As the above aqueous solution, it is preferable to use a phosphate buffer to which glycerol has been added. By using a phosphate buffer to which glycerol has been added, the pH can be kept constant in the hydrolysis step described below, and the activity of the nylon hydrolase can be maintained. The pH of the phosphate buffer to which glycerol is added is 7.2-7.4, preferably 7.3, and the content of glycerol is 5-15% by weight, preferably 9-11% by weight.
(加水分解工程)
 加水分解工程では、ナイロン分散液にナイロン加水分解酵素を加え、ナイロンを加水分解する。ナイロン加水分解酵素によってナイロンの高分子鎖が切断され、オリゴマー、ダイマー、モノマーへと分解されていく。
(Hydrolysis step)
In the hydrolysis step, a nylon hydrolase is added to the nylon dispersion to hydrolyze the nylon. Nylon hydrolase cleaves the polymer chain of nylon, decomposing it into oligomers, dimers, and monomers.
 ナイロン加水分解酵素として、ナイロン分子の繰り返し単位の中間部位から高分子鎖を切断するエンド型ナイロン分解酵素、及び、繰り返し単位の端部から高分子鎖を切断するエキソ型ナイロン分解酵素の双方を組み合わせ用いるとよい。双方を用いることにより、効率的なナイロンのモノマー化を実現できる。エンド型ナイロン分解酵素とエキソ型ナイロン分解酵素とを併用して用いる場合、配合比は任意でよく、例えば、1:9~9:1である。また、加水分解は2時間以上、好ましくは24時間以上行うとよい。 As a nylon hydrolase, a combination of both an endo-type nylonase that cleaves the polymer chain from the intermediate site of the repeating unit of the nylon molecule and an exo-type nylonase that cleaves the polymer chain from the end of the repeating unit. Good to use. Efficient nylon monomerization can be achieved by using both. When the endo-type nylon-degrading enzyme and the exo-type nylon-degrading enzyme are used in combination, the compounding ratio may be arbitrary, for example, 1:9 to 9:1. Hydrolysis should be carried out for 2 hours or more, preferably 24 hours or more.
 実施の形態1では、ナイロンを溶解し、微粒状に析出させたナイロン分散液を調製してからナイロン加水分解酵素を作用させることにより、ナイロンの酵素的加水分解反応の効率が高まる。ナイロンの酵素分解効率が向上することにより、モノマーとしてナイロンのリサイクルが可能になる。 In Embodiment 1, the efficiency of the enzymatic hydrolysis reaction of nylon is increased by preparing a nylon dispersion liquid in which nylon is dissolved and precipitated in fine particles, and then allowing the nylon hydrolase to act. The improved enzymatic degradation efficiency of nylon enables the recycling of nylon as a monomer.
 更に、図2に示すように、上述のナイロン溶解液調製工程、ナイロン析出液調製工程、溶媒除去工程を行った後、後述の低分子化工程、酸化剤又は酸の除去工程を行い、酸化剤又は酸の除去工程後のナイロンを用いて、上述のナイロン分散液調製工程、加水分解工程を行うことが好ましい。 Furthermore, as shown in FIG. 2, after the above-described nylon solution preparation step, nylon precipitation solution preparation step, and solvent removal step are performed, the below-described low-molecular-weighting step and oxidizing agent or acid removing step are performed, and the oxidizing agent Alternatively, it is preferable to perform the above-described nylon dispersion preparation step and hydrolysis step using nylon after the acid removal step.
(低分子化工程)
 低分子化工程では、ナイロンを分解可能な酸化剤又は酸を含有する溶液に、上述したナイロン析出液から溶媒除去後のナイロンを加えて加熱する。酸化剤を用いた場合では、酸化剤が求核剤となり、ナイロンが加水分解され、低分子化される。酸化剤として、ナイロンの分解を促進可能であれば制限はなく、例えば、過酸化水素水のほか、次亜塩素酸ナトリウム等の次亜ハロゲン酸塩などが挙げられる。また、酸を用いた場合では、酸が触媒となり、ナイロンが加水分解され、低分子化される。酸として、例えば、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸等の有機酸のほか、塩酸、硫酸、硝酸、リン酸、ホウ酸等の無機酸などが挙げられる。また、加熱温度は、75~120℃であることが好ましい。また、加熱時間はナイロンが十分に分解される時間であればよく、ナイロン種、酸化剤にもよるが、96時間以上、好ましくは168時間以上、より好ましくは336時間以上である。
(Low molecular weight process)
In the low-molecularization step, the nylon after solvent removal from the above-described nylon precipitation solution is added to a solution containing an oxidizing agent or an acid capable of decomposing nylon, followed by heating. When an oxidizing agent is used, the oxidizing agent becomes a nucleophilic agent, hydrolyzing nylon, and reducing the molecular weight. The oxidizing agent is not limited as long as it can promote the decomposition of nylon, and examples thereof include hydrogen peroxide water and hypohalites such as sodium hypochlorite. Also, when an acid is used, the acid acts as a catalyst to hydrolyze the nylon and reduce the molecular weight. Examples of acids include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid and citric acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid. Also, the heating temperature is preferably 75 to 120.degree. Further, the heating time is sufficient as long as the nylon is sufficiently decomposed, and is 96 hours or longer, preferably 168 hours or longer, more preferably 336 hours or longer, depending on the type of nylon and the oxidizing agent.
(酸化剤又は酸の除去工程)
 酸化剤又は酸の除去工程では、低分子化工程で用いた酸化剤又は酸を除去する。酸化剤又は酸の除去方法としては、酸化剤又は酸を除去可能であれば制限はなく、例えば、凍結乾燥法による除去方法が挙げられる。
(Step of removing oxidizing agent or acid)
In the oxidizing agent or acid removing step, the oxidizing agent or acid used in the molecular weight reduction step is removed. The method for removing the oxidizing agent or acid is not limited as long as the oxidizing agent or acid can be removed, and examples thereof include a removal method using a freeze-drying method.
 そして、酸化剤又は酸を除去後のナイロンを用い、上述したナイロン分散液調製工程、加水分解工程を行う。ナイロンを溶解し、微粒子状に析出させた後、更に低分子化させたナイロンに対して、ナイロン加水分解酵素を作用させることで、酵素分解効率の更なる向上が実現できる。 Then, using nylon from which the oxidizing agent or acid has been removed, the above-described nylon dispersion preparation step and hydrolysis step are performed. After dissolving nylon and precipitating it in the form of fine particles, further improvement in enzymatic decomposition efficiency can be achieved by allowing a nylon hydrolase to act on nylon that has been further reduced in molecular weight.
<実施の形態2>
 実施の形態2に係るナイロンの加水分解方法は、ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、図3に示すように、低分子化工程、酸化剤又は酸の除去工程、ナイロン分散液調製工程、加水分解工程を備える。加水分解を行うナイロンについては、実施の形態1で挙げたものが用いられる。
<Embodiment 2>
The method for hydrolyzing nylon according to Embodiment 2 is a method for hydrolyzing nylon in which nylon is monomerized using a nylon hydrolase, and as shown in FIG. , a nylon dispersion preparation step, and a hydrolysis step. As for the nylon to be hydrolyzed, those mentioned in the first embodiment are used.
(低分子化工程)
 低分子化工程では、ナイロンを分解可能な酸化剤又は酸を含有する溶液にナイロンを加えて加熱する。酸化剤を用いた場合では、酸化剤が求核剤となり、ナイロンが加水分解され、低分子化される。酸化剤を含有する溶液として、ナイロンの分解を促進可能であれば制限はなく、例えば、過酸化水素水のほか、次亜塩素酸ナトリウム等の次亜ハロゲン酸塩などが挙げられる。また、酸を用いた場合では、酸が触媒となり、ナイロンが加水分解され、低分子化される。酸として、例えば、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸等の有機酸のほか、塩酸、硫酸、硝酸、リン酸、ホウ酸等の無機酸などが挙げられる。また、加熱温度は、75~120℃であることが好ましい。また、加熱時間はナイロンが十分に分解される時間であればよく、ナイロン種、酸化剤にもよるが、96時間以上、好ましくは168時間以上、より好ましくは336時間以上である。
(Low molecular weight process)
In the molecular weight reduction step, nylon is added to a solution containing an oxidizing agent or acid capable of decomposing nylon and heated. When an oxidizing agent is used, the oxidizing agent becomes a nucleophilic agent, hydrolyzing nylon, and reducing the molecular weight. The solution containing the oxidizing agent is not limited as long as it can accelerate the decomposition of nylon, and examples thereof include hydrogen peroxide water and hypohalites such as sodium hypochlorite. Also, when an acid is used, the acid acts as a catalyst to hydrolyze the nylon and reduce the molecular weight. Examples of acids include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid and citric acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid. Also, the heating temperature is preferably 75 to 120.degree. Further, the heating time is sufficient as long as the nylon is sufficiently decomposed, and is 96 hours or longer, preferably 168 hours or longer, more preferably 336 hours or longer, depending on the type of nylon and the oxidizing agent.
(酸化剤又は酸の除去工程)
 酸化剤又は酸の除去工程では、低分子化工程で用いた酸化剤又は酸を除去する。酸化剤又は酸の除去方法としては、酸化剤又は酸を除去可能であれば制限はなく、例えば、凍結乾燥法による除去方法が挙げられる。
(Step of removing oxidizing agent or acid)
In the oxidizing agent or acid removing step, the oxidizing agent or acid used in the molecular weight reduction step is removed. The method for removing the oxidizing agent or acid is not limited as long as the oxidizing agent or acid can be removed, and examples thereof include a removal method using a freeze-drying method.
(ナイロン分散液調製工程)
 ナイロン分散液調製工程では、酸化剤又は酸の除去後のナイロンに水溶液を添加してナイロン分散液を調製する。添加する水の分量はナイロンが十分に分散する量を用いればよい。添加する水溶液として、実施の形態1で説明したグリセロールを添加したリン酸緩衝液を用いることが好ましい。
(Nylon dispersion liquid preparation process)
In the nylon dispersion preparation step, an aqueous solution is added to nylon after removal of the oxidizing agent or acid to prepare a nylon dispersion. The amount of water to be added should be such that the nylon is sufficiently dispersed. As the aqueous solution to be added, it is preferable to use the phosphate buffer added with glycerol described in Embodiment 1.
(加水分解工程)
 加水分解工程は、ナイロン分散液にナイロン加水分解酵素を加え、ナイロンを加水分解する。その他、上述した実施の形態1と同様であるため、説明を省略する。
(Hydrolysis step)
In the hydrolysis step, a nylon hydrolase is added to the nylon dispersion to hydrolyze the nylon. Others are the same as those of the first embodiment described above, so the description is omitted.
 実施の形態2では、酸化剤又は酸によってナイロンを分解して低分子化した後、ナイロン加水分解酵素を作用させることにより、ナイロンの酵素的加水分解反応の効率が高まる。ナイロンの酵素分解効率が向上することにより、モノマーとしてナイロンのリサイクルが可能になる。 In Embodiment 2, the efficiency of the enzymatic hydrolysis reaction of nylon is increased by decomposing nylon with an oxidizing agent or acid to reduce the molecular weight and then allowing nylon hydrolase to act. The improved enzymatic degradation efficiency of nylon enables the recycling of nylon as a monomer.
 また、図4に示すように、低分子化工程、酸化剤又は酸の除去工程を行った後、ナイロン溶解液調製工程、ナイロン析出液調製工程、溶媒除去工程を行い、溶媒除去工程後のナイロンを用い、ナイロン分散液調製工程、加水分解工程を行ってもよい。ナイロン溶解液調製工程、ナイロン析出液調製工程、及び、溶媒除去工程は、実施の形態1の説明と同様であるため、説明を省略する。低分子化させたナイロンを更に溶解し、微粒子状に析出させたナイロンに対してナイロン加水分解酵素を作用させることにより、酵素分解効率の更なる向上が実現できる。 Further, as shown in FIG. 4, after performing the molecular weight reduction step and the oxidizing agent or acid removal step, the nylon solution preparation step, the nylon precipitate preparation step, and the solvent removal step are performed, and the nylon after the solvent removal step may be used to perform the nylon dispersion preparation step and the hydrolysis step. The description of the nylon solution preparation process, the nylon precipitation liquid preparation process, and the solvent removal process is the same as that of the first embodiment, so the description is omitted. Further improvement of enzymatic decomposition efficiency can be achieved by further dissolving the low-molecular-weight nylon and allowing a nylon hydrolase to act on the nylon precipitated in the form of fine particles.
<実験1>ナイロンを溶解、析出させて調製したナイロン分散液の加水分解
(ナイロン分散液の調整)
(a)ナイロン6のペレットをトリフルオロエタノールに添加して溶解し、ナイロン溶解液(25mg/mL)を調製した。
(b)ナイロン溶解液(80μL)を各種ナイロン析出液(720μL)に滴下し、ナイロン析出液を調製した。
(c)ナイロン析出液を遠心(15,000xg、10分間)した後、上清を除去した。
(d)10%グリセロールを含む20mMリン酸緩衝液(pH7.3、500μL)を加えて懸濁し、遠心(15,000xg、10分間)した後、上清を除去した。
(e)上記(d)の操作を3回繰り返し行った。
(f)10%グリセロールを含む20mMリン酸緩衝液(pH7.3、200μL)で再度懸濁することでナイロン分散液を調製した。
<Experiment 1> Hydrolysis of nylon dispersion prepared by dissolving and precipitating nylon (preparation of nylon dispersion)
(a) Nylon 6 pellets were added to trifluoroethanol and dissolved to prepare a nylon solution (25 mg/mL).
(b) The nylon solution (80 μL) was added dropwise to various nylon deposits (720 μL) to prepare nylon deposits.
(c) After centrifuging the nylon precipitate (15,000 xg, 10 minutes), the supernatant was removed.
(d) 20 mM phosphate buffer (pH 7.3, 500 μL) containing 10% glycerol was added to suspend, centrifuged (15,000×g, 10 minutes), and the supernatant was removed.
(e) The operation of (d) above was repeated three times.
(f) A nylon dispersion was prepared by resuspending in 20 mM phosphate buffer (pH 7.3, 200 μL) containing 10% glycerol.
 上記のナイロン析出液として、アセトン、酢酸エチル、エタノール、メタノール、水、エチレングリコールを用いた。 Acetone, ethyl acetate, ethanol, methanol, water, and ethylene glycol were used as the nylon deposition liquid.
(ナイロンの加水分解)
 調製したナイロン分散液(200μL)にナイロン加水分解酵素を含有する酵素液(200μL)を添加し、37℃で静置した。
 そして、経時的にサンプリングし、TLC(Thin-Layer Chromatography)分析、及び、TNBS(2,4,6-Trinitrobenzenesulfonic Acid)法による遊離アミノ基の定量を行うことで、反応の進行を評価した。なお、サンプリングの際には、99℃で10分間加熱することにより反応を停止して行った。
(Hydrolysis of nylon)
An enzyme solution (200 µL) containing a nylon hydrolase was added to the prepared nylon dispersion (200 µL), and the mixture was allowed to stand at 37°C.
Then, samples were taken over time, TLC (Thin-Layer Chromatography) analysis, and free amino group quantification by TNBS (2,4,6-Trinitrobenzenesulfonic Acid) method were performed to evaluate the progress of the reaction. In addition, at the time of sampling, the reaction was stopped by heating at 99° C. for 10 minutes.
 酵素液は、エンド型ナイロン加水分解酵素(以下、GYAQと記す)及びヘキソ型ナイロン加水分解酵素(以下、DNYと記す)の終濃度がそれぞれ1.0mg/mLになるように調製して用いた。 The enzyme solution was prepared so that the final concentrations of endo-type nylon hydrolase (hereinafter referred to as GYAQ) and hexo-type nylon hydrolase (hereinafter referred to as DNY) were each 1.0 mg/mL. .
 用いた酵素GYAQ、DNYを以下に記す。
・GYAQ:EC番号3.5.1.117のN末端にHis-tagを付加した酵素
・DNY:EC番号3.5.1.46のN末端にHis-tagを付加した酵素
The enzymes GYAQ and DNY used are described below.
- GYAQ: an enzyme with a His-tag added to the N-terminus of EC number 3.5.1.117 - DNY: an enzyme with a His-tag added to the N-terminus of EC number 3.5.1.46
 TLC分析の結果を図5に示す。また、TNBS法による遊離アミノ基濃度の測定結果を図6に示す。水以外のナイロン析出溶液を用いた場合、いずれも経時的にナイロン6は分解され、モノマー化していることがわかる。なかでもエチレングリコール、エタノールを用いた場合に、分解効率が高かった。なお、加水分解を開始して2時間後の遊離アミノ基濃度の測定を行ったところ、24時間経過時のアミノ基濃度とほぼ同濃度であった。 The results of the TLC analysis are shown in Figure 5. Moreover, FIG. 6 shows the measurement results of free amino group concentration by the TNBS method. It can be seen that nylon 6 is decomposed and monomerized over time in all the cases where a nylon deposition solution other than water is used. Among them, the decomposition efficiency was high when ethylene glycol and ethanol were used. When the free amino group concentration was measured 2 hours after the hydrolysis was started, it was almost the same as the amino group concentration after 24 hours.
<実験2>ナイロンペレットのままでの加水分解との比較
 ナイロン析出液としてエチレングリコールを用い、上記実験1の(a)-(f)の操作を行い、ナイロン6分散液を得た。
 得られたナイロン6分散液(200μL)にナイロン加水分解酵素を含有する酵素液(200μL)を添加し、37℃で静置した。そして、実験1と同様に、TLC分析、及び、TNBS法による遊離アミノ基の定量を行った。なお、酵素液として、GYAQのみ、DNYのみ、GYAQとDNYの併用(重量比1:1)の3種(いずれも終濃度1.0mg/mL)を調製して用いた。
<Experiment 2> Comparison with hydrolysis of nylon pellets as they are Ethylene glycol was used as the nylon precipitate, and the operations (a) to (f) of Experiment 1 were performed to obtain a nylon 6 dispersion.
An enzyme solution (200 µL) containing a nylon hydrolase was added to the resulting nylon 6 dispersion (200 µL), and the mixture was allowed to stand at 37°C. Then, in the same manner as in Experiment 1, TLC analysis and quantification of free amino groups by the TNBS method were performed. As the enzyme solution, 3 types of GYAQ alone, DNY alone, and a combination of GYAQ and DNY (weight ratio 1:1) were prepared and used (each with a final concentration of 1.0 mg/mL).
 また、比較として、ナイロン6のペレット(5mg)をそのまま上記の3種の酵素液(400μL)にそれぞれ入れた。そして、上記と同様に、TLC分析、及び、TNBS法による遊離アミノ基の定量を行った。 Also, for comparison, nylon 6 pellets (5 mg) were directly added to the above three types of enzyme solutions (400 μL). Then, TLC analysis and quantification of free amino groups by the TNBS method were performed in the same manner as described above.
 ナイロン6分散液を加水分解した場合のTLC分析、及び、TNBS法による遊離アミノ基濃度の測定結果を図7、図8にそれぞれ示す。また、ナイロン6をそのまま加水分解した場合のTLC分析、及び、TNBS法による遊離アミノ基濃度の測定結を図9、図10にそれぞれ示す。  Figures 7 and 8 show the results of TLC analysis when the nylon 6 dispersion was hydrolyzed and the measurement results of the concentration of free amino groups by the TNBS method. 9 and 10 show the results of TLC analysis when nylon 6 is hydrolyzed as it is and the measurement results of the free amino group concentration by the TNBS method, respectively.
 ナイロン6分散液を加水分解した場合では、TLC分析による検出が可能であるのに対し、ナイロン6をそのまま加水分解した場合では、TLC分析による検出が可能なレベルには至らなかった。 When the nylon 6 dispersion was hydrolyzed, detection by TLC analysis was possible, whereas when nylon 6 was hydrolyzed as it was, it did not reach a level at which detection by TLC analysis was possible.
 用いたナイロン6が完全に分解された場合に推定される遊離アミノ基濃度は、ナイロン6分散液の場合では44.2mM、ナイロン6をそのまま加水分解した場合では110.5mMであり、TNBS法による分析に基づいて算出した72時間反応後のナイロン6の分解率を表1に纏めた。ナイロン6をそのまま加水分解した場合に比べると、ナイロン6分散液を加水分解した場合では、分解効率が凡そ4~7倍であった。 The estimated free amino group concentration when the used nylon 6 is completely decomposed is 44.2 mM in the case of the nylon 6 dispersion, and 110.5 mM in the case of hydrolyzing the nylon 6 as it is, according to the TNBS method. Table 1 summarizes the decomposition rate of nylon 6 after the reaction for 72 hours calculated based on the analysis. Compared to the hydrolysis of nylon 6 as it is, hydrolysis efficiency of nylon 6 dispersion was about 4 to 7 times higher.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実験3>種々のナイロンを溶解、析出させて調製したナイロン分散液の加水分解
 ナイロンとして、ナイロン6,6、ナイロン6、ナイロン12、ナイロン4を用いるとともに、ナイロン析出溶液としてエチレングリコールを用い、実験1の(a)-(f)の操作を行ってナイロン分散液を得た。
 それぞれのナイロン分散液(200μL)にナイロン加水分解酵素を含有する酵素液(200μL)を添加し、37℃で静置した。そして、上記と同様に、TNBS法による遊離アミノ基の定量を行った。なお、酵素液は、GYAQの終濃度が1.0mg/mLになるように調製して用いた。
<Experiment 3> Hydrolysis of nylon dispersion prepared by dissolving and precipitating various nylons Nylon 6, 6, nylon 6, nylon 12, and nylon 4 were used as the nylon, and ethylene glycol was used as the nylon precipitation solution. A nylon dispersion was obtained by carrying out the operations (a) to (f) of Experiment 1.
An enzyme solution (200 µL) containing a nylon hydrolase was added to each nylon dispersion (200 µL) and allowed to stand at 37°C. Then, the free amino groups were quantified by the TNBS method in the same manner as described above. The enzyme solution was prepared so that the final concentration of GYAQ was 1.0 mg/mL.
 その結果を図11に示す。また、TNBS法による分析に基づく72時間反応後のそれぞれのナイロンの分解率を表2に纏めた。いずれのナイロンも加水分解が進行しており、ナイロン6,6、ナイロン6でより分解効率が高かった。 The results are shown in Figure 11. Table 2 summarizes the decomposition rate of each nylon after 72 hours of reaction based on analysis by the TNBS method. All nylons were hydrolyzed, and nylon 6,6 and nylon 6 had higher decomposition efficiency.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実験4>低分子化して調製したナイロン分散液の加水分解
(ナイロン分散液の調製)
 ナイロン6、ナイロン6,6、ナイロン6i-11(50%)のペレット(1g)をギ酸(6.8mL)にそれぞれ混合した。なお、ナイロン6i-11は、1-アミノへキシル-2-ピロリドン-4-カルボン酸(以下、6iモノマーユニット)と11アミノウンデカン酸(以下、11モノマーユニット)から得られるナイロンであり、ナイロン6i-11(50%)は、6iモノマーユニットと11モノマーユニットの配合比が50:50で得られたものである。このナイロン6i-11(50%)は、国立大学法人鹿児島大学 金子芳郎氏から提供されたものを用いた。
 スターラーで攪拌しながら設定温度にて96時間加熱した。
 加熱後、蒸留水(25mL)を添加して、凍結乾燥を行うことでギ酸を除去した。
 ギ酸除去後、10%グリセロールを含む20mMリン酸緩衝液(pH7.3)を加え、再懸濁し、ナイロン分散液を調製した。なお、各ナイロンの終濃度は10mg/mLになるように調製した。
 上記設定温度は75℃、100℃、120℃とし、それぞれの設定温度にて行った。
<Experiment 4> Hydrolysis of nylon dispersion prepared by reducing the molecular weight (preparation of nylon dispersion)
Pellets (1 g) of nylon 6, nylon 6,6 and nylon 6i-11 (50%) were each mixed with formic acid (6.8 mL). Incidentally, nylon 6i-11 is a nylon obtained from 1-aminohexyl-2-pyrrolidone-4-carboxylic acid (hereinafter referred to as 6i monomer unit) and 11 aminoundecanoic acid (hereinafter referred to as 11 monomer unit), nylon 6i -11 (50%) was obtained at a compounding ratio of 6i monomer units and 11 monomer units of 50:50. This nylon 6i-11 (50%) was provided by Mr. Yoshiro Kaneko of National University Corporation Kagoshima University.
The mixture was heated at the set temperature for 96 hours while stirring with a stirrer.
After heating, distilled water (25 mL) was added and freeze-dried to remove formic acid.
After removing formic acid, 20 mM phosphate buffer (pH 7.3) containing 10% glycerol was added and resuspended to prepare a nylon dispersion. The final concentration of each nylon was adjusted to 10 mg/mL.
The set temperatures were set to 75° C., 100° C., and 120° C., and the test was performed at each set temperature.
 また、ギ酸に変えて30%過酸化水素水(6.8mL)を用いる以外、上記と同様にしてナイロン分散液を調製した。 In addition, a nylon dispersion was prepared in the same manner as above, except that 30% hydrogen peroxide water (6.8 mL) was used instead of formic acid.
(ナイロンの加水分解)
 それぞれのナイロン分散液(200μL)に酵素液(200μL)を添加し、37℃で静置した。実験1と同様に、TNBS法による遊離アミノ基の定量を行った。なお、酵素液として、GYAQのみ、DNYのみ、GYAQとDNYの併用(重量比1:1)の3種(終濃度1.0mg/mL)を調製して用いた。
(Hydrolysis of nylon)
An enzyme solution (200 μL) was added to each nylon dispersion (200 μL) and allowed to stand at 37°C. As in Experiment 1, free amino groups were quantified by the TNBS method. As the enzyme solution, three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
 ギ酸を用いて調製したナイロン分散液を72時間加水分解した場合のナイロンの分解率を表3に、過酸化水素水を用いて調製したナイロン分散液を72時間加水分解した場合のナイロンの分解率を表4に纏めた。また、ナイロン6、ギ酸を用いて120℃で処理して調製したナイロン分散液、ナイロン6,6、ギ酸を用いて100℃で処理して調製したナイロン分散液、ナイロン6、過酸化水素水を用いて100℃で処理して調製したナイロン分散液、及び、ナイロン6i-11(50%)、ギ酸を用いて100℃で処理して調製したナイロン分散液を加水分解した場合のTNBS法による遊離アミノ基濃度の測定結果を図12、図13、図14、図15に、それぞれ示す。いずれのナイロンも加水分解されている。ナイロンの種類にもよるが、ギ酸を用いた場合では100℃で処理した場合の酵素分解効率が高く、過酸化水素水を用いた場合では75℃で処理した場合の酵素分解効率が高かった。なお、加水分解を開始して2時間後の遊離アミノ基濃度の測定を行ったところ、24時間経過時のアミノ基濃度とほぼ同濃度であった。 Table 3 shows the decomposition rate of nylon when a nylon dispersion prepared using formic acid is hydrolyzed for 72 hours, and the decomposition rate of nylon when a nylon dispersion prepared using hydrogen peroxide water is hydrolyzed for 72 hours. are summarized in Table 4. In addition, a nylon dispersion prepared by treating nylon 6 with formic acid at 120 ° C., nylon 6,6, a nylon dispersion prepared by treating with formic acid at 100 ° C., nylon 6, and hydrogen peroxide solution and nylon 6i-11 (50%), prepared by treatment with formic acid at 100°C. The measurement results of amino group concentrations are shown in FIGS. 12, 13, 14 and 15, respectively. Both nylons are hydrolyzed. Depending on the type of nylon, when formic acid was used, the enzymatic decomposition efficiency was high when treated at 100°C, and when hydrogen peroxide was used, the enzymatic decomposition efficiency was high when treated at 75°C. When the free amino group concentration was measured 2 hours after the hydrolysis was started, it was almost the same as the amino group concentration after 24 hours.
<実験5>低分子化の加熱時間の検証
(ナイロン分散液の調製)
 ナイロン6(1g)、ギ酸(6.8mL)を用いるとともに、100℃で加熱時間を120時間、168時間とする以外、実験4と同様にしてナイロン分散液を調製した。
<Experiment 5> Verification of heating time for molecular weight reduction (preparation of nylon dispersion)
A nylon dispersion was prepared in the same manner as in Experiment 4, except that nylon 6 (1 g) and formic acid (6.8 mL) were used, and the heating time at 100° C. was 120 hours and 168 hours.
 また、ナイロン6,6(1g)、ギ酸(6.8mL)を用いるとともに、100℃で加熱時間を168時間とする以外、実験4と同様にしてナイロン分散液を調製した。 In addition, a nylon dispersion was prepared in the same manner as in Experiment 4, except that nylon 6,6 (1 g) and formic acid (6.8 mL) were used, and the heating time was set at 100°C for 168 hours.
 また、ナイロン6i-11(50%)(1g)、ギ酸(6.8mL)を用いるとともに、100℃で加熱時間を168時間とする以外、実験4と同様にしてナイロン分散液を調製した。 In addition, nylon 6i-11 (50%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 168 hours at 100°C.
 また、ナイロン6(50mg)、30%過酸化水素水(5mL)用いるとともに、75℃で加熱時間を192時間とする以外、実験4と同様にしてナイロン分散液を調製した。 A nylon dispersion was also prepared in the same manner as in Experiment 4, except that nylon 6 (50 mg) and 30% hydrogen peroxide solution (5 mL) were used, and the heating time was set at 75°C for 192 hours.
 また、ナイロン6i-11(50%)(1g)、ギ酸(6.8mL)を用いるとともに、100℃で加熱時間を336時間とする以外、実験4と同様にしてナイロン分散液を調製した。 In addition, nylon 6i-11 (50%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 336 hours at 100°C.
 また、ナイロン6i-11(75%)(1g)、ギ酸(6.8mL)を用いるとともに、100℃で加熱時間を168時間とする以外、実験4と同様にしてナイロン分散液を調製した。なお、ナイロン6i-11(75%)は、6iモノマーユニットと11モノマーユニットの配合比が25:75で得られたものである。このナイロン6i-11(75%)は、国立大学法人鹿児島大学の金子芳郎氏から提供されたものを用いた。 In addition, nylon 6i-11 (75%) (1 g) and formic acid (6.8 mL) were used, and a nylon dispersion was prepared in the same manner as in Experiment 4 except that the heating time was 168 hours at 100°C. Incidentally, nylon 6i-11 (75%) was obtained at a compounding ratio of 6i monomer units and 11 monomer units of 25:75. This nylon 6i-11 (75%) was provided by Mr. Yoshiro Kaneko of Kagoshima University.
(ナイロンの加水分解)
 それぞれのナイロン分散液(200μL)に酵素液(200μL)を添加し、37℃で静置した。そして、実験1と同様に、TNBS法による遊離アミノ基の定量を行った。なお、酵素液として、GYAQのみ、DNYのみ、GYAQとDNYの併用(重量比1:1)の3種(終濃度1.0mg/mL)を調製して用いた。
(Hydrolysis of nylon)
An enzyme solution (200 μL) was added to each nylon dispersion (200 μL) and allowed to stand at 37°C. Then, in the same manner as in Experiment 1, free amino groups were quantified by the TNBS method. As the enzyme solution, three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
 ナイロンの分解率を表5、表6に纏めた。加熱時間を長くすることにより酵素分解効率が高くなる傾向を示した。 The decomposition rate of nylon is summarized in Tables 5 and 6. Enzymatic decomposition efficiency tended to increase with longer heating time.
<実験6>溶解、析出後のナイロン6を更に低分子化して調製したナイロン分散液の加水分解の検証
 ナイロン6(1g)、ナイロン析出液としてエチレングリコールを用い、実験1の(a)-(e)の操作を行った後、ギ酸(6.8mL)を添加した。
 スターラーで攪拌しながら100℃で96時間加熱した。
 加熱後、蒸留水(25mL)を添加して、凍結乾燥を行うことでギ酸を除去した。
 ギ酸除去後、10%グリセロールを含む20mMリン酸緩衝液(pH7.3)を加え、再懸濁し、ナイロン分散液を調製した。
<Experiment 6> Verification of hydrolysis of a nylon dispersion prepared by further reducing the molecular weight of nylon 6 after dissolution and precipitation Using nylon 6 (1 g) and ethylene glycol as the nylon precipitation solution, Experiment 1 (a)-( After the operation e), formic acid (6.8 mL) was added.
The mixture was heated at 100° C. for 96 hours while stirring with a stirrer.
After heating, distilled water (25 mL) was added and freeze-dried to remove formic acid.
After removing formic acid, 20 mM phosphate buffer (pH 7.3) containing 10% glycerol was added and resuspended to prepare a nylon dispersion.
 ナイロン分散液(200μL)に酵素液(200μL)を添加し、37℃で静置した。そして、実験1と同様に、TNBS法による遊離アミノ基の定量を行い、ナイロン6の分解率を求めた。なお、酵素液として、GYAQのみ、DNYのみ、GYAQとDNYの併用(重量比1:1)の3種(終濃度1.0mg/mL)を調製して用いた。 The enzyme solution (200 μL) was added to the nylon dispersion (200 μL) and allowed to stand at 37°C. Then, in the same manner as in Experiment 1, free amino groups were quantified by the TNBS method to determine the decomposition rate of nylon 6. As the enzyme solution, three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
 また、エチレングリコールに代えてエタノールを用いる以外、上記と同様に行った。 In addition, the same procedure as above was performed except that ethanol was used instead of ethylene glycol.
 また、エチレングリコールに代えてエタノールを用い、加熱時時間を168時間にした以外、上記と同様に行った。 In addition, the procedure was carried out in the same manner as above, except that ethanol was used instead of ethylene glycol and the heating time was changed to 168 hours.
 また、ギ酸に代えて30%過酸化水素水(5mL)を用い、加熱温度を75℃、加熱時間を192時間にした以外、上記と同様に行った。 In addition, the above procedure was repeated except that 30% hydrogen peroxide solution (5 mL) was used instead of formic acid, the heating temperature was 75°C, and the heating time was 192 hours.
 酵素液を添加して72時間後のナイロン6の分解率を表7に纏めた。微粒子状に析出させたナイロンを更に低分子化して調製したナイロン分散液にナイロン加水分解酵素を作用させることにより、ナイロンの分解率を高められることを立証した。特に、ナイロン析出液としてエタノールを用い、ギ酸を用いて168時間加熱を行った場合、高い分解率(88~97%)を示した。 Table 7 summarizes the decomposition rate of nylon 6 72 hours after adding the enzyme solution. It was demonstrated that the degradation rate of nylon can be increased by allowing a nylon hydrolase to act on a nylon dispersion prepared by further reducing the molecular weight of nylon precipitated in the form of fine particles. In particular, a high decomposition rate (88 to 97%) was exhibited when ethanol was used as the nylon depositing solution and heating was performed using formic acid for 168 hours.
<実験7>溶解、析出後のナイロン6,6を更に低分子化して調製したナイロン分散液の加水分解の検証
 ナイロン6,6(1g)、ナイロン析出液としてエタノールを用い、実験1の(a)-(e)の操作を行った後、ギ酸(6.8mL)を添加した。
 スターラーで攪拌しながら100℃で168時間加熱した。
 加熱後、蒸留水(25mL)を添加して、凍結乾燥を行うことでギ酸を除去した。
 ギ酸除去後、10%グリセロールを含む20mMリン酸緩衝液(pH7.3)を加え、再懸濁し、ナイロン分散液を調製した。
<Experiment 7> Verification of hydrolysis of a nylon dispersion prepared by further reducing the molecular weight of nylon 6,6 after dissolution and precipitation Using nylon 6,6 (1 g) and ethanol as the nylon precipitation solution, )-(e), formic acid (6.8 mL) was added.
The mixture was heated at 100° C. for 168 hours while stirring with a stirrer.
After heating, distilled water (25 mL) was added and freeze-dried to remove formic acid.
After removing formic acid, 20 mM phosphate buffer (pH 7.3) containing 10% glycerol was added and resuspended to prepare a nylon dispersion.
 ナイロン分散液(200μL)に酵素液(200μL)を添加し、37℃で静置した。そして、実験1と同様に、TNBS法による遊離アミノ基の定量を行い、ナイロン6,6の分解率を求めた。なお、酵素液として、GYAQのみ、DNYのみ、GYAQとDNYの併用(重量比1:1)の3種(終濃度1.0mg/mL)を調製して用いた。 The enzyme solution (200 μL) was added to the nylon dispersion (200 μL) and allowed to stand at 37°C. Then, in the same manner as in Experiment 1, free amino groups were quantified by the TNBS method to determine the decomposition rate of nylon 6,6. As the enzyme solution, three types (final concentration: 1.0 mg/mL) of GYAQ alone, DNY alone, and GYAQ and DNY in combination (weight ratio 1:1) were prepared and used.
 酵素液を添加して72時間後のナイロン6,6の分解率を表8に示す。GYAQとDNYの併用では、100%の分解率を達成した。 Table 8 shows the decomposition rate of nylon 6,6 72 hours after adding the enzyme solution. The combination of GYAQ and DNY achieved 100% decomposition rate.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of equivalent inventions are considered to be within the scope of the present invention.
 本出願は、2022年3月3日に出願された日本国特許出願2022-32566号および2022年9月21日に出願された日本国特許出願2022-150274に基づく。本明細書中に、日本国特許出願2022-32566号および日本国特許出願2022-150274の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-32566 filed on March 3, 2022 and Japanese Patent Application No. 2022-150274 filed on September 21, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-32566 and Japanese Patent Application No. 2022-150274 are incorporated herein by reference.
 ナイロンのモノマー分子への再資源化に利用できる。 Can be used to recycle nylon into monomer molecules.

Claims (13)

  1.  ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、
     前記ナイロンが溶解可能な有機溶媒に前記ナイロンを溶解させてナイロン溶解液を調製する工程と、
     前記ナイロンを粒子状に析出させる析出溶媒に前記ナイロン溶解液を加え、ナイロン析出液を調製する工程と、
     前記ナイロン析出液から前記有機溶媒及び前記析出溶媒を除去する工程と、
     前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンに水溶液を加えてナイロン分散液を調製する工程と、
     前記ナイロン分散液に前記ナイロン加水分解酵素を加え、前記ナイロンを加水分解する工程と、を備える、
     ことを特徴とするナイロンの加水分解方法。
    A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising:
    a step of dissolving the nylon in an organic solvent capable of dissolving the nylon to prepare a nylon solution;
    a step of adding the nylon solution to a precipitation solvent for precipitating the nylon into particles to prepare a nylon precipitation solution;
    removing the organic solvent and the precipitation solvent from the nylon precipitation solution;
    adding an aqueous solution to the nylon obtained by removing the organic solvent and the precipitation solvent to prepare a nylon dispersion;
    adding the nylon hydrolase to the nylon dispersion to hydrolyze the nylon;
    A method for hydrolyzing nylon, characterized by:
  2.  前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンを分解可能な酸化剤又は酸を含有する溶液に加えて加熱し、前記ナイロンを低分子化する工程と、
     加熱後の前記溶液から前記酸化剤又は前記酸を除去する工程と、を更に備え、
     前記酸化剤又は前記酸を除去して得られた前記ナイロンに前記水溶液を加えることにより前記ナイロン分散液が調製される、
     ことを特徴とする請求項1に記載のナイロンの加水分解方法。
    a step of adding the nylon obtained by removing the organic solvent and the precipitation solvent to a solution containing an oxidizing agent or an acid capable of decomposing and heating to reduce the molecular weight of the nylon;
    removing the oxidizing agent or the acid from the solution after heating;
    The nylon dispersion is prepared by adding the aqueous solution to the nylon obtained by removing the oxidizing agent or the acid,
    The method for hydrolyzing nylon according to claim 1, characterized in that:
  3.  前記ナイロンとしてナイロン4、ナイロン6、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12、ナイロン4,6、ナイロン6T、ナイロン6I、ナイロンM5T、ナイロン6i、又は、ナイロン6i-11を用いる、
     ことを特徴とする請求項1又は2に記載のナイロンの加水分解方法。
    As the nylon, nylon 4, nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, nylon 4,6, nylon 6T, nylon 6I, nylon M5T, nylon 6i, or nylon using 6i-11,
    The method for hydrolyzing nylon according to claim 1 or 2, characterized in that:
  4.  前記有機溶媒としてトリフルオロエタノール又はヘキサフルオロイソプロパノールを用いる、
     ことを特徴とする請求項1又は2に記載のナイロンの加水分解方法。
    using trifluoroethanol or hexafluoroisopropanol as the organic solvent;
    The method for hydrolyzing nylon according to claim 1 or 2, characterized in that:
  5.  前記析出溶媒としてエタノール又はエチレングリコールを用いる、
     ことを特徴とする請求項1又は2に記載のナイロンの加水分解方法。
    using ethanol or ethylene glycol as the precipitation solvent;
    The method for hydrolyzing nylon according to claim 1 or 2, characterized in that:
  6.  前記水溶液としてグリセロールを含有するリン酸緩衝液を用いる、
     ことを特徴とする請求項1又は2に記載のナイロンの加水分解方法。
    Using a phosphate buffer containing glycerol as the aqueous solution,
    The method for hydrolyzing nylon according to claim 1 or 2, characterized in that:
  7.  ナイロン加水分解酵素を用いてナイロンをモノマー化するナイロンの加水分解方法であって、
     前記ナイロンを分解可能な酸化剤又は酸を含有する溶液に前記ナイロンを加えて加熱し、前記ナイロンを低分子化する工程と、
     加熱後の前記溶液から前記酸化剤又は前記酸を除去する工程と、
     前記酸化剤又は前記酸を除去して得られた前記ナイロンに水溶液を加えてナイロン分散液を調製する工程と、
     前記ナイロン分散液にナイロン加水分解酵素を加え、前記ナイロンを加水分解する工程と、を備える、
     ことを特徴とするナイロンの加水分解方法。
    A method for hydrolyzing nylon by monomerizing nylon using a nylon hydrolase, comprising:
    a step of adding the nylon to a solution containing an oxidizing agent or an acid capable of decomposing the nylon and heating to reduce the molecular weight of the nylon;
    removing the oxidizing agent or the acid from the heated solution;
    adding an aqueous solution to the nylon obtained by removing the oxidizing agent or the acid to prepare a nylon dispersion;
    adding a nylon hydrolase to the nylon dispersion to hydrolyze the nylon;
    A method for hydrolyzing nylon, characterized by:
  8.  前記ナイロンが溶解可能な有機溶媒に前記ナイロンを溶解させてナイロン溶解液を調製する工程と、
     前記ナイロンを粒子状に析出させる析出溶媒に前記ナイロン溶解液を加え、ナイロン析出液を調製する工程と、
     前記ナイロン析出液から前記有機溶媒及び前記析出溶媒を除去する工程と、を更に備え、
     前記有機溶媒及び前記析出溶媒を除去して得られた前記ナイロンを、前記酸化剤又は前記酸を含有する溶液に加えて加熱し、前記ナイロンを低分子化する、
     ことを特徴とする請求項7に記載のナイロンの加水分解方法。
    a step of dissolving the nylon in an organic solvent capable of dissolving the nylon to prepare a nylon solution;
    a step of adding the nylon solution to a precipitation solvent for precipitating the nylon into particles to prepare a nylon precipitation solution;
    and removing the organic solvent and the precipitation solvent from the nylon precipitation solution,
    The nylon obtained by removing the organic solvent and the precipitation solvent is added to a solution containing the oxidizing agent or the acid and heated to reduce the molecular weight of the nylon.
    The method for hydrolyzing nylon according to claim 7, characterized in that:
  9.  前記酸化剤として過酸化水素水を用いる、
     ことを特徴とする請求項7又は8に記載のナイロンの加水分解方法。
    using a hydrogen peroxide solution as the oxidizing agent;
    The method for hydrolyzing nylon according to claim 7 or 8, characterized in that:
  10.  前記酸としてギ酸を用いる、
     ことを特徴とする請求項7又は8に記載のナイロンの加水分解方法。
    using formic acid as the acid;
    The method for hydrolyzing nylon according to claim 7 or 8, characterized in that:
  11.  75~120℃に加熱して前記ナイロンを低分子化する、
     ことを特徴とする請求項7又は8に記載のナイロンの加水分解方法。
    heating to 75 to 120° C. to reduce the molecular weight of the nylon;
    The method for hydrolyzing nylon according to claim 7 or 8, characterized in that:
  12.  前記水溶液としてグリセロールを含有するリン酸緩衝液を用いる、
     ことを特徴とする請求項7又は8に記載のナイロンの加水分解方法。
    Using a phosphate buffer containing glycerol as the aqueous solution,
    The method for hydrolyzing nylon according to claim 7 or 8, characterized in that:
  13.  凍結乾燥して前記酸化剤又は前記酸を除去する、
     ことを特徴とする請求項7又は8に記載のナイロンの加水分解方法。
    lyophilizing to remove the oxidizing agent or the acid;
    The method for hydrolyzing nylon according to claim 7 or 8, characterized in that:
PCT/JP2023/008043 2022-03-03 2023-03-03 Method for hydrolyzing nylon WO2023167314A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-032566 2022-03-03
JP2022032566 2022-03-03
JP2022-150274 2022-09-21
JP2022150274 2022-09-21

Publications (1)

Publication Number Publication Date
WO2023167314A1 true WO2023167314A1 (en) 2023-09-07

Family

ID=87883877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008043 WO2023167314A1 (en) 2022-03-03 2023-03-03 Method for hydrolyzing nylon

Country Status (1)

Country Link
WO (1) WO2023167314A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296949A (en) * 1993-04-14 1994-10-25 Kobe Steel Ltd Method for decomposing synthetic high-molecular compound by enzyme
JP2009139107A (en) * 2007-12-03 2009-06-25 Nec Corp Hydrolytic method of peptide by enzyme
JP2016505650A (en) * 2012-11-20 2016-02-25 キャルビオスCarbios How to recycle plastic products
US20190233610A1 (en) * 2018-02-01 2019-08-01 The Hong Kong Research Institute Of Textiles And Apparel Limited Textile Waste Processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296949A (en) * 1993-04-14 1994-10-25 Kobe Steel Ltd Method for decomposing synthetic high-molecular compound by enzyme
JP2009139107A (en) * 2007-12-03 2009-06-25 Nec Corp Hydrolytic method of peptide by enzyme
JP2016505650A (en) * 2012-11-20 2016-02-25 キャルビオスCarbios How to recycle plastic products
US20190233610A1 (en) * 2018-02-01 2019-08-01 The Hong Kong Research Institute Of Textiles And Apparel Limited Textile Waste Processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIJI NEGORO ET AL., : "Chapter Seventeen - Structural and functional characterization of nylon hydrolases", ENZYMATIC PLASTIC DEGRADATION, ELSEVIER, 1 January 2021 (2021-01-01), pages 357 - 389, XP009548369, ISBN: 978-0-12-822012-2 *

Similar Documents

Publication Publication Date Title
US4910145A (en) Separation process
Sun et al. Selection of effective methods for extracting extracellular polymeric substances (EPSs) from Bacillus megaterium TF10
RU2541635C2 (en) Method of producing polymer agarose from seaweed extract
Chaikumpollert et al. Preparation and characterization of protein‐free natural rubber
JP3718221B2 (en) Polymer degradation
WO2023167314A1 (en) Method for hydrolyzing nylon
FR2597481A1 (en) PROCESS FOR OBTAINING CHEMICALLY DEFINED AND REPRODUCIBLE POLYDESOXYRIBONUCLEOTIDES
WO2007112679A1 (en) Silk fibroin nanoparticles fixed with enzyme and their production
WO2023024055A1 (en) Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength
CA1244367A (en) Process for the treatment of an aqueous solution of heteropolysaccharides and solution or powder of heteropolysaccharides thus obtained
CN1109048C (en) Process for the production of heparin
CN109402106B (en) Method for fixing Klebsiella through polyvinyl alcohol-cellulose and application of method
Ayhan et al. Highly biocompatible enzyme aggregates crosslinked by L-lysine
FR2586249A1 (en) PROCESS FOR THE PREPARATION OF A MODIFIED HETEROPOLYSACCHARIDE AND COMPOSITIONS CONTAINING THE SAME
CN1900312A (en) Fluorescence probe for hgih temperature polyase exonuclease activity in real time PCR test
FR2798141A1 (en) PROCESS FOR PRODUCING EXOPOLYSACCHARIDES
CN106148294B (en) Manganese peroxidase MNP-1 and gene and application thereof
JPWO2006068146A1 (en) New chondroitin sulfate fraction
JP2002105101A (en) Method for producing water-soluble polymer
JP4126511B2 (en) Method for recovering poly-3-hydroxybutyric acid from microbial cells
JP4351461B2 (en) Method for removing endotoxin from collagen protein
CN101307307A (en) Glycolic acid oxidase preparation, preparation method and applications
CN110055305B (en) Method for detecting (CAG) n repeated sequence by using RNase H
CN112851976A (en) Preparation method of cellulose-based hydrogel for dye degradation
JPH0461638B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763571

Country of ref document: EP

Kind code of ref document: A1