WO2023166823A1 - Composition for forming cured film, curing agent, self-supporting film, and method for producing cured film - Google Patents

Composition for forming cured film, curing agent, self-supporting film, and method for producing cured film Download PDF

Info

Publication number
WO2023166823A1
WO2023166823A1 PCT/JP2022/047026 JP2022047026W WO2023166823A1 WO 2023166823 A1 WO2023166823 A1 WO 2023166823A1 JP 2022047026 W JP2022047026 W JP 2022047026W WO 2023166823 A1 WO2023166823 A1 WO 2023166823A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured film
composition
forming
film
active energy
Prior art date
Application number
PCT/JP2022/047026
Other languages
French (fr)
Japanese (ja)
Inventor
祐 七島
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023166823A1 publication Critical patent/WO2023166823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to a composition for forming a cured film, a cured film, a self-supporting film, and a method for producing a cured film.
  • cured films obtained by curing curable compositions have been used in various fields and various products.
  • various displays such as liquid crystal displays (LCD) and organic EL displays (OELD), especially displays used as touch panels, are often provided with a cured film as a hard coat layer to prevent scratches. .
  • LCD liquid crystal displays
  • OELD organic EL displays
  • Patent Document 1 describes, as a curable composition for forming a cured film (hard coat layer) as described above, an N-vinyl compound (A), a dialkylaminoalkyl (meth)acrylate (B1) and/or a dialkyl A compound (B) which is an aminoalkyl (meth)acrylamide (B2), a monoester (C1) of (meth)acrylic acid and an alcohol having 2 to 30 carbon atoms and/or (meth)acrylic acid and 5 carbon atoms It proposes an active energy ray-curable composition containing a compound (C) which is a monoamidated product (C2) with a monoamine of ⁇ 30, a polyfunctional acrylate (D), and a photopolymerization initiator (E). .
  • gases such as carbon dioxide, methane, and carbon monoxide are attracting attention as sustainable carbon raw materials.
  • an aliphatic polycarbonate having only aliphatic (non-aromatic) groups in the main chain can be produced by copolymerizing carbon dioxide and epoxide, and chemical products using gases such as carbon dioxide as raw materials and its manufacturing technology.
  • the present invention has been made in view of such circumstances, and aims to provide a cured film-forming composition, a cured film, a self-supporting film, and a method for producing a cured film, which can use carbon dioxide as a production raw material. aim.
  • the present invention provides the following formula (1) and an active energy ray-curable compound (B) having a reactive group. (Invention 1).
  • the composition for forming a cured film according to the above invention (Invention 1) can be produced using carbon dioxide as a production raw material, and therefore can effectively utilize carbon dioxide.
  • the cured film obtained by curing the cured film-forming composition by irradiation with active energy rays is a polymer of the active energy ray-curable compound (B) and the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable Due to the three-dimensional network structure of the copolymer with the compound (B) and the higher-order structure due to the interaction between ethylene carbonates, the cohesive force is high and the coating strength is high.
  • the ethylene carbonate-containing acrylic monomer (A) is preferably a compound represented by the following formula (2) or (3) (invention 2).
  • n represents an integer of 0 or more.
  • n represents an integer of 0 or more.
  • the cured film-forming composition according to the above inventions preferably contains a photopolymerization initiator (C) (invention 3).
  • the number of reactive groups in the active energy ray-curable compound (B) is 2 or more (Invention 4).
  • the active energy ray-curable compound (B) preferably has an alkylene glycol chain (Invention 5).
  • the active energy ray-curable compound (B) has a (meth)acryloyl group, and the alkylene glycol chain is bonded to each of the (meth)acryloyl groups. (Invention 6).
  • the number of repeating units of alkylene glycol in the alkylene glycol chain is preferably 1 or more and 20 or less (invention 7).
  • the cured film-forming compositions according to the above inventions are preferably solvent-free (Invention 8).
  • the present invention provides a cured film (Invention 9) obtained by curing the cured film-forming composition (Inventions 1 to 8).
  • the present invention provides a self-supporting film (invention 10) comprising the cured film (invention 9).
  • self-supporting membrane refers to a membrane that is strong enough to be handled independently without being damaged and that can maintain its shape without a support.
  • the cured film-forming composition (inventions 1 to 8) is applied to a first sheet, a second sheet is laminated on the coating film of the cured film-forming composition, and the second sheet is laminated on the coating film of the cured film-forming composition.
  • a method for producing a cured film comprising irradiating an active energy ray through the first sheet or the second sheet to cure the cured film-forming composition to form a cured film (Invention 11 ).
  • the present invention it is possible to provide a composition for forming a cured film, a cured film, a self-supporting film, and a method for producing a cured film that can use carbon dioxide as a production raw material.
  • composition X The cured film-forming composition according to one embodiment of the present invention (hereinafter sometimes referred to as “cured film-forming composition X”) is represented by the following formula (1) Contains an ethylene carbonate-containing acrylic monomer (A) having an ethylene carbonate structure shown in and an active energy ray-curable compound (B) having a reactive group, preferably further containing a photopolymerization initiator (C) .
  • Ethylene carbonate-containing acrylic monomer (A), as disclosed in JP-A-2006-335971, by introducing a carbonate group by adding CO 2 to the epoxy group of (meth)acrylate having an epoxy group can be manufactured. That is, the cured film-forming composition X according to the present embodiment using the ethylene carbonate-containing acrylic monomer (A), and the cured film and self-supporting film obtained by curing the cured film-forming composition X contain carbon dioxide. can be produced as a production raw material, and therefore effective utilization of carbon dioxide can be achieved.
  • (meth)acrylate means both acrylate and methacrylate. The same applies to other similar terms.
  • the active energy ray-curable compounds (B) having reactive groups react with each other and polymerize. It also reacts with the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) for copolymerization. It is believed that these polymers are entangled with each other to form a three-dimensional network structure. Further, the ethylene carbonate structure of the ethylene carbonate-containing acrylic monomer (A) remains as it is after curing, and this ethylene carbonate structure is characterized by strong interaction between ethylene carbonates. Therefore, a higher-order structure is formed by interaction between the above-mentioned three-dimensional network structure and ethylene carbonate, and a cured film containing the higher-order structure has high cohesion and exhibits high film strength.
  • Ethylene carbonate-containing acrylic monomer (A) The ethylene carbonate-containing acrylic monomer (A) is not particularly limited as long as it contains an ethylene carbonate structure and has a (meth)acryloyl group (structure).
  • Preferred examples of the ethylene carbonate-containing acrylic monomer (A) include (meth)acrylic acid esters having a structure in which an organic group having an ethylene carbonate structure and a (meth)acryloyloxy group are bonded.
  • Examples of such (meth)acrylic acid esters include the following formula (2) Acrylic acid ester represented by, or the following formula (3) The methacrylic acid ester represented by is mentioned. In both formulas (2) and (3), n represents an integer of 0 or more.
  • n 1 or more
  • n 2 or more
  • the ethylene carbonate group is present at a relatively distant position from the polymer, increasing the probability that the ethylene carbonate structures present in the resulting cured film overlap with each other.
  • the stacking interaction between the ethylene carbonate structures works, the cohesive force becomes stronger, and the film strength of the resulting cured film becomes higher.
  • the ethylene carbonate-containing monomer may be used alone or in combination of two or more.
  • the cured film-forming composition X according to the present embodiment may contain one type of the ethylene carbonate-containing acrylic monomer (A) described above, or may contain two or more types. Moreover, the composition X for forming a cured film according to the present embodiment may contain another acrylic monomer together with the ethylene carbonate-containing acrylic monomer (A) described above.
  • the active energy ray-curable compound (B) having a reactive group is not particularly limited as long as it polymerizes and cures via the reactive group when irradiated with an active energy ray.
  • the number of reactive groups of the active energy ray-curable compound (B) may be 1 or more, but preferably 2 or more. When the number of reactive groups is 2 or more, the reactivity is increased, and a three-dimensional network structure with high density is formed when the active energy ray-curable compound (B) is cured. Higher coating strength. From the above viewpoint, the number of reactive groups in the active energy ray-curable compound (B) is more preferably 2 or more, particularly preferably 3 or more, and further preferably 4 or more. On the other hand, the upper limit of the number of reactive groups in the active energy ray-curable compound (B) is not particularly limited, but from the viewpoint of curing shrinkage suppression, it is preferably 100 or less, more preferably 50 or less, and particularly 30. It is preferably 12 or less, more preferably 12 or less.
  • the active energy ray-curable compound (B) preferably has an alkylene glycol chain in addition to the reactive group. Since the alkylene glycol chain is highly flexible, brittleness is alleviated by including an appropriate amount of the active energy ray-curable compound (B) having an alkylene glycol chain, and the resulting cured film tends to be a self-supporting film with desired strength. . Further, when the active energy ray-curable compound (B) has an alkylene glycol chain, the resulting cured film shrinks on the opposite surface side when moisture such as water droplets comes into contact with one surface, and dries. It can be a self-supporting film with a unique property of returning to its original state when moisture is removed.
  • the conventional cured film disclosed in Patent Document 1 and the like mentioned above is premised on being formed by applying a curable composition to a substrate such as a plastic film and curing the composition.
  • a curable composition such as a plastic film
  • curing the composition if the cured film itself can become a self-supporting film as described above, no substrate is required, and productivity can be improved and costs can be reduced.
  • the active energy ray-curable compound (B) has 2 or more reactive groups and has an alkylene glycol chain
  • the alkylene glycol chain functions as a spacer between a plurality of reactive groups.
  • the resulting cured film has a relatively low storage modulus and is excellent in flexibility while maintaining high film strength.
  • the number of alkylene glycol repeating units in the alkylene glycol chain is preferably 1 or more, more preferably 2 or more, particularly preferably 5 or more, and further preferably 10 or more. This makes it possible to sufficiently ensure the flexibility of the cured film.
  • the number of repeating units of the alkylene glycol is preferably 20 or less, more preferably 18 or less, particularly preferably 15 or less, and further preferably 14 or less. Thereby, the strength of the film can be sufficiently maintained.
  • alkylene in the alkylene glycol chain examples include ethylene, propylene, and butylene, among which ethylene or propylene is preferred, and ethylene is particularly preferred. That is, the alkylene glycol chain is particularly preferably an ethylene glycol chain.
  • Specific examples of the active energy ray-curable compound (B) having an alkylene glycol chain include bifunctional acrylates such as polyethylene glycol diacrylate and tetrafunctional acrylates such as ethoxylated pentaerythritol tetraacrylate.
  • active energy ray-curable compound (B) preferably include polyfunctional (meth)acrylate monomers, (meth)acrylate prepolymers, etc.
  • polyfunctional (meth)acrylate monomers are particularly preferred.
  • a polyfunctional (meth)acrylate-based monomer and a (meth)acrylate-based prepolymer may be used alone, or both may be used in combination.
  • polyfunctional (meth)acrylate monomers examples include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, (Meth)acrylates, neopentylglycol hydroxypivalate di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, allylated cyclohexyl di(meth)acrylate, isocyanurate di(meth)acrylate (meth)acrylates, ethylene oxide-modified phosphoric acid di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, ethylene oxide isocyanurate-modified di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaery
  • (Meth)acrylate-based prepolymers include, for example, polyester acrylate-based, epoxy acrylate-based, urethane acrylate-based, and polyol acrylate-based prepolymers.
  • each (meth)acryloyl group has an alkylene glycol chain bonded thereto.
  • Particularly preferred active energy ray-curable compounds (B) include hexafunctional acrylates represented by the following formula (4).
  • the active energy ray-curable compound (B) represented by the above formula (4) has high reactivity and satisfactorily exhibits the spacer function of the alkylene glycol chain, so that a highly flexible cured film can be obtained.
  • the content of the active energy ray-curable compound (B) in the cured film-forming composition X is preferably 5 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the ethylene carbonate-containing acrylic monomer (A). It is more preferably 20 parts by mass or more, and more preferably 30 parts by mass or more.
  • the content of the active energy ray-curable compound (B) is preferably 90 parts by mass or less and 80 parts by mass or less with respect to 100 parts by mass of the (meth)acrylate polymer (A). is more preferably 75 parts by mass or less, and more preferably 70 parts by mass or less.
  • the content of the active energy ray-curable compound (B) is within the above range, a cured film having high film strength can be effectively obtained. Moreover, when the active energy ray-curable compound (B) has an alkylene glycol chain, it is possible to effectively obtain a self-supporting film having good mechanical properties.
  • the cured film-forming composition X preferably contains a photopolymerization initiator (C).
  • a photopolymerization initiator C
  • the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) can be efficiently polymerized, and the polymerization curing time and the irradiation amount of ultraviolet rays can be reduced. can be reduced.
  • photopolymerization initiators examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2- Phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1-[4-(methylthio) Phenyl]-2-morpholino-propan-1-one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichloro Benzophenone, 2-methylanthraquinone, 2-ethylanthra
  • the content of the photopolymerization initiator (C) in the cured film-forming composition X is preferably 1 part by mass or more, particularly 2 parts by mass, with respect to 100 parts by mass of the active energy ray-curable compound (B). parts by mass or more, and more preferably 3 parts by mass or more.
  • the content of the photopolymerization initiator (C) is preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable compound (B). , and more preferably 10 parts by mass or less.
  • the cured film-forming composition X may optionally contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, fillers, ultraviolet absorbers, light stabilizers, and the like. may contain.
  • the cured film-forming composition X may or may not contain a diluent solvent. Since the composition X for forming a cured film contains the components described above as main components, it can be applied by a normal coating method to form a coating film without using a diluent solvent. Since the composition X for forming a cured film does not contain a diluent solvent, it does not release a volatile organic compound during the formation of a cured film. Therefore, in addition to efficient use of carbon dioxide, it is more helpful for environmental protection.
  • the ethylene carbonate-containing acrylic monomer (A) is produced by introducing a carbonate group by adding CO 2 to the epoxy group of a (meth)acrylate having an epoxy group, as described above. be able to.
  • the cured film-forming composition X is prepared by mixing an ethylene carbonate-containing acrylic monomer (A) and an active energy ray-curable compound (B), and optionally adding a photopolymerization initiator (C) and additives. can be prepared by
  • the viscosity of the cured film-forming composition X thus prepared is usually preferably 10 mPa ⁇ S ⁇ 1 or more at a shear rate of 10 S ⁇ 1 , particularly preferably 100 mPa ⁇ S ⁇ 1 or more. , and more preferably 200 mPa ⁇ S ⁇ 1 or more. Further, it is preferably 15000 mPa ⁇ S ⁇ 1 or less, particularly preferably 10000 mPa ⁇ S ⁇ 1 or less, further preferably 5000 mPa ⁇ S ⁇ 1 or less. This makes it easy to form a cured film having excellent coatability and a desired film thickness.
  • a cured film according to one embodiment of the present invention is formed by curing the composition for forming a cured film according to the above-described embodiment. Preferably, it is formed by irradiating the coating film of the composition X for forming a cured film with an active energy ray to cure the composition X for forming a cured film.
  • the thickness of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 0.1 ⁇ m or more and 300 ⁇ m or less.
  • the thickness is usually preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the thickness is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the cured film according to this embodiment is a hard coat layer, it is preferable that the cured film according to this embodiment is laminated on various substrates.
  • the cured film according to this embodiment is also preferably a self-supporting film.
  • a self-supporting film since it exists by itself without being damaged and can be handled, there is no need for a substrate or the like, and productivity can be improved and costs can be reduced.
  • the thickness of the cured film is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more. Also, the thickness is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, particularly preferably 150 ⁇ m or less, further preferably 100 ⁇ m or less.
  • the gel fraction of the cured film according to the present embodiment is preferably 70% or more, more preferably 75% or more, and particularly preferably 80% or more. Preferably, it is 85% or more.
  • the gel fraction is preferably 100% or less, more preferably 99% or less, particularly preferably 98.5% or less, and further preferably 98.0% or less. preferable.
  • the method for measuring the gel fraction of the cured film in the present specification is as described in the test examples described later.
  • the tensile strength at 23 ° C. of the cured film according to the present embodiment is appropriately set according to the purpose of use, but it is usually preferably 5 MPa or more, more preferably 10 MPa or more. It is preferably 30 MPa or more, and more preferably 50 MPa or more. Further, the tensile strength is preferably 1500 MPa or less, more preferably 1000 MPa or less, particularly preferably 800 MPa or less, further preferably 600 MPa or less.
  • the method for measuring the tensile strength of the cured film in this specification is as described in the test examples described later.
  • Breaking elongation rate The breaking elongation rate at 23°C of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 1% or more, and 3% or more. more preferably 5% or more, and more preferably 8% or more.
  • the elongation at break is preferably 100% or less, more preferably 80% or less, particularly preferably 60% or less, and further preferably 50% or less.
  • the method for measuring the elongation at break of the cured film in this specification is as described in the test examples described later.
  • the storage elastic modulus E′(30) at 30° C. of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually 0.1 GPa or more. It is preferably 0.15 GPa or more, more preferably 0.20 GPa or more, and further preferably 0.25 GPa or more.
  • the storage modulus E'(30) is preferably 10 GPa or less, more preferably 9 GPa or less, particularly preferably 8 GPa or less, and further preferably 7 GPa or less.
  • the method for measuring the storage elastic modulus E' of the cured film in the present specification is as described in the test examples described later.
  • the storage elastic modulus E′(100) at 100° C. of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 0.05 GPa or more, and 0.10 GPa or more. It is more preferably 0.15 GPa or more, and more preferably 0.20 GPa or more.
  • the storage modulus E′(100) is preferably 6.0 GPa or less, more preferably 5.5 GPa or less, particularly preferably 5.0 GPa or less, and further 4.5 GPa. The following are preferable.
  • Pencil hardness The pencil hardness of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 6B or more, particularly preferably 5B or more, and further is preferably 4B or more.
  • the pencil hardness is preferably 7H or less, particularly preferably 6H or less, and more preferably 5H or less.
  • the method for measuring the pencil hardness is as shown in the test examples described later.
  • Total light transmittance The total light transmittance of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 90% or more, and 91.0% or more. is more preferably 91.5% or more, and more preferably 92.0% or more. Although the upper limit of the total light transmittance is not particularly limited, it is usually 100% or less, preferably 99.9% or less, particularly preferably 99.5% or less, and further 99.0%. The following are preferable.
  • the total light transmittance in this specification is a value measured according to JIS K7361-1:1997.
  • the haze value of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 5% or less, more preferably 4% or less. , particularly preferably 3% or less, more preferably 2% or less.
  • the lower limit of the haze value is not particularly limited, it is usually 0% or more, preferably 0.05% or more, particularly preferably 0.10% or more, and further preferably 0.15% or more.
  • the haze value in this specification is a value measured according to JIS K7136:2000.
  • the surface resistance value of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually 1.0 ⁇ 10 10 ⁇ / sq or more, 1.0 ⁇ 10 16 ⁇ /sq or less.
  • the method for measuring the surface resistance value in the present specification is as shown in the test examples described later.
  • the minimum bending diameter is preferably 10 mm or less, more preferably 8 mm or less, particularly preferably 6 mm or less, further preferably 4 mm or less. This makes it excellent in flexibility and suitable for bending applications.
  • the method for measuring the minimum bending diameter in this specification is as shown in the test examples described later.
  • the cured film according to the present embodiment can be formed by irradiating the coating film of the composition for forming a cured film according to the above-described embodiment with an active energy ray to cure the coating film.
  • the cured film-forming composition X is applied to a first sheet, the second sheet is laminated on the resulting coating film of the cured film-forming composition X, and the first sheet or the second sheet is laminated.
  • the laminated structure of the sheets may be referred to as a "gap laminated structure").
  • composition X for forming a cured film When applying the composition X for forming a cured film, it may be applied without using a solvent.
  • a method for applying the cured film-forming composition X for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like can be used.
  • the first sheet and the second sheet are not particularly limited as long as at least one of them transmits active energy rays and can be peeled off from the cured film after forming the cured film.
  • Such sheets include, for example, woven fabrics or non-woven fabrics using fibers such as rayon, acrylic, polyester; papers such as fine paper, glassine paper, impregnated paper, coated paper; metal foils such as aluminum and copper; , foams such as polyethylene foam; polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyurethane films, polyethylene films, polypropylene films, cellulose films such as triacetyl cellulose, polyvinyl chloride films, polyvinylidene chloride films , polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, acrylic resin film, norbornene-based resin film, cycloolefin resin film, etc.; can be done
  • the coating film contact surface of the composition X for forming a cured film in the above sheet may be subjected to a release treatment.
  • release agents used in the release treatment include alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, and wax-based release agents.
  • the first sheet and the second sheet one sheet may be a heavy release type release sheet with a large release force, and the other sheet may be a light release type release sheet with a small release force.
  • the thickness of the first sheet and the second sheet is not particularly limited, it is usually about 10-200 ⁇ m, preferably about 30-100 ⁇ m.
  • the active energy ray that irradiates the coating film of the composition X for forming a cured film refers to an electromagnetic wave or charged particle beam that has an energy quantum, and specifically includes ultraviolet rays and electron beams.
  • ultraviolet rays are particularly preferable because they are easy to handle.
  • Ultraviolet irradiation can be performed by a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, an LED lamp, or the like . It is preferably on the order of cm 2 .
  • the amount of light is preferably 50 to 10000 mJ/cm 2 , more preferably 200 to 7000 mJ/cm 2 and particularly preferably 500 to 3000 mJ/cm 2 .
  • electron beam irradiation can be performed by an electron beam accelerator or the like, and the electron beam irradiation dose is preferably about 10 to 1000 krad.
  • the coating film of the cured film-forming composition X sandwiched between the first sheet and the second sheet is irradiated with an active energy ray
  • the cured film-forming composition X undergoes oxygen inhibition. Cures well without Moreover, by using the first sheet and the second sheet, a cured film having a desired thickness and surface roughness can be formed.
  • the present invention is not limited to this, and active energy rays can be applied in an inert gas atmosphere without using the second sheet.
  • the cured film according to the present embodiment has scratch resistance, it can be used, for example, as a hard coat layer or a primer layer for various purposes such as optical use and decorative use.
  • the hard coat layer can be formed from the cured film according to the present embodiment.
  • the type of the substrate layer is not particularly limited, and for example, various synthetic resin films can be used as the substrate layer.
  • the self-supporting membrane according to the present embodiment can be applied, for example, to water treatment membranes such as reverse osmosis membranes and filtration membranes, or gas separation membranes such as carbon dioxide, oxygen, nitrogen, and hydrogen. .
  • it can be used as a film base material for various purposes because of its characteristics as a transparent high-strength material.
  • Example 1 Preparation of cured film-forming composition
  • ethylene carbonate-containing acrylic monomer (A) 70 parts by mass of an ethylene carbonate-containing acrylic monomer in which n is 2 in the above formula (3), and an active energy ray-curable compound (B) , 30 parts by mass of a hexafunctional acrylate (B1) in which m, n, p, q, r and s are 10 in the above formula (4), and benzophenone and 1-hydroxycyclohexyl as a photopolymerization initiator (C) 5 parts by mass of a mixture of phenyl ketone at a mass ratio of 1:1 was mixed and sufficiently stirred to obtain a composition for forming a cured film.
  • the viscosity was 210 mPa ⁇ S -1 .
  • a light release release sheet manufactured by Lintec Co., Ltd., product name: "SP-PET381130" was laminated so that the release-treated surface of the light release type release sheet was in contact with the coating film.
  • an ultraviolet irradiation device manufactured by Eyegraphics, product name “Eyegrantage ECS-401GX” was applied to the coating film with a gap lamination structure through a light release type release sheet under the following conditions. was irradiated to cure the coating film to form a cured film (self-supporting film). The thickness of the resulting cured film (self-supporting film) was 50 ⁇ m. The thickness of the cured film is a value measured in accordance with JIS K7130 using a constant pressure thickness gauge (manufactured by Teclock, product name "PG-02").
  • Examples 2-3, Comparative Examples 1-2 A composition for forming a cured film was prepared in the same manner as in Example 1, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Example 4 As the active energy ray-curable compound (B), the same as in Example 1 except that a hexafunctional acrylate (B2) in which m, n, p, q, r and s are each 1 in the above formula (4) is used. to prepare a composition for forming a cured film. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • a hexafunctional acrylate (B2) in which m, n, p, q, r and s are each 1 in the above formula (4) is used.
  • Examples 5 to 6, Comparative Example 3 A composition for forming a cured film was prepared in the same manner as in Example 4, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Example 7 A composition for forming a cured film was prepared in the same manner as in Example 1, except that dipentaerythritol hexaacrylate (DPHA) (B3) was used as the active energy ray-curable compound (B). Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • DPHA dipentaerythritol hexaacrylate
  • Example 8 to 9 Comparative Example 4
  • a composition for forming a cured film was prepared in the same manner as in Example 7, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Examples 11 to 12, Comparative Example 5 A composition for forming a cured film was prepared in the same manner as in Example 10, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Examples 14 to 15, Comparative Example 6 A composition for forming a cured film was prepared in the same manner as in Example 10, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Example 16 A composition for forming a cured film in the same manner as in Example 1, except that a polyester urethane acrylate (B6; manufactured by Shin-Nakamura Chemical Co., Ltd., product name "UA-4400") is used as the active energy ray-curable compound (B). prepared the product. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • a polyester urethane acrylate B6; manufactured by Shin-Nakamura Chemical Co., Ltd., product name "UA-4400”
  • a composition for Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
  • Example 17 As the ethylene carbonate-containing acrylic monomer (A), 70 parts by mass of the ethylene carbonate-containing acrylic monomer in which n is 2 in the above formula (3), and as the active energy ray-curable compound (B), in the above formula (4) 30 parts by mass of a hexafunctional acrylate (B1) in which m, n, p, q, r and s are each 10, and benzophenone and 1-hydroxycyclohexylphenyl ketone as a photopolymerization initiator (C) at a mass ratio of 1:1 (manufactured by BASF Europe Ltd., product name "OMUNIRAD500”) and 5 parts by weight of the mixture was diluted with propylene glycol monomethyl ether to prepare a cured film-forming composition having a solid content concentration of 30% by weight.
  • a hexafunctional acrylate (B1) in which m, n, p, q, r and s are each 10
  • the above composition for forming a cured film was applied using a Meyer bar. It was applied and dried at 80° C. for 1 minute. Thereafter, the coating film was cured by irradiating ultraviolet rays in a nitrogen stream in the same manner as in Example 1 to form a cured film (hard coat layer) having a thickness of 5 ⁇ m. In this manner, a laminate film composed of a cured film (hard coat layer)/base material layer was obtained.
  • Examples 18 to 25, Comparative Examples 8 to 10 A composition for forming a cured film was prepared in the same manner as in Example 17, except that the amount of the ethylene carbonate-containing acrylic monomer (A) and the type and amount of the active energy ray-curable compound (B) were changed as shown in Table 3. prepared the product. Then, using the cured film-forming composition, a cured film (hard coat layer) was formed in the same manner as in Example 17 to obtain a laminated film.
  • Test Example 4 (Tensile test) The cured films prepared in Examples and Comparative Examples were cut into a size of 15 mm ⁇ 140 mm, and this was used as a test piece. The test piece was measured for tensile strength (MPa) and elongation at break (%) at 23°C in accordance with JIS K7127:1999. Specifically, the above test piece is set to a chuck distance of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N”), and then a tensile test is performed at a speed of 200 mm / min. was performed, and the tensile strength (MPa) and elongation at break (%) were measured. Table 2 shows the results.
  • MPa tensile tester
  • the cured films and laminated films prepared in Examples were capable of fixing a predetermined amount of carbon dioxide, and had physical properties that could be used for various purposes. .
  • composition for forming a cured film, the cured film, the self-supporting film, and the method for producing a cured film according to the present invention can fix carbon dioxide and are useful for environmental protection.

Abstract

This composition for forming a cured film contains: an ethylene carbonate-containing acrylic monomer (A) having an ethylene carbonate structure represented by formula (1); and an active energy ray-curable compound (B) having a reactive group. The composition for forming a cured film can use carbon dioxide as a raw material for production, and can also be used to form a self-supporting film.

Description

硬化膜形成用組成物、硬化膜、自立膜および硬化膜の製造方法Cured film-forming composition, cured film, self-supporting film, and method for producing cured film
 本発明は、硬化膜形成用組成物、硬化膜、自立膜および硬化膜の製造方法に関するものである。 The present invention relates to a composition for forming a cured film, a cured film, a self-supporting film, and a method for producing a cured film.
 従来より、各種分野・各種製品において、硬化性組成物を硬化してなる硬化膜が用いられている。例えば、液晶ディスプレイ(LCD)、有機ELディスプレイ(OELD)等の各種ディスプレイ、特にタッチパネルとして使用されるディスプレイの表面には、傷付き防止のために、硬化膜がハードコート層として設けられることが多い。 Conventionally, cured films obtained by curing curable compositions have been used in various fields and various products. For example, various displays such as liquid crystal displays (LCD) and organic EL displays (OELD), especially displays used as touch panels, are often provided with a cured film as a hard coat layer to prevent scratches. .
 例えば、特許文献1は、上記のような硬化膜(ハードコート層)を形成する硬化性組成物として、N-ビニル化合物(A)と、ジアルキルアミノアルキル(メタ)アクリレート(B1)及び/又はジアルキルアミノアルキル(メタ)アクリルアミド(B2)である化合物(B)と、(メタ)アクリル酸と炭素数2~30のアルコールとのモノエステル化物(C1)及び/又は(メタ)アクリル酸と炭素数5~30のモノアミンとのモノアミド化物(C2)である化合物(C)と、多官能アクリレート(D)と、光重合開始剤(E)とを含有する活性エネルギー線硬化性組成物を提案している。 For example, Patent Document 1 describes, as a curable composition for forming a cured film (hard coat layer) as described above, an N-vinyl compound (A), a dialkylaminoalkyl (meth)acrylate (B1) and/or a dialkyl A compound (B) which is an aminoalkyl (meth)acrylamide (B2), a monoester (C1) of (meth)acrylic acid and an alcohol having 2 to 30 carbon atoms and/or (meth)acrylic acid and 5 carbon atoms It proposes an active energy ray-curable composition containing a compound (C) which is a monoamidated product (C2) with a monoamine of ∼30, a polyfunctional acrylate (D), and a photopolymerization initiator (E). .
特開2020-196825号公報JP 2020-196825 A
 ところで、近年、循環型社会の構築を求める声の高まりとともに、サステナビリティを有する炭素原料として、二酸化炭素、メタン、一酸化炭素などのガスが注目されている。例えば、二酸化炭素とエポキシドとの共重合により、主鎖に脂肪族(非芳香族)基のみを有する脂肪族ポリカーボネートを製造できることが報告されており、二酸化炭素等のガスを原料として利用した化学品やその製造技術に関心が寄せられている。 By the way, in recent years, along with the growing demand for building a recycling-based society, gases such as carbon dioxide, methane, and carbon monoxide are attracting attention as sustainable carbon raw materials. For example, it has been reported that an aliphatic polycarbonate having only aliphatic (non-aromatic) groups in the main chain can be produced by copolymerizing carbon dioxide and epoxide, and chemical products using gases such as carbon dioxide as raw materials and its manufacturing technology.
 二酸化炭素は地球温暖化の原因とされているため、各種の材料を作る過程で工場から排出される二酸化炭素の有効利用は、環境保護に役立つものである。そして、二酸化炭素を硬化膜の製造に有効利用することができれば、なお望ましい。  Since carbon dioxide is said to cause global warming, the effective use of carbon dioxide emitted from factories in the process of manufacturing various materials is useful for environmental protection. It is even more desirable if carbon dioxide can be effectively used for the production of cured films.
 本発明は、このような実状に鑑みてなされたものであり、二酸化炭素を製造原料とすることのできる硬化膜形成用組成物、硬化膜、自立膜および硬化膜の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and aims to provide a cured film-forming composition, a cured film, a self-supporting film, and a method for producing a cured film, which can use carbon dioxide as a production raw material. aim.
 上記目的を達成するために、第1に本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000004

に示されるエチレンカーボネート構造を有するエチレンカーボネート含有アクリルモノマー(A)と、反応性基を有する活性エネルギー線硬化型化合物(B)とを含有することを特徴とする硬化膜形成用組成物を提供する(発明1)。
In order to achieve the above object, first, the present invention provides the following formula (1)
Figure JPOXMLDOC01-appb-C000004

and an active energy ray-curable compound (B) having a reactive group. (Invention 1).
 上記発明(発明1)に係る硬化膜形成用組成物は、二酸化炭素を製造原料として製造することができ、したがって二酸化炭素の有効利用を図ることができる。また、上記硬化膜形成用組成物を活性エネルギー線照射により硬化させた硬化膜は、活性エネルギー線硬化型化合物(B)同士の重合体およびエチレンカーボネート含有アクリルモノマー(A)と活性エネルギー線硬化型化合物(B)との共重合体による三次元網目構造、ならびにエチレンカーボネート同士の相互作用による高次構造により、凝集力が高く、高い被膜強度を示す。 The composition for forming a cured film according to the above invention (Invention 1) can be produced using carbon dioxide as a production raw material, and therefore can effectively utilize carbon dioxide. Further, the cured film obtained by curing the cured film-forming composition by irradiation with active energy rays is a polymer of the active energy ray-curable compound (B) and the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable Due to the three-dimensional network structure of the copolymer with the compound (B) and the higher-order structure due to the interaction between ethylene carbonates, the cohesive force is high and the coating strength is high.
 上記発明(発明1)においては、前記エチレンカーボネート含有アクリルモノマー(A)が、下記式(2)または下記式(3)で示される化合物であることが好ましい(発明2)。
Figure JPOXMLDOC01-appb-C000005

(式中、nは0以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000006

(式中、nは0以上の整数を表す。)
In the above invention (invention 1), the ethylene carbonate-containing acrylic monomer (A) is preferably a compound represented by the following formula (2) or (3) (invention 2).
Figure JPOXMLDOC01-appb-C000005

(In the formula, n represents an integer of 0 or more.)
Figure JPOXMLDOC01-appb-C000006

(In the formula, n represents an integer of 0 or more.)
 上記発明(発明1,2)に係る硬化膜形成用組成物は、光重合開始剤(C)を含有することが好ましい(発明3)。 The cured film-forming composition according to the above inventions (inventions 1 and 2) preferably contains a photopolymerization initiator (C) (invention 3).
 上記発明(発明1~3)においては、前記活性エネルギー線硬化型化合物(B)の反応性基数が、2以上であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), it is preferable that the number of reactive groups in the active energy ray-curable compound (B) is 2 or more (Invention 4).
 上記発明(発明1~4)においては、前記活性エネルギー線硬化型化合物(B)が、アルキレングリコール鎖を有することが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the active energy ray-curable compound (B) preferably has an alkylene glycol chain (Invention 5).
 上記発明(発明5)においては、前記活性エネルギー線硬化型化合物(B)が(メタ)アクリロイル基を有しており、前記(メタ)アクリロイル基のそれぞれに、前記アルキレングリコール鎖が結合していることが好ましい(発明6)。 In the above invention (Invention 5), the active energy ray-curable compound (B) has a (meth)acryloyl group, and the alkylene glycol chain is bonded to each of the (meth)acryloyl groups. (Invention 6).
 上記発明(発明5,6)においては、前記アルキレングリコール鎖におけるアルキレングリコールの繰り返し単位数が、1以上、20以下であることが好ましい(発明7)。 In the above inventions (inventions 5 and 6), the number of repeating units of alkylene glycol in the alkylene glycol chain is preferably 1 or more and 20 or less (invention 7).
 上記発明(発明1~7)に係る硬化膜形成用組成物は、無溶剤型であることが好ましい(発明8)。 The cured film-forming compositions according to the above inventions (Inventions 1 to 7) are preferably solvent-free (Invention 8).
 第2に本発明は、前記硬化膜形成用組成物(発明1~8)を硬化してなる硬化膜を提供する(発明9)。 Secondly, the present invention provides a cured film (Invention 9) obtained by curing the cured film-forming composition (Inventions 1 to 8).
 第3に本発明は、前記硬化膜(発明9)からなる自立膜を提供する(発明10)。なお、本明細書における「自立膜」とは、支持体が存在せずとも、破損することなく、それ単独で取り扱いが可能な強度を有し、膜形状を維持し得る膜をいう。 Thirdly, the present invention provides a self-supporting film (invention 10) comprising the cured film (invention 9). As used herein, the term "self-supporting membrane" refers to a membrane that is strong enough to be handled independently without being damaged and that can maintain its shape without a support.
 第4に本発明は、前記硬化膜形成用組成物(発明1~8)を第1のシートに塗布し、前記硬化膜形成用組成物の塗膜に第2のシートを積層し、前記第1のシートまたは前記第2のシートを介して活性エネルギー線を照射し、前記硬化膜形成用組成物を硬化させて硬化膜とすることを特徴とする硬化膜の製造方法を提供する(発明11)。 In the fourth aspect of the present invention, the cured film-forming composition (inventions 1 to 8) is applied to a first sheet, a second sheet is laminated on the coating film of the cured film-forming composition, and the second sheet is laminated on the coating film of the cured film-forming composition. A method for producing a cured film, comprising irradiating an active energy ray through the first sheet or the second sheet to cure the cured film-forming composition to form a cured film (Invention 11 ).
 本発明によれば、二酸化炭素を製造原料とすることのできる硬化膜形成用組成物、硬化膜、自立膜および硬化膜の製造方法を提供することができる。 According to the present invention, it is possible to provide a composition for forming a cured film, a cured film, a self-supporting film, and a method for producing a cured film that can use carbon dioxide as a production raw material.
 以下、本発明の実施形態について説明する。
〔硬化膜形成用組成物〕
 本発明の一実施形態に係る硬化膜形成用組成物(以下「硬化膜形成用組成物X」という場合がある。)は、下記式(1)
Figure JPOXMLDOC01-appb-C000007

に示されるエチレンカーボネート構造を有するエチレンカーボネート含有アクリルモノマー(A)と、反応性基を有する活性エネルギー線硬化型化合物(B)とを含有し、好ましくはさらに光重合開始剤(C)を含有する。
Embodiments of the present invention will be described below.
[Composition for forming cured film]
The cured film-forming composition according to one embodiment of the present invention (hereinafter sometimes referred to as “cured film-forming composition X”) is represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000007

Contains an ethylene carbonate-containing acrylic monomer (A) having an ethylene carbonate structure shown in and an active energy ray-curable compound (B) having a reactive group, preferably further containing a photopolymerization initiator (C) .
 エチレンカーボネート含有アクリルモノマー(A)は、特開2006-335971号公報に開示されているように、エポキシ基を有する(メタ)アクリレートのエポキシ基にCOを付加してカーボネート基を導入することにより製造することができる。すなわち、エチレンカーボネート含有アクリルモノマー(A)を使用する本実施形態に係る硬化膜形成用組成物X、ならびに当該硬化膜形成用組成物Xを硬化して得られる硬化膜および自立膜は、二酸化炭素を製造原料として製造することができ、したがって二酸化炭素の有効利用を図ることができる。なお、本明細書において、(メタ)アクリレートとは、アクリレートおよびメタクリレートの両方を意味する。他の類似用語も同様である。 Ethylene carbonate-containing acrylic monomer (A), as disclosed in JP-A-2006-335971, by introducing a carbonate group by adding CO 2 to the epoxy group of (meth)acrylate having an epoxy group can be manufactured. That is, the cured film-forming composition X according to the present embodiment using the ethylene carbonate-containing acrylic monomer (A), and the cured film and self-supporting film obtained by curing the cured film-forming composition X contain carbon dioxide. can be produced as a production raw material, and therefore effective utilization of carbon dioxide can be achieved. In this specification, (meth)acrylate means both acrylate and methacrylate. The same applies to other similar terms.
 本実施形態に係る硬化膜形成用組成物Xを活性エネルギー線照射により硬化させると、反応性基を有する活性エネルギー線硬化型化合物(B)が互いに反応して重合する。また、エチレンカーボネート含有アクリルモノマー(A)と活性エネルギー線硬化型化合物(B)とも反応して共重合する。これらの重合体が互いに絡み合って、三次元網目構造が形成されるものと考えられる。また、エチレンカーボネート含有アクリルモノマー(A)のエチレンカーボネート構造は、硬化後もそのまま残存するが、このエチレンカーボネート構造においては、エチレンカーボネート同士の相互作用が強いという特徴がある。したがって、上記の三次元網目構造およびエチレンカーボネート同士の相互作用により高次構造が形成され、当該高次構造を含む硬化膜は、凝集力が高く、高い被膜強度を示す。 When the cured film-forming composition X according to the present embodiment is cured by irradiation with active energy rays, the active energy ray-curable compounds (B) having reactive groups react with each other and polymerize. It also reacts with the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) for copolymerization. It is believed that these polymers are entangled with each other to form a three-dimensional network structure. Further, the ethylene carbonate structure of the ethylene carbonate-containing acrylic monomer (A) remains as it is after curing, and this ethylene carbonate structure is characterized by strong interaction between ethylene carbonates. Therefore, a higher-order structure is formed by interaction between the above-mentioned three-dimensional network structure and ethylene carbonate, and a cured film containing the higher-order structure has high cohesion and exhibits high film strength.
1.硬化膜形成用組成物の成分
(1)エチレンカーボネート含有アクリルモノマー(A)
 エチレンカーボネート含有アクリルモノマー(A)としては、エチレンカーボネート構造を含むとともに、(メタ)アクリロイル基(構造)を有するモノマーであれば限り特に限定されない。エチレンカーボネート含有アクリルモノマー(A)の好ましい例としては、エチレンカーボネート構造を有する有機基と(メタ)アクリロイルオキシ基とが結合した構造を有する(メタ)アクリル酸エステルが挙げられる。このような(メタ)アクリル酸エステルの例としては、下記式(2)
Figure JPOXMLDOC01-appb-C000008

で示されるアクリル酸エステル、または下記式(3)
Figure JPOXMLDOC01-appb-C000009

で示されるメタクリル酸エステルが挙げられる。なお、式(2)および式(3)のいずれにおいても、nは0以上の整数を表す。上記式(2)および式(3)で表される(メタ)アクリル酸エステルの中でも、nが1以上である(メタ)アクリル酸エステルが好ましく、nが2以上である(メタ)アクリル酸エステルが好ましい。nが1以上であることで、エチレンカーボネート基は、重合体から比較的離れた位置に存在することとなり、得られる硬化膜中に存在するエチレンカーボネート構造同士が相互に重なり合う確率が高まる。これにより、エチレンカーボネート構造同士によるスタッキング相互作用が働いて、凝集力が強くなり、得られる硬化膜の被膜強度がより高くなる。上記nの上限値は特に限定されないが、重合性の観点から、10以下であることが好ましく、6以下であることがより好ましく、特に4以下であることが好ましく、さらには3以下であることが好ましい。これらの中でも、得られる硬化膜の機械物性が好ましくなる観点から、n=1である(メタ)アクリル酸エステルが好ましく、特に式(3)においてn=1であるメタアクリル酸(2-オキソ-1,3-ジオキソラン-4-イル)メチルが好ましい。なお、エチレンカーボネート含有モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
1. Components of cured film-forming composition (1) Ethylene carbonate-containing acrylic monomer (A)
The ethylene carbonate-containing acrylic monomer (A) is not particularly limited as long as it contains an ethylene carbonate structure and has a (meth)acryloyl group (structure). Preferred examples of the ethylene carbonate-containing acrylic monomer (A) include (meth)acrylic acid esters having a structure in which an organic group having an ethylene carbonate structure and a (meth)acryloyloxy group are bonded. Examples of such (meth)acrylic acid esters include the following formula (2)
Figure JPOXMLDOC01-appb-C000008

Acrylic acid ester represented by, or the following formula (3)
Figure JPOXMLDOC01-appb-C000009

The methacrylic acid ester represented by is mentioned. In both formulas (2) and (3), n represents an integer of 0 or more. Among the (meth)acrylic acid esters represented by the above formulas (2) and (3), a (meth)acrylic acid ester in which n is 1 or more is preferable, and a (meth)acrylic acid ester in which n is 2 or more is preferred. When n is 1 or more, the ethylene carbonate group is present at a relatively distant position from the polymer, increasing the probability that the ethylene carbonate structures present in the resulting cured film overlap with each other. As a result, the stacking interaction between the ethylene carbonate structures works, the cohesive force becomes stronger, and the film strength of the resulting cured film becomes higher. The upper limit of n is not particularly limited, but from the viewpoint of polymerizability, it is preferably 10 or less, more preferably 6 or less, particularly preferably 4 or less, and further preferably 3 or less. is preferred. Among these, from the viewpoint of favorable mechanical properties of the resulting cured film, (meth)acrylic acid esters where n = 1 are preferred, and in particular, methacrylic acid (2-oxo- 1,3-dioxolan-4-yl)methyl is preferred. In addition, the ethylene carbonate-containing monomer may be used alone or in combination of two or more.
 なお、本実施形態に係る硬化膜形成用組成物Xは、上述したエチレンカーボネート含有アクリルモノマー(A)を1種含有するものであってもよく、または2種以上含有するものであってもよい。また、本実施形態に係る硬化膜形成用組成物Xは、上述したエチレンカーボネート含有アクリルモノマー(A)とともに、別のアクリルモノマーを含有するものであってもよい。 The cured film-forming composition X according to the present embodiment may contain one type of the ethylene carbonate-containing acrylic monomer (A) described above, or may contain two or more types. . Moreover, the composition X for forming a cured film according to the present embodiment may contain another acrylic monomer together with the ethylene carbonate-containing acrylic monomer (A) described above.
(2)活性エネルギー線硬化型化合物(B)
 反応性基を有する活性エネルギー線硬化型化合物(B)としては、活性エネルギー線の照射により、上記反応性基を介して重合し、硬化するものであれば特に限定されない。
(2) Active energy ray-curable compound (B)
The active energy ray-curable compound (B) having a reactive group is not particularly limited as long as it polymerizes and cures via the reactive group when irradiated with an active energy ray.
 活性エネルギー線硬化型化合物(B)の反応性基数は、1以上であればよいが、2以上であることが好ましい。反応性基数が2以上であることにより、反応性が高くなるとともに、活性エネルギー線硬化型化合物(B)が硬化したときに密度の高い三次元網目構造が形成されるため、得られる硬化膜の被膜強度がより高くなる。上記の観点から、活性エネルギー線硬化型化合物(B)の反応性基数は、2以上であることがより好ましく、特に3以上であることが好ましく、さらには4以上であることが好ましい。一方、活性エネルギー線硬化型化合物(B)の反応性基数の上限値は特に限定されないが、硬化収縮抑制の観点から、100以下であることが好ましく、50以下であることがより好ましく、特に30以下であることが好ましく、さらには12以下であることが好ましい。 The number of reactive groups of the active energy ray-curable compound (B) may be 1 or more, but preferably 2 or more. When the number of reactive groups is 2 or more, the reactivity is increased, and a three-dimensional network structure with high density is formed when the active energy ray-curable compound (B) is cured. Higher coating strength. From the above viewpoint, the number of reactive groups in the active energy ray-curable compound (B) is more preferably 2 or more, particularly preferably 3 or more, and further preferably 4 or more. On the other hand, the upper limit of the number of reactive groups in the active energy ray-curable compound (B) is not particularly limited, but from the viewpoint of curing shrinkage suppression, it is preferably 100 or less, more preferably 50 or less, and particularly 30. It is preferably 12 or less, more preferably 12 or less.
 活性エネルギー線硬化型化合物(B)は、反応性基以外に、アルキレングリコール鎖を有することが好ましい。アルキレングリコール鎖は柔軟性に富むため、アルキレングリコール鎖を有する活性エネルギー線硬化型化合物(B)を適量含むことで脆性が緩和され、得られる硬化膜は所望の強度を持った自立膜になり易い。また、活性エネルギー線硬化型化合物(B)がアルキレングリコール鎖を有する場合、得られる硬化膜は、一方の表面に水滴等の水分が接触すると、その反対側の面側にシュリンクし、乾燥して水分が抜けると元に戻るという、特異な性質を有する自立膜になり得る。 The active energy ray-curable compound (B) preferably has an alkylene glycol chain in addition to the reactive group. Since the alkylene glycol chain is highly flexible, brittleness is alleviated by including an appropriate amount of the active energy ray-curable compound (B) having an alkylene glycol chain, and the resulting cured film tends to be a self-supporting film with desired strength. . Further, when the active energy ray-curable compound (B) has an alkylene glycol chain, the resulting cured film shrinks on the opposite surface side when moisture such as water droplets comes into contact with one surface, and dries. It can be a self-supporting film with a unique property of returning to its original state when moisture is removed.
 前述した特許文献1等に開示される従来の硬化膜は、プラスチックフィルム等の基材に硬化性組成物を塗布して硬化することにより形成されることが前提となっている。しかしながら、上記のように硬化膜そのものが自立膜になり得るならば、基材を必要とすることがなく、生産性の向上やコストの低減を図ることができる。 The conventional cured film disclosed in Patent Document 1 and the like mentioned above is premised on being formed by applying a curable composition to a substrate such as a plastic film and curing the composition. However, if the cured film itself can become a self-supporting film as described above, no substrate is required, and productivity can be improved and costs can be reduced.
 活性エネルギー線硬化型化合物(B)の反応性基数が2以上の場合にアルキレングリコール鎖を有すると、当該アルキレングリコール鎖は、複数の反応性基間にてスペーサーとして機能する。これにより、得られる硬化膜は、貯蔵弾性率が比較的低くなって、高い被膜強度を維持したまま柔軟性に優れたものとなる。 When the active energy ray-curable compound (B) has 2 or more reactive groups and has an alkylene glycol chain, the alkylene glycol chain functions as a spacer between a plurality of reactive groups. As a result, the resulting cured film has a relatively low storage modulus and is excellent in flexibility while maintaining high film strength.
 上記アルキレングリコール鎖におけるアルキレングリコールの繰り返し単位数は、1以上であることが好ましく、2以上であることがより好ましく、特に5以上であることが好ましく、さらには10以上であることが好ましい。これにより、硬化膜の柔軟性を十分に担保することが可能となる。また、上記アルキレングリコールの繰り返し単位数は、20以下であることが好ましく、18以下であることがより好ましく、特に15以下であることが好ましく、さらには14以下であることが好ましい。これにより、膜の強度を十分に維持することができる。 The number of alkylene glycol repeating units in the alkylene glycol chain is preferably 1 or more, more preferably 2 or more, particularly preferably 5 or more, and further preferably 10 or more. This makes it possible to sufficiently ensure the flexibility of the cured film. The number of repeating units of the alkylene glycol is preferably 20 or less, more preferably 18 or less, particularly preferably 15 or less, and further preferably 14 or less. Thereby, the strength of the film can be sufficiently maintained.
 上記アルキレングリコール鎖におけるアルキレンとしては、エチレン、プロピレン、ブチレン等が挙げられ、中でもエチレンまたはプロピレンが好ましく、特にエチレンが好ましい。すなわち、上記アルキレングリコール鎖は、エチレングリコール鎖であることが特に好ましい。アルキレングリコール鎖を有する活性エネルギー線硬化型化合物(B)の具体例としては、ポリエチレングリコールジアクリレート等の2官能アクリレートや、エトキシ化ペンタエリスリトールテトラアクリレート等の4官能アクリレートなどが挙げられる。 Examples of the alkylene in the alkylene glycol chain include ethylene, propylene, and butylene, among which ethylene or propylene is preferred, and ethylene is particularly preferred. That is, the alkylene glycol chain is particularly preferably an ethylene glycol chain. Specific examples of the active energy ray-curable compound (B) having an alkylene glycol chain include bifunctional acrylates such as polyethylene glycol diacrylate and tetrafunctional acrylates such as ethoxylated pentaerythritol tetraacrylate.
 活性エネルギー線硬化型化合物(B)の具体例としては、多官能性(メタ)アクリレート系モノマー、(メタ)アクリレート系プレポリマー等が好ましく挙げられ、中でも多官能性(メタ)アクリレート系モノマーが特に好ましい。多官能性(メタ)アクリレート系モノマーおよび(メタ)アクリレート系プレポリマーは、それぞれ単独で使用してもよいし、両者を併用してもよい。 Specific examples of the active energy ray-curable compound (B) preferably include polyfunctional (meth)acrylate monomers, (meth)acrylate prepolymers, etc. Among them, polyfunctional (meth)acrylate monomers are particularly preferred. preferable. A polyfunctional (meth)acrylate-based monomer and a (meth)acrylate-based prepolymer may be used alone, or both may be used in combination.
 多官能性(メタ)アクリレート系モノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、イソシアヌル酸エチレンオキシド変性ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能性(メタ)アクリレートが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of polyfunctional (meth)acrylate monomers include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, (Meth)acrylates, neopentylglycol hydroxypivalate di(meth)acrylate, dicyclopentanyl di(meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, allylated cyclohexyl di(meth)acrylate, isocyanurate di(meth)acrylate (meth)acrylates, ethylene oxide-modified phosphoric acid di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, ethylene oxide isocyanurate-modified di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate ) acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloxy Ethyl)isocyanurate, propionic acid-modified dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethylene oxide-modified dipentaerythritol hexa(meth)acrylate, caprolactone-modified dipentaerythritol hexa(meth)acrylate, etc. Functional (meth)acrylates may be mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 (メタ)アクリレート系プレポリマーとしては、例えば、ポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系等のプレポリマーが挙げられる。 (Meth)acrylate-based prepolymers include, for example, polyester acrylate-based, epoxy acrylate-based, urethane acrylate-based, and polyol acrylate-based prepolymers.
 活性エネルギー線硬化型化合物(B)が多官能性(メタ)アクリレート系モノマーの場合、(メタ)アクリロイル基のそれぞれに、アルキレングリコール鎖が結合していることが好ましい。活性エネルギー線硬化型化合物(B)の特に好ましい化合物としては、下記式(4)で示される6官能アクリレートが挙げられる。 When the active energy ray-curable compound (B) is a polyfunctional (meth)acrylate-based monomer, it is preferable that each (meth)acryloyl group has an alkylene glycol chain bonded thereto. Particularly preferred active energy ray-curable compounds (B) include hexafunctional acrylates represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000010

                       ・・・(4)
(式中、m、n、p、q、r及びsは、それぞれ0以上の整数を表し、それぞれ独立して同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000010

... (4)
(Wherein, m, n, p, q, r and s each represent an integer of 0 or more and may be independently the same or different.)
 上記式(4)で示される活性エネルギー線硬化型化合物(B)は、反応性が高く、また、アルキレングリコール鎖によるスペーサー機能が良好に発揮されるため、柔軟性に富む硬化膜が得られる。 The active energy ray-curable compound (B) represented by the above formula (4) has high reactivity and satisfactorily exhibits the spacer function of the alkylene glycol chain, so that a highly flexible cured film can be obtained.
 上記式(4)中のm、n、p、q、r及びsの好ましい範囲は、アルキレングリコール鎖におけるアルキレングリコールの繰り返し単位数として前述した通りである。 The preferred ranges of m, n, p, q, r and s in the above formula (4) are as described above as the number of alkylene glycol repeating units in the alkylene glycol chain.
 硬化膜形成用組成物X中における活性エネルギー線硬化型化合物(B)の含有量は、エチレンカーボネート含有アクリルモノマー(A)100質量部に対して、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、特に20質量部以上であることが好ましく、さらには30質量部以上であることが好ましい。また、活性エネルギー線硬化型化合物(B)の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、90質量部以下であることが好ましく、80質量部以下であることがより好ましく、特に75質量部以下であることが好ましく、さらには70質量部以下であることが好ましい。活性エネルギー線硬化型化合物(B)の含有量が上記範囲にあることで、高い被膜強度を有する硬化膜を効果的に得ることができる。また、活性エネルギー線硬化型化合物(B)がアルキレングリコール鎖を有する場合には、良好な機械物性を有する自立膜を効果的に得ることができる。 The content of the active energy ray-curable compound (B) in the cured film-forming composition X is preferably 5 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the ethylene carbonate-containing acrylic monomer (A). It is more preferably 20 parts by mass or more, and more preferably 30 parts by mass or more. In addition, the content of the active energy ray-curable compound (B) is preferably 90 parts by mass or less and 80 parts by mass or less with respect to 100 parts by mass of the (meth)acrylate polymer (A). is more preferably 75 parts by mass or less, and more preferably 70 parts by mass or less. When the content of the active energy ray-curable compound (B) is within the above range, a cured film having high film strength can be effectively obtained. Moreover, when the active energy ray-curable compound (B) has an alkylene glycol chain, it is possible to effectively obtain a self-supporting film having good mechanical properties.
(3)光重合開始剤
 本実施形態に係る硬化膜形成用組成物の硬化に紫外線を用いる場合、硬化膜形成用組成物Xは、光重合開始剤(C)を含有することが好ましい。光重合開始剤(C)を含有することにより、エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)を効率良く重合させることができ、また重合硬化時間および紫外線の照射量を少なくすることができる。
(3) Photopolymerization Initiator When ultraviolet light is used to cure the cured film-forming composition according to the present embodiment, the cured film-forming composition X preferably contains a photopolymerization initiator (C). By containing the photopolymerization initiator (C), the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) can be efficiently polymerized, and the polymerization curing time and the irradiation amount of ultraviolet rays can be reduced. can be reduced.
 このような光重合開始剤としては、例えば、ベンソイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1[4-(1-メチルビニル)フェニル]プロパノン]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of such photopolymerization initiators include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2- Phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1-[4-(methylthio) Phenyl]-2-morpholino-propan-1-one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichloro Benzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4- Diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, p-dimethylaminobenzoate, oligo[2-hydroxy-2-methyl-1[4-(1-methylvinyl)phenyl]propanone], 2,4,6- and trimethylbenzoyl-diphenyl-phosphine oxide. These may be used alone or in combination of two or more.
 硬化膜形成用組成物X中における光重合開始剤(C)の含有量は、活性エネルギー線硬化型化合物(B)100質量部に対して、1質量部以上であることが好ましく、特に2質量部以上であることが好ましく、さらには3質量部以上であることが好ましい。また、光重合開始剤(C)の含有量は、活性エネルギー線硬化型化合物(B)100質量部に対して、20質量部以下であることが好ましく、特に15質量部以下であることが好ましく、さらには10質量部以下であることが好ましい。 The content of the photopolymerization initiator (C) in the cured film-forming composition X is preferably 1 part by mass or more, particularly 2 parts by mass, with respect to 100 parts by mass of the active energy ray-curable compound (B). parts by mass or more, and more preferably 3 parts by mass or more. The content of the photopolymerization initiator (C) is preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable compound (B). , and more preferably 10 parts by mass or less.
(4)各種添加剤
 硬化膜形成用組成物Xは、所望により、各種添加剤、例えば、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー、紫外線吸収剤、光安定剤等を含有してもよい。
(4) Various Additives The cured film-forming composition X may optionally contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, fillers, ultraviolet absorbers, light stabilizers, and the like. may contain.
 硬化膜形成用組成物Xは、希釈溶媒を含んでいてもよく、含まなくてもよい。硬化膜形成用組成物Xは、上述した成分を主成分とすることで、希釈溶媒を使用しなくても、通常の塗布方法によって塗布し、塗膜を形成することが可能である。硬化膜形成用組成物Xは、希釈溶媒を含まないことにより、硬化膜形成時に揮発性有機化合物を放出することがない。したがって、二酸化炭素の有効利用に加えて、環境保護により役立つものとなる。 The cured film-forming composition X may or may not contain a diluent solvent. Since the composition X for forming a cured film contains the components described above as main components, it can be applied by a normal coating method to form a coating film without using a diluent solvent. Since the composition X for forming a cured film does not contain a diluent solvent, it does not release a volatile organic compound during the formation of a cured film. Therefore, in addition to efficient use of carbon dioxide, it is more helpful for environmental protection.
2.硬化膜形成用組成物の調製
 エチレンカーボネート含有アクリルモノマー(A)は、前述した通り、エポキシ基を有する(メタ)アクリレートのエポキシ基にCOを付加してカーボネート基を導入することにより、製造することができる。硬化膜形成用組成物Xは、エチレンカーボネート含有アクリルモノマー(A)と、活性エネルギー線硬化型化合物(B)とを混合するとともに、所望により、光重合開始剤(C)、添加剤等を加えることで調製することができる。
2. Preparation of Cured Film-Forming Composition The ethylene carbonate-containing acrylic monomer (A) is produced by introducing a carbonate group by adding CO 2 to the epoxy group of a (meth)acrylate having an epoxy group, as described above. be able to. The cured film-forming composition X is prepared by mixing an ethylene carbonate-containing acrylic monomer (A) and an active energy ray-curable compound (B), and optionally adding a photopolymerization initiator (C) and additives. can be prepared by
 このようにして調製された硬化膜形成用組成物Xの粘度は、通常、せん断速度10S-1において10mPa・S-1以上であることが好ましく、特に100mPa・S-1以上であることが好ましく、さらには200mPa・S-1以上であることが好ましい。また15000mPa・S-1以下であることが好ましく、特に10000mPa・S-1以下であることが好ましく、さらには5000mPa・S-1以下であることが好ましい。これにより、塗工性に優れ、目的としする膜厚の硬化膜の形成が容易になる。 The viscosity of the cured film-forming composition X thus prepared is usually preferably 10 mPa·S −1 or more at a shear rate of 10 S −1 , particularly preferably 100 mPa·S −1 or more. , and more preferably 200 mPa·S −1 or more. Further, it is preferably 15000 mPa·S −1 or less, particularly preferably 10000 mPa·S −1 or less, further preferably 5000 mPa·S −1 or less. This makes it easy to form a cured film having excellent coatability and a desired film thickness.
〔硬化膜〕
 本発明の一実施形態に係る硬化膜は、前述した実施形態に係る硬化膜形成用組成物を硬化することにより形成される。好ましくは、硬化膜形成用組成物Xの塗膜に活性エネルギー線を照射して、硬化膜形成用組成物Xを硬化することにより形成される。
[Cured film]
A cured film according to one embodiment of the present invention is formed by curing the composition for forming a cured film according to the above-described embodiment. Preferably, it is formed by irradiating the coating film of the composition X for forming a cured film with an active energy ray to cure the composition X for forming a cured film.
 本実施形態に係る硬化膜の厚さは、その使用目的に応じて適宜設定されるが、通常は、0.1μm以上、300μm以下であることが好ましい。本実施形態に係る硬化膜がハードコート層である場合には、通常は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、特に5μm以上であることが好ましい。また、当該厚さは、20μm以下であることが好ましく、15μm以下であることがより好ましい。本実施形態に係る硬化膜がハードコート層である場合には、各種基材上に本実施形態に係る硬化膜が積層されていることが好ましい。 The thickness of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 0.1 μm or more and 300 μm or less. When the cured film according to the present embodiment is a hard coat layer, the thickness is usually preferably 0.1 µm or more, more preferably 1 µm or more, and particularly preferably 5 µm or more. Also, the thickness is preferably 20 μm or less, more preferably 15 μm or less. When the cured film according to this embodiment is a hard coat layer, it is preferable that the cured film according to this embodiment is laminated on various substrates.
 本実施形態に係る硬化膜は、自立膜であることも好ましい。自立膜の場合、それ単独で破損することなく存在し、取り扱うことができるため、基材等を必要とすることがなく、生産性の向上やコストの低減を図ることができる。本実施形態に係る硬化膜が自立膜である場合には、硬化膜の厚さは、10μm以上であることが好ましく、25μm以上であることが好ましい。また、当該厚さは、300μm以下であることが好ましく、200μm以下であることがより好ましく、特に150μm以下であることが好ましく、さらには100μm以下であることが好ましい。 The cured film according to this embodiment is also preferably a self-supporting film. In the case of a self-supporting film, since it exists by itself without being damaged and can be handled, there is no need for a substrate or the like, and productivity can be improved and costs can be reduced. When the cured film according to the present embodiment is a self-supporting film, the thickness of the cured film is preferably 10 μm or more, more preferably 25 μm or more. Also, the thickness is preferably 300 μm or less, more preferably 200 μm or less, particularly preferably 150 μm or less, further preferably 100 μm or less.
1.硬化膜の物性
(1)ゲル分率
 本実施形態に係る硬化膜のゲル分率は、70%以上であることが好ましく、75%以上であることがより好ましく、特に80%以上であることが好ましく、さらには85%以上であることが好ましい。また、当該ゲル分率は、100%以下であることが好ましく、99%以下であることがより好ましく、特に98.5%以下であることが好ましく、さらには98.0%以下であることが好ましい。なお、本明細書における硬化膜のゲル分率の測定方法は、後述する試験例に記載の通りである。
1. Physical Properties of Cured Film (1) Gel Fraction The gel fraction of the cured film according to the present embodiment is preferably 70% or more, more preferably 75% or more, and particularly preferably 80% or more. Preferably, it is 85% or more. In addition, the gel fraction is preferably 100% or less, more preferably 99% or less, particularly preferably 98.5% or less, and further preferably 98.0% or less. preferable. In addition, the method for measuring the gel fraction of the cured film in the present specification is as described in the test examples described later.
(2)引張強度
 本実施形態に係る硬化膜の23℃における引張強度は、その使用目的に応じて適宜設定されるが、通常は、5MPa以上であることが好ましく、10MPa以上であることがより好ましく、特に30MPa以上であることが好ましく、さらには50MPa以上であることが好ましい。また、当該引張強度は、1500MPa以下であることが好ましく、1000MPa以下であることがより好ましく、特に800MPa以下であることが好ましく、さらには600MPa以下であることが好ましい。なお、本明細書における硬化膜の引張強度の測定方法は、後述する試験例に記載の通りである。
(2) Tensile strength The tensile strength at 23 ° C. of the cured film according to the present embodiment is appropriately set according to the purpose of use, but it is usually preferably 5 MPa or more, more preferably 10 MPa or more. It is preferably 30 MPa or more, and more preferably 50 MPa or more. Further, the tensile strength is preferably 1500 MPa or less, more preferably 1000 MPa or less, particularly preferably 800 MPa or less, further preferably 600 MPa or less. The method for measuring the tensile strength of the cured film in this specification is as described in the test examples described later.
(3)破断伸長率
 本実施形態に係る硬化膜の23℃における破断伸長率は、その使用目的に応じて適宜設定されるが、通常は、1%以上であることが好ましく、3%以上であることがより好ましく、特に5%以上であることが好ましく、さらには8%以上であることが好ましい。また、当該破断伸長率は、100%以下であることが好ましく、80%以下であることがより好ましく、特に60%以下であることが好ましく、さらには50%以下であることが好ましい。なお、本明細書における硬化膜の破断伸長率の測定方法は、後述する試験例に記載の通りである。
(3) Breaking elongation rate The breaking elongation rate at 23°C of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 1% or more, and 3% or more. more preferably 5% or more, and more preferably 8% or more. The elongation at break is preferably 100% or less, more preferably 80% or less, particularly preferably 60% or less, and further preferably 50% or less. The method for measuring the elongation at break of the cured film in this specification is as described in the test examples described later.
(4)貯蔵弾性率
 本実施形態に係る硬化膜の30℃における貯蔵弾性率E’(30)は、その使用目的に応じて適宜設定されるが、通常は、0.1GPa以上であることが好ましく、0.15GPa以上であることがより好ましく、特に0.20GPa以上であることが好ましく、さらには0.25GPa以上であることが好ましい。また、当該貯蔵弾性率E’(30)は、10GPa以下であることが好ましく、9GPa以下であることがより好ましく、特に8GPa以下であることが好ましく、さらには7GPa以下であることが好ましい。なお、本明細書における硬化膜の貯蔵弾性率E’の測定方法は、後述する試験例に記載の通りである。
(4) Storage elastic modulus The storage elastic modulus E′(30) at 30° C. of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually 0.1 GPa or more. It is preferably 0.15 GPa or more, more preferably 0.20 GPa or more, and further preferably 0.25 GPa or more. The storage modulus E'(30) is preferably 10 GPa or less, more preferably 9 GPa or less, particularly preferably 8 GPa or less, and further preferably 7 GPa or less. The method for measuring the storage elastic modulus E' of the cured film in the present specification is as described in the test examples described later.
 本実施形態に係る硬化膜の100℃における貯蔵弾性率E’(100)は、その使用目的に応じて適宜設定されるが、通常は、0.05GPa以上であることが好ましく、0.10GPa以上であることがより好ましく、特に0.15GPa以上であることが好ましく、さらには0.20GPa以上であることが好ましい。また、当該貯蔵弾性率E’(100)は、6.0GPa以下であることが好ましく、5.5GPa以下であることがより好ましく、特に5.0GPa以下であることが好ましく、さらには4.5GPa以下であることが好ましい。 The storage elastic modulus E′(100) at 100° C. of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 0.05 GPa or more, and 0.10 GPa or more. It is more preferably 0.15 GPa or more, and more preferably 0.20 GPa or more. In addition, the storage modulus E′(100) is preferably 6.0 GPa or less, more preferably 5.5 GPa or less, particularly preferably 5.0 GPa or less, and further 4.5 GPa. The following are preferable.
(5)鉛筆硬度
 本実施形態に係る硬化膜の鉛筆硬度は、その使用目的に応じて適宜設定されるが、通常は、6B以上であることが好ましく、特に5B以上であることが好ましく、さらには4B以上であることが好ましい。また、上記鉛筆硬度は、7H以下であることが好ましく、特に6H以下であることが好ましく、さらには5H以下であることが好ましい。なお、鉛筆硬度の測定方法は、後述する試験例に示す通りである。
(5) Pencil hardness The pencil hardness of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 6B or more, particularly preferably 5B or more, and further is preferably 4B or more. The pencil hardness is preferably 7H or less, particularly preferably 6H or less, and more preferably 5H or less. In addition, the method for measuring the pencil hardness is as shown in the test examples described later.
(6)全光線透過率
 本実施形態に係る硬化膜の全光線透過率は、その使用目的に応じて適宜設定されるが、通常は、90%以上であることが好ましく、91.0%以上であることがより好ましく、特に91.5%以上であることが好ましく、さらには92.0%以上であることがより好ましい。全光線透過率の上限値は特に限定されないが、通常、100%以下であり、99.9%以下であることが好ましく、特に99.5%以下であることが好ましく、さらには99.0%以下であることが好ましい。なお、本明細書における全光線透過率は、JIS K7361-1:1997に準拠して測定した値である。
(6) Total light transmittance The total light transmittance of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 90% or more, and 91.0% or more. is more preferably 91.5% or more, and more preferably 92.0% or more. Although the upper limit of the total light transmittance is not particularly limited, it is usually 100% or less, preferably 99.9% or less, particularly preferably 99.5% or less, and further 99.0%. The following are preferable. The total light transmittance in this specification is a value measured according to JIS K7361-1:1997.
(7)ヘイズ値
 本実施形態に係る硬化膜のヘイズ値は、その使用目的に応じて適宜設定されるが、通常は、5%以下であることが好ましく、4%以下であることがより好ましく、特に3%以下であることが好ましく、さらには2%以下であることが好ましい。ヘイズ値の下限値は特に限定されないが、通常、0%以上であり、0.05%以上であることが好ましく、特に0.10%以上であることが好ましく、さらには0.15%以上であることが好ましい。なお、本明細書におけるヘイズ値は、JIS K7136:2000に準じて測定した値である。
(7) Haze value The haze value of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually preferably 5% or less, more preferably 4% or less. , particularly preferably 3% or less, more preferably 2% or less. Although the lower limit of the haze value is not particularly limited, it is usually 0% or more, preferably 0.05% or more, particularly preferably 0.10% or more, and further preferably 0.15% or more. Preferably. In addition, the haze value in this specification is a value measured according to JIS K7136:2000.
(8)表面抵抗値
 本実施形態に係る硬化膜の表面抵抗値は、その使用目的に応じて適宜設定されるが、通常は、1.0×1010Ω/sq以上、1.0×1016Ω/sq以下である。なお、本明細書における表面抵抗値の測定方法は、後述する試験例に示す通りである。
(8) Surface resistance value The surface resistance value of the cured film according to the present embodiment is appropriately set according to its intended use, but is usually 1.0 × 10 10 Ω / sq or more, 1.0 × 10 16 Ω/sq or less. Incidentally, the method for measuring the surface resistance value in the present specification is as shown in the test examples described later.
(9)屈曲性
 本実施形態に係る硬化膜を幅25mm、長さ100mm、厚さ50μmの大きさに形成し、23℃で10秒間屈曲させたときに、破断、クラック等の不具合が生じない最小屈曲径(直径)は、10mm以下であることが好ましく、8mm以下であることがより好ましく、特に6mm以下であることが好ましく、さらには4mm以下であることが好ましい。これにより、屈曲性に優れ、屈曲用途に好適なものとなる。なお、本明細書における最小屈曲径の測定方法は、後述する試験例に示す通りである。
(9) Flexibility When the cured film according to the present embodiment is formed to have a width of 25 mm, a length of 100 mm, and a thickness of 50 μm, and is bent at 23° C. for 10 seconds, problems such as breakage and cracks do not occur. The minimum bending diameter (diameter) is preferably 10 mm or less, more preferably 8 mm or less, particularly preferably 6 mm or less, further preferably 4 mm or less. This makes it excellent in flexibility and suitable for bending applications. The method for measuring the minimum bending diameter in this specification is as shown in the test examples described later.
2.硬化膜の製造方法
 本実施形態に係る硬化膜は、前述した実施形態に係る硬化膜形成用組成物の塗膜に活性エネルギー線を照射して、当該塗膜を硬化することにより形成することが好ましい。具体的には、硬化膜形成用組成物Xを第1のシートに塗布し、得られた硬化膜形成用組成物Xの塗膜に第2のシートを積層し、第1のシートまたは第2のシートを介して活性エネルギー線を照射し、上記硬化膜形成用組成物を硬化させて硬化膜とすることが好ましい(以下、第1のシート/硬化膜形成用組成物の塗膜/第2のシートの積層構造を、「ギャップラミ構造」と称する場合がある)。
2. Method for Producing Cured Film The cured film according to the present embodiment can be formed by irradiating the coating film of the composition for forming a cured film according to the above-described embodiment with an active energy ray to cure the coating film. preferable. Specifically, the cured film-forming composition X is applied to a first sheet, the second sheet is laminated on the resulting coating film of the cured film-forming composition X, and the first sheet or the second sheet is laminated. It is preferable to irradiate the active energy ray through the sheet to cure the cured film-forming composition to form a cured film (hereinafter referred to as the first sheet/coating film of the cured film-forming composition/second The laminated structure of the sheets may be referred to as a "gap laminated structure").
 上記硬化膜形成用組成物Xを塗布するにあたり、溶剤を使用することなく、無溶剤にて塗布してもよい。硬化膜形成用組成物Xを塗布する方法としては、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等を利用することができる。 When applying the composition X for forming a cured film, it may be applied without using a solvent. As a method for applying the cured film-forming composition X, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like can be used.
 上記第1のシートおよび第2のシートとしては、少なくとも一方が活性エネルギー線を透過し、硬化膜形成後に当該硬化膜から剥離することができるものであれば特に限定されない。かかるシートとしては、例えば、レーヨン、アクリル、ポリエステル等の繊維を用いた織布または不織布;上質紙、グラシン紙、含浸紙、コート紙等の紙類;アルミ、銅等の金属箔;ウレタン発泡体、ポリエチレン発泡体等の発泡体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリウレタンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、トリアセチルセルロース等のセルロースフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、アクリル樹脂フィルム、ノルボルネン系樹脂フィルム、シクロオレフィン樹脂フィルム等のプラスチックフィルム;これらの2種以上の積層体などを挙げることができる。プラスチックフィルムは、一軸延伸または二軸延伸されたものでもよい。 The first sheet and the second sheet are not particularly limited as long as at least one of them transmits active energy rays and can be peeled off from the cured film after forming the cured film. Such sheets include, for example, woven fabrics or non-woven fabrics using fibers such as rayon, acrylic, polyester; papers such as fine paper, glassine paper, impregnated paper, coated paper; metal foils such as aluminum and copper; , foams such as polyethylene foam; polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyurethane films, polyethylene films, polypropylene films, cellulose films such as triacetyl cellulose, polyvinyl chloride films, polyvinylidene chloride films , polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, acrylic resin film, norbornene-based resin film, cycloolefin resin film, etc.; can be done. The plastic film may be uniaxially or biaxially oriented.
 また、上記のシートにおける硬化膜形成用組成物Xの塗膜接触面には、剥離処理が施されていてもよい。剥離処理に使用される剥離剤としては、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系の剥離剤が挙げられる。なお、第1のシートおよび第2のシートのうち、一方のシートを剥離力の大きい重剥離型剥離シートとし、他方のシートを剥離力の小さい軽剥離型剥離シートとしてもよい。 In addition, the coating film contact surface of the composition X for forming a cured film in the above sheet may be subjected to a release treatment. Examples of release agents used in the release treatment include alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, and wax-based release agents. Of the first sheet and the second sheet, one sheet may be a heavy release type release sheet with a large release force, and the other sheet may be a light release type release sheet with a small release force.
 第1のシートおよび第2のシートの厚さについては特に制限はないが、通常10~200μm程度であり、好ましくは30~100μm程度である。 Although the thickness of the first sheet and the second sheet is not particularly limited, it is usually about 10-200 μm, preferably about 30-100 μm.
 硬化膜形成用組成物Xの塗膜に照射する活性エネルギー線とは、電磁波または荷電粒子線の中でエネルギー量子を有するものをいい、具体的には、紫外線や電子線などが挙げられる。活性エネルギー線の中でも、取扱いが容易な紫外線が特に好ましい。 The active energy ray that irradiates the coating film of the composition X for forming a cured film refers to an electromagnetic wave or charged particle beam that has an energy quantum, and specifically includes ultraviolet rays and electron beams. Among active energy rays, ultraviolet rays are particularly preferable because they are easy to handle.
 紫外線の照射は、高圧水銀ランプ、フュージョンHランプ、キセノンランプ、LEDランプ等によって行うことができ、紫外線の照射量は、照度が50~1000mW/cm程度であることが好ましく、100~500mW/cm程度であることが好ましい。また、光量は、50~10000mJ/cmであることが好ましく、200~7000mJ/cmであることがより好ましく、500~3000mJ/cmであることが特に好ましい。一方、電子線の照射は、電子線加速器等によって行うことができ、電子線の照射量は、10~1000krad程度が好ましい。 Ultraviolet irradiation can be performed by a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, an LED lamp, or the like . It is preferably on the order of cm 2 . The amount of light is preferably 50 to 10000 mJ/cm 2 , more preferably 200 to 7000 mJ/cm 2 and particularly preferably 500 to 3000 mJ/cm 2 . On the other hand, electron beam irradiation can be performed by an electron beam accelerator or the like, and the electron beam irradiation dose is preferably about 10 to 1000 krad.
 上記のように、第1のシートおよび第2のシートに挟持された硬化膜形成用組成物Xの塗膜に活性エネルギー線を照射すると、硬化膜形成用組成物Xは、酸素阻害を受けることなく良好に硬化する。また、第1のシートおよび第2のシートを使用することで、所望の厚さおよび表面粗さの硬化膜を形成することができる。ただし、本発明はこれに限定されるものではなく、第2のシートを使用せずに、不活性ガス雰囲気下にて活性エネルギー線を照射することもできる。 As described above, when the coating film of the cured film-forming composition X sandwiched between the first sheet and the second sheet is irradiated with an active energy ray, the cured film-forming composition X undergoes oxygen inhibition. Cures well without Moreover, by using the first sheet and the second sheet, a cured film having a desired thickness and surface roughness can be formed. However, the present invention is not limited to this, and active energy rays can be applied in an inert gas atmosphere without using the second sheet.
3.硬化膜の用途
 本実施形態に係る硬化膜は、耐擦傷性を有しているため、例えば、ハードコート層やプライマー層等として、光学用途、装飾用途等の各種用途に使用することができる。例えば、基材層およびハードコート層を有する積層フィルムにおいて、当該ハードコート層を本実施形態に係る硬化膜で形成することができる。上記基材層の種類は特に限定されず、例えば、各種の合成樹脂フィルムを基材層として使用することができる。また、本実施形態に係る自立膜は、例えば、逆浸透膜、濾過膜等の水処理用の膜、あるいは炭酸ガス、酸素、窒素、水素等のガス分離膜などに応用することが可能である。さらに、透明な高強度材料としての特徴から、各種用途のフィルム基材等に使用することもできる。
3. Use of Cured Film Since the cured film according to the present embodiment has scratch resistance, it can be used, for example, as a hard coat layer or a primer layer for various purposes such as optical use and decorative use. For example, in a laminated film having a substrate layer and a hard coat layer, the hard coat layer can be formed from the cured film according to the present embodiment. The type of the substrate layer is not particularly limited, and for example, various synthetic resin films can be used as the substrate layer. In addition, the self-supporting membrane according to the present embodiment can be applied, for example, to water treatment membranes such as reverse osmosis membranes and filtration membranes, or gas separation membranes such as carbon dioxide, oxygen, nitrogen, and hydrogen. . Furthermore, it can be used as a film base material for various purposes because of its characteristics as a transparent high-strength material.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment is meant to include all design changes and equivalents that fall within the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Although the present invention will be described in more detail with reference to examples and the like, the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
1.硬化膜形成用組成物の調製
 エチレンカーボネート含有アクリルモノマー(A)として、前述した式(3)においてnが2であるエチレンカーボネート含有アクリルモノマー70質量部と、活性エネルギー線硬化型化合物(B)として、前述した式(4)においてm、n、p、q、r及びsがそれぞれ10である6官能アクリレート(B1)30質量部と、光重合開始剤(C)として、ベンゾフェノンおよび1-ヒドロキシシクロヘキシルフェニルケトンを1:1の質量比で混合したもの5質量部とを混合し、十分に撹拌して、硬化膜形成用組成物を得た。粘度は210mPa・S-1であった。
[Example 1]
1. Preparation of cured film-forming composition As the ethylene carbonate-containing acrylic monomer (A), 70 parts by mass of an ethylene carbonate-containing acrylic monomer in which n is 2 in the above formula (3), and an active energy ray-curable compound (B) , 30 parts by mass of a hexafunctional acrylate (B1) in which m, n, p, q, r and s are 10 in the above formula (4), and benzophenone and 1-hydroxycyclohexyl as a photopolymerization initiator (C) 5 parts by mass of a mixture of phenyl ketone at a mass ratio of 1:1 was mixed and sufficiently stirred to obtain a composition for forming a cured film. The viscosity was 210 mPa·S -1 .
2.硬化膜(自立膜)の形成
 得られた硬化膜形成用組成物を、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した重剥離型剥離シート(リンテック社製,製品名「SP-PET752150」)の剥離処理面に塗布した。
2. Formation of cured film (self-supporting film) The obtained composition for forming a cured film was applied to a heavy release type release sheet (manufactured by Lintec Corporation, product name “SP-PET752150”) obtained by releasing one side of a polyethylene terephthalate film with a silicone release agent. ) was applied to the release-treated surface.
 次いで、上記で塗布した重剥離型剥離シート上の硬化膜形成用組成物の塗布膜に、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した軽剥離型剥離シート(リンテック社製,製品名「SP-PET381130」)を、当該軽剥離型剥離シートの剥離処理面が塗布膜に接触するように貼合した。 Then, on the coated film of the cured film-forming composition on the heavy release release sheet coated above, a light release release sheet (manufactured by Lintec Co., Ltd., product name: "SP-PET381130") was laminated so that the release-treated surface of the light release type release sheet was in contact with the coating film.
 続いて、紫外線照射装置(アイグラフィックス社製,製品名「アイグランテージECS-401GX型」)により、ギャップラミ構造の塗布膜に対して、軽剥離型剥離シートを介して下記の条件で紫外線を照射し、当該塗布膜を硬化させ、硬化膜(自立膜)を形成した。得られた硬化膜(自立膜)の厚さは、50μmであった。なお、硬化膜の厚さは、JIS K7130に準拠し、定圧厚さ測定器(テクロック社製,製品名「PG-02」)を使用して測定した値である。
[紫外線照射条件]
・光源:高圧水銀灯
・ランプ電力:2kW
・コンベアスピード:4.23m/min
・照度:200mW/cm
・光量:600mJ/cm
Subsequently, an ultraviolet irradiation device (manufactured by Eyegraphics, product name “Eyegrantage ECS-401GX”) was applied to the coating film with a gap lamination structure through a light release type release sheet under the following conditions. was irradiated to cure the coating film to form a cured film (self-supporting film). The thickness of the resulting cured film (self-supporting film) was 50 μm. The thickness of the cured film is a value measured in accordance with JIS K7130 using a constant pressure thickness gauge (manufactured by Teclock, product name "PG-02").
[Ultraviolet irradiation conditions]
・Light source: High pressure mercury lamp ・Lamp power: 2 kW
・Conveyor speed: 4.23m/min
・Illuminance: 200mW/ cm2
・Light intensity: 600 mJ/cm 2
〔実施例2~3,比較例1~2〕
 エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)の配合量を表1に示すように変更する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Examples 2-3, Comparative Examples 1-2]
A composition for forming a cured film was prepared in the same manner as in Example 1, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例4〕
 活性エネルギー線硬化型化合物(B)として、前述した式(4)においてm、n、p、q、r及びsがそれぞれ1である6官能アクリレート(B2)を使用する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Example 4]
As the active energy ray-curable compound (B), the same as in Example 1 except that a hexafunctional acrylate (B2) in which m, n, p, q, r and s are each 1 in the above formula (4) is used. to prepare a composition for forming a cured film. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例5~6,比較例3〕
 エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)の配合量を表1に示すように変更する以外、実施例4と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Examples 5 to 6, Comparative Example 3]
A composition for forming a cured film was prepared in the same manner as in Example 4, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例7〕
 活性エネルギー線硬化型化合物(B)として、ジペンタエリスリトールヘキサアクリレート(DPHA)(B3)を使用する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Example 7]
A composition for forming a cured film was prepared in the same manner as in Example 1, except that dipentaerythritol hexaacrylate (DPHA) (B3) was used as the active energy ray-curable compound (B). Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例8~9,比較例4〕
 エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)の配合量を表1に示すように変更する以外、実施例7と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Examples 8 to 9, Comparative Example 4]
A composition for forming a cured film was prepared in the same manner as in Example 7, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例10〕
 活性エネルギー線硬化型化合物(B)として、下記式(5)で示されるポリエチレングリコールジアクリレート(B4)を使用する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
Figure JPOXMLDOC01-appb-C000011

                           ・・・(5)
 (n=14)
[Example 10]
A composition for forming a cured film was prepared in the same manner as in Example 1, except that polyethylene glycol diacrylate (B4) represented by the following formula (5) was used as the active energy ray-curable compound (B). Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
Figure JPOXMLDOC01-appb-C000011

... (5)
(n=14)
〔実施例11~12,比較例5〕
 エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)の配合量を表1に示すように変更する以外、実施例10と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Examples 11 to 12, Comparative Example 5]
A composition for forming a cured film was prepared in the same manner as in Example 10, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例13〕
 活性エネルギー線硬化型化合物(B)として、下記式(6)で示されるエトキシ化ペンタエリスリトールテトラアクリレート(B5)を使用する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
Figure JPOXMLDOC01-appb-C000012

                            ・・・(6)
 R=-CH-CH-O-
 (a+b+c+d=35)
[Example 13]
A composition for forming a cured film was prepared in the same manner as in Example 1 except that an ethoxylated pentaerythritol tetraacrylate (B5) represented by the following formula (6) was used as the active energy ray-curable compound (B). Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
Figure JPOXMLDOC01-appb-C000012

... (6)
R = -CH2 - CH2 -O-
(a+b+c+d=35)
〔実施例14~15,比較例6〕
 エチレンカーボネート含有アクリルモノマー(A)および活性エネルギー線硬化型化合物(B)の配合量を表1に示すように変更する以外、実施例10と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Examples 14 to 15, Comparative Example 6]
A composition for forming a cured film was prepared in the same manner as in Example 10, except that the amounts of the ethylene carbonate-containing acrylic monomer (A) and the active energy ray-curable compound (B) were changed as shown in Table 1. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例16〕
 活性エネルギー線硬化型化合物(B)として、ポリエステル系ウレタンアクリレート(B6;新中村化学工業社製,製品名「UA-4400」)を使用する以外、実施例1と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Example 16]
A composition for forming a cured film in the same manner as in Example 1, except that a polyester urethane acrylate (B6; manufactured by Shin-Nakamura Chemical Co., Ltd., product name "UA-4400") is used as the active energy ray-curable compound (B). prepared the product. Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔比較例7〕
 メチルメタクリレート(MMA)38質量部と、活性エネルギー線硬化型化合物(B)として、前述した式(4)においてm、n、p、q、r及びsがそれぞれ10である6官能アクリレート(B1)62質量部と、光重合開始剤(C)として、ベンゾフェノンおよび1-ヒドロキシシクロヘキシルフェニルケトンを1:1の質量比で混合したもの5質量部とを混合し、十分に撹拌して、硬化膜形成用組成物を得た。そして、当該硬化膜形成用組成物を使用して、実施例1と同様にして硬化膜を形成した。
[Comparative Example 7]
38 parts by mass of methyl methacrylate (MMA) and, as the active energy ray-curable compound (B), a hexafunctional acrylate (B1) in which m, n, p, q, r and s are each 10 in the above formula (4) 62 parts by mass and 5 parts by mass of a mixture of benzophenone and 1-hydroxycyclohexylphenyl ketone at a mass ratio of 1:1 as a photopolymerization initiator (C) are mixed and sufficiently stirred to form a cured film. A composition for Then, a cured film was formed in the same manner as in Example 1 using the cured film-forming composition.
〔実施例17〕
 エチレンカーボネート含有アクリルモノマー(A)として、前述した式(3)においてnが2であるエチレンカーボネート含有アクリルモノマー70質量部と、活性エネルギー線硬化型化合物(B)として、前述した式(4)においてm、n、p、q、r及びsがそれぞれ10である6官能アクリレート(B1)30質量部と、光重合開始剤(C)としてベンゾフェノンおよび1-ヒドロキシシクロヘキシルフェニルケトンを1:1の質量比で混合したもの(BASF欧州会社製,製品名「OMUNIRAD500」)5質量部との混合液をプロピレングリコールモノメチルエーテルで希釈して、固形分濃度30質量%の硬化膜形成用組成物を調製した。
[Example 17]
As the ethylene carbonate-containing acrylic monomer (A), 70 parts by mass of the ethylene carbonate-containing acrylic monomer in which n is 2 in the above formula (3), and as the active energy ray-curable compound (B), in the above formula (4) 30 parts by mass of a hexafunctional acrylate (B1) in which m, n, p, q, r and s are each 10, and benzophenone and 1-hydroxycyclohexylphenyl ketone as a photopolymerization initiator (C) at a mass ratio of 1:1 (manufactured by BASF Europe Ltd., product name "OMUNIRAD500") and 5 parts by weight of the mixture was diluted with propylene glycol monomethyl ether to prepare a cured film-forming composition having a solid content concentration of 30% by weight.
 片面プライマー層付ポリエチレンテレフタレートフィルム(基材層;東洋紡社製,製品名「コスモシャインA4160」,厚さ:50μm)のプライマー層の面上に、マイヤーバーを用いて上記硬化膜形成用組成物を塗布し、80℃で1分間乾燥させた。その後、窒素気流下にて実施例1と同様に紫外線を照射して塗膜を硬化させ、膜厚5μmの硬化膜(ハードコート層)を形成した。このようにして、硬化膜(ハードコート層)/基材層からなる積層フィルムを得た。 On the surface of the primer layer of a polyethylene terephthalate film with a single-sided primer layer (substrate layer; manufactured by Toyobo Co., Ltd., product name "Cosmo Shine A4160", thickness: 50 μm), the above composition for forming a cured film was applied using a Meyer bar. It was applied and dried at 80° C. for 1 minute. Thereafter, the coating film was cured by irradiating ultraviolet rays in a nitrogen stream in the same manner as in Example 1 to form a cured film (hard coat layer) having a thickness of 5 μm. In this manner, a laminate film composed of a cured film (hard coat layer)/base material layer was obtained.
〔実施例18~25,比較例8~10〕
 エチレンカーボネート含有アクリルモノマー(A)の配合量、ならびに活性エネルギー線硬化型化合物(B)の種類および配合量を表3に示すように変更する以外、実施例17と同様にして硬化膜形成用組成物を調製した。そして、当該硬化膜形成用組成物を使用して、実施例17と同様にして硬化膜(ハードコート層)を形成し、積層フィルムを得た。
[Examples 18 to 25, Comparative Examples 8 to 10]
A composition for forming a cured film was prepared in the same manner as in Example 17, except that the amount of the ethylene carbonate-containing acrylic monomer (A) and the type and amount of the active energy ray-curable compound (B) were changed as shown in Table 3. prepared the product. Then, using the cured film-forming composition, a cured film (hard coat layer) was formed in the same manner as in Example 17 to obtain a laminated film.
〔試験例1〕(CO固定化量の算出)
 実施例および比較例で調製した硬化膜形成用組成物におけるエチレンカーボネート含有アクリルモノマー(A)の配合量から、硬化膜に使用(固定)された二酸化炭素の量(質量比)を、CO固定化量として算出した。具体的には、COの分子量(=44)を、エチレンカーボネート含有アクリルモノマー(A)の分子量(=158)で除して、百分率で表した。結果を表2および表4に示す。
[Test Example 1] (Calculation of CO 2 fixed amount)
From the amount of the ethylene carbonate-containing acrylic monomer (A) in the cured film-forming compositions prepared in Examples and Comparative Examples, the amount (mass ratio) of carbon dioxide used (fixed) in the cured film was It was calculated as a conversion amount. Specifically, the molecular weight of CO 2 (=44) was divided by the molecular weight of the ethylene carbonate-containing acrylic monomer (A) (=158) and expressed as a percentage. The results are shown in Tables 2 and 4.
〔試験例2〕(自立膜の評価)
 実施例および比較例で作製した、軽剥離型剥離シート/硬化膜/重剥離型剥離シートからなる積層体から、軽剥離型剥離シートおよび重剥離型剥離シートを順次剥離した。得られた硬化膜単体について、触感試験、目視または顕微鏡により靭性・脆性を確認するとともに、カッターを使用して硬化膜単体の平面に対して鉛直方向に裁断加工を行い、切断面を観察し、以下の基準に基づいて自立膜としての評価を行った。結果を表2に示す。
 A…外観に変化なし、強靭性を示し、加工性にも優れていた。
 B…靭性を示し、加工可能であった。
 C…加工は可能であるが、高脆性であった。
 D…硬化時、剥離時、または裁断時にクラックが生じた。
[Test Example 2] (Evaluation of self-supporting film)
The light release type release sheet and the heavy release type release sheet were sequentially peeled off from the laminate composed of the light release type release sheet/cured film/heavy release type release sheet prepared in Examples and Comparative Examples. The toughness and brittleness of the obtained cured film alone were checked by tactile test, visual observation or microscope, and cutting processing was performed in the vertical direction with respect to the plane of the cured film alone using a cutter, and the cut surface was observed. Evaluation as a self-supporting film was performed based on the following criteria. Table 2 shows the results.
A: No change in appearance, toughness was exhibited, and workability was also excellent.
B... Showed toughness and was workable.
C: Workable, but highly brittle.
D: Cracks occurred during curing, peeling, or cutting.
〔試験例3〕(ゲル分率の測定)
 実施例および比較例で作製した硬化膜を80mm×80mmのサイズに裁断し、質量を算出した。このときの質量をM1とする。次に、上記硬化膜を、室温下(23℃)で酢酸エチルに24時間浸漬させた。その後硬化膜を取り出し、温度23℃、相対湿度50%の環境下で、24時間風乾させ、さらに80℃のオーブン中にて12時間乾燥させた。乾燥後、その質量を精密天秤にて秤量した。このときの質量をM2とする。ゲル分率(%)は、(M2/M1)×100で表される。これにより、硬化膜のゲル分率を導出した。結果を表2に示す。
[Test Example 3] (Measurement of gel fraction)
The cured films prepared in Examples and Comparative Examples were cut into a size of 80 mm×80 mm, and the mass was calculated. Let the mass at this time be M1. Next, the cured film was immersed in ethyl acetate at room temperature (23° C.) for 24 hours. After that, the cured film was taken out, air-dried for 24 hours under an environment of a temperature of 23° C. and a relative humidity of 50%, and further dried in an oven of 80° C. for 12 hours. After drying, the mass was weighed with a precision balance. Let the mass at this time be M2. A gel fraction (%) is represented by (M2/M1)×100. From this, the gel fraction of the cured film was derived. Table 2 shows the results.
〔試験例4〕(引張試験)
 実施例および比較例で作製した硬化膜を、15mm×140mmのサイズに裁断し、これを試験片とした。当該試験片について、JIS K7127:1999に準拠して、23℃における引張強度(MPa)および破断伸長率(%)を測定した。具体的には、上記試験片を、引張試験機(島津製作所社製,製品名「オートグラフAG-IS 500N」)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、引張強度(MPa)および破断伸長率(%)を測定した。結果を表2に示す。
[Test Example 4] (Tensile test)
The cured films prepared in Examples and Comparative Examples were cut into a size of 15 mm×140 mm, and this was used as a test piece. The test piece was measured for tensile strength (MPa) and elongation at break (%) at 23°C in accordance with JIS K7127:1999. Specifically, the above test piece is set to a chuck distance of 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N"), and then a tensile test is performed at a speed of 200 mm / min. was performed, and the tensile strength (MPa) and elongation at break (%) were measured. Table 2 shows the results.
〔試験例5〕(貯蔵弾性率の測定)
 実施例および比較例で作製した硬化膜について、動的粘弾性測定機器(ティー・エイ・インスツルメント社製,製品名「DMA Q800」)を使用し、周波数10Hz、振幅5μm、昇温速度3℃/分で、25℃から150℃まで昇温させたときの引張モードによる粘弾性を測定した。その粘弾性の測定結果から、硬化膜の30℃および100℃における貯蔵弾性率(E’)(MPa)を読み取った。結果を表2に示す。
[Test Example 5] (Measurement of storage modulus)
For the cured films prepared in Examples and Comparative Examples, a dynamic viscoelasticity measuring instrument (manufactured by TA Instruments, product name "DMA Q800") was used, with a frequency of 10 Hz, an amplitude of 5 µm, and a heating rate of 3. The viscoelasticity in the tensile mode was measured when the temperature was raised from 25°C to 150°C at a rate of °C/min. From the viscoelasticity measurement results, the storage elastic modulus (E') (MPa) of the cured film at 30°C and 100°C was read. Table 2 shows the results.
〔試験例6〕(鉛筆硬度の測定)
 実施例および比較例で作製した硬化膜の表面について、JIS K5600-5-4に準じ、鉛筆引っかき硬度試験機(安田精機製作所社製,製品名「No.553-M」)を用いて、鉛筆硬度を測定した。測定条件は、荷重750g、引っかき速度は0.5mm/秒とした。結果を表2および表4に示す。
[Test Example 6] (Measurement of pencil hardness)
For the surface of the cured film prepared in Examples and Comparative Examples, according to JIS K5600-5-4, using a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd., product name "No. 553-M"), a pencil Hardness was measured. Measurement conditions were a load of 750 g and a scratching speed of 0.5 mm/sec. The results are shown in Tables 2 and 4.
〔試験例7〕(全光線透過率の測定)
 実施例および比較例で作製した硬化膜について、JIS K7361-1:1997に準じて、ヘイズメーター(日本電色工業社製,製品名「SH-7000」)を用いて全光線透過率(%)を測定した。結果を表2に示す。
[Test Example 7] (Measurement of total light transmittance)
For the cured films prepared in Examples and Comparative Examples, according to JIS K7361-1: 1997, a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., product name "SH-7000") was used to measure total light transmittance (%). was measured. Table 2 shows the results.
〔試験例8〕(ヘイズ値の測定)
 実施例および比較例で作製した硬化膜について、JIS K7136:2000に準じて、ヘイズメーター(日本電色工業社製,製品名「SH-7000」)を用いてヘイズ値(%)を測定した。結果を表2に示す。
[Test Example 8] (Measurement of haze value)
The haze values (%) of the cured films prepared in Examples and Comparative Examples were measured according to JIS K7136:2000 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., product name "SH-7000"). Table 2 shows the results.
〔試験例9〕(表面抵抗値の測定)
 実施例および比較例で作製した硬化膜の表面について、抵抗率計(三菱化学アナリテック社製,ハイレスタUP MCP-HT450型)を使用して、JIS K6911に準じて表面抵抗値(Ω/sq)を測定した。結果を表2に示す。
[Test Example 9] (Measurement of surface resistance)
For the surfaces of the cured films prepared in Examples and Comparative Examples, a resistivity meter (Mitsubishi Chemical Analytic Tech, Hiresta UP MCP-HT450 type) was used to measure surface resistance (Ω/sq) according to JIS K6911. was measured. Table 2 shows the results.
〔試験例10〕(屈曲性の評価)
 実施例および比較例で作製した硬化膜および積層フィルムについて、円筒型マンドレル屈曲試験機(コーテック社製)を用いて、JIS K5600-5-1(1999)に準拠したマンドレル試験を実施した。積層フィルムにおいては、当該マンドレル試験は、積層フィルムの硬化膜(ハードコート層)を外側にして行った。硬化膜またはハードコート層に破断、クラックや変色等の不具合が発生しなかったマンドレルのうち直径が最小のマンドレルの直径(最小マンドレル直径;mmφ)を求め、その値を屈曲性の評価とした。結果を表2および表4に示す。
[Test Example 10] (Evaluation of Flexibility)
The cured films and laminated films prepared in Examples and Comparative Examples were subjected to a mandrel test according to JIS K5600-5-1 (1999) using a cylindrical mandrel bending tester (manufactured by Cortec). In the laminated film, the mandrel test was conducted with the cured film (hard coat layer) of the laminated film facing outward. The diameter of the mandrel with the smallest diameter (minimum mandrel diameter; mmφ) among the mandrels that did not cause defects such as breakage, cracks, discoloration, etc. in the cured film or hard coat layer was determined, and the value was used as the evaluation of flexibility. The results are shown in Tables 2 and 4.
〔試験例11〕(耐擦傷性試験)
 実施例17~25および比較例8~10で製造した積層フィルムにおける硬化膜(ハードコート層)側の面について、#0000のスチールウールを用いて、250g/cmの荷重で50mm、10往復擦った。その硬化膜(ハードコート層)の表面を、3波長蛍光灯下で目視により確認し、以下の基準で耐擦傷性を評価した。結果を表4に示す。
 〇:傷が全くなかった。
 △:傷が1~2本程度あった。
 ×:傷が多数あった。
[Test Example 11] (Scratch resistance test)
The cured film (hard coat layer) side surface of the laminated films produced in Examples 17 to 25 and Comparative Examples 8 to 10 was rubbed back and forth 10 times at 50 mm with a load of 250 g/cm 2 using #0000 steel wool. Ta. The surface of the cured film (hard coat layer) was visually observed under a three-wavelength fluorescent lamp, and the scratch resistance was evaluated according to the following criteria. Table 4 shows the results.
O: There was no damage at all.
Δ: About 1 to 2 scratches were observed.
x: There were many scratches.
〔試験例12〕(シュリンク性の評価)
 実施例および比較例で作製した硬化膜に対し、一方の表面に水滴を数滴滴下して、硬化膜(自立膜)の状態を確認した。次いで、硬化膜を乾燥させ、そのときの硬化膜(自立膜)の状態を確認した。それらの結果に基づき、以下の基準によりシュリンク性の有無を評価した。結果を表2に示す。
 有:水滴を滴下した面とは反対側の面にシュリンクし、乾燥すると元に戻る現象が見られた。
 無:水滴を滴下してもシュリンクする現象が見られなかった。
[Test Example 12] (Evaluation of Shrinkability)
A few water droplets were dropped on one surface of the cured films prepared in Examples and Comparative Examples to confirm the state of the cured film (self-supporting film). Next, the cured film was dried, and the state of the cured film (self-supporting film) at that time was confirmed. Based on these results, the presence or absence of shrinkability was evaluated according to the following criteria. Table 2 shows the results.
Existence: A phenomenon was observed in which the surface opposite to the surface on which water droplets were dropped was shrunk, and returned to its original shape when dried.
None: No phenomenon of shrinking was observed even when water droplets were dropped.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表2および表4から分かるように、実施例で作製した硬化膜および積層フィルムは、所定量の二酸化炭素を固定化することができ、また、各種用途に利用可能な物性を有するものであった。 As can be seen from Tables 2 and 4, the cured films and laminated films prepared in Examples were capable of fixing a predetermined amount of carbon dioxide, and had physical properties that could be used for various purposes. .
 本発明に係る硬化膜形成用組成物、硬化膜、自立膜および硬化膜の製造方法は、二酸化炭素を固定化することができ、環境保護に役立つものである。 The composition for forming a cured film, the cured film, the self-supporting film, and the method for producing a cured film according to the present invention can fix carbon dioxide and are useful for environmental protection.

Claims (11)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001

    に示されるエチレンカーボネート構造を有するエチレンカーボネート含有アクリルモノマー(A)と、
     反応性基を有する活性エネルギー線硬化型化合物(B)と
    を含有することを特徴とする硬化膜形成用組成物。
    Formula (1) below
    Figure JPOXMLDOC01-appb-C000001

    An ethylene carbonate-containing acrylic monomer (A) having an ethylene carbonate structure shown in
    A composition for forming a cured film, comprising an active energy ray-curable compound (B) having a reactive group.
  2.  前記エチレンカーボネート含有アクリルモノマー(A)が、下記式(2)または下記式(3)で示される化合物であることを特徴とする請求項1に記載の硬化膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式中、nは0以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (式中、nは0以上の整数を表す。)
    2. The composition for forming a cured film according to claim 1, wherein the ethylene carbonate-containing acrylic monomer (A) is a compound represented by the following formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, n represents an integer of 0 or more.)
    Figure JPOXMLDOC01-appb-C000003

    (In the formula, n represents an integer of 0 or more.)
  3.  光重合開始剤(C)を含有することを特徴とする請求項1に記載の硬化膜形成用組成物。 The composition for forming a cured film according to claim 1, characterized by containing a photopolymerization initiator (C).
  4.  前記活性エネルギー線硬化型化合物(B)の反応性基数が、2以上であることを特徴とする請求項1に記載の硬化膜形成用組成物。 The composition for forming a cured film according to claim 1, wherein the active energy ray-curable compound (B) has 2 or more reactive groups.
  5.  前記活性エネルギー線硬化型化合物(B)が、アルキレングリコール鎖を有することを特徴とする請求項1に記載の硬化膜形成用組成物。 The composition for forming a cured film according to claim 1, wherein the active energy ray-curable compound (B) has an alkylene glycol chain.
  6.  前記活性エネルギー線硬化型化合物(B)が(メタ)アクリロイル基を有しており、前記(メタ)アクリロイル基のそれぞれに、前記アルキレングリコール鎖が結合していることを特徴とする請求項5に記載の硬化膜形成用組成物。 6. The active energy ray-curable compound (B) has a (meth)acryloyl group, and the alkylene glycol chain is bonded to each of the (meth)acryloyl groups. A composition for forming a cured film as described above.
  7.  前記アルキレングリコール鎖におけるアルキレングリコールの繰り返し単位数が、1以上、20以下であることを特徴とする請求項5に記載の硬化膜形成用組成物。 The composition for forming a cured film according to claim 5, wherein the number of repeating units of alkylene glycol in the alkylene glycol chain is 1 or more and 20 or less.
  8.  無溶剤型であることを特徴とする請求項1に記載の硬化膜形成用組成物。 The composition for forming a cured film according to claim 1, which is solvent-free.
  9.  請求項1~8のいずれか一項に記載の硬化膜形成用組成物を硬化してなる硬化膜。 A cured film obtained by curing the composition for forming a cured film according to any one of claims 1 to 8.
  10.  請求項9に記載の硬化膜からなる自立膜。 A self-supporting film made of the cured film according to claim 9.
  11.  請求項1~8のいずれか一項に記載の硬化膜形成用組成物を第1のシートに塗布し、
     前記硬化膜形成用組成物の塗膜に第2のシートを積層し、
     前記第1のシートまたは前記第2のシートを介して活性エネルギー線を照射し、前記硬化膜形成用組成物を硬化させて硬化膜とする
    ことを特徴とする硬化膜の製造方法。
    Applying the cured film-forming composition according to any one of claims 1 to 8 to the first sheet,
    Laminating a second sheet on the coating film of the cured film-forming composition,
    A method for producing a cured film, comprising irradiating an active energy ray through the first sheet or the second sheet to cure the cured film-forming composition to form a cured film.
PCT/JP2022/047026 2022-03-01 2022-12-21 Composition for forming cured film, curing agent, self-supporting film, and method for producing cured film WO2023166823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-031160 2022-03-01
JP2022031160A JP2023127390A (en) 2022-03-01 2022-03-01 Cured film-forming composition, cured film, self-supporting film and method for producing cured film

Publications (1)

Publication Number Publication Date
WO2023166823A1 true WO2023166823A1 (en) 2023-09-07

Family

ID=87883668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047026 WO2023166823A1 (en) 2022-03-01 2022-12-21 Composition for forming cured film, curing agent, self-supporting film, and method for producing cured film

Country Status (3)

Country Link
JP (1) JP2023127390A (en)
TW (1) TW202340289A (en)
WO (1) WO2023166823A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156803A (en) * 1989-11-15 1991-07-04 Fuji Photo Film Co Ltd High polymer solid electrolyte
JPH08295713A (en) * 1995-04-25 1996-11-12 Showa Denko Kk Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte
JPH09176151A (en) * 1995-11-30 1997-07-08 Bayer Ag Urethane (meth)acrylate containing cyclic carbonate group
JPH107759A (en) * 1996-06-20 1998-01-13 Showa Denko Kk Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JP2003317540A (en) * 2002-04-22 2003-11-07 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte and polymer cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156803A (en) * 1989-11-15 1991-07-04 Fuji Photo Film Co Ltd High polymer solid electrolyte
JPH08295713A (en) * 1995-04-25 1996-11-12 Showa Denko Kk Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte
JPH09176151A (en) * 1995-11-30 1997-07-08 Bayer Ag Urethane (meth)acrylate containing cyclic carbonate group
JPH107759A (en) * 1996-06-20 1998-01-13 Showa Denko Kk Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JP2003317540A (en) * 2002-04-22 2003-11-07 Nippon Kayaku Co Ltd Resin composition for polymer solid electrolyte, polymer solid electrolyte and polymer cell

Also Published As

Publication number Publication date
TW202340289A (en) 2023-10-16
JP2023127390A (en) 2023-09-13

Similar Documents

Publication Publication Date Title
KR102215669B1 (en) Hard coated laminate and method for producing same
JP6289637B2 (en) Plastic film laminate
KR101881618B1 (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive, and presure-sensitive adhesive sheet using same
KR20150016893A (en) Transparent conductive film having protection film
WO2014030848A1 (en) Hard coating film
JP6968115B2 (en) Hard coat laminated film
US20200115594A1 (en) Adhesive film, optical member including the same and optical display including the same
WO2013140965A1 (en) Multilayer film for supporting optical function member, prism sheet, light source unit and display device
JP6194361B2 (en) Heat-resistant laminated sheet and method for producing the same
US20210332273A1 (en) Porous adhesive film, optical member comprising same, and optical display device comprising same
WO2015076567A1 (en) Plastic film laminate
JPWO2015029666A6 (en) Heat-resistant laminated sheet and method for producing the same
WO2023166823A1 (en) Composition for forming cured film, curing agent, self-supporting film, and method for producing cured film
WO2023188608A1 (en) Composition for forming cured film, cured film, multilayer body and method for separating multilayer body
JP2016056347A (en) Plastic sheet, plastic sheet roll, manufacturing method of molded article and molded article and manufacturing method of plastic sheet
JP2011115981A (en) Double-sided hard coat film
JP2006224577A (en) Gas-barrier film
JP7130967B2 (en) laminated film
JP2015143347A (en) Radical curable composition, plastic sheet, plastic sheet roll, and molded product
WO2022176660A1 (en) Optical laminate, optical device, and method for producing optical laminate
WO2022270556A1 (en) Method for producing optical multilayer body, and optical multilayer body
WO2023012947A1 (en) Adhesive sheet and adhesive sheet manufacturing method
JP2016068377A (en) Method for producing synthetic resin mirror, synthetic resin mirror, and synthetic resin mirror laminate
CN116940869A (en) Optical laminate, optical device, and method for manufacturing optical laminate
JP2019006984A (en) Active energy ray-curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929965

Country of ref document: EP

Kind code of ref document: A1