WO2023166798A1 - Light-emitting device and display device - Google Patents

Light-emitting device and display device Download PDF

Info

Publication number
WO2023166798A1
WO2023166798A1 PCT/JP2022/043462 JP2022043462W WO2023166798A1 WO 2023166798 A1 WO2023166798 A1 WO 2023166798A1 JP 2022043462 W JP2022043462 W JP 2022043462W WO 2023166798 A1 WO2023166798 A1 WO 2023166798A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
emitting device
light emitting
substrate
Prior art date
Application number
PCT/JP2022/043462
Other languages
French (fr)
Japanese (ja)
Inventor
慎 赤阪
宗也 荒木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023166798A1 publication Critical patent/WO2023166798A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/70Light sources with three-dimensionally disposed light-generating elements on flexible or deformable supports or substrates, e.g. for changing the light source into a desired form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a light-emitting device suitable for a surface light source and a display device that displays an image using illumination light from the light-emitting device.
  • a light-emitting device capable of exhibiting excellent light-emitting performance and a display device including the same are desired.
  • a light emitting device as an embodiment of the present disclosure has a plurality of light source units and a relay member.
  • the plurality of light source units each have a light source substrate extending in the first direction and a plurality of light sources arranged along the first direction on the light source substrate.
  • the relay member is electrically connected to each of the plurality of light source units.
  • the arrangement position of each light source unit can be finely adjusted, so the arrangement position of each light source can be easily optimized. It is also advantageous for weight reduction.
  • FIG. 1 is a first perspective view showing a state in which a light emitting device according to a first embodiment of the present disclosure is viewed from a first direction;
  • FIG. 1B is a second perspective view showing a state in which the light emitting device shown in FIG. 1A is viewed from a second direction;
  • 2 is a plan view showing a planar configuration of the light emitting device shown in FIG. 1;
  • FIG. 2 is a cross-sectional view showing a cross-sectional configuration of part of the light emitting device shown in FIG. 1;
  • FIG. 2 is an enlarged cross-sectional view showing one configuration example of the light source shown in FIG. 1;
  • FIG. 2 is an enlarged cross-sectional view showing one configuration example of the wavelength conversion sheet shown in FIG. 1.
  • FIG. 1 is a first perspective view showing a state in which a light emitting device according to a first embodiment of the present disclosure is viewed from a first direction;
  • FIG. 1B is a second perspective view showing a state in
  • FIG. 7 is a perspective view showing the appearance of a display device according to a second embodiment of the present disclosure
  • 8 is an exploded perspective view of the main body shown in FIG. 7
  • FIG. 9 is an exploded perspective view of the panel module shown in FIG. 8.
  • FIG. 9 is a schematic plan view showing a planar configuration example of the panel module shown in FIG. 8 ; It is a plane schematic diagram showing the plane structural example of the panel module based on the 1st modification of 2nd Embodiment. It is a schematic plan view showing a planar configuration example of a panel module according to a second modification of the second embodiment.
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another first modified example of the present disclosure
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another second modified example of the present disclosure
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another third modified example of the present disclosure
  • FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another fourth modified example of the present disclosure
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another first modified example of the present disclosure
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another second modified example of the present disclosure
  • FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another third modified example of
  • FIG. 20 is a cross-sectional view showing a configuration example of a light-emitting device according to another fifth modified example of the present disclosure
  • FIG. 21 is a cross-sectional view showing a configuration example of a light emitting device according to another sixth modified example of the present disclosure
  • FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another seventh modified example of the present disclosure
  • 21 is a cross-sectional view showing the detailed configuration of a conductive material layer of the light emitting device shown in FIG. 20
  • FIG. FIG. 22 is a first cross-sectional view showing the formation process of the conductive material layer shown in FIG. 21
  • FIG. 22 is a second cross-sectional view showing the formation process of the conductive material layer shown in FIG.
  • FIG. 21; FIG. 22 is a third cross-sectional view showing the formation process of the conductive material layer shown in FIG. 21;
  • 21 is a cross-sectional view showing the detailed configuration of a conductive material layer as a first modification of the light emitting device shown in FIG. 20;
  • FIG. FIG. 24 is a first cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23;
  • FIG. 24 is a second cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23;
  • 24 is a third cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23;
  • FIG. 21 is a cross-sectional view showing a detailed configuration of a conductive material layer as a second modification of the light emitting device shown in FIG.
  • FIG. FIG. 26 is a schematic plan view schematically showing an example of the positional relationship between the bumps and the exposed portions of the wirings of each light emitting device shown in FIGS. 23 and 25;
  • FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another eighth modification of the present disclosure;
  • FIG. 21 is a cross-sectional view showing a configuration example of a display device according to another ninth modification of the present disclosure;
  • FIG. 1A and 1B are perspective views each showing a configuration example of the light emitting device 100 according to the first embodiment of the present disclosure. 1A and 1B show how the light emitting device 100 is viewed from opposite directions.
  • FIG. 2 is a plan view showing a planar configuration example of the light emitting device 100 shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a cross-sectional configuration example of part of the light emitting device 100 shown in FIG. Note that FIG. 3 shows a cross section in the arrow direction along the III-III section line shown in FIG.
  • the light emitting device 100 is suitable as a surface light source, and is used, for example, as a direct type backlight mounted on a liquid crystal display device.
  • the light emitting device 100 has, for example, a plurality of light source units 10, a relay substrate 20, and a flexible film 30.
  • the plurality of light source units 10 each extend in the X-axis direction and are arranged side by side in the Y-axis direction.
  • the relay board 20 extends, for example, in the Y-axis direction and is mechanically joined to each of the plurality of light source units 10 .
  • the relay board 20 is also electrically connected to each of the plurality of light source units 10 by the plurality of connection portions 50 .
  • the longitudinal direction of the light source unit 10 is the X-axis direction
  • the lateral direction of the light source unit 10 is the Y-axis direction
  • the thickness direction of the light source unit 10 is the Z-axis direction.
  • the X-axis direction, Y-axis direction, and Z-axis direction are orthogonal to each other.
  • each light source unit 10 has a light source board 1 and a plurality of light sources 2 .
  • the light source substrate 1 has a front surface 1FS and a back surface 1BS opposite to the front surface 1FS in the thickness direction (Z-axis direction).
  • a plurality of light sources 2 are provided on the surface 1FS of the light source substrate 1 (FIG. 3).
  • the plurality of light sources 2 are arranged in, for example, one row at predetermined intervals along the X-axis direction, which is the longitudinal direction of the light source substrate 1 .
  • the flexible film 30 extends along the XY plane and is provided on the surface 1FS side of the light source substrate 1 so as to cover the entire plurality of light source units 10 .
  • the plurality of light source units 10 may be fixed to the flexible film 30 by, for example, adhesion.
  • the relay substrate 20 is provided on the rear surface 1BS side of the light source substrate 1 .
  • the light emitting device 100 has a drive element 40 as shown in FIG.
  • the drive element 40 may be provided, for example, on the light source substrate 1 of each light source unit 10 or may be provided on the relay substrate 20 .
  • the light emitting device 100 may further include a spacer 6, a diffusion sheet 7, a wavelength conversion sheet 8, and an optical sheet group 9, as shown in FIG.
  • the plurality of light source units 10 are preferably arranged along the Y-axis direction, for example, spaced apart from each other.
  • the width W1 which is the dimension in the Y-axis direction of each light source unit 10
  • the interval W2 is preferably narrower than the interval W2 between the adjacent light source units 10.
  • eight light source units 10 are connected to one relay board 20, but the present disclosure is not limited to this. Seven or less light source units 10 may be connected to one relay board 20, or nine or more light source units 10 may be connected.
  • the light source unit 10 has a light source substrate 1, a plurality of light sources 2, wiring 4 and an insulating layer 4Z, and a resin layer 5, as shown in FIG.
  • the light source substrate 1 is, for example, an electrically insulating film-like member made of resin, and preferably has flexibility.
  • the light source substrate 1 is made of, for example, PI (polyimide), PET (polyethylene terephthalate), PC (polycarbonate), PEN (polyethylene naphthalate), PEI (polyetherimide), LCP (liquid crystal polymer), or resin made of fluorine resin. film can be used.
  • a metal base substrate such as aluminum (Al) having an insulating resin layer such as polyimide or epoxy formed on the surface thereof may be used.
  • a film substrate made of a glass-containing resin such as a glass epoxy resin typified by FR4 or a glass composite resin typified by CEM3 may be used.
  • a plurality of wirings 4 provided on an insulating layer 4Z and a plurality of light sources 2 are mounted on the surface 1FS of the light source substrate 1 .
  • a plurality of wirings 51 are formed on the back surface 1BS of the light source substrate 1 .
  • the plurality of wirings 51 are electrically connected to the wirings 4 via vias 10V, for example.
  • the via 10V can be formed by, for example, forming a via hole by selectively digging a predetermined region of the back surface 1BS of the light source substrate 1 by laser processing, and then filling the via hole with a conductive material. At that time, the wiring 4 formed on the surface 1FS serves as an etching stopper.
  • a plurality of light sources 2 are provided on the surface 1FS of the light source substrate 1 .
  • the plurality of light sources 2 are arranged in a row at predetermined intervals along the X-axis direction, which is the extending direction of the light source substrate 1, as shown in FIG. Note that the intervals between the plurality of light sources 2 are not limited to being constant, and can be arbitrarily set as desired. Further, in one light source substrate 1, a plurality of rows of the light sources 2 arranged in the X-axis direction may be arranged in a plurality of rows adjacent to each other in the Y-axis direction.
  • a plurality of wirings 4 having a predetermined pattern shape are formed on the surface 1FS of the light source substrate 1 so as to enable independent light emission control for each of one or more light sources 2 .
  • a plurality of wirings 4 enables local light emission control (local dimming) of a plurality of light sources 2 .
  • the drive element 40 controls the light emission intensity and lighting timing for each unit area A (AL, AC, AR) indicated by broken lines in FIG. 2, for example.
  • the drive element 40 is a drive IC that drives each light source 2, that is, turns it on and off.
  • the drive element 40 is preferably provided on at least one of the relay board 20 and the light source board 1 . In the configuration example of FIG.
  • the light source substrate 1 is provided with one driving element 40L and one driving element 40R, and the relay substrate 20 is provided with the driving element 40C.
  • the light source 2 provided in the unit area AL is connected to the driving element 40L through the wiring 4
  • the light source 2 provided in the unit area AC is connected to the driving element 40C through the wiring 4
  • the unit area AR A light source 2 is connected to the driving element 40R by a wiring 4.
  • the drive element 40L drives, for example, three light sources 2 provided in the unit area AL among the plurality of light sources 2 provided on the light source substrate 1
  • the drive element 40 ⁇ /b>C drives, for example, three light sources 2 provided in the unit area AC among the plurality of light sources 2 provided on the light source substrate 1 .
  • the driving element 40 ⁇ /b>R drives, for example, three light sources 2 provided in the unit area AR among the plurality of light sources 2 provided on the light source substrate 1 . Further, in the example shown in FIG. 2, three light sources 2 are arranged in one unit area A, but the present disclosure is not limited to this.
  • the number of light sources 2 included in one unit area A may be one, two, or four or more.
  • the wiring 4 is patterned using a photolithographic method after, for example, copper foil is pasted on the light source substrate 1 .
  • the wiring 4 may be patterned using photolithography after forming a metal film on the light source substrate 1 using plating or vacuum film forming technology.
  • the wiring 4 may be formed by a printing method such as screen printing or an inkjet method. Examples of the constituent material of the wiring 4 include copper (Cu), aluminum (Al), silver (Ag), and alloys thereof.
  • the resin layer 5 is, for example, a white resist layer.
  • the resin layer 5 has a relatively high reflectance with respect to light from the light source 2 and light wavelength-converted by the wavelength conversion sheet 8 .
  • white resist include inorganic materials such as titanium oxide (TiO 2 ) fine particles and barium sulfate (BaSO 4 ) fine particles, and organic materials such as porous acrylic resin fine particles and polycarbonate resin fine particles having countless pores for light scattering. is mentioned.
  • an epoxy-based resin can also be used as a constituent material of the resin layer 5.
  • the resin layer 5 may be made of resin containing fine particles of an inorganic material such as titanium oxide (TiO 2 ) fine particles or barium sulfate (BaSO 4 ) fine particles.
  • a flexible film 30 is adhered to an area of the surface of the resin layer 5 other than the area where the light source 2 is provided.
  • FIG. 4 is an enlarged sectional view showing one configuration example of the light source 2 shown in FIG. However, FIG. 4 also shows the flexible film 30 .
  • the light source 2 is a so-called direct potting light source, and has a light emitting element 21 and a sealing lens 22 .
  • the light-emitting element 21 has, for example, a semiconductor layer 23 containing a light-emitting body, and a reflective layer 25 arranged so as to face the semiconductor layer 23 and the transparent layer 24 in the Z-axis direction.
  • the transparent layer 24 is made of, for example, sapphire or silicon carbide (SiC).
  • the semiconductor layer 23 has, for example, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer stacked in this order from the transparent layer 24 side.
  • the n-type semiconductor layer is composed of, for example, an n-type nitride semiconductor (for example, n-type GaN).
  • the active layer is composed of, for example, a nitride semiconductor (eg, n-type GaN) having a quantum well structure.
  • the p-type semiconductor layer is composed of, for example, a p-type nitride semiconductor (eg, p-type GaN).
  • the semiconductor layer 23 is composed of, for example, a blue LED (Light Emitting Diode) that emits blue light (for example, a wavelength of 440 nm to 460 nm).
  • the reflective layer 25 is provided on the surface of the transparent layer 24 opposite to the semiconductor layer 23 .
  • the reflective layer 25 is made of a material with high reflectance.
  • the reflective layer 25 is specifically composed of a silver vapor deposition film, an aluminum vapor deposition film, a multi-layer reflective film, or the like. Examples of multilayer reflective films include DBRs (Distributed Bragg Reflectors).
  • the light LB emitted from the active layer of the semiconductor layer 23 is reflected by the reflective layer 25 and then enters the sealing lens 22 through the end surface 24T of the transparent layer 24. .
  • the light LB entering the sealing lens 22 is transmitted through the sealing lens 22 and emitted to the surroundings. Note that the light LB is subjected to an optical action when passing through the sealing lens 22 .
  • the sealing lens 22 is an optical member made of transparent resin such as silicone or acrylic.
  • the sealing lens 22 is configured to cover the entire light emitting element 21 and seal the light emitting element 21 .
  • the sealing lens 22 has a refractive index between the refractive index of the semiconductor layer 23 of the light emitting element 21 and the refractive index of air.
  • the sealing lens 22 protects the light emitting element 21 and improves the extraction efficiency of light emitted from the light emitting element 21 .
  • the outer shape of the sealing lens 22 is not particularly limited as long as it has an optical effect as a lens for taking out the light LB emitted from the light emitting element 21 .
  • the external shape of the sealing lens 22 is not limited to a shape including a spherical surface, and may be a shape including an aspherical surface.
  • the light distribution direction of the light LB emitted from the light emitting element 21 may be controlled by the sealing lens 22 .
  • the sealing lens 22 Since the light source 2 has a direct potting structure, it is easy to form the sealing lens 22 into a dome shape with an aspect ratio of 0.2 or more and 1 or less. Concerning the shape of the sealing lens 22, especially if it is a dome shape within the range of 0.4 to 0.6, luminance uniformity characteristics such as luminance unevenness are improved.
  • the aspect ratio is h/r, which is the ratio of the height h to the radius r of the dome-shaped lens. When the aspect ratio is 1, it becomes a hemispherical shape.
  • the wavelength conversion sheet 8 is arranged so as to face the plurality of light sources 2 .
  • FIG. 5 is an enlarged sectional view showing an enlarged part of the wavelength conversion sheet 8 shown in FIG.
  • the wavelength conversion sheet 8 contains, for example, a particulate wavelength conversion substance 81 .
  • the wavelength conversion substance 81 includes, for example, a fluorescent substance (fluorescent substance) such as a fluorescent pigment or a fluorescent dye, or a quantum dot. It wavelength-converts light into light with a different wavelength from the original wavelength and emits it.
  • the wavelength conversion substance 81 is drawn in a particulate form for the sake of simplicity, but the present disclosure is not limited to the wavelength conversion substance 81 in a particulate form.
  • the wavelength conversion material 81 contained in the wavelength conversion sheet 8 absorbs the blue light emitted from the light source 2 and converts part of it into red light (eg, wavelengths of 620 nm to 750 nm) or green light (eg, wavelengths of 495 nm to 570 nm). In this case, when the light from the light source 2 passes through the wavelength conversion sheet 8, red, green and blue lights are combined to generate white light.
  • the wavelength conversion substance 81 contained in the wavelength conversion sheet 8 may absorb blue light and partially convert it into yellow light. In this case, when the light from the light source 2 passes through the wavelength conversion sheet 8, yellow and blue lights are combined to generate white light.
  • the wavelength conversion substance 81 contained in the wavelength conversion sheet 8 preferably contains quantum dots.
  • a quantum dot is a particle with a long diameter of about 1 nm to 100 nm and has discrete energy levels. Since the energy state of a quantum dot depends on its size, it is possible to freely select the emission wavelength by changing the size. In addition, the emitted light of quantum dots has a narrow spectrum width. Combining light with such steep peaks expands the color gamut. Therefore, by using quantum dots as wavelength conversion substances, it is possible to easily expand the color gamut. Furthermore, quantum dots have high responsiveness, and the light from the light source 2 can be used efficiently. In addition, quantum dots are also highly stable.
  • Quantum dots are, for example, compounds of Group 12 elements and Group 16 elements, compounds of Group 13 elements and Group 16 elements, or compounds of Group 14 elements and Group 16 elements, such as CdSe, CdTe, ZnS, CdS , PbS, PbSe or CdHgTe.
  • Cd-free quantum dots due to environmental regulations such as RoHS regulations, and core materials include InP, perovskite CsPbBr3, Zn (Te, Se), and one of the I-III-VI group ternary systems.
  • the diffusion sheet 7 is an optical member arranged between the wavelength conversion sheet 8 and the multiple light sources 2 .
  • the diffusion sheet 7 is for uniformizing the angular distribution of incident light.
  • the diffusion sheet 7 may be one diffusion plate or one diffusion sheet, or two or more diffusion plates or two or more diffusion sheets.
  • the diffusion sheet 7 may be a plate-shaped optical member having a constant thickness and a constant hardness.
  • a spacer 6 is a member for maintaining an optical distance between the light source 2 and the diffusion sheet 7 .
  • the optical sheet group 9 is an optical member arranged on the light exit surface side of the wavelength conversion sheet 8 , that is, on the side opposite to the diffusion sheet 7 when viewed from the wavelength conversion sheet 8 .
  • the optical sheet group 9 includes, for example, a sheet or film for improving brightness.
  • the optical sheet group 9 is obtained by laminating an optical sheet 91 and an optical sheet 92 on the wavelength conversion sheet 8 in this order.
  • the optical sheet 91 and the optical sheet 92 may be joined together and integrated.
  • the optical sheet 91 is, for example, a prism sheet.
  • the optical sheet 92 is, for example, a reflective polarizing film such as DBEF (Dual Brightness Enhancement Film).
  • the number of optical sheets forming the optical sheet group 9 and the types and stacking order of the plurality of optical sheets forming the optical sheet group 9 can be arbitrarily selected.
  • a flexible film 30 is selectively provided on the resin layer 5 . More specifically, the flexible film 30 is provided in a region of the surface 1FS other than the region where the plurality of light sources 2 are provided.
  • the flexible film 30 is provided with openings 30K in regions overlapping the plurality of light sources 2 in the Z-axis direction.
  • the opening 30K is a hole for arranging the light source 2.
  • the resin layer 5 is exposed in the area where the opening 30K is formed, and the exposed resin layer 5 is covered with the sealing lens 22 of the light source 2. state.
  • the flexible film 30 is bonded to the surface of the resin layer 5 extending on the XY plane. Specifically, it is fixed by an adhesive or the like.
  • the flexible film 30 is, for example, a reflective sheet, and has high reflectance with respect to, for example, the light LB from the light source 2 and the light LY wavelength-converted by the wavelength conversion sheet 8 .
  • the flexible film 30 may contain titanium oxide or Ag (silver) as materials having high reflectance.
  • the flexible film 30 is specifically a white resist layer, for example. Examples of white resist include inorganic materials such as titanium oxide (TiO 2 ) fine particles and barium sulfate (BaSO 4 ) fine particles, and organic materials such as porous acrylic resin fine particles and polycarbonate resin fine particles having countless pores for light scattering. is mentioned. Epoxy-based resin may also be used as the constituent material of the flexible film 30 .
  • the flexible film 30 may be made of a resin containing fine particles of an inorganic material such as titanium oxide (TiO 2 ) fine particles or barium sulfate (BaSO 4 ) fine particles.
  • the flexible film 30 is a reflective sheet, the return light reflected by the wavelength conversion sheet 8 and the optical sheet group 9 among the lights LB and LY is reflected by the flexible film 30. Used as recycled light to generate white light. Therefore, the brightness of the light emitting device 100 as a whole can be improved.
  • the relay board 20 is a member that electrically and mechanically connects the plurality of light source units 10 and performs relay between the plurality of light source units 10 and a power supply circuit, a drive circuit, and the like.
  • the relay board 20 may be made of a flexible film member, for example, like the light source board 1 .
  • the same material as that of the light source substrate 1 can be used. That is, the relay substrate 20 is made of, for example, PI (polyimide), PET (polyethylene terephthalate), PC (polycarbonate), PEN (polyethylene naphthalate), PEI (polyetherimide), LCP (liquid crystal polymer), or fluorine resin. Any resin film can be used.
  • a metal base substrate such as aluminum (Al) having an insulating resin layer such as polyimide or epoxy formed on the surface thereof may be used.
  • a film base material made of a glass-containing resin such as a glass epoxy resin typified by FR4 or a glass composite resin typified by CEM3 may be used.
  • a plurality of wirings 52 are formed on the surface of the relay substrate 20 , that is, the surface facing the light source substrate 1 .
  • a plurality of wirings 53 are formed on the rear surface of the relay substrate 20 , that is, the surface opposite to the light source substrate 1 .
  • the wiring 52 and the wiring 53 are electrically connected to each other through the via 20V, for example.
  • the relay board 20 is joined to each of the plurality of light source units 10 via the conductive material layer 54 .
  • the wiring 51 and the wiring 52 facing each other are joined so as to sandwich the conductive material layer 54 .
  • the plurality of light source units 10 and the relay board 20 are preferably bonded to each other at a plurality of locations via the conductive material layers 54 . This is because each light source unit 10 and the relay board 20 are connected to each other at multiple points, so that each light source unit is held more stably with respect to the relay board 20 . Further, since a plurality of channels such as signal transmission paths and power supply paths between each light source unit 10 and the relay board 20 can be secured, more functions can be provided.
  • a conductive paste and solder, or an anisotropic conductive adhesive (ACA) is preferably used as the constituent material of the conductive material layer 54 .
  • part of the blue light LB emitted from the light source 2 is wavelength-converted (light-emitted) by the wavelength-converting substance contained in the wavelength-converting sheet 8. becomes light LY.
  • the wavelength-converted light LY is, for example, red light and green light, or yellow light.
  • the wavelength-converted light LY is reflected uniformly in all directions on average from the wavelength conversion sheet 8 and emitted.
  • the blue light LB that is not absorbed by the wavelength conversion material 81 is also emitted uniformly in all directions from the wavelength conversion sheet 8 on average.
  • the blue light LB that is not absorbed by the wavelength conversion material 81 (FIG. 5) is emitted from the wavelength conversion sheet 8 as it is.
  • the forward light of the blue light LB that has not been wavelength-converted and the forward light of the wavelength-converted light LY are synthesized to generate white light, which is emitted forward (outside the light source device). .
  • a plurality of light source units each having a plurality of light sources are connected to one relay substrate 20 . Therefore, the arrangement position can be finely adjusted for each of the plurality of light source units 10, so that the arrangement position of each light source 2 can be easily optimized. It is also advantageous in reducing the weight of the light emitting device 100 . That is, by connecting a plurality of light source units 10 with one relay board 20, a plurality of light sources 2 are provided compared to a configuration in which a plurality of light sources are arranged on, for example, one board-shaped board. At the same time, the amount of material used for the light source substrate 1 can be reduced, and weight reduction and cost reduction can be achieved. Therefore, according to the light-emitting device 100, it is possible to realize a high-definition light emission luminance distribution while reducing weight and cost.
  • a plurality of light source units 10 are arranged along the Y-axis direction while being spaced apart from each other. Therefore, compared to a configuration in which a plurality of light sources 2 are arranged on one board-shaped light source substrate, the amount of material used for the light source substrate 1 can be reduced while having a plurality of light sources 2. Weight reduction and cost reduction can be achieved.
  • the light emitting device 100 of the present embodiment if the width W1 of the light source unit 10 in the Y-axis direction is made narrower than the interval W2 between the plurality of light source units 10 adjacent to each other in the Y-axis direction, the light emitting device When arranging a predetermined number of light sources 2 in the entire 100, compared to the case where the width W1 is equal to or greater than the interval W2, the amount of material used for the light source substrate 1 can be further reduced, further reducing weight and cost. can be planned.
  • the plurality of light sources 2 are arranged in a line along the X-axis direction on the light source substrate 1 . For this reason, when arranging a predetermined number of light sources 2 in the light emitting device 100 as a whole, the amount of material used for the light source substrate 1 can be further reduced compared to, for example, the case where the light sources 2 are arranged in a plurality of rows. Cost can be reduced.
  • the plurality of light source units 10 and the relay board 20 are joined together with the conductive material layer 54 interposed therebetween.
  • the connection portions between the plurality of light source units 10 and the relay board 20 can be simplified, made smaller, thinner, and lighter. Therefore, compared with the case of using a connector, each light source unit 10 can be miniaturized, and the number of light sources 2 per unit area can be increased. That is, high integration of the plurality of light sources 2 can be realized.
  • the easiness of manufacture is also improved.
  • the plurality of light source units 10 and the relay substrate 20 are joined together at a plurality of locations by the conductive material layers 54, respectively.
  • the plurality of light source units 10 and the relay board 20 are more stably held with respect to the relay board 20 .
  • the light emitting device 100 can have more functions.
  • the light source substrate 1 is flexible, or both the light source substrate 1 and the relay substrate 20 are flexible. It can be used preferably.
  • a plurality of light source units 10 are fixed by one flexible film 30 and integrated. For this reason, for example, the handling of the semi-finished product during the manufacturing process becomes easy, and for example, the work of bonding the plurality of light source units 10 to the relay substrate 20 can be performed collectively, thereby improving the ease of manufacture.
  • the flexible film 30 is bonded to the surface of the resin layer 5 of the light source unit 10, which faces the XY plane. Therefore, the plurality of light source units 10 are held more stably with respect to the flexible film 30 .
  • the flexible film 30 has an opening 30K in a region overlapping the light source 2 in the Z-axis direction. Therefore, even when the flexible film 30 is arranged on the light emitting side of the light source 2, it is possible to join the plurality of light source units 10 while avoiding the area where the light source 2 exists. Therefore, it is possible to prevent the flexible film 30 from hindering the progress of the emitted light.
  • driving elements for driving the plurality of light sources 2 are provided on at least one of the relay substrate 20 and the light source substrate 1 . Therefore, compared to the case where the drive element 40 is provided outside the light emitting device 100, the plurality of light sources 2 can be driven at a higher speed.
  • the driving element 40 is provided on the light source substrate 1, and among the plurality of light sources 2 provided on the light source substrate 1, some of the light sources 2 near the driving element 40 are driven. 2 can be further enhanced.
  • FIG. 6 is a plan view showing a configuration example of a light emitting device 100-1 according to the first modification of the first embodiment.
  • the light emitting device 100-1 as the first modified example, all the drive elements 40 are provided on the relay board 20.
  • FIG. 6 the plurality of light sources 2 provided in both of the two light source units 10 adjacent in the Y-axis direction are driven by the drive element 40 provided between the two light source units 10. It's becoming Specifically, for example, as shown in FIG. 6, the unit areas AL, AC, and AR are set so as to straddle both the light source unit 10A and the light source unit 10B.
  • the plurality of light sources 2 provided in the unit area AL are connected to the drive element 40L by the wiring 4, and driven and controlled by the drive element 40L.
  • the light source 2 provided in the unit area AC is connected to the driving element 40C by the wiring 4, and is driven and controlled by the driving element 40C.
  • the light source 2 provided in the unit area AR is connected to the driving element 40R by the wiring 4, and driven and controlled by the driving element 40R.
  • the number of light sources 2 included in one unit area AL, AC, AR may be one, two, or four or more.
  • FIG. 7 illustrates the appearance of the display device 101 according to the second embodiment of the present technology.
  • a display device 101 includes a light-emitting device 100 and is used, for example, as a flat-screen television device, and has a configuration in which a flat plate-like main body portion 102 for image display is supported by a stand 103 .
  • the display device 101 is used as a stationary type by placing it on a horizontal surface such as a floor, a shelf, or a stand with the stand 103 attached to the main body 102 . It can also be used as a wall-mounted type.
  • FIG. 8 is an exploded view of the main body 102 shown in FIG.
  • the main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side).
  • the front exterior member 111 is a frame-shaped member that covers the front peripheral edge of the panel module 112, and a pair of speakers 114 are arranged below.
  • the panel module 112 is fixed to the front exterior member 111, and a power board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed.
  • the mounting hardware 117 is for mounting a wall bracket, mounting a substrate, etc., and mounting the stand 103 .
  • the rear exterior member 113 covers the rear and side surfaces of the panel module 112 .
  • FIG. 9 is an exploded view of the panel module 112 shown in FIG.
  • the panel module 112 includes, for example, a front housing (top chassis) 121, a liquid crystal panel 122, a frame member (middle chassis) 123, a light emitting device 100, and a rear housing (back chassis) from the front side (viewer side). 124 and a timing controller board 127 in this order.
  • the front housing 121 is a frame-shaped metal component that covers the front periphery of the liquid crystal panel 122 .
  • the liquid crystal panel 122 has, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as COF (Chip On Film) connecting these.
  • the frame-shaped member 123 is a frame-shaped resin part that holds the liquid crystal panel 122 .
  • the rear housing 124 is a metal component made of iron (Fe) or the like, which accommodates the liquid crystal panel 122 , the frame member 123 and the light emitting device 100 .
  • a timing controller board 127 is also mounted on the rear surface of the rear housing 124 .
  • FIG. 10 is a schematic plan view showing a more specific configuration example of the panel module 112.
  • a total of 12 light source units 10 are arranged in an area corresponding to the display area of the liquid crystal panel 122 extending in the H direction (horizontal direction) and V direction (vertical direction).
  • the longitudinal direction of the plurality of light source substrates 1 is the H direction
  • the longitudinal direction of the relay substrate 20 is the V direction. Note that the illustration of the flexible film 30 is omitted in FIG. As shown in FIG.
  • the timing controller board 127 is provided, for example, in the central region of the light emitting device 100. As shown in FIG. The timing controller board 127 and the plurality of light source units 10 (10-1 to 10-12) are connected by cables CB (CB1 to CB12) and connectors CN (CN1 to CN12), respectively.
  • an image is displayed by selectively transmitting light from the light emitting device 100 through the liquid crystal panel 122 .
  • the light emitting device 100 having excellent light emission controllability and improved light emission efficiency is provided, improvement in display quality of the display device 101 can be expected.
  • FIG. 11 is a schematic plan view showing a panel module 112A as a first modified example of the second embodiment.
  • the timing controller board 127 and all the light source units 10 are individually and directly connected by cables CB and connectors CN.
  • the relay substrates 20 of two light source units 10 adjacent in the V direction are electrically connected to form six light source unit pairs 10P.
  • light source units 10-1 to 10-6 and light source units 10-7 to 10-12 are connected to form light source unit pairs 10P1 to 10P6, respectively.
  • the connection between the relay boards 20 can be performed by, for example, a board-to-board connector, or a flexible printed wiring board (FPC) and an anisotropic conductive adhesive (ACA).
  • the timing controller board 127 and the six light source unit pairs 10P1-10P6 are connected by cables CB1-CB6 and connectors CN1-CN6, respectively.
  • the panel module 112A of FIG. 11 compared to the panel module 112 (FIG. 10) of the second embodiment, when using the same number of light source units 10, the number of cables CB and connectors CN can be reduced. can.
  • FIG. 12 is a schematic plan view showing a light-emitting device 100B forming a panel module 112B as a second modification of the second embodiment.
  • the light emitting device 100B of the panel module 112B of this modified example four lines of the light source units 10 are arranged in the H direction and two lines of the light source units 10 are arranged in the V direction.
  • the longitudinal direction of the plurality of light source boards 1 is the V direction
  • the longitudinal direction of the relay board 20 is the H direction.
  • the relay boards 20 of two light source units 10 adjacent in the H direction may be electrically connected to form a total of four light source unit pairs 10P1 to 10P4.
  • a light source unit pair 10P1 in which the relay boards 20 of the light source units 10-1 and 10-2 are connected to each other, and a light source in which the relay boards 20 of the light source units 10-3 to 10-4 are connected to each other.
  • a light source unit pair 10P3 formed by connecting the unit pair 10P2 and the relay boards 20 of the light source units 10-5 to 10-6, and a light source formed by connecting the relay boards 20 of the light source units 10-7 to 10-8.
  • a unit pair 10P4 may be formed. The connection between the relay boards 20 is as described above.
  • the timing controller board 127 and the light source unit pairs 10P1 to 10P4 are connected by connectors CN1 to CN4.
  • the relay boards 20 of the four light source units 10-1 to 10-4 arranged in the H direction are electrically connected, and the relay boards 20 of the four light source units 10-5 to 10-8 are electrically connected. may be electrically connected.
  • the timing controller board 127 and all the light source units 10 may be individually and directly connected by cables CB and connectors CN.
  • FIG. 13 is a schematic plan view showing a light emitting device 100C forming a panel module 112C as a third modified example of the second embodiment.
  • the light emitting device 100C of the panel module 112C of this modified example six rows of the light source units 10 are arranged in the H direction and two rows of the light source units 10 are arranged in the V direction, similarly to the light emitting device 100 of the panel module 112 of FIG. I'm trying
  • the longitudinal direction of the plurality of light source substrates 1 is the H direction
  • the longitudinal direction of the relay substrate 20 is the V direction.
  • the relay board 20 is provided so as to straddle the two light source units 10 at the boundary between the two light source units 10 adjacent in the H direction.
  • the relay board 20 provided at the boundary between two adjacent light source units 10 is shared by the two light source units 10 .
  • the number of relay boards 20 can be reduced when using the same number of light source units 10 as compared with the panel module 112 (FIG. 10) of the second embodiment.
  • FIG. 14 is a cross-sectional view showing an enlarged part of a light emitting device 100D as Modification 3-1 of the present disclosure.
  • the light emitting element 21 is sealed by the sealing lens 22 in the first embodiment, the present disclosure is not limited to this.
  • 100 A of light-emitting devices are equipped with 2 A of light sources instead of the light source 2.
  • FIG. The light source 2A has a light emitting element 21A instead of the light emitting element 21 and a cap lens 22A instead of the sealing lens 22. As shown in FIG.
  • the light emitting element 21A is, for example, a packaged blue LED. Specifically, the light emitting element 21A has a light emitting layer 26, a base portion 27, and a sealing material 28. As shown in FIG.
  • the base 27 has a recessed accommodating portion.
  • the light-emitting layer 26 is arranged on the bottom surface of the housing portion of the base portion 27 .
  • a housing portion of the base portion 27 is filled with a sealing material 28 .
  • the light-emitting layer 26 is, for example, a point light source, and is specifically composed of a blue LED.
  • the base portion 27 is mounted on the light source substrate 1 by soldering or the like via an external electrode such as a lead frame.
  • the surface of the housing portion of the base portion 27 has a high reflectance with respect to the light from the light emitting layer 26 .
  • the surface of the housing portion of the base 27 may contain, for example, Ag as a highly reflective material.
  • the encapsulant 28 is made of transparent resin such as silicone or acryl.
  • the cap lens 22A is spaced apart from the light emitting element 21A and arranged directly above the light emitting element 21A. At the center position of the cap lens 22A, an incident surface 22A1 having a concave shape facing the light emitting element 21A is provided so as to face the light emitting element 21A in the Z-axis direction.
  • the cap lens 22A has an exit surface 22A2 that faces the diffusion sheet 7 and has, for example, a convex shape.
  • the incident surface 22A1 and the exit surface 22A2 respectively exert a diffusing action on the blue light LB from the light emitting element 21A.
  • the blue light emitted from the light emitting element 21A is diffused by the cap lens 22A and the diffusion sheet 7, and then converted from blue light to white light when passing through the wavelength conversion sheet 8.
  • the Rukoto The white light converted from the blue light is further improved in brightness and made uniform by the optical sheet group 9, and is irradiated to a liquid crystal display panel or the like.
  • the packaged blue LED is used as the light-emitting element 21A, but the present disclosure is not limited to this.
  • a packaged white LED may be employed instead of the packaged blue LED.
  • the light-emitting element 21B has a light-emitting layer 26 made of, for example, a blue LED, a base portion 27, and a sealing material 29 made of a transparent resin containing a wavelength conversion substance. Note that the wavelength conversion sheet 8 is not required in the light emitting device 100E. Therefore, compared with the light-emitting device 100D of FIG. 14, it is advantageous for thinning the overall configuration.
  • the light-emitting device of the present disclosure is not limited to arranging a lens on the emission side of the light-emitting element.
  • a plurality of light-emitting elements 21C which are packaged blue LEDs, for example, may be arranged without providing various lenses.
  • the light-emitting element 21C has substantially the same configuration as the light-emitting element 21A shown in FIG.
  • the blue light emitted from the light-emitting element 21C is diffused by the diffusion sheet 7 and then converted from blue light to white light when passing through the wavelength conversion sheet 8. .
  • the white light converted from the blue light is further improved in brightness and made uniform by the optical sheet group 9, and is irradiated to a liquid crystal display panel or the like.
  • the packaged blue LED is used as the light-emitting element 21C, but the present disclosure is not limited to this.
  • a packaged white LED may be employed instead of a packaged blue LED, like a light emitting element 21D of a light emitting device 100G as Modified Example 3-4 of the present disclosure shown in FIG.
  • the light-emitting element 21D has substantially the same configuration as the light-emitting element 21B shown in FIG. 11, and is composed of, for example, a light-emitting layer 26 composed of a blue LED, a base portion 27, and a transparent resin containing a wavelength conversion substance. and a sealing material 29 .
  • the wavelength conversion sheet 8 is not required in the light emitting device 100G. Therefore, compared with the light-emitting device 100F of FIG. 16, it is advantageous in reducing the thickness of the overall structure.
  • the configuration of the light emitting element 21E is substantially the same as the configuration of the light emitting element 21C, except that the shape of the sealing material 28 is different.
  • the sealing member 28 has a dome shape, so that the sealing member 28 can act as a lens. Therefore, desired alignment performance can be easily obtained.
  • the configuration of the light emitting element 21F is substantially the same as the configuration of the light emitting element 21D, except that the shape of the sealing material 28 is different.
  • the light-emitting element 21F has a light-emitting layer 26 made of, for example, a blue LED, a base portion 27, and a sealing material 29 made of a transparent resin containing a wavelength conversion substance.
  • the sealing member 29 has a dome shape, so that the sealing member 29 can act as a lens. Therefore, desired alignment performance can be easily obtained.
  • FIG. 20 shows a cross-sectional configuration of a light-emitting device 100J as Modification 3-7 of the present disclosure, and corresponds to FIG. 3 showing the light-emitting device 100 of the first embodiment.
  • the insulating layer 1Z is formed on the back surface 1BS of the light source substrate 1, and the insulating layer 20Z is formed on the surface of the relay substrate 20 as well. Further, in the light emitting device 100H, the back surface 1BS of the light source substrate 1 and the front surface of the relay substrate 20 are directly or indirectly bonded by the adhesive layer AD.
  • an anisotropic conductive adhesive is preferably used as the constituent material of the conductive material layer 54 .
  • the adhesive layer AD can also be made of an anisotropic conductive adhesive like the conductive material layer 54 .
  • the adhesive layer AD and the conductive material layer 54 can be formed simultaneously using the same anisotropic conductive adhesive.
  • the anisotropic conductive adhesive is an insulating adhesive in which a plurality of conductive particles are dispersed. Therefore, in the anisotropic conductive adhesive sandwiched between the wiring 51 and the wiring 52 and pressed, the plurality of conductive particles are electrically connected to form the conductive material layer 54 .
  • the anisotropic conductive adhesive in the region other than the region sandwiched between the wiring 51 and the wiring 52 constitutes an adhesive layer AD exhibiting insulation.
  • the insulating layer 1Z and the insulating layer 20Z may not be provided in the light emitting device 100H.
  • FIG. 21 is a cross-sectional view showing the detailed configuration of the conductive material layer 54 of the light emitting device 100J.
  • the conductive material layer 54 has bumps 61 , bumps 62 and conductive material 63 .
  • the bump 61 is provided on the wiring 51 .
  • the bump 62 is provided on the wiring 52 .
  • Conductive material 63 is sandwiched between bumps 61 and 62 .
  • conductive paste and solder containing at least one of Ag, Cu, Ni and Sn, and anisotropic conductive adhesive are suitable. Used.
  • 22A to 22C are cross-sectional views showing the process of forming the conductive material layer 54 in the light emitting device 100H.
  • the wiring 51 of the light source unit 10 and the wiring 52 of the relay board 20 are made to face each other.
  • bumps 61 are formed to cover the wirings 51 and bumps 62 are formed to cover the wirings 52 .
  • an anisotropic conductive adhesive 63Z is formed to cover the bumps 61.
  • An anisotropic conductive adhesive 63Z may be formed so as to cover the bumps 62.
  • an anisotropic conductive adhesive 63Z is pressed between the bumps 61 and 62 to form the conductive material 63, and the light source unit 10 and the relay substrate 20 are joined. As described above, the conductive material layer 54 is formed, and the connecting portion 50 is completed.
  • the bumps 61 and the bumps 62 are formed on both the light source unit 10 and the relay substrate 20. Only one of the substrates 20 may be provided with bumps.
  • the bumps 61 are provided only on the wirings 51 of the light source unit 10 so that the wirings 52 of the relay substrate 20 are in direct contact with the conductive material layer 54.
  • the bumps 62 may be provided only on the wirings 52 of the relay substrate 20 so that the wirings 51 of the light source unit 10 are in direct contact with the conductive material layer 54 .
  • the depth D20Z is the difference in the Z-axis direction between the upper surface of the insulating layer 20Z and the upper surface of the wiring 52.
  • the upper surface of the insulating layer 20Z refers to the surface of the insulating layer 20Z that faces the insulating layer 1Z.
  • the upper surface of the wiring 52 refers to the surface of the wiring 52 that faces the bump 61 .
  • height H61 is the difference in the Z-axis direction between the position (tip) of the lower surface of the bump 61 that is closest to the upper surface of the wiring 52 and the lower surface of the insulating layer 1Z.
  • the lower surface of the bump 61 refers to the surface of the bump 61 facing the wiring 52 .
  • the lower surface of the insulating layer 1Z refers to the surface of the insulating layer 1Z that faces the insulating layer 20Z.
  • the height H63 is the thickness of the portion of the conductive material 63 sandwiched between the tip of the bump 61 and the upper surface of the wiring 52 .
  • the distance in the thickness direction (Z-axis direction) between the light source substrate 1 of the light source unit 10 and the relay substrate 20 can be shortened. Therefore, the thickness of the light emitting device 100JA is made thinner than the thickness of the light emitting device 100J.
  • the step of forming the bumps 62 can be omitted in the light emitting device 100JA, the manufacturing process can be simplified as compared with the light emitting device 100H.
  • 24A to 24C are cross-sectional views showing the process of forming the connecting portion 50 of the light emitting device 100JA.
  • the wiring 51 of the light source unit 10 and the wiring 52 of the relay board 20 are made to face each other.
  • bumps 61 are formed to cover the wirings 51 .
  • an anisotropic conductive adhesive 63Z is formed to cover the bumps 61.
  • the light source unit 10 and the relay board 20 are joined by pressing so that the anisotropic conductive adhesive 63Z is sandwiched between the bumps 61 and 62 .
  • the conductive material layer 54 is formed, and the connecting portion 50 is completed.
  • both the surface of the bump 61 and the surface of the bump 62 are convex. Therefore, in forming the conductive material 63, the conductive particles contained in the anisotropic conductive adhesive 63Z pressed between the bumps 61 and 62 are removed from the region between the bumps 61 and 62. Easy to flow out.
  • the conductive particles contained in the anisotropic conductive adhesive 63Z pressed between the bump 61 and the upper surface of the wiring 52 relatively flow out from the region between the bump 61 and the upper surface of the wiring 52 to the outside. hard to do. The same applies to the Y-axis direction.
  • the wiring 51 is provided in the light emitting device 100JA of FIG. can be
  • the bumps 64 are provided so as to fill the via holes 10VH penetrating the light source substrate 1 and protrude from the rear surface 1BS of the light source substrate 1 toward the relay substrate 20 . By doing so, the configuration of the light-emitting device 100JB is simpler and thinner than that of the light-emitting device 100JA.
  • the dimension 61X in the X-axis direction and the dimension 61Y in the Y-axis direction of the bump 61 correspond to the X-axis It is preferably smaller than the directional dimension 52X and the Y dimension 52Y.
  • FIG. 26 is a schematic plan view schematically showing an example of the positional relationship between the bump 61 and the exposed portion of the wiring 52 in the XY plane.
  • the dimension 52X is preferably 1.5 to 3 times the dimension 61X
  • the dimension 52Y is preferably 1.5 to 3 times the dimension 61Y.
  • the planar shape of the bump 61 and the planar shape of the exposed portion of the wiring 52 are not limited to a substantially square shape, and may be a substantially rectangular shape. Alternatively, the planar shape thereof may be a rectangular shape with rounded corners, a substantially circular shape, or a substantially elliptical shape.
  • the ratio of the dimension 52X to the dimension 61X depends on the arrangement density of the plurality of connection parts 50 in the XY plane (the number of connection parts 50 per unit area) and the arrangement position of the connection parts 50. and the ratio of dimension 52Y to dimension 61Y may be changed. For example, among the light emitting regions along the XY plane of the light emitting devices 100JA and 100JB, in a region with a relatively low arrangement density of the connection portions 50, compared to a region with a relatively high arrangement density of the connection portions 50, The ratio of dimension 52X and the ratio of dimension 52Y to dimension 61Y may be increased.
  • the ratio of the dimension 52X to the dimension 61X and the ratio of the dimension 52Y to the dimension 61Y are made relatively small in the connection portion 50 located near the center position of the relay board 20 in the Y-axis direction. At the connecting portions 50 located near the ends, the ratio of the dimension 52X to the dimension 61X and the ratio of the dimension 52Y to the dimension 61Y may be relatively large.
  • FIG. 27 shows a cross-sectional configuration of a light emitting device 100K as Modification 3-8 of the present disclosure, and corresponds to FIG. 3 showing the light emitting device 100 of the first embodiment.
  • the insulating layer 1Z is formed on the back surface 1BS of the light source substrate 1, and the insulating layer 20Z is formed on the surface of the relay substrate 20 as well.
  • conductive paste and solder containing Ag or Cu are preferably used as the constituent material of the conductive material layer 54 .
  • the display device 101 including the liquid crystal panel 122 has been described as an example in the second embodiment, the present disclosure is not limited to this. That is, in the display device 101, the light emitting device 100 is used as the backlight of the liquid crystal panel 122, but the light emitting device 100 may be used as the display panel.
  • FIG. 28 schematically shows a display device 201 having a display panel 200.
  • the display device 201 includes a display panel 210 and a control circuit 220 that drives and controls the display panel 210 .
  • the display device 201 is a so-called LED display, and uses LEDs as display pixels. That is, the light source 2 of the light emitting device 100 is used as a display pixel.
  • the display panel 210 is formed by stacking a mounting substrate 210A including the light emitting device 100 and a counter substrate 210B.
  • the surface of the counter substrate 210B (the surface opposite to the mounting substrate 210A) serves as an image display surface, and has a display area in the center and a frame area as a non-display area around it.
  • the counter substrate 210B is arranged, for example, at a position facing the mounting substrate 210A with a predetermined gap therebetween. Note that the counter substrate 210B may be in contact with the upper surface of the mounting substrate 210A.
  • the counter substrate 210B has, for example, a light-transmitting substrate that transmits visible light, such as a glass substrate, a transparent resin substrate, or a transparent resin film.
  • the light source is not limited to either a white light source or a blue light source, but may be a light source that emits other colors such as a red light source or a green light source.
  • the flexible film 30 is attached to the light emitting surface side of each light source unit 10, and the plurality of light source units 10 are fixed to the flexible film 30.
  • a flexible film 30 may be attached to the back surface opposite to the light emitting surface of the .
  • the present technology can take the following configurations.
  • a light emitting device comprising: a relay member electrically connected to each of the plurality of light source units.
  • the drive element is provided on the relay member, and is used to drive a first light source in a first light source unit among the plurality of light source units and a second light source in a second light source unit among the plurality of light source units.
  • the light-emitting device according to (10) above which is adapted to drive both.
  • the light emitting device according to any one of (1) to (13) above wherein the plurality of light source units and the relay member are respectively joined at a plurality of locations.
  • each of the plurality of light sources is a white light source, or includes a red light source, a green light source, and a blue light source.
  • the light source is a blue light source
  • the wavelength conversion member includes a quantum dot.
  • a display device comprising: a relay member electrically connected to each of the plurality of light source units.
  • a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate; and a flexible sheet member to which the plurality of light source units are fixed.
  • 20) further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively; The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
  • the connecting portion includes a first bump formed on the light source unit, a second bump formed on the relay member and facing the first bump in the thickness direction, the first bump and the second bump.
  • the light-emitting device according to any one of the above (1) to (18), further comprising a conductive material sandwiched between and. (21) further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
  • the plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
  • the connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction,
  • the light-emitting device according to any one of (1) to (18) above, including a conductive material sandwiched between the bump and the pad.
  • each of the plurality of light source units further includes conductive vias that are connected to the plurality of light sources and penetrate the light source substrate in the thickness direction of the light source substrate.
  • the bump is provided to cover the conductive via.
  • the dimension of the bump in the first direction is smaller than the dimension of the pad in the first direction;
  • connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction,

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Provided is a light-emitting device that is lighter-weight but still achieves excellent light-emission performance. According to the present invention, a light source device has a plurality of light source units and a relay member. The plurality of light source units each have a light source substrate that extends in a first direction and a plurality of light sources that are arranged on the light source substrate along the first direction. The relay member is electrically connected to each of the plurality of light source units.

Description

発光装置および表示装置Light emitting device and display device
 本開示は、面光源に好適な発光装置、および、その発光装置による照明光を用いて画像表示を行う表示装置に関する。 The present disclosure relates to a light-emitting device suitable for a surface light source and a display device that displays an image using illumination light from the light-emitting device.
 これまでに、例えば液晶表示装置のバックライトとして、LED(Light Emitting Diode)を光源とした光源装置が用いられている(例えば特許文献1,2参照)。 Until now, light source devices using LEDs (Light Emitting Diodes) as light sources have been used, for example, as backlights for liquid crystal display devices (see Patent Documents 1 and 2, for example).
特開2012-203997号公報JP 2012-203997 A 国際公開2020-039721号明細書International Publication No. 2020-039721
 ところで、最近では、複数の光源を高集積化することで、より高精細の発光輝度分布を実現できる発光装置が求められている。 By the way, recently, there is a demand for a light-emitting device capable of realizing a more precise light emission luminance distribution by highly integrating a plurality of light sources.
 したがって、優れた発光性能を発揮し得る発光装置、およびそれを備えた表示装置が望まれる。 Therefore, a light-emitting device capable of exhibiting excellent light-emitting performance and a display device including the same are desired.
 本開示の一実施形態としての発光装置は、複数の光源ユニットと、中継部材とを有する。複数の光源ユニットは、第1方向に延在する光源基板と、その光源基板に第1方向に沿って配列された複数の光源とをそれぞれ有する。中継部材は、複数の光源ユニットの各々と電気的に接続されている。 A light emitting device as an embodiment of the present disclosure has a plurality of light source units and a relay member. The plurality of light source units each have a light source substrate extending in the first direction and a plurality of light sources arranged along the first direction on the light source substrate. The relay member is electrically connected to each of the plurality of light source units.
 本開示の一実施形態としての発光装置では、複数の光源ユニットごとに配置位置を微調整することができるので、各光源の配置位置の最適化が容易になされ得る。また、軽量化にも有利である。 In the light emitting device as an embodiment of the present disclosure, the arrangement position of each light source unit can be finely adjusted, so the arrangement position of each light source can be easily optimized. It is also advantageous for weight reduction.
本開示の第1の実施の形態に係る発光装置を第1の方向から眺めた様子を表す第1の斜視図である。1 is a first perspective view showing a state in which a light emitting device according to a first embodiment of the present disclosure is viewed from a first direction; FIG. 図1Aに示した発光装置を第2の方向から眺めた様子を表す第2の斜視図である。FIG. 1B is a second perspective view showing a state in which the light emitting device shown in FIG. 1A is viewed from a second direction; 図1に示した発光装置の平面構成を表す平面図である。2 is a plan view showing a planar configuration of the light emitting device shown in FIG. 1; FIG. 図1に示した発光装置の一部の断面構成を表す断面図である。2 is a cross-sectional view showing a cross-sectional configuration of part of the light emitting device shown in FIG. 1; FIG. 図1に示した光源の一構成例を表す拡大断面図である。2 is an enlarged cross-sectional view showing one configuration example of the light source shown in FIG. 1; FIG. 図1に示した波長変換シートの一構成例を示す拡大断面図である。2 is an enlarged cross-sectional view showing one configuration example of the wavelength conversion sheet shown in FIG. 1. FIG. 第1の実施の形態の第1の変形例に係る光源装置の一構成例を示す平面図である。It is a top view which shows one structural example of the light source device which concerns on the 1st modification of 1st Embodiment. 本開示の第2の実施の形態に係る表示装置の外観を表す斜視図である。FIG. 7 is a perspective view showing the appearance of a display device according to a second embodiment of the present disclosure; 図7に示した本体部を分解して表す斜視図である。8 is an exploded perspective view of the main body shown in FIG. 7; FIG. 図8に示したパネルモジュールを分解して表す斜視図である。9 is an exploded perspective view of the panel module shown in FIG. 8. FIG. 図8に示したパネルモジュールの平面構成例を表す平面模式図である。FIG. 9 is a schematic plan view showing a planar configuration example of the panel module shown in FIG. 8 ; 第2の実施の形態の第1の変形例に係るパネルモジュールの平面構成例を表す平面模式図である。It is a plane schematic diagram showing the plane structural example of the panel module based on the 1st modification of 2nd Embodiment. 第2の実施の形態の第2の変形例に係るパネルモジュールの平面構成例を表す平面模式図である。It is a schematic plan view showing a planar configuration example of a panel module according to a second modification of the second embodiment. 第2の実施の形態の第3の変形例に係るパネルモジュールの平面構成例を表す平面模式図である。It is a schematic plan view showing a planar configuration example of a panel module according to a third modification of the second embodiment. 本開示のその他の第1変形例に係る発光装置の一構成例を表す断面図である。FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another first modified example of the present disclosure; 本開示のその他の第2変形例に係る発光装置の一構成例を表す断面図である。FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another second modified example of the present disclosure; 本開示のその他の第3変形例に係る発光装置の一構成例を表す断面図である。FIG. 11 is a cross-sectional view showing a configuration example of a light-emitting device according to another third modified example of the present disclosure; 本開示のその他の第4変形例に係る発光装置の一構成例を表す断面図である。FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another fourth modified example of the present disclosure; 本開示のその他の第5変形例に係る発光装置の一構成例を表す断面図である。FIG. 20 is a cross-sectional view showing a configuration example of a light-emitting device according to another fifth modified example of the present disclosure; 本開示のその他の第6変形例に係る発光装置の一構成例を表す断面図である。FIG. 21 is a cross-sectional view showing a configuration example of a light emitting device according to another sixth modified example of the present disclosure; 本開示のその他の第7変形例に係る発光装置の一構成例を表す断面図である。FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another seventh modified example of the present disclosure; 図20に示した発光装置の導電性材料層の詳細の構成を表す断面図である。21 is a cross-sectional view showing the detailed configuration of a conductive material layer of the light emitting device shown in FIG. 20; FIG. 図21に示した導電性材料層の形成過程を表す第1の断面図である。FIG. 22 is a first cross-sectional view showing the formation process of the conductive material layer shown in FIG. 21; 図21に示した導電性材料層の形成過程を表す第2の断面図である。FIG. 22 is a second cross-sectional view showing the formation process of the conductive material layer shown in FIG. 21; 図21に示した導電性材料層の形成過程を表す第3の断面図である。FIG. 22 is a third cross-sectional view showing the formation process of the conductive material layer shown in FIG. 21; 図20に示した発光装置の第1変形例としての導電性材料層の詳細の構成を表す断面図である。21 is a cross-sectional view showing the detailed configuration of a conductive material layer as a first modification of the light emitting device shown in FIG. 20; FIG. 図23に示した導電性材料層の形成過程を表す第1の断面図である。FIG. 24 is a first cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23; 図23に示した導電性材料層の形成過程を表す第2の断面図である。FIG. 24 is a second cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23; 図23に示した導電性材料層の形成過程を表す第3の断面図である。24 is a third cross-sectional view showing the formation process of the conductive material layer shown in FIG. 23; FIG. 図20に示した発光装置の第2変形例としての導電性材料層の詳細の構成を表す断面図である。21 is a cross-sectional view showing a detailed configuration of a conductive material layer as a second modification of the light emitting device shown in FIG. 20; FIG. 図23および図25に示した各発光装置のバンプと配線の露出部分との位置関係の一例を模式的に表す概略平面図である。FIG. 26 is a schematic plan view schematically showing an example of the positional relationship between the bumps and the exposed portions of the wirings of each light emitting device shown in FIGS. 23 and 25; 本開示のその他の第8変形例に係る発光装置の一構成例を表す断面図である。FIG. 21 is a cross-sectional view showing a configuration example of a light-emitting device according to another eighth modification of the present disclosure; 本開示のその他の第9変形例に係る表示装置の一構成例を表す断面図である。FIG. 21 is a cross-sectional view showing a configuration example of a display device according to another ninth modification of the present disclosure;
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(発光装置)
2.第2の実施の形態(液晶表示装置)
3.その他の変形例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First Embodiment (Light Emitting Device)
2. Second Embodiment (Liquid Crystal Display Device)
3. Other variations
<1.第1の実施の形態>
[1.1 構成]
 図1Aおよび図1Bは、それぞれ、本開示の第1の実施の形態に係る発光装置100の一構成例を表す斜視図である。図1Aおよび図1Bは、互いに正反対の方向から発光装置100を眺めた様子を表している。図2は、図1に示した発光装置100の平面構成例を表す平面図である。さらに、図3は、図1に示した発光装置100の一部の断面構成例を表す拡大断面図である。なお図3は、図2に示したIII-III切断線に沿った矢視方向の断面を表している。発光装置100は、面光源として好適であり、例えば液晶表示装置に搭載される直下方式のバックライトとして利用されるものである。
<1. First Embodiment>
[1.1 Configuration]
1A and 1B are perspective views each showing a configuration example of the light emitting device 100 according to the first embodiment of the present disclosure. 1A and 1B show how the light emitting device 100 is viewed from opposite directions. FIG. 2 is a plan view showing a planar configuration example of the light emitting device 100 shown in FIG. Furthermore, FIG. 3 is an enlarged cross-sectional view showing a cross-sectional configuration example of part of the light emitting device 100 shown in FIG. Note that FIG. 3 shows a cross section in the arrow direction along the III-III section line shown in FIG. The light emitting device 100 is suitable as a surface light source, and is used, for example, as a direct type backlight mounted on a liquid crystal display device.
 発光装置100は、例えば複数の光源ユニット10と、中継基板20と、可撓性フィルム30とを有する。複数の光源ユニット10は、それぞれX軸方向に延在し、Y軸方向に並ぶように配列されている。これに対し、中継基板20は、例えばY軸方向に延在し、複数の光源ユニット10の各々と機械的に接合されている。中継基板20は、複数の接続部50により、複数の光源ユニット10の各々と電気的にも接続されている。 The light emitting device 100 has, for example, a plurality of light source units 10, a relay substrate 20, and a flexible film 30. The plurality of light source units 10 each extend in the X-axis direction and are arranged side by side in the Y-axis direction. On the other hand, the relay board 20 extends, for example, in the Y-axis direction and is mechanically joined to each of the plurality of light source units 10 . The relay board 20 is also electrically connected to each of the plurality of light source units 10 by the plurality of connection portions 50 .
 なお、本実施の形態では、光源ユニット10の長手方向をX軸方向とし、光源ユニット10の短手方向をY軸方向とし、光源ユニット10の厚さ方向をZ軸方向としている。X軸方向、Y軸方向、およびZ軸方向は、互いに直交している。 In this embodiment, the longitudinal direction of the light source unit 10 is the X-axis direction, the lateral direction of the light source unit 10 is the Y-axis direction, and the thickness direction of the light source unit 10 is the Z-axis direction. The X-axis direction, Y-axis direction, and Z-axis direction are orthogonal to each other.
 図1Aに示したように、各光源ユニット10は、光源基板1と、複数の光源2とを有している。図3に示したように、光源基板1は、表面1FSと、表面1FSに対して厚さ方向(Z軸方向)の反対側にある裏面1BSとを有する。複数の光源2は、光源基板1の表面1FS(図3)に設けられている。複数の光源2は、光源基板1の長手方向であるX軸方向に沿って例えば1列に所定の間隔で並んでいる。また、可撓性フィルム30は、XY面に沿って延在しており、複数の光源ユニット10の全体を覆うように、光源基板1の表面1FS側に設けられている。複数の光源ユニット10は、可撓性フィルム30に対し、例えば接着により固定されているとよい。中継基板20は、光源基板1の裏面1BS側に設けられている。 As shown in FIG. 1A, each light source unit 10 has a light source board 1 and a plurality of light sources 2 . As shown in FIG. 3, the light source substrate 1 has a front surface 1FS and a back surface 1BS opposite to the front surface 1FS in the thickness direction (Z-axis direction). A plurality of light sources 2 are provided on the surface 1FS of the light source substrate 1 (FIG. 3). The plurality of light sources 2 are arranged in, for example, one row at predetermined intervals along the X-axis direction, which is the longitudinal direction of the light source substrate 1 . The flexible film 30 extends along the XY plane and is provided on the surface 1FS side of the light source substrate 1 so as to cover the entire plurality of light source units 10 . The plurality of light source units 10 may be fixed to the flexible film 30 by, for example, adhesion. The relay substrate 20 is provided on the rear surface 1BS side of the light source substrate 1 .
 発光装置100は、図2に示したように、駆動素子40を有する。駆動素子40は、例えば各光源ユニット10の光源基板1に設けられていてもよいし、中継基板20に設けられていてもよい。発光装置100は、図3に示したように、スペーサ6と、拡散シート7と、波長変換シート8と、光学シート群9とをさらに有していてもよい。 The light emitting device 100 has a drive element 40 as shown in FIG. The drive element 40 may be provided, for example, on the light source substrate 1 of each light source unit 10 or may be provided on the relay substrate 20 . The light emitting device 100 may further include a spacer 6, a diffusion sheet 7, a wavelength conversion sheet 8, and an optical sheet group 9, as shown in FIG.
(光源ユニット10)
 複数の光源ユニット10は、図1A,1Bおよび図2に示したように、Y軸方向に沿って例えば互いに離間して並んでいるとよい。特に、図2に示したように、各光源ユニット10のY軸方向の寸法である幅W1は、隣り合う光源ユニット10同士の間隔W2よりも狭いとよい。光源基板1などの構成材料を削減でき、軽量化を図ることができるからである。なお、図1A,1Bおよび図2に示した例では、1つの中継基板20に対し8つの光源ユニット10を接続するようにしているが、本開示はこれに限定されるものではない。1つの中継基板20に対し、7以下の光源ユニット10を接続するようにしてもよいし、9以上の光源ユニット10を接続するようにしてもよい。
(Light source unit 10)
As shown in FIGS. 1A, 1B, and 2, the plurality of light source units 10 are preferably arranged along the Y-axis direction, for example, spaced apart from each other. In particular, as shown in FIG. 2, the width W1, which is the dimension in the Y-axis direction of each light source unit 10, is preferably narrower than the interval W2 between the adjacent light source units 10. As shown in FIG. This is because the materials used for the light source substrate 1 and the like can be reduced, and the weight can be reduced. 1A, 1B, and 2, eight light source units 10 are connected to one relay board 20, but the present disclosure is not limited to this. Seven or less light source units 10 may be connected to one relay board 20, or nine or more light source units 10 may be connected.
 光源ユニット10は、図3に示したように、光源基板1と、複数の光源2と、配線4および絶縁層4Zと、樹脂層5とを有する。光源基板1は、例えば樹脂製の電気絶縁性を有するフィルム状部材であり、可撓性を有するとよい。光源基板1としては、例えばPI(ポリイミド)、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PEN(ポリエチレンナフタレート)、PEI(ポリエーテルイミド)、LCP(液晶ポリマー)、またはフッ素樹脂などからなる樹脂製フィルムを用いることができる。または、光源基板1として、アルミニウム(Al)などのメタルベース基板の表面にポリイミドやエポキシ系などの絶縁性樹脂層が形成されたものを用いてもよい。さらには、光源基板1として、FR4に代表されるガラスエポキシ樹脂やCEM3に代表されるガラスコンポジット樹脂)などのガラス含有樹脂からなるフィルム基材を用いてもよい。光源基板1の表面1FSには、絶縁層4Zに設けられた複数の配線4と複数の光源2とが実装されている。また、光源基板1の裏面1BSには、複数の配線51が形成されている。複数の配線51は、例えばビア10Vを介して配線4と導通している。なお、ビア10Vは、例えばレーザ加工により光源基板1を裏面1BSの所定領域を選択的に掘り下げることでビアホールを形成したのち、そのビアホールを導電性材料により埋めることで形成できる。その際、表面1FSに形成された配線4がエッチングストッパとなる。 The light source unit 10 has a light source substrate 1, a plurality of light sources 2, wiring 4 and an insulating layer 4Z, and a resin layer 5, as shown in FIG. The light source substrate 1 is, for example, an electrically insulating film-like member made of resin, and preferably has flexibility. The light source substrate 1 is made of, for example, PI (polyimide), PET (polyethylene terephthalate), PC (polycarbonate), PEN (polyethylene naphthalate), PEI (polyetherimide), LCP (liquid crystal polymer), or resin made of fluorine resin. film can be used. Alternatively, as the light source substrate 1, a metal base substrate such as aluminum (Al) having an insulating resin layer such as polyimide or epoxy formed on the surface thereof may be used. Furthermore, as the light source substrate 1, a film substrate made of a glass-containing resin such as a glass epoxy resin typified by FR4 or a glass composite resin typified by CEM3 may be used. A plurality of wirings 4 provided on an insulating layer 4Z and a plurality of light sources 2 are mounted on the surface 1FS of the light source substrate 1 . A plurality of wirings 51 are formed on the back surface 1BS of the light source substrate 1 . The plurality of wirings 51 are electrically connected to the wirings 4 via vias 10V, for example. The via 10V can be formed by, for example, forming a via hole by selectively digging a predetermined region of the back surface 1BS of the light source substrate 1 by laser processing, and then filling the via hole with a conductive material. At that time, the wiring 4 formed on the surface 1FS serves as an etching stopper.
(光源2および配線4)
 複数の光源2は、光源基板1の表面1FSに設けられている。先に述べたように、複数の光源2は、図2などに示したように、光源基板1の延在方向であるX軸方向に沿って1列に所定の間隔で配置されている。なお、複数の光源2の間隔は一定である場合に限定されず、要望に応じて任意に設定可能である。また、1つの光源基板1において、X軸方向に並ぶ複数の光源2の列がY軸方向に隣り合うように複数列設けるようにしてもよい。光源基板1の表面1FSには、1または2以上の光源2ごとに独立した発光制御が可能となるように、所定のパターン形状を有する複数の配線4が形成されている。複数の配線4により、複数の光源2の局所的な発光制御(ローカルディミング)が可能とされている。発光装置100では、駆動素子40により、例えば図2に破線で示した単位領域A(AL,AC,AR)ごとに発光強度や点灯のタイミングの制御を行うようになっている。駆動素子40は、各光源2の駆動、すなわち点灯および消灯を行う駆動ICである。駆動素子40は、中継基板20および光源基板1のうちの少なくとも一方に設けられているとよい。図2の構成例では、光源基板1に駆動素子40L,40Rが1つずつ設けられると共に、中継基板20に駆動素子40Cが設けられている。図2の構成例では、単位領域ALに設けられた光源2は配線4により駆動素子40Lに接続され、単位領域ACに設けられた光源2は配線4により駆動素子40Cに接続され、単位領域ARに設けられた光源2は配線4により駆動素子40Rに接続されている。駆動素子40Lは、光源基板1に設けられた複数の光源2のうち、単位領域ALに設けられた例えば3つの光源2の駆動を行うようになっている。駆動素子40Cは、光源基板1に設けられた複数の光源2のうち、単位領域ACに設けられた例えば3つの光源2の駆動を行うようになっている。駆動素子40Rは、光源基板1に設けられた複数の光源2のうち、単位領域ARに設けられた例えば3つの光源2の駆動を行うようになっている。なお、また、図2に示した例では、1つの単位領域Aに3つの光源2を配置しているが、本開示はこれに限定されるものではない。1つの単位領域Aに含まれる光源2の数は1もしくは2でもよいし、4以上であってもよい。
(Light source 2 and wiring 4)
A plurality of light sources 2 are provided on the surface 1FS of the light source substrate 1 . As described above, the plurality of light sources 2 are arranged in a row at predetermined intervals along the X-axis direction, which is the extending direction of the light source substrate 1, as shown in FIG. Note that the intervals between the plurality of light sources 2 are not limited to being constant, and can be arbitrarily set as desired. Further, in one light source substrate 1, a plurality of rows of the light sources 2 arranged in the X-axis direction may be arranged in a plurality of rows adjacent to each other in the Y-axis direction. A plurality of wirings 4 having a predetermined pattern shape are formed on the surface 1FS of the light source substrate 1 so as to enable independent light emission control for each of one or more light sources 2 . A plurality of wirings 4 enables local light emission control (local dimming) of a plurality of light sources 2 . In the light emitting device 100, the drive element 40 controls the light emission intensity and lighting timing for each unit area A (AL, AC, AR) indicated by broken lines in FIG. 2, for example. The drive element 40 is a drive IC that drives each light source 2, that is, turns it on and off. The drive element 40 is preferably provided on at least one of the relay board 20 and the light source board 1 . In the configuration example of FIG. 2, the light source substrate 1 is provided with one driving element 40L and one driving element 40R, and the relay substrate 20 is provided with the driving element 40C. In the configuration example of FIG. 2, the light source 2 provided in the unit area AL is connected to the driving element 40L through the wiring 4, the light source 2 provided in the unit area AC is connected to the driving element 40C through the wiring 4, and the unit area AR A light source 2 is connected to the driving element 40R by a wiring 4. The drive element 40L drives, for example, three light sources 2 provided in the unit area AL among the plurality of light sources 2 provided on the light source substrate 1 . The drive element 40</b>C drives, for example, three light sources 2 provided in the unit area AC among the plurality of light sources 2 provided on the light source substrate 1 . The driving element 40</b>R drives, for example, three light sources 2 provided in the unit area AR among the plurality of light sources 2 provided on the light source substrate 1 . Further, in the example shown in FIG. 2, three light sources 2 are arranged in one unit area A, but the present disclosure is not limited to this. The number of light sources 2 included in one unit area A may be one, two, or four or more.
 配線4は、光源基板1に例えば銅箔を貼りあわせた後に、フォトリソグラフィ法を用いてパターン加工されるものである。または、配線4は、めっきや真空成膜製膜技術を用いて光源基板1に金属膜を形成したのちにフォトリソグラフィ法を用いてパターン加工されるものであてもよい。さらに、配線4は、スクリーン印刷やインクジェット法を始めとする印刷方法により形成されるものでもよい。配線4の構成材料としては、例えば銅(Cu)、アルミニウム(Al)もしくは銀(Ag)、またはこれらの合金等が挙げられる。 The wiring 4 is patterned using a photolithographic method after, for example, copper foil is pasted on the light source substrate 1 . Alternatively, the wiring 4 may be patterned using photolithography after forming a metal film on the light source substrate 1 using plating or vacuum film forming technology. Furthermore, the wiring 4 may be formed by a printing method such as screen printing or an inkjet method. Examples of the constituent material of the wiring 4 include copper (Cu), aluminum (Al), silver (Ag), and alloys thereof.
(樹脂層5)
 樹脂層5は、例えば白色のレジスト層である。樹脂層5は、光源2からの光および波長変換シート8によって波長変換された光、に対して比較的高い反射率を有する。白色のレジストとしては、例えば酸化チタン(TiO2)微粒子や硫酸バリウム(BaSO4)微粒子などの無機材料、光散乱のための無数の孔を有する多孔質アクリル樹脂微粒子やポリカーボネート樹脂微粒子などの有機材料が挙げられる。樹脂層5の構成材料としては、エポキシ系の樹脂も使用され得る。さらには、酸化チタン(TiO2)微粒子や硫酸バリウム(BaSO4)微粒子などの無機材料の微粒子を含有する樹脂により樹脂層5を構成してもよい。なお、樹脂層5の表面のうち、光源2が設けられた領域以外の領域には、可撓性フィルム30が接着されている。
(Resin layer 5)
The resin layer 5 is, for example, a white resist layer. The resin layer 5 has a relatively high reflectance with respect to light from the light source 2 and light wavelength-converted by the wavelength conversion sheet 8 . Examples of white resist include inorganic materials such as titanium oxide (TiO 2 ) fine particles and barium sulfate (BaSO 4 ) fine particles, and organic materials such as porous acrylic resin fine particles and polycarbonate resin fine particles having countless pores for light scattering. is mentioned. As a constituent material of the resin layer 5, an epoxy-based resin can also be used. Furthermore, the resin layer 5 may be made of resin containing fine particles of an inorganic material such as titanium oxide (TiO 2 ) fine particles or barium sulfate (BaSO 4 ) fine particles. A flexible film 30 is adhered to an area of the surface of the resin layer 5 other than the area where the light source 2 is provided.
(光源2の詳細)
 図4は、図1に示した光源2の一構成例を表す拡大断面図である。但し、図4には、可撓性フィルム30を併せて記載している。図4に示したように、光源2は、いわゆるダイレクトポッティング式の光源であり、発光素子21と、封止レンズ22とを有している。発光素子21は、例えば発光体を含む半導体層23と、半導体層23と透明層24を介してZ軸方向に対向するように配置された反射層25とを有している。
(Details of light source 2)
FIG. 4 is an enlarged sectional view showing one configuration example of the light source 2 shown in FIG. However, FIG. 4 also shows the flexible film 30 . As shown in FIG. 4 , the light source 2 is a so-called direct potting light source, and has a light emitting element 21 and a sealing lens 22 . The light-emitting element 21 has, for example, a semiconductor layer 23 containing a light-emitting body, and a reflective layer 25 arranged so as to face the semiconductor layer 23 and the transparent layer 24 in the Z-axis direction.
 透明層24は、例えば、サファイアや炭化珪素(SiC)などによって構成されている。半導体層23は、例えば、透明層24側から、n型半導体層と活性層とp型半導体層とが順に積層されたものである。n型半導体層は、例えば、n型窒化物半導体(例えばn型GaN)によって構成されている。活性層は、例えば量子井戸構造を有する窒化物半導体(例えば、n型GaN) によって構成されている。p型半導体層は、例えば、p型窒化物半導体(例えば、p型GaN)によって構成されている。半導体層23は、例えば青色光(例えば、波長440nm~460nm)を発する青色LED(Light Emitting Diode;発光ダイオード)により構成される。反射層25は、透明層24の、半導体層23と反対側の面に設けられている。反射層25は、高い反射率を有する材料により構成される。反射層25は、具体的には銀蒸着膜、アルミニウム蒸着膜、または多層反射膜などにより構成されている。多層反射膜は、例えばDBR(Distributed Bragg Reflector)などが挙げられる。 The transparent layer 24 is made of, for example, sapphire or silicon carbide (SiC). The semiconductor layer 23 has, for example, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer stacked in this order from the transparent layer 24 side. The n-type semiconductor layer is composed of, for example, an n-type nitride semiconductor (for example, n-type GaN). The active layer is composed of, for example, a nitride semiconductor (eg, n-type GaN) having a quantum well structure. The p-type semiconductor layer is composed of, for example, a p-type nitride semiconductor (eg, p-type GaN). The semiconductor layer 23 is composed of, for example, a blue LED (Light Emitting Diode) that emits blue light (for example, a wavelength of 440 nm to 460 nm). The reflective layer 25 is provided on the surface of the transparent layer 24 opposite to the semiconductor layer 23 . The reflective layer 25 is made of a material with high reflectance. The reflective layer 25 is specifically composed of a silver vapor deposition film, an aluminum vapor deposition film, a multi-layer reflective film, or the like. Examples of multilayer reflective films include DBRs (Distributed Bragg Reflectors).
 図4に示したように、発光素子21では、半導体層23の活性層から発光された光LBが、反射層25により反射されたのち、透明層24の端面24Tから封止レンズ22に進入する。封止レンズ22に進入した光LBは、封止レンズ22を透過して周囲に射出されるようになっている。なお、光LBは封止レンズ22を透過する際に光学的作用を受けることとなる。 As shown in FIG. 4, in the light emitting element 21, the light LB emitted from the active layer of the semiconductor layer 23 is reflected by the reflective layer 25 and then enters the sealing lens 22 through the end surface 24T of the transparent layer 24. . The light LB entering the sealing lens 22 is transmitted through the sealing lens 22 and emitted to the surroundings. Note that the light LB is subjected to an optical action when passing through the sealing lens 22 .
 封止レンズ22は、例えばシリコーンやアクリルなどの透明樹脂で構成された光学部材である。封止レンズ22は、発光素子21の全体を覆い、発光素子21を封止するよう構成されている。封止レンズ22は、発光素子21の半導体層23の屈折率と空気の屈折率との間の屈折率を有している。封止レンズ22は、発光素子21を保護すると共に、発光素子21から発せられた光の取り出し効率を向上させるためのものである。封止レンズ22の外形形状は、発光素子21から発光される光LBを取り出すためのレンズとしての光学的作用が得られるものであれば特に限定されない。例えば封止レンズ22の外形形状は球面を含む形状に限定されるものではなく、非球面を含む形状であってもよい。また、封止レンズ22により、発光素子21から発光された光LBの配光方向を制御するようにしてもよい。 The sealing lens 22 is an optical member made of transparent resin such as silicone or acrylic. The sealing lens 22 is configured to cover the entire light emitting element 21 and seal the light emitting element 21 . The sealing lens 22 has a refractive index between the refractive index of the semiconductor layer 23 of the light emitting element 21 and the refractive index of air. The sealing lens 22 protects the light emitting element 21 and improves the extraction efficiency of light emitted from the light emitting element 21 . The outer shape of the sealing lens 22 is not particularly limited as long as it has an optical effect as a lens for taking out the light LB emitted from the light emitting element 21 . For example, the external shape of the sealing lens 22 is not limited to a shape including a spherical surface, and may be a shape including an aspherical surface. Moreover, the light distribution direction of the light LB emitted from the light emitting element 21 may be controlled by the sealing lens 22 .
 光源2では、ダイレクトポッティング式の構成とされているため、封止レンズ22の形状を、アスペクト比0.2以上1以下のドーム形状にすることが容易である。封止レンズ22の形状については、特に0,4~0.6内のドーム形状にすると、輝度むらなどの輝度均一特性が良好となる。ここで、アスペクト比とは、ドーム型のレンズ形状の高さhと半径rとの比、h/rである。アスペクト比が1の場合は半球形状となる。 Since the light source 2 has a direct potting structure, it is easy to form the sealing lens 22 into a dome shape with an aspect ratio of 0.2 or more and 1 or less. Concerning the shape of the sealing lens 22, especially if it is a dome shape within the range of 0.4 to 0.6, luminance uniformity characteristics such as luminance unevenness are improved. Here, the aspect ratio is h/r, which is the ratio of the height h to the radius r of the dome-shaped lens. When the aspect ratio is 1, it becomes a hemispherical shape.
(波長変換シート8)
 波長変換シート8は、複数の光源2に対向するように配置されている。図5は、図3に示した波長変換シート8の一部を拡大して表す拡大断面図である。図5に示したように、波長変換シート8は、例えば粒子状の波長変換物質81を含んでいる。波長変換物質81は、例えば、蛍光顔料や蛍光染料などの蛍光体(蛍光物質)、または量子ドットを含んでおり、光源2からの光によって励起され、蛍光発光等の原理により、光源2からの光を原波長とは異なる別波長の光に波長変換し、これを放出するものである。なお、図5では、簡単のため、波長変換物質81を粒子状に描いているが、本開示は、波長変換物質81が粒子状をなすものに限定されるものではない。
(Wavelength conversion sheet 8)
The wavelength conversion sheet 8 is arranged so as to face the plurality of light sources 2 . FIG. 5 is an enlarged sectional view showing an enlarged part of the wavelength conversion sheet 8 shown in FIG. As shown in FIG. 5, the wavelength conversion sheet 8 contains, for example, a particulate wavelength conversion substance 81 . The wavelength conversion substance 81 includes, for example, a fluorescent substance (fluorescent substance) such as a fluorescent pigment or a fluorescent dye, or a quantum dot. It wavelength-converts light into light with a different wavelength from the original wavelength and emits it. In FIG. 5, the wavelength conversion substance 81 is drawn in a particulate form for the sake of simplicity, but the present disclosure is not limited to the wavelength conversion substance 81 in a particulate form.
 波長変換シート8に含まれる波長変換物質81は、光源2から発光された青色光を吸収して、その一部を赤色光(例えば、波長620nm~750nm)、または緑色光(例えば、波長495nm~570nm)に変換する。この場合、光源2の光が波長変換シート8を通過することにより、赤色,緑色および青色の光が合成されて白色光が生成される。あるいは、波長変換シート8に含まれる波長変換物質81は、青色光を吸収して、その一部を黄色光に変換するものであってもよい。この場合、光源2の光が波長変換シート8を通過することにより、黄色および青色の光が合成されて白色光が生成される。 The wavelength conversion material 81 contained in the wavelength conversion sheet 8 absorbs the blue light emitted from the light source 2 and converts part of it into red light (eg, wavelengths of 620 nm to 750 nm) or green light (eg, wavelengths of 495 nm to 570 nm). In this case, when the light from the light source 2 passes through the wavelength conversion sheet 8, red, green and blue lights are combined to generate white light. Alternatively, the wavelength conversion substance 81 contained in the wavelength conversion sheet 8 may absorb blue light and partially convert it into yellow light. In this case, when the light from the light source 2 passes through the wavelength conversion sheet 8, yellow and blue lights are combined to generate white light.
 波長変換シート8に含まれる波長変換物質81は、量子ドットを含むことが好ましい。量子ドットは、長径1nm~100nm程度の粒子であり、離散的なエネルギー準位を有している。量子ドットのエネルギー状態はその大きさに依存するので、サイズを変えることにより自由に発光波長を選択することが可能となる。また、量子ドットの発光光はスペクトル幅が狭い。このような急峻なピークの光を組み合わせることにより色域が拡大する。したがって、波長変換物質として量子ドットを用いることにより、容易に色域を拡大することが可能となる。さらに、量子ドットは応答性が高く、光源2の光を効率良く利用することが可能となる。加えて、量子ドットは安定性も高い。量子ドットは、例えば、12族元素と16族元素との化合物、13族元素と16族元素との化合物あるいは14族元素と16族元素との化合物であり、例えば、CdSe,CdTe,ZnS,CdS,PbS,PbSeまたはCdHgTe等である。また、RoHS規制などの環境規制からCdフリー量子ドットの要求もあり、コア材料としてInP系、ペロブスカイト(Perovskite)のCsPbBr3系、Zn(Te,Se)やI-III-VI族3元系の一つである硫化銀インジウムのものがある。 The wavelength conversion substance 81 contained in the wavelength conversion sheet 8 preferably contains quantum dots. A quantum dot is a particle with a long diameter of about 1 nm to 100 nm and has discrete energy levels. Since the energy state of a quantum dot depends on its size, it is possible to freely select the emission wavelength by changing the size. In addition, the emitted light of quantum dots has a narrow spectrum width. Combining light with such steep peaks expands the color gamut. Therefore, by using quantum dots as wavelength conversion substances, it is possible to easily expand the color gamut. Furthermore, quantum dots have high responsiveness, and the light from the light source 2 can be used efficiently. In addition, quantum dots are also highly stable. Quantum dots are, for example, compounds of Group 12 elements and Group 16 elements, compounds of Group 13 elements and Group 16 elements, or compounds of Group 14 elements and Group 16 elements, such as CdSe, CdTe, ZnS, CdS , PbS, PbSe or CdHgTe. In addition, there is a demand for Cd-free quantum dots due to environmental regulations such as RoHS regulations, and core materials include InP, perovskite CsPbBr3, Zn (Te, Se), and one of the I-III-VI group ternary systems. There is one of silver indium sulfide.
(拡散シート7)
 拡散シート7は、波長変換シート8と複数の光源2との間に配置された光学部材である。拡散シート7は、入射した光の角度分布を均一化するためのものである。拡散シート7としては、1枚の拡散板または1枚の拡散シートであってもよいし、2枚以上の拡散板または2枚以上の拡散シートであってもよい。また、拡散シート7は、一定の厚さと一定の硬度とを有する板状の光学部材であってもよい。
(Diffusion sheet 7)
The diffusion sheet 7 is an optical member arranged between the wavelength conversion sheet 8 and the multiple light sources 2 . The diffusion sheet 7 is for uniformizing the angular distribution of incident light. The diffusion sheet 7 may be one diffusion plate or one diffusion sheet, or two or more diffusion plates or two or more diffusion sheets. Also, the diffusion sheet 7 may be a plate-shaped optical member having a constant thickness and a constant hardness.
(スペーサ6)
 スペーサ6は、光源2と拡散シート7との光学的距離を保持するための部材である。
(Spacer 6)
A spacer 6 is a member for maintaining an optical distance between the light source 2 and the diffusion sheet 7 .
(光学シート群9)
 光学シート群9は、波長変換シート8の光射出面側、すなわち波長変換シート8から見て拡散シート7と反対側に配置されている光学部材である。光学シート群9は例えば、輝度を向上させるためのシートまたはフィルムを含んで構成されている。図1に示した例では、光学シート群9は、波長変換シート8の上に、光学シート91と光学シート92とが順に積層されたものである。光学シート91と光学シート92とは、互いに接合されて一体化されたものであってもよい。光学シート91は、例えばプリズムシートである。光学シート92は、例えばDBEF(Dual Brightness Enhancement Film)等の反射型偏光フィルムである。なお、光学シート群9を構成する光学シートの数、ならびに、光学シート群9を構成する複数の光学シートの種類および積層順序などは、任意に選択可能である。
(Optical sheet group 9)
The optical sheet group 9 is an optical member arranged on the light exit surface side of the wavelength conversion sheet 8 , that is, on the side opposite to the diffusion sheet 7 when viewed from the wavelength conversion sheet 8 . The optical sheet group 9 includes, for example, a sheet or film for improving brightness. In the example shown in FIG. 1, the optical sheet group 9 is obtained by laminating an optical sheet 91 and an optical sheet 92 on the wavelength conversion sheet 8 in this order. The optical sheet 91 and the optical sheet 92 may be joined together and integrated. The optical sheet 91 is, for example, a prism sheet. The optical sheet 92 is, for example, a reflective polarizing film such as DBEF (Dual Brightness Enhancement Film). The number of optical sheets forming the optical sheet group 9 and the types and stacking order of the plurality of optical sheets forming the optical sheet group 9 can be arbitrarily selected.
(可撓性フィルム30)
 可撓性フィルム30は、樹脂層5の上に選択的に設けられている。より具体的には、可撓性フィルム30は、表面1FSのうち、複数の光源2が設けられた領域以外の領域に設けられている。可撓性フィルム30には、Z軸方向において複数の光源2と重なり合う領域に開口30Kが設けられている。開口30Kは、光源2を配置するための抜き穴であり、開口30Kが形成された領域では樹脂層5が露出しており、露出した樹脂層5が光源2の封止レンズ22に覆われた状態となっている。可撓性フィルム30は、XY面に広がる樹脂層5の表面と接合されている。具体的には、接着剤などにより固定されている。可撓性フィルム30は、例えば反射シートであり、例えば光源2からの光LBおよび波長変換シート8によって波長変換された光LYに対して高い反射率を有する。可撓性フィルム30は、高い反射率を有する材料として、酸化チタンやAg(銀)を含んでいてもよい。可撓性フィルム30は、具体的には、例えば白色のレジスト層である。白色のレジストとしては、例えば酸化チタン(TiO2)微粒子や硫酸バリウム(BaSO4)微粒子などの無機材料、光散乱のための無数の孔を有する多孔質アクリル樹脂微粒子やポリカーボネート樹脂微粒子などの有機材料が挙げられる。可撓性フィルム30の構成材料としては、エポキシ系の樹脂も使用され得る。さらには、酸化チタン(TiO2)微粒子や硫酸バリウム(BaSO4)微粒子などの無機材料の微粒子を含有する樹脂により可撓性フィルム30を構成してもよい。
(Flexible film 30)
A flexible film 30 is selectively provided on the resin layer 5 . More specifically, the flexible film 30 is provided in a region of the surface 1FS other than the region where the plurality of light sources 2 are provided. The flexible film 30 is provided with openings 30K in regions overlapping the plurality of light sources 2 in the Z-axis direction. The opening 30K is a hole for arranging the light source 2. The resin layer 5 is exposed in the area where the opening 30K is formed, and the exposed resin layer 5 is covered with the sealing lens 22 of the light source 2. state. The flexible film 30 is bonded to the surface of the resin layer 5 extending on the XY plane. Specifically, it is fixed by an adhesive or the like. The flexible film 30 is, for example, a reflective sheet, and has high reflectance with respect to, for example, the light LB from the light source 2 and the light LY wavelength-converted by the wavelength conversion sheet 8 . The flexible film 30 may contain titanium oxide or Ag (silver) as materials having high reflectance. The flexible film 30 is specifically a white resist layer, for example. Examples of white resist include inorganic materials such as titanium oxide (TiO 2 ) fine particles and barium sulfate (BaSO 4 ) fine particles, and organic materials such as porous acrylic resin fine particles and polycarbonate resin fine particles having countless pores for light scattering. is mentioned. Epoxy-based resin may also be used as the constituent material of the flexible film 30 . Furthermore, the flexible film 30 may be made of a resin containing fine particles of an inorganic material such as titanium oxide (TiO 2 ) fine particles or barium sulfate (BaSO 4 ) fine particles.
 このように、可撓性フィルム30が反射シートであることにより、光LB,LYのうち、波長変換シート8や光学シート群9で反射された戻り光が、可撓性フィルム30で反射されて白色光を生成するためのリサイクル光として利用される。このため、発光装置100全体としての輝度を向上させることができる。 As described above, since the flexible film 30 is a reflective sheet, the return light reflected by the wavelength conversion sheet 8 and the optical sheet group 9 among the lights LB and LY is reflected by the flexible film 30. Used as recycled light to generate white light. Therefore, the brightness of the light emitting device 100 as a whole can be improved.
(中継基板20)
 中継基板20は、複数の光源ユニット10を電気的および機械的に連結し、複数の光源ユニット10と電源回路や駆動回路などとの中継を行う部材である。中継基板20は、例えば光源基板1と同様に可撓性を有するフィルム部材により構成されているとよい。中継基板20の構成材料としては、光源基板1と同様のものを用いることができる。すなわち、中継基板20としては、例えばPI(ポリイミド)、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PEN(ポリエチレンナフタレート)、PEI(ポリエーテルイミド)、LCP(液晶ポリマー)、またはフッ素樹脂などからなる樹脂製フィルムを用いることができる。または、中継基板20として、アルミニウム(Al)などのメタルベース基板の表面にポリイミドやエポキシ系などの絶縁性樹脂層が形成されたものを用いてもよい。さらには、中継基板20として、FR4に代表されるガラスエポキシ樹脂やCEM3に代表されるガラスコンポジット樹脂)などのガラス含有樹脂からなるフィルム基材を用いてもよい。中継基板20の表面、すなわち、光源基板1と対向する面には複数の配線52が形成されている。また、中継基板20の裏面、すなわち、光源基板1と反対側の面には複数の配線53が形成されている。配線52と配線53とは、例えばビア20Vを介して互いに導通している。
(Relay board 20)
The relay board 20 is a member that electrically and mechanically connects the plurality of light source units 10 and performs relay between the plurality of light source units 10 and a power supply circuit, a drive circuit, and the like. The relay board 20 may be made of a flexible film member, for example, like the light source board 1 . As a constituent material of the relay substrate 20, the same material as that of the light source substrate 1 can be used. That is, the relay substrate 20 is made of, for example, PI (polyimide), PET (polyethylene terephthalate), PC (polycarbonate), PEN (polyethylene naphthalate), PEI (polyetherimide), LCP (liquid crystal polymer), or fluorine resin. Any resin film can be used. Alternatively, as the relay substrate 20, a metal base substrate such as aluminum (Al) having an insulating resin layer such as polyimide or epoxy formed on the surface thereof may be used. Further, as the relay substrate 20, a film base material made of a glass-containing resin such as a glass epoxy resin typified by FR4 or a glass composite resin typified by CEM3 may be used. A plurality of wirings 52 are formed on the surface of the relay substrate 20 , that is, the surface facing the light source substrate 1 . A plurality of wirings 53 are formed on the rear surface of the relay substrate 20 , that is, the surface opposite to the light source substrate 1 . The wiring 52 and the wiring 53 are electrically connected to each other through the via 20V, for example.
 また、中継基板20は、導電性材料層54を介して複数の光源ユニット10とそれぞれ接合されている。具体的には、例えば対向する配線51と配線52とが導電性材料層54を挟むように接合されている。なお、複数の光源ユニット10と中継基板20とは、それぞれ複数の箇所において導電性材料層54を介して接合されているとよい。各光源ユニット10と中継基板20とが多点で互いに接続されることで、中継基板20に対し各光源ユニットがより安定的に保持されるからである。また、各光源ユニット10と中継基板20との信号伝達経路や電力供給経路などのチャネルを複数確保できるので、より多くの機能を持たせることができるからである。また、導電性材料層54の構成材料としては、例えば導電性ペーストおよびはんだ、または異方導電性接着剤(ACA)が好適に用いられる。 Also, the relay board 20 is joined to each of the plurality of light source units 10 via the conductive material layer 54 . Specifically, for example, the wiring 51 and the wiring 52 facing each other are joined so as to sandwich the conductive material layer 54 . The plurality of light source units 10 and the relay board 20 are preferably bonded to each other at a plurality of locations via the conductive material layers 54 . This is because each light source unit 10 and the relay board 20 are connected to each other at multiple points, so that each light source unit is held more stably with respect to the relay board 20 . Further, since a plurality of channels such as signal transmission paths and power supply paths between each light source unit 10 and the relay board 20 can be secured, more functions can be provided. As the constituent material of the conductive material layer 54, for example, a conductive paste and solder, or an anisotropic conductive adhesive (ACA) is preferably used.
[1.2 作用]
 本実施の形態の発光装置100では、図3に示したように、光源2から発せられた青色光LBの一部が、波長変換シート8に含まれる波長変換物質によって波長変換(発光)された光LYとなる。波長変換された光LYは、例えば赤色光と緑色光、または黄色光である。波長変換された光LYは、波長変換シート8から平均的に全方位に均等に反射して射出する。光源2から発せられた青色光LBのうち、波長変換物質81に吸収されなかった青色光LBも波長変換シート8から平均的に全方位に均等に出射する。光源2から発せられた青色光LBのうち、波長変換物質81(図5)に吸収されなかった青色光LBは波長変換シート8からそのままの状態で出射される。これら波長変換されなかった青色光LBのうち前方に向かう光と波長変換された光LYのうち前方に向かう光とが合成されて白色光が生成され、前方(光源装置の外部)に射出される。
[1.2 Action]
In the light-emitting device 100 of the present embodiment, as shown in FIG. 3, part of the blue light LB emitted from the light source 2 is wavelength-converted (light-emitted) by the wavelength-converting substance contained in the wavelength-converting sheet 8. becomes light LY. The wavelength-converted light LY is, for example, red light and green light, or yellow light. The wavelength-converted light LY is reflected uniformly in all directions on average from the wavelength conversion sheet 8 and emitted. Of the blue light LB emitted from the light source 2, the blue light LB that is not absorbed by the wavelength conversion material 81 is also emitted uniformly in all directions from the wavelength conversion sheet 8 on average. Of the blue light LB emitted from the light source 2, the blue light LB that is not absorbed by the wavelength conversion material 81 (FIG. 5) is emitted from the wavelength conversion sheet 8 as it is. The forward light of the blue light LB that has not been wavelength-converted and the forward light of the wavelength-converted light LY are synthesized to generate white light, which is emitted forward (outside the light source device). .
 本実施の形態の発光装置100では、複数の光源がそれぞれ配置された複数の光源ユニットを、1つの中継基板20に接続するようにしている。このため、複数の光源ユニット10ごとに配置位置を微調整することができるので、各光源2の配置位置の最適化が容易になされ得る。また、発光装置100の軽量化にも有利である。すなわち、複数の光源ユニット10を1つの中継基板20により繋ぐことにより、例えば1枚のボード状の基板に複数の光源を配設するようにした構成と比較して、複数の光源2を有しつつ、光源基板1の材料の使用量を削減し、軽量化およびコストダウンを図ることができる。したがって、発光装置100によれば、軽量化およびコストダウンを図りつつ、高精細の発光輝度分布を実現することができる。 In the light emitting device 100 of the present embodiment, a plurality of light source units each having a plurality of light sources are connected to one relay substrate 20 . Therefore, the arrangement position can be finely adjusted for each of the plurality of light source units 10, so that the arrangement position of each light source 2 can be easily optimized. It is also advantageous in reducing the weight of the light emitting device 100 . That is, by connecting a plurality of light source units 10 with one relay board 20, a plurality of light sources 2 are provided compared to a configuration in which a plurality of light sources are arranged on, for example, one board-shaped board. At the same time, the amount of material used for the light source substrate 1 can be reduced, and weight reduction and cost reduction can be achieved. Therefore, according to the light-emitting device 100, it is possible to realize a high-definition light emission luminance distribution while reducing weight and cost.
 本実施の形態の発光装置100では、複数の光源ユニット10が、Y軸方向に沿って互いに離間して並ぶように設けられている。このため、1枚のボード状の光源基板に複数の光源2を配設するようにした構成と比較して、複数の光源2を有しつつ、光源基板1の材料の使用量を削減し、軽量化およびコストダウンを図ることができる。 In the light emitting device 100 of the present embodiment, a plurality of light source units 10 are arranged along the Y-axis direction while being spaced apart from each other. Therefore, compared to a configuration in which a plurality of light sources 2 are arranged on one board-shaped light source substrate, the amount of material used for the light source substrate 1 can be reduced while having a plurality of light sources 2. Weight reduction and cost reduction can be achieved.
 また、本実施の形態の発光装置100では、光源ユニット10のY軸方向の幅W1が、Y軸方向に隣り合う複数の光源ユニット10同士の間隔W2よりも狭くなるようにすれば、発光装置100全体として所定数の光源2を配置する際、例えば幅W1が間隔W2と同等以上である場合と比較して、より光源基板1の材料の使用量を削減でき、さらなる軽量化およびコストダウンを図ることができる。 Further, in the light emitting device 100 of the present embodiment, if the width W1 of the light source unit 10 in the Y-axis direction is made narrower than the interval W2 between the plurality of light source units 10 adjacent to each other in the Y-axis direction, the light emitting device When arranging a predetermined number of light sources 2 in the entire 100, compared to the case where the width W1 is equal to or greater than the interval W2, the amount of material used for the light source substrate 1 can be further reduced, further reducing weight and cost. can be planned.
 また、本実施の形態の発光装置100では、複数の光源2を、光源基板1においてX軸方向に沿って1列に並べるようにしている。このため、発光装置100全体として所定数の光源2を配置する際、例えば光源2が複数列並んでいる場合と比較して、より光源基板1の材料の使用量を削減でき、さらなる軽量化およびコストダウンを図ることができる。 Also, in the light emitting device 100 of the present embodiment, the plurality of light sources 2 are arranged in a line along the X-axis direction on the light source substrate 1 . For this reason, when arranging a predetermined number of light sources 2 in the light emitting device 100 as a whole, the amount of material used for the light source substrate 1 can be further reduced compared to, for example, the case where the light sources 2 are arranged in a plurality of rows. Cost can be reduced.
 また、発光装置100では、複数の光源ユニット10と中継基板20とが導電性材料層54を介して接合するようにしている。このため、例えばコネクタを介して接合する場合と比較して、複数の光源ユニット10と中継基板20との各々の接続部分の簡素化、小型化、薄型化および軽量化を図ることができる。よって、コネクタを用いる場合と比較して、各々の光源ユニット10の小型化が可能となり、単位領域あたりの光源2の数を増加させることができる。すなわち、複数の光源2の高集積化を実現できる。また、コネクタを用いる場合と比較して、製造容易性も向上する。特に、発光装置100では、複数の光源ユニット10と中継基板20とを、それぞれ複数の箇所において導電性材料層54により接合するようにしている。このように複数の光源ユニット10と中継基板20とが多点でそれぞれ接続されることで、中継基板20に対し複数の光源ユニット10がより安定的に保持される。また、各光源ユニット10と中継基板20との信号伝達経路や電力供給経路などのチャネルを複数確保できるので、より多くの機能を発光装置100に持たせることができる。 Further, in the light emitting device 100, the plurality of light source units 10 and the relay board 20 are joined together with the conductive material layer 54 interposed therebetween. For this reason, compared to the case of joining via a connector, for example, the connection portions between the plurality of light source units 10 and the relay board 20 can be simplified, made smaller, thinner, and lighter. Therefore, compared with the case of using a connector, each light source unit 10 can be miniaturized, and the number of light sources 2 per unit area can be increased. That is, high integration of the plurality of light sources 2 can be realized. Moreover, compared with the case of using a connector, the easiness of manufacture is also improved. In particular, in the light emitting device 100, the plurality of light source units 10 and the relay substrate 20 are joined together at a plurality of locations by the conductive material layers 54, respectively. By connecting the plurality of light source units 10 and the relay board 20 at multiple points in this way, the plurality of light source units 10 are more stably held with respect to the relay board 20 . In addition, since a plurality of channels such as signal transmission paths and power supply paths between each light source unit 10 and the relay substrate 20 can be secured, the light emitting device 100 can have more functions.
 また、発光装置100では、光源基板1が可撓性を有し、または、光源基板1および中継基板20の双方が可撓性を有するようにすることで、例えば湾曲した画面を有する表示装置に好適に用いることができる。 Further, in the light emitting device 100, the light source substrate 1 is flexible, or both the light source substrate 1 and the relay substrate 20 are flexible. It can be used preferably.
 また、発光装置100では、1つの可撓性フィルム30によって複数の光源ユニット10を固定し、一体化するようにしている。このため、例えば製造工程中の半成品のハンドリングが容易となり、例えば中継基板20に複数の光源ユニット10を接合する作業を一括して行うことができ、製造容易性が向上する。 Also, in the light emitting device 100, a plurality of light source units 10 are fixed by one flexible film 30 and integrated. For this reason, for example, the handling of the semi-finished product during the manufacturing process becomes easy, and for example, the work of bonding the plurality of light source units 10 to the relay substrate 20 can be performed collectively, thereby improving the ease of manufacture.
 また、発光装置100では、可撓性フィルム30が、光源ユニット10のうちのXY面に面である樹脂層5の表面と接合されている。このため、複数の光源ユニット10が可撓性フィルム30に対し、より安定的に保持される。 In addition, in the light emitting device 100, the flexible film 30 is bonded to the surface of the resin layer 5 of the light source unit 10, which faces the XY plane. Therefore, the plurality of light source units 10 are held more stably with respect to the flexible film 30 .
 また、発光装置100では、可撓性フィルム30が、Z軸方向において光源2と重なり合う領域に開口30Kを有するようにしている。このため、可撓性フィルム30を光源2の発光側に配置する場合であっても、光源2が存在する領域を避けつつ、複数の光源ユニット10との接合を行うことができる。したがって、可撓性フィルム30によって発光光の進行を阻害するのを回避できる。 Also, in the light emitting device 100, the flexible film 30 has an opening 30K in a region overlapping the light source 2 in the Z-axis direction. Therefore, even when the flexible film 30 is arranged on the light emitting side of the light source 2, it is possible to join the plurality of light source units 10 while avoiding the area where the light source 2 exists. Therefore, it is possible to prevent the flexible film 30 from hindering the progress of the emitted light.
 また、発光装置100では、複数の光源2の駆動を行う駆動素子を、中継基板20および光源基板1のうちの少なくとも一方に設けるようにしている。このため、発光装置100の外部に駆動素子40を設けた場合と比較して、複数の光源2の駆動を、より速い速度で行うことができる。特に、駆動素子40を光源基板1に設け、光源基板1に設けられた複数の光源2のうちの、駆動素子40の近傍にある一部の光源2の駆動を行うようにしているので、光源2の応答性をより高めることができる。 Further, in the light emitting device 100 , driving elements for driving the plurality of light sources 2 are provided on at least one of the relay substrate 20 and the light source substrate 1 . Therefore, compared to the case where the drive element 40 is provided outside the light emitting device 100, the plurality of light sources 2 can be driven at a higher speed. In particular, the driving element 40 is provided on the light source substrate 1, and among the plurality of light sources 2 provided on the light source substrate 1, some of the light sources 2 near the driving element 40 are driven. 2 can be further enhanced.
[1.3 効果]
 以上のように、本実施の形態の発光装置100によれば、複数の光源をより高い密度で配置しつつ、優れた発光性能を発揮することができる。また、軽量化も実現することができる。
[1.3 Effect]
As described above, according to the light-emitting device 100 of the present embodiment, it is possible to exhibit excellent light-emitting performance while arranging a plurality of light sources at a higher density. Also, weight reduction can be realized.
[1.4 第1の実施の形態の変形例]
(第1の変形例)
 図6は、第1の実施の形態の第1の変形例に係る発光装置100-1の一構成例を表す平面図である。この第1の変形例としての発光装置100-1では、駆動素子40を全て中継基板20に設けるようにしている。発光装置100-1では、Y軸方向に隣り合う2つの光源ユニット10の双方に設けられた複数の光源2を、それら2つの光源ユニット10の間に設けられた駆動素子40により駆動するようになっている。具体的には、例えば図6に示したように、光源ユニット10Aと光源ユニット10Bとの双方に跨るように単位領域AL,AC,ARを設定する。ここで、例えば単位領域ALに設けられた複数の光源2は配線4により駆動素子40Lに接続され、駆動素子40Lによって駆動制御されるようになっている。また、単位領域ACに設けられた光源2は配線4により駆動素子40Cに接続され、駆動素子40Cによって駆動制御されるようになっている。さらに、単位領域ARに設けられた光源2は配線4により駆動素子40Rに接続され、駆動素子40Rによって駆動制御されるようになっている。このように、本開示では、複数の光源2の駆動制御がなされる単位は任意に設定することが可能である。
[1.4 Modification of First Embodiment]
(First modification)
FIG. 6 is a plan view showing a configuration example of a light emitting device 100-1 according to the first modification of the first embodiment. In the light emitting device 100-1 as the first modified example, all the drive elements 40 are provided on the relay board 20. FIG. In the light emitting device 100-1, the plurality of light sources 2 provided in both of the two light source units 10 adjacent in the Y-axis direction are driven by the drive element 40 provided between the two light source units 10. It's becoming Specifically, for example, as shown in FIG. 6, the unit areas AL, AC, and AR are set so as to straddle both the light source unit 10A and the light source unit 10B. Here, for example, the plurality of light sources 2 provided in the unit area AL are connected to the drive element 40L by the wiring 4, and driven and controlled by the drive element 40L. Further, the light source 2 provided in the unit area AC is connected to the driving element 40C by the wiring 4, and is driven and controlled by the driving element 40C. Furthermore, the light source 2 provided in the unit area AR is connected to the driving element 40R by the wiring 4, and driven and controlled by the driving element 40R. Thus, in the present disclosure, it is possible to arbitrarily set the unit in which the plurality of light sources 2 are driven and controlled.
 なお、図6に示した例では、1つの単位領域AL,AC,ARに6つの光源2を配置しているが、本開示はこれに限定されるものではない。1つの単位領域AL,AC,ARに含まれる光源2の数は1もしくは2でもよいし、4以上であってもよい。 Although six light sources 2 are arranged in one unit area AL, AC, AR in the example shown in FIG. 6, the present disclosure is not limited to this. The number of light sources 2 included in one unit area AL, AC, AR may be one, two, or four or more.
<2.第2の実施の形態>
[2.1 構成]
 図7は、本技術の第2の実施の形態に係る表示装置101の外観を表したものである。表示装置101は、発光装置100を備え、例えば薄型テレビジョン装置として用いられるものであり、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、表示装置101は、スタンド103を本体部102に取付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。
<2. Second Embodiment>
[2.1 Configuration]
FIG. 7 illustrates the appearance of the display device 101 according to the second embodiment of the present technology. A display device 101 includes a light-emitting device 100 and is used, for example, as a flat-screen television device, and has a configuration in which a flat plate-like main body portion 102 for image display is supported by a stand 103 . The display device 101 is used as a stationary type by placing it on a horizontal surface such as a floor, a shelf, or a stand with the stand 103 attached to the main body 102 . It can also be used as a wall-mounted type.
 図8は、図7に示した本体部102を分解して表したものである。本体部102は、例えば、前面側(視聴者側)から、前部外装部材(ベゼル)111,パネルモジュール112および後部外装部材(リアカバー)113をこの順に有している。前部外装部材111は、パネルモジュール112の前面周縁部を覆う額縁状の部材であり、下方には一対のスピーカー114が配置されている。パネルモジュール112は前部外装部材111に固定され、その背面には電源基板115および信号基板116が実装されると共に取付金具117が固定されている。取付金具117は、壁掛けブラケットの取付、基板等の取付およびスタンド103の取付のためのものである。後部外装部材113は、パネルモジュール112の背面および側面を被覆している。 FIG. 8 is an exploded view of the main body 102 shown in FIG. The main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side). The front exterior member 111 is a frame-shaped member that covers the front peripheral edge of the panel module 112, and a pair of speakers 114 are arranged below. The panel module 112 is fixed to the front exterior member 111, and a power board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed. The mounting hardware 117 is for mounting a wall bracket, mounting a substrate, etc., and mounting the stand 103 . The rear exterior member 113 covers the rear and side surfaces of the panel module 112 .
 図9は、図8に示したパネルモジュール112を分解して表したものである。パネルモジュール112は、例えば、前面側(視聴者側)から、前部筐体(トップシャーシ)121,液晶パネル122,枠状部材(ミドルシャーシ)123,発光装置100,後部筐体(バックシャーシ)124およびタイミングコントローラ基板127をこの順に有している。 FIG. 9 is an exploded view of the panel module 112 shown in FIG. The panel module 112 includes, for example, a front housing (top chassis) 121, a liquid crystal panel 122, a frame member (middle chassis) 123, a light emitting device 100, and a rear housing (back chassis) from the front side (viewer side). 124 and a timing controller board 127 in this order.
 前部筐体121は、液晶パネル122の前面周縁部を覆う枠状の金属部品である。液晶パネル122は、例えば、液晶セル122Aと、ソース基板122Bと、これらを接続するCOF(Chip On Film)などの可撓性基板122Cとを有している。枠状部材123は、液晶パネル122を保持する枠状の樹脂部品である。後部筐体124は、液晶パネル122,枠状部材123および発光装置100を収容する、鉄(Fe)等よりなる金属部品である。タイミングコントローラ基板127もまた、後部筐体124の背面に実装されている。 The front housing 121 is a frame-shaped metal component that covers the front periphery of the liquid crystal panel 122 . The liquid crystal panel 122 has, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as COF (Chip On Film) connecting these. The frame-shaped member 123 is a frame-shaped resin part that holds the liquid crystal panel 122 . The rear housing 124 is a metal component made of iron (Fe) or the like, which accommodates the liquid crystal panel 122 , the frame member 123 and the light emitting device 100 . A timing controller board 127 is also mounted on the rear surface of the rear housing 124 .
 図10は、パネルモジュール112の、より具体的な構成例を示す平面模式図である。図10に示した発光装置100の例では、H方向(水平方向)およびV方向(垂直方向)に広がる液晶パネル122の表示領域に対応する領域に、合計12個の光源ユニット10を配列している。詳細には、H方向に6列の光源ユニット10を並べると共にV方向に2列の光源ユニット10を並べるようにしている。各光源ユニット10では、例えば複数の光源基板1の長手方向がH方向であると共に中継基板20の長手方向がV方向となっている。なお、図10では、可撓性フィルム30の記載を省略している。図10に示したように、パネルモジュール112では、タイミングコントローラ基板127が、例えば発光装置100の中央の領域に設けられている。タイミングコントローラ基板127と複数の光源ユニット10(10-1~10-12)とは、例えばケーブルCB(CB1~CB12)およびコネクタCN(CN1~CN12)によりそれぞれ接続されている。 FIG. 10 is a schematic plan view showing a more specific configuration example of the panel module 112. FIG. In the example of the light emitting device 100 shown in FIG. 10, a total of 12 light source units 10 are arranged in an area corresponding to the display area of the liquid crystal panel 122 extending in the H direction (horizontal direction) and V direction (vertical direction). there is Specifically, six rows of the light source units 10 are arranged in the H direction, and two rows of the light source units 10 are arranged in the V direction. In each light source unit 10, for example, the longitudinal direction of the plurality of light source substrates 1 is the H direction, and the longitudinal direction of the relay substrate 20 is the V direction. Note that the illustration of the flexible film 30 is omitted in FIG. As shown in FIG. 10, in the panel module 112, the timing controller board 127 is provided, for example, in the central region of the light emitting device 100. As shown in FIG. The timing controller board 127 and the plurality of light source units 10 (10-1 to 10-12) are connected by cables CB (CB1 to CB12) and connectors CN (CN1 to CN12), respectively.
[2.2 作用効果]
 表示装置101では、発光装置100からの光が液晶パネル122により選択的に透過されることにより、画像表示が行われる。ここでは、第1の実施の形態で説明したように、発光制御性に優れ、発光効率が向上した発光装置100を備えているので、表示装置101の表示品質の向上が期待できる。
[2.2 Effects]
In the display device 101 , an image is displayed by selectively transmitting light from the light emitting device 100 through the liquid crystal panel 122 . Here, as described in the first embodiment, since the light emitting device 100 having excellent light emission controllability and improved light emission efficiency is provided, improvement in display quality of the display device 101 can be expected.
[2.3 第2の実施の形態の変形例]
(第1の変形例)
 図11は、第2の実施の形態の第1の変形例としてのパネルモジュール112Aを表す平面模式図である。図10に示したパネルモジュール112では、タイミングコントローラ基板127と全ての光源ユニット10とを個別かつ直接的にケーブルCBおよびコネクタCNによって接続するようにした。これに対し、パネルモジュール112Aでは、例えばV方向に隣り合う2つの光源ユニット10の中継基板20同士を電気的に接続し、6つの光源ユニット対10Pを形成している。具体的には、光源ユニット10-1~10-6と光源ユニット10-7~10-12とがそれぞれ接続されて光源ユニット対10P1~10P6をそれぞれ形成している。中継基板20同士の接続は、例えば基板対基板(Board-to-Board)コネクタ、または、フレキシブルプリント配線板(FPC)と異方導電性接着剤(ACA)とによって行うことができる。タイミングコントローラ基板127と6つの光源ユニット対10P1~10P6は、ケーブルCB1~CB6およびコネクタCN1~CN6によりそれぞれ接続されている。
[2.3 Modification of Second Embodiment]
(First modification)
FIG. 11 is a schematic plan view showing a panel module 112A as a first modified example of the second embodiment. In the panel module 112 shown in FIG. 10, the timing controller board 127 and all the light source units 10 are individually and directly connected by cables CB and connectors CN. On the other hand, in the panel module 112A, for example, the relay substrates 20 of two light source units 10 adjacent in the V direction are electrically connected to form six light source unit pairs 10P. Specifically, light source units 10-1 to 10-6 and light source units 10-7 to 10-12 are connected to form light source unit pairs 10P1 to 10P6, respectively. The connection between the relay boards 20 can be performed by, for example, a board-to-board connector, or a flexible printed wiring board (FPC) and an anisotropic conductive adhesive (ACA). The timing controller board 127 and the six light source unit pairs 10P1-10P6 are connected by cables CB1-CB6 and connectors CN1-CN6, respectively.
 図11のパネルモジュール112Aによれば、上記第2の実施の形態のパネルモジュール112(図10)に比べて、同数の光源ユニット10を用いる場合においてケーブルCBおよびコネクタCNの数を削減することができる。 According to the panel module 112A of FIG. 11, compared to the panel module 112 (FIG. 10) of the second embodiment, when using the same number of light source units 10, the number of cables CB and connectors CN can be reduced. can.
(第2の変形例)
 図12は、第2の実施の形態の第2の変形例としてのパネルモジュール112Bを構成する発光装置100Bを表す平面模式図である。本変形例のパネルモジュール112Bの発光装置100Bでは、H方向に4列の光源ユニット10を並べると共にV方向に2列の光源ユニット10を並べるようにしている。さらに、各光源ユニット10-1~10-8では、複数の光源基板1の長手方向がV方向であると共に中継基板20の長手方向がH方向となっている。パネルモジュール112Bでは、例えばH方向に隣り合う2つの光源ユニット10の中継基板20同士を電気的に接続し、合計4つの光源ユニット対10P1~10P4を形成するようにしてもよい。具体的には、光源ユニット10-1~10-2の中継基板20同士が接続されてなる光源ユニット対10P1と、光源ユニット10-3~10-4の中継基板20同士が接続されてなる光源ユニット対10P2と、光源ユニット10-5~10-6の中継基板20同士が接続されてなる光源ユニット対10P3と、光源ユニット10-7~10-8の中継基板20同士が接続されてなる光源ユニット対10P4とを形成してもよい。中継基板20同士の接続は、先に述べたとおりである。発光装置100Bでは、タイミングコントローラ基板127と光源ユニット対10P1~10P4とは、コネクタCN1~CN4により接続される。なお、発光装置100Bでは、例えばH方向に並ぶ4つの光源ユニット10-1~10-4の中継基板20を電気的に接続すると共に、4つの光源ユニット10-5~10-8の中継基板20を電気的に接続するようにしてもよい。また、発光装置100Bでは、タイミングコントローラ基板127と全ての光源ユニット10とを個別かつ直接的にケーブルCBおよびコネクタCNによって接続するようにしてもよい。
(Second modification)
FIG. 12 is a schematic plan view showing a light-emitting device 100B forming a panel module 112B as a second modification of the second embodiment. In the light emitting device 100B of the panel module 112B of this modified example, four lines of the light source units 10 are arranged in the H direction and two lines of the light source units 10 are arranged in the V direction. Furthermore, in each of the light source units 10-1 to 10-8, the longitudinal direction of the plurality of light source boards 1 is the V direction, and the longitudinal direction of the relay board 20 is the H direction. In the panel module 112B, for example, the relay boards 20 of two light source units 10 adjacent in the H direction may be electrically connected to form a total of four light source unit pairs 10P1 to 10P4. Specifically, a light source unit pair 10P1 in which the relay boards 20 of the light source units 10-1 and 10-2 are connected to each other, and a light source in which the relay boards 20 of the light source units 10-3 to 10-4 are connected to each other. A light source unit pair 10P3 formed by connecting the unit pair 10P2 and the relay boards 20 of the light source units 10-5 to 10-6, and a light source formed by connecting the relay boards 20 of the light source units 10-7 to 10-8. A unit pair 10P4 may be formed. The connection between the relay boards 20 is as described above. In the light emitting device 100B, the timing controller board 127 and the light source unit pairs 10P1 to 10P4 are connected by connectors CN1 to CN4. In the light emitting device 100B, for example, the relay boards 20 of the four light source units 10-1 to 10-4 arranged in the H direction are electrically connected, and the relay boards 20 of the four light source units 10-5 to 10-8 are electrically connected. may be electrically connected. Further, in the light emitting device 100B, the timing controller board 127 and all the light source units 10 may be individually and directly connected by cables CB and connectors CN.
(第3の変形例)
 図13は、第2の実施の形態の第3の変形例としてのパネルモジュール112Cを構成する発光装置100Cを表す平面模式図である。本変形例のパネルモジュール112Cの発光装置100Cでは、図10のパネルモジュール112の発光装置100と同様に、H方向に6列の光源ユニット10を並べると共にV方向に2列の光源ユニット10を並べるようにしている。各光源ユニット10では、複数の光源基板1の長手方向がH方向であると共に中継基板20の長手方向がV方向となっている。但し、中継基板20はH方向に隣り合う2つの光源ユニット10の境界部において、それら2つの光源ユニット10を跨ぐように設けられている。隣り合う2つの光源ユニット10の境界部に設けられた中継基板20は、それらの2つの光源ユニット10により共有されている。
(Third modification)
FIG. 13 is a schematic plan view showing a light emitting device 100C forming a panel module 112C as a third modified example of the second embodiment. In the light emitting device 100C of the panel module 112C of this modified example, six rows of the light source units 10 are arranged in the H direction and two rows of the light source units 10 are arranged in the V direction, similarly to the light emitting device 100 of the panel module 112 of FIG. I'm trying In each light source unit 10, the longitudinal direction of the plurality of light source substrates 1 is the H direction, and the longitudinal direction of the relay substrate 20 is the V direction. However, the relay board 20 is provided so as to straddle the two light source units 10 at the boundary between the two light source units 10 adjacent in the H direction. The relay board 20 provided at the boundary between two adjacent light source units 10 is shared by the two light source units 10 .
 図13のパネルモジュール11Cによれば、上記第2の実施の形態のパネルモジュール112(図10)に比べて、同数の光源ユニット10を用いる場合において中継基板20の数を削減することができる。 According to the panel module 11C of FIG. 13, the number of relay boards 20 can be reduced when using the same number of light source units 10 as compared with the panel module 112 (FIG. 10) of the second embodiment.
<3.その他の変形例>
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態において説明した発光装置の各構成要素の材質や種類、配置位置、および形状などは、上記したものに限定されるものではない。
<3. Other modified examples>
Although the present disclosure has been described with reference to the embodiments and modifications, the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible. For example, the material, type, arrangement position, shape, and the like of each component of the light-emitting device described in the above embodiments are not limited to those described above.
[3.1 変形例3-1]
 図14は、本開示の変形例3-1としての発光装置100Dの一部を拡大して表す断面図である。上記第1の実施の形態では、発光素子21を封止レンズ22によって封止するようにしたが、本開示はこれに限定されるものではない。発光装置100Aは、光源2の代わりに光源2Aを備えている。光源2Aは、発光素子21の代わりに発光素子21Aを有し、封止レンズ22の代わりにキャップレンズ22Aを有している。
[3.1 Modification 3-1]
FIG. 14 is a cross-sectional view showing an enlarged part of a light emitting device 100D as Modification 3-1 of the present disclosure. Although the light emitting element 21 is sealed by the sealing lens 22 in the first embodiment, the present disclosure is not limited to this. 100 A of light-emitting devices are equipped with 2 A of light sources instead of the light source 2. FIG. The light source 2A has a light emitting element 21A instead of the light emitting element 21 and a cap lens 22A instead of the sealing lens 22. As shown in FIG.
 発光素子21Aは、例えばパッケージ青色LEDである。発光素子21Aは、具体的には、発光層26と、基部27と、封止材28とを有している。基部27は、凹形状の収容部を有している。発光層26は、基部27の収容部の底面に配置されている。基部27の収容部には封止材28が充填されている。発光層26は、例えば点光源であり、具体的には青色LEDにより構成されている。基部27は、例えばリードフレーム等からなる外部電極を介して光源基板1に半田等により実装されている。基部27の収容部の表面は、発光層26からの光に対して高い反射率を有していることが好ましい。基部27の収容部の表面は例えば、高い反射率を有する材料として、Agを含んでいてもよい。封止材28は、例えばシリコーンやアクリルなどの透明樹脂で構成されている。キャップレンズ22Aは、発光素子21Aと離間して発光素子21Aの直上に配置されている。キャップレンズ22Aの中心位置には、発光素子21AとZ軸方向において対向するように、発光素子21Aに向かって凹形状をなす入射面22A1が設けられている。また、キャップレンズ22Aは、拡散シート7に向かって例えば凸形状をなす射出面22A2を有する。入射面22A1および射出面22A2は、発光素子21Aからの青色光LBに対して拡散作用をそれぞれ発揮する。 The light emitting element 21A is, for example, a packaged blue LED. Specifically, the light emitting element 21A has a light emitting layer 26, a base portion 27, and a sealing material 28. As shown in FIG. The base 27 has a recessed accommodating portion. The light-emitting layer 26 is arranged on the bottom surface of the housing portion of the base portion 27 . A housing portion of the base portion 27 is filled with a sealing material 28 . The light-emitting layer 26 is, for example, a point light source, and is specifically composed of a blue LED. The base portion 27 is mounted on the light source substrate 1 by soldering or the like via an external electrode such as a lead frame. It is preferable that the surface of the housing portion of the base portion 27 has a high reflectance with respect to the light from the light emitting layer 26 . The surface of the housing portion of the base 27 may contain, for example, Ag as a highly reflective material. The encapsulant 28 is made of transparent resin such as silicone or acryl. The cap lens 22A is spaced apart from the light emitting element 21A and arranged directly above the light emitting element 21A. At the center position of the cap lens 22A, an incident surface 22A1 having a concave shape facing the light emitting element 21A is provided so as to face the light emitting element 21A in the Z-axis direction. In addition, the cap lens 22A has an exit surface 22A2 that faces the diffusion sheet 7 and has, for example, a convex shape. The incident surface 22A1 and the exit surface 22A2 respectively exert a diffusing action on the blue light LB from the light emitting element 21A.
 このような構成の発光装置100Aでは、発光素子21Aから発せられた青色光がキャップレンズ22Aおよび拡散シート7によって拡散されたのち、波長変換シート8を透過する際に青色光から白色光へ変換されることとなる。青色光から変換された白色光は、さらに、光学シート群9により輝度向上や均一化がなされ、液晶表示パネルなどに照射されることとなる。 In the light emitting device 100A having such a configuration, the blue light emitted from the light emitting element 21A is diffused by the cap lens 22A and the diffusion sheet 7, and then converted from blue light to white light when passing through the wavelength conversion sheet 8. The Rukoto. The white light converted from the blue light is further improved in brightness and made uniform by the optical sheet group 9, and is irradiated to a liquid crystal display panel or the like.
[3.2 変形例3-2]
 上記の変形例3-1としての発光装置100Dでは、発光素子21Aとしてパッケージ青色LEDを用いるようにしたが、本開示はこれに限定されるものではない。例えば 図15に示した本開示の変形例3-2としての発光装置100Eの発光素子21Bのように、パッケージ青色LEDの代わりにパッケージ白色LEDを採用してもよい。発光素子21Bは、例えば青色LEDにより構成される発光層26と、基部27と、波長変換物質を含む透明樹脂により構成される封止材29とを有する。なお、発光装置100Eでは、波長変換シート8が不要となる。よって、図14の発光装置100Dと比較して、全体構成の薄型化に有利である。
[3.2 Modification 3-2]
In the light-emitting device 100D as the modified example 3-1, the packaged blue LED is used as the light-emitting element 21A, but the present disclosure is not limited to this. For example, like the light-emitting element 21B of the light-emitting device 100E as Modification 3-2 of the present disclosure shown in FIG. 15, a packaged white LED may be employed instead of the packaged blue LED. The light-emitting element 21B has a light-emitting layer 26 made of, for example, a blue LED, a base portion 27, and a sealing material 29 made of a transparent resin containing a wavelength conversion substance. Note that the wavelength conversion sheet 8 is not required in the light emitting device 100E. Therefore, compared with the light-emitting device 100D of FIG. 14, it is advantageous for thinning the overall configuration.
[3.3 変形例3-3]
 また、本開示の発光装置は、発光素子の射出側にレンズを配置するものに限定されない。例えば図16に示した本開示の変形例3-3としての発光装置100Fのように、各種レンズも設けることなく、例えばパッケージ青色LEDである発光素子21Cを複数配置するようにしてもよい。発光素子21Cは、図10に示した発光素子21Aの構成と実質的に同じ構成を有し、例えば青色LEDにより構成される発光層26と、基部27と、封止材28とを有する。このような構成の発光装置100Fでは、発光素子21Cから発せられた青色光が拡散シート7によって拡散されたのち、波長変換シート8を透過する際に青色光から白色光へ変換されることとなる。青色光から変換された白色光は、さらに、光学シート群9により輝度向上や均一化がなされ、液晶表示パネルなどに照射されることとなる。
[3.3 Modification 3-3]
Further, the light-emitting device of the present disclosure is not limited to arranging a lens on the emission side of the light-emitting element. For example, like a light-emitting device 100F as a modified example 3-3 of the present disclosure shown in FIG. 16, a plurality of light-emitting elements 21C, which are packaged blue LEDs, for example, may be arranged without providing various lenses. The light-emitting element 21C has substantially the same configuration as the light-emitting element 21A shown in FIG. In the light-emitting device 100F having such a configuration, the blue light emitted from the light-emitting element 21C is diffused by the diffusion sheet 7 and then converted from blue light to white light when passing through the wavelength conversion sheet 8. . The white light converted from the blue light is further improved in brightness and made uniform by the optical sheet group 9, and is irradiated to a liquid crystal display panel or the like.
[3.4 変形例3-4]
 上記の変形例3-3としての発光装置100Fでは、発光素子21Cとしてパッケージ青色LEDを用いるようにしたが、本開示はこれに限定されるものではない。例えば 図17に示した本開示の変形例3-4としての発光装置100Gの発光素子21Dのように、パッケージ青色LEDの代わりにパッケージ白色LEDを採用してもよい。発光素子21Dは、図11に示した発光素子21Bの構成と実質的に同じ構成を有し、例えば青色LEDにより構成される発光層26と、基部27と、波長変換物質を含む透明樹脂により構成される封止材29とを有する。発光装置100Gでは、波長変換シート8が不要となる。よって、図16の発光装置100Fと比較して、全体構成の薄型化に有利である。
[3.4 Modification 3-4]
In the light-emitting device 100F as Modification 3-3, the packaged blue LED is used as the light-emitting element 21C, but the present disclosure is not limited to this. For example, a packaged white LED may be employed instead of a packaged blue LED, like a light emitting element 21D of a light emitting device 100G as Modified Example 3-4 of the present disclosure shown in FIG. The light-emitting element 21D has substantially the same configuration as the light-emitting element 21B shown in FIG. 11, and is composed of, for example, a light-emitting layer 26 composed of a blue LED, a base portion 27, and a transparent resin containing a wavelength conversion substance. and a sealing material 29 . The wavelength conversion sheet 8 is not required in the light emitting device 100G. Therefore, compared with the light-emitting device 100F of FIG. 16, it is advantageous in reducing the thickness of the overall structure.
[3.5 変形例3-5]
 図18に示した本開示の変形例3-5としての発光装置100Hは、ドーム形状の封止材28を有する発光素子21Eを備えるようにしたものである。発光素子21Eの構成は、封止材28の形状が異なることを除き、発光素子21Cの構成と実質的に同じである。発光素子21Eでは、封止材28がドーム形状を有するようにしたので、封止材28にレンズ作用を持たせることができる。よって、所望の配向性能を容易に得ることができる。
[3.5 Modification 3-5]
A light-emitting device 100H as Modification 3-5 of the present disclosure shown in FIG. The configuration of the light emitting element 21E is substantially the same as the configuration of the light emitting element 21C, except that the shape of the sealing material 28 is different. In the light-emitting element 21E, the sealing member 28 has a dome shape, so that the sealing member 28 can act as a lens. Therefore, desired alignment performance can be easily obtained.
[3.6 変形例3-6]
 図19に示した本開示の変形例3-6としての発光装置100Iは、ドーム形状の封止材29を有する発光素子21Fを備えるようにしたものである。発光素子21Fの構成は、封止材28の形状が異なることを除き、発光素子21Dの構成と実質的に同じである。具体的には、発光素子21Fは、例えば青色LEDにより構成される発光層26と、基部27と、波長変換物質を含む透明樹脂により構成される封止材29とを有する。発光素子21Fでは、封止材29がドーム形状を有するようにしたので、封止材29にレンズ作用を持たせることができる。よって、所望の配向性能を容易に得ることができる。
[3.6 Modification 3-6]
A light-emitting device 100I as Modified Example 3-6 of the present disclosure shown in FIG. The configuration of the light emitting element 21F is substantially the same as the configuration of the light emitting element 21D, except that the shape of the sealing material 28 is different. Specifically, the light-emitting element 21F has a light-emitting layer 26 made of, for example, a blue LED, a base portion 27, and a sealing material 29 made of a transparent resin containing a wavelength conversion substance. In the light-emitting element 21F, the sealing member 29 has a dome shape, so that the sealing member 29 can act as a lens. Therefore, desired alignment performance can be easily obtained.
[3.7 変形例3-7]
 図20は、本開示の変形例3-7としての発光装置100Jの断面構成を表しており、上記第1の実施の形態の発光装置100を示した図3に対応している。発光装置100Jでは、光源基板1の裏面1BSに絶縁層1Zが形成され、中継基板20の表面にも絶縁層20Zが形成されている。発光装置100Hでは、さらに、接着層ADにより、光源基板1の裏面1BSと中継基板20の表面とを直接的もしくは間接的に接合するようにしている。発光装置100Hでは、導電性材料層54の構成材料としては、例えば異方導電性接着剤が好適に用いられる。さらに、接着層ADについても導電性材料層54と同様に異方導電性接着剤により構成することができる。その場合、接着層ADおよび導電性材料層54を同じ異方導電性接着剤を用いて同時に形成することができる。なお、異方導電性接着剤は複数の導電性粒子が絶縁性接着剤に分散したものである。よって、配線51と配線52との間に挟まれてプレスされた異方導電性接着剤は複数の導電性粒子同士が導通し、導電性材料層54を構成する。一方、配線51と配線52との間に挟まれる領域以外の領域の異方導電性接着剤は絶縁性を呈する接着層ADを構成することとなる。なお、発光装置100Hでは、絶縁層1Zおよび絶縁層20Zは設けなくてもよい。
[3.7 Modification 3-7]
FIG. 20 shows a cross-sectional configuration of a light-emitting device 100J as Modification 3-7 of the present disclosure, and corresponds to FIG. 3 showing the light-emitting device 100 of the first embodiment. In the light emitting device 100J, the insulating layer 1Z is formed on the back surface 1BS of the light source substrate 1, and the insulating layer 20Z is formed on the surface of the relay substrate 20 as well. Further, in the light emitting device 100H, the back surface 1BS of the light source substrate 1 and the front surface of the relay substrate 20 are directly or indirectly bonded by the adhesive layer AD. In the light-emitting device 100H, for example, an anisotropic conductive adhesive is preferably used as the constituent material of the conductive material layer 54 . Furthermore, the adhesive layer AD can also be made of an anisotropic conductive adhesive like the conductive material layer 54 . In that case, the adhesive layer AD and the conductive material layer 54 can be formed simultaneously using the same anisotropic conductive adhesive. The anisotropic conductive adhesive is an insulating adhesive in which a plurality of conductive particles are dispersed. Therefore, in the anisotropic conductive adhesive sandwiched between the wiring 51 and the wiring 52 and pressed, the plurality of conductive particles are electrically connected to form the conductive material layer 54 . On the other hand, the anisotropic conductive adhesive in the region other than the region sandwiched between the wiring 51 and the wiring 52 constitutes an adhesive layer AD exhibiting insulation. Note that the insulating layer 1Z and the insulating layer 20Z may not be provided in the light emitting device 100H.
 図21は、発光装置100Jの導電性材料層54の詳細の構成を表す断面図である。図21に示したように、導電性材料層54は、バンプ61と、バンプ62と、導電性材料63とを有している。バンプ61は、配線51に設けられている。バンプ62は、配線52に設けられている。導電性材料63は、バンプ61とバンプ62との間に挟まれている。バンプ61の構成材料、バンプ62の構成材料、および導電性材料63としては、例えばAgやCu,NiおよびSnのうちの少なくとも一種を含む導電性ペーストおよびはんだ、異方導電性接着剤が好適に用いられる。 FIG. 21 is a cross-sectional view showing the detailed configuration of the conductive material layer 54 of the light emitting device 100J. As shown in FIG. 21, the conductive material layer 54 has bumps 61 , bumps 62 and conductive material 63 . The bump 61 is provided on the wiring 51 . The bump 62 is provided on the wiring 52 . Conductive material 63 is sandwiched between bumps 61 and 62 . As the constituent material of the bump 61, the constituent material of the bump 62, and the conductive material 63, for example, conductive paste and solder containing at least one of Ag, Cu, Ni and Sn, and anisotropic conductive adhesive are suitable. Used.
 図22A~図22Cは、発光装置100Hのうちの導電性材料層54の形成過程を表す断面図である。まず、図22Aに示したように、光源ユニット10の配線51と、中継基板20の配線52とを対向させる。次に、図22Bに示したように、配線51を覆うようにバンプ61を形成すると共に、配線52を覆うようにバンプ62を形成する。続いて、図22Cに示したように、バンプ61を覆うように異方導電性接着剤63Zを形成する。なお、バンプ62を覆うように異方導電性接着剤63Zを形成してもよい。最後に、バンプ61とバンプ62との間に異方導電性接着剤63Zを挟むようにプレスすることで導電性材料63を形成し、光源ユニット10と中継基板20とを接合する。以上により、導電性材料層54が形成され、接続部50が完成する。 22A to 22C are cross-sectional views showing the process of forming the conductive material layer 54 in the light emitting device 100H. First, as shown in FIG. 22A, the wiring 51 of the light source unit 10 and the wiring 52 of the relay board 20 are made to face each other. Next, as shown in FIG. 22B, bumps 61 are formed to cover the wirings 51 and bumps 62 are formed to cover the wirings 52 . Subsequently, as shown in FIG. 22C, an anisotropic conductive adhesive 63Z is formed to cover the bumps 61. Then, as shown in FIG. An anisotropic conductive adhesive 63Z may be formed so as to cover the bumps 62. FIG. Finally, an anisotropic conductive adhesive 63Z is pressed between the bumps 61 and 62 to form the conductive material 63, and the light source unit 10 and the relay substrate 20 are joined. As described above, the conductive material layer 54 is formed, and the connecting portion 50 is completed.
 なお、図21では、光源ユニット10および中継基板20の双方にバンプ61およびバンプ62を形成するようにしたが、本開示では、図23に示した発光装置100JAのように、光源ユニット10および中継基板20のうちのいずれか一方にのみバンプを設けるようにしてもよい。図23の発光装置100JAでは、光源ユニット10の配線51の上にのみバンプ61を設けるようにし、中継基板20の配線52が、直接、導電性材料層54に接するようにしている。但し、中継基板20の配線52の上にのみバンプ62を設けるようにし、光源ユニット10の配線51が、直接、導電性材料層54に接するようにしてもよい。図23において、深さD20Zは、絶縁層20Zの上面と配線52の上面とのZ軸方向の差分である。絶縁層20Zの上面とは、絶縁層20Zのうち、絶縁層1Zと対向する面をいう。配線52の上面とは、配線52のうち、バンプ61と対向する面をいう。また、図23において、高さH61は、バンプ61の下面のうち最も配線52の上面に接近している位置(先端部)と、絶縁層1Zの下面とのZ軸方向の差分である。バンプ61の下面とは、バンプ61のうち、配線52の対向する面をいう。絶縁層1Zの下面とは、絶縁層1Zのうち、絶縁層20Zと対向する面をいう。さらに、高さH63は、導電性材料63のうち、バンプ61の先端部と配線52の上面との間に挟まれた部分の厚さである。高さH61と高さH63との合計を高さH54とする。図23の発光装置100JAでは、高さH54が深さD20Zよりも大きい(H54>D20Z)ことが望ましい。導電性材料63における十分な導電性を得るためである。 In FIG. 21, the bumps 61 and the bumps 62 are formed on both the light source unit 10 and the relay substrate 20. Only one of the substrates 20 may be provided with bumps. In the light emitting device 100JA of FIG. 23, the bumps 61 are provided only on the wirings 51 of the light source unit 10 so that the wirings 52 of the relay substrate 20 are in direct contact with the conductive material layer 54. FIG. However, the bumps 62 may be provided only on the wirings 52 of the relay substrate 20 so that the wirings 51 of the light source unit 10 are in direct contact with the conductive material layer 54 . In FIG. 23, the depth D20Z is the difference in the Z-axis direction between the upper surface of the insulating layer 20Z and the upper surface of the wiring 52. In FIG. The upper surface of the insulating layer 20Z refers to the surface of the insulating layer 20Z that faces the insulating layer 1Z. The upper surface of the wiring 52 refers to the surface of the wiring 52 that faces the bump 61 . In FIG. 23, height H61 is the difference in the Z-axis direction between the position (tip) of the lower surface of the bump 61 that is closest to the upper surface of the wiring 52 and the lower surface of the insulating layer 1Z. The lower surface of the bump 61 refers to the surface of the bump 61 facing the wiring 52 . The lower surface of the insulating layer 1Z refers to the surface of the insulating layer 1Z that faces the insulating layer 20Z. Furthermore, the height H63 is the thickness of the portion of the conductive material 63 sandwiched between the tip of the bump 61 and the upper surface of the wiring 52 . Let height H54 be the sum of height H61 and height H63. In the light emitting device 100JA of FIG. 23, it is desirable that the height H54 is larger than the depth D20Z (H54>D20Z). This is for obtaining sufficient conductivity in the conductive material 63 .
 このように、光源ユニット10および中継基板20のうちのいずれか一方にのみバンプを設けるようにした発光装置100JAでは、光源ユニット10および中継基板20の双方にバンプを形成するようにした発光装置100Jと比較して、光源ユニット10の光源基板1と中継基板20との厚さ方向(Z軸方向)の距離を近づけることができる。したがって、発光装置100JAの厚さは、発光装置100Jの厚さと比較して、より薄型化される。また、発光装置100JAでは、バンプ62を形成する工程が省略できるので、発光装置100Hと比較して、製造過程がより簡素化される。 As described above, in light emitting device 100JA in which bumps are provided only on one of light source unit 10 and relay substrate 20, light emitting device 100J in which bumps are formed on both light source unit 10 and relay substrate 20 is used. , the distance in the thickness direction (Z-axis direction) between the light source substrate 1 of the light source unit 10 and the relay substrate 20 can be shortened. Therefore, the thickness of the light emitting device 100JA is made thinner than the thickness of the light emitting device 100J. In addition, since the step of forming the bumps 62 can be omitted in the light emitting device 100JA, the manufacturing process can be simplified as compared with the light emitting device 100H.
 図24A~図24Cは、発光装置100JAのうちの接続部50の形成過程を表す断面図である。まず、図24Aに示したように、光源ユニット10の配線51と、中継基板20の配線52とを対向させる。次に、図24Bに示したように、配線51を覆うようにバンプ61を形成する。続いて、図24Cに示したように、バンプ61を覆うように異方導電性接着剤63Zを形成する。最後に、バンプ61とバンプ62との間に異方導電性接着剤63Zを挟むようにプレスすることで、光源ユニット10と中継基板20とを接合する。以上により、導電性材料層54が形成され、接続部50が完成する。 24A to 24C are cross-sectional views showing the process of forming the connecting portion 50 of the light emitting device 100JA. First, as shown in FIG. 24A, the wiring 51 of the light source unit 10 and the wiring 52 of the relay board 20 are made to face each other. Next, as shown in FIG. 24B, bumps 61 are formed to cover the wirings 51 . Subsequently, as shown in FIG. 24C, an anisotropic conductive adhesive 63Z is formed to cover the bumps 61. Then, as shown in FIG. Finally, the light source unit 10 and the relay board 20 are joined by pressing so that the anisotropic conductive adhesive 63Z is sandwiched between the bumps 61 and 62 . As described above, the conductive material layer 54 is formed, and the connecting portion 50 is completed.
 ここで、図21に示した発光装置100Jと図23に示した発光装置100JAとの比較からわかるように、バンプ61のX軸方向の寸法が互いに同じ場合、導電性材料63のX軸方向の寸法は発光装置100Jよりも発光装置100JAにおいて大きくすることができる。図21に示した発光装置100Jでは、バンプ61の表面およびバンプ62の表面がいずれも凸面である。このため、導電性材料63を形成するにあたり、バンプ61とバンプ62との間においてプレスされる異方導電性接着剤63Zに含まれる導電性粒子が、バンプ61とバンプ62との間の領域から外側へ流出しやすい。これに対し、図23に示した発光装置100JAでは、バンプ61の表面は凸面であるものの、バンプ61に対抗する配線52の上面は平坦面である。このため、バンプ61と配線52の上面との間においてプレスされる異方導電性接着剤63Zに含まれる導電性粒子は、バンプ61と配線52の上面との間の領域から外側へ比較的流出しにくい。なお、Y軸方向についても同様である。 Here, as can be seen from a comparison of the light emitting device 100J shown in FIG. 21 and the light emitting device 100JA shown in FIG. The dimensions can be larger for light emitting device 100JA than for light emitting device 100J. In the light emitting device 100J shown in FIG. 21, both the surface of the bump 61 and the surface of the bump 62 are convex. Therefore, in forming the conductive material 63, the conductive particles contained in the anisotropic conductive adhesive 63Z pressed between the bumps 61 and 62 are removed from the region between the bumps 61 and 62. Easy to flow out. On the other hand, in the light-emitting device 100JA shown in FIG. 23, although the surface of the bump 61 is convex, the upper surface of the wiring 52 facing the bump 61 is flat. For this reason, the conductive particles contained in the anisotropic conductive adhesive 63Z pressed between the bump 61 and the upper surface of the wiring 52 relatively flow out from the region between the bump 61 and the upper surface of the wiring 52 to the outside. hard to do. The same applies to the Y-axis direction.
 なお、図23の発光装置100JAでは配線51を設けるようにしたが、図25の発光装置100JBのように、配線51および絶縁層1Zを設けることなく、バンプ61の代わりにバンプ64を形成するようにしてもよい。なお、バンプ64は、光源基板1を貫通するビアホール10VHを充填すると共に、光源基板1の裏面1BSから中継基板20へ向けて突出するように設けられている。そうすることにより、発光装置100JBでは、発光装置100JAと比較して、その構成がより簡素化、かつ、薄型化される。 The wiring 51 is provided in the light emitting device 100JA of FIG. can be The bumps 64 are provided so as to fill the via holes 10VH penetrating the light source substrate 1 and protrude from the rear surface 1BS of the light source substrate 1 toward the relay substrate 20 . By doing so, the configuration of the light-emitting device 100JB is simpler and thinner than that of the light-emitting device 100JA.
 また、図26に示したように、発光装置100JAおよび発光装置100JBのいずれにおいても、バンプ61におけるX軸方向の寸法61XおよびY軸方向の寸法61Yは、対向する配線52の露出部分におけるX軸方向の寸法52XおよびY軸方向の寸法52Yよりも小さいことが望ましい。図26は、XY面内におけるバンプ61と配線52の露出部分との位置関係の一例を模式的に表す概略平面図である。発光装置100JAおよび発光装置100JBでは、例えば、寸法52Xは寸法61Xの1.5倍以上3倍以下が望ましく、寸法52Yは寸法61Yの1.5倍以上3倍以下が望ましい。そのように、バンプ61のXY面内の寸法を配線52の露出部分のXY面内の寸法よりも小さくすることで、光源ユニット10と中継基板20とのXY面内での位置合わせの際のマージンを確保することができる。なお、図26では、寸法52Xおよび寸法52Yが互いにほぼ等しく、寸法61Xおよび寸法61Yが互いにほぼ等しい場合を例示しているが、本開示はこれに限定されるものではない。すなわち、バンプ61の平面形状および配線52の露出部分の平面形状は、いずれも略正方形状の場合に限定されず、略矩形状であってもよい。あるいは、それらの平面形状は、角丸の矩形状であってもよいし、略円形状や略楕円形状であってもよい。 Further, as shown in FIG. 26, in both the light emitting device 100JA and the light emitting device 100JB, the dimension 61X in the X-axis direction and the dimension 61Y in the Y-axis direction of the bump 61 correspond to the X-axis It is preferably smaller than the directional dimension 52X and the Y dimension 52Y. FIG. 26 is a schematic plan view schematically showing an example of the positional relationship between the bump 61 and the exposed portion of the wiring 52 in the XY plane. In the light-emitting device 100JA and the light-emitting device 100JB, for example, the dimension 52X is preferably 1.5 to 3 times the dimension 61X, and the dimension 52Y is preferably 1.5 to 3 times the dimension 61Y. By making the dimensions of the bumps 61 in the XY plane smaller than the dimensions of the exposed portions of the wirings 52 in the XY plane, alignment of the light source unit 10 and the relay substrate 20 in the XY plane is facilitated. Margin can be secured. Note that although FIG. 26 illustrates a case where the dimensions 52X and 52Y are substantially equal to each other and the dimensions 61X and 61Y are substantially equal to each other, the present disclosure is not limited to this. That is, the planar shape of the bump 61 and the planar shape of the exposed portion of the wiring 52 are not limited to a substantially square shape, and may be a substantially rectangular shape. Alternatively, the planar shape thereof may be a rectangular shape with rounded corners, a substantially circular shape, or a substantially elliptical shape.
 なお、発光装置100JA,100JBでは、XY面内における複数の接続部50の配置密度(単位面積当たりの接続部50の数)や接続部50の配置位置に応じて、寸法61Xに対する寸法52Xの比率および寸法61Yに対する寸法52Yの比率を変えるようにしてもよい。例えば、発光装置100JA,100JBのXY面内に沿った発光領域のうち、比較的低い接続部50の配置密度の領域では、比較的高い接続部50の配置密度の領域と比べて、寸法61Xに対する寸法52Xの比率および寸法61Yに対する寸法52Yの比率を大きくしてもよい。あるいは、中継基板20のY軸方向の中心位置に近い位置の接続部50では、寸法61Xに対する寸法52Xの比率および寸法61Yに対する寸法52Yの比率を比較的小さくし、中継基板20のY軸方向の両端に近い位置の接続部50では、寸法61Xに対する寸法52Xの比率および寸法61Yに対する寸法52Yの比率を比較的大きくするようにしてもよい。 Note that in the light emitting devices 100JA and 100JB, the ratio of the dimension 52X to the dimension 61X depends on the arrangement density of the plurality of connection parts 50 in the XY plane (the number of connection parts 50 per unit area) and the arrangement position of the connection parts 50. and the ratio of dimension 52Y to dimension 61Y may be changed. For example, among the light emitting regions along the XY plane of the light emitting devices 100JA and 100JB, in a region with a relatively low arrangement density of the connection portions 50, compared to a region with a relatively high arrangement density of the connection portions 50, The ratio of dimension 52X and the ratio of dimension 52Y to dimension 61Y may be increased. Alternatively, the ratio of the dimension 52X to the dimension 61X and the ratio of the dimension 52Y to the dimension 61Y are made relatively small in the connection portion 50 located near the center position of the relay board 20 in the Y-axis direction. At the connecting portions 50 located near the ends, the ratio of the dimension 52X to the dimension 61X and the ratio of the dimension 52Y to the dimension 61Y may be relatively large.
[3.8 変形例3-8]
 図27は、本開示の変形例3-8としての発光装置100Kの断面構成を表しており、上記第1の実施の形態の発光装置100を示した図3に対応している。発光装置100Kでは、光源基板1の裏面1BSに絶縁層1Zが形成され、中継基板20の表面にも絶縁層20Zが形成されている。発光装置100Kでは、導電性材料層54の構成材料としては、例えばAgやCuを含む導電性ペーストおよびはんだが好適に用いられる。
[3.8 Modification 3-8]
FIG. 27 shows a cross-sectional configuration of a light emitting device 100K as Modification 3-8 of the present disclosure, and corresponds to FIG. 3 showing the light emitting device 100 of the first embodiment. In the light emitting device 100K, the insulating layer 1Z is formed on the back surface 1BS of the light source substrate 1, and the insulating layer 20Z is formed on the surface of the relay substrate 20 as well. In the light-emitting device 100K, conductive paste and solder containing Ag or Cu, for example, are preferably used as the constituent material of the conductive material layer 54 .
[3.9 変形例3-9]
 上記第2の実施の形態では、液晶パネル122を備えた表示装置101を例示して説明したが、本開示はこれに限定されるものではない。すなわち、表示装置101では、液晶パネル122のバックライトとして発光装置100を用いるようにしたが、発光装置100を表示パネルとして用いるようにしてもよい。
[3.9 Modification 3-9]
Although the display device 101 including the liquid crystal panel 122 has been described as an example in the second embodiment, the present disclosure is not limited to this. That is, in the display device 101, the light emitting device 100 is used as the backlight of the liquid crystal panel 122, but the light emitting device 100 may be used as the display panel.
 図28は、表示パネル200を備えた表示装置201を模式的に表している。表示装置201は、表示パネル210と、表示パネル210を駆動制御する制御回路220とを備えている。表示装置201は、いわゆるLEDディスプレイと呼ばれるものであり、表示画素としてLEDが用いられたものである。すなわち、発光装置100の光源2を表示画素として用いるようにしたものである。表示パネル210は、発光装置100を含む実装基板210Aと、対向基板210Bとを互いに重ね合わせたものである。対向基板210Bの表面(実装基板210Aと反対側の面)が映像表示面となっており、中央部分に表示領域を有し、その周囲に、非表示領域であるフレーム領域を有している。対向基板210Bは、例えば、所定の間隙を介して、実装基板210Aと対向する位置に配置されている。なお、対向基板210Bが、実装基板210Aの上面に接していてもよい。対向基板210Bは、例えば、可視光を透過する光透過性の基板を有しており、例えば、ガラス基板、透明樹脂基板、または透明樹脂フィルムなどを有している。 FIG. 28 schematically shows a display device 201 having a display panel 200. FIG. The display device 201 includes a display panel 210 and a control circuit 220 that drives and controls the display panel 210 . The display device 201 is a so-called LED display, and uses LEDs as display pixels. That is, the light source 2 of the light emitting device 100 is used as a display pixel. The display panel 210 is formed by stacking a mounting substrate 210A including the light emitting device 100 and a counter substrate 210B. The surface of the counter substrate 210B (the surface opposite to the mounting substrate 210A) serves as an image display surface, and has a display area in the center and a frame area as a non-display area around it. The counter substrate 210B is arranged, for example, at a position facing the mounting substrate 210A with a predetermined gap therebetween. Note that the counter substrate 210B may be in contact with the upper surface of the mounting substrate 210A. The counter substrate 210B has, for example, a light-transmitting substrate that transmits visible light, such as a glass substrate, a transparent resin substrate, or a transparent resin film.
 また、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。例えば、光源は、白色光源または青色光源のいずれかに限定されるものではなく、例えば赤色光源や緑色光源などの他の色を発光する光源であってもよい。また、上記発光装置100などでは、各光源ユニット10の発光面側に可撓性フィルム30を貼り付け、可撓性フィルム30に複数の光源ユニット10を固定するようにしたが、各光源ユニット10の発光面と反対側である裏面に可撓性フィルム30を貼り付けるようにしてもよい。さらに、本技術は以下のような構成を取り得るものである。
(1)
 第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
 前記複数の光源ユニットの各々と電気的に接続された中継部材と
 を有する発光装置。
(2)
 前記複数の光源ユニットと前記中継部材とが導電性材料を介して接合されている
 上記(1)記載の発光装置。
(3)
 前記複数の光源ユニットは、前記第1方向と直交する第2方向に沿って互いに離間して並んでいる
 上記(1)または(2)記載の発光装置。
(4)
 前記光源ユニットの前記第2方向の幅は、前記第2方向に隣り合う前記複数の光源ユニット同士の間隔よりも狭い
 上記(3)記載の発光装置。
(5)
 前記複数の光源は、前記光源基板において前記第1方向に沿って1列に並んでいる
 上記(4)記載の発光装置。
(6)
 前記光源基板が可撓性を有し、
 または
 前記光源基板および前記中継部材の双方が可撓性を有する
 上記(1)から(5)のいずれか1項に記載の発光装置。
(7)
 前記複数の光源ユニットが固定された、可撓性を有するシート部材をさらに有する
 上記(1)から(6)のいずれか1項に記載の発光装置。
(8)
 前記シート部材は、前記光源ユニットのうちの前記第1方向に沿った面と接合されている
 上記(7)記載の発光装置。
(9)
 前記シート部材は、前記第1方向と直交する第3方向において前記光源と重なり合う領域に開口を有する
 上記(7)または(8)記載の発光装置。
(10)
 前記複数の光源の駆動を行う駆動素子をさらに有する
 上記(1)から(9)のいずれか1項に記載の発光装置。
(11)
 前記駆動素子は、前記中継部材および前記光源基板のうちの少なくとも一方に設けられている
 上記(10)記載の発光装置。
(12)
 前記駆動素子は、前記光源基板に設けられており、前記光源基板に設けられた前記複数の光源のうちの一部の光源の駆動を行うようになっている
 上記(10)記載の発光装置。
(13)
 前記駆動素子は、前記中継部材に設けられており、前記複数の光源ユニットのうちの第1光源ユニットにおける第1光源と、前記複数の光源ユニットのうちの第2光源ユニットにおける第2光源との双方の駆動を行うようになっている
 上記(10)記載の発光装置。
(14)
 前記複数の光源ユニットと前記中継部材とは、それぞれ複数の箇所において接合されている
 上記(1)から(13)のいずれか1項に記載の発光装置。
(15)
 前記複数の光源は、いずれも白色光源であり、または、赤色光源、緑色光源および青色光源を含む
 上記(1)から(14)のいずれか1項に記載の発光装置。
(16)
 波長変換部材をさらに有し、
 前記光源は、青色光源であり、
 前記波長変換部材は前記青色光源からの青色光を白色光に変換する
 上記(1)から(14)のいずれか1項に記載の発光装置。
(17)
 前記波長変換部材は、量子ドットを含む
 上記(16)記載の発光装置。
(18)
 発光装置と、
 前記発光装置からの光を用いて画像表示を行う表示パネルと
 を備え、
 前記発光装置は、
 第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
 前記複数の光源ユニットの各々と電気的に接続された中継部材と
 を有する
 表示装置。
(19)
 第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
 前記複数の光源ユニットが固定され、可撓性を有するシート部材と
 を有する発光装置。
(20)
 前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
 前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
 前記接続部は、前記光源ユニットに形成された第1バンプと、前記中継部材に形成されて前記厚さ方向に前記第1バンプと対向する第2バンプと、前記第1バンプと前記第2バンプとの間に挟まれた導電性材料とを有する
 上記(1)から(18)のいずれか1項に記載の発光装置。
(21)
 前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
 前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
 前記接続部は、前記光源ユニットおよび前記中継部材のいずれか一方に形成されたバンプと、前記光源ユニットおよび前記中継部材の他方に形成されて前記厚さ方向に前記バンプと対向するパッドと、前記バンプと前記パッドとの間に挟まれた導電性材料とを有する
 上記(1)から(18)のいずれか1項に記載の発光装置。
(22)
 前記複数の光源ユニットは、それぞれ、前記複数の光源と接続されると共に前記光源基板の厚さ方向に前記光源基板を貫く導電性ビアをさらに有する
 上記(21)記載の発光装置。
(23)
 前記バンプは、前記導電性ビアを覆うように設けられている
 上記(22)記載の発光装置。
(24)
 前記バンプの前記第1方向の寸法は、前記パッドの前記第1方向の寸法よりも小さく、
 前記バンプの前記第1方向と直交する第2方向の寸法は、前記パッドの前記第2方向の寸法よりも小さい
 上記(21)記載の発光装置。
(25)
 前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
 前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
 前記接続部は、前記光源ユニットおよび前記中継部材のいずれか一方に形成されたバンプと、前記光源ユニットおよび前記中継部材の他方に形成されて前記厚さ方向に前記バンプと対向するパッドと、前記バンプと前記パッドとの間に挟まれた導電性材料とを有する
 上記(18)記載の表示装置。
Also, the effects described in this specification are merely examples and are not limited to the descriptions, and other effects may be provided. For example, the light source is not limited to either a white light source or a blue light source, but may be a light source that emits other colors such as a red light source or a green light source. Further, in the light emitting device 100 and the like, the flexible film 30 is attached to the light emitting surface side of each light source unit 10, and the plurality of light source units 10 are fixed to the flexible film 30. A flexible film 30 may be attached to the back surface opposite to the light emitting surface of the . Furthermore, the present technology can take the following configurations.
(1)
a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
A light emitting device comprising: a relay member electrically connected to each of the plurality of light source units.
(2)
The light emitting device according to (1) above, wherein the plurality of light source units and the relay member are joined via a conductive material.
(3)
The light emitting device according to (1) or (2) above, wherein the plurality of light source units are spaced apart from each other and arranged along a second direction orthogonal to the first direction.
(4)
The light emitting device according to (3), wherein the width of the light source unit in the second direction is narrower than the interval between the plurality of light source units adjacent to each other in the second direction.
(5)
The light emitting device according to (4) above, wherein the plurality of light sources are arranged in a row along the first direction on the light source substrate.
(6)
The light source substrate has flexibility,
Or The light-emitting device according to any one of (1) to (5) above, wherein both the light source substrate and the relay member are flexible.
(7)
The light emitting device according to any one of (1) to (6) above, further comprising a flexible sheet member to which the plurality of light source units are fixed.
(8)
The light emitting device according to (7), wherein the sheet member is joined to a surface of the light source unit along the first direction.
(9)
The light emitting device according to (7) or (8) above, wherein the sheet member has an opening in a region overlapping with the light source in a third direction orthogonal to the first direction.
(10)
The light emitting device according to any one of (1) to (9) above, further comprising a drive element that drives the plurality of light sources.
(11)
The light emitting device according to (10), wherein the drive element is provided on at least one of the relay member and the light source substrate.
(12)
The light-emitting device according to (10) above, wherein the drive element is provided on the light source substrate and drives a part of the plurality of light sources provided on the light source substrate.
(13)
The drive element is provided on the relay member, and is used to drive a first light source in a first light source unit among the plurality of light source units and a second light source in a second light source unit among the plurality of light source units. The light-emitting device according to (10) above, which is adapted to drive both.
(14)
The light emitting device according to any one of (1) to (13) above, wherein the plurality of light source units and the relay member are respectively joined at a plurality of locations.
(15)
The light emitting device according to any one of (1) to (14) above, wherein each of the plurality of light sources is a white light source, or includes a red light source, a green light source, and a blue light source.
(16)
further comprising a wavelength conversion member;
the light source is a blue light source,
The light-emitting device according to any one of (1) to (14) above, wherein the wavelength conversion member converts blue light from the blue light source into white light.
(17)
The light-emitting device according to (16) above, wherein the wavelength conversion member includes a quantum dot.
(18)
a light emitting device;
a display panel that displays an image using light from the light emitting device,
The light emitting device
a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
A display device comprising: a relay member electrically connected to each of the plurality of light source units.
(19)
a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
and a flexible sheet member to which the plurality of light source units are fixed.
(20)
further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
The connecting portion includes a first bump formed on the light source unit, a second bump formed on the relay member and facing the first bump in the thickness direction, the first bump and the second bump. The light-emitting device according to any one of the above (1) to (18), further comprising a conductive material sandwiched between and.
(21)
further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
The connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction, The light-emitting device according to any one of (1) to (18) above, including a conductive material sandwiched between the bump and the pad.
(22)
The light emitting device according to (21) above, wherein each of the plurality of light source units further includes conductive vias that are connected to the plurality of light sources and penetrate the light source substrate in the thickness direction of the light source substrate.
(23)
The light emitting device according to (22) above, wherein the bump is provided to cover the conductive via.
(24)
the dimension of the bump in the first direction is smaller than the dimension of the pad in the first direction;
The light emitting device according to (21), wherein the dimension of the bump in a second direction perpendicular to the first direction is smaller than the dimension of the pad in the second direction.
(25)
further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
The connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction, The display device according to (18) above, further comprising a conductive material interposed between the bump and the pad.
 本出願は、日本国特許庁において2022年3月3日に出願された日本特許出願番号2022-032438号、および2022年4月28日に出願された日本特許出願番号2022-075412号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application is based on Japanese Patent Application No. 2022-032438 filed on March 3, 2022 at the Japan Patent Office and Japanese Patent Application No. 2022-075412 filed on April 28, 2022. Priority is claimed and the entire contents of this application are incorporated into this application by reference.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Depending on design requirements and other factors, those skilled in the art may conceive various modifications, combinations, subcombinations, and modifications that fall within the scope of the appended claims and their equivalents. It is understood that

Claims (25)

  1.  第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
     前記複数の光源ユニットの各々と電気的に接続された中継部材と
     を有する発光装置。
    a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
    A light emitting device comprising: a relay member electrically connected to each of the plurality of light source units.
  2.  前記複数の光源ユニットと前記中継部材とが導電性材料を介して接合されている
     請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the plurality of light source units and the relay member are joined via a conductive material.
  3.  前記複数の光源ユニットは、前記第1方向と直交する第2方向に沿って互いに離間して並んでいる
     請求項1記載の発光装置。
    The light-emitting device according to claim 1, wherein the plurality of light source units are spaced apart from each other and arranged along a second direction orthogonal to the first direction.
  4.  前記光源ユニットの前記第2方向の幅は、前記第2方向に隣り合う前記複数の光源ユニット同士の間隔よりも狭い
     請求項3記載の発光装置。
    The light emitting device according to claim 3, wherein the width of the light source unit in the second direction is narrower than the interval between the plurality of light source units adjacent to each other in the second direction.
  5.  前記複数の光源は、前記光源基板において前記第1方向に沿って1列に並んでいる
     請求項4記載の発光装置。
    The light emitting device according to claim 4, wherein the plurality of light sources are arranged in a line along the first direction on the light source substrate.
  6.  前記光源基板が可撓性を有し、
     または
     前記光源基板および前記中継部材の双方が可撓性を有する
     請求項1記載の発光装置。
    The light source substrate has flexibility,
    Or The light-emitting device according to claim 1, wherein both the light source substrate and the relay member are flexible.
  7.  前記複数の光源ユニットが固定された、可撓性を有するシート部材をさらに有する
     請求項1記載の発光装置。
    The light emitting device according to claim 1, further comprising a flexible sheet member to which the plurality of light source units are fixed.
  8.  前記シート部材は、前記光源ユニットのうちの前記第1方向に沿った面と接合されている
     請求項7記載の発光装置。
    The light emitting device according to claim 7, wherein the sheet member is joined to a surface of the light source unit along the first direction.
  9.  前記シート部材は、前記第1方向と直交する第3方向において前記光源と重なり合う領域に開口を有する
     請求項7記載の発光装置。
    The light emitting device according to claim 7, wherein the sheet member has an opening in a region overlapping with the light source in a third direction orthogonal to the first direction.
  10.  前記複数の光源の駆動を行う駆動素子をさらに有する
     請求項1記載の発光装置。
    The light emitting device according to claim 1, further comprising a driving element that drives the plurality of light sources.
  11.  前記駆動素子は、前記中継部材および前記光源基板のうちの少なくとも一方に設けられている
     請求項10記載の発光装置。
    The light emitting device according to claim 10, wherein the drive element is provided on at least one of the relay member and the light source substrate.
  12.  前記駆動素子は、前記光源基板に設けられており、前記光源基板に設けられた前記複数の光源のうちの一部の光源の駆動を行うようになっている
     請求項10記載の発光装置。
    11. The light emitting device according to claim 10, wherein the driving element is provided on the light source substrate and drives some of the plurality of light sources provided on the light source substrate.
  13.  前記駆動素子は、前記中継部材に設けられており、前記複数の光源ユニットのうちの第1光源ユニットにおける第1光源と、前記複数の光源ユニットのうちの第2光源ユニットにおける第2光源との双方の駆動を行うようになっている
     請求項10記載の発光装置。
    The drive element is provided on the relay member, and is used to drive a first light source in a first light source unit among the plurality of light source units and a second light source in a second light source unit among the plurality of light source units. 11. The light emitting device according to claim 10, adapted to drive both.
  14.  前記複数の光源ユニットと前記中継部材とは、それぞれ複数の箇所において接合されている
     請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the plurality of light source units and the relay member are joined at a plurality of locations.
  15.  前記複数の光源は、いずれも白色光源であり、または、赤色光源、緑色光源および青色光源を含む
     請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the plurality of light sources are all white light sources or include a red light source, a green light source and a blue light source.
  16.  波長変換部材をさらに有し、
     前記光源は、青色光源であり、
     前記波長変換部材は前記青色光源からの青色光を白色光に変換する
     請求項1記載の発光装置。
    further comprising a wavelength conversion member;
    the light source is a blue light source,
    The light emitting device according to claim 1, wherein the wavelength conversion member converts blue light from the blue light source into white light.
  17.  前記波長変換部材は、量子ドットを含む
     請求項16記載の発光装置。
    The light emitting device according to claim 16, wherein the wavelength conversion member includes quantum dots.
  18.  発光装置と、
     前記発光装置からの光を用いて画像表示を行う表示領域を有する表示パネルと
     を備え、
     前記発光装置は、
     第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
     前記複数の光源ユニットの各々と電気的に接続された中継部材と
     を有する
     表示装置。
    a light emitting device;
    a display panel having a display area for displaying an image using light from the light emitting device,
    The light emitting device
    a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
    A display device comprising: a relay member electrically connected to each of the plurality of light source units.
  19.  第1方向に延在する光源基板と、前記光源基板に前記第1方向に沿って配列された複数の光源とをそれぞれ有する複数の光源ユニットと、
     前記複数の光源ユニットが固定され、可撓性を有するシート部材と
     を有する発光装置。
    a plurality of light source units each having a light source substrate extending in a first direction and a plurality of light sources arranged along the first direction on the light source substrate;
    and a flexible sheet member to which the plurality of light source units are fixed.
  20.  前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
     前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
     前記接続部は、前記光源ユニットに形成された第1バンプと、前記中継部材に形成されて前記厚さ方向に前記第1バンプと対向する第2バンプと、前記第1バンプと前記第2バンプとの間に挟まれた導電性材料とを有する
     請求項1記載の発光装置。
    further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
    The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
    The connecting portion includes a first bump formed on the light source unit, a second bump formed on the relay member and facing the first bump in the thickness direction, the first bump and the second bump. The light emitting device of claim 1, comprising a conductive material sandwiched between and.
  21.  前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
     前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
     前記接続部は、前記光源ユニットおよび前記中継部材のいずれか一方に形成されたバンプと、前記光源ユニットおよび前記中継部材の他方に形成されて前記厚さ方向に前記バンプと対向するパッドと、前記バンプと前記パッドとの間に挟まれた導電性材料とを有する
     請求項1記載の発光装置。
    further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
    The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
    The connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction, 2. A light emitting device according to claim 1, comprising a conductive material sandwiched between a bump and said pad.
  22.  前記複数の光源ユニットは、それぞれ、前記複数の光源と接続されると共に前記光源基板の厚さ方向に前記光源基板を貫く導電性ビアをさらに有する
     請求項21記載の発光装置。
    22. The light emitting device according to claim 21, wherein each of said plurality of light source units further includes conductive vias that are connected to said plurality of light sources and penetrate said light source substrate in the thickness direction of said light source substrate.
  23.  前記バンプは、前記導電性ビアを覆うように設けられている
     請求項22記載の発光装置。
    23. The light emitting device according to claim 22, wherein the bump is provided to cover the conductive via.
  24.  前記バンプの前記第1方向の寸法は、前記パッドの前記第1方向の寸法よりも小さく、
     前記バンプの前記第1方向と直交する第2方向の寸法は、前記パッドの前記第2方向の寸法よりも小さい
     請求項21記載の発光装置。
    the dimension of the bump in the first direction is smaller than the dimension of the pad in the first direction;
    22. The light emitting device according to claim 21, wherein the dimension of said bump in a second direction orthogonal to said first direction is smaller than the dimension of said pad in said second direction.
  25.  前記複数の光源ユニットと、前記中継部材とをそれぞれ電気的に接続する複数の接続部をさらに有し、
     前記複数の光源ユニットと前記中継部材とは、前記複数の接続部において前記光源基板の厚さ方向にそれぞれ重なり合っており、
     前記接続部は、前記光源ユニットおよび前記中継部材のいずれか一方に形成されたバンプと、前記光源ユニットおよび前記中継部材の他方に形成されて前記厚さ方向に前記バンプと対向するパッドと、前記バンプと前記パッドとの間に挟まれた導電性材料とを有する
     請求項18記載の表示装置。
    further comprising a plurality of connecting portions for electrically connecting the plurality of light source units and the relay member, respectively;
    The plurality of light source units and the relay member overlap each other in the thickness direction of the light source substrate at the plurality of connection portions,
    The connection portion includes a bump formed on one of the light source unit and the relay member, a pad formed on the other of the light source unit and the relay member and facing the bump in the thickness direction, 19. The display device of claim 18, comprising a bump and a conductive material sandwiched between said pad.
PCT/JP2022/043462 2022-03-03 2022-11-25 Light-emitting device and display device WO2023166798A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022032438 2022-03-03
JP2022-032438 2022-03-03
JP2022075412 2022-04-28
JP2022-075412 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023166798A1 true WO2023166798A1 (en) 2023-09-07

Family

ID=87883582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043462 WO2023166798A1 (en) 2022-03-03 2022-11-25 Light-emitting device and display device

Country Status (2)

Country Link
TW (1) TW202337049A (en)
WO (1) WO2023166798A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199559A (en) * 2006-04-14 2012-10-18 Samsung Led Co Ltd Backlight using light-emitting diode (led) and liquid-crystal display device including the same
JP2013026107A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Lighting system, display device and electronic equipment
JP2014029813A (en) * 2012-07-31 2014-02-13 Sharp Corp Illuminating device, display device, and television receiver
JP2019023981A (en) * 2017-07-24 2019-02-14 キヤノン株式会社 Light source device and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199559A (en) * 2006-04-14 2012-10-18 Samsung Led Co Ltd Backlight using light-emitting diode (led) and liquid-crystal display device including the same
JP2013026107A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Lighting system, display device and electronic equipment
JP2014029813A (en) * 2012-07-31 2014-02-13 Sharp Corp Illuminating device, display device, and television receiver
JP2019023981A (en) * 2017-07-24 2019-02-14 キヤノン株式会社 Light source device and image display device

Also Published As

Publication number Publication date
TW202337049A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP7178466B2 (en) Display device
US10698263B2 (en) Light source device and display unit
JP7161117B2 (en) light emitting module
JP6790899B2 (en) Light emitting module manufacturing method and light emitting module
US8899811B2 (en) Light emitting device module and backlight unit including the same
US11508881B2 (en) Light emitting module and method of manufacturing the same
US20240168328A1 (en) Hybrid display device and spliced display device
JP2020021695A (en) Light-emitting module and manufacturing method thereof
TWI798473B (en) Light emitting device
WO2023166798A1 (en) Light-emitting device and display device
JP2020027778A (en) Method of manufacturing light emitting module
WO2023210191A1 (en) Light-emitting device and display device
CN114355657A (en) Splicing display panel and splicing display device
JP7128411B2 (en) Light-emitting device, light-emitting module and manufacturing method thereof
WO2023105946A1 (en) Light source device and display device
JP2022044482A (en) Planar light source
WO2023233985A1 (en) Electronic apparatus, method for manufacturing same, light-emitting apparatus, and display apparatus
JP7068594B2 (en) Light emitting module manufacturing method and light emitting module
JP7001945B2 (en) Light emitting module and its manufacturing method
JP7054018B2 (en) Light emitting device
CN115763453A (en) Spliced display panel and display terminal
KR20220111806A (en) Display module and manufacturing method as the same
JP2023179115A (en) display device
JP2022129961A (en) Light emitting device and planar light source
JP2022099119A (en) Light-emitting device and planar light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929942

Country of ref document: EP

Kind code of ref document: A1