WO2023166730A1 - Laser processing head and laser processing device - Google Patents

Laser processing head and laser processing device Download PDF

Info

Publication number
WO2023166730A1
WO2023166730A1 PCT/JP2022/009507 JP2022009507W WO2023166730A1 WO 2023166730 A1 WO2023166730 A1 WO 2023166730A1 JP 2022009507 W JP2022009507 W JP 2022009507W WO 2023166730 A1 WO2023166730 A1 WO 2023166730A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
laser processing
laser
gas
processing
Prior art date
Application number
PCT/JP2022/009507
Other languages
French (fr)
Japanese (ja)
Inventor
直幸 中村
弘 菊池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/009507 priority Critical patent/WO2023166730A1/en
Priority to JP2022538302A priority patent/JP7138827B1/en
Publication of WO2023166730A1 publication Critical patent/WO2023166730A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products

Definitions

  • the present disclosure relates to a laser processing head of a laser processing apparatus and a laser processing apparatus that cuts a work by locally melting the work by irradiating it with a laser beam.
  • the cutting process proceeds while removing the molten material generated by the melting.
  • Patent Literature 1 discloses laser processing that has a plurality of ultrasonic sources that generate pressure waves by vibrating air, and that removes melt by propagating pressure waves from each ultrasonic source to a processing point of a workpiece. An apparatus is disclosed. In the laser processing apparatus disclosed in Patent Document 1, a plurality of ultrasonic wave sources are arranged around a laser processing head that emits laser light, and pressure waves generated by each ultrasonic wave source are generated at a processing point. converge.
  • Some laser processing devices remove the melt by injecting processing gas from a laser processing head that emits laser light to the processing point.
  • the processing gas injected into the workpiece reaches the molten portion of the workpiece and pushes the molten material out of the workpiece.
  • a laser processing apparatus can efficiently remove molten material from a workpiece by using a processing gas.
  • the laser processing apparatus disclosed in Patent Document 1 does not remove the melted material by injecting the processing gas, so it is possible to efficiently remove the melted material compared to the case where the processing gas is used. is difficult.
  • Patent Document 1 discloses a method of using pressure waves as a method of removing melted matter, but does not disclose the use of a processing gas in combination.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a laser processing head capable of efficiently removing molten matter generated by melting a workpiece.
  • the laser processing head locally melts a workpiece by irradiating it with a laser beam, and removes the melted matter generated by the melting by injecting a processing gas. It is a laser processing head provided in the processing device.
  • the laser processing head according to the present disclosure includes a housing that includes a gas-filled chamber filled with a processing gas and a processing lens that collects laser light, and a housing that is attached to the housing and irradiates the workpiece. a nozzle through which the laser beam to be applied and the processing gas injected from the gas filling chamber to the workpiece pass; A laser processing head according to the present disclosure removes a melt with a processing gas to which ultrasonic vibrations are applied.
  • the laser processing head according to the present disclosure has the effect of being able to efficiently remove melted matter generated by melting a workpiece.
  • FIG. 1 is a diagram showing a configuration example of a laser processing apparatus according to a first embodiment
  • FIG. FIG. 4 is a diagram showing an example of an ultrasonic generator provided in the laser processing head of the laser processing apparatus according to the first embodiment
  • FIG. 11 is a diagram showing a configuration example of a laser processing apparatus according to a second embodiment
  • FIG. 10 is a diagram showing an example of an ultrasonic generator provided in a laser processing head of a laser processing apparatus according to a second embodiment
  • FIG. 11 is a diagram for explaining position adjustment of a convergence point of ultrasonic waves by the laser processing apparatus according to the second embodiment
  • FIG. 1 is a first diagram for explaining intensity distribution adjustment of ultrasonic waves by a laser processing apparatus according to a second embodiment
  • FIG. 2 is a second diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus according to the second embodiment
  • FIG. 3 is a third diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus according to the second embodiment
  • FIG. 10 is a diagram for explaining an example in which the laser processing apparatus according to the second embodiment reduces the intensity distribution and moves the convergence point at high speed
  • FIG. 11 is a diagram for explaining position adjustment of a convergence point of ultrasonic waves by the laser processing apparatus according to the fourth embodiment
  • FIG. 12 is a diagram for explaining an example in which the laser processing apparatus according to the fourth embodiment moves the convergence point in the direction of the optical axis;
  • FIG. 11 is a diagram for explaining position adjustment of a convergence point of ultrasonic waves by the laser processing apparatus according to the fourth embodiment
  • FIG. 12 is a diagram for explaining an example in which the laser processing apparatus according to the fourth embodiment moves the convergence point in the direction of the optical axi
  • FIG. 11 is a first diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment;
  • a second diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment.
  • FIG. 3 is a third diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment;
  • FIG. 11 is a diagram showing a portion including a gas rectifying section of the laser processing head according to the fifth embodiment;
  • FIG. 4 is a diagram showing a first configuration example of hardware that implements the ultrasound control unit according to Embodiments 1 to 5;
  • FIG. 10 is a diagram showing a second configuration example of hardware that implements the ultrasound control unit according to Embodiments 1 to 5;
  • FIG. 1 is a diagram showing a configuration example of a laser processing apparatus 1 according to a first embodiment.
  • the laser processing apparatus 1 cuts the workpiece 4 by locally melting the workpiece 4 by irradiating the laser beam L thereon.
  • the laser processing apparatus 1 removes the melted material from the work 4 by blowing off the melted material produced by melting by jetting a processing gas.
  • the workpiece 4 is a metal plate such as a steel plate.
  • a laser processing apparatus 1 includes a laser oscillator 2 that outputs a laser beam L and a laser processing head 3 .
  • the laser oscillator 2 is a laser commonly used in industrial laser processing, such as CO 2 laser, CO laser, fiber laser, semiconductor laser, direct diode laser (DDL), UV (UltraViolet) laser, deep ultraviolet UV laser, and the like.
  • the laser oscillator 2 may be a laser other than the above, and may be a laser of any wavelength band.
  • a laser beam L output from the laser oscillator 2 propagates through an optical path between the laser oscillator 2 and the laser processing head 3 and is introduced into the housing 5 of the laser processing head 3 .
  • a processing lens 7 that condenses the laser beam L and a protective glass 8 that is an optical component for protecting the processing lens 7 are housed inside the housing 5 . Note that the configuration between the laser oscillator 2 and the protective glass 8 is arbitrary.
  • the housing 5 includes a gas filling chamber 10 filled with processing gas.
  • the laser processing head 3 includes a nozzle 6 through which the laser beam L to irradiate the work 4 and the processing gas injected from the gas filling chamber 10 to the work 4 pass.
  • the laser beam L is emitted from the nozzle 6 toward a processing point on the workpiece 4 where processing is being performed.
  • the processing point is assumed to be the focal point of the laser beam L during processing.
  • a pipe 9 through which processing gas supplied from a gas supply source passes is connected to the housing 5 . Illustration of the gas supply source is omitted.
  • the processing gas passing through the pipe 9 fills the gas filling chamber 10 .
  • the gas filling chamber 10 is a portion of the interior of the housing 5 between the nozzle 6 and the protective glass 8 .
  • the processing gas is pressurized in the gas filling chamber 10 and jetted from the nozzle 6 toward the workpiece 4 .
  • the processing gas is oxygen gas, nitrogen gas, or dry air.
  • the laser processing head 3 has an ultrasonic generator 11 arranged inside the gas filling chamber 10 .
  • the ultrasonic generator 11 generates ultrasonic waves that vibrate the processing gas inside the gas filling chamber 10 .
  • the laser processing apparatus 1 includes an ultrasonic controller 12 that controls the ultrasonic generator 11 .
  • the ultrasonic wave controller 12 converges the ultrasonic waves on the work 4 by controlling the ultrasonic wave generator 11 .
  • the ultrasonic wave generator 11 generates ultrasonic waves that converge on the workpiece 4 under the control of the ultrasonic wave controller 12 .
  • the laser processing head 3 ejects the melted material from the cut portion of the work 4 by jetting the processing gas, and ejects the melted material from the cut portion of the work 4 by applying ultrasonic acoustic radiation pressure to the melted material.
  • the laser processing apparatus 1 removes the melted matter with the processing gas to which the ultrasonic vibration is applied during processing of the workpiece 4 .
  • the laser processing head 3 can efficiently apply acoustic radiation pressure to the melt by converging ultrasonic waves.
  • the workpiece 4 is placed on the table and processed. Illustration of the table is omitted.
  • the laser processing apparatus 1 moves the laser processing head 3 relatively to the workpiece 4 by moving at least one of the laser processing head 3 and the table.
  • the laser processing apparatus 1 cuts the work 4 by locally melting the work 4 and moving the laser processing head 3 relative to the work 4 .
  • the laser processing apparatus 1 includes components for driving the laser processing head 3 or the table, components for controlling movement of the laser processing head 3 or the table, and components for controlling the laser oscillator 2. , but illustration of these components is omitted.
  • FIG. 2 is a diagram showing an example of the ultrasonic generator 11 provided in the laser processing head 3 of the laser processing apparatus 1 according to the first embodiment.
  • the ultrasonic generator 11 is, for example, an ultrasonic transducer.
  • the ultrasonic transducer is an annular element.
  • the ultrasonic wave generator 11 is arranged so that the center of the ring shape coincides with the optical axis AX of the processing lens.
  • FIG. 2 shows the ultrasonic wave generator 11 when the ultrasonic wave generator 11 is cut along one plane including the optical axis AX.
  • the ultrasonic waves are converged at one convergence point by the ultrasonic wave generator 11 simultaneously generating ultrasonic waves from the entire annular shape.
  • the convergence point is the point at which the intensity of the acoustic radiation pressure due to ultrasonic waves is the highest, that is, the point at which the acoustic radiation pressure due to ultrasonic waves is maximum.
  • the convergence point may be at the same position as the processing point or at a different position from the processing point.
  • the ultrasonic wave generator 11 may have any configuration as long as it can converge the ultrasonic waves.
  • the ultrasonic wave generator 11 may be a combination of a plurality of elements, each of which is an annular element. Each of the plurality of elements is arranged with the center of the ring aligned with the optical axis AX. That is, the plurality of elements are arranged concentrically.
  • the ultrasonic controller 12 controls each of the plurality of elements.
  • the ultrasonic wave control unit 12 appropriately delays the phase of the ultrasonic wave by adjusting the timing of oscillation of each element.
  • the ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each element according to the difference in the distance between each element and the convergence point so that the phases of the ultrasonic waves from each element match each other at the convergence point.
  • the laser processing head 3 causes the ultrasonic generator 11 to generate an ultrasonic wave that vibrates the processing gas inside the gas filling chamber 10 , so that the processing gas to which ultrasonic vibration is applied is discharged from the nozzle. 6 to the workpiece 4. Since the pressure of the processing gas, which is a medium, is kept uniform until the processing gas reaches the work 4, the laser processing head 3 can propagate ultrasonic waves to the work 4 with little disturbance. The laser processing head 3 can efficiently propagate ultrasonic waves to the work 4 as compared with the case where the ultrasonic waves are propagated toward the work 4 from the outside of the laser processing head 3 . Therefore, the laser processing head 3 can efficiently apply acoustic radiation pressure to the melt.
  • the laser processing head 3 applies ultrasonic waves to the processing gas inside the gas filling chamber 10 to easily focus the ultrasonic waves on the work 4 even when the distance between the nozzle 6 and the work 4 is short. can be done. As described above, the laser processing head 3 has the effect of being able to efficiently remove the molten material generated by the melting of the workpiece 4 .
  • the ability of the laser processing apparatus 1 to efficiently remove the melted material makes it possible to improve the processing speed, improve the processing quality, and reduce the consumption of processing gas.
  • the laser processing apparatus 1 can reduce the running cost for processing by being able to reduce the consumption of processing gas.
  • the laser processing head 3 can be realized by adding the ultrasonic wave generator 11 to the existing laser processing head used for cutting, and design changes from the existing configuration can be reduced. In addition, the laser processing head 3 can be realized without increasing the size of the existing laser processing head and without increasing the manufacturing cost of the existing laser processing head.
  • FIG. 3 is a diagram showing a configuration example of a laser processing apparatus 1A according to the second embodiment.
  • the laser processing apparatus 1A includes a laser processing head 3A having a configuration different from that of the laser processing head 3 shown in FIG.
  • the same reference numerals are assigned to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
  • the laser processing head 3A includes an ultrasonic wave generator 11A that generates ultrasonic waves that vibrate the processing gas.
  • the ultrasonic generator 11A has a plurality of ultrasonic transducers 20 arranged in an annular shape.
  • the gas filling chamber 21 is provided inside the housing 5 .
  • the outer shape of the gas-filled chamber 21 is tapered from the end of the gas-filled chamber 21 on the side of the protective glass 8 toward the nozzle 6 .
  • the ultrasonic wave generator 11A is arranged at the end of the gas filling chamber 21 on the protective glass 8 side.
  • a portion of each ultrasonic transducer 20 that generates ultrasonic waves is provided inside the gas filling chamber 21 .
  • the outer shape of the gas filling chamber 21 is not limited to the shape shown in FIG. 3 and is arbitrary.
  • FIG. 4 is a diagram showing an example of the ultrasonic generator 11A provided in the laser processing head 3A of the laser processing apparatus 1A according to the second embodiment.
  • a plurality of rings in which a plurality of ultrasonic transducers 20 are arranged are provided in the ultrasonic generator 11A.
  • the center of each of the multiple rings is on the optical axis AX.
  • the multiple rings are concentrically arranged. It is assumed that the number of ultrasonic transducers 20 forming each ring is arbitrary. Also, the number of rings forming the ultrasonic wave generator 11A is arbitrary.
  • the ultrasound controller 12 controls each of the plurality of ultrasound transducers 20 .
  • the ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each ultrasonic transducer 20 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the point of convergence.
  • the position of the convergence point of the ultrasonic waves is set, and the timing delay amount ⁇ i corresponding to the diameter of each ring forming the ultrasonic wave generator 11A is set according to the above equation (1).
  • the phases of the ultrasonic waves from the ultrasonic transducers 20 are aligned at the convergence point.
  • the ultrasonic transducers 20 are arranged in each of a plurality of rings concentrically arranged around the optical axis AX.
  • the timing delay amount ⁇ i is set, the configuration of the ultrasonic generator 11A is not limited to one in which the ultrasonic transducers 20 are arranged in concentric circles.
  • FIG. 5 is a diagram for explaining position adjustment of the convergence point 22 of the ultrasonic waves by the laser processing apparatus 1A according to the second embodiment.
  • the area where the ultrasonic wave propagates is represented by a dashed line.
  • the laser processing apparatus 1A is provided with a plurality of ultrasonic transducers 20 in each ring of the ultrasonic generator 11A.
  • the position of the convergence point 22 can be adjusted in three-dimensional directions. Thereby, the laser processing apparatus 1A can easily adjust the position of the convergence point 22 for efficiently removing the melted material.
  • the three double-headed arrows shown in FIG. 5 represent three-dimensional directions in which the position of the convergence point 22 can be adjusted.
  • the laser processing device 1A can adjust the position of the convergence point 22 near the processing point.
  • the laser processing apparatus 1A can adjust the intensity distribution of the ultrasonic waves in the region including the convergence point 22 by appropriately delaying the phase of the ultrasonic waves from the ultrasonic transducers 20 .
  • FIG. 6 is a first diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment.
  • FIG. 7 is a second diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment.
  • FIG. 8 is a third diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment.
  • FIGS. 6, 7 and 8 is the intensity distribution of the ultrasonic waves in the region including the convergence point 22, and the sound pressure of the ultrasonic waves in the plane perpendicular to the optical axis AX is constant. represents a region that is equal to or greater than
  • the arrows in FIGS. 6, 7 and 8 indicate the direction in which machining progresses.
  • the intensity distribution 23 shown in FIG. 6 has a shape in which the outer edge on the advancing direction side protrudes in the advancing direction, and the outer edge on the opposite side to the advancing direction is depressed in the advancing direction.
  • the intensity distribution 23 shown in FIG. 7 has a shape close to an ellipse. The direction of the major axis of the ellipse matches the traveling direction.
  • the intensity distribution 23 shown in FIG. 8 has a shape obtained by rotating the shape of the intensity distribution 23 shown in FIG. 7 by 90 degrees in a plane perpendicular to the optical axis AX.
  • the laser processing apparatus 1A can adjust the shape of the intensity distribution 23 as shown in FIGS. 6, 7, and 8 on the basis of the circular shape.
  • the laser processing apparatus 1A can also adjust the size of the region that is the intensity distribution 23 .
  • the laser processing apparatus 1A can adjust the shape of the intensity distribution 23 according to the material or plate thickness of the work 4.
  • the laser processing apparatus 1A can easily adjust the intensity distribution 23 for efficiently removing the melt.
  • the shape of the intensity distribution 23 shown in FIGS. 6, 7 and 8 is an example.
  • the laser processing apparatus 1A may adjust the shape of the intensity distribution 23 to a shape different from the shapes shown in FIGS.
  • FIG. 9 is a diagram for explaining an example in which the laser processing apparatus 1A according to the second embodiment reduces the intensity distribution 23 and moves the convergence point 22 at high speed.
  • FIG. 9 shows the workpiece 4 being cut by the laser beam L viewed from the laser processing head 3A side.
  • FIG. 9 shows a machined groove 25 formed in the workpiece 4 by machining, and a convergence point 22 and a spot 24 during machining.
  • a spot 24 is a spot of the laser light L on a plane perpendicular to the optical axis AX.
  • the upward direction and the left direction refer to the upward direction and the left direction in FIG.
  • the laser processing apparatus 1A cuts the workpiece 4 upward, then changes the processing direction leftward, and cuts leftward.
  • the intensity distribution 23 has a circular shape that is slightly smaller than the spot 24 when the cutting process proceeds linearly upward and when the cutting process proceeds leftward in FIG.
  • the laser processing apparatus 1A reduces the intensity distribution 23 before processing reaches the corner.
  • the laser processing apparatus 1A reciprocates the convergence point 22 at high speed within a plane perpendicular to the optical axis AX. In the example shown in FIG.
  • the laser processing apparatus 1A reciprocates the convergence point 22 in the directions of the double arrows shown in FIG.
  • FIG. 9 shows how one convergence point 22 at a corner is reciprocated in an oblique direction. Thereafter, the laser processing apparatus 1A stops reciprocating movement of the convergence point 22 and returns the intensity distribution 23 to its original size.
  • the laser processing apparatus 1A shapes the corner so as to form a right angle by reciprocating the convergence point 22 at the corner at high speed.
  • the laser processing apparatus 1A can improve the processing quality by reducing the intensity distribution 23 and reciprocating the convergence point 22 within the plane perpendicular to the optical axis AX.
  • the laser processing apparatus 1A can easily change the magnitude of the intensity distribution 23 and easily move the convergence point 22 at high speed by controlling each of the plurality of ultrasonic transducers 20 .
  • w is the diameter of the area including the convergence point 22 of the ultrasound, that is, the area of the intensity distribution 23
  • is the wavelength of the ultrasound
  • r is the distance between the ultrasound transducer 20 and the convergence point 22
  • N the number of the ultrasound transducers 20
  • d the diameter of the surface of the ultrasonic transducer 20 that generates ultrasonic vibration
  • P (Pa) is the acoustic radiation pressure generated on the surface of the object
  • E (J/m 3 ) is the acoustic energy density of the ultrasonic wave
  • I (W/m 2 ) is the acoustic intensity
  • I (W/m 2 ) is the sound velocity.
  • c (m/s) is the effective value of the ultrasonic sound pressure
  • ⁇ (kg/m 3 ) is the density of the medium.
  • the above formula (3) indicates that an arbitrary radiation pressure pattern with an acoustic radiation pressure of P can be generated by controlling the spatio-temporal pattern of ultrasonic waves with an effective sound pressure of p.
  • the laser processing apparatus 1A is provided with a plurality of ultrasonic transducers 20 in the ultrasonic generator 11A, thereby adjusting the position of the convergence point 22 and adjusting the shape or size of the intensity distribution 23. and high-speed movement of the convergence point 22 can be easily performed.
  • each ultrasonic transducer 20 is arranged such that the normal to the surface of the ultrasonic transducer 20 that generates ultrasonic vibration is parallel to the optical axis AX. Yes, but not limited to this.
  • Each ultrasonic transducer 20 may be arranged such that the normal to the surface that generates ultrasonic vibrations is oblique to the optical axis AX. The direction of the normal line is the direction in which the intensity of ultrasonic vibration is the strongest.
  • the laser processing apparatus 1A can efficiently propagate the acoustic radiation pressure to the convergence point 22 by appropriately adjusting the orientation of each ultrasonic transducer 20 .
  • FIG. 10 is a diagram showing a configuration example of a laser processing apparatus 1B according to the third embodiment.
  • the laser processing apparatus 1B includes a laser processing head 3B having a configuration different from that of the laser processing head 3 shown in FIG.
  • the same reference numerals are assigned to the same constituent elements as in the first or second embodiment, and the configuration different from that in the first or second embodiment will be mainly described.
  • the laser processing head 3B includes an ultrasonic wave generator 11B that generates ultrasonic waves that vibrate the processing gas.
  • the ultrasonic generator 11B is arranged on the surface between the end of the gas filling chamber 21 on the protective glass 8 side and the nozzle 6.
  • a plurality of rings in which a plurality of ultrasonic transducers 20 are arranged are provided in the ultrasonic generator 11B.
  • the respective rings are arranged with their positions shifted from each other in the optical axis direction.
  • the center of each of the multiple rings is on the optical axis AX.
  • the plurality of rings are arranged concentrically, and are arranged in multiple stages so that the positions in the optical axis direction are shifted for each ring. It is assumed that the number of ultrasonic transducers 20 forming each ring is arbitrary. Also, the number of rings forming the ultrasonic wave generator 11B is arbitrary.
  • each ultrasonic transducer 20 that generates ultrasonic waves is provided inside the gas filling chamber 21 .
  • a portion of each ultrasonic transducer 20 that generates ultrasonic waves is directed toward the protective glass 8 .
  • the ultrasonic waves generated by each ultrasonic transducer 20 are reflected by the protective glass 8 and travel toward the workpiece 4 .
  • the orientation of each ultrasonic transducer 20 is set so that the ultrasonic waves reflected by the protective glass 8 converge on the workpiece 4 .
  • the laser processing head 3B causes the protective glass 8 to reflect the ultrasonic waves generated by the ultrasonic wave generator 11B, and converges the ultrasonic waves on the workpiece 4. As shown in FIG.
  • the ultrasonic waves generated by the plurality of ultrasonic transducers 20 may include ultrasonic waves reflected by reflecting surfaces other than the protective glass 8 .
  • each ultrasonic transducer 20 is arranged so as to cause ultrasonic waves to travel in a direction oblique to the optical axis AX, but this is not restrictive.
  • Each ultrasonic transducer 20 may be arranged to propagate ultrasonic waves in the direction of the optical axis AX.
  • the ultrasound controller 12 controls each of the plurality of ultrasound transducers 20 .
  • the ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each ultrasonic transducer 20 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the convergence point 22 .
  • the timing delay amount ⁇ i corresponding to the difference in the distance between each ultrasonic transducer 20 and the convergence point 22 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the convergence point 22 is expressed by the above equation. (1).
  • the phases of the ultrasonic waves from the ultrasonic transducers 20 are aligned at the convergence point 22 .
  • the laser processing head 3B arranges more ultrasonic transducers 20 in the gas filling chamber 21 than in the case of arranging the plurality of ultrasonic transducers 20 in the direction perpendicular to the optical axis AX. becomes possible.
  • the laser processing apparatus 1B can increase the acoustic radiation pressure applied to the melt by arranging many ultrasonic transducers 20 . As a result, the laser processing apparatus 1B can efficiently remove the molten material generated by the melting of the work 4. As shown in FIG.
  • Embodiment 4 describes an example of adjusting the position of the convergence point 22 in the direction of the optical axis AX by using a laser processing apparatus 1A similar to that of Embodiment 2.
  • FIG. FIG. 11 is a diagram for explaining position adjustment of the convergence point 22 of the ultrasonic waves by the laser processing apparatus 1A according to the fourth embodiment.
  • the same reference numerals are assigned to the same components as in the first to third embodiments, and the configuration different from the first to third embodiments will be mainly described.
  • FIG. 11 shows the focal point 26 of the laser beam L, the convergence point 22 of the ultrasonic wave, and the outer shape of the work 4 in the groove formed in the work 4 .
  • the area where the ultrasonic wave propagates is represented by a dashed line.
  • the convergence point 22 is at a different position from the focal point 26 in the direction of the optical axis AX. Further, as shown in FIG. 11, the distance between the nozzle 6 and the convergence point 22 is longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L. As shown in FIG. That is, the ultrasonic wave control unit 12 converges the ultrasonic waves at the convergence point 22 at a position further advanced from the focal point 26 in the direction in which the laser light L propagates.
  • the laser processing device 1A may move the convergence point 22 in the direction of the optical axis AX.
  • FIG. 12 is a diagram for explaining an example in which the laser processing apparatus 1A according to the fourth embodiment moves the convergence point 22 in the direction of the optical axis AX.
  • the dashed line represents the region in which the ultrasonic waves are propagating.
  • 1 A of laser processing apparatuses reciprocate the convergence point 22 between two points which are mutually different positions in the direction of the optical axis AX.
  • One of the two points is at the same position as the convergence point 22 shown in FIG.
  • the other of the two points is the position on the nozzle 6 side with respect to the focal point 26 .
  • FIG. 12 shows how one convergence point 22 is reciprocated in the direction of the optical axis AX indicated by the double arrow.
  • FIG. 13 is a first graph for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram.
  • FIG. 14 is a second diagram for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram.
  • FIGS. 13 and 14 show the work 4 obtained by cutting the portion of the work 4 in which the machined groove 30 is formed. In FIG. 14, the area in which the ultrasonic wave propagates is represented by a dashed line.
  • FIG. 13 shows an example in which the width of the end portion 32 of the processed groove 30 on the side opposite to the nozzle 6 is narrower than the width of the end portion 31 of the processed groove 30 on the nozzle 6 side.
  • the focal point 26 is a position near the center of the thickness of the workpiece 4 .
  • the narrower the width of the end portion 32 the more difficult it is for the molten material to be discharged from the processing groove 30, resulting in a decrease in the processing speed.
  • the focal point 26 is shifted toward the end portion 32 in order to widen the end portion 32, the density of the heat energy input to the portion of the work 4 on the nozzle 6 side is reduced. Also in this case, the processing speed decreases due to the decrease in the density of input heat energy.
  • FIG. 14 shows an example in which the convergence point 22 is set at a position further advanced from the focal point 26 in the direction in which the laser light L propagates.
  • the convergence point 22 is set near the edge 32 .
  • FIG. 15 is a third diagram for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram.
  • FIG. 15 shows a cut plane perpendicular to the cut plane shown in FIG. 14 in the workpiece 4 shown in FIG.
  • melt 33 is deposited on the walls of working groove 30 .
  • Convergence point 22 is a location on melt 33 near edge 32 .
  • the laser processing apparatus 1A can improve the processing speed.
  • the laser processing apparatus 1A may reciprocate the convergence point 22 as shown in FIG.
  • the ultrasonic wave propagates at a speed of sound of 340 m/s, while the cutting speed is about 0.01 m/s to 2 m/s, and the flow speed of the melt 33 is about 10 m/s. Since the speed of sound is sufficiently higher than the processing speed and the flow speed of the melt 33, the acoustic radiation pressure at the convergence point 22 can be maintained even if the convergence point 22 is reciprocated. Therefore, the laser processing apparatus 1A can apply acoustic radiation pressure over a wide range of the processed groove 30 while maintaining the acoustic radiation pressure at the convergence point 22 . Thereby, the laser processing apparatus 1A can further promote the removal of the melted material 33 . In addition, the laser processing apparatus 1A can reduce the unevenness of the cutting front of the workpiece 4, thereby enabling high-quality processing.
  • the laser processing apparatus 1A has a longer distance between the nozzle 6 and the convergence point 22 than the distance between the nozzle 6 and the focal point 26, so that the molten material 33 can be efficiently removed.
  • the position adjustment of the convergence point 22 described in the fourth embodiment may be performed by the laser processing apparatus 1B similar to that of the third embodiment.
  • Embodiment 5 describes a configuration in which a gas rectifying section is combined with the laser processing heads 3, 3A, and 3B of Embodiments 1 to 4.
  • FIG. Here, a configuration in which the laser processing head 3A of the second embodiment is combined with a gas rectifying section will be described as an example.
  • the gas rectifying section described in Embodiment 5 can also be combined with the laser processing heads 3 and 3B in the same manner as the laser processing head 3A.
  • the same components as those in Embodiments 1 to 4 are denoted by the same reference numerals, and configurations different from those in Embodiments 1 to 4 will be mainly described.
  • FIG. 16 is a diagram showing a portion of the laser processing head 3A according to Embodiment 5, which includes the gas rectifying section 40.
  • the gas rectifying section 40 is a component through which the processing gas passes before flowing into the gas charging chamber 21 shown in FIG. 3 to regulate the flow of the processing gas.
  • the gas rectifying section 40 is provided in the vicinity of the portion of the tube 9 connected to the housing 5 .
  • a partially unstable flow such as turbulence may occur in the flow of the processing gas inside the tube 9 .
  • the laser processing head 3 ⁇ /b>A can align the phases of the ultrasonic waves at the convergence point 22 by allowing the processing gas having a uniform density distribution to flow into the gas-filled chamber 21 .
  • the laser processing head 3A can efficiently apply the acoustic radiation pressure to the melted material by aligning the phases of the ultrasonic waves, and can efficiently remove the melted material.
  • the laser processing head 3A can efficiently remove the molten material by including the gas rectifying section 40 .
  • the ultrasonic controller 12 is implemented by a processing circuit.
  • the processing circuitry may be circuitry in which a processor executes software, or it may be dedicated circuitry.
  • FIG. 17 is a diagram showing a first configuration example of hardware that implements the ultrasound control unit 12 according to Embodiments 1 to 5.
  • a first configuration example is a configuration example in which the functions of the ultrasound control unit 12 are realized by a processing circuit 50 having a processor 51 and a memory 52 .
  • the functions of the ultrasound controller 12 are realized by the processor 51 reading and executing a program stored in the memory 52 .
  • the processor 51 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)).
  • the memory 52 is a non-volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc.
  • EEPROM registered trademark
  • a volatile semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
  • the input/output circuit 53 is a circuit that receives an input signal to the processing circuit 50 from the outside and outputs a signal generated by the processing circuit 50 to the outside of the processing circuit 50 .
  • the input/output circuit 53 outputs the control signal generated by the processing circuit 50 to the ultrasonic generators 11, 11A and 11B.
  • the ultrasound control unit 12 may be realized by dedicated hardware.
  • FIG. 18 is a diagram showing a second configuration example of hardware that implements the ultrasound control unit 12 according to the first to fifth embodiments.
  • a second configuration example is a configuration example in which the functions of the processing circuit 50 shown in FIG. 17 are realized by a processing circuit 54 that is dedicated hardware.
  • the processing circuit 54 is, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these.
  • the ultrasound controller 12 is implemented by a single processing circuit 54, but the present invention is not limited to this.
  • Hardware may include a plurality of processing circuits 54 , and the ultrasound control unit 12 may be realized by the plurality of processing circuits 54 .
  • a part of the ultrasound control unit 12 may be realized by the processing circuit 50 shown in FIG. 17, and the rest may be realized by dedicated hardware similar to the processing circuit 54.
  • each embodiment is an example of the content of the present disclosure.
  • the configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.
  • 1, 1A, 1B laser processing device 2 laser oscillator, 3, 3A, 3B laser processing head, 4 workpiece, 5 housing, 6 nozzle, 7 processing lens, 8 protective glass, 9 tube, 10, 21 gas filling chamber, 11, 11A, 11B Ultrasonic generator, 12 Ultrasonic controller, 20 Ultrasonic oscillator, 22 Convergence point, 23 Intensity distribution, 24 Spot, 25, 30 Processing groove, 26 Focus, 31, 32 Edge, 33 Melt Object, 40 gas rectifier, 50, 54 processing circuit, 51 processor, 52 memory, 53 input/output circuit, AX optical axis, L laser light.

Abstract

A laser processing head (3) is provided in a laser processing device (1) that locally melts a workpiece (4) by irradiation with laser light (L) and that uses jetting of a processing gas to remove a molten product produced in the melting. The laser processing head (3) is provided with a gas-filled chamber (10) filled with a processing gas and is provided with: a casing (5) that houses therein a processing lens (7) for condensing the laser light (L); a nozzle (6) that is attached to the casing (5) and through which the laser light (L) to be radiated on the workpiece (4) and the processing gas to be jetted from the gas-filled chamber (10) to the workpiece (4) pass; and an ultrasonic wave generation unit (11) that generates an ultrasonic wave for oscillating the processing gas in the gas-filled chamber (10). The laser processing head (3) removes a molten product by the processing gas with ultrasonic oscillation being applied.

Description

レーザ加工ヘッドおよびレーザ加工装置Laser processing head and laser processing equipment
 本開示は、レーザ光の照射によりワークを局所的に溶融させてワークの切断加工を行うレーザ加工装置のレーザ加工ヘッドおよびレーザ加工装置に関する。 The present disclosure relates to a laser processing head of a laser processing apparatus and a laser processing apparatus that cuts a work by locally melting the work by irradiating it with a laser beam.
 レーザ光の照射によりワークを局所的に溶融させてワークの切断加工を行うレーザ加工装置では、溶融によって生じる溶融物を除去しながら切断加工が進められる。 In a laser processing device that cuts a work by locally melting the work by irradiating it with a laser beam, the cutting process proceeds while removing the molten material generated by the melting.
 特許文献1には、空気を振動させることによって圧力波を発生させる複数の超音波源を有し、各超音波源からワークの加工点へ圧力波を伝搬させることによって溶融物を除去するレーザ加工装置が開示されている。特許文献1に開示されているレーザ加工装置では、レーザ光を出射するレーザ加工ヘッドの周囲に複数の超音波源が配置されており、各超音波源で発生させた圧力波を加工点にて収束させる。 Patent Literature 1 discloses laser processing that has a plurality of ultrasonic sources that generate pressure waves by vibrating air, and that removes melt by propagating pressure waves from each ultrasonic source to a processing point of a workpiece. An apparatus is disclosed. In the laser processing apparatus disclosed in Patent Document 1, a plurality of ultrasonic wave sources are arranged around a laser processing head that emits laser light, and pressure waves generated by each ultrasonic wave source are generated at a processing point. converge.
特開2019-55422号公報JP 2019-55422 A
 レーザ加工装置には、レーザ光を出射するレーザ加工ヘッドから加工点へ加工ガスを噴射することによって溶融物を除去するものがある。ワークへ噴射された加工ガスは、ワークの溶融部分に到達してワークから溶融物を押し出す。レーザ加工装置は、加工ガスを利用することにより、効率良くワークから溶融物を除去することができる。一方、特許文献1に開示されているレーザ加工装置は、加工ガスの噴射によって溶融物の除去を行うものではないことから、加工ガスを利用する場合に比べて溶融物を効率的に除去することが難しい。 Some laser processing devices remove the melt by injecting processing gas from a laser processing head that emits laser light to the processing point. The processing gas injected into the workpiece reaches the molten portion of the workpiece and pushes the molten material out of the workpiece. A laser processing apparatus can efficiently remove molten material from a workpiece by using a processing gas. On the other hand, the laser processing apparatus disclosed in Patent Document 1 does not remove the melted material by injecting the processing gas, so it is possible to efficiently remove the melted material compared to the case where the processing gas is used. is difficult.
 また、特許文献1には、溶融物を除去する方法として圧力波を用いる方法が開示されているが、加工ガスを併用することは開示されていない。 In addition, Patent Document 1 discloses a method of using pressure waves as a method of removing melted matter, but does not disclose the use of a processing gas in combination.
 本開示は、上記に鑑みてなされたものであって、ワークの溶融によって生じる溶融物を効率良く除去可能とするレーザ加工ヘッドを得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain a laser processing head capable of efficiently removing molten matter generated by melting a workpiece.
 上述した課題を解決し、目的を達成するために、本開示にかかるレーザ加工ヘッドは、レーザ光の照射によりワークを局所的に溶融させ、溶融によって生じる溶融物を加工ガスの噴射によって除去するレーザ加工装置が備えるレーザ加工ヘッドである。本開示にかかるレーザ加工ヘッドは、加工ガスが充填されるガス充填室を備え、かつレーザ光を集光する加工レンズが内部に収納されている筐体と、筐体に取り付けられ、ワークに照射させるレーザ光とガス充填室からワークへ噴射する加工ガスとが通るノズルと、ガス充填室の内部の加工ガスを振動させる超音波を発生させる超音波発生部と、を備える。本開示にかかるレーザ加工ヘッドは、超音波振動を加えた加工ガスにより溶融物を除去する。 In order to solve the above-described problems and achieve the object, the laser processing head according to the present disclosure locally melts a workpiece by irradiating it with a laser beam, and removes the melted matter generated by the melting by injecting a processing gas. It is a laser processing head provided in the processing device. The laser processing head according to the present disclosure includes a housing that includes a gas-filled chamber filled with a processing gas and a processing lens that collects laser light, and a housing that is attached to the housing and irradiates the workpiece. a nozzle through which the laser beam to be applied and the processing gas injected from the gas filling chamber to the workpiece pass; A laser processing head according to the present disclosure removes a melt with a processing gas to which ultrasonic vibrations are applied.
 本開示にかかるレーザ加工ヘッドは、ワークの溶融によって生じる溶融物を効率良く除去できるという効果を奏する。 The laser processing head according to the present disclosure has the effect of being able to efficiently remove melted matter generated by melting a workpiece.
実施の形態1にかかるレーザ加工装置の構成例を示す図1 is a diagram showing a configuration example of a laser processing apparatus according to a first embodiment; FIG. 実施の形態1にかかるレーザ加工装置のレーザ加工ヘッドに備えられる超音波発生部の例を示す図FIG. 4 is a diagram showing an example of an ultrasonic generator provided in the laser processing head of the laser processing apparatus according to the first embodiment; 実施の形態2にかかるレーザ加工装置の構成例を示す図FIG. 11 is a diagram showing a configuration example of a laser processing apparatus according to a second embodiment; 実施の形態2にかかるレーザ加工装置のレーザ加工ヘッドに備えられる超音波発生部の例を示す図FIG. 10 is a diagram showing an example of an ultrasonic generator provided in a laser processing head of a laser processing apparatus according to a second embodiment; 実施の形態2にかかるレーザ加工装置による超音波の収束点の位置調整について説明するための図FIG. 11 is a diagram for explaining position adjustment of a convergence point of ultrasonic waves by the laser processing apparatus according to the second embodiment; 実施の形態2にかかるレーザ加工装置による超音波の強度分布調整について説明するための第1の図FIG. 1 is a first diagram for explaining intensity distribution adjustment of ultrasonic waves by a laser processing apparatus according to a second embodiment; 実施の形態2にかかるレーザ加工装置による超音波の強度分布調整について説明するための第2の図FIG. 2 is a second diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus according to the second embodiment; 実施の形態2にかかるレーザ加工装置による超音波の強度分布調整について説明するための第3の図FIG. 3 is a third diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus according to the second embodiment; 実施の形態2にかかるレーザ加工装置が、強度分布を縮小させるとともに収束点を高速移動させる例について説明するための図FIG. 10 is a diagram for explaining an example in which the laser processing apparatus according to the second embodiment reduces the intensity distribution and moves the convergence point at high speed; 実施の形態3にかかるレーザ加工装置の構成例を示す図The figure which shows the structural example of the laser processing apparatus concerning Embodiment 3. 実施の形態4にかかるレーザ加工装置による超音波の収束点の位置調整について説明するための図FIG. 11 is a diagram for explaining position adjustment of a convergence point of ultrasonic waves by the laser processing apparatus according to the fourth embodiment; 実施の形態4にかかるレーザ加工装置が、光軸の方向において収束点を移動させる例について説明するための図FIG. 12 is a diagram for explaining an example in which the laser processing apparatus according to the fourth embodiment moves the convergence point in the direction of the optical axis; 実施の形態4において、ノズルとレーザ光の焦点との間の距離よりもノズルと収束点との間の距離を長くしたことによる効果について説明するための第1の図FIG. 11 is a first diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment; 実施の形態4において、ノズルとレーザ光の焦点との間の距離よりもノズルと収束点との間の距離を長くしたことによる効果について説明するための第2の図A second diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment. 実施の形態4において、ノズルとレーザ光の焦点との間の距離よりもノズルと収束点との間の距離を長くしたことによる効果について説明するための第3の図FIG. 3 is a third diagram for explaining the effect of making the distance between the nozzle and the convergence point longer than the distance between the nozzle and the focal point of the laser light in the fourth embodiment; 実施の形態5にかかるレーザ加工ヘッドのうちガス整流部を含む部分を示す図FIG. 11 is a diagram showing a portion including a gas rectifying section of the laser processing head according to the fifth embodiment; 実施の形態1から5における超音波制御部を実現するハードウェアの第1の構成例を示す図FIG. 4 is a diagram showing a first configuration example of hardware that implements the ultrasound control unit according to Embodiments 1 to 5; 実施の形態1から5における超音波制御部を実現するハードウェアの第2の構成例を示す図FIG. 10 is a diagram showing a second configuration example of hardware that implements the ultrasound control unit according to Embodiments 1 to 5;
 以下に、実施の形態にかかるレーザ加工ヘッドおよびレーザ加工装置を図面に基づいて詳細に説明する。 The laser processing head and laser processing apparatus according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかるレーザ加工装置1の構成例を示す図である。レーザ加工装置1は、レーザ光Lの照射によりワーク4を局所的に溶融させることによってワーク4の切断加工を行う。レーザ加工装置1は、溶融によって生じる溶融物を加工ガスの噴射によって吹き飛ばし、ワーク4から溶融物を除去する。ワーク4は、鋼板などの金属板である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a laser processing apparatus 1 according to a first embodiment. The laser processing apparatus 1 cuts the workpiece 4 by locally melting the workpiece 4 by irradiating the laser beam L thereon. The laser processing apparatus 1 removes the melted material from the work 4 by blowing off the melted material produced by melting by jetting a processing gas. The workpiece 4 is a metal plate such as a steel plate.
 レーザ加工装置1は、レーザ光Lを出力するレーザ発振器2と、レーザ加工ヘッド3とを備える。レーザ発振器2は、産業用レーザ加工で一般的に用いられるレーザであって、例えば、CO2レーザ、COレーザ、ファイバーレーザ、半導体レーザ、直接集光型レーザダイオード(Direct Diode Laser:DDL)、UV(UltraViolet)レーザ、深紫外UVレーザ等である。レーザ発振器2は、上記以外のレーザであっても良く、いずれの波長帯のレーザであっても良い。レーザ発振器2から出力されたレーザ光Lは、レーザ発振器2とレーザ加工ヘッド3との間の光路を伝搬して、レーザ加工ヘッド3の筐体5の内部へ導入される。筐体5の内部には、レーザ光Lを集光する加工レンズ7と、加工レンズ7を保護するための光学部品である保護ガラス8とが収納されている。なお、レーザ発振器2と保護ガラス8との間の構成は、任意とする。 A laser processing apparatus 1 includes a laser oscillator 2 that outputs a laser beam L and a laser processing head 3 . The laser oscillator 2 is a laser commonly used in industrial laser processing, such as CO 2 laser, CO laser, fiber laser, semiconductor laser, direct diode laser (DDL), UV (UltraViolet) laser, deep ultraviolet UV laser, and the like. The laser oscillator 2 may be a laser other than the above, and may be a laser of any wavelength band. A laser beam L output from the laser oscillator 2 propagates through an optical path between the laser oscillator 2 and the laser processing head 3 and is introduced into the housing 5 of the laser processing head 3 . A processing lens 7 that condenses the laser beam L and a protective glass 8 that is an optical component for protecting the processing lens 7 are housed inside the housing 5 . Note that the configuration between the laser oscillator 2 and the protective glass 8 is arbitrary.
 筐体5は、加工ガスが充填されるガス充填室10を備える。レーザ加工ヘッド3は、ワーク4に照射させるレーザ光Lとガス充填室10からワーク4へ噴射する加工ガスとが通るノズル6を備える。レーザ光Lは、ノズル6から、ワーク4のうち加工が行われている加工点へ向けて出射する。実施の形態1において、加工点は、加工中におけるレーザ光Lの焦点であるものとする。 The housing 5 includes a gas filling chamber 10 filled with processing gas. The laser processing head 3 includes a nozzle 6 through which the laser beam L to irradiate the work 4 and the processing gas injected from the gas filling chamber 10 to the work 4 pass. The laser beam L is emitted from the nozzle 6 toward a processing point on the workpiece 4 where processing is being performed. In Embodiment 1, the processing point is assumed to be the focal point of the laser beam L during processing.
 筐体5には、ガス供給源から供給される加工ガスが通る管9が接続されている。ガス供給源の図示は省略する。管9を通った加工ガスは、ガス充填室10に充填される。図1に示す例では、ガス充填室10は、筐体5の内部のうちノズル6と保護ガラス8との間の部分である。加工ガスは、ガス充填室10において加圧されて、ノズル6からワーク4へ向けて噴射する。加工ガスは、酸素ガス、窒素ガス、またはドライエアーである。 A pipe 9 through which processing gas supplied from a gas supply source passes is connected to the housing 5 . Illustration of the gas supply source is omitted. The processing gas passing through the pipe 9 fills the gas filling chamber 10 . In the example shown in FIG. 1, the gas filling chamber 10 is a portion of the interior of the housing 5 between the nozzle 6 and the protective glass 8 . The processing gas is pressurized in the gas filling chamber 10 and jetted from the nozzle 6 toward the workpiece 4 . The processing gas is oxygen gas, nitrogen gas, or dry air.
 レーザ加工ヘッド3は、ガス充填室10の内部に配置された超音波発生部11を備える。超音波発生部11は、ガス充填室10の内部の加工ガスを振動させる超音波を発生させる。レーザ加工装置1は、超音波発生部11を制御する超音波制御部12を備える。超音波制御部12は、超音波発生部11を制御することによってワーク4において超音波を収束させる。超音波発生部11は、超音波制御部12による制御によって、ワーク4において収束する超音波を発生させる。レーザ加工ヘッド3は、加工ガスの噴射によってワーク4の切断部分から溶融物を押し出すとともに、超音波による音響放射圧を溶融物に印加することによって、ワーク4の切断部分から溶融物を排出させる。これにより、レーザ加工装置1は、ワーク4の加工中において、超音波振動を加えた加工ガスにより溶融物を除去する。レーザ加工ヘッド3は、超音波を収束させることによって、音響放射圧を効率良く溶融物に印加することができる。 The laser processing head 3 has an ultrasonic generator 11 arranged inside the gas filling chamber 10 . The ultrasonic generator 11 generates ultrasonic waves that vibrate the processing gas inside the gas filling chamber 10 . The laser processing apparatus 1 includes an ultrasonic controller 12 that controls the ultrasonic generator 11 . The ultrasonic wave controller 12 converges the ultrasonic waves on the work 4 by controlling the ultrasonic wave generator 11 . The ultrasonic wave generator 11 generates ultrasonic waves that converge on the workpiece 4 under the control of the ultrasonic wave controller 12 . The laser processing head 3 ejects the melted material from the cut portion of the work 4 by jetting the processing gas, and ejects the melted material from the cut portion of the work 4 by applying ultrasonic acoustic radiation pressure to the melted material. As a result, the laser processing apparatus 1 removes the melted matter with the processing gas to which the ultrasonic vibration is applied during processing of the workpiece 4 . The laser processing head 3 can efficiently apply acoustic radiation pressure to the melt by converging ultrasonic waves.
 ワーク4は、テーブルに載せられて加工される。テーブルの図示は省略する。レーザ加工装置1は、レーザ加工ヘッド3とテーブルとのうち少なくとも一方を移動させることによって、ワーク4に対してレーザ加工ヘッド3を相対的に移動させる。レーザ加工装置1は、ワーク4を局所的に溶融させながらワーク4に対してレーザ加工ヘッド3を相対的に移動させることによって、ワーク4を切断する。なお、レーザ加工装置1は、レーザ加工ヘッド3またはテーブルを駆動するための構成要素と、レーザ加工ヘッド3またはテーブルの移動を制御するための構成要素と、レーザ発振器2を制御するための構成要素とを備えるが、これらの構成要素の図示を省略する。 The workpiece 4 is placed on the table and processed. Illustration of the table is omitted. The laser processing apparatus 1 moves the laser processing head 3 relatively to the workpiece 4 by moving at least one of the laser processing head 3 and the table. The laser processing apparatus 1 cuts the work 4 by locally melting the work 4 and moving the laser processing head 3 relative to the work 4 . The laser processing apparatus 1 includes components for driving the laser processing head 3 or the table, components for controlling movement of the laser processing head 3 or the table, and components for controlling the laser oscillator 2. , but illustration of these components is omitted.
 図2は、実施の形態1にかかるレーザ加工装置1のレーザ加工ヘッド3に備えられる超音波発生部11の例を示す図である。超音波発生部11は、例えば超音波振動子である。図2に示す例では、超音波振動子は、円環形状の素子である。超音波発生部11は、円環形状の中心を加工レンズの光軸AXに一致させて配置される。図2には、光軸AXを含む1つの平面で超音波発生部11を切断した場合における超音波発生部11を示す。 FIG. 2 is a diagram showing an example of the ultrasonic generator 11 provided in the laser processing head 3 of the laser processing apparatus 1 according to the first embodiment. The ultrasonic generator 11 is, for example, an ultrasonic transducer. In the example shown in FIG. 2, the ultrasonic transducer is an annular element. The ultrasonic wave generator 11 is arranged so that the center of the ring shape coincides with the optical axis AX of the processing lens. FIG. 2 shows the ultrasonic wave generator 11 when the ultrasonic wave generator 11 is cut along one plane including the optical axis AX.
 超音波発生部11が円環形状の全体から同時に超音波を発生させることによって、1つの収束点にて超音波が収束する。以下の説明において、収束点とは、超音波による音響放射圧の強度が最も高い点、すなわち、超音波による音響放射圧が最大となる点とする。実施の形態1において、収束点は、加工点と同じ位置でも、加工点とは異なる位置でも良い。なお、超音波発生部11は、超音波を収束させることが可能であれば良く、任意の構成とすることができる。 The ultrasonic waves are converged at one convergence point by the ultrasonic wave generator 11 simultaneously generating ultrasonic waves from the entire annular shape. In the following description, the convergence point is the point at which the intensity of the acoustic radiation pressure due to ultrasonic waves is the highest, that is, the point at which the acoustic radiation pressure due to ultrasonic waves is maximum. In Embodiment 1, the convergence point may be at the same position as the processing point or at a different position from the processing point. The ultrasonic wave generator 11 may have any configuration as long as it can converge the ultrasonic waves.
 超音波発生部11は、各々が円環形状の素子である複数の素子を組み合わせたものであっても良い。複数の素子の各々は、円環の中心を光軸AXに一致させて配置される。すなわち、複数の素子は、同心円状に配置される。超音波制御部12は、複数の素子の各々を制御する。超音波制御部12は、各素子の発振のタイミングを調整することによって、超音波の位相を適宜遅延させる。超音波制御部12は、各素子からの超音波の位相が収束点において互いに一致するように、各素子と収束点との距離の違いに応じて、各素子から発生する超音波の位相を遅延させる。 The ultrasonic wave generator 11 may be a combination of a plurality of elements, each of which is an annular element. Each of the plurality of elements is arranged with the center of the ring aligned with the optical axis AX. That is, the plurality of elements are arranged concentrically. The ultrasonic controller 12 controls each of the plurality of elements. The ultrasonic wave control unit 12 appropriately delays the phase of the ultrasonic wave by adjusting the timing of oscillation of each element. The ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each element according to the difference in the distance between each element and the convergence point so that the phases of the ultrasonic waves from each element match each other at the convergence point. Let
 各素子から発生する超音波の角波数をki、各素子から収束点までの距離をli、各素子における発振のタイミング遅延量をαi、nを整数として、次の式(1)が成立するようにタイミング遅延量αiが設定されることによって、収束点において位相を揃えることができる。各素子の特性ばらつき、または、各素子が設置される位置の誤差を含めてタイミング遅延量αiが設定されることによって、収束点での音響放射圧の強度を高めることができる。
ii+αi=2πn  ・・・(1)
Assuming that k i is the angular wave number of ultrasonic waves generated from each element, l i is the distance from each element to the convergence point, α i is the timing delay amount of oscillation in each element, and n is an integer, the following equation (1) is obtained. The phases can be aligned at the convergence point by setting the timing delay amount α i so as to be satisfied. The intensity of the acoustic radiation pressure at the convergence point can be increased by setting the timing delay amount α i including the characteristic variation of each element or the error of the position where each element is installed.
k i l ii =2πn (1)
 実施の形態1によると、レーザ加工ヘッド3は、ガス充填室10の内部の加工ガスを振動させる超音波を超音波発生部11により発生させることで、超音波振動が加えられた加工ガスをノズル6からワーク4へ噴射する。媒体である加工ガスの圧力は、加工ガスがワーク4へ到達するまで均一に保たれることから、レーザ加工ヘッド3は、乱れが少ない超音波をワーク4へ伝搬させることができる。レーザ加工ヘッド3は、レーザ加工ヘッド3の外部からワーク4へ向けて超音波を伝搬させる場合と比べて、超音波を効率良くワーク4へ伝搬させることができる。このため、レーザ加工ヘッド3は、音響放射圧を効率良く溶融物に印加することができる。 According to the first embodiment, the laser processing head 3 causes the ultrasonic generator 11 to generate an ultrasonic wave that vibrates the processing gas inside the gas filling chamber 10 , so that the processing gas to which ultrasonic vibration is applied is discharged from the nozzle. 6 to the workpiece 4. Since the pressure of the processing gas, which is a medium, is kept uniform until the processing gas reaches the work 4, the laser processing head 3 can propagate ultrasonic waves to the work 4 with little disturbance. The laser processing head 3 can efficiently propagate ultrasonic waves to the work 4 as compared with the case where the ultrasonic waves are propagated toward the work 4 from the outside of the laser processing head 3 . Therefore, the laser processing head 3 can efficiently apply acoustic radiation pressure to the melt.
 レーザ加工ヘッド3の外部からワーク4へ向けて超音波を伝搬させる場合には、ノズル6とワーク4との間隔が短いほど、ワーク4において超音波を収束させることが困難となる。レーザ加工ヘッド3は、ガス充填室10の内部において加工ガスに超音波を与えることで、ノズル6とワーク4との間隔が短い場合であっても、ワーク4において超音波を容易に収束させることができる。以上により、レーザ加工ヘッド3は、ワーク4の溶融によって生じる溶融物を効率良く除去できるという効果を奏する。 When propagating ultrasonic waves from the outside of the laser processing head 3 toward the work 4 , the shorter the distance between the nozzle 6 and the work 4 , the more difficult it is to converge the ultrasonic waves on the work 4 . The laser processing head 3 applies ultrasonic waves to the processing gas inside the gas filling chamber 10 to easily focus the ultrasonic waves on the work 4 even when the distance between the nozzle 6 and the work 4 is short. can be done. As described above, the laser processing head 3 has the effect of being able to efficiently remove the molten material generated by the melting of the workpiece 4 .
 レーザ加工装置1は、効率良く溶融物を除去できることによって、加工速度の向上、加工品質の向上、および、加工ガスの消費量の低減が可能となる。レーザ加工装置1は、加工ガスの消費量を低減可能であることによって、加工のためのランニングコストの低減が可能となる。 The ability of the laser processing apparatus 1 to efficiently remove the melted material makes it possible to improve the processing speed, improve the processing quality, and reduce the consumption of processing gas. The laser processing apparatus 1 can reduce the running cost for processing by being able to reduce the consumption of processing gas.
 レーザ加工ヘッド3は、切断加工に用いられる既存のレーザ加工ヘッドに、超音波発生部11を加えることにより実現可能であって、既存の構成からの設計変更を少なくできる。また、既存のレーザ加工ヘッドからの大型化を招くことなく、また、既存のレーザ加工ヘッドからの製造コストの増加を招くことなく、レーザ加工ヘッド3を実現できる。 The laser processing head 3 can be realized by adding the ultrasonic wave generator 11 to the existing laser processing head used for cutting, and design changes from the existing configuration can be reduced. In addition, the laser processing head 3 can be realized without increasing the size of the existing laser processing head and without increasing the manufacturing cost of the existing laser processing head.
実施の形態2.
 図3は、実施の形態2にかかるレーザ加工装置1Aの構成例を示す図である。レーザ加工装置1Aは、図1に示すレーザ加工ヘッド3とは異なる構成のレーザ加工ヘッド3Aを備える。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
Embodiment 2.
FIG. 3 is a diagram showing a configuration example of a laser processing apparatus 1A according to the second embodiment. The laser processing apparatus 1A includes a laser processing head 3A having a configuration different from that of the laser processing head 3 shown in FIG. In the second embodiment, the same reference numerals are assigned to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
 レーザ加工ヘッド3Aは、加工ガスを振動させる超音波を発生させる超音波発生部11Aを備える。超音波発生部11Aは、円環状に配列された複数の超音波振動子20を有する。ガス充填室21は、筐体5の内部に設けられている。図3に示す断面において、ガス充填室21の外形は、ガス充填室21のうち保護ガラス8の側の端からノズル6の方へ向かうに従ってすぼんだテーパ形状である。図3に示す例において、超音波発生部11Aは、ガス充填室21のうち保護ガラス8の側の端に配置されている。各超音波振動子20のうち超音波を発生させる部分は、ガス充填室21の内部に設けられている。なお、ガス充填室21の外形は、図3に示す形状に限られず任意であるものとする。 The laser processing head 3A includes an ultrasonic wave generator 11A that generates ultrasonic waves that vibrate the processing gas. The ultrasonic generator 11A has a plurality of ultrasonic transducers 20 arranged in an annular shape. The gas filling chamber 21 is provided inside the housing 5 . In the cross section shown in FIG. 3 , the outer shape of the gas-filled chamber 21 is tapered from the end of the gas-filled chamber 21 on the side of the protective glass 8 toward the nozzle 6 . In the example shown in FIG. 3, the ultrasonic wave generator 11A is arranged at the end of the gas filling chamber 21 on the protective glass 8 side. A portion of each ultrasonic transducer 20 that generates ultrasonic waves is provided inside the gas filling chamber 21 . It should be noted that the outer shape of the gas filling chamber 21 is not limited to the shape shown in FIG. 3 and is arbitrary.
 図4は、実施の形態2にかかるレーザ加工装置1Aのレーザ加工ヘッド3Aに備えられる超音波発生部11Aの例を示す図である。超音波発生部11Aには、複数の超音波振動子20が並べられた円環が複数設けられている。複数の円環の各々の中心は、光軸AX上にある。実施の形態2において、複数の円環は、同心円状に配置されている。各円環を構成する超音波振動子20の数は任意であるものとする。また、超音波発生部11Aを構成する円環の数も任意であるものとする。 FIG. 4 is a diagram showing an example of the ultrasonic generator 11A provided in the laser processing head 3A of the laser processing apparatus 1A according to the second embodiment. A plurality of rings in which a plurality of ultrasonic transducers 20 are arranged are provided in the ultrasonic generator 11A. The center of each of the multiple rings is on the optical axis AX. In Embodiment 2, the multiple rings are concentrically arranged. It is assumed that the number of ultrasonic transducers 20 forming each ring is arbitrary. Also, the number of rings forming the ultrasonic wave generator 11A is arbitrary.
 超音波制御部12は、複数の超音波振動子20の各々を制御する。超音波制御部12は、各超音波振動子20からの超音波の位相が収束点において互いに一致するように、各超音波振動子20から発生する超音波の位相を遅延させる。超音波の収束点の位置が設定され、かつ、超音波発生部11Aを構成する各円環の径に応じたタイミング遅延量αiが上記式(1)に従って設定される。これにより、収束点において、各超音波振動子20からの超音波の位相が揃う。なお、図3および図4では、光軸AXを中心に同心円状に配置された複数の円環の各々に超音波振動子20が配置されているが、上記式(1)が成立するようにタイミング遅延量αiが設定されるのであれば、超音波発生部11Aの構成は、同心円状の各円環に超音波振動子20が配置されるものに限定されない。 The ultrasound controller 12 controls each of the plurality of ultrasound transducers 20 . The ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each ultrasonic transducer 20 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the point of convergence. The position of the convergence point of the ultrasonic waves is set, and the timing delay amount α i corresponding to the diameter of each ring forming the ultrasonic wave generator 11A is set according to the above equation (1). As a result, the phases of the ultrasonic waves from the ultrasonic transducers 20 are aligned at the convergence point. 3 and 4, the ultrasonic transducers 20 are arranged in each of a plurality of rings concentrically arranged around the optical axis AX. As long as the timing delay amount α i is set, the configuration of the ultrasonic generator 11A is not limited to one in which the ultrasonic transducers 20 are arranged in concentric circles.
 図5は、実施の形態2にかかるレーザ加工装置1Aによる超音波の収束点22の位置調整について説明するための図である。図5では、超音波が伝搬している領域を破線により表す。レーザ加工装置1Aは、超音波発生部11Aの各円環に複数の超音波振動子20が設けられていることで、各超音波振動子20からの超音波の位相を適宜遅延させる調整により、3次元方向において収束点22の位置を調整することができる。これにより、レーザ加工装置1Aは、効率良く溶融物を除去するための収束点22の位置を容易に調整することができる。なお、図5に示す3つの両矢印は、収束点22の位置を調整可能な3次元方向を表す。レーザ加工装置1Aは、加工点の付近において収束点22の位置を調整し得る。 FIG. 5 is a diagram for explaining position adjustment of the convergence point 22 of the ultrasonic waves by the laser processing apparatus 1A according to the second embodiment. In FIG. 5, the area where the ultrasonic wave propagates is represented by a dashed line. The laser processing apparatus 1A is provided with a plurality of ultrasonic transducers 20 in each ring of the ultrasonic generator 11A. The position of the convergence point 22 can be adjusted in three-dimensional directions. Thereby, the laser processing apparatus 1A can easily adjust the position of the convergence point 22 for efficiently removing the melted material. The three double-headed arrows shown in FIG. 5 represent three-dimensional directions in which the position of the convergence point 22 can be adjusted. The laser processing device 1A can adjust the position of the convergence point 22 near the processing point.
 また、レーザ加工装置1Aは、各超音波振動子20からの超音波の位相を適宜遅延させる調整により、収束点22を含む領域における超音波の強度分布を調整することができる。図6は、実施の形態2にかかるレーザ加工装置1Aによる超音波の強度分布調整について説明するための第1の図である。図7は、実施の形態2にかかるレーザ加工装置1Aによる超音波の強度分布調整について説明するための第2の図である。図8は、実施の形態2にかかるレーザ加工装置1Aによる超音波の強度分布調整について説明するための第3の図である。図6、図7および図8に示す強度分布23は、収束点22を含む領域における超音波の強度分布であって、光軸AXに垂直な面のうち超音波の音圧が一定の音圧以上である領域を表す。また、図6、図7および図8における矢印は、加工の進行方向を表す。 Also, the laser processing apparatus 1A can adjust the intensity distribution of the ultrasonic waves in the region including the convergence point 22 by appropriately delaying the phase of the ultrasonic waves from the ultrasonic transducers 20 . FIG. 6 is a first diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment. FIG. 7 is a second diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment. FIG. 8 is a third diagram for explaining intensity distribution adjustment of ultrasonic waves by the laser processing apparatus 1A according to the second embodiment. The intensity distribution 23 shown in FIGS. 6, 7 and 8 is the intensity distribution of the ultrasonic waves in the region including the convergence point 22, and the sound pressure of the ultrasonic waves in the plane perpendicular to the optical axis AX is constant. represents a region that is equal to or greater than The arrows in FIGS. 6, 7 and 8 indicate the direction in which machining progresses.
 図6に示す強度分布23は、進行方向側の外縁は進行方向へ張り出しており、かつ、進行方向とは逆側の外縁は進行方向へ窪んでいる形状である。図7に示す強度分布23は、楕円に近い形状である。当該楕円の長軸の方向は進行方向と一致している。図8に示す強度分布23は、図7に示す強度分布23の形状を、光軸AXに垂直な面において90度回転させた形状である。レーザ加工装置1Aは、円形を基準に、図6、図7および図8の各々に示すように強度分布23の形状を調整することができる。レーザ加工装置1Aは、強度分布23である領域の大きさも調整することができる。 The intensity distribution 23 shown in FIG. 6 has a shape in which the outer edge on the advancing direction side protrudes in the advancing direction, and the outer edge on the opposite side to the advancing direction is depressed in the advancing direction. The intensity distribution 23 shown in FIG. 7 has a shape close to an ellipse. The direction of the major axis of the ellipse matches the traveling direction. The intensity distribution 23 shown in FIG. 8 has a shape obtained by rotating the shape of the intensity distribution 23 shown in FIG. 7 by 90 degrees in a plane perpendicular to the optical axis AX. The laser processing apparatus 1A can adjust the shape of the intensity distribution 23 as shown in FIGS. 6, 7, and 8 on the basis of the circular shape. The laser processing apparatus 1A can also adjust the size of the region that is the intensity distribution 23 .
 レーザ加工装置1Aは、ワーク4の材料または板厚などに応じて、強度分布23の形状を調整することができる。レーザ加工装置1Aは、効率良く溶融物を除去するための強度分布23の調整を容易に行うことができる。なお、図6、図7および図8に示す強度分布23の形状は例であるものとする。レーザ加工装置1Aは、図6、図7および図8に示す形状とは異なる形状に、強度分布23の形状を調整することとしても良い。 The laser processing apparatus 1A can adjust the shape of the intensity distribution 23 according to the material or plate thickness of the work 4. The laser processing apparatus 1A can easily adjust the intensity distribution 23 for efficiently removing the melt. Note that the shape of the intensity distribution 23 shown in FIGS. 6, 7 and 8 is an example. The laser processing apparatus 1A may adjust the shape of the intensity distribution 23 to a shape different from the shapes shown in FIGS.
 また、レーザ加工装置1Aは、強度分布23を縮小させるとともに、光軸AXに垂直な面内において収束点22を高速移動させても良い。図9は、実施の形態2にかかるレーザ加工装置1Aが、強度分布23を縮小させるとともに収束点22を高速移動させる例について説明するための図である。図9には、レーザ光Lによる切断加工が行われているワーク4をレーザ加工ヘッド3Aの側から見た様子を示す。図9には、加工によってワーク4に形成された加工溝25と、加工の際における収束点22およびスポット24とを示す。スポット24は、光軸AXに垂直な面におけるレーザ光Lのスポットとする。図9では、強度分布23の中心点が収束点22であるものとする。 Further, the laser processing apparatus 1A may reduce the intensity distribution 23 and move the convergence point 22 at high speed within a plane perpendicular to the optical axis AX. FIG. 9 is a diagram for explaining an example in which the laser processing apparatus 1A according to the second embodiment reduces the intensity distribution 23 and moves the convergence point 22 at high speed. FIG. 9 shows the workpiece 4 being cut by the laser beam L viewed from the laser processing head 3A side. FIG. 9 shows a machined groove 25 formed in the workpiece 4 by machining, and a convergence point 22 and a spot 24 during machining. A spot 24 is a spot of the laser light L on a plane perpendicular to the optical axis AX. In FIG. 9, it is assumed that the center point of the intensity distribution 23 is the convergence point 22 .
 図9の説明において、上方向および左方向とは、図9における上方向および左方向とする。図9に示す例では、レーザ加工装置1Aは、上方向へワーク4の切断加工を進めていき、その後、左方向へ加工の進行方向を変化させて、左方向へ切断加工を進めたとする。上方向へ直線状に切断加工を進めるときと、図9における左方向へ切断加工を進めるときとにおいて、強度分布23は、スポット24よりも若干小さい円形である。加工の進行方向が上方向から左方向へ変化する角部に加工点が到達したとき、レーザ加工装置1Aは、当該角部に加工が到達する前よりも強度分布23を縮小させる。さらに、レーザ加工装置1Aは、光軸AXに垂直な面内において収束点22を高速に往復移動させる。レーザ加工装置1Aは、図9に示す例では、図9に示す両矢印の方向、すなわち上方向および左方向に対して斜めの方向において収束点22を往復移動させる。図9には、角部において1つの収束点22を斜めの方向に往復移動させる様子を示す。その後、レーザ加工装置1Aは、収束点22の往復移動をやめて、強度分布23を元の大きさに戻す。  In the description of FIG. 9, the upward direction and the left direction refer to the upward direction and the left direction in FIG. In the example shown in FIG. 9, it is assumed that the laser processing apparatus 1A cuts the workpiece 4 upward, then changes the processing direction leftward, and cuts leftward. The intensity distribution 23 has a circular shape that is slightly smaller than the spot 24 when the cutting process proceeds linearly upward and when the cutting process proceeds leftward in FIG. When the processing point reaches a corner where the direction of progress of processing changes from upward to leftward, the laser processing apparatus 1A reduces the intensity distribution 23 before processing reaches the corner. Furthermore, the laser processing apparatus 1A reciprocates the convergence point 22 at high speed within a plane perpendicular to the optical axis AX. In the example shown in FIG. 9, the laser processing apparatus 1A reciprocates the convergence point 22 in the directions of the double arrows shown in FIG. FIG. 9 shows how one convergence point 22 at a corner is reciprocated in an oblique direction. Thereafter, the laser processing apparatus 1A stops reciprocating movement of the convergence point 22 and returns the intensity distribution 23 to its original size.
 スポット24の形状に応じた丸みの発生、または、蓄熱の影響などによって、角部を直角の形状に加工することが困難となる場合がある。このため、角部では加工品質が低下し易い。レーザ加工装置1Aは、角部において収束点22を高速に往復移動させることによって、直角となるように角部を整形する。このように、レーザ加工装置1Aは、強度分布23を縮小させて、光軸AXに垂直な面内において収束点22を往復移動させることによって、加工品質を向上させることができる。レーザ加工装置1Aは、複数の超音波振動子20の各々の制御によって、強度分布23の大きさを容易に変化させることができ、かつ、収束点22を容易に高速移動させることができる。 It may be difficult to process the corners into a right-angled shape due to the occurrence of roundness according to the shape of the spot 24 or the influence of heat accumulation. For this reason, the processing quality tends to deteriorate at the corners. The laser processing apparatus 1A shapes the corner so as to form a right angle by reciprocating the convergence point 22 at the corner at high speed. Thus, the laser processing apparatus 1A can improve the processing quality by reducing the intensity distribution 23 and reciprocating the convergence point 22 within the plane perpendicular to the optical axis AX. The laser processing apparatus 1A can easily change the magnitude of the intensity distribution 23 and easily move the convergence point 22 at high speed by controlling each of the plurality of ultrasonic transducers 20 .
 ここで、超音波の収束について説明する。超音波の収束点22を含む領域、すなわち強度分布23の領域の径をw、超音波の波長をλ、超音波振動子20と収束点22との距離をr、超音波振動子20の数をN、超音波振動子20のうち超音波振動を発生させる表面の直径をdとして、次の式(2)が成り立つ。
w=2λr/Nd  ・・・(2)
Here, the convergence of ultrasonic waves will be described. w is the diameter of the area including the convergence point 22 of the ultrasound, that is, the area of the intensity distribution 23, λ is the wavelength of the ultrasound, r is the distance between the ultrasound transducer 20 and the convergence point 22, and the number of the ultrasound transducers 20 is N, and the diameter of the surface of the ultrasonic transducer 20 that generates ultrasonic vibration is d, the following equation (2) holds.
w=2λr/Nd (2)
 例えば、40kHzの超音波について、λ=8.5mm、r=200mm、N=17、d=10mmである場合、w=20mmである。 For example, for 40 kHz ultrasound, w=20 mm when λ=8.5 mm, r=200 mm, N=17, and d=10 mm.
 平面波の垂直入射の場合において、物体表面に生じる音響放射圧をP(Pa)、超音波の音響エネルギー密度をE(J/m3)、音響インテンシティをI(W/m2)、音速をc(m/s)、超音波の音圧の実効値をp(Pa)、媒質の密度をρ(kg/m3)として、次の式(3)が成り立つ。なお、αは、物体表面における反射、吸収または透過といった状態によって決まる係数とする。全反射の場合、α=2である。
P=αE=α(I/c)=α(p2/ρc2)  ・・・(3)
In the case of perpendicular incidence of plane waves, P (Pa) is the acoustic radiation pressure generated on the surface of the object, E (J/m 3 ) is the acoustic energy density of the ultrasonic wave, I (W/m 2 ) is the acoustic intensity, and I (W/m 2 ) is the sound velocity. Assuming c (m/s), p (Pa) as the effective value of the ultrasonic sound pressure, and ρ (kg/m 3 ) as the density of the medium, the following equation (3) holds. Note that α is a coefficient determined by the state of reflection, absorption, or transmission on the surface of the object. For total internal reflection, α=2.
P=αE=α(I/c)=α(p 2 /ρc 2 ) (3)
 上記式(3)は、音圧の実効値がpである超音波の時空間パターンを制御することにより、音響放射圧がPである任意の放射圧パターンを生成可能であることを示す。 The above formula (3) indicates that an arbitrary radiation pressure pattern with an acoustic radiation pressure of P can be generated by controlling the spatio-temporal pattern of ultrasonic waves with an effective sound pressure of p.
 実施の形態2によると、レーザ加工装置1Aは、超音波発生部11Aに複数の超音波振動子20が設けられていることで、収束点22の位置調整と、強度分布23の形状または大きさの調整と、収束点22の高速移動とを容易に行うことができるという効果を奏する。 According to the second embodiment, the laser processing apparatus 1A is provided with a plurality of ultrasonic transducers 20 in the ultrasonic generator 11A, thereby adjusting the position of the convergence point 22 and adjusting the shape or size of the intensity distribution 23. and high-speed movement of the convergence point 22 can be easily performed.
 なお、図3および図4に示す例では、各超音波振動子20は、超音波振動子20のうち超音波振動を発生させる表面の法線が光軸AXに平行となるように配置されているが、これに限られない。各超音波振動子20は、超音波振動を発生させる表面の法線が光軸AXに対して斜めになるように配置されても良い。当該法線の方向は、超音波振動の強度が最も強くなる方向である。レーザ加工装置1Aは、各超音波振動子20の向きが適宜調整されることによって、音響放射圧を効率良く収束点22へ伝搬させることができる。 In the examples shown in FIGS. 3 and 4, each ultrasonic transducer 20 is arranged such that the normal to the surface of the ultrasonic transducer 20 that generates ultrasonic vibration is parallel to the optical axis AX. Yes, but not limited to this. Each ultrasonic transducer 20 may be arranged such that the normal to the surface that generates ultrasonic vibrations is oblique to the optical axis AX. The direction of the normal line is the direction in which the intensity of ultrasonic vibration is the strongest. The laser processing apparatus 1A can efficiently propagate the acoustic radiation pressure to the convergence point 22 by appropriately adjusting the orientation of each ultrasonic transducer 20 .
実施の形態3.
 図10は、実施の形態3にかかるレーザ加工装置1Bの構成例を示す図である。レーザ加工装置1Bは、図1に示すレーザ加工ヘッド3とは異なる構成のレーザ加工ヘッド3Bを備える。実施の形態3では、上記の実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。
Embodiment 3.
FIG. 10 is a diagram showing a configuration example of a laser processing apparatus 1B according to the third embodiment. The laser processing apparatus 1B includes a laser processing head 3B having a configuration different from that of the laser processing head 3 shown in FIG. In the third embodiment, the same reference numerals are assigned to the same constituent elements as in the first or second embodiment, and the configuration different from that in the first or second embodiment will be mainly described.
 レーザ加工ヘッド3Bは、加工ガスを振動させる超音波を発生させる超音波発生部11Bを備える。図10に示す例において、超音波発生部11Bは、ガス充填室21のうち、保護ガラス8の側の端とノズル6との間の面に配置されている。超音波発生部11Bには、複数の超音波振動子20が並べられた円環が複数設けられている。各円環は、光軸方向において互いに位置をずらして配置されている。複数の円環の各々の中心は、光軸AX上にある。このように、実施の形態3において、複数の円環は、同心円状に配置されており、かつ、光軸方向における位置が円環ごとにずれるように多段に配置されている。各円環を構成する超音波振動子20の数は任意であるものとする。また、超音波発生部11Bを構成する円環の数も任意であるものとする。 The laser processing head 3B includes an ultrasonic wave generator 11B that generates ultrasonic waves that vibrate the processing gas. In the example shown in FIG. 10, the ultrasonic generator 11B is arranged on the surface between the end of the gas filling chamber 21 on the protective glass 8 side and the nozzle 6. In the example shown in FIG. A plurality of rings in which a plurality of ultrasonic transducers 20 are arranged are provided in the ultrasonic generator 11B. The respective rings are arranged with their positions shifted from each other in the optical axis direction. The center of each of the multiple rings is on the optical axis AX. As described above, in Embodiment 3, the plurality of rings are arranged concentrically, and are arranged in multiple stages so that the positions in the optical axis direction are shifted for each ring. It is assumed that the number of ultrasonic transducers 20 forming each ring is arbitrary. Also, the number of rings forming the ultrasonic wave generator 11B is arbitrary.
 各超音波振動子20のうち超音波を発生させる部分は、ガス充填室21の内部に設けられている。各超音波振動子20のうち超音波を発生させる部分は、保護ガラス8へ向けられている。各超音波振動子20で発生した超音波は、保護ガラス8で反射してワーク4の方へ進行する。また、各超音波振動子20の向きは、保護ガラス8で反射した超音波がワーク4において収束するように設定されている。かかる構成により、レーザ加工ヘッド3Bは、超音波発生部11Bで発生させた超音波を保護ガラス8で反射させて、ワーク4において超音波を収束させる。 A portion of each ultrasonic transducer 20 that generates ultrasonic waves is provided inside the gas filling chamber 21 . A portion of each ultrasonic transducer 20 that generates ultrasonic waves is directed toward the protective glass 8 . The ultrasonic waves generated by each ultrasonic transducer 20 are reflected by the protective glass 8 and travel toward the workpiece 4 . The orientation of each ultrasonic transducer 20 is set so that the ultrasonic waves reflected by the protective glass 8 converge on the workpiece 4 . With such a configuration, the laser processing head 3B causes the protective glass 8 to reflect the ultrasonic waves generated by the ultrasonic wave generator 11B, and converges the ultrasonic waves on the workpiece 4. As shown in FIG.
 なお、複数の超音波振動子20で発生する超音波の中には、保護ガラス8以外の反射面で反射する超音波が含まれても良い。また、図10に示す例では、各超音波振動子20は、光軸AXに対して斜めの方向へ超音波を進行させるように配置されているが、これに限られない。各超音波振動子20は、光軸AXの方向へ超音波を進行させるように配置されても良い。 The ultrasonic waves generated by the plurality of ultrasonic transducers 20 may include ultrasonic waves reflected by reflecting surfaces other than the protective glass 8 . In addition, in the example shown in FIG. 10, each ultrasonic transducer 20 is arranged so as to cause ultrasonic waves to travel in a direction oblique to the optical axis AX, but this is not restrictive. Each ultrasonic transducer 20 may be arranged to propagate ultrasonic waves in the direction of the optical axis AX.
 超音波制御部12は、複数の超音波振動子20の各々を制御する。超音波制御部12は、各超音波振動子20からの超音波の位相が収束点22において互いに一致するように、各超音波振動子20から発生する超音波の位相を遅延させる。各超音波振動子20からの超音波の位相が収束点22において互いに一致するように、各超音波振動子20と収束点22との距離の違いに応じたタイミング遅延量αiが、上記式(1)に従って設定される。これにより、収束点22において、各超音波振動子20からの超音波の位相が揃う。 The ultrasound controller 12 controls each of the plurality of ultrasound transducers 20 . The ultrasonic control unit 12 delays the phase of the ultrasonic waves generated from each ultrasonic transducer 20 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the convergence point 22 . The timing delay amount α i corresponding to the difference in the distance between each ultrasonic transducer 20 and the convergence point 22 so that the phases of the ultrasonic waves from each ultrasonic transducer 20 match each other at the convergence point 22 is expressed by the above equation. (1). As a result, the phases of the ultrasonic waves from the ultrasonic transducers 20 are aligned at the convergence point 22 .
 実施の形態3によると、レーザ加工ヘッド3Bは、光軸AXに垂直な方向に複数の超音波振動子20を並べる場合に比べて、ガス充填室21に多くの超音波振動子20を配置することが可能となる。レーザ加工装置1Bは、多くの超音波振動子20を配置できることによって、溶融物に印加する音響放射圧を増大させることができる。これにより、レーザ加工装置1Bは、ワーク4の溶融によって生じる溶融物を効率良く除去することができる。 According to Embodiment 3, the laser processing head 3B arranges more ultrasonic transducers 20 in the gas filling chamber 21 than in the case of arranging the plurality of ultrasonic transducers 20 in the direction perpendicular to the optical axis AX. becomes possible. The laser processing apparatus 1B can increase the acoustic radiation pressure applied to the melt by arranging many ultrasonic transducers 20 . As a result, the laser processing apparatus 1B can efficiently remove the molten material generated by the melting of the work 4. As shown in FIG.
実施の形態4.
 実施の形態4では、実施の形態2と同様のレーザ加工装置1Aにより、光軸AXの方向における収束点22の位置を調整する例について説明する。図11は、実施の形態4にかかるレーザ加工装置1Aによる超音波の収束点22の位置調整について説明するための図である。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。図11には、ワーク4に形成された加工溝内におけるレーザ光Lの焦点26および超音波の収束点22とワーク4の外形とを示す。図11では、超音波が伝搬している領域を破線により表す。
Embodiment 4.
Embodiment 4 describes an example of adjusting the position of the convergence point 22 in the direction of the optical axis AX by using a laser processing apparatus 1A similar to that of Embodiment 2. FIG. FIG. 11 is a diagram for explaining position adjustment of the convergence point 22 of the ultrasonic waves by the laser processing apparatus 1A according to the fourth embodiment. In the fourth embodiment, the same reference numerals are assigned to the same components as in the first to third embodiments, and the configuration different from the first to third embodiments will be mainly described. FIG. 11 shows the focal point 26 of the laser beam L, the convergence point 22 of the ultrasonic wave, and the outer shape of the work 4 in the groove formed in the work 4 . In FIG. 11, the area where the ultrasonic wave propagates is represented by a dashed line.
 収束点22は、光軸AXの方向において焦点26とは異なる位置である。また、図11に示すように、ノズル6とレーザ光Lの焦点26との間の距離よりも、ノズル6と収束点22との間の距離のほうが長い。すなわち、超音波制御部12は、レーザ光Lが伝搬する方向へ焦点26からさらに進んだ位置の収束点22において超音波を収束させる。 The convergence point 22 is at a different position from the focal point 26 in the direction of the optical axis AX. Further, as shown in FIG. 11, the distance between the nozzle 6 and the convergence point 22 is longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L. As shown in FIG. That is, the ultrasonic wave control unit 12 converges the ultrasonic waves at the convergence point 22 at a position further advanced from the focal point 26 in the direction in which the laser light L propagates.
 レーザ加工装置1Aは、光軸AXの方向において収束点22を移動させても良い。図12は、実施の形態4にかかるレーザ加工装置1Aが、光軸AXの方向において収束点22を移動させる例について説明するための図である。図12では、超音波が伝搬している領域を破線により表す。レーザ加工装置1Aは、光軸AXの方向において互いに異なる位置である2点の間にて、収束点22を往復移動させる。当該2点のうちの一方は、図11に示す収束点22と同じ位置である。当該2点のうち他方は、焦点26に対してノズル6の側の位置である。図12には、両矢印により示す光軸AXの方向において1つの収束点22を往復移動させる様子を示す。 The laser processing device 1A may move the convergence point 22 in the direction of the optical axis AX. FIG. 12 is a diagram for explaining an example in which the laser processing apparatus 1A according to the fourth embodiment moves the convergence point 22 in the direction of the optical axis AX. In FIG. 12, the dashed line represents the region in which the ultrasonic waves are propagating. 1 A of laser processing apparatuses reciprocate the convergence point 22 between two points which are mutually different positions in the direction of the optical axis AX. One of the two points is at the same position as the convergence point 22 shown in FIG. The other of the two points is the position on the nozzle 6 side with respect to the focal point 26 . FIG. 12 shows how one convergence point 22 is reciprocated in the direction of the optical axis AX indicated by the double arrow.
 図13は、実施の形態4において、ノズル6とレーザ光Lの焦点26との間の距離よりもノズル6と収束点22との間の距離を長くしたことによる効果について説明するための第1の図である。図14は、実施の形態4において、ノズル6とレーザ光Lの焦点26との間の距離よりもノズル6と収束点22との間の距離を長くしたことによる効果について説明するための第2の図である。図13および図14には、ワーク4のうち加工溝30が形成された部分を切断した場合におけるワーク4を示す。図14では、超音波が伝搬している領域を破線により表す。 FIG. 13 is a first graph for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram. FIG. 14 is a second diagram for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram. FIGS. 13 and 14 show the work 4 obtained by cutting the portion of the work 4 in which the machined groove 30 is formed. In FIG. 14, the area in which the ultrasonic wave propagates is represented by a dashed line.
 図13には、加工溝30のうちノズル6側の端部31の幅よりも、加工溝30のうちノズル6とは逆側の端部32の幅が狭い場合の例を示す。図13に示すように、焦点26は、ワーク4の板厚における中心付近の位置である。端部32の幅が狭いほど、加工溝30から溶融物が排出されにくいため、加工速度が低下することとなる。なお、端部32を広げるために、端部32の方へ焦点26をシフトさせると、ワーク4のうちノズル6側の部分の入熱エネルギーの密度が低下する。この場合も、入熱エネルギーの密度が低下することによって加工速度が低下することとなる。 FIG. 13 shows an example in which the width of the end portion 32 of the processed groove 30 on the side opposite to the nozzle 6 is narrower than the width of the end portion 31 of the processed groove 30 on the nozzle 6 side. As shown in FIG. 13, the focal point 26 is a position near the center of the thickness of the workpiece 4 . The narrower the width of the end portion 32, the more difficult it is for the molten material to be discharged from the processing groove 30, resulting in a decrease in the processing speed. If the focal point 26 is shifted toward the end portion 32 in order to widen the end portion 32, the density of the heat energy input to the portion of the work 4 on the nozzle 6 side is reduced. Also in this case, the processing speed decreases due to the decrease in the density of input heat energy.
 図14には、レーザ光Lが伝搬する方向へ焦点26からさらに進んだ位置に収束点22を設定した場合の例を示す。図14に示す例では、収束点22は、端部32の付近に設定されている。 FIG. 14 shows an example in which the convergence point 22 is set at a position further advanced from the focal point 26 in the direction in which the laser light L propagates. In the example shown in FIG. 14, the convergence point 22 is set near the edge 32 .
 図15は、実施の形態4において、ノズル6とレーザ光Lの焦点26との間の距離よりもノズル6と収束点22との間の距離を長くしたことによる効果について説明するための第3の図である。図15には、図14に示すワーク4のうち、図14に示す切断面に垂直な切断面を示す。図15に示すように、加工溝30の壁には溶融物33が堆積する。収束点22は、端部32の付近における溶融物33上の位置である。 FIG. 15 is a third diagram for explaining the effect of making the distance between the nozzle 6 and the convergence point 22 longer than the distance between the nozzle 6 and the focal point 26 of the laser beam L in the fourth embodiment. is a diagram. FIG. 15 shows a cut plane perpendicular to the cut plane shown in FIG. 14 in the workpiece 4 shown in FIG. As shown in FIG. 15, melt 33 is deposited on the walls of working groove 30 . Convergence point 22 is a location on melt 33 near edge 32 .
 図14および図15に示すように収束点22を端部32の付近とすることによって、端部32からの溶融物33の排出が促進され、端部32の幅を広げることができる。端部32の幅が広くなることによって、加工溝30から効率良く溶融物33を除去することが可能となる。これにより、レーザ加工装置1Aは、加工速度の向上が可能となる。 By setting the convergence point 22 near the end portion 32 as shown in FIGS. 14 and 15, the discharge of the molten material 33 from the end portion 32 is facilitated, and the width of the end portion 32 can be widened. The increased width of the end portion 32 enables efficient removal of the melt 33 from the machined groove 30 . Thereby, the laser processing apparatus 1A can improve the processing speed.
 レーザ加工装置1Aは、図12に示すように、収束点22を往復移動させても良い。超音波が伝搬する音速は340m/sであるのに対し、切断加工の加工速度は0.01m/sから2m/s程度であって、溶融物33の流速は10m/s程度である。加工速度および溶融物33の流速の各々に比べて音速が十分に速いことから、収束点22を往復移動させても、収束点22における音響放射圧を維持できる。このため、レーザ加工装置1Aは、収束点22における音響放射圧を維持しつつ、加工溝30の広範囲に音響放射圧を印加できる。これにより、レーザ加工装置1Aは、溶融物33の除去をさらに促進させることができる。また、レーザ加工装置1Aは、ワーク4における切断フロントのむらを低減可能とし、高品質な加工が可能となる。 The laser processing apparatus 1A may reciprocate the convergence point 22 as shown in FIG. The ultrasonic wave propagates at a speed of sound of 340 m/s, while the cutting speed is about 0.01 m/s to 2 m/s, and the flow speed of the melt 33 is about 10 m/s. Since the speed of sound is sufficiently higher than the processing speed and the flow speed of the melt 33, the acoustic radiation pressure at the convergence point 22 can be maintained even if the convergence point 22 is reciprocated. Therefore, the laser processing apparatus 1A can apply acoustic radiation pressure over a wide range of the processed groove 30 while maintaining the acoustic radiation pressure at the convergence point 22 . Thereby, the laser processing apparatus 1A can further promote the removal of the melted material 33 . In addition, the laser processing apparatus 1A can reduce the unevenness of the cutting front of the workpiece 4, thereby enabling high-quality processing.
 このように、実施の形態4によると、レーザ加工装置1Aは、ノズル6と焦点26との間の距離よりも、ノズル6と収束点22との間の距離のほうが長いことによって、溶融物33を効率良く除去することができる。なお、実施の形態4にて説明する収束点22の位置調整は、実施の形態3と同様のレーザ加工装置1Bによって行われても良い。 Thus, according to Embodiment 4, the laser processing apparatus 1A has a longer distance between the nozzle 6 and the convergence point 22 than the distance between the nozzle 6 and the focal point 26, so that the molten material 33 can be efficiently removed. Note that the position adjustment of the convergence point 22 described in the fourth embodiment may be performed by the laser processing apparatus 1B similar to that of the third embodiment.
実施の形態5.
 実施の形態5では、実施の形態1から4のレーザ加工ヘッド3,3A,3Bにガス整流部を組み合わせた構成について説明する。ここでは、実施の形態2のレーザ加工ヘッド3Aにガス整流部を組み合わせた構成を例として説明する。実施の形態5で説明するガス整流部は、レーザ加工ヘッド3,3Bにも、レーザ加工ヘッド3Aの場合と同様に組み合わせることができる。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。
Embodiment 5.
Embodiment 5 describes a configuration in which a gas rectifying section is combined with the laser processing heads 3, 3A, and 3B of Embodiments 1 to 4. FIG. Here, a configuration in which the laser processing head 3A of the second embodiment is combined with a gas rectifying section will be described as an example. The gas rectifying section described in Embodiment 5 can also be combined with the laser processing heads 3 and 3B in the same manner as the laser processing head 3A. In Embodiment 5, the same components as those in Embodiments 1 to 4 are denoted by the same reference numerals, and configurations different from those in Embodiments 1 to 4 will be mainly described.
 図16は、実施の形態5にかかるレーザ加工ヘッド3Aのうちガス整流部40を含む部分を示す図である。ガス整流部40は、図3に示すガス充填室21へ流入する前の加工ガスが通過し、加工ガスの流れを整えるための構成要素である。ガス整流部40は、管9のうち筐体5との接続部分の付近に設けられている。 FIG. 16 is a diagram showing a portion of the laser processing head 3A according to Embodiment 5, which includes the gas rectifying section 40. As shown in FIG. The gas rectifying section 40 is a component through which the processing gas passes before flowing into the gas charging chamber 21 shown in FIG. 3 to regulate the flow of the processing gas. The gas rectifying section 40 is provided in the vicinity of the portion of the tube 9 connected to the housing 5 .
 管9の内部における加工ガスの流れには、乱流などの、部分的に不安定な流れが生じることがある。加工ガスの流れがガス整流部40において変化することで、ガス整流部40を通る前に比べて加工ガスの密度分布を均一化させることができる。レーザ加工ヘッド3Aは、密度分布が均一化された加工ガスがガス充填室21へ流入することによって、収束点22における超音波の位相を揃えることができる。レーザ加工ヘッド3Aは、超音波の位相が揃うことによって、音響放射圧を溶融物に効率良く印加することが可能となり、溶融物を効率良く除去することができる。このように、実施の形態5によると、レーザ加工ヘッド3Aは、ガス整流部40を備えることによって、溶融物を効率良く除去することができる。 A partially unstable flow such as turbulence may occur in the flow of the processing gas inside the tube 9 . By changing the flow of the processing gas in the gas straightening section 40 , the density distribution of the processing gas can be made uniform compared to before passing through the gas straightening section 40 . The laser processing head 3</b>A can align the phases of the ultrasonic waves at the convergence point 22 by allowing the processing gas having a uniform density distribution to flow into the gas-filled chamber 21 . The laser processing head 3A can efficiently apply the acoustic radiation pressure to the melted material by aligning the phases of the ultrasonic waves, and can efficiently remove the melted material. As described above, according to Embodiment 5, the laser processing head 3A can efficiently remove the molten material by including the gas rectifying section 40 .
 次に、実施の形態1から5における超音波制御部12を実現するハードウェア構成について説明する。超音波制御部12は、処理回路により実現される。処理回路は、プロセッサがソフトウェアを実行する回路であっても良いし、専用の回路であっても良い。 Next, a hardware configuration for realizing the ultrasound control unit 12 in Embodiments 1 to 5 will be described. The ultrasonic controller 12 is implemented by a processing circuit. The processing circuitry may be circuitry in which a processor executes software, or it may be dedicated circuitry.
 図17は、実施の形態1から5における超音波制御部12を実現するハードウェアの第1の構成例を示す図である。第1の構成例は、超音波制御部12の機能を、プロセッサ51とメモリ52とを有する処理回路50によって実現する場合の構成例である。超音波制御部12の機能は、メモリ52に記憶されたプログラムをプロセッサ51が読み出して実行することにより実現される。 FIG. 17 is a diagram showing a first configuration example of hardware that implements the ultrasound control unit 12 according to Embodiments 1 to 5. As shown in FIG. A first configuration example is a configuration example in which the functions of the ultrasound control unit 12 are realized by a processing circuit 50 having a processor 51 and a memory 52 . The functions of the ultrasound controller 12 are realized by the processor 51 reading and executing a program stored in the memory 52 .
 プロセッサ51は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、またはDSP(Digital Signal Processor)ともいう)である。メモリ52は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等が該当する。 The processor 51 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)). The memory 52 is a non-volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc. Alternatively, a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
 入出力回路53は、処理回路50に対する入力信号を外部から受信し、かつ、処理回路50で生成した信号を処理回路50の外部へ出力する回路である。入出力回路53は、処理回路50で生成した制御信号を超音波発生部11,11A,11Bへ出力する。 The input/output circuit 53 is a circuit that receives an input signal to the processing circuit 50 from the outside and outputs a signal generated by the processing circuit 50 to the outside of the processing circuit 50 . The input/output circuit 53 outputs the control signal generated by the processing circuit 50 to the ultrasonic generators 11, 11A and 11B.
 超音波制御部12は、専用のハードウェアで実現しても良い。図18は、実施の形態1から5における超音波制御部12を実現するハードウェアの第2の構成例を示す図である。第2の構成例は、図17に示す処理回路50の機能を、専用のハードウェアである処理回路54で実現する場合の構成例である。 The ultrasound control unit 12 may be realized by dedicated hardware. FIG. 18 is a diagram showing a second configuration example of hardware that implements the ultrasound control unit 12 according to the first to fifth embodiments. A second configuration example is a configuration example in which the functions of the processing circuit 50 shown in FIG. 17 are realized by a processing circuit 54 that is dedicated hardware.
 処理回路54は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。図18に示す例では、超音波制御部12を単一の処理回路54で実現するものとしたがこれに限定されない。ハードウェアが複数の処理回路54を備え、複数の処理回路54により超音波制御部12を実現しても良い。超音波制御部12のうちの一部を図17に示す処理回路50で実現し、残りを処理回路54と同様の専用のハードウェアで実現しても良い。 The processing circuit 54 is, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these. In the example shown in FIG. 18, the ultrasound controller 12 is implemented by a single processing circuit 54, but the present invention is not limited to this. Hardware may include a plurality of processing circuits 54 , and the ultrasound control unit 12 may be realized by the plurality of processing circuits 54 . A part of the ultrasound control unit 12 may be realized by the processing circuit 50 shown in FIG. 17, and the rest may be realized by dedicated hardware similar to the processing circuit 54.
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。 The configuration shown in each embodiment above is an example of the content of the present disclosure. The configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.
 1,1A,1B レーザ加工装置、2 レーザ発振器、3,3A,3B レーザ加工ヘッド、4 ワーク、5 筐体、6 ノズル、7 加工レンズ、8 保護ガラス、9 管、10,21 ガス充填室、11,11A,11B 超音波発生部、12 超音波制御部、20 超音波振動子、22 収束点、23 強度分布、24 スポット、25,30 加工溝、26 焦点、31,32 端部、33 溶融物、40 ガス整流部、50,54 処理回路、51 プロセッサ、52 メモリ、53 入出力回路、AX 光軸、L レーザ光。 1, 1A, 1B laser processing device, 2 laser oscillator, 3, 3A, 3B laser processing head, 4 workpiece, 5 housing, 6 nozzle, 7 processing lens, 8 protective glass, 9 tube, 10, 21 gas filling chamber, 11, 11A, 11B Ultrasonic generator, 12 Ultrasonic controller, 20 Ultrasonic oscillator, 22 Convergence point, 23 Intensity distribution, 24 Spot, 25, 30 Processing groove, 26 Focus, 31, 32 Edge, 33 Melt Object, 40 gas rectifier, 50, 54 processing circuit, 51 processor, 52 memory, 53 input/output circuit, AX optical axis, L laser light.

Claims (11)

  1.  レーザ光の照射によりワークを局所的に溶融させ、溶融によって生じる溶融物を加工ガスの噴射によって除去するレーザ加工装置が備えるレーザ加工ヘッドであって、
     前記加工ガスが充填されるガス充填室を備え、かつ前記レーザ光を集光する加工レンズが内部に収納されている筐体と、
     前記筐体に取り付けられ、前記ワークに照射させる前記レーザ光と前記ガス充填室から前記ワークへ噴射する前記加工ガスとが通るノズルと、
     前記ガス充填室の内部の前記加工ガスを振動させる超音波を発生させる超音波発生部と、を備え、
     超音波振動を加えた前記加工ガスにより前記溶融物を除去することを特徴とするレーザ加工ヘッド。
    A laser processing head included in a laser processing apparatus that locally melts a workpiece by irradiating it with a laser beam and removes the molten material generated by the melting by injecting a processing gas,
    a housing having a gas-filled chamber filled with the processing gas and containing therein a processing lens for condensing the laser beam;
    a nozzle attached to the housing through which the laser beam to irradiate the work and the processing gas injected from the gas filling chamber to the work pass;
    an ultrasonic generator that generates ultrasonic waves that vibrate the processing gas inside the gas filling chamber,
    A laser processing head, wherein the melt is removed by the processing gas to which ultrasonic vibration is applied.
  2.  前記筐体の内部に設けられ、前記レーザ光が通る保護ガラスを備え、
     前記超音波発生部で発生させた前記超音波を前記保護ガラスで反射させて、前記加工ガスに超音波振動を加えることを特徴とする請求項1に記載のレーザ加工ヘッド。
    A protective glass provided inside the housing through which the laser beam passes;
    2. The laser processing head according to claim 1, wherein the ultrasonic waves generated by the ultrasonic generator are reflected by the protective glass to apply ultrasonic vibrations to the processing gas.
  3.  前記超音波発生部は、前記超音波を発生させる複数の超音波振動子を有することを特徴とする請求項1または2に記載のレーザ加工ヘッド。 3. The laser processing head according to claim 1 or 2, wherein the ultrasonic generator has a plurality of ultrasonic transducers for generating the ultrasonic waves.
  4.  前記超音波による音響放射圧が最大となる点を前記超音波の収束点として、前記ノズルと前記レーザ光の焦点との間の距離よりも、前記ノズルと前記超音波の収束点との間の距離のほうが長いことを特徴とする請求項3に記載のレーザ加工ヘッド。 The point at which the acoustic radiation pressure due to the ultrasonic wave is maximum is defined as the convergence point of the ultrasonic wave, and the distance between the nozzle and the convergence point of the ultrasonic wave is greater than the distance between the nozzle and the focus of the laser beam. 4. The laser processing head of claim 3, wherein the distance is longer.
  5.  前記ガス充填室へ流入する前の前記加工ガスが通過し、前記加工ガスの流れを整えるためのガス整流部を備えることを特徴とする請求項1から4のいずれか1つに記載のレーザ加工ヘッド。 5. The laser processing according to any one of claims 1 to 4, further comprising a gas rectifying section through which the processing gas passes before flowing into the gas charging chamber and for regulating the flow of the processing gas. head.
  6.  レーザ光の照射によりワークを局所的に溶融させ、溶融によって生じる溶融物を加工ガスの噴射によって除去するレーザ加工装置であって、
     前記レーザ光を出力するレーザ発振器と、
     前記ワークの溶融によって生じる溶融物を除去するための加工ガスが充填されるガス充填室を備え、かつ前記レーザ光を集光する加工レンズが内部に収納されている筐体と、前記筐体に取り付けられ、前記ワークに照射させる前記レーザ光と前記ガス充填室から前記ワークへ噴射する前記加工ガスとが通るノズルと、前記ガス充填室の内部の前記加工ガスを振動させる超音波を発生させる超音波発生部と、を有するレーザ加工ヘッドと、
     前記超音波発生部を制御することによって前記ワークにおいて前記超音波を収束させる超音波制御部と、を備えることを特徴とするレーザ加工装置。
    A laser processing apparatus that locally melts a workpiece by irradiating it with a laser beam and removes the molten material generated by the melting by injecting a processing gas,
    a laser oscillator that outputs the laser light;
    a housing provided with a gas-filled chamber filled with a processing gas for removing melted matter generated by melting of the workpiece, and containing therein a processing lens for condensing the laser beam; a nozzle mounted through which the laser beam to irradiate the work and the processing gas injected from the gas filling chamber to the work pass; a laser processing head having a sound wave generator;
    and an ultrasonic wave controller that converges the ultrasonic waves on the workpiece by controlling the ultrasonic wave generator.
  7.  前記超音波発生部は、前記超音波を発生させる複数の超音波振動子を有し、
     前記超音波制御部は、複数の前記超音波振動子の各々を制御することを特徴とする請求項6に記載のレーザ加工装置。
    The ultrasonic generator has a plurality of ultrasonic transducers that generate the ultrasonic waves,
    7. The laser processing apparatus according to claim 6, wherein the ultrasonic control unit controls each of the plurality of ultrasonic transducers.
  8.  前記超音波による音響放射圧が最大となる点を前記超音波の収束点として、前記超音波制御部は、前記レーザ光が伝搬する方向へ前記レーザ光の焦点からさらに進んだ位置の前記収束点において前記超音波を収束させることを特徴とする請求項7に記載のレーザ加工装置。 With the point at which the acoustic radiation pressure due to the ultrasonic wave is maximum as the convergence point of the ultrasonic wave, the ultrasonic control unit controls the convergence point at a position further advanced from the focal point of the laser light in the direction in which the laser light propagates. 8. The laser processing apparatus according to claim 7, wherein the ultrasonic waves are converged at.
  9.  前記超音波による音響放射圧が最大となる点を前記超音波の収束点として、前記超音波制御部は、前記加工レンズの光軸の方向において前記収束点を往復移動させることを特徴とする請求項7に記載のレーザ加工装置。 The point at which the acoustic radiation pressure due to the ultrasonic wave is maximum is defined as a convergence point of the ultrasonic wave, and the ultrasonic control unit reciprocates the convergence point in the direction of the optical axis of the processing lens. Item 8. The laser processing apparatus according to item 7.
  10.  前記超音波制御部は、前記加工レンズの光軸に垂直な面内における前記超音波の強度分布を変更させることを特徴とする請求項7に記載のレーザ加工装置。 The laser processing apparatus according to claim 7, wherein the ultrasonic wave control unit changes the intensity distribution of the ultrasonic wave in a plane perpendicular to the optical axis of the processing lens.
  11.  前記超音波による音響放射圧が最大となる点を前記超音波の収束点として、前記超音波制御部は、前記収束点を含む領域における前記強度分布を縮小させて、前記光軸に垂直な面内において前記収束点を往復移動させることを特徴とする請求項10に記載のレーザ加工装置。 With the point at which the acoustic radiation pressure due to the ultrasonic wave is maximum as the convergence point of the ultrasonic wave, the ultrasonic wave control unit reduces the intensity distribution in an area including the convergence point so that a plane perpendicular to the optical axis 11. The laser processing apparatus according to claim 10, wherein the convergence point is reciprocated within.
PCT/JP2022/009507 2022-03-04 2022-03-04 Laser processing head and laser processing device WO2023166730A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/009507 WO2023166730A1 (en) 2022-03-04 2022-03-04 Laser processing head and laser processing device
JP2022538302A JP7138827B1 (en) 2022-03-04 2022-03-04 Laser processing head and laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009507 WO2023166730A1 (en) 2022-03-04 2022-03-04 Laser processing head and laser processing device

Publications (1)

Publication Number Publication Date
WO2023166730A1 true WO2023166730A1 (en) 2023-09-07

Family

ID=83318363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009507 WO2023166730A1 (en) 2022-03-04 2022-03-04 Laser processing head and laser processing device

Country Status (2)

Country Link
JP (1) JP7138827B1 (en)
WO (1) WO2023166730A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376786A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Laser beam machining device
JPH04178289A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Dust removing method for laser beam trimmer
JP2004230413A (en) * 2003-01-29 2004-08-19 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining device
JP2008137036A (en) * 2006-12-01 2008-06-19 Nippon Sharyo Seizo Kaisha Ltd Laser cutting apparatus
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178289B2 (en) 2003-05-09 2008-11-12 極東産機株式会社 Apparatus and method for measuring room dimensions
JP6376786B2 (en) 2014-03-17 2018-08-22 大阪瓦斯株式会社 Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376786A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Laser beam machining device
JPH04178289A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Dust removing method for laser beam trimmer
JP2004230413A (en) * 2003-01-29 2004-08-19 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining device
JP2008137036A (en) * 2006-12-01 2008-06-19 Nippon Sharyo Seizo Kaisha Ltd Laser cutting apparatus
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same

Also Published As

Publication number Publication date
JP7138827B1 (en) 2022-09-16
JPWO2023166730A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US11141815B2 (en) Laser processing systems capable of dithering
JP4175636B2 (en) Glass cutting method
TWI714792B (en) A method of laser processing of a metallic material, as well as a machine and a computer program for the implementation of said method
WO2019176431A1 (en) Laser processing machine and laser processing method
WO2020008827A1 (en) Laser machining device and laser machining method
JP3534806B2 (en) Laser cutting method and apparatus
US6423921B2 (en) Method and apparatus for processing components in which a molten phase is produced by local energy input
JPH10291084A (en) Laser machining method for brittle material and its device
JP2005088068A (en) Laser beam machining apparatus and laser beam machining method
WO2023166730A1 (en) Laser processing head and laser processing device
KR102245810B1 (en) Laser systems and methods for aod rout processing
WO2020241138A1 (en) Laser machining device and laser machining method using same
JP3905732B2 (en) Laser processing head, laser cutting apparatus and laser cutting method using the same
JP2013056372A (en) Laser processing device
JP2003285186A (en) Laser beam machining device
JP2015178118A (en) Welding method and welding device
JP6592564B1 (en) Laser processing machine and laser processing method
JP6643442B1 (en) Laser processing machine and laser processing method
JP2014113604A (en) Laser processing device, laser processing system, and laser processing method
WO2020026701A1 (en) Laser machining device and laser machining method
JPH0159076B2 (en)
TWI421144B (en) Debris removing apparatus and method for removing debris
JP2016073983A (en) Laser welding device and laser welding method
KR102635396B1 (en) Laser beam irradiation device for FULL cutting of semiconductor and operation method THEREOF
JP7460193B2 (en) Laser beam irradiation device and its operating method for complete semiconductor cutting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022538302

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929874

Country of ref document: EP

Kind code of ref document: A1