WO2023166708A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023166708A1
WO2023166708A1 PCT/JP2022/009409 JP2022009409W WO2023166708A1 WO 2023166708 A1 WO2023166708 A1 WO 2023166708A1 JP 2022009409 W JP2022009409 W JP 2022009409W WO 2023166708 A1 WO2023166708 A1 WO 2023166708A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
path
flow
air
Prior art date
Application number
PCT/JP2022/009409
Other languages
French (fr)
Japanese (ja)
Inventor
俊光 鎌田
純平 ▲高▼木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/009409 priority Critical patent/WO2023166708A1/en
Priority to JP2022533097A priority patent/JP7114011B1/en
Publication of WO2023166708A1 publication Critical patent/WO2023166708A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to an air conditioner that air-conditions a room.
  • the heat transfer area of the subcooler cannot be used as an evaporator during heating operation, so the required heat exchange amount may not be obtained.
  • the evaporation temperature is lowered in order to secure the heat exchange amount of the heat exchanger, even if the outside air temperature is higher than 0 [° C.], the surface temperature of the heat transfer tube in the heat exchanger will be below the freezing point and frost will form. may occur. As a result, the heating capacity of the air conditioner is reduced, and there is a possibility that the operation desired by the user cannot be obtained.
  • the present disclosure has been made to solve the above problems, and aims to provide an air conditioner that achieves both suppression of frost formation on the heat exchanger and improvement of the performance of the heat exchanger.
  • An air conditioner is an air conditioner that performs both a heating operation and a defrosting operation, and includes a heat exchanger that exchanges heat between outdoor air and a refrigerant, and a direction in which the refrigerant flows. and a flow path switching device for switching the heat exchanger, wherein the heat exchanger has a plurality of units arranged along the vertical direction, and each of the plurality of units is a single refrigerant flow path.
  • the flow path switching device during the defrosting operation, the refrigerant is circulated from the double path to the single path, and during the heating operation, the refrigerant is circulated from the single path to the double path, and the double path of the lowest unit arranged at the lowest among the plurality of units includes a first flow path which is a refrigerant flow path in which the inlet of the refrigerant during the defrosting operation is located on the most upstream side in the flow direction of the air in the crotch-shaped refrigerant flow path, and the first flow The inlet of the channel is the lowest in the forked coolant channel.
  • the double path of each unit of the heat exchanger is on the downstream side of the refrigerant.
  • the dry refrigerant in the double path slows down, allowing it to receive more heat from the air.
  • the deceleration of the refrigerant reduces the friction between the refrigerant and the heat transfer tubes, thereby reducing the pressure loss. Therefore, the capacity of the heat exchanger is improved.
  • the inlet of the refrigerant during the defrosting operation of the first flow path included in the double path of the lowermost unit is the most upstream side in the flow direction of the air in the crotch-shaped refrigerant flow path. , and the lowest position.
  • the air conditioner can achieve both suppression of frost formation on the heat exchanger and improvement of the performance of the heat exchanger.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a configuration example of an air conditioner according to Embodiment 1.
  • FIG. FIG. 2 is a diagram schematically illustrating the inside of the outdoor heat exchanger according to Embodiment 1;
  • FIG. 3 is a diagram schematically exemplifying refrigerant flow paths in the outdoor heat exchanger according to Embodiment 1;
  • FIG. 4 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 2;
  • FIG. 10 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 3;
  • FIG. 11 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 4;
  • FIG. 11 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 5;
  • FIG. 21 is a perspective view illustrating a specific configuration of part of an outdoor heat exchanger according to Embodiment 6;
  • FIG. 1 is a refrigerant circuit diagram schematically showing a configuration example of an air conditioner according to Embodiment 1.
  • the air conditioner 100 according to Embodiment 1 performs each of a cooling operation, a heating operation, and a defrosting operation.
  • the air conditioner 100 has an outdoor unit 1 and an indoor unit 3 .
  • the outdoor unit 1 is installed outside the air-conditioned space, for example outdoors, and the indoor unit 3 is installed in the air-conditioned space.
  • the outdoor unit 1 and the indoor unit 3 are connected via a refrigerant pipe 4 , and a refrigerant circuit 5 is formed by the outdoor unit 1 , the indoor unit 3 and the refrigerant pipe 4 .
  • the outdoor unit 1 includes a compressor 10, a flow path switching device 11, an outdoor fan 12, an outdoor heat exchanger 13, an expansion valve 14, and an accumulator 15 inside a housing indicated by a dashed-dotted square in FIG. .
  • the accumulator 15 , the compressor 10 , the flow switching device 11 , the outdoor heat exchanger 13 and the expansion valve 14 are sequentially connected by the refrigerant pipes 4 .
  • the compressor 10 sucks refrigerant from the refrigerant pipe 4 , compresses the sucked refrigerant, and discharges the compressed refrigerant to the refrigerant pipe 4 .
  • the compressor 10 is, for example, an inverter compressor whose capacity can be controlled by an inverter.
  • the channel switching device 11 is, for example, a four-way valve that switches the direction of refrigerant flow.
  • the air conditioner 100 can switch from the heating operation to the cooling operation or the defrosting operation by switching processing by the flow path switching device 11, and switches from the cooling operation or the defrosting operation to the heating operation. be able to.
  • the solid line portion in the flow switching device 11 shown in FIG. 1 indicates the refrigerant flow path during the cooling operation and the defrosting operation, and the broken line portion indicates the refrigerant flow path during the heating operation.
  • solid arrows indicate the direction of refrigerant flow during cooling operation and defrosting operation
  • broken arrows indicate the direction of refrigerant flow during heating operation.
  • the outdoor blower 12 includes an outdoor drive source 12A such as a fan motor, and an outdoor fan 12B such as a propeller fan, turbo fan, or sirocco fan.
  • the outdoor fan 12 operates during the cooling operation and during the heating operation, and guides the air in the space other than the air-conditioned space to the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 causes heat exchange between refrigerant and air.
  • the outdoor heat exchanger 13 is an example of a heat exchanger.
  • the outdoor blower 12 sends the air after heat exchange in the outdoor heat exchanger 13 to a space other than the air-conditioned space during the cooling operation and the heating operation.
  • the expansion valve 14 decompresses and expands the refrigerant.
  • the expansion valve 14 is, for example, an electric expansion valve capable of adjusting the flow rate of refrigerant.
  • the accumulator 15 stores refrigerant.
  • the indoor unit 3 includes an indoor fan 30 and an indoor heat exchanger 31 inside a housing indicated by a two-dot chain line square in FIG.
  • Indoor fan 30 includes an indoor drive source 30A such as a fan motor, and an indoor fan 30B such as a propeller fan, turbo fan, or sirocco fan.
  • the indoor fan 30 operates during the cooling operation and during the heating operation, and guides the air in the air-conditioned space to the indoor heat exchanger 31 .
  • the indoor heat exchanger 31 causes heat exchange between refrigerant and air.
  • the indoor blower 30 sends out the air after heat exchange in the indoor heat exchanger 31 to the air-conditioned space during the cooling operation and the heating operation.
  • refrigerant flow and state changes during cooling operation refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 functions as a condenser, and the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the air supplied to the outdoor heat exchanger 13 by the outdoor fan 12 and is condensed.
  • the refrigerant that has flowed out of the outdoor heat exchanger 13 flows into the indoor heat exchanger 31 after being decompressed when passing through the expansion valve 14 .
  • the indoor heat exchanger 31 functions as an evaporator, and the refrigerant flowing into the indoor heat exchanger 31 exchanges heat with the air supplied to the indoor heat exchanger 31 by the indoor blower 30 and evaporates.
  • the air cooled by heat exchange in the indoor heat exchanger 31 is sent out to the air-conditioned space by the indoor blower 30 .
  • the refrigerant that has flowed out of the indoor heat exchanger 31 is sucked into the compressor 10 via the accumulator 15 and compressed.
  • the refrigerant flow and state changes during heating operation will be explained.
  • the refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 31 .
  • the indoor heat exchanger 31 functions as a condenser, and the refrigerant flowing into the indoor heat exchanger 31 exchanges heat with the air supplied to the indoor heat exchanger 31 by the indoor blower 30 and is condensed.
  • the air heated by heat exchange in the indoor heat exchanger 31 is sent out to the air-conditioned space by the indoor blower 30 .
  • the refrigerant that has flowed out of the indoor heat exchanger 31 flows into the outdoor heat exchanger 13 after being decompressed when passing through the expansion valve 14 .
  • the outdoor heat exchanger 13 functions as an evaporator, and the refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied to the outdoor heat exchanger 13 by the outdoor blower 12 and evaporates.
  • the refrigerant that has flowed out of the outdoor heat exchanger 13 is sucked into the compressor 10 via the accumulator 15 and compressed.
  • the defrosting operation is started when it is detected that the heat transfer performance of the outdoor heat exchanger 13 has deteriorated due to frost generated in the outdoor heat exchanger 13 during the heating operation.
  • a decrease in the heat transfer performance of the outdoor heat exchanger 13 is detected based on a physical quantity such as the surface temperature of the heat transfer tubes 21, which will be described later, in the outdoor heat exchanger 13, for example.
  • the defrosting operation the refrigerant flows in the same direction as in the cooling operation, the outdoor heat exchanger 13 functions as a condenser, and the indoor heat exchanger 31 functions as an evaporator.
  • the outdoor fan 12 does not operate during the defrosting operation.
  • the outdoor heat exchanger 13 As a result, in the outdoor heat exchanger 13 , the air heated by the refrigerant that is in a superheated state and is in a gaseous state is prevented from flowing out of the outdoor heat exchanger 13 . Therefore, the outflow of heat from the outdoor heat exchanger 13 is suppressed, and quick defrosting becomes possible. Also, the indoor fan 30 does not operate during the defrosting operation. This suppresses the outflow of the air cooled by the refrigerant in the indoor heat exchanger 31 to the air-conditioned space. Therefore, the temperature drop in the air-conditioned space is suppressed.
  • the air conditioner 100 performs a defrosting operation intermittently during heating operation under a low outdoor air condition where the outdoor temperature is, for example, 5 [° C.] or less, thereby recovering the heat transfer performance of the outdoor heat exchanger 13. do. As a result, it becomes possible to maintain the operating efficiency of the heating operation for a long period of time.
  • FIG. 2 is a diagram schematically illustrating the inside of the outdoor heat exchanger according to Embodiment 1.
  • FIG. FIG. 3 is a diagram schematically illustrating refrigerant flow paths in the outdoor heat exchanger according to Embodiment 1.
  • FIG. The outdoor heat exchanger 13 illustrated in FIG. 2 is a cross-fin tube type heat exchanger.
  • the white arrows in FIG. 2 indicate the direction of air flow.
  • the outdoor heat exchanger 13 in Embodiment 1 has a plurality of units 20, and each of the plurality of units 20 is arranged along the vertical direction. Note that the lowest unit 20 among the plurality of units 20 may be referred to as the lowest unit 20A, and the units 20 other than the lowest unit 20A may be referred to as the upper unit 20B.
  • Each unit 20 includes one or more heat transfer tubes 21 through which the refrigerant flows.
  • one or more heat transfer tubes 21 are indicated by hatched areas.
  • One or more heat transfer tubes 21 pass through a plurality of heat transfer fins 22 included in the outdoor heat exchanger 13 .
  • Each of the plurality of heat transfer fins 22 is arranged along the air flow direction.
  • the plurality of heat transfer fins 22 are arranged at predetermined intervals.
  • One or more heat transfer tubes 21 of each unit 20 in Embodiment 1 form a forked refrigerant flow path 23M such as a two-forked or three-forked shape.
  • 2 and 3 illustrate a bifurcated coolant channel 23M as the forked coolant channel 23M formed by one or more heat transfer tubes 21.
  • FIG. 2 the circle pointed by the solid line arrow indicates the entrance when the refrigerant flows into the one or more heat transfer tubes 21 during the defrosting operation.
  • the circle located at the starting point of the solid line arrow indicates the outlet when the refrigerant flows out from the one or more heat transfer tubes 21 during the defrosting operation.
  • the crotch-shaped coolant channel 23M is indicated by a hatched area indicating the heat transfer tube 21 and dashed lines connecting a plurality of the areas. Solid arrows in FIGS. 2 and 3 indicate the direction in which the refrigerant flows during the defrosting operation.
  • the crotch-shaped coolant channel 23M is formed by connecting a single channel 23A, which is one coolant channel 23, and a double channel 23B, which is a plurality of coolant channels 23.
  • the forked refrigerant channel 23M may be formed by a plurality of heat transfer tubes 21, and each unit 20 includes a heat transfer tube 21 forming a single path 23A and a plurality of heat transfer tubes 21 forming a double path 23B. It may include a connection such as a branch pipe that connects the It should be noted that the number of refrigerant flow paths 23 included in the double path 23B of each unit 20 in Embodiment 1 is equal to each other.
  • each unit 20 of the one or more heat transfer tubes 21, the part forming the double path 23B is connected to the gas side flow divider 16, and the part forming the single path 23A is connected to the liquid side flow divider 17.
  • the refrigerant that has flowed into the gas side flow divider 16 flows through multiple outlets of the gas side flow divider 16 into the double path 23B. do.
  • the refrigerant flowing into the gas side flow divider 16 is gaseous and high-temperature superheated gas refrigerant.
  • the refrigerant that has flowed into the double path 23B flows into the single path 23A and joins.
  • the refrigerant flows from the single path 23 ⁇ /b>A to the liquid side flow divider 17 and flows out to the refrigerant pipe 4 via the liquid side flow divider 17 .
  • the refrigerant gives heat to the air, becomes a gas-liquid two-phase state in which a part of the refrigerant phase changes to a liquid phase, and after all becomes a saturated liquid state. , the temperature drops and becomes a supercooled liquid state.
  • the gas-liquid two-phase refrigerant that has flowed into the liquid side flow divider 17 flows into the single path 23A.
  • Refrigerant flowing through the single path 23A flows into the double path 23B.
  • the refrigerant flows from the double path 23B to the gas side flow divider 16 and flows out to the refrigerant pipe 4 via the gas side flow divider 16 .
  • the refrigerant When the refrigerant flows through one or more heat transfer tubes 21 during heating operation, the refrigerant takes heat from the air and enters a gas-liquid two-phase state in which a part of the refrigerant undergoes a phase change to a gas phase, and all of them are in a saturated gas state. After that, the temperature rises and becomes a superheated gas state.
  • the refrigerant flows from the double path 23B to the single path 23A during cooling operation, thereby increasing the average flow velocity of the refrigerant in the single path 23A.
  • a supercooled liquid refrigerant having a low heat transfer coefficient flows downstream of the single passage 23A, but the flow velocity of the refrigerant increases in the single passage 23A, thereby promoting convective heat transfer and improving the heat transfer coefficient. Therefore, the effect of reducing the amount of refrigerant required for air conditioning can be obtained.
  • the dryness increases from upstream to downstream of the refrigerant flow path 23 . Therefore, conventionally, the average flow velocity of the refrigerant increases downstream of the refrigerant flow path 23, thereby increasing the friction acting on the refrigerant and increasing the pressure loss.
  • Embodiment 1 since the refrigerant flows from the single path 23A to the double path 23B during heating operation, an increase in the average flow velocity of the refrigerant in the double path 23B on the downstream side is suppressed, or the average flow velocity is reduced. . Therefore, the friction acting between the refrigerant and the inner wall surface of the part forming the double path 23B among the one or more heat transfer tubes 21 is reduced. As a result, pressure loss can be reduced. Therefore, it is possible to reduce the change in the saturation temperature of the refrigerant due to the pressure loss and ensure the temperature difference between the refrigerant and the air.
  • one refrigerant passage 23 of the double paths 23B in the lowermost unit 20A has a refrigerant inlet during the defrosting operation in the forked refrigerant passage 23M in the air flow direction. Arranged on the most upstream side.
  • the one refrigerant passage 23 in which the inlet of the refrigerant during the defrosting operation is arranged on the most upstream side in the air flow direction in the crotch-shaped refrigerant passage 23M is referred to as the first passage 24. It may be described. Further, the most upstream side in the air flow direction in the outdoor heat exchanger 13 may be referred to as the windward side.
  • the most downstream side in the air flow direction in the outdoor heat exchanger 13 may also be referred to as the leeward side.
  • the inlet of the refrigerant to the double path 23B of each unit 20 during the defrosting operation may be referred to as the first inlet 25 in some cases.
  • the first inlet 25 of the first channel 24 is arranged at the bottom. That is, the first inlet 25 of the first channel 24 is arranged at the bottom of the crotch-shaped coolant channel 23M in the lowest unit 20A.
  • Air conditioner 100 performs each of heating operation and defrosting operation.
  • the air conditioner 100 includes an outdoor heat exchanger 13 and a channel switching device 11 .
  • the outdoor heat exchanger 13 exchanges heat between the outdoor air and the refrigerant.
  • the channel switching device 11 switches the direction in which the coolant flows.
  • the outdoor heat exchanger 13 has a plurality of units 20 arranged along the vertical direction.
  • Each unit 20 includes one or more coolant flow paths 23M that form a crotch-shaped coolant flow path 23M, in which a single flow path 23A that is one flow path 23 and a double flow path 23B that is a plurality of flow paths 23 are connected.
  • a heat transfer tube 21 is included.
  • the flow switching device 11 circulates the refrigerant from the double path 23B to the single path 23A during the defrosting operation, and circulates the refrigerant from the single path 23A to the double path 23B during the heating operation.
  • the double path 23B of the lowermost unit 20A arranged at the bottom among the plurality of units 20 includes the first flow path 24 .
  • the first flow path 24 is the refrigerant flow path 23 in which the first inlet 25, which is the inlet of the refrigerant during the defrosting operation, is located on the most upstream side in the air flow direction in the crotch-shaped refrigerant flow path 23M.
  • the first inlet 25 of the first channel 24 is located at the lowest position in the crotch-shaped coolant channel 23M.
  • the double path 23B of each unit 20 of the outdoor heat exchanger 13 is on the downstream side of the refrigerant. Therefore, the dry refrigerant in double path 23B is decelerated, and the refrigerant can receive more heat from the air. In addition, the deceleration of the refrigerant reduces the friction between the refrigerant and the heat transfer tubes 21, thereby reducing the pressure loss. Therefore, the heating capacity of the outdoor heat exchanger 13 is improved.
  • the first inlet 25 of the first flow path 24 included in the double path 23B of the lowermost unit 20A is located on the most upstream side in the air flow direction in the crotch-shaped refrigerant flow path 23M. Located in Furthermore, the first inlet 25 of the first flow path 24 is positioned at the bottom in the crotch-shaped coolant flow path 23M.
  • the heat transfer coefficient between the air and the refrigerant is often higher on the windward side than on the leeward side.
  • a temperature boundary layer occurs between two substances having different temperatures, and the thinner the temperature boundary layer, the higher the heat transfer coefficient.
  • the temperature boundary layer between the air and the surfaces of the heat transfer tubes 21 in which the refrigerant flows is thinner than on the leeward side. Therefore, the heat transfer coefficient between the air and the refrigerant on the windward side of the outdoor heat exchanger 13 is higher than the heat transfer coefficient between the air and the refrigerant on the leeward side of the outdoor heat exchanger 13 .
  • the air on the windward side of the outdoor heat exchanger 13 has a higher absolute humidity than the air on the leeward side. Therefore, during heating operation, a large amount of frost is generated on the windward end of the heat transfer fins 22 .
  • melted water produced by melting the frost formed on the surfaces of the heat transfer fins 22 in the upper unit 20B flows downward along the surfaces of the heat transfer fins 22 according to gravity.
  • the melted water further flows down along the heat transfer fins 22 in the lowest unit 20A, flows below the refrigerant flow path 23 located at the lowest position, and is discharged from the outdoor heat exchanger 13 .
  • the air conditioner 100 can achieve both suppression of frost formation on the outdoor heat exchanger 13 and improvement of the heating capacity of the outdoor heat exchanger 13 .
  • the number of refrigerant flow paths 23 included in the double path 23B of each unit 20 in Embodiment 1 is the same. As a result, the pressure loss of the refrigerant in each unit 20 is equalized, and the distribution ratio of the flow rate of the refrigerant is equalized.
  • a plurality of units 20 in Embodiment 1 include an upper unit 20B arranged above a lowermost unit 20A.
  • the first inlets 25 of all the refrigerant flow paths 23 included in the double path 23B of the upper unit 20B are located on the most downstream side in the air flow direction in the forked refrigerant flow path 23M of the upper unit 20B.
  • the air conditioner 100 can maintain the cooling capacity. This will be described in detail below.
  • the first inlet 25 into which the high-temperature refrigerant flows during cooling operation is arranged on the windward side, the air is heated on the windward side, so that the temperature difference between the air and the refrigerant on the leeward side becomes small, and heat transfer occurs. The performance is reduced and the cooling of the refrigerant is hindered.
  • the first inlet 25 into which the high-temperature refrigerant flows during the cooling operation is arranged on the leeward side.
  • the outlet portion of the single path 23A, through which the refrigerant flows out during the cooling operation is arranged on the windward side.
  • FIG. 4 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 2.
  • Embodiment 2 the same code
  • FIG. 2 descriptions of the same configurations as those in the first embodiment and the same functions as the functions in the first embodiment will be omitted unless there are special circumstances.
  • the configuration of the upper unit 20B in the second embodiment is the same as in the first embodiment.
  • all the first inlets 25 are arranged at the lowest position in the crotch-shaped coolant channel 23M.
  • the effects of the air conditioner 100 according to Embodiment 2 will be described below.
  • the first inlets 25 of all the refrigerant flow paths 23 included in the double path 23B of the lowermost unit 20A in the second embodiment are located at the lowest position in the crotch-shaped refrigerant flow path 23M.
  • a drainage mechanism not shown
  • each of all the first inlets 25 heated by the superheated gas refrigerant flowing from the Therefore refreezing of the melted water is suppressed. Therefore, it is possible to smoothly discharge the melted water during the defrosting operation.
  • FIG. 5 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 3.
  • FIG. 5 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 3.
  • the same reference numerals are given to the same constituent elements as those in the first and second embodiments.
  • Embodiment 3 there are no special circumstances regarding the same configuration as the configuration in Embodiments 1 and 2, and the same function as the function in Embodiments 1 and 2. The explanation is omitted as much as possible.
  • the configuration of the bottom unit 20A in the third embodiment is the same as in the first embodiment.
  • the outdoor heat exchanger 13 has a plurality of upper units 20B.
  • the shape of the crotch-like coolant flow path 23M in each of the plurality of upper units 20B is the same. This makes it possible to reduce the number of types of shapes of the heat transfer tubes 21 in the upper unit 20B. In addition, it is possible to reduce the number of types of shapes of pipes connecting heat transfer pipes 21 to gas side flow dividers 16 and liquid side flow dividers 17 . Therefore, the production process of the outdoor heat exchanger 13 can be simplified.
  • FIG. 6 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 4.
  • FIG. 6 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 4.
  • the same reference numerals are given to the same components as those in the first to third embodiments.
  • the configuration of the bottom unit 20A in the fourth embodiment is the same as in the second embodiment.
  • the outdoor heat exchanger 13 of the fourth embodiment has a plurality of upper units 20B, and the configuration of the plurality of upper units 20B is the same as that of the third embodiment. That is, the shapes of the crotch-like refrigerant flow paths 23M obtained by the one or more heat transfer tubes 21 of each upper unit 20B are the same. Therefore, in Embodiment 4, smooth discharge of melted water in the lowest unit 20A during defrosting operation and simplification of the production process of the outdoor heat exchanger 13 are possible.
  • FIG. 7 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 5.
  • FIG. 7 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 5.
  • FIG. 7 the same reference numerals are given to the same components as those in the first to fourth embodiments. Further, in the fifth embodiment, there are no special circumstances regarding the same configuration as the configurations in the first to fourth embodiments and the same functions as the functions in the first to fourth embodiments. The explanation is omitted as much as possible.
  • the configuration of the upper unit 20B in the fifth embodiment is the same as in the first to fourth embodiments.
  • the length of the first channel 24 is the shortest among all the coolant channels 23 included in the double channel 23B.
  • the distribution ratio of the refrigerant flowing into the first flow path 24 is greater than the distribution ratio of the refrigerant flowing into the other refrigerant flow paths 23 of the multiple paths 23B.
  • the refrigerant flowing into the double path 23B during the defrosting operation is a gas single-phase refrigerant, and the heat transfer coefficient monotonously increases according to the flow rate. That is, in the lowest unit 20A during the defrosting operation, the inner-pipe heat transfer coefficient in the first passage 24 becomes larger than the inner-pipe heat transfer coefficient in the other refrigerant passages 23 of the double passages 23B. As a result, the area around the first inlet 25 located on the windward side can be quickly heated during the defrosting operation, and the melted water can be discharged more smoothly.
  • FIG. 8 is a perspective view illustrating a specific configuration of part of the outdoor heat exchanger according to Embodiment 6.
  • FIG. 8 the same reference numerals are given to the same components as those in the first to fifth embodiments.
  • Embodiment 6 there are no particular circumstances with regard to the same configuration as in Embodiments 1 to 5, and the same functions as in Embodiments 1 to 5. The explanation is omitted as much as possible.
  • the configuration of the outdoor heat exchanger 13 in Embodiment 6 is the same as in Embodiments 1 to 5.
  • white arrows indicate the direction of air flow
  • solid arrows indicate the direction of refrigerant flow during the defrosting operation.
  • the outdoor heat exchanger 13 is provided with a gas side flow divider 16 and a liquid side flow divider 17 .
  • the gas side flow divider 16 has a main pipe 16A and a plurality of branch pipes 16B branched from the main pipe 16A. 16 A of trunk pipes are arrange
  • the outer diameter of the trunk pipe 16A is larger than the outer diameter of the heat transfer tube 21 .
  • the outer diameter of the branch pipe 16B is equal to or less than the diameter of the first inlet 25 .
  • the tip of the branch pipe 16B is connected to the end corresponding to the first inlet 25 among the one or more heat transfer tubes 21 .
  • the liquid side flow divider 17 has a main body 17A and a plurality of flow division pipes 17B.
  • the main body 17A is cylindrical and arranged so that the height direction of the cylinder is the vertical direction.
  • the outer diameter of main body 17A is larger than the outer diameter of heat transfer tube 21 .
  • the flow dividing tube 17B has an outer diameter smaller than that of the heat transfer tube 21 and an inner diameter of 3.0 [mm] or less.
  • One end of each of the plurality of branch pipes 17B is connected to the main body 17A so as to be positioned at regular intervals along the circumference of the bottom surface of the main body 17A.
  • the other end of the branch tube 17B is connected to a portion of the one or more heat transfer tubes 21 that forms an outlet in the single path 23A through which the refrigerant flows out of the unit 20 during the defrosting operation.
  • the two-phase flow of the refrigerant passing through the main body 17A while forming an annular flow is directed to the branch pipes 17B connected at equal intervals along the circumference of the bottom surface of the main body 17A.
  • the distribution ratio of the refrigerant to each refrigerant flow path 23 in the outdoor heat exchanger 13 can be adjusted to each refrigerant flow path 23 due to the wind speed distribution generated in the outdoor heat exchanger 13. It can be according to the heat load distribution of Thereby, the heat transfer loss due to the mismatch of the distribution ratio between the heat load and the flow rate of the refrigerant can be reduced.
  • pressure loss caused by friction caused by accelerating the supercooled liquid refrigerant flowing out of the single path 23A by the branch pipe 17B having a small inner diameter causes the single path 23A of each unit 20 stacked in the vertical direction. It is possible to reduce the influence of deterioration in flow distribution due to head differences caused by height differences.
  • Embodiments 1 to 6 describe the air conditioner 100 that performs the cooling operation, the heating operation, and the defrosting operation, but the air conditioner 100 performs only the heating operation and the defrosting operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This air conditioner performs both a space heating operation and a defrosting operation, and comprises a heat exchanger and a flow passage switching device. The heat exchanger causes heat to be exchanged between outdoor air and a refrigerant. The heat exchanger has a plurality of units arranged in a vertical direction. Each unit includes one or more heat transfer pipes that form a forked refrigerant flow passage in which a single passage comprising one refrigerant flow passage and a multiple passage comprising a plurality of refrigerant flow passages are connected together. During the defrosting operation, the flow passage switching device causes the refrigerant to flow from the multiple passage to the single passage, and during the space heating operation, the flow passage switching device causes the refrigerant to flow from the single passage to the multiple passage. The multiple passage of the lowermost unit disposed lowest among the plurality of units includes a first flow passage, being the refrigerant flow passage, in the forked refrigerant flow passage, of which an inlet for the refrigerant during the defrosting operation is positioned on the most upstream side in a flow direction of air. The inlet of the first flow passage is in a position that is lowest in the forked refrigerant flow passage.

Description

空気調和機air conditioner
 本開示は、室内の空調を行う空気調和機に関するものである。 The present disclosure relates to an air conditioner that air-conditions a room.
 従来、空気調和機の室外の熱交換器として、冷房運転時の凝縮能力の確保と、暖房運転時の着霜防止および蒸発能力の向上等とを目的に、最下部をサブクーラとし、暖房運転時に当該最下部に冷媒を流通させない構成が提案されている(例えば、特許文献1参照)。 Conventionally, as an outdoor heat exchanger for an air conditioner, a sub-cooler was used at the bottom for the purpose of securing condensation capacity during cooling operation, preventing frost formation during heating operation, and improving evaporation capacity. A configuration has been proposed in which the coolant is not circulated in the lowermost portion (see, for example, Patent Literature 1).
特許第2923166号公報Japanese Patent No. 2923166
 しかし、上記構成の熱交換器では、暖房運転時にサブクーラの伝熱面積を蒸発器として利用できないため、必要な熱交換量が得られない場合がある。ここで、熱交換器の熱交換量を確保するために蒸発温度を低下させると、外気温が0[℃]より高くとも、熱交換器内の伝熱管の表面温度が氷点下を下回り、着霜が生じる虞がある。これにより、空気調和機の暖房能力が低減し、ユーザの所望する運転が得られなくなる可能性があった。 However, in the heat exchanger with the above configuration, the heat transfer area of the subcooler cannot be used as an evaporator during heating operation, so the required heat exchange amount may not be obtained. Here, if the evaporation temperature is lowered in order to secure the heat exchange amount of the heat exchanger, even if the outside air temperature is higher than 0 [° C.], the surface temperature of the heat transfer tube in the heat exchanger will be below the freezing point and frost will form. may occur. As a result, the heating capacity of the air conditioner is reduced, and there is a possibility that the operation desired by the user cannot be obtained.
 本開示は、上記課題を解決するためになされたものであり、熱交換器への着霜の抑制と、熱交換器の能力向上とを両立する空気調和機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an air conditioner that achieves both suppression of frost formation on the heat exchanger and improvement of the performance of the heat exchanger.
 本開示に係る空気調和機は、暖房運転および除霜運転の各々を行う空気調和機であって、室外の空気と冷媒との間で熱交換を行わせる熱交換器と、前記冷媒の流れる方向を切り替える流路切替装置と、を備え、前記熱交換器は、上下方向に沿って配置された複数のユニットを有し、前記複数のユニットの各々は、1本の冷媒流路である単路と、複数本の冷媒流路である複路とが接続された、叉状の冷媒流路を形成する1以上の伝熱管を含み、前記流路切替装置は、前記除霜運転時には、前記冷媒を前記複路から前記単路に流通させ、前記暖房運転時には、前記冷媒を前記単路から前記複路に流通させ、前記複数のユニットのうち最も下に配置された最下ユニットの前記複路は、前記除霜運転時の前記冷媒の入口が、前記叉状の冷媒流路において前記空気の流動方向の最も上流側に位置する冷媒流路である第1流路を含み、前記第1流路の前記入口は、前記叉状の冷媒流路において最も下に位置するものである。 An air conditioner according to the present disclosure is an air conditioner that performs both a heating operation and a defrosting operation, and includes a heat exchanger that exchanges heat between outdoor air and a refrigerant, and a direction in which the refrigerant flows. and a flow path switching device for switching the heat exchanger, wherein the heat exchanger has a plurality of units arranged along the vertical direction, and each of the plurality of units is a single refrigerant flow path. and one or more heat transfer tubes forming a crotch-shaped refrigerant flow path connected to a plurality of double paths that are refrigerant flow paths, and the flow path switching device, during the defrosting operation, the refrigerant is circulated from the double path to the single path, and during the heating operation, the refrigerant is circulated from the single path to the double path, and the double path of the lowest unit arranged at the lowest among the plurality of units includes a first flow path which is a refrigerant flow path in which the inlet of the refrigerant during the defrosting operation is located on the most upstream side in the flow direction of the air in the crotch-shaped refrigerant flow path, and the first flow The inlet of the channel is the lowest in the forked coolant channel.
 本開示に係る空気調和機によれば、暖房運転時には、熱交換器の各ユニットの複路が冷媒の下流側となる。そのため、複路における乾き度の高い冷媒が減速し、冷媒は空気からより多くの熱を受け取ることができる。また、冷媒が減速することによって、冷媒と伝熱管との間の摩擦が低減され、圧力損失が低減される。従って、熱交換器の能力が向上する。また、当該空気調和機によれば、最下ユニットの複路に含まれる第1流路の除霜運転時における冷媒の入口は、叉状の冷媒流路において、空気の流動方向の最上流側に位置すると共に、最も下に位置する。従って、1以上の伝熱管のうち、暖房運転時により多くの着霜が発生する風上側であって、除霜運転時に融解水が流動する最も下の部分に対して、除霜運転時に過熱状態にあるガス状の冷媒が流れ込む。そのため、熱交換器における着霜量の低減が図られる。よって、当該空気調和機は、熱交換器への着霜の抑制と、熱交換器の能力向上との両立を図ることができる。 According to the air conditioner according to the present disclosure, during heating operation, the double path of each unit of the heat exchanger is on the downstream side of the refrigerant. As a result, the dry refrigerant in the double path slows down, allowing it to receive more heat from the air. In addition, the deceleration of the refrigerant reduces the friction between the refrigerant and the heat transfer tubes, thereby reducing the pressure loss. Therefore, the capacity of the heat exchanger is improved. Further, according to the air conditioner, the inlet of the refrigerant during the defrosting operation of the first flow path included in the double path of the lowermost unit is the most upstream side in the flow direction of the air in the crotch-shaped refrigerant flow path. , and the lowest position. Therefore, among the one or more heat transfer tubes, the windward side where more frost occurs during heating operation and the lowest portion where melted water flows during defrosting operation are in an overheated state during defrosting operation. gaseous refrigerant flows into the Therefore, the amount of frost formed in the heat exchanger can be reduced. Therefore, the air conditioner can achieve both suppression of frost formation on the heat exchanger and improvement of the performance of the heat exchanger.
実施の形態1に係る空気調和機の構成例を模式的に示す冷媒回路図である。1 is a refrigerant circuit diagram schematically showing a configuration example of an air conditioner according to Embodiment 1. FIG. 実施の形態1における室外熱交換器の内部を模式的に例示する図である。FIG. 2 is a diagram schematically illustrating the inside of the outdoor heat exchanger according to Embodiment 1; 実施の形態1における室外熱交換器内の冷媒流路を模式的に例示する図である。FIG. 3 is a diagram schematically exemplifying refrigerant flow paths in the outdoor heat exchanger according to Embodiment 1; 実施の形態2における室外熱交換器の内部を模式的に例示する図である。FIG. 4 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 2; 実施の形態3における室外熱交換器の内部を模式的に例示する図である。FIG. 10 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 3; 実施の形態4における室外熱交換器の内部を模式的に例示する図である。FIG. 11 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 4; 実施の形態5における室外熱交換器の内部を模式的に例示する図である。FIG. 11 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 5; 実施の形態6における室外熱交換器の一部の具体的な構成を例示する斜視図である。FIG. 21 is a perspective view illustrating a specific configuration of part of an outdoor heat exchanger according to Embodiment 6;
 以下、図面を参照し、実施の形態に係る空気調和機について詳述する。 Hereinafter, the air conditioner according to the embodiment will be described in detail with reference to the drawings.
 実施の形態1.
 図1は、実施の形態1に係る空気調和機の構成例を模式的に示す冷媒回路図である。実施の形態1に係る空気調和機100は、冷房運転と暖房運転と除霜運転の各々を行う。空気調和機100は、室外機1と室内機3とを有する。室外機1は、空調対象空間以外である例えば屋外に設置され、室内機3は、空調対象空間に設置される。室外機1と室内機3とは冷媒配管4を介して連結され、室外機1と室内機3と冷媒配管4によって冷媒回路5が形成されている。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram schematically showing a configuration example of an air conditioner according to Embodiment 1. FIG. The air conditioner 100 according to Embodiment 1 performs each of a cooling operation, a heating operation, and a defrosting operation. The air conditioner 100 has an outdoor unit 1 and an indoor unit 3 . The outdoor unit 1 is installed outside the air-conditioned space, for example outdoors, and the indoor unit 3 is installed in the air-conditioned space. The outdoor unit 1 and the indoor unit 3 are connected via a refrigerant pipe 4 , and a refrigerant circuit 5 is formed by the outdoor unit 1 , the indoor unit 3 and the refrigerant pipe 4 .
 室外機1は、図1において一点鎖線の四角によって示される筐体の内部に、圧縮機10、流路切替装置11、室外送風機12、室外熱交換器13、膨張弁14、およびアキュムレータ15を備える。アキュムレータ15、圧縮機10、流路切替装置11、室外熱交換器13、および膨張弁14は、順次、冷媒配管4によって接続されている。 The outdoor unit 1 includes a compressor 10, a flow path switching device 11, an outdoor fan 12, an outdoor heat exchanger 13, an expansion valve 14, and an accumulator 15 inside a housing indicated by a dashed-dotted square in FIG. . The accumulator 15 , the compressor 10 , the flow switching device 11 , the outdoor heat exchanger 13 and the expansion valve 14 are sequentially connected by the refrigerant pipes 4 .
 圧縮機10は、冷媒配管4から冷媒を吸入し、吸入した冷媒を圧縮し、圧縮した冷媒を冷媒配管4に吐出する。圧縮機10は、例えば、インバータによって容量が制御可能なインバータ圧縮機である。 The compressor 10 sucks refrigerant from the refrigerant pipe 4 , compresses the sucked refrigerant, and discharges the compressed refrigerant to the refrigerant pipe 4 . The compressor 10 is, for example, an inverter compressor whose capacity can be controlled by an inverter.
 流路切替装置11は、例えば四方弁であり、冷媒が流れる方向を切り替える。空気調和機100は、流路切替装置11による切り換え処理によって、暖房運転から、冷房運転または除霜運転への切り替えを行うことができ、冷房運転または除霜運転から、暖房運転への切り換えを行うことができる。図1に示す流路切替装置11における実線部分は、冷房運転時と除霜運転時における冷媒流路を示し、破線部分は暖房運転時における冷媒流路を示す。また、図1における実線で示される矢印は、冷房運転時および除霜運転時において冷媒が流れる方向を示し、破線で示される矢印は、暖房運転時において冷媒が流れる方向を示す。 The channel switching device 11 is, for example, a four-way valve that switches the direction of refrigerant flow. The air conditioner 100 can switch from the heating operation to the cooling operation or the defrosting operation by switching processing by the flow path switching device 11, and switches from the cooling operation or the defrosting operation to the heating operation. be able to. The solid line portion in the flow switching device 11 shown in FIG. 1 indicates the refrigerant flow path during the cooling operation and the defrosting operation, and the broken line portion indicates the refrigerant flow path during the heating operation. In FIG. 1 , solid arrows indicate the direction of refrigerant flow during cooling operation and defrosting operation, and broken arrows indicate the direction of refrigerant flow during heating operation.
 室外送風機12は、ファンモータなどの室外駆動源12Aと、プロペラファン、ターボファン、またはシロッコファンなどの室外ファン12Bとを含む。室外送風機12は、冷房運転時と暖房運転時において動作し、空調対象空間以外の空間における空気を室外熱交換器13に導く。 The outdoor blower 12 includes an outdoor drive source 12A such as a fan motor, and an outdoor fan 12B such as a propeller fan, turbo fan, or sirocco fan. The outdoor fan 12 operates during the cooling operation and during the heating operation, and guides the air in the space other than the air-conditioned space to the outdoor heat exchanger 13 .
 室外熱交換器13は、冷媒と空気との間で熱交換を行わせる。室外熱交換器13は、熱交換器の一例である。 The outdoor heat exchanger 13 causes heat exchange between refrigerant and air. The outdoor heat exchanger 13 is an example of a heat exchanger.
 室外送風機12は、冷房運転時と暖房運転時において、室外熱交換器13における熱交換後の空気を、空調対象空間以外の空間に送り出す。 The outdoor blower 12 sends the air after heat exchange in the outdoor heat exchanger 13 to a space other than the air-conditioned space during the cooling operation and the heating operation.
 膨張弁14は冷媒を減圧して膨張させる。膨張弁14は、例えば、冷媒の流量を調整可能な電動膨張弁である。アキュムレータ15は冷媒を蓄える。 The expansion valve 14 decompresses and expands the refrigerant. The expansion valve 14 is, for example, an electric expansion valve capable of adjusting the flow rate of refrigerant. The accumulator 15 stores refrigerant.
 室内機3は、図1において二点鎖線の四角によって示される筐体の内部に、室内送風機30および室内熱交換器31を備える。室内送風機30は、ファンモータなどの室内駆動源30Aと、プロペラファン、ターボファン、またはシロッコファンなどの室内ファン30Bとを含む。室内送風機30は、冷房運転時と暖房運転時において動作し、空調対象空間における空気を室内熱交換器31に導く。 The indoor unit 3 includes an indoor fan 30 and an indoor heat exchanger 31 inside a housing indicated by a two-dot chain line square in FIG. Indoor fan 30 includes an indoor drive source 30A such as a fan motor, and an indoor fan 30B such as a propeller fan, turbo fan, or sirocco fan. The indoor fan 30 operates during the cooling operation and during the heating operation, and guides the air in the air-conditioned space to the indoor heat exchanger 31 .
 室内熱交換器31は、冷媒と空気との間で熱交換を行わせる。室内送風機30は、冷房運転時と暖房運転時において、室内熱交換器31における熱交換後の空気を、空調対象空間に送り出す。 The indoor heat exchanger 31 causes heat exchange between refrigerant and air. The indoor blower 30 sends out the air after heat exchange in the indoor heat exchanger 31 to the air-conditioned space during the cooling operation and the heating operation.
 以下、冷房運転における冷媒の流れおよび状態変化について説明する。冷房運転では、圧縮機10から吐出した冷媒は、室外熱交換器13に流入する。室外熱交換器13は凝縮器として機能し、室外熱交換器13に流入した冷媒は、室外送風機12によって室外熱交換器13に供給された空気と熱交換して凝縮する。室外熱交換器13から流出した冷媒は、膨張弁14を通過する際に減圧された後、室内熱交換器31に流入する。室内熱交換器31は蒸発器として機能し、室内熱交換器31に流入した冷媒は、室内送風機30によって室内熱交換器31に供給された空気と熱交換して蒸発する。室内熱交換器31での熱交換によって冷却された空気は、室内送風機30によって空調対象空間に送り出される。室内熱交換器31から流出した冷媒は、アキュムレータ15を経由して圧縮機10に吸入されて圧縮される。 The following describes the refrigerant flow and state changes during cooling operation. In cooling operation, refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 13 . The outdoor heat exchanger 13 functions as a condenser, and the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the air supplied to the outdoor heat exchanger 13 by the outdoor fan 12 and is condensed. The refrigerant that has flowed out of the outdoor heat exchanger 13 flows into the indoor heat exchanger 31 after being decompressed when passing through the expansion valve 14 . The indoor heat exchanger 31 functions as an evaporator, and the refrigerant flowing into the indoor heat exchanger 31 exchanges heat with the air supplied to the indoor heat exchanger 31 by the indoor blower 30 and evaporates. The air cooled by heat exchange in the indoor heat exchanger 31 is sent out to the air-conditioned space by the indoor blower 30 . The refrigerant that has flowed out of the indoor heat exchanger 31 is sucked into the compressor 10 via the accumulator 15 and compressed.
 次に、暖房運転における冷媒の流れおよび状態変化について説明する。暖房運転では、圧縮機10から吐出した冷媒は、室内熱交換器31に流入する。室内熱交換器31は凝縮器として機能し、室内熱交換器31に流入した冷媒は、室内送風機30によって室内熱交換器31に供給された空気と熱交換して凝縮する。室内熱交換器31での熱交換によって加熱された空気は、室内送風機30によって空調対象空間に送り出される。室内熱交換器31から流出した冷媒は、膨張弁14を通過する際に減圧された後、室外熱交換器13に流入する。室外熱交換器13は蒸発器として機能し、室外熱交換器13に流入した冷媒は、室外送風機12によって室外熱交換器13に供給された空気と熱交換して蒸発する。室外熱交換器13から流出した冷媒は、アキュムレータ15を経由して圧縮機10に吸入されて圧縮される。 Next, the refrigerant flow and state changes during heating operation will be explained. In heating operation, the refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 31 . The indoor heat exchanger 31 functions as a condenser, and the refrigerant flowing into the indoor heat exchanger 31 exchanges heat with the air supplied to the indoor heat exchanger 31 by the indoor blower 30 and is condensed. The air heated by heat exchange in the indoor heat exchanger 31 is sent out to the air-conditioned space by the indoor blower 30 . The refrigerant that has flowed out of the indoor heat exchanger 31 flows into the outdoor heat exchanger 13 after being decompressed when passing through the expansion valve 14 . The outdoor heat exchanger 13 functions as an evaporator, and the refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the air supplied to the outdoor heat exchanger 13 by the outdoor blower 12 and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger 13 is sucked into the compressor 10 via the accumulator 15 and compressed.
 更に、除霜運転における冷媒の流れおよび状態変化について説明する。除霜運転は、暖房運転中に室外熱交換器13に生じた霜によって室外熱交換器13の伝熱性能が低下したと検知された場合において開始される。なお、室外熱交換器13の伝熱性能の低下は、室外熱交換器13内の、例えば、後述する伝熱管21の表面温度などの物理量に基づいて検知される。除霜運転では、冷房運転と同じ方向に冷媒が流れ、室外熱交換器13は凝縮器として機能し、室内熱交換器31は蒸発器として機能する。ここで、除霜運転中は、室外送風機12は動作しない。これにより、室外熱交換器13において、過熱状態にあってガス状である冷媒によって加熱された空気が、室外熱交換器13の外部へ流出することが抑制される。従って、室外熱交換器13からの熱の流出が抑制され、迅速な除霜が可能になる。また、除霜運転中は、室内送風機30は動作しない。これにより、室内熱交換器31における冷媒によって冷却された空気の空調対象空間への流出が抑制される。従って、空調対象空間の気温低下が抑制される。空気調和機100は、外気温が例えば5[℃]以下である低外気条件での暖房運転の際、間欠的に除霜運転を実行することによって、室外熱交換器13の伝熱性能が回復する。そして、これにより、長時間に亘る暖房運転の運転効率の維持が可能になる。 Furthermore, the refrigerant flow and state changes during defrosting operation will be explained. The defrosting operation is started when it is detected that the heat transfer performance of the outdoor heat exchanger 13 has deteriorated due to frost generated in the outdoor heat exchanger 13 during the heating operation. A decrease in the heat transfer performance of the outdoor heat exchanger 13 is detected based on a physical quantity such as the surface temperature of the heat transfer tubes 21, which will be described later, in the outdoor heat exchanger 13, for example. In the defrosting operation, the refrigerant flows in the same direction as in the cooling operation, the outdoor heat exchanger 13 functions as a condenser, and the indoor heat exchanger 31 functions as an evaporator. Here, the outdoor fan 12 does not operate during the defrosting operation. As a result, in the outdoor heat exchanger 13 , the air heated by the refrigerant that is in a superheated state and is in a gaseous state is prevented from flowing out of the outdoor heat exchanger 13 . Therefore, the outflow of heat from the outdoor heat exchanger 13 is suppressed, and quick defrosting becomes possible. Also, the indoor fan 30 does not operate during the defrosting operation. This suppresses the outflow of the air cooled by the refrigerant in the indoor heat exchanger 31 to the air-conditioned space. Therefore, the temperature drop in the air-conditioned space is suppressed. The air conditioner 100 performs a defrosting operation intermittently during heating operation under a low outdoor air condition where the outdoor temperature is, for example, 5 [° C.] or less, thereby recovering the heat transfer performance of the outdoor heat exchanger 13. do. As a result, it becomes possible to maintain the operating efficiency of the heating operation for a long period of time.
 次に、図2および図3を参照して実施の形態1における室外熱交換器13の構成内容について説明する。図2は、実施の形態1における室外熱交換器の内部を模式的に例示する図である。図3は、実施の形態1における室外熱交換器内の冷媒流路を模式的に例示する図である。なお、図2に例示する室外熱交換器13は、クロスフィンチューブ式の熱交換器である。図2における白抜き矢印は、空気の流動方向を示す。 Next, the configuration of the outdoor heat exchanger 13 in Embodiment 1 will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a diagram schematically illustrating the inside of the outdoor heat exchanger according to Embodiment 1. FIG. FIG. 3 is a diagram schematically illustrating refrigerant flow paths in the outdoor heat exchanger according to Embodiment 1. FIG. The outdoor heat exchanger 13 illustrated in FIG. 2 is a cross-fin tube type heat exchanger. The white arrows in FIG. 2 indicate the direction of air flow.
 実施の形態1における室外熱交換器13は、複数のユニット20を有し、当該複数のユニット20の各々は、上下方向に沿って配置されている。なお、複数のユニット20のうち、最も下に配置されたユニット20を最下ユニット20Aと記載し、最下ユニット20A以外のユニット20を上部ユニット20Bと記載する場合もある。 The outdoor heat exchanger 13 in Embodiment 1 has a plurality of units 20, and each of the plurality of units 20 is arranged along the vertical direction. Note that the lowest unit 20 among the plurality of units 20 may be referred to as the lowest unit 20A, and the units 20 other than the lowest unit 20A may be referred to as the upper unit 20B.
 各ユニット20には、内部に冷媒を流通させる1以上の伝熱管21が含まれる。図2では、1以上の伝熱管21を、ハッチングを付した領域によって示す。1以上の伝熱管21は、室外熱交換器13に含まれる複数の伝熱フィン22を貫通している。複数の伝熱フィン22の各々は、空気の流動方向に沿うように配置されている。そして、複数の伝熱フィン22は、予め定められた間隔で配置されている。 Each unit 20 includes one or more heat transfer tubes 21 through which the refrigerant flows. In FIG. 2, one or more heat transfer tubes 21 are indicated by hatched areas. One or more heat transfer tubes 21 pass through a plurality of heat transfer fins 22 included in the outdoor heat exchanger 13 . Each of the plurality of heat transfer fins 22 is arranged along the air flow direction. The plurality of heat transfer fins 22 are arranged at predetermined intervals.
 実施の形態1における各ユニット20の1以上の伝熱管21は、二叉状または三叉状など、叉状の冷媒流路23Mを形成する。図2および図3では、1以上の伝熱管21が形成する叉状の冷媒流路23Mとして、二叉状の冷媒流路23Mを例示する。なお、図2では、除霜運転時に冷媒が1以上の伝熱管21に流入する際の入口を、実線矢印が指す円によって示す。また、除霜運転時に冷媒が1以上の伝熱管21から流出する際の出口を、実線矢印の起点に位置する円によって示す。そして、叉状の冷媒流路23Mを、伝熱管21を示すハッチングが施された領域と、複数の当該領域を互いに接続する破線とによって示す。図2および図3における実線矢印は、除霜運転時に冷媒が流れる方向を指す。 One or more heat transfer tubes 21 of each unit 20 in Embodiment 1 form a forked refrigerant flow path 23M such as a two-forked or three-forked shape. 2 and 3 illustrate a bifurcated coolant channel 23M as the forked coolant channel 23M formed by one or more heat transfer tubes 21. FIG. Note that in FIG. 2 , the circle pointed by the solid line arrow indicates the entrance when the refrigerant flows into the one or more heat transfer tubes 21 during the defrosting operation. In addition, the circle located at the starting point of the solid line arrow indicates the outlet when the refrigerant flows out from the one or more heat transfer tubes 21 during the defrosting operation. The crotch-shaped coolant channel 23M is indicated by a hatched area indicating the heat transfer tube 21 and dashed lines connecting a plurality of the areas. Solid arrows in FIGS. 2 and 3 indicate the direction in which the refrigerant flows during the defrosting operation.
 叉状の冷媒流路23Mは、1本の冷媒流路23である単路23Aと、複数本の冷媒流路23である複路23Bとが接続されたものである。叉状の冷媒流路23Mは、複数の伝熱管21によって形成されてもよく、各ユニット20には、単路23Aを形成する伝熱管21と、複路23Bを形成する複数本の伝熱管21とを接続する分岐管などの接続部が含まれてもよい。なお、実施の形態1における各ユニット20の複路23Bに含まれる冷媒流路23の本数は、互いに等しいものとする。 The crotch-shaped coolant channel 23M is formed by connecting a single channel 23A, which is one coolant channel 23, and a double channel 23B, which is a plurality of coolant channels 23. The forked refrigerant channel 23M may be formed by a plurality of heat transfer tubes 21, and each unit 20 includes a heat transfer tube 21 forming a single path 23A and a plurality of heat transfer tubes 21 forming a double path 23B. It may include a connection such as a branch pipe that connects the It should be noted that the number of refrigerant flow paths 23 included in the double path 23B of each unit 20 in Embodiment 1 is equal to each other.
 各ユニット20において、1以上の伝熱管21のうち、複路23Bを形成する部分は、ガス側分流器16に接続され、単路23Aを形成する部分は、液側分流器17に接続されている。冷房運転時、すなわち、室外熱交換器13が凝縮器として機能する際には、ガス側分流器16に流入した冷媒は、ガス側分流器16の複数の出口を経由して複路23Bに流入する。なお、ガス側分流器16に流入した際の冷媒は、ガス状で高温の過熱ガス冷媒である。複路23Bに流入した冷媒は、単路23Aに流入して合流する。その後、冷媒は、単路23Aから液側分流器17に流れ、液側分流器17を介して冷媒配管4に流出する。冷媒は、冷房運転時に1以上の伝熱管21を流れる際には、空気に熱を与え、一部が液相へと相変化した気液二相状態となり、全てが飽和液状態になった後、温度が低下して過冷却液状態となる。 In each unit 20, of the one or more heat transfer tubes 21, the part forming the double path 23B is connected to the gas side flow divider 16, and the part forming the single path 23A is connected to the liquid side flow divider 17. there is During cooling operation, that is, when the outdoor heat exchanger 13 functions as a condenser, the refrigerant that has flowed into the gas side flow divider 16 flows through multiple outlets of the gas side flow divider 16 into the double path 23B. do. The refrigerant flowing into the gas side flow divider 16 is gaseous and high-temperature superheated gas refrigerant. The refrigerant that has flowed into the double path 23B flows into the single path 23A and joins. Thereafter, the refrigerant flows from the single path 23</b>A to the liquid side flow divider 17 and flows out to the refrigerant pipe 4 via the liquid side flow divider 17 . When the refrigerant flows through one or more heat transfer tubes 21 during cooling operation, the refrigerant gives heat to the air, becomes a gas-liquid two-phase state in which a part of the refrigerant phase changes to a liquid phase, and after all becomes a saturated liquid state. , the temperature drops and becomes a supercooled liquid state.
 暖房運転時、すなわち、室外熱交換器13が蒸発器として作動する際には、液側分流器17に流入した気液二相状態の冷媒は、単路23Aに流入する。単路23Aを流れる冷媒は、複路23Bに流入する。その後、冷媒は、複路23Bからガス側分流器16に流れ、ガス側分流器16を介して冷媒配管4に流出する。冷媒は、暖房運転時に1以上の伝熱管21を流れる際には、空気から熱を奪い、一部がガス相へと相変化した気液二相状態となり、その全てが飽和ガス状態になった後、温度が上昇し過熱ガス状態となる。 During heating operation, that is, when the outdoor heat exchanger 13 operates as an evaporator, the gas-liquid two-phase refrigerant that has flowed into the liquid side flow divider 17 flows into the single path 23A. Refrigerant flowing through the single path 23A flows into the double path 23B. After that, the refrigerant flows from the double path 23B to the gas side flow divider 16 and flows out to the refrigerant pipe 4 via the gas side flow divider 16 . When the refrigerant flows through one or more heat transfer tubes 21 during heating operation, the refrigerant takes heat from the air and enters a gas-liquid two-phase state in which a part of the refrigerant undergoes a phase change to a gas phase, and all of them are in a saturated gas state. After that, the temperature rises and becomes a superheated gas state.
 上述の構成によれば、冷房運転時において冷媒が複路23Bから単路23Aに流れることにより、単路23Aにおける冷媒の平均流速が高まる。冷房運転時には、単路23Aの下流側において熱伝達率が低い過冷却液冷媒が流れるが、単路23Aにおいて冷媒の流速が高まるため、対流熱伝達が促進されて熱伝達率が向上する。そのため、空調に必要な冷媒量の削減効果が得られる。 According to the above configuration, the refrigerant flows from the double path 23B to the single path 23A during cooling operation, thereby increasing the average flow velocity of the refrigerant in the single path 23A. During cooling operation, a supercooled liquid refrigerant having a low heat transfer coefficient flows downstream of the single passage 23A, but the flow velocity of the refrigerant increases in the single passage 23A, thereby promoting convective heat transfer and improving the heat transfer coefficient. Therefore, the effect of reducing the amount of refrigerant required for air conditioning can be obtained.
 一方、暖房運転時には、冷媒流路23の上流から下流に向けて乾き度が増大する。そのため、従来では、冷媒流路23の下流において冷媒の平均流速は高くなり、これによって冷媒に働く摩擦が増大し、圧力損失が増大していた。実施の形態1では、暖房運転時において冷媒が単路23Aから複路23Bに流れるため、下流側である複路23Bにおける冷媒の平均流速の増加の抑制、あるいは、当該平均流速の低下が図られる。従って、1以上の伝熱管21のうち、複路23Bを形成する部分の内壁面と、冷媒との間に働く摩擦が低減する。これにより、圧力損失の低減が図られる。従って、圧力損失による冷媒の飽和温度の変化を低減し、冷媒と空気との間の温度差を確保できる。 On the other hand, during heating operation, the dryness increases from upstream to downstream of the refrigerant flow path 23 . Therefore, conventionally, the average flow velocity of the refrigerant increases downstream of the refrigerant flow path 23, thereby increasing the friction acting on the refrigerant and increasing the pressure loss. In Embodiment 1, since the refrigerant flows from the single path 23A to the double path 23B during heating operation, an increase in the average flow velocity of the refrigerant in the double path 23B on the downstream side is suppressed, or the average flow velocity is reduced. . Therefore, the friction acting between the refrigerant and the inner wall surface of the part forming the double path 23B among the one or more heat transfer tubes 21 is reduced. As a result, pressure loss can be reduced. Therefore, it is possible to reduce the change in the saturation temperature of the refrigerant due to the pressure loss and ensure the temperature difference between the refrigerant and the air.
 実施の形態1では、最下ユニット20Aにおける複路23Bのうちの1本の冷媒流路23は、除霜運転時の冷媒の入口が、叉状の冷媒流路23Mにおいて、空気の流動方向の最も上流側に配置される。以下では、除霜運転時の冷媒の入口が、叉状の冷媒流路23Mにおいて、空気の流動方向の最も上流側に配置される当該1本の冷媒流路23を、第1流路24と記載する場合もある。また、室外熱交換器13における、空気の流動方向の最も上流側を、風上側と記載する場合もある。そして、室外熱交換器13における、空気の流動方向の最も下流側を、風下側と記載する場合もある。更に、各ユニット20の複路23Bへの除霜運転時における冷媒の入口を、第1入口25と記載する場合もある。実施の形態1では、第1流路24の第1入口25が、最下段に配置されるものとする。すなわち、第1流路24の第1入口25は、最下ユニット20Aにおける叉状の冷媒流路23Mにおいて最も下に配置される。 In Embodiment 1, one refrigerant passage 23 of the double paths 23B in the lowermost unit 20A has a refrigerant inlet during the defrosting operation in the forked refrigerant passage 23M in the air flow direction. Arranged on the most upstream side. In the following description, the one refrigerant passage 23 in which the inlet of the refrigerant during the defrosting operation is arranged on the most upstream side in the air flow direction in the crotch-shaped refrigerant passage 23M is referred to as the first passage 24. It may be described. Further, the most upstream side in the air flow direction in the outdoor heat exchanger 13 may be referred to as the windward side. The most downstream side in the air flow direction in the outdoor heat exchanger 13 may also be referred to as the leeward side. Furthermore, the inlet of the refrigerant to the double path 23B of each unit 20 during the defrosting operation may be referred to as the first inlet 25 in some cases. In Embodiment 1, the first inlet 25 of the first channel 24 is arranged at the bottom. That is, the first inlet 25 of the first channel 24 is arranged at the bottom of the crotch-shaped coolant channel 23M in the lowest unit 20A.
 以下、実施の形態1に係る空気調和機100による効果について述べる。空気調和機100は、暖房運転および除霜運転の各々を行う。空気調和機100は、室外熱交換器13と流路切替装置11とを備える。室外熱交換器13は、室外の空気と冷媒との間で熱交換を行わせる。流路切替装置11は、冷媒の流れる方向を切り替える。室外熱交換器13は、上下方向に沿って配置された複数のユニット20を有する。各ユニット20は、1本の冷媒流路23である単路23Aと、複数本の冷媒流路23である複路23Bとが接続された、叉状の冷媒流路23Mを形成する1以上の伝熱管21を含む。流路切替装置11は、除霜運転時には、冷媒を複路23Bから単路23Aに流通させ、暖房運転時には、冷媒を単路23Aから複路23Bに流通させる。複数のユニット20のうち最も下に配置された最下ユニット20Aの複路23Bは、第1流路24を含む。第1流路24は、除霜運転時の冷媒の入口である第1入口25が、叉状の冷媒流路23Mにおいて、空気の流動方向の最も上流側に位置する冷媒流路23である。第1流路24の第1入口25は、叉状の冷媒流路23Mにおいて最も下に位置する。 The effects of the air conditioner 100 according to Embodiment 1 will be described below. Air conditioner 100 performs each of heating operation and defrosting operation. The air conditioner 100 includes an outdoor heat exchanger 13 and a channel switching device 11 . The outdoor heat exchanger 13 exchanges heat between the outdoor air and the refrigerant. The channel switching device 11 switches the direction in which the coolant flows. The outdoor heat exchanger 13 has a plurality of units 20 arranged along the vertical direction. Each unit 20 includes one or more coolant flow paths 23M that form a crotch-shaped coolant flow path 23M, in which a single flow path 23A that is one flow path 23 and a double flow path 23B that is a plurality of flow paths 23 are connected. A heat transfer tube 21 is included. The flow switching device 11 circulates the refrigerant from the double path 23B to the single path 23A during the defrosting operation, and circulates the refrigerant from the single path 23A to the double path 23B during the heating operation. The double path 23B of the lowermost unit 20A arranged at the bottom among the plurality of units 20 includes the first flow path 24 . The first flow path 24 is the refrigerant flow path 23 in which the first inlet 25, which is the inlet of the refrigerant during the defrosting operation, is located on the most upstream side in the air flow direction in the crotch-shaped refrigerant flow path 23M. The first inlet 25 of the first channel 24 is located at the lowest position in the crotch-shaped coolant channel 23M.
 上記構成によれば、暖房能力の向上と、着霜の抑制とを両立することができる。以下、このことについて詳述する。暖房運転時において、室外熱交換器13の各ユニット20の複路23Bは冷媒の下流側となる。そのため、複路23Bにおける乾き度の高い冷媒が減速し、冷媒は空気からより多くの熱を受け取ることができる。また、冷媒が減速することによって、冷媒と伝熱管21との間の摩擦が低減され、圧力損失が低減される。従って、室外熱交換器13の暖房能力が向上する。 According to the above configuration, it is possible to achieve both an improvement in heating capacity and suppression of frost formation. This will be described in detail below. During heating operation, the double path 23B of each unit 20 of the outdoor heat exchanger 13 is on the downstream side of the refrigerant. Therefore, the dry refrigerant in double path 23B is decelerated, and the refrigerant can receive more heat from the air. In addition, the deceleration of the refrigerant reduces the friction between the refrigerant and the heat transfer tubes 21, thereby reducing the pressure loss. Therefore, the heating capacity of the outdoor heat exchanger 13 is improved.
 また、空気調和機100によれば、最下ユニット20Aの複路23Bに含まれる第1流路24の第1入口25は、叉状の冷媒流路23Mにおいて、空気の流動方向の最上流側に位置する。更に、第1流路24の第1入口25は、叉状の冷媒流路23Mにおいて最も下に位置する。 Further, according to the air conditioner 100, the first inlet 25 of the first flow path 24 included in the double path 23B of the lowermost unit 20A is located on the most upstream side in the air flow direction in the crotch-shaped refrigerant flow path 23M. Located in Furthermore, the first inlet 25 of the first flow path 24 is positioned at the bottom in the crotch-shaped coolant flow path 23M.
 ここで、風上側では、風下側よりも、空気と冷媒との間の熱伝達率が高い場合が多い。詳細には、互いに異なる温度の2つの物質の間には温度境界層が生じ、温度境界層が薄いほど熱伝達率が高い。室外熱交換器13の風上側では、風下側よりも、内部に冷媒が流れる伝熱管21の表面と、空気との間の温度境界層が薄い。そのため、室外熱交換器13の風上側における空気と冷媒との間の熱伝達率は、室外熱交換器13の風下側における空気と冷媒との間の熱伝達率より高い。また、暖房運転時には、室外熱交換器13の風上側の空気は、風下側の空気に比べて絶対湿度が高い。従って、暖房運転時には、風上となる伝熱フィン22の端部により多くの霜が発生する。 Here, the heat transfer coefficient between the air and the refrigerant is often higher on the windward side than on the leeward side. Specifically, a temperature boundary layer occurs between two substances having different temperatures, and the thinner the temperature boundary layer, the higher the heat transfer coefficient. On the windward side of the outdoor heat exchanger 13, the temperature boundary layer between the air and the surfaces of the heat transfer tubes 21 in which the refrigerant flows is thinner than on the leeward side. Therefore, the heat transfer coefficient between the air and the refrigerant on the windward side of the outdoor heat exchanger 13 is higher than the heat transfer coefficient between the air and the refrigerant on the leeward side of the outdoor heat exchanger 13 . Also, during heating operation, the air on the windward side of the outdoor heat exchanger 13 has a higher absolute humidity than the air on the leeward side. Therefore, during heating operation, a large amount of frost is generated on the windward end of the heat transfer fins 22 .
 一方、除霜運転時には、上部ユニット20Bにおける伝熱フィン22の表面に生成した霜が融解するために生じる融解水が、重力に従って伝熱フィン22の表面を伝わって下に流れる。当該融解水は、最下ユニット20Aにおける伝熱フィン22を伝わって更に流下し、最も下に位置する冷媒流路23よりも下方に流れて、室外熱交換器13から排出される。 On the other hand, during the defrosting operation, melted water produced by melting the frost formed on the surfaces of the heat transfer fins 22 in the upper unit 20B flows downward along the surfaces of the heat transfer fins 22 according to gravity. The melted water further flows down along the heat transfer fins 22 in the lowest unit 20A, flows below the refrigerant flow path 23 located at the lowest position, and is discharged from the outdoor heat exchanger 13 .
 上述のように、暖房運転時には、風上側により多くの霜が生じ、除霜運転時には、下方に融解水が流れることから、除霜運転時には、1以上の伝熱管21のうち、風上側であって最も下に位置する部分の周囲に最も多くの融解水が流れる。第1流路24には、除霜運転時において第1入口25から高温の冷媒が流入する。当該第1流路24の第1入口25が、室外熱交換器13において風上であって、且つ、最も下に配置されることで、多くの融解水の経路となる箇所の温度が高くなり、当該箇所における霜の再発生が抑制され、融解水の円滑な排出が可能になる。従って、室外熱交換器13における着霜量の低減が図られる。よって、空気調和機100は、室外熱交換器13への着霜の抑制と、室外熱交換器13の暖房能力の向上との両立を図ることができる。 As described above, during heating operation, more frost occurs on the windward side, and during defrosting operation, melted water flows downward. Most of the meltwater flows around the lowest part of the High-temperature refrigerant flows into the first flow path 24 from the first inlet 25 during the defrosting operation. By arranging the first inlet 25 of the first flow path 24 on the windward side and at the lowest position in the outdoor heat exchanger 13, the temperature of a portion serving as a route for many melted water increases. , re-occurrence of frost at the location is suppressed, and smooth discharge of the melt water becomes possible. Therefore, the amount of frost formed in the outdoor heat exchanger 13 can be reduced. Therefore, the air conditioner 100 can achieve both suppression of frost formation on the outdoor heat exchanger 13 and improvement of the heating capacity of the outdoor heat exchanger 13 .
 実施の形態1の各ユニット20の複路23Bに含まれる冷媒流路23の本数は等しい。これにより、各ユニット20における冷媒の圧力損失の均等化が図られ、冷媒の流量の分配比の均等化が図られる。 The number of refrigerant flow paths 23 included in the double path 23B of each unit 20 in Embodiment 1 is the same. As a result, the pressure loss of the refrigerant in each unit 20 is equalized, and the distribution ratio of the flow rate of the refrigerant is equalized.
 実施の形態1における複数のユニット20は、最下ユニット20Aの上に配置された上部ユニット20Bを含む。上部ユニット20Bの複路23Bが含む全ての冷媒流路23の各々の第1入口25は、上部ユニット20Bの叉状の冷媒流路23Mにおいて、空気の流動方向の最も下流側に位置する。これにより、空気調和機100は、冷房能力を維持することができる。以下、このことについて詳述する。 A plurality of units 20 in Embodiment 1 include an upper unit 20B arranged above a lowermost unit 20A. The first inlets 25 of all the refrigerant flow paths 23 included in the double path 23B of the upper unit 20B are located on the most downstream side in the air flow direction in the forked refrigerant flow path 23M of the upper unit 20B. Thereby, the air conditioner 100 can maintain the cooling capacity. This will be described in detail below.
 冷房運転時に高温の冷媒が流入する第1入口25が風上側に配置されていると、風上側において空気が加熱されることにより、風下側において空気と冷媒との温度差が小さくなり、伝熱性能が低下し、冷媒の冷却の妨げとなる。実施の形態1の上部ユニット20Bでは、冷房運転時に高温の冷媒が流入する第1入口25が風下に配置される。そして、冷房運転時に冷媒が流出する、単路23Aにおける出口部分が、風上に配置される。これにより、室外熱交換器13内の空気と冷媒との間の温度差が保たれるため、冷房能力の維持が図られる。 When the first inlet 25 into which the high-temperature refrigerant flows during cooling operation is arranged on the windward side, the air is heated on the windward side, so that the temperature difference between the air and the refrigerant on the leeward side becomes small, and heat transfer occurs. The performance is reduced and the cooling of the refrigerant is hindered. In the upper unit 20B of Embodiment 1, the first inlet 25 into which the high-temperature refrigerant flows during the cooling operation is arranged on the leeward side. The outlet portion of the single path 23A, through which the refrigerant flows out during the cooling operation, is arranged on the windward side. As a result, the temperature difference between the air and the refrigerant in the outdoor heat exchanger 13 is maintained, thereby maintaining the cooling capacity.
 実施の形態2.
 図4は、実施の形態2における室外熱交換器の内部を模式的に例示する図である。実施の形態2では、実施の形態1における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態2において、実施の形態1における構成と同様の構成、および、実施の形態1における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 2.
FIG. 4 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 2. FIG. In Embodiment 2, the same code|symbol shall be attached|subjected to the component similar to the component in Embodiment 1. FIG. Further, in the second embodiment, descriptions of the same configurations as those in the first embodiment and the same functions as the functions in the first embodiment will be omitted unless there are special circumstances.
 実施の形態2における上部ユニット20Bの構成は、実施の形態1と同様である。実施の形態2における最下ユニット20Aにおいては、全ての第1入口25が、叉状の冷媒流路23Mにおいて最も下に配置される。 The configuration of the upper unit 20B in the second embodiment is the same as in the first embodiment. In the lowest unit 20A in Embodiment 2, all the first inlets 25 are arranged at the lowest position in the crotch-shaped coolant channel 23M.
 以下、実施の形態2に係る空気調和機100による効果について述べる。実施の形態2における最下ユニット20Aの複路23Bが含む全ての冷媒流路23の各々の第1入口25は、叉状の冷媒流路23Mにおいて最も下に位置する。この構成によれば、除霜運転時に生じた融解水が、室外熱交換器13の底部の更に下に配設される不図示の排水機構に流動する際に、全ての第1入口25の各々から流入した過熱ガス冷媒によって加熱される。従って、融解水の再凍結が抑制される。よって、除霜運転中の融解水の排出をより円滑にすることが可能となる。 The effects of the air conditioner 100 according to Embodiment 2 will be described below. The first inlets 25 of all the refrigerant flow paths 23 included in the double path 23B of the lowermost unit 20A in the second embodiment are located at the lowest position in the crotch-shaped refrigerant flow path 23M. According to this configuration, when the melted water generated during the defrosting operation flows to a drainage mechanism (not shown) disposed further below the bottom of the outdoor heat exchanger 13, each of all the first inlets 25 heated by the superheated gas refrigerant flowing from the Therefore, refreezing of the melted water is suppressed. Therefore, it is possible to smoothly discharge the melted water during the defrosting operation.
 実施の形態3.
 図5は、実施の形態3における室外熱交換器の内部を模式的に例示する図である。実施の形態3では、実施の形態1~実施の形態2における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態3において、実施の形態1~実施の形態2における構成と同様の構成、および、実施の形態1~実施の形態2における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 3.
FIG. 5 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 3. FIG. In the third embodiment, the same reference numerals are given to the same constituent elements as those in the first and second embodiments. Further, in Embodiment 3, there are no special circumstances regarding the same configuration as the configuration in Embodiments 1 and 2, and the same function as the function in Embodiments 1 and 2. The explanation is omitted as much as possible.
 実施の形態3における最下ユニット20Aの構成は、実施の形態1と同様である。実施の形態3では、室外熱交換器13は、複数の上部ユニット20Bを有する。実施の形態3では、複数の上部ユニット20Bの各々における叉状の冷媒流路23Mの形状は、互いに等しい。これにより、上部ユニット20Bにおける伝熱管21の形状の種類の数を低減することが可能になる。また、伝熱管21と、ガス側分流器16および液側分流器17の各々とを接続する配管の形状の種類の数を低減することが可能になる。従って、室外熱交換器13の生産工程を簡素化することが可能となる。 The configuration of the bottom unit 20A in the third embodiment is the same as in the first embodiment. In Embodiment 3, the outdoor heat exchanger 13 has a plurality of upper units 20B. In Embodiment 3, the shape of the crotch-like coolant flow path 23M in each of the plurality of upper units 20B is the same. This makes it possible to reduce the number of types of shapes of the heat transfer tubes 21 in the upper unit 20B. In addition, it is possible to reduce the number of types of shapes of pipes connecting heat transfer pipes 21 to gas side flow dividers 16 and liquid side flow dividers 17 . Therefore, the production process of the outdoor heat exchanger 13 can be simplified.
 実施の形態4.
 図6は、実施の形態4における室外熱交換器の内部を模式的に例示する図である。実施の形態4では、実施の形態1~実施の形態3における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態4において、実施の形態1~実施の形態3における構成と同様の構成、および、実施の形態1~実施の形態3における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 4.
FIG. 6 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 4. FIG. In the fourth embodiment, the same reference numerals are given to the same components as those in the first to third embodiments. In addition, in the fourth embodiment, there are no particular circumstances regarding the same configuration as the configurations in the first to third embodiments and the same functions as the functions in the first to third embodiments. The explanation is omitted as much as possible.
 実施の形態4における最下ユニット20Aの構成は、実施の形態2と同様である。実施の形態4の室外熱交換器13は、複数の上部ユニット20Bを有し、当該複数の上部ユニット20Bの構成は、実施の形態3と同様である。すなわち、各上部ユニット20Bの1以上の伝熱管21によって得られる叉状の冷媒流路23Mの形状は、互いに等しい。従って、実施の形態4では、除霜運転中の最下ユニット20Aにおける融解水の排出の円滑化と、室外熱交換器13の生産工程の簡素化が可能になる。 The configuration of the bottom unit 20A in the fourth embodiment is the same as in the second embodiment. The outdoor heat exchanger 13 of the fourth embodiment has a plurality of upper units 20B, and the configuration of the plurality of upper units 20B is the same as that of the third embodiment. That is, the shapes of the crotch-like refrigerant flow paths 23M obtained by the one or more heat transfer tubes 21 of each upper unit 20B are the same. Therefore, in Embodiment 4, smooth discharge of melted water in the lowest unit 20A during defrosting operation and simplification of the production process of the outdoor heat exchanger 13 are possible.
 実施の形態5.
 図7は、実施の形態5における室外熱交換器の内部を模式的に例示する図である。実施の形態5では、実施の形態1~実施の形態4における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態5において、実施の形態1~実施の形態4における構成と同様の構成、および、実施の形態1~実施の形態4における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 5.
FIG. 7 is a diagram schematically illustrating the inside of an outdoor heat exchanger according to Embodiment 5. FIG. In the fifth embodiment, the same reference numerals are given to the same components as those in the first to fourth embodiments. Further, in the fifth embodiment, there are no special circumstances regarding the same configuration as the configurations in the first to fourth embodiments and the same functions as the functions in the first to fourth embodiments. The explanation is omitted as much as possible.
 実施の形態5における上部ユニット20Bの構成は、実施の形態1~実施の形態4と同様である。実施の形態5の最下ユニット20Aでは、第1流路24の長さが、複路23Bに含まれる全ての冷媒流路23のうち、最も短い。 The configuration of the upper unit 20B in the fifth embodiment is the same as in the first to fourth embodiments. In the lowest unit 20A of Embodiment 5, the length of the first channel 24 is the shortest among all the coolant channels 23 included in the double channel 23B.
 上記構成によれば、最下ユニット20Aにおいて、第1流路24に流入する冷媒の分配比率が、複路23Bのうちの他の冷媒流路23に流入する冷媒の分配比率より大きくなる。除霜運転時に複路23Bに流入する冷媒はガス単相であり、熱伝達率は流量に従い単調増加する。すなわち、除霜運転時に最下ユニット20Aにおいて、第1流路24における管内側熱伝達率が、複路23Bのうちの他の冷媒流路23における管内側熱伝達率に比べて大きくなる。これにより、除霜運転時において、風上側に位置する第1入口25の周囲を迅速に加熱可能になり、更に円滑な融解水の排出が可能となる。 According to the above configuration, in the lowermost unit 20A, the distribution ratio of the refrigerant flowing into the first flow path 24 is greater than the distribution ratio of the refrigerant flowing into the other refrigerant flow paths 23 of the multiple paths 23B. The refrigerant flowing into the double path 23B during the defrosting operation is a gas single-phase refrigerant, and the heat transfer coefficient monotonously increases according to the flow rate. That is, in the lowest unit 20A during the defrosting operation, the inner-pipe heat transfer coefficient in the first passage 24 becomes larger than the inner-pipe heat transfer coefficient in the other refrigerant passages 23 of the double passages 23B. As a result, the area around the first inlet 25 located on the windward side can be quickly heated during the defrosting operation, and the melted water can be discharged more smoothly.
 実施の形態6.
 図8は、実施の形態6における室外熱交換器の一部の具体的な構成を例示する斜視図である。実施の形態6では、実施の形態1~実施の形態5における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態6において、実施の形態1~実施の形態5における構成と同様の構成、および、実施の形態1~実施の形態5における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 6.
FIG. 8 is a perspective view illustrating a specific configuration of part of the outdoor heat exchanger according to Embodiment 6. FIG. In the sixth embodiment, the same reference numerals are given to the same components as those in the first to fifth embodiments. In addition, in Embodiment 6, there are no particular circumstances with regard to the same configuration as in Embodiments 1 to 5, and the same functions as in Embodiments 1 to 5. The explanation is omitted as much as possible.
 実施の形態6における室外熱交換器13の構成内容は、実施の形態1~実施の形態5と同様である。図8において、白抜き矢印は空気の流動方向を示し、実線矢印は除霜運転時における冷媒の流れる方向を示す。図8に示すように、室外熱交換器13には、ガス側分流器16と液側分流器17とが設けられている。ガス側分流器16は、幹管16Aと、当該幹管16Aから分岐した複数の枝管16Bを有する。幹管16Aは、長手方向が鉛直方向となるよう配置される。幹管16Aの外径は、伝熱管21の外径よりも大きい。一方、枝管16Bの外径は、第1入口25の径以下である。枝管16Bの先端は、1以上の伝熱管21のうち、第1入口25に対応する端部に接続される。このような構成によれば、ガス側分流器16での冷媒の圧力損失を抑制することができる。また、配管加工処理を簡素化できるため、生産コストの抑制を図ることができる。 The configuration of the outdoor heat exchanger 13 in Embodiment 6 is the same as in Embodiments 1 to 5. In FIG. 8, white arrows indicate the direction of air flow, and solid arrows indicate the direction of refrigerant flow during the defrosting operation. As shown in FIG. 8 , the outdoor heat exchanger 13 is provided with a gas side flow divider 16 and a liquid side flow divider 17 . The gas side flow divider 16 has a main pipe 16A and a plurality of branch pipes 16B branched from the main pipe 16A. 16 A of trunk pipes are arrange|positioned so that a longitudinal direction may turn into a vertical direction. The outer diameter of the trunk pipe 16A is larger than the outer diameter of the heat transfer tube 21 . On the other hand, the outer diameter of the branch pipe 16B is equal to or less than the diameter of the first inlet 25 . The tip of the branch pipe 16B is connected to the end corresponding to the first inlet 25 among the one or more heat transfer tubes 21 . With such a configuration, the pressure loss of the refrigerant in the gas side flow divider 16 can be suppressed. Moreover, since the piping processing can be simplified, the production cost can be suppressed.
 液側分流器17は、本体17Aと、複数の分流管17Bとを有する。本体17Aは、円筒状であって、円筒の高さ方向が鉛直方向となるよう配置される。本体17Aの外径は、伝熱管21の外径よりも大きい。分流管17Bは、外径が伝熱管21の外径より小さく、内径が3.0[mm]以下である。複数の分流管17Bの各々の一端は、本体17Aの底面の円周に沿って等間隔に位置するよう本体17Aに接続される。分流管17Bの他端は、1以上の伝熱管21のうち、除霜運転時に冷媒がユニット20から流出する、単路23Aにおける出口を形成する部分と接続される。このような構成によれば、暖房運転時には、環状流を形成しながら本体17Aを通過する冷媒の二相流を、本体17Aの底面の円周に沿って等間隔に接続された分流管17Bに対して、液冷媒とガス冷媒の比率が均等になるよう分配可能となる。また、分流管17Bの長さと内径との選定によって、室外熱交換器13における各冷媒流路23への冷媒の分配比率を、室外熱交換器13に生じる風速分布に起因する各冷媒流路23の熱負荷分布に応じたものとすることができる。これにより、熱負荷と冷媒流量の分配比率の不一致による伝熱ロスを低減することができる。また、冷房運転時には、単路23Aから流出した過冷却液冷媒を内径の小さい分流管17Bによって加速させることによる摩擦に起因する圧力損失により、上下方向に積層された各ユニット20の単路23Aの高低差によって生じるヘッド差に起因する流量分配の悪化の影響を低減できる。 The liquid side flow divider 17 has a main body 17A and a plurality of flow division pipes 17B. The main body 17A is cylindrical and arranged so that the height direction of the cylinder is the vertical direction. The outer diameter of main body 17A is larger than the outer diameter of heat transfer tube 21 . The flow dividing tube 17B has an outer diameter smaller than that of the heat transfer tube 21 and an inner diameter of 3.0 [mm] or less. One end of each of the plurality of branch pipes 17B is connected to the main body 17A so as to be positioned at regular intervals along the circumference of the bottom surface of the main body 17A. The other end of the branch tube 17B is connected to a portion of the one or more heat transfer tubes 21 that forms an outlet in the single path 23A through which the refrigerant flows out of the unit 20 during the defrosting operation. According to such a configuration, during heating operation, the two-phase flow of the refrigerant passing through the main body 17A while forming an annular flow is directed to the branch pipes 17B connected at equal intervals along the circumference of the bottom surface of the main body 17A. On the other hand, it becomes possible to distribute the liquid refrigerant and the gas refrigerant so that the ratio becomes equal. In addition, by selecting the length and inner diameter of the branch pipe 17B, the distribution ratio of the refrigerant to each refrigerant flow path 23 in the outdoor heat exchanger 13 can be adjusted to each refrigerant flow path 23 due to the wind speed distribution generated in the outdoor heat exchanger 13. It can be according to the heat load distribution of Thereby, the heat transfer loss due to the mismatch of the distribution ratio between the heat load and the flow rate of the refrigerant can be reduced. In addition, during cooling operation, pressure loss caused by friction caused by accelerating the supercooled liquid refrigerant flowing out of the single path 23A by the branch pipe 17B having a small inner diameter causes the single path 23A of each unit 20 stacked in the vertical direction. It is possible to reduce the influence of deterioration in flow distribution due to head differences caused by height differences.
 実施の形態1~実施の形態6では、冷房運転と暖房運転と除霜運転とを行う空気調和機100について説明したが、空気調和機100は、暖房運転と除霜運転のみを行うものであってもよい。 Embodiments 1 to 6 describe the air conditioner 100 that performs the cooling operation, the heating operation, and the defrosting operation, but the air conditioner 100 performs only the heating operation and the defrosting operation. may
 以上、実施の形態について説明したが、本開示の内容は、実施の形態に限定されるものではなく、想定しうる均等の範囲を含む。 Although the embodiment has been described above, the content of the present disclosure is not limited to the embodiment, and includes a conceivable equivalent range.
 1 室外機、3 室内機、4 冷媒配管、5 冷媒回路、10 圧縮機、11 流路切替装置、12 室外送風機、12A 室外駆動源、12B 室外ファン、13 室外熱交換器、14 膨張弁、15 アキュムレータ、16 ガス側分流器、16A 幹管、16B 枝管、17 液側分流器、17A 本体、17B 分流管、20 ユニット、20A 最下ユニット、20B 上部ユニット、21 伝熱管、22 伝熱フィン、23 冷媒流路、23A 単路、23B 複路、23M 叉状の冷媒流路、24 第1流路、25 第1入口、30 室内送風機、30A 室内駆動源、30B 室内ファン、31 室内熱交換器、100 空気調和機。 1 Outdoor unit, 3 Indoor unit, 4 Refrigerant piping, 5 Refrigerant circuit, 10 Compressor, 11 Flow switching device, 12 Outdoor fan, 12A Outdoor drive source, 12B Outdoor fan, 13 Outdoor heat exchanger, 14 Expansion valve, 15 Accumulator, 16 gas side flow divider, 16A trunk pipe, 16B branch pipe, 17 liquid side flow divider, 17A main body, 17B branch pipe, 20 unit, 20A bottom unit, 20B upper unit, 21 heat transfer tube, 22 heat transfer fin, 23 refrigerant passage, 23A single passage, 23B double passage, 23M forked refrigerant passage, 24 first passage, 25 first inlet, 30 indoor blower, 30A indoor drive source, 30B indoor fan, 31 indoor heat exchanger , 100 air conditioner.

Claims (6)

  1.  暖房運転および除霜運転の各々を行う空気調和機であって、
     室外の空気と冷媒との間で熱交換を行わせる熱交換器と、
     前記冷媒の流れる方向を切り替える流路切替装置と、
     を備え、
     前記熱交換器は、
     上下方向に沿って配置された複数のユニットを有し、
     前記複数のユニットの各々は、
     1本の冷媒流路である単路と、複数本の冷媒流路である複路とが接続された、叉状の冷媒流路を形成する1以上の伝熱管を含み、
     前記流路切替装置は、
     前記除霜運転時には、前記冷媒を前記複路から前記単路に流通させ、前記暖房運転時には、前記冷媒を前記単路から前記複路に流通させ、
     前記複数のユニットのうち最も下に配置された最下ユニットの前記複路は、
     前記除霜運転時の前記冷媒の入口が、前記叉状の冷媒流路において前記空気の流動方向の最も上流側に位置する冷媒流路である第1流路を含み、
     前記第1流路の前記入口は、
     前記叉状の冷媒流路において最も下に位置する、空気調和機。
    An air conditioner that performs each of heating operation and defrosting operation,
    a heat exchanger for exchanging heat between the outdoor air and the refrigerant;
    a channel switching device for switching the direction of flow of the coolant;
    with
    The heat exchanger is
    having a plurality of units arranged along the vertical direction,
    each of the plurality of units,
    One or more heat transfer tubes forming a crotch-shaped refrigerant flow path in which a single refrigerant flow path and a plurality of double refrigerant flow paths are connected,
    The flow path switching device is
    During the defrosting operation, the refrigerant is circulated from the double path to the single path, and during the heating operation, the refrigerant is circulated from the single path to the double path,
    The double path of the lowest unit arranged at the lowest among the plurality of units,
    The inlet of the refrigerant during the defrosting operation includes a first flow path which is the refrigerant flow path located most upstream in the flow direction of the air in the crotch-shaped refrigerant flow path,
    the inlet of the first flow path,
    An air conditioner located at the lowest position in the crotch-shaped refrigerant channel.
  2.  前記複数のユニットの各々の前記複路に含まれる冷媒流路の本数は等しい、請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the number of refrigerant passages included in each of said double paths of said plurality of units is the same.
  3.  前記最下ユニットの前記複路が含む全ての冷媒流路の各々の前記入口は、前記叉状の冷媒流路において最も下に位置する、請求項1または請求項2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the inlet of each of all refrigerant flow paths included in the double path of the lowermost unit is located at the lowest position in the crotch-shaped refrigerant flow path.
  4.  前記複数のユニットは、
     前記最下ユニットの上に配置された上部ユニットを含み、
     前記上部ユニットの前記複路が含む全ての冷媒流路の各々の前記入口は、前記上部ユニットの前記叉状の冷媒流路において、前記空気の流動方向の最も下流側に位置する、請求項1~請求項3のいずれか一項に記載の空気調和機。
    The plurality of units are
    an upper unit positioned above the lowermost unit;
    2. The entrance of each of all the refrigerant passages included in the double path of the upper unit is positioned most downstream in the flow direction of the air in the crotch-shaped refrigerant passage of the upper unit. The air conditioner according to any one of claims 3 to 4.
  5.  前記複数のユニットは、
     複数の前記上部ユニットを含み、
     前記複数の上部ユニットの各々における前記叉状の冷媒回路の形状は互いに等しい、請求項4に記載の空気調和機。
    The plurality of units are
    including a plurality of said upper units;
    The air conditioner according to claim 4, wherein the forked refrigerant circuits in each of the plurality of upper units have the same shape.
  6.  前記第1流路は、前記最下ユニットにおける前記複路が含む全ての冷媒流路のうち、最も短い、請求項1~請求項5のいずれか一項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 5, wherein the first flow path is the shortest of all refrigerant flow paths included in the double path in the lowermost unit.
PCT/JP2022/009409 2022-03-04 2022-03-04 Air conditioner WO2023166708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/009409 WO2023166708A1 (en) 2022-03-04 2022-03-04 Air conditioner
JP2022533097A JP7114011B1 (en) 2022-03-04 2022-03-04 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009409 WO2023166708A1 (en) 2022-03-04 2022-03-04 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023166708A1 true WO2023166708A1 (en) 2023-09-07

Family

ID=82740497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009409 WO2023166708A1 (en) 2022-03-04 2022-03-04 Air conditioner

Country Status (2)

Country Link
JP (1) JP7114011B1 (en)
WO (1) WO2023166708A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113555A (en) * 1993-10-18 1995-05-02 Hitachi Ltd Air conditioner
JP2009257741A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2014115005A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioner
JP2015140990A (en) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 air conditioner
JP2016084970A (en) * 2014-10-24 2016-05-19 株式会社富士通ゼネラル Heat exchanger
JP2016114263A (en) * 2014-12-12 2016-06-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2021017991A (en) * 2019-07-17 2021-02-15 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, air conditioner, indoor machine and outdoor machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113555A (en) * 1993-10-18 1995-05-02 Hitachi Ltd Air conditioner
JP2009257741A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2014115005A (en) * 2012-12-07 2014-06-26 Daikin Ind Ltd Air conditioner
JP2015140990A (en) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 air conditioner
JP2016084970A (en) * 2014-10-24 2016-05-19 株式会社富士通ゼネラル Heat exchanger
JP2016114263A (en) * 2014-12-12 2016-06-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2021017991A (en) * 2019-07-17 2021-02-15 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, air conditioner, indoor machine and outdoor machine

Also Published As

Publication number Publication date
JPWO2023166708A1 (en) 2023-09-07
JP7114011B1 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
CN112204312B (en) Outdoor unit of air conditioner and air conditioner
US10386081B2 (en) Air-conditioning device
JP6768073B2 (en) Air conditioner
EP2336676B1 (en) Combined refrigerating/freezing and air conditioning system
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
TW200921030A (en) Economized vapor compression circuit
JP2007327707A (en) Air conditioner
JP2016142417A (en) Air conditioner
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
WO2018207321A1 (en) Heat exchanger and refrigeration cycle device
WO2023166708A1 (en) Air conditioner
EP3825628B1 (en) Refrigeration cycle device
JP2018138826A (en) Air conditioner
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP7123238B2 (en) refrigeration cycle equipment
JP6910436B2 (en) Outdoor unit and refrigeration cycle device
WO2020183606A1 (en) Air conditioner
JP2017048953A (en) Air conditioner
JP7275372B2 (en) Heat source side unit heat exchanger and heat pump device equipped with the heat exchanger
JP7050538B2 (en) Heat exchanger and air conditioner
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
JP7080395B2 (en) Heat exchanger unit and refrigeration cycle device
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
EP4141348A1 (en) Refrigeration cycle device
JP3749193B2 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022533097

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929852

Country of ref document: EP

Kind code of ref document: A1