WO2023166696A1 - Headlight control device and headlight control method - Google Patents

Headlight control device and headlight control method Download PDF

Info

Publication number
WO2023166696A1
WO2023166696A1 PCT/JP2022/009345 JP2022009345W WO2023166696A1 WO 2023166696 A1 WO2023166696 A1 WO 2023166696A1 JP 2022009345 W JP2022009345 W JP 2022009345W WO 2023166696 A1 WO2023166696 A1 WO 2023166696A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
determination unit
facing
irradiation range
range
Prior art date
Application number
PCT/JP2022/009345
Other languages
French (fr)
Japanese (ja)
Inventor
悠希 住吉
尚嘉 竹裏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024504296A priority Critical patent/JPWO2023166696A1/ja
Priority to PCT/JP2022/009345 priority patent/WO2023166696A1/en
Publication of WO2023166696A1 publication Critical patent/WO2023166696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights

Definitions

  • the present disclosure relates to a headlight control device and a headlight control method.
  • the light is emitted over a wide range in the left-right direction and the up-down direction as viewed from the vehicle.
  • the driver will not be able to see the object even if the light is only directed downwards as seen from the vehicle. Visible.
  • the headlights are controlled to emit light upward as viewed from the vehicle, the driver's visibility is not affected.
  • the present disclosure has been made to solve the problems described above. It is an object of the present invention to provide a headlight control device capable of performing lighting control considering whether or not an object to be visually recognized can be hidden.
  • the headlight control device includes an orientation detection unit that detects the orientation of the driver based on a captured image of the driver of the vehicle, and based on the orientation of the driver detected by the orientation detection unit, detects the orientation of the driver.
  • a direction determination unit that determines whether the driver is facing left or right, and if the direction determination unit determines that the driver is facing left or right, the direction of the driver detected by the direction detection unit and distance data on the distance to the object outside the vehicle measured by a sensor that detects the object.
  • the presence/absence determination unit the direction of the driver detected by the direction detection unit, the determination result of whether the driver is facing leftward or rightward determined by the direction determination unit, and the driver determined by the obstacle presence/absence determination unit Based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the is facing, the irradiation range determination unit that determines the irradiation range of the light from the headlights provided in the vehicle, and the headlights and a headlight control section for irradiating the irradiation range determined by the irradiation range determination section with light.
  • Lighting control in headlight lighting control in a vehicle based on the direction in which the driver is facing, is the situation in the direction in which the driver is facing possible to hide an object to be visually recognized by the driver? Lighting control can be performed in consideration of
  • FIG. 1 is a diagram showing a configuration example of a headlight control device according to Embodiment 1;
  • FIG. 2A and 2B are diagrams for explaining an example of a method of calculating a front direction range by an orientation determination unit according to Embodiment 1.
  • FIG. FIG. 4 is a diagram for explaining an example of a method of determining whether or not an obstacle is estimated to be present in the direction a driver is facing, by an obstacle presence/absence determination unit in Embodiment 1;
  • FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram of a lane in which the vehicle is traveling viewed from the left side of the vehicle.
  • FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determining unit in Embodiment 1, and is a bird's-eye view of the lane in which the vehicle is traveling.
  • FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram showing a situation in front of the vehicle as seen from the driver inside the vehicle.
  • FIG. 4 is a diagram for explaining another example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram of the lane in which the vehicle is traveling viewed from the left side of the vehicle.
  • FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determining unit in Embodiment 1, and is a bird's-eye view of the lane in which the vehicle is traveling.
  • FIG. 4 is a diagram for explaining an
  • FIG. 10 is a diagram for explaining another example of the irradiation range determined by the irradiation range determining unit in Embodiment 1, and is a bird's-eye view of the lane on which the vehicle is traveling.
  • FIG. 4 is a diagram for explaining another example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram showing a situation in front of the vehicle as viewed from the driver inside the vehicle. 4 is a flowchart for explaining the operation of the headlight control device according to Embodiment 1;
  • FIG. 11 is a flowchart for explaining the details of the process of step ST5 in FIG. 10;
  • FIG. 12A and 12B are diagrams showing examples of hardware configurations of a headlight control device according to Embodiment 1 and a headlight control device according to Embodiment 2.
  • FIG. FIG. 6 is a diagram showing a configuration example of a headlight control device according to Embodiment 2; 8 is a flowchart for explaining the operation of the headlight control device according to Embodiment 2;
  • FIG. 15 is a flowchart for explaining the details of the process of step ST5a in FIG. 14;
  • FIG. 1 is a diagram showing a configuration example of a headlight control device 1 according to Embodiment 1. As shown in FIG. In Embodiment 1, it is assumed that headlight control device 1 is mounted on vehicle 100 . The headlight control device 1 performs lighting control of the headlights 2 provided in the vehicle 100 based on the orientation of the driver of the vehicle 100 . In Embodiment 1, the "orientation of the driver's vehicle” is represented by the orientation of the driver's face or the direction of the driver's line of sight.
  • the lighting control of the headlights 2 based on the direction of the driver performed by the headlight control device 1 is performed on the left and right of the road on which the vehicle 100 travels, such as a parking lot at night or an urban area at night. This is assumed to occur when the headlights 2 are turned on in a location where there are many parked vehicles and the vehicle 100 is traveling at a relatively low speed.
  • the headlight control device 1 controls the lighting of the headlights 2 depending on whether the driver is facing forward, left, or right. control.
  • the term "frontal direction” refers to a range horizontally extended by a predetermined distance from the front of the driver. The range of the front direction, the range of the driver facing left, and the range of the driver facing right will be described later.
  • the headlight control device 1 controls the headlights 2 depending on whether it is estimated that there is an obstacle in the direction the driver is facing.
  • a range to be irradiated with light (hereinafter referred to as “irradiation range”) is determined.
  • the headlight control device 1 performs lighting control of the headlights 2 so that the determined irradiation range is irradiated with light.
  • the presence of the obstacle hides the object that the driver should visually recognize from the driver's perspective.
  • a static object having a size that makes it difficult to visually recognize the object is assumed.
  • the obstacles are assumed to be parked vehicles, roadside trees, signboards, or the like.
  • the object to be visually recognized by the driver may suddenly enter the travel route of the vehicle 100 while the driver is driving the vehicle 100, and the driver will not cause an unexpected situation. It assumes an object (mainly a moving object) that needs to be paid attention to.
  • the target to be visually recognized is assumed to be a pedestrian.
  • the headlight control device 1 is connected to the headlight 2, imaging device 3, and obstacle detection sensor 4.
  • a headlight 2 , an imaging device 3 , and an obstacle detection sensor 4 are provided in a vehicle 100 .
  • the headlight 2 is a lighting fixture that illuminates the front of the vehicle 100 . Since the headlight 2 is a general headlight capable of emitting high beam, low beam, and auxiliary light, a detailed description of a configuration example will be omitted.
  • the headlight 2 includes a left light 21 mounted on the left side of the vehicle 100 with respect to the traveling direction of the vehicle 100, and a right light 22 mounted on the right side of the vehicle 100 with respect to the traveling direction of the vehicle 100. .
  • the left light 21 is composed of a high beam unit 211 for illuminating distant objects, a low beam unit 212 for illuminating near objects, and an auxiliary light unit 213 .
  • the right light 22 is composed of a high beam unit 221 for illuminating distant objects, a low beam unit 222 for illuminating near objects, and an auxiliary light unit 223 .
  • the high beam units 211 and 221, the low beam units 212 and 222, and the auxiliary light units 213 and 223 are each composed of a light source (not shown) such as a plurality of LED light sources arranged in an array, and each light source is individually It can be lit.
  • a light source such as a plurality of LED light sources arranged in an array
  • each light source is individually It can be lit.
  • being arranged in an array means that the light sources are arranged in a line in the width direction of vehicle 100 . By turning on each light source, a high beam, a low beam, or auxiliary light is emitted to the area in front of the vehicle 100 .
  • the area in front of the vehicle 100 where the high beam units 211 and 221 can irradiate the high beam is called "high beam irradiation area”. How far in front of the vehicle 100 the high-beam irradiable area is, and what range of the area is determined in advance according to the specifications of the high-beam units 211 and 221 and the like.
  • a region in front of the vehicle 100 where the low beam units 212 and 222 can irradiate the low beam is referred to as a "low beam irradiable region”.
  • an area in front of the vehicle 100 where the auxiliary light units 213 and 223 can irradiate auxiliary light is referred to as an "area capable of being irradiated with auxiliary light”.
  • an area capable of being irradiated with auxiliary light is referred to as an "area capable of being irradiated with auxiliary light”.
  • the headlight control device 1 performs control to irradiate or block high beam, low beam, or auxiliary light by turning on or off each light source. Note that the headlight control device 1 can not only turn on and off each light source, but also control the amount of light when the light source is turned on.
  • the imaging device 3 is a camera or the like installed in the vehicle 100 for the purpose of monitoring the inside of the vehicle 100, and is installed so as to be capable of imaging at least the driver's face.
  • the imaging device 3 outputs the captured image to the headlight control device 1 .
  • the imaging device 3 is provided at the center in the vehicle width direction, for example, near the steering wheel or at the center of the dashboard.
  • the “center” is not limited to being strictly the center, and includes approximately the center.
  • the imaging device 3 is, for example, a camera using a semiconductor imaging device such as a CCD (Charge Coupled Devices) imaging device or a CMOS (Complementary Metal Oxide Semiconductor) imaging device.
  • the imaging device 3 is, for example, shared with an imaging device of a so-called “Driver Monitoring System (DMS)” mounted on the vehicle 100 to monitor the condition of the driver in the vehicle 100.
  • DMS Driver Monitoring System
  • the obstacle detection sensor 4 is a sensor that detects objects existing around the vehicle 100 .
  • the obstacle detection sensor 4 acquires data on the distance to an object outside the vehicle (hereinafter referred to as "distance data").
  • the obstacle detection sensor 4 is assumed to be, for example, a millimeter wave radar.
  • the obstacle detection sensor 4 transmits radio waves such as millimeter waves around the vehicle 100 and receives reflected waves of the radio waves reflected by objects.
  • the obstacle detection sensor 4 can detect the presence of an object associated with the reflected wave, the distance to the object, the shape of the object, etc. based on the time from when the radio wave is transmitted to when the reflected wave is received. can.
  • the distance data acquired by the obstacle detection sensor 4 includes data regarding the presence of an object, the distance to the object, the shape of the object, and the like.
  • the radio waves are emitted to a plurality of areas within a predetermined range around the vehicle 100, and the distance data includes the existence of objects and distances to the objects corresponding to the number of areas to which the radio waves are emitted. It contains data related to the distance and the shape of the object.
  • the obstacle detection sensor 4 outputs the acquired distance data to the headlight control device 1 .
  • the headlight control device 1 includes a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17, and A headlight control unit 18 is provided.
  • the headlight determination unit 11 acquires information about the vehicle 100 (hereinafter referred to as “vehicle information”) from various sensors provided on the vehicle 100 .
  • vehicle information includes information indicating the state of the headlights 2 and vehicle speed information.
  • the headlight determination unit 11 determines whether the headlights 2 are on or off based on the acquired vehicle information.
  • the headlight determination unit 11 outputs a determination result as to whether the headlight 2 is on or off (hereinafter referred to as “headlight state determination result”) to the control start determination unit 13 .
  • the headlight determination unit 11 outputs the vehicle information to the control start determination unit 13 together with the headlight state determination result.
  • the travel location determination unit 12 acquires information related to the current location of the vehicle 100 (hereinafter referred to as “vehicle location related information”) from a location information acquisition device (not shown), and determines the location where the vehicle 100 is currently traveling. judge.
  • the position information acquisition device is, for example, a navigation device mounted on the vehicle 100, a locator, an external camera that captures an image in front of the vehicle 100, or a map database.
  • the vehicle position-related information can specify the location where the vehicle 100 is traveling, such as current position information of the vehicle 100, map information, or an image captured in front of the vehicle 100 (hereinafter referred to as a "front image"). information.
  • the map information includes information indicating facilities such as parking lots, intersections, railroad crossings, road types (city roads, expressways, etc.), and the like.
  • various sensors from which the headlight determination unit 11 acquires vehicle information and the position information acquisition device may be a common device. , information indicating the state of the headlights 2, vehicle speed information, current position information of the vehicle 100, and map information.
  • Driving location determination unit 12 outputs information about the location where vehicle 100 is currently traveling (hereinafter referred to as “driving location information”) to control start determination unit 13 .
  • the travel location information includes, for example, information that can identify the type of location where vehicle 100 is currently traveling, such as a parking lot, or the address of the location where vehicle 100 is currently traveling.
  • the type of location where the vehicle 100 is currently traveling includes information indicating the type of road on which the vehicle 100 is currently traveling, such as a city road.
  • the travel location determination unit 12 outputs the vehicle position-related information together with the travel location information to the control start determination unit 13 .
  • the control start determination unit 13 turns on the headlights 2 based on the direction of the driver based on the headlight state determination result output from the headlight determination unit 11 and the driving location information output from the driving location determination unit 12. Determine whether to start control. Specifically, the control start determination unit 13 compares the headlight state determination result and the driving location information with preset conditions (hereinafter referred to as “control start determination conditions”) to determine the direction of the driver. It is determined whether or not to start the lighting control of the headlights 2 based on. A condition for starting lighting control of the headlight 2 is set in the control start determination condition.
  • the control start determination condition is created in advance by an administrator or the like and stored in a location that can be referred to by the control start determination unit 13 .
  • Embodiment 1 the following conditions are set as the control start determination conditions. "Meet the following (1) and (2). (1) The headlights must be on. (2) The place where the vehicle is traveling is defined in advance as a place where headlight lighting control is performed based on the direction of the driver. ”
  • the application location is defined as a location, such as a “parking lot” or a “town road”, where many vehicles are assumed to be parked on the left and right sides of the road on which the vehicle 100 travels.
  • the applicable location may be defined by the type of applicable location, or may be defined by a specific address.
  • control start determination condition is merely an example.
  • the conditions for determining the start of control may include the condition that (3) the vehicle speed is equal to or less than a preset threshold value. .
  • the control start determination unit 13 determines to start lighting control of the headlights 2 based on the direction of the driver when the conditions for control start determination are satisfied. If the control start determination condition is not satisfied, the control start determination unit 13 determines not to start the lighting control of the headlights 2 based on the direction of the driver. When the control start determination unit 13 determines to start the lighting control of the headlights 2 based on the orientation of the driver, the control start determination unit 13 sends information instructing the start of control (hereinafter referred to as “control start instruction”) to the orientation detection unit 14 and the irradiator. Output to range determination unit 17 . The control start determination unit 13 also outputs vehicle information and vehicle position-related information to the irradiation range determination unit 17 .
  • the direction detection unit 14 detects the direction of the driver based on the captured image acquired from the imaging device 3 .
  • the direction detection unit 14 uses a known image recognition technology to detect the direction of the driver, in other words, the direction of the driver's face or line of sight.
  • the image recognition technology for detecting the direction of a person's face from a captured image of a person's face and the image recognition technology for detecting the line-of-sight direction from a captured image of a person's face are well-known technologies. , detailed description is omitted.
  • the orientation detection unit 14 detects the orientation of the driver with reference to the center of the driver's head.
  • the orientation detection unit 14 can calculate the position of the center of the driver's head.
  • the position of the center of the driver's head is one point on the real space, and is represented by coordinate values mappable on a map, for example.
  • the orientation of the driver is represented by a horizontal angle with respect to a straight line passing through the center of the driver's head and a point in front of the center of the head.
  • the orientation of the driver is defined as the reference (0 degrees) when the driver is facing forward with respect to the direction of travel of the vehicle 100, and from the state in which the driver is facing the front with respect to the direction of travel of the vehicle 100. It is expressed as an angle that becomes a larger value as it turns to the right. The value of the driver's direction becomes smaller as the driver turns left with respect to the traveling direction of the vehicle 100 from the state in which the driver faces the front.
  • the front is not strictly limited to being directly in front, but includes substantially in front.
  • the orientation detection unit 14 outputs the detected orientation of the driver to the orientation determination unit 15 .
  • the orientation determination unit 15 determines whether the driver is facing left or right based on the orientation of the driver detected by the orientation detection unit 14 .
  • the orientation determination unit 15 determines whether the orientation of the driver detected by the orientation detection unit 14 is directed to the right rather than to the right end of the lane in which the vehicle 100 is traveling (here, the so-called lane). If so, it is determined that the driver is facing the right direction, and the driver is facing the left end of the lane in which the vehicle 100 is traveling (here, the so-called lane). is also facing left, it is determined that the driver is facing left.
  • the direction determining unit 15 first calculates a range of the driver's direction in which the driver is facing the front (hereinafter referred to as "front direction range").
  • the frontal direction range refers to the direction from the direction when the driver faces the left end of the lane in which vehicle 100 is traveling (the so-called lane here) to the right end of the lane.
  • the orientation determination unit 15 determines the distance from the vehicle 100 to a point in front of the vehicle 100 that the driver should visually recognize (hereinafter referred to as "visible distance"), and the lane in which the vehicle 100 is traveling (here, The frontal direction range is calculated based on the width of the lane (hereinafter referred to as "lane width") and the position of the driver. It should be noted that the position of the driver is represented, for example, by the position of the center of the driver's head.
  • the orientation determination unit 15 may acquire information regarding the position of the driver from the orientation detection unit 14 .
  • FIG. 2A and 2B are diagrams for explaining an example of a method for calculating the front direction range by the orientation determination unit 15 in the first embodiment.
  • FIG. 2A is a diagram for explaining an example of a method in which the orientation determination unit 15 calculates the frontal direction range using a fixed value of the visible distance
  • FIG. FIG. 10 is a diagram for explaining an example of a method for calculating a frontal direction range.
  • the lane width of the lane in which the vehicle 100 is traveling (the so-called lane here) is a preset value. do. In the example described using FIG.
  • the lane width is "2.5 m", and in the example described using FIG. 2B, the lane width is "3 m”.
  • the vehicle 100 is a right-hand drive vehicle. 2A and 2B, the upward direction is the traveling direction of the vehicle 100. As shown in FIG. For ease of explanation, the scales in FIGS. 2A and 2B are different from the actual scales.
  • the visible distance is assumed to be 40 m, for example.
  • the visible distance is set, for example, by an administrator or the like in consideration of the distance from the vehicle 100 at which the headlights 2 can irradiate light in front of the vehicle 100. , is stored in a location that the orientation determination unit 15 can refer to.
  • the orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane), and the driver's position and the vehicle 100 traveling. The horizontal distance to a point on the right end of the lane (the so-called lane here) is calculated.
  • the orientation determination unit 15 performs known image recognition processing on the forward image included in the vehicle position-related information acquired via the control start determination unit 13 and the orientation detection unit 14, for example, so that the vehicle 100 can move. Both ends of the lane (the lane here is a so-called lane) are detected.
  • the orientation determination unit 15 determines the position of the driver and the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane). , and the horizontal distance between the driver's position and the point on the right end of the lane in which the vehicle 100 is traveling (the so-called lane here) can be calculated. In the example shown in FIG. 2A, the orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) to be 1.75 m.
  • the direction determining unit 15 calculates the horizontal distance between the position of the driver and the point on the right end of the lane in which the vehicle 100 is traveling (the so-called lane here) to be 1.75 m. . In this case, the orientation determination unit 15 calculates the range of "-1.78 degrees to +1.78 degrees" as the front direction range.
  • the visible distance is calculated from the vehicle speed of the vehicle 100 and the set running time as the distance that the vehicle 100 reaches after the running time has passed. Dynamically change view distance. For example, assume that the vehicle 100 is traveling at 20 km/h. The vehicle information acquired by the orientation determination unit 15 via the control start determination unit 13 and the orientation detection unit 14 includes vehicle speed information. It is also assumed that the running time is set to 5 seconds, for example. In this case, the orientation determination unit 15 calculates the visual recognition distance as 27.8 m from the vehicle speed of 20 km/h and the running time of 5 seconds. It should be noted that, for example, the number of places after the decimal point to which the orientation determination unit 15 determines the visible distance is determined in advance.
  • the running time for calculating the frontal direction range may be appropriately set by the orientation determination unit 15 .
  • the orientation determination unit 15 can change the running time according to the vehicle speed of the vehicle 100 . For example, when the vehicle 100 is traveling at 40 km/h, the direction determining unit 15 makes the traveling time longer than the traveling time when the vehicle 100 is traveling at 20 km/h, thereby increasing the visible distance. You may do so. For example, when the vehicle speed of the vehicle 100 is 0 km/h, the orientation determination unit 15 uses a preset initial value as the visual recognition distance.
  • the orientation determination unit 15 determines the position of the driver and the lane in which the vehicle 100 is traveling (here, The horizontal distance between the driver's position and the rightmost point of the lane in which the vehicle 100 is traveling (the so-called lane) is measured. calculate. In the example shown in FIG. 2B, the orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) to be 2.5 m, Assume that the horizontal distance between the position of the driver and a point on the right end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) is calculated to be 0.5 m. In this case, the orientation determination unit 15 calculates the range of "-5.13 degrees to +1.08 degrees" as the front direction range.
  • the lane width is a preset value, but this is only an example.
  • the vehicle position-related information acquired by the orientation determination unit 15 via the control start determination unit 13 and the orientation detection unit 14 includes lane width information. You may calculate a front direction range based on. Further, for example, the orientation determination unit 15 performs known image recognition processing on the forward image included in the vehicle position-related information, and detects lanes (here, lanes are so-called demarcation lines that separate lanes). Then, the front direction range may be calculated based on the calculated lane width.
  • the orientation determination unit 15 acquires distance data from the obstacle detection sensor 4, and determines whether the vehicle 100 is traveling based on the distance to the objects present on the left and right sides of the vehicle 100 detected based on the acquired distance data. It is also possible to calculate the width of the road on which the vehicle is moving, and use this as the lane width. Then, the orientation determination unit 15 may calculate the front direction range based on the lane width calculated based on the distance data. Note that an arrow from the obstacle detection sensor 4 to the orientation determination unit 15 is omitted in FIG.
  • the orientation determination unit 15 determines the coordinates of the center of the lane in which the vehicle 100 is traveling (herein, the lane is a so-called lane) and the coordinates of the position of the vehicle 100 (hereinafter referred to as "lane center coordinates"). (hereinafter referred to as "vehicle position coordinates"), and the difference between the value of the lane center coordinate and the value of the vehicle position coordinate is taken, and the horizontal distance from a point on the left end of the lane to the position of the vehicle 100 and the position of the vehicle 100 are obtained.
  • the frontal direction range may be calculated by calculating the horizontal distance from one point on the right end to the position of the vehicle 100 .
  • the orientation detection unit 14 may, for example, acquire vehicle position-related information from a position information acquisition device, and specify the lane center coordinates and the vehicle position coordinates.
  • the center of the lane and the position of the vehicle 100 are one point on the real space, and are represented, for example, by mappable coordinate values on a map.
  • the lane width may be set in advance, for example, or the orientation determination unit 15 may acquire lane width information from the vehicle position-related information. Since the correspondence relationship between the position of the vehicle 100 and the position of the driver can be known based on the information about the position of the driver acquired from the orientation detection unit 14, the orientation determination unit 15 detects the position of the vehicle 100 from one point on the left end of the lane.
  • the horizontal distance from one point at the left end of the lane to the driver's position and the distance from the one point at the right end of the lane to the driver's position can be calculated.
  • horizontal distance can be calculated.
  • the orientation determination unit 15 the horizontal distance from one point on the left end of the lane to the position of the vehicle 100 is calculated as "2.4 m”
  • the horizontal distance from the one point on the right end of the lane to the position of the vehicle 100 is calculated as "0.6 m”.
  • the orientation determination unit 15 determines that the horizontal distance from the left edge point of the lane to the driver's position is "2.5 m", and the horizontal distance from the left edge point of the lane to the driver's position is "0.5 m”. It can be calculated as follows. Based on the calculated horizontal distance from one point on the left edge of the lane to the driver's position and the calculated horizontal distance from one point on the right edge of the lane to the driver's position, the orientation determination unit 15 uses FIGS. The frontal direction range can be calculated by the method described above.
  • the orientation determination unit 15 can determine the direction from the front image because, for example, there are no lanes (here, lanes are so-called demarcation lines that separate lanes) or the lanes are thin. Even if the lane cannot be detected, the front direction range can be calculated.
  • the direction determination unit 15 compares the frontal direction range with the direction of the driver detected by the direction detection unit 14 to determine whether the driver is facing leftward or rightward. . Specifically, when the orientation of the driver detected by the orientation detection unit 14 is greater than the maximum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing right. In the example described above with reference to FIG. 2A, the orientation determination unit 15 determines that the driver is facing right when the orientation of the driver detected by the orientation detection unit 14 is greater than +1.78 degrees. judge. In the example described above with reference to FIG. 2B, the orientation determination unit 15 determines that the driver is facing right when the orientation of the driver detected by the orientation detection unit 14 is greater than +1.08 degrees. judge.
  • a case where the direction of the driver detected by the direction detection unit 14 is greater than the maximum value of the front direction range means that the direction of the driver detected by the direction detection unit 14 is in the lane in which the vehicle 100 is traveling (here, lane It can be said that it is facing to the right rather than facing the right end of the so-called lane.
  • the orientation determination unit 15 determines that the driver is facing left. In the example described above with reference to FIG. 2A, the orientation determination unit 15 determines that the driver is facing left when the orientation of the driver detected by the orientation detection unit 14 is smaller than -1.78 degrees. I judge. In the example described above with reference to FIG. 2B, the orientation determination unit 15 determines that the driver is facing left when the orientation of the driver detected by the orientation detection unit 14 is smaller than -5.13 degrees. I judge.
  • a case where the direction of the driver detected by the direction detection unit 14 is smaller than the minimum value of the front direction range means that the direction of the driver detected by the direction detection unit 14 is in the lane in which the vehicle 100 is traveling (here, lane It can be said that it is facing left rather than facing the left end of the so-called lane.
  • the orientation determination unit 15 determines that the driver is facing the front. In the example described above with reference to FIG. 2A, the orientation determination unit 15 detects that the orientation of the driver detected by the orientation detection unit 14 is within the range of ⁇ 1.78 degrees to +1.78 degrees. It is determined that the person is facing the front. In the example described above with reference to FIG. 2B, the direction determination unit 15 detects that the direction of the driver detected by the direction detection unit 14 is within the range of ⁇ 5.13 degrees to +1.08 degrees. It is determined that the person is facing the front.
  • the direction determination unit 15 determines whether the driver is facing left, right, or front (hereinafter referred to as "direction determination result"). ) is output to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 . Further, the orientation determination unit 15 outputs the orientation of the driver detected by the orientation detection unit 14 to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 .
  • the obstacle presence/absence determination unit 16 acquires the orientation determination result from the orientation determination unit 15 .
  • the obstacle presence/absence determination unit 16 also acquires distance data from the obstacle detection sensor 4 . If the direction determination unit 15 determines that the driver is facing leftward or rightward, the obstacle presence/absence determination unit 16 detects the direction of the driver detected by the direction detection unit 14 and the direction detected by the obstacle detection sensor 4. Based on the obtained distance data, it is determined whether or not it is estimated that there is an obstacle in the direction the driver is facing.
  • FIG. 3 is for explaining an example of a method for determining whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, by the obstacle presence/absence determination unit 16 in the first embodiment. It is a diagram. An example of a method for determining whether or not an obstacle is estimated to exist in the direction in which the driver is facing by the obstacle presence/absence determination unit 16 will be described with reference to FIG. 3 . For ease of explanation, the scale in FIG. 3 is different from the actual scale.
  • the obstacle presence/absence determination unit 16 determines, for example, within a preset range (hereinafter referred to as "obstacle estimation direction range”) with respect to the direction of the driver based on the direction of the driver and the distance data, and , within the range from the position of the vehicle 100 to the visible distance, when an object that satisfies a preset condition (hereinafter referred to as "obstacle estimation condition”) is detected, the obstacle is detected in the direction the driver is facing. It is determined that it is estimated that there is for the obstacle estimation condition, for example, a condition that "corresponds to the size of a general vehicle" is set. Note that this is merely an example, and for example, a specific size may be set.
  • the obstacle estimation condition it is only necessary to set a condition that allows determination of an object having a size that can be regarded as an obstacle.
  • the obstacle estimation orientation range and the obstacle estimation conditions are stored in a location that the obstacle presence/absence determining unit 16 can refer to.
  • the visual recognition distance is 40m
  • the driver's direction is -4 degrees
  • the obstacle estimation direction range is "a range of -0.5 degrees to +0.5 degrees centered on the driver's direction".
  • the obstacle estimation condition is set to "equivalent to the size of a general vehicle”.
  • the range in the front direction is -1.78 degrees to +1.78 degrees.
  • the arrow indicates the direction of the driver
  • "E” indicates the direction range for obstacle estimation
  • the black circle indicates the position of the object indicated by the distance data.
  • the obstacle presence/absence determination unit 16 determines that it is estimated that there is an obstacle in the direction the driver is facing. do. If the object detected in the obstacle estimation direction range does not correspond to the size of a general vehicle, the obstacle presence/absence determination unit 16 does not estimate that there is an obstacle in the direction the driver is facing. For example, it is estimated that there is no obstacle in the direction the driver is facing.
  • the obstacle presence/absence determination unit 16 detects the orientation of the driver based on the orientation of the driver detected by the orientation detection unit 14 and the distance data obtained from the obstacle detection sensor 4. It determines whether or not an obstacle is estimated to exist in the direction, and does not determine whether or not an obstacle actually exists or what kind of obstacle exists.
  • the obstacle presence/absence determination unit 16 sends the determination result (hereinafter referred to as “obstacle presence/absence determination result”) as to whether or not it is estimated that there is an obstacle in the direction the driver is facing, to the irradiation range determination unit 17. Output.
  • the irradiation range determination unit 17 combines the direction of the driver detected by the direction detection unit 14, the determination result of whether the driver is facing left or right, which is determined by the direction determination unit 15, and the obstacle presence/absence determination unit. 16 determines whether or not it is estimated that there is an obstacle in the direction the driver is facing. More specifically, the irradiation range determining unit 17 determines, by the headlights 2, the range of the high beam irradiation possible region, the low beam irradiation possible region, and the auxiliary light irradiation possible region to which the light is irradiated. Determined as the irradiation range of light. In the following description, the light irradiation range of the headlights 2 is also simply referred to as "irradiation range".
  • the irradiation range determination unit 17 does not depend on the direction of the driver. Maintain the cutoff line so that the irradiation range is below the cutoff line. When the driver is facing left or right, the irradiation range determination unit 17 determines the direction the driver is facing (left or right) in addition to the front direction. Determine the irradiation range in
  • the irradiation range determination unit 17 determines the irradiation range in the direction the driver is facing (left direction). The range up to the angle minus 1 is determined as the irradiation range.
  • the “vertical direction” refers to the vehicle height direction of vehicle 100
  • the “lateral direction” refers to the width direction of vehicle 100 .
  • the irradiation range determination unit 17 determines the vertical range of the irradiation range in the direction in which the driver is facing (left direction), for example, with the installation position of the headlight 2 as a reference, as viewed from the installation position. Determine the range up to ⁇ degrees above the cutoff line.
  • the irradiation range determining unit 17 determines the position of the headlight 2 based on the mounting position of the headlight 2, the low beam irradiation area, and the height of the pedestrian assuming that the pedestrian is in front of the vehicle 100 by a predetermined distance. determines the angle above the cutoff line based on the installation position of the headlight 2 at which the light is emitted.
  • the mounting position of the headlight 2 and the low beam irradiation area are known in advance.
  • the height of the pedestrian assuming that he or she is in front of the vehicle 100 is set in advance and stored in a location that can be referred to by the irradiation range determination unit 17 .
  • the irradiation range determination unit 17 determines the lateral range of the irradiation range in the direction the driver is facing (left direction), for example, the lane in which the vehicle 100 is traveling (the lane here is the so-called lane).
  • the range from the left end to the angle obtained by subtracting a predetermined angle from the direction of the driver is determined.
  • the predetermined angle subtracted from the direction of the driver is, for example, 0.5 degrees.
  • FIGS. 4, 5 and 6 are diagrams for explaining an example of the irradiation range determined by the irradiation range determination unit 17 in the first embodiment. 4, 5, and 6, as an example, the irradiation range determination unit 17 determines the irradiation range in the above-described "Case A-1".
  • the scales in FIGS. 4, 5 and 6 are different from the actual scales.
  • the vehicle 100 is now traveling in a parking lot, and in the direction the driver is facing (to the left) is a parked vehicle (indicated by "C" in FIGS. 4, 5 and 6).
  • FIG. 5 is a bird's-eye view of the lane in which the vehicle 100 is traveling
  • FIG. 1 is a diagram showing a situation ahead of a vehicle 100 when viewed from above.
  • FIG. 6, illustration of the vehicle 100 is omitted.
  • the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground (see H1 in FIGS. 4, 5, and 6), and the low beam units 212 and 222 of the headlight 2 are It is assumed that the low beam can illuminate 40 m ahead from the position of the vehicle 100 .
  • L1 indicates the irradiation range of the low beam.
  • the predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m (see H2 in FIGS. 4, 5, and 6). do.
  • illustration is omitted in FIGS. 4, 5, and 6, it is assumed that the direction of the driver is -4 degrees. Although not shown in FIGS.
  • the frontal direction range calculated by the orientation determination unit 15 is -1.78 degrees to +1.78 degrees.
  • the irradiation range determination unit 17 is configured to illuminate the whole body of the pedestrian assumed to be present in the direction the driver is facing (to the left) from the cutoff line of the low beam.
  • the range up to +5.2 degrees with respect to the installation position of the headlight 2 is defined as the range in the vertical direction of the irradiation range.
  • the irradiation range determining unit 17 determines that the direction of the driver is ⁇ 4 from the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) in the direction the driver is facing (left direction).
  • the range up to 0.5 degrees (-4.5 degrees to -1.78 degrees) is defined as the horizontal range of the irradiation range.
  • the irradiation range determination unit 17 maintains the vertical cutoff line in the front direction. 1.78 degrees to +1.78 degrees) is determined as the irradiation range. As a result, the ranges indicated by L1 and L2 in FIGS. 4, 5 and 6 are determined as the irradiation range.
  • the irradiation range determining unit 17 determines the irradiation range to include the area above the cutoff line in the direction in which the driver is facing.
  • the irradiation range determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction in which the driver is facing (left direction).
  • the irradiation range is determined to be below the off-line, and in the horizontal direction to an angle obtained by subtracting a predetermined angle from the direction of the driver.
  • FIGS. 7, 8, and 9 are diagrams for explaining another example of the irradiation range determined by the irradiation range determination unit 17 in the first embodiment. 7, 8, and 9, as an example, the irradiation range determining unit 17 determines the irradiation range in the above-described "Case A-2".
  • the scales in FIGS. 7, 8, and 9 are different from the actual scales. Assume that the vehicle 100 is now running in a parking lot. 7 and 4 differ only in that there is no other vehicle in the direction the driver is facing. 8 and 5 differ only in that there is no other vehicle in the direction the driver is facing. 9 and 6 differ only in that there is no other vehicle in the direction the driver is facing. Also, although illustration is omitted in FIGS. 7, 8, and 9, it is assumed that the direction of the driver is -4 degrees. Although not shown in FIGS. 7, 8, and 9, the frontal direction range calculated by the orientation determination unit 15 is -1.78 degrees to +1.78 degrees.
  • the irradiation range determining unit 17 sets the range in which the low beam cutoff line is maintained in the direction in which the driver is facing (to the left) as the vertical range of the irradiation range. In addition, the irradiation range determining unit 17 determines that the direction of the driver is ⁇ 4 from the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) in the direction the driver is facing (left direction). The range up to 0.5 degrees (-4.5 degrees to -1.78 degrees) is defined as the horizontal range of the irradiation range.
  • the irradiation range determination unit 17 determines the irradiation range as a range that does not include the upper side of the cutoff line of the low beam but is below the cutoff line in the direction (leftward direction) in which the driver is facing.
  • the irradiation range determination unit 17 maintains the cutoff line in the vertical direction in the front direction. 1.78 degrees to +1.78 degrees) is determined as the irradiation range. As a result, the range indicated by L1 in FIGS.
  • the irradiation range determining unit 17 determines the irradiation range to be the area below the cutoff line, not including the area above the cutoffline, in the direction in which the driver is facing.
  • the irradiation range determining unit 17 determines the irradiation range in the direction the driver is facing (right direction).
  • the irradiation range is determined as the range up to the angle that is added by .
  • the irradiation range determination unit 17 determines the vertical range of the irradiation range in the direction in which the driver is facing (right direction), for example, with the installation position of the headlight 2 as a reference, as viewed from the installation position. Determine the range up to ⁇ degrees above the cutoff line.
  • the irradiation range determination unit 17 determines the irradiation range in the horizontal direction in the irradiation range in the direction the driver is facing (right direction), for example, The range is determined from the right end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) to an angle obtained by adding a predetermined angle to the direction of the driver.
  • the predetermined angle plus from the direction of the driver is, for example, 0.5 degrees.
  • an example of the irradiation range determined by the irradiation range determining unit 17 in the case of "Case B-1" is, for example, "Case A -1”
  • an example of the irradiation range determined by the irradiation range determining unit 17 is only a change in the direction of the driver to the right, so a detailed description thereof will be omitted.
  • the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground, and the low beam units 212 and 222 of the headlight 2 can illuminate up to 40 m ahead of the position of the vehicle 100 with low beams. do.
  • a predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m. It is also assumed that the direction of the driver is +4 degrees. Further, the front direction range calculated by the orientation determination unit 15 is assumed to be -1.78 degrees to +1.78 degrees. In this case, the irradiation range determination unit 17 determines the range up to +5.2 degrees with respect to the installation position of the headlight 2 upward from the low beam cutoff line in the direction the driver is facing (right direction). The range in the vertical direction of the irradiation range is defined as the range (+1.78 degrees to +4.5 degrees) is the range in the horizontal direction of the irradiation range. The irradiation range determining unit 17 maintains the vertical cutoff line in the front direction. 78 degrees to +1.78 degrees) is determined as the irradiation range.
  • the irradiation range determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction in which the driver is facing (right direction).
  • the irradiation range is determined to be below the off-line, and in the horizontal direction to an angle obtained by adding a predetermined angle from the direction of the driver.
  • an example of the irradiation range determined by the irradiation range determination unit 17 in the case of "Case B-2" is, for example, "Case A -2”
  • an example of the irradiation range determined by the irradiation range determination unit 17 is only a change in the direction of the driver to the right, so a detailed description thereof will be omitted.
  • the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground, and the low beam units 212 and 222 of the headlight 2 can illuminate up to 40 m ahead of the position of the vehicle 100 with low beams. do.
  • a predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m. It is also assumed that the direction of the driver is +4 degrees. Further, the front direction range calculated by the orientation determination unit 15 is assumed to be -1.78 degrees to +1.78 degrees. In this case, the irradiation range determining unit 17 sets the range in which the low beam cutoff line is maintained in the direction in which the driver is facing (the right direction) as the range in the vertical direction of the irradiation range.
  • the range (+1.78 degrees to +4.5 degrees) from the right end of the lane in which 100 is traveling (the so-called lane here) to +4.5 degrees is the range in the left and right direction of the irradiation range. do.
  • the irradiation range determining unit 17 maintains the vertical cutoff line in the front direction. 78 degrees to +1.78 degrees) is determined as the irradiation range.
  • the irradiation range determination unit 17 maintains the cutoff line in the front direction so that the irradiation range of the headlights 2 does not include the area above the cutoffline and is below the cutoffline.
  • the cutoff line is maintained in the vertical direction, in other words, it is below the cutoff line and does not include the area above the cutoff line, In the horizontal direction, the frontal range (-1.78 degrees to +1.78 degrees) is determined as the irradiation range.
  • the irradiation range determination unit 17 outputs information regarding the determined irradiation range of light from the headlights 2 (hereinafter referred to as “irradiation range information”) to the headlight control unit 18 .
  • the irradiation range information includes, for example, information in which the irradiation range of the light from the headlight 2 is expressed as a range of angles in the vertical direction and the horizontal direction with respect to the installation position of the headlight 2 .
  • the irradiation range determining unit 17 converts the determined irradiation range represented by the orientation of the driver into a range based on the installation position of the headlight 2 to create irradiation range information. Since the driver's head position and the installation position of the headlight 2 are known, the irradiation range determination unit 17 can perform the conversion described above.
  • the irradiation range determination unit 17 defines the range in the vertical direction below the cutoff line, and corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver.
  • the irradiation range (irradiation range in the front direction), which is the range in the left and right direction based on the installation position of the headlight 2, and +5.2 from the low beam cutoff line upward, based on the installation position of the headlight 2.
  • the range in the vertical direction is defined as the range up to the degree
  • the range in the horizontal direction is defined as the range based on the installation position of the headlight 2, which corresponds to the range from -4.5 to -1.78 degrees for the direction of the driver.
  • the irradiation range information including information on the irradiation range (the irradiation range in the direction in which the driver is facing) is output to the headlight control unit 18 . Since the installation position of the headlight 2 and the low beam irradiation area are known, the irradiation range determination unit 17 also converts the range below the cutoff line into an angle based on the installation position of the headlight 2. can.
  • the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver.
  • the irradiation range irradiation range in the front direction
  • the range below the low beam cutoff line is defined as the vertical range.
  • the irradiation range irradiation range in the direction in which the driver is facing
  • the irradiation range which corresponds to the range of directions from -4.5 to -1.78 degrees and is the range in the left and right direction based on the installation position of the headlight 2. to the headlight control unit 18.
  • the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of ⁇ 1.78 degrees to +1.78 degrees in the direction of the driver.
  • the irradiation range irradiation range in the front direction
  • the vertical range is the range up to 0.2 degrees
  • the horizontal range is the range based on the installation position of the headlight 2, which corresponds to the range of +1.78 to +4.5 degrees of the driver's direction.
  • the irradiation range information including information on the irradiation range (the irradiation range in the direction in which the driver is facing) is output to the headlight control unit 18 .
  • the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of ⁇ 1.78 degrees to +1.78 degrees in the direction of the driver.
  • the irradiation range irradiation range in the front direction
  • the range below the low beam cutoff line is defined as the vertical range.
  • Information on the irradiation range (the irradiation range in the direction in which the driver is facing), which corresponds to the range of directions from +1.78 to +4.5 degrees and is the range in the left and right direction based on the installation position of the headlight 2. to the headlight control unit 18.
  • the irradiation range determination unit 17 sets the vertical range below the cutoff line, and the headlights corresponding to the range of ⁇ 1.78 degrees to +1.78 degrees toward the driver. 2, is output to the headlight control unit 18.
  • the headlight control unit 18 causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17 .
  • the range in the vertical direction is below the cutoff line, and the headlight corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver.
  • the irradiation range irradiation range in the front direction
  • the range in the vertical direction is defined as the range up to and including the direction of the driver from -4.5 to -1.78 degrees
  • the range based on the installation position of the headlight 2 is defined as the range in the horizontal direction.
  • the headlight control unit 18 controls the light sources of the low beam units 212 and 222 individually within a range of ⁇ 4.5 degrees to +1.78 degrees in the horizontal direction and below the cutoff line in the vertical direction. (hereinafter referred to as “first range”) is controlled to irradiate light, that is, a low beam.
  • first range is controlled to irradiate light, that is, a low beam.
  • the headlight control unit 18 controls the plurality of light sources of the low beam units 212 and 222 to individually irradiate low beams.
  • the headlight control unit 18 controls the plurality of light sources of the low beam units 212 and 222 to individually change the optical axis and irradiate the first range with the low beam.
  • the headlight control unit 18 may adjust the light source to be turned on among the plurality of light sources of the low beam units 212 and 222, thereby performing control to irradiate the first range with the low beam.
  • adjusting the light source to be turned on means, for example, selecting a light source to be turned on from a plurality of light sources or adjusting the amount of light when the plurality of light sources are turned on.
  • the headlight control unit 18 has a range of -4.5 degrees to -1.78 degrees in the horizontal direction and +5.2 degrees upward from the cutoff line in the vertical direction with respect to the installation position of the headlight 2.
  • Control is also performed to irradiate the light in a range (hereinafter referred to as a “second range”) up to the degree.
  • the headlight control unit 18 controls the plurality of light sources of the high beam units 211 and 221 to individually change the optical axis and irradiate the high beam in the second range.
  • the headlight control unit 18 may adjust the light source to be turned on among the plurality of light sources of the high beam units 211 and 221, thereby performing control to irradiate the second range with the high beam.
  • the headlight control unit 18 may individually change the optical axis of the plurality of light sources of the fill light units 213 and 223 to irradiate fill light in the second range.
  • control may be performed to irradiate the second range with auxiliary light.
  • the light emitted from the headlight 2 is emitted to the irradiation range as described with reference to FIGS. 4, 5 and 6 .
  • the headlight control device 1 controls the visibility of the driver without impairing the driver's visibility due to the obstacle. This makes it easier for the driver to visually recognize a pedestrian or the like that may exist in the direction the driver is facing.
  • the headlight control device 1 maintains a cut-off line in the front direction of the driver, so that even if a pedestrian or the like exists in the front direction, the pedestrian or the like is less likely to be glared.
  • the range in the vertical direction is below the cutoff line, and the range corresponds to the direction of the driver from -1.78 degrees to +1.78 degrees.
  • the irradiation range (the irradiation range in the front direction) is defined as the range in the horizontal direction based on the installation position of the headlight 2, and the range below the low beam cutoff line is defined as the vertical range.
  • irradiation range information including is output (in the case of the above "Case A-2").
  • the headlight control unit 18 controls the light sources of the low beam units 212 and 222 individually within a range of ⁇ 4.5 degrees to +1.78 degrees in the horizontal direction and below the cutoff line in the vertical direction. , that is, the first range, is controlled to be irradiated with light, that is, a low beam.
  • the light emitted from the headlight 2 is emitted to the irradiation range as described with reference to FIGS. 7, 8 and 9 .
  • the headlight control device 1 illuminates the driver in the direction the driver is facing. It is possible to make it easier to visually recognize possible pedestrians and the like, and to make glare less likely to occur to pedestrians and the like that may exist in the direction that the driver is facing. If there are no obstacles in the direction the driver is facing, the area below the cut-off line where only the pedestrian's feet are illuminated will be the area where the light is illuminated. Even in this case, the driver can visually recognize pedestrians and the like.
  • the headlight control device 1 determines whether the direction in which the driver is facing with respect to the headlight 2 is an object to be visually recognized by the driver, in other words, a pedestrian can be hidden. Lighting control can be performed in consideration of As a result, the headlight control device 1 can improve the visibility of the driver, and can make it difficult for pedestrians and the like, which may exist in the direction the driver is facing, to glare.
  • the method of controlling the headlights 2 by the headlight control unit 18 as described above is merely an example.
  • the headlight control unit 18 only needs to be able to control the headlights 2 so that the irradiation range specified by the irradiation range information is irradiated with light.
  • the headlight control unit 18 converts the range represented by the direction of the driver into a range based on the installation position of the headlight 2, the headlight control unit 18
  • the irradiation range information is output, this is only an example.
  • the conversion may be performed by the headlight controller 18 .
  • FIG. 10 is a flow chart for explaining the operation of the headlight control device 1 according to the first embodiment. For example, when the power of the vehicle 100 is turned on, the headlight control device 1 repeats the operation described using the flowchart of FIG. 10 until the power of the vehicle 100 is turned off.
  • the control start determination unit 13 determines whether or not to start lighting control of the headlights 2 based on the orientation of the driver (step ST1). Specifically, the headlight determination unit 11 acquires vehicle information from various sensors provided in the vehicle 100 and determines whether the headlights 2 are on or off. The headlight determination unit 11 outputs the headlight state determination result to the control start determination unit 13 . The headlight determination unit 11 outputs the vehicle information to the control start determination unit 13 together with the headlight state determination result. Further, the travel location determining unit 12 acquires the vehicle location-related information from the location information acquisition device, and determines the location where the vehicle 100 is currently traveling. The travel location determination unit 12 outputs the travel location information to the control start determination unit 13 .
  • the travel location determination unit 12 outputs the vehicle position-related information together with the travel location information to the control start determination unit 13 . Then, based on the headlight state determination result output from the headlight determination unit 11 and the driving location information output from the driving location determination unit 12, the control start determination unit 13 determines whether the headlight 2 based on the orientation of the driver. It is determined whether or not to start the lighting control of . The control start determination unit 13 compares the headlight state determination result and the driving location information with the conditions for control start determination, thereby determining whether or not to start lighting control of the headlights 2 based on the direction of the driver.
  • the control start determination unit 13 repeats the process of step ST1 until it determines to start the lighting control of the headlights 2 based on the direction of the driver ("NO" in step ST1).
  • the control start instruction is sent to the direction detection unit 14 and the irradiation range determination unit 17.
  • the control start determination unit 13 also outputs vehicle information and vehicle position-related information to the irradiation range determination unit 17 .
  • the direction detection unit 14 detects the direction of the driver based on the captured image acquired from the imaging device 3 (step ST2).
  • the orientation detection unit 14 outputs the detected orientation of the driver to the orientation determination unit 15 .
  • the orientation determination unit 15 determines whether the driver is facing left or right based on the orientation of the driver detected by the orientation detection unit 14 in step ST2 (step ST3). Specifically, when the orientation of the driver detected by the orientation detection unit 14 is greater than the maximum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing right. Further, when the orientation of the driver detected by the orientation detection unit 14 is smaller than the minimum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing left. Note that the orientation determination unit 15 determines that the driver is facing the front when the orientation of the driver detected by the orientation detection unit 14 is within the frontal direction range.
  • Orientation determination unit 15 outputs the orientation determination result to obstacle presence/absence determination unit 16 and irradiation range determination unit 17 . Further, the orientation determination unit 15 outputs the orientation of the driver detected by the orientation detection unit 14 to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 .
  • the obstacle presence/absence determination unit 16 determines whether the direction of the driver detected by the direction detection unit 14 and the obstacle Based on the distance data acquired from the detection sensor 4, it is determined whether or not it is estimated that there is an obstacle in the direction the driver is facing (step ST4).
  • the obstacle presence/absence determination unit 16 outputs the obstacle presence/absence determination result to the irradiation range determination unit 17 .
  • the irradiation range determination unit 17 uses the direction of the driver detected by the direction detection unit 14 in step ST2 and the determination result of whether the driver is facing left or right as determined by the direction determination unit 15 in step ST3. Then, based on the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determining unit 16 in step ST4, the headlights 2 provided on the vehicle 100 are turned on. is determined (step ST5).
  • the irradiation range determination unit 17 outputs the irradiation range information to the headlight control unit 18 .
  • the headlight control unit 18 causes the headlight 2 to irradiate the irradiation range determined by the irradiation range determination unit 17 in step ST5 (step ST6).
  • FIG. 11 is a flowchart for explaining the details of the process of step ST5 in FIG.
  • the irradiation range determination unit 17 determines whether or not the orientation determination unit 15 determines in step ST3 of FIG. 10 that the driver is facing leftward or rightward (step ST11).
  • step ST11 When it is determined in step ST11 that the direction determining unit 15 determines that the driver is facing leftward or rightward (“YES” in step ST11), the irradiation range determining unit 17 In step ST3, the obstacle presence/absence determination unit 16 determines whether or not it is estimated that there is an obstacle in the direction the driver is facing (step ST12).
  • step ST12 If it is determined in step ST12 that the obstacle presence/absence determining unit 16 has determined that there is an obstacle in the direction the driver is facing ("YES" in step ST12), the irradiation range The determination unit 17 determines the irradiation range in the direction the driver is facing (leftward or rightward). The irradiation range is determined to be the range up to the angle obtained by this angle (step ST13).
  • the irradiation range determination unit 17 determines the irradiation range in the left-right direction in the irradiation range in the direction in which the driver is facing (the left direction or the right direction), for example, the lane in which the vehicle 100 is traveling (here, lane The range is determined as the range from the left end of the so-called lane to an angle obtained by subtracting a predetermined angle from the direction of the driver.
  • the irradiation range determination unit 17 maintains the cutoff line in the front direction in the vertical direction, in other words, the irradiation range determination unit 17 does not include the area above the cutoff line but below the cutoff line, and the horizontal direction is the front direction range. Determine the range to be the illumination range.
  • the irradiation range determination unit 17 then outputs the irradiation range information to the headlight control unit 18 .
  • step ST12 If it is determined in step ST12 that the obstacle presence/absence determining unit 16 has determined that there is no obstacle in the direction the driver is facing (“NO” in step ST12), the irradiation range The determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction (leftward or rightward direction) in which the driver is facing. In the left and right direction, the range up to the angle obtained by subtracting a predetermined angle from the direction of the driver is determined as the irradiation range (step ST14).
  • the irradiation range determination unit 17 maintains the cutoff line in the front direction in the vertical direction, in other words, the irradiation range determination unit 17 does not include the area above the cutoff line but below the cutoff line, and the horizontal direction is the front direction range. Determine the range to be the illumination range.
  • step ST11 If it is determined in step ST11 that the direction determining unit 15 does not determine that the driver is facing leftward or rightward (“NO” in step ST11), in other words, the direction determining unit 15 When it is determined that the driver is facing the front, the irradiation range determining unit 17 maintains the cutoff line in the frontal direction. The downward direction is made to be the irradiation range of the headlight 2 (step ST15). The irradiation range determination unit 17 then outputs the irradiation range information to the headlight control unit 18 .
  • the headlight control device 1 determines whether the driver is facing left or right based on the detected orientation of the driver, and determines that the driver is facing left or right. If so, it is determined whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, based on the direction of the driver and the distance data. Then, the headlight control device 1 uses the direction of the driver, the judgment result as to whether the driver is facing leftward or rightward, and whether or not it is estimated that there is an obstacle in the direction in which the driver is facing. The irradiation range is determined based on the determination result, and the headlight 2 is made to irradiate the determined irradiation range with light.
  • a range including above the cutoff line in the direction in which the driver is facing is determined as the light irradiation range of the headlights, it is determined that the driver is facing leftward or rightward, and the direction in which the driver is facing
  • the irradiation range is determined as a range that does not include the area above the cutoff line and is below the cutoff line.
  • the object (pedestrian) to be visually recognized by the driver It is preferable that the light is radiated over a wide range in the left-right direction and the up-down direction as viewed from the vehicle so that the light is not overlooked. However, if there are no obstacles in the direction the driver is facing that would hide the object (pedestrian) that the driver should be visually recognizing, for example, the light will only illuminate the feet of the pedestrian. Even if the light is emitted only downward as seen from the vehicle, such as in the lower range, the driver can visually recognize the target (pedestrian).
  • the headlight control device 1 includes the direction of the driver, the determination result as to whether the driver is facing leftward or rightward, and the direction of the driver.
  • the irradiation range is determined based on the determination result of whether or not it is estimated that there is an obstacle in the direction, and the headlight 2 is caused to irradiate the determined irradiation range. Therefore, in the lighting control of the headlights 2 in the vehicle 100 based on the direction in which the driver is facing, the headlight control device 1 determines the situation in the direction in which the driver is facing, which is an object (pedestrians) to be visually recognized by the driver. ) can be hidden.
  • the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object (pedestrian) or the like to be visually recognized by the driver.
  • FIG. 12A and 12B are diagrams showing an example of the hardware configuration of the headlight control device 1 according to Embodiment 1.
  • FIG. 1 the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit Functions of the unit 17 and the headlight control unit 18 are realized by the processing circuit 1001 . That is, the headlight control device 1 detects the orientation of the driver based on the captured image acquired from the imaging device 3, the orientation of the passenger determined based on the captured image, and the distance acquired from the obstacle detection sensor 4.
  • a processing circuit 1001 is provided for performing lighting control of the headlights 2 based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the occupant is facing, which is determined based on the data.
  • the processing circuitry 1001 may be dedicated hardware as shown in FIG. 12A or a processor 1004 that executes a program stored in memory 1005 as shown in FIG. 12B.
  • the processing circuit 1001 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the processing circuit is the processor 1004, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation
  • the functions of the range determination unit 17 and the headlight control unit 18 are implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 1005 .
  • Processor 1004 reads out and executes programs stored in memory 1005 to control headlight determination unit 11, driving location determination unit 12, control start determination unit 13, orientation detection unit 14, and orientation determination unit 15. , the functions of the obstacle presence/absence determination unit 16, the irradiation range determination unit 17, and the headlight control unit 18 are executed.
  • the headlight control device 1 includes a memory 1005 for storing a program that, when executed by the processor 1004, results in the execution of steps ST1 to ST6 of FIG. 10 described above.
  • the programs stored in the memory 1005 include a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, and an obstacle presence/absence determination unit 16. It can also be said that the procedure or method of the processing of the irradiation range determining unit 17 and the headlight control unit 18 is executed by a computer.
  • the memory 1005 is, for example, a non-volatile memory such as RAM, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory). or volatile semiconductors Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. correspond to this.
  • a non-volatile memory such as RAM, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory).
  • volatile semiconductors Memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. correspond to this.
  • a part of the functions of the headlight control unit 18 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the direction detection unit 14, the direction determination unit 15, and the obstacle presence/absence determination unit 16 are processed as dedicated hardware.
  • the functions of the circuit 1001 can be realized, and the functions of the irradiation range determination unit 17 and the headlight control unit 18 can be realized by the processor 1004 reading and executing the programs stored in the memory 1005.
  • the headlight control device 1 also includes a device such as the headlight 2, the imaging device 3, or the obstacle detection sensor 4, and an input interface device 1002 and an output interface device 1003 that perform wired or wireless communication.
  • the irradiation range determination unit 17 determines the left-right direction range in the irradiation range in addition to the frontal direction range.
  • the range is set to the angle minus or plus the angle of .
  • the irradiation range determination unit 17 determines the range from ⁇ 4.5 degrees to ⁇ 0.94 degrees in the direction of the driver as the range in the horizontal direction of the irradiation range.
  • the headlight control device 1 includes the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, but this is merely an example.
  • the headlight control device 1 does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, and does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit.
  • the functions 13 may be provided in a device connected to the headlight control device 1 outside the headlight control device 1 .
  • the headlight control device 1 when a control start instruction is output from an external device, the headlight control device 1 performs lighting control of the headlights 2 based on the direction in which the driver is facing.
  • the operation of the headlight control device 1 described using the flowchart of FIG. 10 can omit the processing of step ST1.
  • the target that the driver should visually recognize was assumed to be a pedestrian, but this is only an example.
  • objects to be visually recognized by the driver include, in addition to pedestrians, people moving on skateboards, people wearing roller skates, children moving in strollers, and the like. may be
  • the headlight control device 1 is an in-vehicle device mounted on the vehicle 100, and includes the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, and the orientation detection unit. It is assumed that the unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, the irradiation range determination unit 17, and the headlight control unit 18 are provided in the in-vehicle device.
  • the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit 17 and the headlight control unit 18, a part thereof may be provided in an in-vehicle device of the vehicle 100, and the other may be provided in a server connected to the in-vehicle device via a network.
  • the entire headlight control unit 18 may be provided in the server.
  • the headlight control device 1 includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100, and the orientation detection unit 14.
  • a direction determination unit 15 that determines whether the driver is facing left or right based on the detected direction of the driver, and the direction determination unit 15 determines that the driver is facing left or right.
  • the driver The obstacle presence/absence determination unit 16 that determines whether or not it is estimated that there is an obstacle in the facing direction, the direction of the driver detected by the direction detection unit 14, and the driver determined by the direction determination unit 15 are Based on the determination result as to whether the driver is facing leftward or rightward, and the determination result as to whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, determined by the obstacle presence/absence determination unit 16, the vehicle An irradiation range determination unit 17 that determines the irradiation range of light by the headlight 2 provided in 100, and a headlight control unit that causes the headlight 2 to irradiate the irradiation range determined by the irradiation range determination unit 17.
  • the situation in which the driver is facing is a situation in which an object to be visually recognized by the driver may be hidden. It is possible to perform lighting control in consideration of whether That is, in controlling the headlights 2 in the vehicle 100 based on the direction the driver is facing, the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object or the like to be visually recognized by the driver.
  • the irradiation range determination unit 17 determines that the direction determination unit 15 determines that the driver is facing leftward or rightward.
  • the range including above the cutoff line in the direction in which the driver is facing is the irradiation range of the light from the headlight 2
  • the orientation determination unit 15 determines that the driver is facing left or right
  • the obstacle presence/absence determination unit 16 determines that the driver is facing
  • the area below the cutoff line, not including the area above the cutoffline in the direction in which the driver is facing is set as the irradiation range of the light from the headlights 2.
  • the headlight control device 1 in the lighting control of the headlights based on the direction in which the driver is facing, the situation in which the driver is facing is a situation in which an object to be visually recognized by the driver may be hidden. It is possible to perform lighting control in consideration of whether That is, in controlling the headlights 2 in the vehicle 100 based on the direction the driver is facing, the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object or the like to be visually recognized by the driver.
  • Embodiment 2 when the headlight control device determines that the driver is facing leftward or rightward and it is estimated that there is no obstacle in the direction the driver is facing, the headlight control device
  • the vertical range of the irradiation range was defined as the area below the cutoff line in the direction in which the . Even in this case, the driver can visually recognize an object that the driver should visually recognize, which may exist in the direction the driver is facing. A more improved embodiment will be described.
  • FIG. 13 is a diagram showing a configuration example of a headlight control device 1a according to Embodiment 2.
  • the headlight control device 1a is mounted on the vehicle 100a. Light control of light 2 is performed.
  • the "orientation of the driver's vehicle” is represented by the orientation of the driver's face or the direction of the driver's line of sight.
  • the lighting control of the headlights 2 based on the direction of the driver performed by the headlight control device 1a is performed on the left and right of the road on which the vehicle 100a travels, such as in a parking lot at night or in an urban area at night. It is assumed that this is performed when the headlights 2 are turned on in a place where there are many parked vehicles and the vehicle 100a is traveling at a relatively low speed.
  • a headlight control device 1 a according to Embodiment 2 differs from the headlight control device 1 according to Embodiment 1 in that a target presence/absence determination section 19 is provided. Further, the specific operation of the irradiation range determination unit 17a in the headlight control device 1a according to the second embodiment is different from the specific operation of the irradiation range determination unit 17 in the headlight control device 1 according to the first embodiment. different.
  • the object presence/absence determination unit 19 determines the direction and distance of the driver detected by the direction detection unit 14. Based on the data, it is determined whether or not it is estimated that an object to be visually recognized by the driver exists in the direction the driver is facing.
  • an object to be visually recognized by the driver may suddenly enter the travel route of the vehicle 100a while the driver is driving the vehicle 100a. It assumes an object (mainly a moving object) that needs to be paid attention to so as not to cause a situation.
  • the target to be visually recognized is assumed to be a pedestrian.
  • the obstacle presence/absence determination unit 16 outputs the obstacle presence/absence determination result to the irradiation range determination unit 17 and the target presence/absence determination unit 19 .
  • the obstacle presence/absence determination unit 16 also outputs the direction of the driver acquired from the direction determination unit 15 and the direction determination result to the object presence/absence determination unit 19 .
  • the object presence/absence determination unit 19 acquires distance data from the obstacle detection sensor 4 .
  • the object presence/absence determination unit 19 determines the direction of the driver detected by the direction detection unit 14 and the direction of the driver obtained from the obstacle detection sensor 4. Based on the distance data, it is determined whether or not it is estimated that a pedestrian exists in the direction the driver is facing.
  • the object presence/absence determination unit 19 determines whether the object is within the obstacle estimation direction range, which is a range preset with respect to the direction of the driver, and from the position of the vehicle 100. If an object that satisfies a preset condition (hereinafter referred to as "pedestrian estimation condition") is detected within the visual range, it is estimated that there is a pedestrian in the direction the driver is facing. I judge. If an object that satisfies the pedestrian estimation condition is not detected, the object presence/absence determining unit 19 does not estimate that there is a pedestrian in the direction the driver is facing. It is determined that it is presumed not to exist.
  • a preset condition hereinafter referred to as "pedestrian estimation condition”
  • the condition "equivalent to the size of a general person” is set. It should be noted that this is only an example, and for example, it may be set that "the distance data includes one object detection data”.
  • the pedestrian estimation condition is stored in a location that the target presence/absence determining unit 19 can refer to.
  • the target presence/absence determination unit 19 determines whether or not it is estimated that a pedestrian is present in the direction the driver is facing, based on the driver's orientation and distance data. It is a judgment, not a judgment that a pedestrian actually exists.
  • the target presence/absence determination unit 19 outputs the determination result of whether or not it is estimated that a pedestrian exists in the direction the driver is facing (hereinafter referred to as "pedestrian presence/absence determination result") to the irradiation range determination unit. 17a.
  • the irradiation range determination unit 17a combines the direction of the driver detected by the direction detection unit 14, the determination result of whether the driver is facing left or right as determined by the direction determination unit 15, and the obstacle presence/absence determination unit 16. The determination result of whether or not it is estimated that there is an obstacle in the direction that the driver is facing determined by is determined by the target presence/absence determination unit 19, and it is estimated that there is a pedestrian in the direction that the driver is facing. Based on the determination result of whether or not the headlight 2 is provided on the vehicle 100a, the irradiation range of the light is determined.
  • the irradiation range determining unit 17a determines, by the headlights 2, the range of the high beam irradiation possible region, the low beam irradiation possible region, and the auxiliary light irradiation possible region to which the light is irradiated. Determined as the irradiation range of light.
  • the light irradiation range of the headlights 2 is also simply referred to as "irradiation range”.
  • the irradiation range determining unit 17a does not depend on the direction of the driver. Maintain the cutoff line so that the irradiation range is below the cutoff line.
  • the irradiation range determination unit 17a determines the direction the driver is facing (left or right) in addition to the front direction. Determine the irradiation range in
  • the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is an obstacle in the direction the driver is facing.
  • the method for determining the irradiation range in this case is the irradiation range determination unit 17 described in the first embodiment, and the obstacle presence/absence determination unit 16 determines whether the driver is facing left or right. Same as the irradiation range determination method when it is determined that there is an obstacle in the direction the driver is facing (see “Case A-1" and "Case B-1" in Embodiment 1) Therefore, redundant description is omitted.
  • the irradiation range determination unit 17a determines a different range as the irradiation range depending on whether or not the target presence/absence determination unit 19 has estimated that a pedestrian exists in the direction the driver is facing.
  • the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is no obstacle in the direction the driver is facing. And, when the object presence/absence determination unit 19 determines that it is estimated that a pedestrian exists in the direction the driver is facing, the direction the driver is facing (leftward or rightward) Regarding the irradiation range in , for example, the vertical direction is considered to be below the pedestrian's neck, and the horizontal direction is the range from the driver's direction minus or plus a predetermined angle to the irradiation range. do.
  • the irradiation range determination unit 17a determines the range in the left-right direction of the irradiation range up to an angle obtained by subtracting a predetermined angle from the direction of the driver. is directed to the right, the range up to an angle obtained by adding a predetermined angle to the direction of the driver is defined as the lateral range of the irradiation range.
  • the irradiation range determination unit 17a maintains the cutoff line in the vertical direction in the front direction. , to determine the irradiation range.
  • the irradiation range determination unit 17a determines how far from the position of the vehicle 100 in front of the vehicle 100 based on the distance data when the target presence/absence determination unit 19 determines that a pedestrian is estimated to exist. It is determined whether it is estimated that a pedestrian exists at a distant position. Based on the determined distance between the vehicle 100 and the pedestrian and the preset height of the pedestrian, the irradiation range determination unit 17a calculates a range considered to be below the neck of the pedestrian.
  • the administrator or the like sets the assumed height of the pedestrian, such as 1.8 m, in advance, and stores information about the set height of the pedestrian in a location that can be referred to by the irradiation range determination unit 17a.
  • the irradiation range determination unit 17a generally determines how high the neck position is from the ground for a preset height of a pedestrian, and determines the determined height from the ground to the neck position. , and the distance between the vehicle 100 and the pedestrian, the range considered to be below the pedestrian's neck is calculated.
  • the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is no obstacle in the direction the driver is facing. and the object presence/absence determination unit 19 determines that it is estimated that there is no pedestrian in the direction the driver is facing, the direction the driver is facing (leftward or rightward direction), for example, the cutoff line is maintained in the vertical direction.
  • the irradiation range is determined as the range until the angle becomes
  • the irradiation range determining unit 17a maintains the cutoff line in the front direction in the vertical direction, in other words, does not include the area above the cutoff line but below the cutoff line, and sets the range in the horizontal direction as the front range.
  • the irradiation range determination method by the irradiation range determination unit 17a is performed when the driver is facing left or right in the first embodiment, and the obstacle presence/absence determination unit 16 determines whether the driver is facing to the right or left.
  • a method of determining an irradiation range by the irradiation range determining unit 17 when it is determined that there is no obstacle in the direction see “Case A-2” and “Case B-2” in Embodiment 1); It is the same.
  • the method of determining the irradiation range by the irradiation range determining unit 17a when the driver is neither facing left nor right, in other words, when the driver is facing forward, is described in the first embodiment. , is the same as the method of determining the irradiation range by the irradiation range determining unit 17 when the driver is facing the front (see “Case C” in Embodiment 1), so redundant description will be omitted.
  • the irradiation range determination unit 17 a After determining the irradiation range, the irradiation range determination unit 17 a outputs irradiation range information to the headlight control unit 18 .
  • the irradiation range determining unit 17a creates irradiation range information by converting the determined irradiation range represented by the direction of the driver into a range based on the installation position of the headlights 2 .
  • the irradiation range determination unit 17a converts the range represented by the direction of the driver into a range based on the installation position of the headlight 2, and then the headlight control unit 18
  • irradiation range information is output, this is only an example. For example, the conversion may be performed by the headlight control unit 18 .
  • FIG. 14 is a flow chart for explaining the operation of the headlight control device 1a according to the second embodiment.
  • the headlight control device 1a repeats the operation described using the flowchart of FIG. 14 until the power of the vehicle 100a is turned off.
  • the specific operations of steps ST1a to ST4a and step ST6a of FIG. 14 are the same as the specific operations of steps ST1 to ST4 and ST6 of FIG. 10 already explained in Embodiment 1, respectively. Therefore, redundant description is omitted.
  • the object presence/absence determination unit 19 determines that the direction detection unit 14 detects the obstacle in step ST2a. Based on the detected direction of the driver and the distance data obtained from the obstacle detection sensor 4, it is determined whether or not it is estimated that a pedestrian exists in the direction the driver is facing (step ST41a). ). The target presence/absence determination unit 19 outputs the pedestrian presence/absence determination result to the irradiation range determination unit 17a.
  • the irradiation range determination unit 17a uses the direction of the driver detected by the direction detection unit 14 in step ST2a and the determination result of whether the driver is facing left or right as determined by the direction determination unit 15 in step ST3a. Then, the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16 in step ST4a, and the object presence/absence determination unit 19 determines in step ST41a. Based on the determination result as to whether or not it is estimated that a pedestrian exists in the direction the driver is facing, the irradiation range of the light from the headlights 2 provided on the vehicle 100a is determined (step ST5a). The irradiation range determination unit 17 a outputs the irradiation range information to the headlight control unit 18 .
  • FIG. 15 is a flowchart for explaining the details of the process of step ST5a in FIG. Specific operations of steps ST111 to ST113, steps ST116, and ST117 in FIG. 15 are the same as the specific operations in steps ST11 to ST15 of FIG. Therefore, redundant description is omitted.
  • step ST112 If it is determined in step ST112 that the obstacle presence/absence determining unit 16 has determined that there is no obstacle in the direction the driver is facing (“NO” in step ST122), the irradiation range The determination unit 17a determines in step ST41a of FIG. 14 whether or not the target presence/absence determination unit 19 has determined that a pedestrian is estimated to exist in the direction the driver is facing (step ST41a). ST114).
  • the irradiation range determination unit 17a determines the irradiation range in the direction in which the driver is facing (left direction or right direction). The range from the orientation to the angle minus or plus a predetermined angle is determined as the irradiation range (step ST115). In addition, the irradiation range determination unit 17a maintains the cutoff line in the vertical direction in the front direction. Determine the range to be the illumination range. Then, the irradiation range determination unit 17 a outputs the irradiation range information to the headlight control unit 18 .
  • the headlight control device 1a determines that it is estimated that the driver is facing leftward or rightward and that there is no obstacle in the direction that the driver is facing.
  • the range assumed to be below the neck of the pedestrian in the direction the driver is facing is determined as the irradiation range.
  • the headlight control device 1a sets the vertical range to be below the pedestrian's neck in the direction the driver is facing, and sets the horizontal range to a predetermined range from the driver's direction.
  • the irradiation range is determined as the range up to the angle plus or minus the angle of .
  • the driver When the driver is facing left or right and it is estimated that there is no obstacle in the direction the driver is facing, even if there is a pedestrian in the direction the driver is facing Also, the driver can recognize the pedestrian if the light is emitted to a lower range to the extent that the light is emitted only to the foot of the pedestrian. However, if it is estimated that there are pedestrians in the direction the driver is facing, it is easier for the driver to see the pedestrians if the light is emitted as widely as possible in the vertical direction. . On the other hand, if the irradiation range of light is expanded in the vertical direction without limit, there is a possibility that glare will be given to pedestrians.
  • the headlight control device 1a determines that the driver is facing left or right, and that it is estimated that there is no obstacle in the direction the driver is facing. In addition, if it is determined that there is a pedestrian in the direction the driver is facing, the area that is considered to be below the pedestrian's neck in the direction the driver is facing is set as the irradiation range. decide. Therefore, the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur for pedestrians who may be present in the direction the driver is facing. If it is estimated that there are no obstacles in the direction the driver is facing, the possibility that the pedestrian is hidden by the obstacle is low. It is assumed that the driver can sufficiently see the pedestrian even if the light is projected only on the vehicle.
  • the hardware configuration of the headlight control device 1a according to the second embodiment is the same as the hardware configuration of the headlight control device 1 described with reference to FIGS. 12A and 12B in the first embodiment, so illustration is omitted. do.
  • the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit Functions of the unit 17 a , the headlight control unit 18 , and the target presence/absence determination unit 19 are realized by the processing circuit 1001 .
  • the headlight control device 1a detects the orientation of the driver based on the captured image acquired from the imaging device 3, the orientation of the passenger determined based on the captured image, and the distance acquired from the obstacle detection sensor 4.
  • a processing circuit 1001 is provided for performing lighting control of the headlights 2 based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the occupant is facing, which is determined based on the data.
  • the processing circuit 1001 reads out and executes the programs stored in the memory 1005, thereby controlling the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, the orientation detection unit 14, and the orientation determination unit. 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17a, a headlight control unit 18, and a target presence/absence determination unit 19 are executed. That is, the headlight control device 1a includes a memory 1005 for storing a program that, when executed by the processing circuit 1001, results in the execution of steps ST1a to ST6a of FIG. 14 described above.
  • the programs stored in the memory 1005 include a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, and an obstacle presence/absence determination unit 16. It can also be said that a computer is made to execute the procedures or methods of the processes of the irradiation range determination unit 17a, the headlight control unit 18, and the target presence/absence determination unit 19.
  • FIG. The headlight control device 1a includes devices such as the headlight 2, the imaging device 3, or the obstacle detection sensor 4, and an input interface device 1002 and an output interface device 1003 that perform wired or wireless communication.
  • the irradiation range determination unit 17a determines the left-right direction range in the irradiation range in addition to the frontal direction range.
  • the range is set to the angle minus or plus the angle of .
  • the irradiation range determining unit 17a for example, swivels the frontal direction range in the horizontal left-right direction until it becomes an angle minus or plus a predetermined angle from the direction of the driver, and shifts the range after swiveling to the left and right of the irradiation range. It may be a range of directions.
  • the headlight control device 1a includes the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, but this is merely an example.
  • the headlight control device 1a does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, and does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit.
  • the function 13 may be provided in a device connected to the headlight control device 1 outside the headlight control device 1a. In this case, when a control start instruction is output from an external device, the headlight control device 1a performs lighting control of the headlights 2 based on the direction in which the driver is facing. In this case, the operation of the headlight control device 1a described with reference to the flowchart of FIG. 14 can omit the processing of step ST1a.
  • the object to be visually recognized by the driver is assumed to be a pedestrian, but this is only an example.
  • objects to be visually recognized by the driver include, in addition to pedestrians, people moving on skateboards, people wearing roller skates, children moving in strollers, and the like. may be
  • the object presence/absence determination unit 19 determines the direction and distance of the driver detected by the direction detection unit 14. Based on the data, it is determined whether or not it is estimated that an object to be visually recognized by the driver exists in the direction the driver is facing.
  • the irradiation range determination unit 17a applies glare to the target in the direction the driver is facing.
  • the irradiation range is determined as the range below the height that is estimated to be non-existent.
  • a high light level that is estimated not to give glare to the object in the direction the driver is facing is set.
  • a range below the height may be determined as the irradiation range.
  • the irradiation range determination unit 17a sets the vertical range in the direction in which the driver is facing to a range lower than the height estimated not to give glare to the target to be visually recognized by the driver.
  • the irradiation range is determined as the range of directions from the direction of the driver to an angle obtained by adding or subtracting a predetermined angle. It should be noted that the height at which it is estimated that glare does not occur is set in advance according to the object to be visually recognized by the driver.
  • the headlight control device 1a is an in-vehicle device mounted on the vehicle 100a, and includes the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, and the direction detection unit.
  • the unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, the irradiation range determination unit 17a, the headlight control unit 18, and the target presence/absence determination unit 19 are provided in the vehicle-mounted device.
  • a headlight determination unit 11 a driving place determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17a, All of the headlight control unit 18 and the target presence/absence determination unit 19 may be provided in the server.
  • the headlight control device 1a includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100a, and the orientation detection unit A direction determination unit 15 for determining whether the driver is facing left or right based on the direction of the driver detected by 14, and the direction determination unit 15 determines whether the driver is facing left or right.
  • An obstacle presence/absence determination unit 16 that determines whether or not it is estimated that there is an obstacle in the direction the driver is facing; Based on the determination result of whether the driver is facing leftward or rightward, and the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16, An irradiation range determination unit 17a that determines the irradiation range of light from the headlights 2 provided in the vehicle 100a, and headlight control that causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17a.
  • a target presence/absence determination unit 19 is provided for determining whether or not it is estimated that a target to be visually recognized by the driver exists in the direction the driver is facing.
  • the determining unit 19 determines that it is estimated that an object to be visually recognized by the driver exists, it is estimated that glare is not given to the object to be visually recognized by the driver in the direction in which the driver is facing.
  • the irradiation range is determined to be the range below the height where the light is projected.
  • the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur with respect to objects to be visually recognized by the driver that may exist in the direction the driver is facing.
  • the headlight control device 1a includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100a, and the orientation detection unit 14 detects the orientation of the driver.
  • the obstacle presence/absence determination unit 16 determines whether or not it is estimated that there is an obstacle in the direction in which the driver is pointing, the direction of the driver detected by the direction detection unit 14, and the direction of the driver determined by the direction determination unit 15 is left Based on the determination result of whether the driver is facing the direction or the right direction and the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16, the vehicle 100a An irradiation range determination unit 17a that determines the irradiation range of light by the provided headlights 2, and a headlight control unit 18 that causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17a.
  • a target presence/absence determination unit 19 is provided for determining whether or not it is estimated that a pedestrian exists in the direction the driver is facing.
  • the irradiation range is determined to be a range that is considered to be below the pedestrian's neck in the direction the driver is facing. Therefore, the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur with respect to objects to be visually recognized by the driver that may exist in the direction the driver is facing.
  • the headlight control device can control the lighting of the headlights based on the direction in which the driver is facing, in consideration of the direction in which the driver is facing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

The present invention comprises: an orientation detection unit (14) that detects the orientation of a driver; an orientation assessment unit (15) that assesses whether the driver is facing left or right on the basis of the orientation of the driver; an obstacle presence/absence assessment unit (16) that, if it is assessed by the orientation assessment unit (15) that the driver is facing left or right, assesses whether or not an obstacle is presumed to be present in the direction in which the driver is facing on the basis of the orientation of the driver and distance data relating to the distance to an object outside a vehicle; an irradiation range determination unit (17, 17a) that determines the irradiation range of light by a headlight (2) provided in the vehicle (100), on the basis of the orientation of the driver, the result of assessing whether the driver is facing left or right, and the result of assessing whether an obstacle is presumed to be present in the direction in which the driver is facing; and a headlight control unit (18) that causes the headlight (2) to irradiate the irradiation range determined by the irradiation range determination unit (17, 17a) with light.

Description

ヘッドライト制御装置およびヘッドライト制御方法HEADLIGHT CONTROL DEVICE AND HEADLIGHT CONTROL METHOD
 本開示は、ヘッドライト制御装置およびヘッドライト制御方法に関する。 The present disclosure relates to a headlight control device and a headlight control method.
 従来、車両におけるヘッドライトの点灯制御において、運転者の視認性を向上させるため、運転者が向いている方向にヘッドライトの光が照射されるよう、運転者が向いている方向に基づいて、車両からみて左右方向および上下方向にヘッドライトの照射範囲を変化させる技術が知られている(例えば、特許文献1)。
 ところで、一般に、車両においてヘッドライトの点灯制御が行われる際には、歩行者に対していわゆるグレアを発生させないよう、ロービームでカットオフラインより下方を照射させることが好ましい。
Conventionally, in the lighting control of headlights in a vehicle, in order to improve the visibility of the driver, based on the direction the driver is facing, so that the light of the headlights is emitted in the direction the driver is facing. A technique for changing the illumination range of headlights in the left-right direction and the up-down direction as viewed from a vehicle is known (for example, Patent Document 1).
By the way, in general, when headlight lighting control is performed in a vehicle, it is preferable to illuminate the area below the cut-off line with a low beam so as not to cause so-called glare to pedestrians.
特開2009-120148号公報JP 2009-120148 A
 運転者が向いている方向に基づくヘッドライトの点灯制御において運転者の視認性を向上させるためには、運転者が向いている方向においては、運転者が視認すべき対象を見落とさないよう、例えば車両からみて左右方向および上下方向の広範囲に光が照射されることが好ましい。
 ただし、運転者が向いている方向に、運転者が視認すべき対象が隠されるような障害物がない場合には、車両からみて下方にのみ光が照射されても、運転者は当該対象を視認できる。ここで、運転者が向いている方向に障害物がない場合に、車両からみて上方に光が照射されるようヘッドライトが点灯制御されると、運転者の視認性には影響がないにもかかわらず、運転者が視認すべき対象等に対して不必要なグレアを与えてしまい得る。
 従来技術では、このことが考慮されていない。すなわち、従来技術では、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向における状況は運転者が視認すべき対象が隠され得る状況であるかを考慮した点灯制御が行えていないという課題があった。
In order to improve the visibility of the driver in the headlight lighting control based on the direction the driver is facing, it is necessary to prevent the driver from overlooking an object to be visually recognized in the direction the driver is facing. It is preferable that the light is emitted over a wide range in the left-right direction and the up-down direction as viewed from the vehicle.
However, if there are no obstacles in the direction the driver is facing that would hide the object that the driver should be visually recognizing, the driver will not be able to see the object even if the light is only directed downwards as seen from the vehicle. Visible. Here, when there is no obstacle in the direction the driver is facing, if the headlights are controlled to emit light upward as viewed from the vehicle, the driver's visibility is not affected. Regardless, unnecessary glare may be given to objects to be visually recognized by the driver.
The prior art does not take this into account. That is, in the prior art, in the headlight lighting control based on the direction in which the driver is facing, consideration is given to whether or not the situation in the direction in which the driver is facing can hide the object to be visually recognized by the driver. There was a problem that lighting control was not performed.
 本開示は上記のような課題を解決するためになされたもので、車両における、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向における状況は運転者が視認すべき対象が隠され得る状況であるかを考慮した点灯制御を可能としたヘッドライト制御装置を提供することを目的とする。 The present disclosure has been made to solve the problems described above. It is an object of the present invention to provide a headlight control device capable of performing lighting control considering whether or not an object to be visually recognized can be hidden.
 本開示に係るヘッドライト制御装置は、車両の運転者が撮像された撮像画像に基づき、運転者の向きを検出する向き検出部と、向き検出部が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する向き判定部と、向き判定部が、運転者は左方向または右方向を向いていると判定した場合、向き検出部が検出した運転者の向きと、物体を検出するセンサによって測定された、車外における物体までの距離に関する距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する障害物有無判定部と、向き検出部が検出した運転者の向きと、向き判定部が判定した運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果とに基づき、車両に設けられているヘッドライトによる光の照射範囲を決定する照射範囲決定部と、ヘッドライトに対して、照射範囲決定部が決定した照射範囲に光を照射させるヘッドライト制御部とを備えたものである。 The headlight control device according to the present disclosure includes an orientation detection unit that detects the orientation of the driver based on a captured image of the driver of the vehicle, and based on the orientation of the driver detected by the orientation detection unit, detects the orientation of the driver. A direction determination unit that determines whether the driver is facing left or right, and if the direction determination unit determines that the driver is facing left or right, the direction of the driver detected by the direction detection unit and distance data on the distance to the object outside the vehicle measured by a sensor that detects the object. The presence/absence determination unit, the direction of the driver detected by the direction detection unit, the determination result of whether the driver is facing leftward or rightward determined by the direction determination unit, and the driver determined by the obstacle presence/absence determination unit Based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the is facing, the irradiation range determination unit that determines the irradiation range of the light from the headlights provided in the vehicle, and the headlights and a headlight control section for irradiating the irradiation range determined by the irradiation range determination section with light.
 本開示によれば、車両における、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向の状況は運転者が視認すべき対象が隠され得る状況であるかを考慮した点灯制御ができる。 According to the present disclosure, in headlight lighting control in a vehicle based on the direction in which the driver is facing, is the situation in the direction in which the driver is facing possible to hide an object to be visually recognized by the driver? Lighting control can be performed in consideration of
実施の形態1に係るヘッドライト制御装置の構成例を示す図である。1 is a diagram showing a configuration example of a headlight control device according to Embodiment 1; FIG. 図2Aおよび図2Bは、実施の形態1において、向き判定部が正面方向範囲を算出する方法の一例について説明するための図である。2A and 2B are diagrams for explaining an example of a method of calculating a front direction range by an orientation determination unit according to Embodiment 1. FIG. 実施の形態1における、障害物有無判定部による、運転者が向いている方向に障害物があると推定されるか否かの判定方法の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of a method of determining whether or not an obstacle is estimated to be present in the direction a driver is facing, by an obstacle presence/absence determination unit in Embodiment 1; 実施の形態1において、照射範囲決定部が決定した照射範囲の一例について説明するための図であって、車両の走行が走行している車線を車両の左側からみた図である。FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram of a lane in which the vehicle is traveling viewed from the left side of the vehicle. 実施の形態1において、照射範囲決定部が決定した照射範囲の一例について説明するための図であって、車両が走行している車線の俯瞰図である。FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determining unit in Embodiment 1, and is a bird's-eye view of the lane in which the vehicle is traveling. 実施の形態1において、照射範囲決定部が決定した照射範囲の一例について説明するための図であって、車内において運転者からみた場合の車両の前方の状況を示す図である。FIG. 4 is a diagram for explaining an example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram showing a situation in front of the vehicle as seen from the driver inside the vehicle. 実施の形態1において、照射範囲決定部が決定した照射範囲のその他の一例について説明するための図であって、車両の走行が走行している車線を車両の左側からみた図である。FIG. 4 is a diagram for explaining another example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram of the lane in which the vehicle is traveling viewed from the left side of the vehicle. 実施の形態1において、照射範囲決定部が決定した照射範囲のその他の一例について説明するための図であって、車両が走行している車線の俯瞰図である。FIG. 10 is a diagram for explaining another example of the irradiation range determined by the irradiation range determining unit in Embodiment 1, and is a bird's-eye view of the lane on which the vehicle is traveling. 実施の形態1において、照射範囲決定部が決定した照射範囲のその他の一例について説明するための図であって、車内において運転者からみた場合の車両の前方の状況を示す図である。FIG. 4 is a diagram for explaining another example of the irradiation range determined by the irradiation range determination unit in Embodiment 1, and is a diagram showing a situation in front of the vehicle as viewed from the driver inside the vehicle. 実施の形態1に係るヘッドライト制御装置の動作について説明するためのフローチャートである。4 is a flowchart for explaining the operation of the headlight control device according to Embodiment 1; 図10のステップST5の処理の詳細について説明するためのフローチャートである。FIG. 11 is a flowchart for explaining the details of the process of step ST5 in FIG. 10; FIG. 図12Aおよび図12Bは、実施の形態1に係るヘッドライト制御装置および実施の形態2に係るヘッドライト制御装置のハードウェア構成の一例を示す図である。12A and 12B are diagrams showing examples of hardware configurations of a headlight control device according to Embodiment 1 and a headlight control device according to Embodiment 2. FIG. 実施の形態2に係るヘッドライト制御装置の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of a headlight control device according to Embodiment 2; 実施の形態2に係るヘッドライト制御装置の動作について説明するためのフローチャートである。8 is a flowchart for explaining the operation of the headlight control device according to Embodiment 2; 図14のステップST5aの処理の詳細について説明するためのフローチャートである。FIG. 15 is a flowchart for explaining the details of the process of step ST5a in FIG. 14; FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係るヘッドライト制御装置1の構成例を示す図である。
 実施の形態1において、ヘッドライト制御装置1は、車両100に搭載されていることを想定する。
 ヘッドライト制御装置1は、車両100の運転者の向きに基づいて、車両100に設けられているヘッドライト2の灯火制御を行う。実施の形態1において、「運転車の向き」は、運転者の顔向き、または、運転者の視線方向であらわされる。
 実施の形態1では、ヘッドライト制御装置1が行う、運転者の向きに基づくヘッドライト2の灯火制御は、例えば、夜間の駐車場、または、夜間の市街地等、車両100が走行する道路の左右に駐車車両が多く、車両100が比較的低速で走行するような場所において、ヘッドライト2がオンにされた場合に行われることを想定している。
 ヘッドライト制御装置1は、運転者が正面方向を向いている場合、運転者が左方向を向いている場合、または、運転者が右方向を向いている場合に応じて、ヘッドライト2の灯火制御を行う。以下の説明において、「正面方向」とは、運転者の正面から左右水平に所定の距離だけ広げた範囲をいう。正面方向とする範囲、運転者が左方向を向いているとする範囲、および、運転者が右方向を向いているとする範囲については、後述する。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a headlight control device 1 according to Embodiment 1. As shown in FIG.
In Embodiment 1, it is assumed that headlight control device 1 is mounted on vehicle 100 .
The headlight control device 1 performs lighting control of the headlights 2 provided in the vehicle 100 based on the orientation of the driver of the vehicle 100 . In Embodiment 1, the "orientation of the driver's vehicle" is represented by the orientation of the driver's face or the direction of the driver's line of sight.
In Embodiment 1, the lighting control of the headlights 2 based on the direction of the driver performed by the headlight control device 1 is performed on the left and right of the road on which the vehicle 100 travels, such as a parking lot at night or an urban area at night. This is assumed to occur when the headlights 2 are turned on in a location where there are many parked vehicles and the vehicle 100 is traveling at a relatively low speed.
The headlight control device 1 controls the lighting of the headlights 2 depending on whether the driver is facing forward, left, or right. control. In the following description, the term "frontal direction" refers to a range horizontally extended by a predetermined distance from the front of the driver. The range of the front direction, the range of the driver facing left, and the range of the driver facing right will be described later.
 ヘッドライト制御装置1は、運転者が左方向または右方向を向いている場合、運転者が向いている方向に障害物があると推定されるか否かに応じて、ヘッドライト2に対して光を照射させる範囲(以下「照射範囲」という。)を決定する。ヘッドライト制御装置1は、決定した照射範囲に光が照射されるよう、ヘッドライト2の点灯制御を行う。
 実施の形態1において、障害物とは、運転者が向いている方向に存在した場合に、その存在によって、運転者から見て運転者が視認すべき対象が隠れ、運転者が当該視認すべき対象を視認することが困難となる程度の大きさを有する静止物体を想定している。具体例を挙げると、実施の形態1において、障害物とは、駐車車両、街路樹、または、看板等を想定している。なお、実施の形態1において、運転者が視認すべき対象は、運転者が車両100を運転中に急に車両100の走行経路上に入り込む可能性があり、運転者が不測の事態を招かないよう注意を払う必要がある物体(主に移動体)を想定している。具体的には、実施の形態1において、視認すべき対象とは、歩行者を想定している。
When the driver is facing leftward or rightward, the headlight control device 1 controls the headlights 2 depending on whether it is estimated that there is an obstacle in the direction the driver is facing. A range to be irradiated with light (hereinafter referred to as “irradiation range”) is determined. The headlight control device 1 performs lighting control of the headlights 2 so that the determined irradiation range is irradiated with light.
In the first embodiment, when an obstacle exists in the direction in which the driver is facing, the presence of the obstacle hides the object that the driver should visually recognize from the driver's perspective. A static object having a size that makes it difficult to visually recognize the object is assumed. As a specific example, in Embodiment 1, the obstacles are assumed to be parked vehicles, roadside trees, signboards, or the like. In the first embodiment, the object to be visually recognized by the driver may suddenly enter the travel route of the vehicle 100 while the driver is driving the vehicle 100, and the driver will not cause an unexpected situation. It assumes an object (mainly a moving object) that needs to be paid attention to. Specifically, in Embodiment 1, the target to be visually recognized is assumed to be a pedestrian.
 ヘッドライト制御装置1は、ヘッドライト2、撮像装置3、および、障害物検知センサ4と接続される。ヘッドライト2、撮像装置3、および、障害物検知センサ4は、車両100に設けられている。 The headlight control device 1 is connected to the headlight 2, imaging device 3, and obstacle detection sensor 4. A headlight 2 , an imaging device 3 , and an obstacle detection sensor 4 are provided in a vehicle 100 .
 ヘッドライト2は、車両100の前方を照らす照明器具である。ヘッドライト2は、ハイビームとロービームと補助光とを照射可能な一般的なヘッドライトであるため詳細な構成例についての説明は省略する。ヘッドライト2は、車両100において、車両100の進行方向に対して左側に搭載される左ライト21と、車両100において、車両100の進行方向に対して右側に搭載される右ライト22とを備える。左ライト21は、遠方を照らすハイビームユニット211と近方を照らすロービームユニット212と補助光ユニット213で構成される。右ライト22は、遠方を照らすハイビームユニット221と近方を照らすロービームユニット222と補助光ユニット223で構成される。
 ハイビームユニット211,221、ロービームユニット212,222、および、補助光ユニット213,223は、それぞれ、アレイ状に配置された複数のLED光源等の光源(図示省略)で構成され、各光源は個々に点灯可能である。
 実施の形態1において、アレイ状に配置されるとは、光源が、車両100の幅方向に一列に配置されることをいう。各光源が点灯することで、車両100の前方の領域にハイビーム、ロービーム、または、補助光が照射される。
The headlight 2 is a lighting fixture that illuminates the front of the vehicle 100 . Since the headlight 2 is a general headlight capable of emitting high beam, low beam, and auxiliary light, a detailed description of a configuration example will be omitted. The headlight 2 includes a left light 21 mounted on the left side of the vehicle 100 with respect to the traveling direction of the vehicle 100, and a right light 22 mounted on the right side of the vehicle 100 with respect to the traveling direction of the vehicle 100. . The left light 21 is composed of a high beam unit 211 for illuminating distant objects, a low beam unit 212 for illuminating near objects, and an auxiliary light unit 213 . The right light 22 is composed of a high beam unit 221 for illuminating distant objects, a low beam unit 222 for illuminating near objects, and an auxiliary light unit 223 .
The high beam units 211 and 221, the low beam units 212 and 222, and the auxiliary light units 213 and 223 are each composed of a light source (not shown) such as a plurality of LED light sources arranged in an array, and each light source is individually It can be lit.
In Embodiment 1, being arranged in an array means that the light sources are arranged in a line in the width direction of vehicle 100 . By turning on each light source, a high beam, a low beam, or auxiliary light is emitted to the area in front of the vehicle 100 .
 実施の形態1において、車両100の前方においてハイビームユニット211,221がハイビームを照射可能とする領域を「ハイビーム照射可能領域」という。ハイビーム照射可能領域が、車両100のどれぐらい前方までの、どれぐらいの範囲の領域であるかは、ハイビームユニット211,221の仕様等に応じて、予め決められている。実施の形態1において、車両100の前方においてロービームユニット212,222がロービームを照射可能とする領域を「ロービーム照射可能領域」という。ロービーム照射可能領域が、車両100のどれぐらい前方までの、どれぐらいの範囲の領域であるかは、ロービームユニット212,222の仕様等に応じて、予め決められている。実施の形態1において、車両100の前方において補助光ユニット213,223が補助光を照射可能とする領域を「補助光照射可能領域」という。補助光照射可能領域が、車両100のどれぐらい前方までの、どれぐらいの範囲の領域であるかは、補助光ユニット213,223の仕様等に応じて、予め決められている。 In Embodiment 1, the area in front of the vehicle 100 where the high beam units 211 and 221 can irradiate the high beam is called "high beam irradiation area". How far in front of the vehicle 100 the high-beam irradiable area is, and what range of the area is determined in advance according to the specifications of the high- beam units 211 and 221 and the like. In the first embodiment, a region in front of the vehicle 100 where the low beam units 212 and 222 can irradiate the low beam is referred to as a "low beam irradiable region". How far in front of the vehicle 100 the low-beam irradiable area is, and what range of the area is determined in advance according to the specifications of the low- beam units 212 and 222 and the like. In Embodiment 1, an area in front of the vehicle 100 where the auxiliary light units 213 and 223 can irradiate auxiliary light is referred to as an "area capable of being irradiated with auxiliary light". How far in front of the vehicle 100 the fill-light irradiation possible area is, and what range of the area is determined in advance according to the specifications of the fill-in light units 213 and 223 and the like.
 実施の形態1に係るヘッドライト制御装置1は、各光源について点灯または消灯させることで、ハイビーム、ロービーム、または、補助光を照射または遮光させる制御を行う。
 なお、ヘッドライト制御装置1は、各光源について点灯および消灯を行うだけでなく、点灯時の光量の制御を行うことも可能である。
The headlight control device 1 according to Embodiment 1 performs control to irradiate or block high beam, low beam, or auxiliary light by turning on or off each light source.
Note that the headlight control device 1 can not only turn on and off each light source, but also control the amount of light when the light source is turned on.
 撮像装置3は、車両100内をモニタリングすることを目的に車両100に設置されたカメラ等であり、少なくとも、運転者の顔を撮像可能に設置されている。撮像装置3は、撮像した撮像画像を、ヘッドライト制御装置1に出力する。撮像装置3は、例えば、ハンドル付近、または、ダッシュボードの中央部等、車幅方向の中央となる位置に設けられる。なお、実施の形態1において、「中央」とは、厳密に中央であることに限定されず、略中央を含む。
 撮像装置3は、例えば、CCD(Charge Coupled Devices)撮像素子またはCMOS(Complementary Metal Oxide Semiconductor)撮像素子等の半導体撮像素子を用いたカメラである。
 撮像装置3は、例えば、車両100内の運転者の状態を監視するために車両100に搭載される、いわゆる「ドライバーモニタリングシステム(Driver Monitoring System,DMS)」が有する撮像装置と共用のものであってもよい。
The imaging device 3 is a camera or the like installed in the vehicle 100 for the purpose of monitoring the inside of the vehicle 100, and is installed so as to be capable of imaging at least the driver's face. The imaging device 3 outputs the captured image to the headlight control device 1 . The imaging device 3 is provided at the center in the vehicle width direction, for example, near the steering wheel or at the center of the dashboard. In addition, in Embodiment 1, the “center” is not limited to being strictly the center, and includes approximately the center.
The imaging device 3 is, for example, a camera using a semiconductor imaging device such as a CCD (Charge Coupled Devices) imaging device or a CMOS (Complementary Metal Oxide Semiconductor) imaging device.
The imaging device 3 is, for example, shared with an imaging device of a so-called “Driver Monitoring System (DMS)” mounted on the vehicle 100 to monitor the condition of the driver in the vehicle 100. may
 障害物検知センサ4は、車両100の周囲に存在する物体を検知するセンサである。障害物検知センサ4は、車外における物体までの距離に関するデータ(以下「距離データ」という。)を取得する。障害物検知センサ4は、例えば、ミリ波レーダを想定している。
 障害物検知センサ4は、車両100の周囲にミリ波等の電波を送信し、当該電波が物体で反射した反射波を受信する。障害物検知センサ4は、電波を送信したタイミングから反射波を受信するまでの時間に基づいて、当該反射波に関連付けられた物体の存在、物体までの距離、物体の形状等を検出することができる。障害物検知センサ4が取得する距離データには、物体の存在、物体までの距離、および、物体の形状等に関するデータが含まれる。なお、電波は、車両100の周囲の予め決められた範囲における複数の領域に対して照射され、距離データには、電波が照射される領域の数の分だけの、物体の存在、物体までの距離、および、物体の形状等に関するデータが含まれる。
 障害物検知センサ4は、取得した距離データを、ヘッドライト制御装置1に出力する。
The obstacle detection sensor 4 is a sensor that detects objects existing around the vehicle 100 . The obstacle detection sensor 4 acquires data on the distance to an object outside the vehicle (hereinafter referred to as "distance data"). The obstacle detection sensor 4 is assumed to be, for example, a millimeter wave radar.
The obstacle detection sensor 4 transmits radio waves such as millimeter waves around the vehicle 100 and receives reflected waves of the radio waves reflected by objects. The obstacle detection sensor 4 can detect the presence of an object associated with the reflected wave, the distance to the object, the shape of the object, etc. based on the time from when the radio wave is transmitted to when the reflected wave is received. can. The distance data acquired by the obstacle detection sensor 4 includes data regarding the presence of an object, the distance to the object, the shape of the object, and the like. The radio waves are emitted to a plurality of areas within a predetermined range around the vehicle 100, and the distance data includes the existence of objects and distances to the objects corresponding to the number of areas to which the radio waves are emitted. It contains data related to the distance and the shape of the object.
The obstacle detection sensor 4 outputs the acquired distance data to the headlight control device 1 .
 ヘッドライト制御装置1は、ヘッドライト判定部11、走行場所判定部12、制御開始判定部13、向き検出部14、向き判定部15、障害物有無判定部16、照射範囲決定部17、および、ヘッドライト制御部18を備える。 The headlight control device 1 includes a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17, and A headlight control unit 18 is provided.
 ヘッドライト判定部11は、車両100に設けられている各種センサから車両100に関する情報(以下「車両情報」という。)を取得する。各種センサとは、例えば、ヘッドライトスイッチ、車速センサ、操舵角センサ、または、シフトポジションセンサである。車両情報は、ヘッドライト2の状態を示す情報、および、車速情報を含む。ヘッドライト判定部11は、取得した車両情報に基づき、ヘッドライト2がオンの状態であるか、オフの状態であるかを判定する。
 ヘッドライト判定部11は、ヘッドライト2がオンの状態であるか、オフの状態であるかの判定結果(以下「ヘッドライト状態判定結果」という。)を、制御開始判定部13に出力する。ヘッドライト判定部11は、ヘッドライト状態判定結果とあわせて車両情報を制御開始判定部13に出力する。
The headlight determination unit 11 acquires information about the vehicle 100 (hereinafter referred to as “vehicle information”) from various sensors provided on the vehicle 100 . Various sensors are, for example, a headlight switch, a vehicle speed sensor, a steering angle sensor, or a shift position sensor. The vehicle information includes information indicating the state of the headlights 2 and vehicle speed information. The headlight determination unit 11 determines whether the headlights 2 are on or off based on the acquired vehicle information.
The headlight determination unit 11 outputs a determination result as to whether the headlight 2 is on or off (hereinafter referred to as “headlight state determination result”) to the control start determination unit 13 . The headlight determination unit 11 outputs the vehicle information to the control start determination unit 13 together with the headlight state determination result.
 走行場所判定部12は、位置情報取得装置(図示省略)から車両100の現在位置に関連する情報(以下「自車位置関連情報」という。)を取得し、車両100が現在走行している場所を判定する。位置情報取得装置は、例えば、車両100に搭載されているナビゲーション装置、ロケータ、車両100の前方を撮像する車外カメラ、または、地図データベースである。自車位置関連情報は、車両100の現在位置情報、地図情報、または、車両100の前方を撮像した撮像画像(以下「前方画像」という。)等、車両100が走行している場所を特定可能な情報を含む。地図情報は、駐車場等の施設、交差点、踏切、道路種別(市街地道路であるか、高速道路であるか等)等がわかる情報を含む。
 なお、例えば、ヘッドライト判定部11が車両情報を取得する取得元となる各種センサと位置情報取得装置とが共通の装置であってもよいし、例えば、車両情報と自車位置関連情報とが、ヘッドライト2の状態を示す情報、車速情報、車両100の現在位置情報、および、地図情報を含む共通の情報であってもよい。
The travel location determination unit 12 acquires information related to the current location of the vehicle 100 (hereinafter referred to as “vehicle location related information”) from a location information acquisition device (not shown), and determines the location where the vehicle 100 is currently traveling. judge. The position information acquisition device is, for example, a navigation device mounted on the vehicle 100, a locator, an external camera that captures an image in front of the vehicle 100, or a map database. The vehicle position-related information can specify the location where the vehicle 100 is traveling, such as current position information of the vehicle 100, map information, or an image captured in front of the vehicle 100 (hereinafter referred to as a "front image"). information. The map information includes information indicating facilities such as parking lots, intersections, railroad crossings, road types (city roads, expressways, etc.), and the like.
For example, various sensors from which the headlight determination unit 11 acquires vehicle information and the position information acquisition device may be a common device. , information indicating the state of the headlights 2, vehicle speed information, current position information of the vehicle 100, and map information.
 走行場所判定部12は、車両100が現在走行している場所に関する情報(以下「走行場所情報」という。)を、制御開始判定部13に出力する。走行場所情報は、例えば、駐車場等、車両100が現在走行している場所の種別を特定可能な情報、または、車両100が現在走行している場所の住所を含む。車両100が現在走行している場所の種別は、市街地道路等、車両100が現在走行している道路の種別を示す情報を含む。
 走行場所判定部12は、走行場所情報とあわせて自車位置関連情報を、制御開始判定部13に出力する。
Driving location determination unit 12 outputs information about the location where vehicle 100 is currently traveling (hereinafter referred to as “driving location information”) to control start determination unit 13 . The travel location information includes, for example, information that can identify the type of location where vehicle 100 is currently traveling, such as a parking lot, or the address of the location where vehicle 100 is currently traveling. The type of location where the vehicle 100 is currently traveling includes information indicating the type of road on which the vehicle 100 is currently traveling, such as a city road.
The travel location determination unit 12 outputs the vehicle position-related information together with the travel location information to the control start determination unit 13 .
 制御開始判定部13は、ヘッドライト判定部11から出力されたヘッドライト状態判定結果と、走行場所判定部12から出力された走行場所情報とに基づき、運転者の向きに基づくヘッドライト2の点灯制御を開始するか否かを判定する。
 具体的には、制御開始判定部13は、ヘッドライト状態判定結果および走行場所情報を、予め設定された条件(以下「制御開始判定用条件」という。)と比較することで、運転者の向きに基づくヘッドライト2の点灯制御を開始するか否かを判定する。制御開始判定用条件には、ヘッドライト2の点灯制御を開始するための条件が設定されている。制御開始判定用条件は、予め、管理者等によって作成され、制御開始判定部13が参照可能な場所に記憶されている。
The control start determination unit 13 turns on the headlights 2 based on the direction of the driver based on the headlight state determination result output from the headlight determination unit 11 and the driving location information output from the driving location determination unit 12. Determine whether to start control.
Specifically, the control start determination unit 13 compares the headlight state determination result and the driving location information with preset conditions (hereinafter referred to as “control start determination conditions”) to determine the direction of the driver. It is determined whether or not to start the lighting control of the headlights 2 based on. A condition for starting lighting control of the headlight 2 is set in the control start determination condition. The control start determination condition is created in advance by an administrator or the like and stored in a location that can be referred to by the control start determination unit 13 .
 実施の形態1において、制御開始判定用条件には、以下の条件が設定されているとする。
「以下の(1)および(2)を満たすこと。
 (1)ヘッドライトがオンの状態であること。
 (2)車両が走行している場所が、予め、運転者の向きに基づくヘッドライトの点灯制御を行う場所として定義された場所であること。」
In Embodiment 1, the following conditions are set as the control start determination conditions.
"Meet the following (1) and (2).
(1) The headlights must be on.
(2) The place where the vehicle is traveling is defined in advance as a place where headlight lighting control is performed based on the direction of the driver. ”
 なお、「運転者の向きに基づくヘッドライトの点灯制御を行う場所(以下「適用場所」という。)」は、管理者等によって予め定義されている。
 適用場所には、例えば、「駐車場」、または、「市街地道路」等、車両100が走行する道路の左右に駐車車両が多いと想定される場所が定義されている。適用場所は、当該適用場所の種別で定義されてもよいし、具体的な住所で定義されてもよい。
It should be noted that the 'place where headlight lighting control is performed based on the direction of the driver (hereinafter referred to as 'application place')' is defined in advance by an administrator or the like.
The application location is defined as a location, such as a “parking lot” or a “town road”, where many vehicles are assumed to be parked on the left and right sides of the road on which the vehicle 100 travels. The applicable location may be defined by the type of applicable location, or may be defined by a specific address.
 また、上述した制御開始判定用条件は、一例に過ぎない。例えば、制御開始判定用条件には、上記(1)、(2)に加え、(3)車速が予め設定された閾値以下であること、を満たすこと、との条件が設定されていてもよい。 Also, the above-described control start determination condition is merely an example. For example, in addition to the conditions (1) and (2) above, the conditions for determining the start of control may include the condition that (3) the vehicle speed is equal to or less than a preset threshold value. .
 制御開始判定部13は、制御開始判定用条件を満たす場合、運転者の向きに基づくヘッドライト2の点灯制御を開始すると判定する。制御開始判定部13は、制御開始判定用条件を満たさない場合は、運転者の向きに基づくヘッドライト2の点灯制御を開始しないと判定する。
 制御開始判定部13は、運転者の向きに基づくヘッドライト2の点灯制御を開始すると判定した場合、制御開始を指示する情報(以下「制御開始指示」という。)を、向き検出部14および照射範囲決定部17に出力する。制御開始判定部13は、照射範囲決定部17に、車両情報および自車位置関連情報も出力する。
The control start determination unit 13 determines to start lighting control of the headlights 2 based on the direction of the driver when the conditions for control start determination are satisfied. If the control start determination condition is not satisfied, the control start determination unit 13 determines not to start the lighting control of the headlights 2 based on the direction of the driver.
When the control start determination unit 13 determines to start the lighting control of the headlights 2 based on the orientation of the driver, the control start determination unit 13 sends information instructing the start of control (hereinafter referred to as “control start instruction”) to the orientation detection unit 14 and the irradiator. Output to range determination unit 17 . The control start determination unit 13 also outputs vehicle information and vehicle position-related information to the irradiation range determination unit 17 .
 向き検出部14は、制御開始判定部13から開始判定情報が出力されると、撮像装置3から取得した撮像画像に基づき、運転者の向きを検出する。
 向き検出部14は、公知の画像認識技術を用いて、運転者の向き、言い換えれば、運転者の顔向きまたは視線方向を検出する。人の顔が撮像された撮像画像から人の顔向きを検出する画像認識技術、および、人の顔が撮像された撮像画像から人の視線方向を検出する画像認識技術は公知の技術であるため、詳細な説明は省略する。実施の形態1において、向き検出部14は、例えば、運転者の向きを、運転者の頭部中心を基準として検出するものとする。なお、撮像装置3の設置位置と画角は予めわかっているので、向き検出部14は、運転者の頭部中心の位置を算出可能である。運転者の頭部中心の位置は、実空間上の一点であり、例えば、地図上にマッピング可能な座標値であらわされる。
When control start determination information is output from the control start determination unit 13 , the direction detection unit 14 detects the direction of the driver based on the captured image acquired from the imaging device 3 .
The direction detection unit 14 uses a known image recognition technology to detect the direction of the driver, in other words, the direction of the driver's face or line of sight. The image recognition technology for detecting the direction of a person's face from a captured image of a person's face and the image recognition technology for detecting the line-of-sight direction from a captured image of a person's face are well-known technologies. , detailed description is omitted. In Embodiment 1, for example, the orientation detection unit 14 detects the orientation of the driver with reference to the center of the driver's head. Since the installation position and the angle of view of the imaging device 3 are known in advance, the orientation detection unit 14 can calculate the position of the center of the driver's head. The position of the center of the driver's head is one point on the real space, and is represented by coordinate values mappable on a map, for example.
 また、実施の形態1において、運転者の向きは、運転者の頭部中心と当該頭部中心の正面の一点とを通る直線に対する水平角度であらわされるものとする。実施の形態1において、運転者は、運転者の頭部中心を基準として左右方向に向きを変え得るものとする。
 詳細には、運転者の向きは、運転者が車両100の進行方向に対して正面を向いたときを基準(0度)とし、運転者が正面を向いた状態から車両100の進行方向に対して右に向くほど大きい値となる角度であらわされる。運転者が正面を向いた状態から車両100の進行方向に対して左に向くほど、運転者の向きは小さい値となる。なお、実施の形態1において、正面とは、厳密に真正面であることに限定されず、略真正面を含む。
 向き検出部14は、検出した運転者の向きを、向き判定部15に出力する。
In the first embodiment, the orientation of the driver is represented by a horizontal angle with respect to a straight line passing through the center of the driver's head and a point in front of the center of the head. In Embodiment 1, it is assumed that the driver can turn left and right with the center of the driver's head as a reference.
Specifically, the orientation of the driver is defined as the reference (0 degrees) when the driver is facing forward with respect to the direction of travel of the vehicle 100, and from the state in which the driver is facing the front with respect to the direction of travel of the vehicle 100. It is expressed as an angle that becomes a larger value as it turns to the right. The value of the driver's direction becomes smaller as the driver turns left with respect to the traveling direction of the vehicle 100 from the state in which the driver faces the front. In addition, in Embodiment 1, the front is not strictly limited to being directly in front, but includes substantially in front.
The orientation detection unit 14 outputs the detected orientation of the driver to the orientation determination unit 15 .
 向き判定部15は、向き検出部14が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する。
 向き判定部15は、向き検出部14が検出した運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端を向いた場合の向きよりも右を向いている場合、運転者は右方向を向いていると判定し、運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端を向いた場合の向きよりも左を向いている場合、運転者は左方向を向いていると判定する。
The orientation determination unit 15 determines whether the driver is facing left or right based on the orientation of the driver detected by the orientation detection unit 14 .
The orientation determination unit 15 determines whether the orientation of the driver detected by the orientation detection unit 14 is directed to the right rather than to the right end of the lane in which the vehicle 100 is traveling (here, the so-called lane). If so, it is determined that the driver is facing the right direction, and the driver is facing the left end of the lane in which the vehicle 100 is traveling (here, the so-called lane). is also facing left, it is determined that the driver is facing left.
 向き判定部15による、運転者が左方向または右方向を向いているかの判定について、詳細に説明する。 Determination of whether the driver is facing leftward or rightward by the direction determination unit 15 will be described in detail.
 向き判定部15は、まず、運転者が正面方向を向いているとする運転者の向きの範囲(以下「正面方向範囲」という。)を算出する。実施の形態1において、正面方向範囲とは、運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端を向いたときの向きから車線の右端を向いたときの向きまでの運転者の向きの範囲とする。
 向き判定部15は、車両100から、運転者が視認しておくべきとする車両100前方の地点までの距離(以下「視認距離」という。)と、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の幅(以下「車線幅」という。)と、運転者の位置とに基づいて、正面方向範囲を算出する。なお、運転者の位置は、例えば、運転者の頭部中心の位置であらわされるものとする。向き判定部15は、向き検出部14から運転者の位置に関する情報を取得すればよい。
The direction determining unit 15 first calculates a range of the driver's direction in which the driver is facing the front (hereinafter referred to as "front direction range"). In the first embodiment, the frontal direction range refers to the direction from the direction when the driver faces the left end of the lane in which vehicle 100 is traveling (the so-called lane here) to the right end of the lane. The range of the driver's orientation up to the orientation when the
The orientation determination unit 15 determines the distance from the vehicle 100 to a point in front of the vehicle 100 that the driver should visually recognize (hereinafter referred to as "visible distance"), and the lane in which the vehicle 100 is traveling (here, The frontal direction range is calculated based on the width of the lane (hereinafter referred to as "lane width") and the position of the driver. It should be noted that the position of the driver is represented, for example, by the position of the center of the driver's head. The orientation determination unit 15 may acquire information regarding the position of the driver from the orientation detection unit 14 .
 ここで、向き判定部15による、正面方向範囲の算出方法について、図面を用いて説明する。
 図2Aおよび図2Bは、実施の形態1において、向き判定部15が正面方向範囲を算出する方法の一例について説明するための図である。
 図2Aは、向き判定部15が視認距離を固定された値として正面方向範囲を算出する方法例について説明するための図であり、図2Bは、向き判定部15が視認距離を動的に変更して正面方向範囲を算出する方法例について説明するための図である。
 なお、図2Aおよび図2Bを用いて説明する正面方向範囲の算出方法においては、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の車線幅は、予め設定された値とする。図2Aを用いて説明する例では、車線幅は「2.5m」とし、図2Bを用いて説明する例では、車線幅は「3m」としている。
 また、図2Aおよび図2Bを用いた説明では、一例として、車両100は右ハンドル車とする。図2Aおよび図2Bにおいて、図上、上方向が、車両100の進行方向である。
 なお、説明の簡単のため、図2Aおよび図2Bにおける縮尺は、実際の縮尺とは異なるものとしている。
Here, a method for calculating the frontal direction range by the orientation determination unit 15 will be described with reference to the drawings.
2A and 2B are diagrams for explaining an example of a method for calculating the front direction range by the orientation determination unit 15 in the first embodiment.
FIG. 2A is a diagram for explaining an example of a method in which the orientation determination unit 15 calculates the frontal direction range using a fixed value of the visible distance, and FIG. FIG. 10 is a diagram for explaining an example of a method for calculating a frontal direction range.
2A and 2B, the lane width of the lane in which the vehicle 100 is traveling (the so-called lane here) is a preset value. do. In the example described using FIG. 2A, the lane width is "2.5 m", and in the example described using FIG. 2B, the lane width is "3 m".
Also, in the description using FIGS. 2A and 2B, as an example, the vehicle 100 is a right-hand drive vehicle. 2A and 2B, the upward direction is the traveling direction of the vehicle 100. As shown in FIG.
For ease of explanation, the scales in FIGS. 2A and 2B are different from the actual scales.
 まず、図2Aを用いて、向き判定部15が、視認距離を固定された値として正面方向範囲を算出する方法例について説明する。
 ここでは、視認距離は、例えば、40mとする。なお、視認距離を固定された値とする場合、当該視認距離は、例えば、管理者等によって、車両100の前方においてヘッドライト2が光を照射可能な車両100からの距離を考慮して設定され、向き判定部15が参照可能な場所に記憶される。
First, with reference to FIG. 2A, an example of a method for calculating the frontal direction range by using the orientation determination unit 15 as a fixed value of the visible distance will be described.
Here, the visible distance is assumed to be 40 m, for example. When the visible distance is set to a fixed value, the visible distance is set, for example, by an administrator or the like in consideration of the distance from the vehicle 100 at which the headlights 2 can irradiate light in front of the vehicle 100. , is stored in a location that the orientation determination unit 15 can refer to.
 向き判定部15は、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端の一点との水平距離、および、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端の一点との水平距離を算出する。向き判定部15は、例えば、制御開始判定部13および向き検出部14を介して取得した自車位置関連情報に含まれている前方画像に対して公知の画像認識処理を行い、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の両端を検出する。向き判定部15は、検出した前方画像における車線の両端の位置と運転者の位置に基づけば、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端の一点との水平距離、および、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端の一点との水平距離を算出できる。
 図2Aに示す例では、向き判定部15は、運転者の位置と、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端の一点との水平距離を、1.75mと算出したとしている。また、向き判定部15は、運転者の位置と、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端の一点との水平距離を、1.75mと算出したとしている。
 この場合、向き判定部15は、「-1.78度~+1.78度」の範囲を、正面方向範囲として算出する。
The orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane), and the driver's position and the vehicle 100 traveling. The horizontal distance to a point on the right end of the lane (the so-called lane here) is calculated. The orientation determination unit 15 performs known image recognition processing on the forward image included in the vehicle position-related information acquired via the control start determination unit 13 and the orientation detection unit 14, for example, so that the vehicle 100 can move. Both ends of the lane (the lane here is a so-called lane) are detected. Based on the positions of both ends of the lane in the detected front image and the position of the driver, the orientation determination unit 15 determines the position of the driver and the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane). , and the horizontal distance between the driver's position and the point on the right end of the lane in which the vehicle 100 is traveling (the so-called lane here) can be calculated.
In the example shown in FIG. 2A, the orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) to be 1.75 m. It is said that it was calculated as In addition, the direction determining unit 15 calculates the horizontal distance between the position of the driver and the point on the right end of the lane in which the vehicle 100 is traveling (the so-called lane here) to be 1.75 m. .
In this case, the orientation determination unit 15 calculates the range of "-1.78 degrees to +1.78 degrees" as the front direction range.
 次に、図2Bを用いて、向き判定部15が、視認距離を動的に変更して正面方向範囲を算出する方法例について説明する。
 例えば、視認距離は、車両100の車速と設定された走行時間とから車両100が走行時間経過後に到達する距離として算出されるものとし、向き判定部15は、車速と走行時間とに応じて、視認距離を動的に変更する。
 一例を挙げると、例えば、車両100が20km/hで走行しているとする。なお、向き判定部15が制御開始判定部13および向き検出部14を介して取得した車両情報には、車速情報が含まれている。また、走行時間には、例えば、5秒が設定されているとする。この場合、向き判定部15は、車速20km/hと走行時間5秒とから、視認距離を27.8mと算出する。なお、例えば、向き判定部15が視認距離を小数点以下何位までの距離とするかは予め決められている。
Next, with reference to FIG. 2B, an example of a method for calculating the frontal direction range by dynamically changing the visible distance by the orientation determination unit 15 will be described.
For example, the visible distance is calculated from the vehicle speed of the vehicle 100 and the set running time as the distance that the vehicle 100 reaches after the running time has passed. Dynamically change view distance.
For example, assume that the vehicle 100 is traveling at 20 km/h. The vehicle information acquired by the orientation determination unit 15 via the control start determination unit 13 and the orientation detection unit 14 includes vehicle speed information. It is also assumed that the running time is set to 5 seconds, for example. In this case, the orientation determination unit 15 calculates the visual recognition distance as 27.8 m from the vehicle speed of 20 km/h and the running time of 5 seconds. It should be noted that, for example, the number of places after the decimal point to which the orientation determination unit 15 determines the visible distance is determined in advance.
 正面方向範囲を算出するための走行時間は、向き判定部15によって適宜設定可能としてもよい。例えば、向き判定部15は、車両100の車速に応じて走行時間を変更できる。例えば、車両100が40km/hで走行している場合、向き判定部15は、車両100が20km/hで走行している場合の走行時間よりも走行時間を長くして、視認距離が長くなるようにしてもよい。
 向き判定部15は、例えば、車両100の車速が0km/hの場合は、予め設定されている初期値を視認距離とする。
The running time for calculating the frontal direction range may be appropriately set by the orientation determination unit 15 . For example, the orientation determination unit 15 can change the running time according to the vehicle speed of the vehicle 100 . For example, when the vehicle 100 is traveling at 40 km/h, the direction determining unit 15 makes the traveling time longer than the traveling time when the vehicle 100 is traveling at 20 km/h, thereby increasing the visible distance. You may do so.
For example, when the vehicle speed of the vehicle 100 is 0 km/h, the orientation determination unit 15 uses a preset initial value as the visual recognition distance.
 向き判定部15は、前方画像における車線(ここでいう車線とはいわゆるレーン)の両端の位置と運転者の位置とに基づいて、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端の一点との水平距離、および、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端の一点との水平距離を算出する。
 図2Bに示す例では、向き判定部15は、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端の一点との水平距離を、2.5m、運転者の位置と車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端の一点との水平距離を、0.5mと算出したとする。
 この場合、向き判定部15は、「-5.13度~+1.08度」の範囲を、正面方向範囲として算出する。
The orientation determination unit 15 determines the position of the driver and the lane in which the vehicle 100 is traveling (here, The horizontal distance between the driver's position and the rightmost point of the lane in which the vehicle 100 is traveling (the so-called lane) is measured. calculate.
In the example shown in FIG. 2B, the orientation determination unit 15 determines the horizontal distance between the driver's position and a point on the left end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) to be 2.5 m, Assume that the horizontal distance between the position of the driver and a point on the right end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) is calculated to be 0.5 m.
In this case, the orientation determination unit 15 calculates the range of "-5.13 degrees to +1.08 degrees" as the front direction range.
 なお、図2Aおよび図2Bを用いた説明では、車線幅は予め設定された値としたが、これは一例に過ぎない。例えば、向き判定部15が制御開始判定部13および向き検出部14を介して取得した自車位置関連情報には車線幅の情報が含まれており、向き判定部15は、当該車線幅の情報に基づき、正面方向範囲を算出してもよい。
 また、例えば、向き判定部15は、自車位置関連情報に含まれている前方画像に対して公知の画像認識処理を行い、車線(ここでいう車線とはレーンを区切るいわゆる区画線)を検出して車線幅を算出し、算出した車線幅に基づき、正面方向範囲を算出してもよい。
 また、例えば、向き判定部15は、障害物検知センサ4から距離データを取得し、取得した距離データに基づいて検出した車両100の左右に存在する物体までの距離をもとに車両100が走行している道路の幅を算出し、これを車線幅としてもよい。そして、向き判定部15は、距離データに基づいて算出した車線幅に基づき、正面方向範囲を算出してもよい。なお、図1では、障害物検知センサ4から向き判定部15への矢印は省略している。
In addition, in the description using FIGS. 2A and 2B, the lane width is a preset value, but this is only an example. For example, the vehicle position-related information acquired by the orientation determination unit 15 via the control start determination unit 13 and the orientation detection unit 14 includes lane width information. You may calculate a front direction range based on.
Further, for example, the orientation determination unit 15 performs known image recognition processing on the forward image included in the vehicle position-related information, and detects lanes (here, lanes are so-called demarcation lines that separate lanes). Then, the front direction range may be calculated based on the calculated lane width.
Further, for example, the orientation determination unit 15 acquires distance data from the obstacle detection sensor 4, and determines whether the vehicle 100 is traveling based on the distance to the objects present on the left and right sides of the vehicle 100 detected based on the acquired distance data. It is also possible to calculate the width of the road on which the vehicle is moving, and use this as the lane width. Then, the orientation determination unit 15 may calculate the front direction range based on the lane width calculated based on the distance data. Note that an arrow from the obstacle detection sensor 4 to the orientation determination unit 15 is omitted in FIG.
 また、例えば、向き判定部15は、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の中央の座標(以下「車線中央座標」という。)と、車両100の位置の座標(以下「車両位置座標」という。)を取得し、車線中央座標の値と車両位置座標の値の差分をとって、当該車線の左端の一点から車両100の位置までの水平距離と当該車線の右端の一点から車両100の位置までの水平距離を算出することで、正面方向範囲を算出してもよい。なお、向き検出部14は、例えば、位置情報取得装置から自車位置関連情報を取得し、車線中央座標と車両位置座標とを特定すればよい。なお、車線の中央と車両100の位置とは、実空間上の一点であり、例えば、地図上にマッピング可能な座標値であらわされる。また、車線幅は、例えば、予め設定されていてもよいし、向き判定部15が、自車位置関連情報から車線幅の情報を取得してもよい。
 向き検出部14から取得した運転者の位置に関する情報に基づけば車両100の位置と運転者の位置との対応関係はわかるので、向き判定部15は、車線の左端の一点から車両100の位置までの水平距離と車線の右端の一点から車両100の位置までの水平距離とが算出できれば、車線の左端の一点から運転者の位置までの水平距離と車線の右端の一点から運転者の位置までの水平距離とが算出できる。
 具体例を挙げると、例えば、車線幅が予め「3m」と設定されており、車両100の位置と運転者の位置との水平距離が「0.1m」である場合に、向き判定部15が、車線の左端の一点から車両100の位置までの水平距離を「2.4m」、車線の右端の一点から車両100の位置までの水平距離を「0.6m」と算出したとする。この場合、向き判定部15は、車線の左端の一点から運転者の位置までの水平距離は「2.5m」、車線の左端の一点から運転者の位置までの水平距離は「0.5m」というように算出できる。
 向き判定部15は、算出した、車線の左端の一点から運転者の位置までの水平距離と車線の右端の一点から運転者の位置までの水平距離とに基づけば、図2Aおよび図2Bを用いて説明したような方法で、正面方向範囲を算出できる。
 このように正面方向範囲を算出することで、向き判定部15は、例えば、車線(ここでいう車線とはレーンを区切るいわゆる区画線)がない、または、当該車線が薄い等により前方画像から当該車線を検出できない場合であっても、正面方向範囲を算出することができる。
Further, for example, the orientation determination unit 15 determines the coordinates of the center of the lane in which the vehicle 100 is traveling (herein, the lane is a so-called lane) and the coordinates of the position of the vehicle 100 (hereinafter referred to as "lane center coordinates"). (hereinafter referred to as "vehicle position coordinates"), and the difference between the value of the lane center coordinate and the value of the vehicle position coordinate is taken, and the horizontal distance from a point on the left end of the lane to the position of the vehicle 100 and the position of the vehicle 100 are obtained. The frontal direction range may be calculated by calculating the horizontal distance from one point on the right end to the position of the vehicle 100 . Note that the orientation detection unit 14 may, for example, acquire vehicle position-related information from a position information acquisition device, and specify the lane center coordinates and the vehicle position coordinates. Note that the center of the lane and the position of the vehicle 100 are one point on the real space, and are represented, for example, by mappable coordinate values on a map. Further, the lane width may be set in advance, for example, or the orientation determination unit 15 may acquire lane width information from the vehicle position-related information.
Since the correspondence relationship between the position of the vehicle 100 and the position of the driver can be known based on the information about the position of the driver acquired from the orientation detection unit 14, the orientation determination unit 15 detects the position of the vehicle 100 from one point on the left end of the lane. and the horizontal distance from one point at the right end of the lane to the position of the vehicle 100 can be calculated, the horizontal distance from one point at the left end of the lane to the driver's position and the distance from the one point at the right end of the lane to the driver's position can be calculated. horizontal distance can be calculated.
As a specific example, for example, when the lane width is preset to "3 m" and the horizontal distance between the position of the vehicle 100 and the position of the driver is "0.1 m", the orientation determination unit 15 , the horizontal distance from one point on the left end of the lane to the position of the vehicle 100 is calculated as "2.4 m", and the horizontal distance from the one point on the right end of the lane to the position of the vehicle 100 is calculated as "0.6 m". In this case, the orientation determination unit 15 determines that the horizontal distance from the left edge point of the lane to the driver's position is "2.5 m", and the horizontal distance from the left edge point of the lane to the driver's position is "0.5 m". It can be calculated as follows.
Based on the calculated horizontal distance from one point on the left edge of the lane to the driver's position and the calculated horizontal distance from one point on the right edge of the lane to the driver's position, the orientation determination unit 15 uses FIGS. The frontal direction range can be calculated by the method described above.
By calculating the frontal direction range in this way, the orientation determination unit 15 can determine the direction from the front image because, for example, there are no lanes (here, lanes are so-called demarcation lines that separate lanes) or the lanes are thin. Even if the lane cannot be detected, the front direction range can be calculated.
 向き判定部15は、正面方向範囲を算出すると、当該正面方向範囲と向き検出部14が検出した運転者の向きとを比較して、運転者が左方向または右方向を向いているかを判定する。
 具体的には、向き判定部15は、向き検出部14が検出した運転者の向きが、正面方向範囲の最大値より大きい場合、運転者は右方向を向いていると判定する。上述の図2Aを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが+1.78度より大きい場合、運転者は右方向を向いていると判定する。上述の図2Bを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが+1.08度より大きい場合、運転者は右方向を向いていると判定する。
 向き検出部14が検出した運転者の向きが正面方向範囲の最大値より大きい場合とは、向き検出部14が検出した運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端を向いた場合の向きよりも右を向いている場合といえる。
After calculating the frontal direction range, the direction determination unit 15 compares the frontal direction range with the direction of the driver detected by the direction detection unit 14 to determine whether the driver is facing leftward or rightward. .
Specifically, when the orientation of the driver detected by the orientation detection unit 14 is greater than the maximum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing right. In the example described above with reference to FIG. 2A, the orientation determination unit 15 determines that the driver is facing right when the orientation of the driver detected by the orientation detection unit 14 is greater than +1.78 degrees. judge. In the example described above with reference to FIG. 2B, the orientation determination unit 15 determines that the driver is facing right when the orientation of the driver detected by the orientation detection unit 14 is greater than +1.08 degrees. judge.
A case where the direction of the driver detected by the direction detection unit 14 is greater than the maximum value of the front direction range means that the direction of the driver detected by the direction detection unit 14 is in the lane in which the vehicle 100 is traveling (here, lane It can be said that it is facing to the right rather than facing the right end of the so-called lane.
 また、向き判定部15は、向き検出部14が検出した運転者の向きが、正面方向範囲の最小値より小さい場合、運転者は左方向を向いていると判定する。上述の図2Aを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが-1.78度より小さい場合、運転者は左方向を向いていると判定する。上述の図2Bを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが-5.13度より小さい場合、運転者は左方向を向いていると判定する。
 向き検出部14が検出した運転者の向きが正面方向範囲の最小値より小さい場合とは、向き検出部14が検出した運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端を向いた場合の向きよりも左を向いている場合といえる。
Further, when the orientation of the driver detected by the orientation detection unit 14 is smaller than the minimum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing left. In the example described above with reference to FIG. 2A, the orientation determination unit 15 determines that the driver is facing left when the orientation of the driver detected by the orientation detection unit 14 is smaller than -1.78 degrees. I judge. In the example described above with reference to FIG. 2B, the orientation determination unit 15 determines that the driver is facing left when the orientation of the driver detected by the orientation detection unit 14 is smaller than -5.13 degrees. I judge.
A case where the direction of the driver detected by the direction detection unit 14 is smaller than the minimum value of the front direction range means that the direction of the driver detected by the direction detection unit 14 is in the lane in which the vehicle 100 is traveling (here, lane It can be said that it is facing left rather than facing the left end of the so-called lane.
 向き判定部15は、向き検出部14が検出した運転者の向きが正面方向範囲内である場合、運転者は正面方向を向いていると判定する。上述の図2Aを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが-1.78度~+1.78度の範囲内である場合、運転者は正面方向を向いていると判定する。上述の図2Bを用いて説明した例でいうと、向き判定部15は、向き検出部14が検出した運転者の向きが-5.13度~+1.08度の範囲内である場合、運転者は正面方向を向いていると判定する。 If the orientation of the driver detected by the orientation detection unit 14 is within the frontal direction range, the orientation determination unit 15 determines that the driver is facing the front. In the example described above with reference to FIG. 2A, the orientation determination unit 15 detects that the orientation of the driver detected by the orientation detection unit 14 is within the range of −1.78 degrees to +1.78 degrees. It is determined that the person is facing the front. In the example described above with reference to FIG. 2B, the direction determination unit 15 detects that the direction of the driver detected by the direction detection unit 14 is within the range of −5.13 degrees to +1.08 degrees. It is determined that the person is facing the front.
 向き判定部15は、運転者が左方向を向いていると判定したか、右方向を向いていると判定したか、正面方向を向いていると判定したかの判定結果(以下「向き判定結果」という。)を、障害物有無判定部16および照射範囲決定部17に出力する。また、向き判定部15は、向き検出部14が検出した運転者の向きを、障害物有無判定部16および照射範囲決定部17に出力する。 The direction determination unit 15 determines whether the driver is facing left, right, or front (hereinafter referred to as "direction determination result"). ) is output to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 . Further, the orientation determination unit 15 outputs the orientation of the driver detected by the orientation detection unit 14 to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 .
 図1を用いたヘッドライト制御装置1の構成例の説明に戻る。
 障害物有無判定部16は、向き判定部15から向き判定結果を取得する。また障害物有無判定部16は、障害物検知センサ4から距離データを取得する。
 障害物有無判定部16は、向き判定部15が、運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、障害物検知センサ4から取得した距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する。
Returning to the description of the configuration example of the headlight control device 1 using FIG.
The obstacle presence/absence determination unit 16 acquires the orientation determination result from the orientation determination unit 15 . The obstacle presence/absence determination unit 16 also acquires distance data from the obstacle detection sensor 4 .
If the direction determination unit 15 determines that the driver is facing leftward or rightward, the obstacle presence/absence determination unit 16 detects the direction of the driver detected by the direction detection unit 14 and the direction detected by the obstacle detection sensor 4. Based on the obtained distance data, it is determined whether or not it is estimated that there is an obstacle in the direction the driver is facing.
 ここで、図3は、実施の形態1における、障害物有無判定部16による、運転者が向いている方向に障害物があると推定されるか否かの判定方法の一例を説明するための図である。
 図3を用いて、障害物有無判定部16による、運転者が向いている方向に障害物があると推定されるか否かの判定方法の一例について、説明する。
 なお、説明の簡単のため、図3における縮尺は、実際の縮尺とは異なるものとしている。
Here, FIG. 3 is for explaining an example of a method for determining whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, by the obstacle presence/absence determination unit 16 in the first embodiment. It is a diagram.
An example of a method for determining whether or not an obstacle is estimated to exist in the direction in which the driver is facing by the obstacle presence/absence determination unit 16 will be described with reference to FIG. 3 .
For ease of explanation, the scale in FIG. 3 is different from the actual scale.
 障害物有無判定部16は、運転者の向きと距離データとに基づき、例えば、運転者の向きに対し予め設定された範囲(以下「障害物推定用向き範囲」という。)内であり、かつ、車両100の位置から視認距離までの範囲内において、予め設定された条件(以下「障害物推定用条件」という。)を満たす物体が検出された場合、運転者が向いている方向に障害物があると推定されると判定する。
 障害物推定用条件には、例えば、「一般的な車両の大きさに相当する」との条件が設定されている。なお、これは一例に過ぎず、例えば、具体的な大きさが設定されていてもよい。障害物推定用条件には、障害物とみなすことができる大きさの物体を判定可能な条件が設定されていればよい。
 障害物推定用向き範囲、および、障害物推定用条件は、障害物有無判定部16が参照可能な場所に記憶されている。
The obstacle presence/absence determination unit 16 determines, for example, within a preset range (hereinafter referred to as "obstacle estimation direction range") with respect to the direction of the driver based on the direction of the driver and the distance data, and , within the range from the position of the vehicle 100 to the visible distance, when an object that satisfies a preset condition (hereinafter referred to as "obstacle estimation condition") is detected, the obstacle is detected in the direction the driver is facing. It is determined that it is estimated that there is
For the obstacle estimation condition, for example, a condition that "corresponds to the size of a general vehicle" is set. Note that this is merely an example, and for example, a specific size may be set. As the obstacle estimation condition, it is only necessary to set a condition that allows determination of an object having a size that can be regarded as an obstacle.
The obstacle estimation orientation range and the obstacle estimation conditions are stored in a location that the obstacle presence/absence determining unit 16 can refer to.
 図3では、一例として、視認距離を40m、運転者の向きを-4度、障害物推定用向き範囲を「運転者の向きを中心に-0.5度~+0.5度の範囲」としている。また、障害物推定用条件は、「一般的な車両の大きさに相当する」との条件が設定されているとする。なお、図3において、正面方向範囲は、-1.78度~+1.78度としている。
 図3において、矢印は運転者の向き、「E」は障害物推定用向き範囲、黒丸は距離データで示される物体の位置を示している。
 障害物有無判定部16は、障害物推定用向き範囲において検出された物体が一般的な車両の大きさに相当する場合、運転者が向いている方向に障害物があると推定されると判定する。
 障害物有無判定部16は、障害物推定用向き範囲において検出された物体が一般的な車両の大きさに相当しない場合は、運転者が向いている方向に障害物があると推定されない、言い換えれば、運転者が向いている方向に障害物はないと推定される、と判定する。
In FIG. 3, as an example, the visual recognition distance is 40m, the driver's direction is -4 degrees, and the obstacle estimation direction range is "a range of -0.5 degrees to +0.5 degrees centered on the driver's direction". there is In addition, it is assumed that the obstacle estimation condition is set to "equivalent to the size of a general vehicle". In FIG. 3, the range in the front direction is -1.78 degrees to +1.78 degrees.
In FIG. 3, the arrow indicates the direction of the driver, "E" indicates the direction range for obstacle estimation, and the black circle indicates the position of the object indicated by the distance data.
If the object detected in the obstacle estimation direction range corresponds to the size of a general vehicle, the obstacle presence/absence determination unit 16 determines that it is estimated that there is an obstacle in the direction the driver is facing. do.
If the object detected in the obstacle estimation direction range does not correspond to the size of a general vehicle, the obstacle presence/absence determination unit 16 does not estimate that there is an obstacle in the direction the driver is facing. For example, it is estimated that there is no obstacle in the direction the driver is facing.
 なお、実施の形態1において、障害物有無判定部16は、向き検出部14が検出した運転者の向きと、障害物検知センサ4から取得した距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定するものであり、実際に障害物があるか否か、または、どのような障害物が存在するのかまで判定するものではない。 In the first embodiment, the obstacle presence/absence determination unit 16 detects the orientation of the driver based on the orientation of the driver detected by the orientation detection unit 14 and the distance data obtained from the obstacle detection sensor 4. It determines whether or not an obstacle is estimated to exist in the direction, and does not determine whether or not an obstacle actually exists or what kind of obstacle exists.
 障害物有無判定部16は、運転者が向いている方向に障害物があると推定されるか否かの判定結果(以下「障害物有無判定結果」という。)を、照射範囲決定部17に出力する。 The obstacle presence/absence determination unit 16 sends the determination result (hereinafter referred to as “obstacle presence/absence determination result”) as to whether or not it is estimated that there is an obstacle in the direction the driver is facing, to the irradiation range determination unit 17. Output.
 照射範囲決定部17は、向き検出部14が検出した運転者の向きと、向き判定部15が判定した、運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部16が判定した、運転者が向いている方向に障害物があると推定されるか否かの判定結果とに基づき、車両100に設けられているヘッドライト2による光の照射範囲を決定する。
 詳細には、照射範囲決定部17は、ハイビーム照射可能領域、ロービーム照射可能領域、および、補助光照射可能領域のうち、どこまでの範囲を光が照射される範囲とするかを、ヘッドライト2による光の照射範囲として決定する。
 以下の説明において、ヘッドライト2による光の照射範囲のことを、単に「照射範囲」ともいう。
The irradiation range determination unit 17 combines the direction of the driver detected by the direction detection unit 14, the determination result of whether the driver is facing left or right, which is determined by the direction determination unit 15, and the obstacle presence/absence determination unit. 16 determines whether or not it is estimated that there is an obstacle in the direction the driver is facing.
More specifically, the irradiation range determining unit 17 determines, by the headlights 2, the range of the high beam irradiation possible region, the low beam irradiation possible region, and the auxiliary light irradiation possible region to which the light is irradiated. Determined as the irradiation range of light.
In the following description, the light irradiation range of the headlights 2 is also simply referred to as "irradiation range".
 照射範囲決定部17による照射範囲の決定方法の一例について、説明する。
 なお、実施の形態1において、照射範囲決定部17は、運転者の向きによらず、言い換えれば、運転者が正面方向、左方向、右方向のいずれを向いていても、正面方向については、カットオフラインを維持し、カットオフラインよりも下方が照射範囲となるようにする。照射範囲決定部17は、運転者が左方向を向いている場合、または、運転者が右方向を向いている場合、正面方向に加え、運転者が向いている方向(左方向または右方向)における照射範囲を決定する。
An example of a method for determining the irradiation range by the irradiation range determining unit 17 will be described.
In Embodiment 1, the irradiation range determination unit 17 does not depend on the direction of the driver. Maintain the cutoff line so that the irradiation range is below the cutoff line. When the driver is facing left or right, the irradiation range determination unit 17 determines the direction the driver is facing (left or right) in addition to the front direction. Determine the irradiation range in
〈運転者が左方向を向いており、かつ、運転者が向いている方向に障害物があると推定される場合(以下、「ケースA-1」という。)〉
 この場合、照射範囲決定部17は、運転者が向いている方向(左方向)における照射範囲について、例えば、上下方向はカットオフラインよりも上方を含み、左右方向は運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を、照射範囲に決定する。
 なお、実施の形態1において、「上下方向」とは、車両100の車高方向をいい、「左右方向」とは、車両100の幅方向をいう。
 詳細には、照射範囲決定部17は、運転者が向いている方向(左方向)において、照射範囲における上下方向の範囲を、例えば、ヘッドライト2の設置位置を基準として、当該設置位置からみてカットオフラインよりも上方に〇〇度までの範囲、と決定する。
 照射範囲決定部17は、ヘッドライト2の取り付け位置と、ロービーム照射可能領域と、予め決められた距離だけ車両100の前方にいると仮定した場合の歩行者の身長とに基づいて、ヘッドライト2が光を照射する、ヘッドライト2の設置位置を基準としたカットオフラインよりも上方の角度を決定する。なお、ヘッドライト2の取り付け位置、および、ロービーム照射可能領域は、予めわかっている。また、車両100の前方にいると仮定した場合の歩行者の身長は、予め設定され、照射範囲決定部17が参照可能な場所に記憶されている。
 照射範囲決定部17は、運転者が向いている方向(左方向)において、照射範囲における左右方向の範囲を、例えば、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端から、運転者の向きから所定の角度だけマイナスした角度となるまでの範囲と決定する。実施の形態1では、運転者の向きからマイナスする所定の角度は、例えば、0.5度とする。
<When the driver is facing left and it is estimated that there is an obstacle in the direction the driver is facing (hereinafter referred to as “Case A-1”)>
In this case, the irradiation range determination unit 17 determines the irradiation range in the direction the driver is facing (left direction). The range up to the angle minus 1 is determined as the irradiation range.
In Embodiment 1, the “vertical direction” refers to the vehicle height direction of vehicle 100 , and the “lateral direction” refers to the width direction of vehicle 100 .
Specifically, the irradiation range determination unit 17 determines the vertical range of the irradiation range in the direction in which the driver is facing (left direction), for example, with the installation position of the headlight 2 as a reference, as viewed from the installation position. Determine the range up to 〇〇 degrees above the cutoff line.
The irradiation range determining unit 17 determines the position of the headlight 2 based on the mounting position of the headlight 2, the low beam irradiation area, and the height of the pedestrian assuming that the pedestrian is in front of the vehicle 100 by a predetermined distance. determines the angle above the cutoff line based on the installation position of the headlight 2 at which the light is emitted. Note that the mounting position of the headlight 2 and the low beam irradiation area are known in advance. Also, the height of the pedestrian assuming that he or she is in front of the vehicle 100 is set in advance and stored in a location that can be referred to by the irradiation range determination unit 17 .
The irradiation range determination unit 17 determines the lateral range of the irradiation range in the direction the driver is facing (left direction), for example, the lane in which the vehicle 100 is traveling (the lane here is the so-called lane). The range from the left end to the angle obtained by subtracting a predetermined angle from the direction of the driver is determined. In Embodiment 1, the predetermined angle subtracted from the direction of the driver is, for example, 0.5 degrees.
 図4、図5、および、図6は、実施の形態1において、照射範囲決定部17が決定した照射範囲の一例について説明するための図である。
 図4、図5、および、図6は、一例として、照射範囲決定部17は、上述の「ケースA-1」の場合に、照射範囲を決定したものとしている。
 なお、説明の簡単のため、図4、図5、図6における縮尺は、実際の縮尺とは異なるものとしている。
 今、車両100は駐車場内を走行しており、運転者が向いている方向(左方向)には、駐車車両(図4、図5、および、図6では「C」で示されている)があるとする。
 図4は、車両100が走行している車線を車両100の左側からみた図であり、図5は、車両100が走行している車線の俯瞰図であり、図6は、車内において運転者からみた場合の車両100の前方の状況を示す図である。なお、図6において、車両100の図示は省略している。
4, 5, and 6 are diagrams for explaining an example of the irradiation range determined by the irradiation range determination unit 17 in the first embodiment.
4, 5, and 6, as an example, the irradiation range determination unit 17 determines the irradiation range in the above-described "Case A-1".
For simplicity of explanation, the scales in FIGS. 4, 5 and 6 are different from the actual scales.
The vehicle 100 is now traveling in a parking lot, and in the direction the driver is facing (to the left) is a parked vehicle (indicated by "C" in FIGS. 4, 5 and 6). Suppose there is
4 is a view of the lane in which the vehicle 100 is traveling as seen from the left side of the vehicle 100, FIG. 5 is a bird's-eye view of the lane in which the vehicle 100 is traveling, and FIG. 1 is a diagram showing a situation ahead of a vehicle 100 when viewed from above. FIG. 6, illustration of the vehicle 100 is omitted.
 例えば、車両100におけるヘッドライト2の取り付け位置が地面から1.2m(図4、図5、および、図6のH参照)の高さにあり、ヘッドライト2のロービームユニット212,222は、ロービームで車両100の位置から40m先までを照らすことができるとする。図4、図5、および、図6において、Lは、ロービームの照射範囲を示している。また、歩行者がいると仮定する車両100の前方の予め決められた距離は10mとし、当該歩行者の身長は、1.8m(図4、図5、および、図6のH参照)とする。また、図4、図5、および、図6では図示は省略しているが、運転者の向きは、-4度であったとする。また、図4、図5、および、図6では図示を省略しているが、向き判定部15が算出した正面方向範囲は、-1.78度~+1.78度とする。
 この場合、照射範囲決定部17は、運転者が向いている方向(左方向)において、いると仮定する歩行者の全身にヘッドライト2の光が照射されるよう、ロービームのカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲を、照射範囲の上下方向の範囲とする。また、照射範囲決定部17は、運転者が向いている方向(左方向)において、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端から運転者の向きが-4.5度となるまでの範囲(-4.5度~-1.78度)を、照射範囲の左右方向の範囲とする。
For example, the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground (see H1 in FIGS. 4, 5, and 6), and the low beam units 212 and 222 of the headlight 2 are It is assumed that the low beam can illuminate 40 m ahead from the position of the vehicle 100 . In FIGS. 4, 5 and 6, L1 indicates the irradiation range of the low beam. Also, the predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m (see H2 in FIGS. 4, 5, and 6). do. Also, although illustration is omitted in FIGS. 4, 5, and 6, it is assumed that the direction of the driver is -4 degrees. Although not shown in FIGS. 4, 5, and 6, the frontal direction range calculated by the orientation determination unit 15 is -1.78 degrees to +1.78 degrees.
In this case, the irradiation range determination unit 17 is configured to illuminate the whole body of the pedestrian assumed to be present in the direction the driver is facing (to the left) from the cutoff line of the low beam. , the range up to +5.2 degrees with respect to the installation position of the headlight 2 is defined as the range in the vertical direction of the irradiation range. In addition, the irradiation range determining unit 17 determines that the direction of the driver is −4 from the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) in the direction the driver is facing (left direction). The range up to 0.5 degrees (-4.5 degrees to -1.78 degrees) is defined as the horizontal range of the irradiation range.
 なお、照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲(-1.78度~+1.78度)とする範囲を、照射範囲に決定する。
 その結果、図4、図5、および、図6において、LおよびLで示す範囲が照射範囲に決定される。
The irradiation range determination unit 17 maintains the vertical cutoff line in the front direction. 1.78 degrees to +1.78 degrees) is determined as the irradiation range.
As a result, the ranges indicated by L1 and L2 in FIGS. 4, 5 and 6 are determined as the irradiation range.
 運転者が向いている方向に障害物があると推定される場合、運転者からみると、当該障害物によって歩行者等が隠され、運転者が歩行者等を視認し難くなる可能性がある。よって、照射範囲決定部17は、運転者が向いている方向において、カットオフラインよりも上方を含む範囲を照射範囲に決定する。 If it is estimated that there is an obstacle in the direction the driver is facing, the pedestrian may be hidden by the obstacle from the driver's perspective, making it difficult for the driver to see the pedestrian. . Therefore, the irradiation range determining unit 17 determines the irradiation range to include the area above the cutoff line in the direction in which the driver is facing.
〈運転者が左方向を向いており、かつ、運転者が向いている方向に障害物がないと推定される場合(以下、「ケースA-2」という。)〉
 この場合、照射範囲決定部17は、運転者が向いている方向(左方向)における照射範囲について、例えば、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を、照射範囲に決定する。
<When it is estimated that the driver is facing left and there is no obstacle in the direction the driver is facing (hereinafter referred to as “Case A-2”)>
In this case, the irradiation range determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction in which the driver is facing (left direction). The irradiation range is determined to be below the off-line, and in the horizontal direction to an angle obtained by subtracting a predetermined angle from the direction of the driver.
 図7、図8、および、図9は、実施の形態1において、照射範囲決定部17が決定した照射範囲のその他の一例について説明するための図である。
 図7、図8、および、図9は、一例として、照射範囲決定部17は、上述の「ケースA-2」の場合に、照射範囲を決定したものとしている。
 なお、説明の簡単のため、図7、図8、図9における縮尺は、実際の縮尺とは異なるものとしている。
 今、車両100は駐車場内を走行しているとする。
 図7と図4とは、運転者が向いている方向に他車両が存在しない点が異なるのみである。図8と図5とは、運転者が向いている方向に他車両が存在しない点が異なるのみである。図9と図6とは、運転者が向いている方向に他車両が存在しない点が異なるのみである。
 また、図7、図8、および、図9では図示を省略しているが、運転者の向きは、-4度であったとする。また、図7、図8、および、図9では図示を省略しているが、向き判定部15が算出した正面方向範囲は、-1.78度~+1.78度とする。
7, 8, and 9 are diagrams for explaining another example of the irradiation range determined by the irradiation range determination unit 17 in the first embodiment.
7, 8, and 9, as an example, the irradiation range determining unit 17 determines the irradiation range in the above-described "Case A-2".
For ease of explanation, the scales in FIGS. 7, 8, and 9 are different from the actual scales.
Assume that the vehicle 100 is now running in a parking lot.
7 and 4 differ only in that there is no other vehicle in the direction the driver is facing. 8 and 5 differ only in that there is no other vehicle in the direction the driver is facing. 9 and 6 differ only in that there is no other vehicle in the direction the driver is facing.
Also, although illustration is omitted in FIGS. 7, 8, and 9, it is assumed that the direction of the driver is -4 degrees. Although not shown in FIGS. 7, 8, and 9, the frontal direction range calculated by the orientation determination unit 15 is -1.78 degrees to +1.78 degrees.
 この場合、照射範囲決定部17は、運転者が向いている方向(左方向)において、ロービームのカットオフラインが維持される範囲を、照射範囲の上下方向の範囲とする。
 また、照射範囲決定部17は、運転者が向いている方向(左方向)において、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端から運転者の向きが-4.5度となるまでの範囲(-4.5度~-1.78度)を、照射範囲の左右方向の範囲とする。
 すなわち、照射範囲決定部17は、運転者が向いている方向(左方向)において、ロービームのカットオフラインよりも上方を含まず、当該カットオフラインよりも下方となる範囲を、照射範囲に決定する。
In this case, the irradiation range determining unit 17 sets the range in which the low beam cutoff line is maintained in the direction in which the driver is facing (to the left) as the vertical range of the irradiation range.
In addition, the irradiation range determining unit 17 determines that the direction of the driver is −4 from the left end of the lane in which the vehicle 100 is traveling (the so-called lane here) in the direction the driver is facing (left direction). The range up to 0.5 degrees (-4.5 degrees to -1.78 degrees) is defined as the horizontal range of the irradiation range.
That is, the irradiation range determination unit 17 determines the irradiation range as a range that does not include the upper side of the cutoff line of the low beam but is below the cutoff line in the direction (leftward direction) in which the driver is facing.
 なお、照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲(-1.78度~+1.78度)とする範囲を、照射範囲に決定する。
 その結果、図7、図8、および、図9において、Lで示す範囲が、ヘッドライト2の光の照射範囲に決定される。
The irradiation range determination unit 17 maintains the cutoff line in the vertical direction in the front direction. 1.78 degrees to +1.78 degrees) is determined as the irradiation range.
As a result, the range indicated by L1 in FIGS.
 運転者が向いている方向に障害物がないと推定される場合、運転者からみて、当該障害物によって歩行者等が隠れてしまう可能性は低いと想定される。すなわち、歩行者等の足元のみに光が照射される程度の下方の範囲にのみ光が照射されても、運転者は、歩行者等を視認できると想定される。よって、照射範囲決定部17は、運転者が向いている方向において、カットオフラインよりも上方を含まず当該カットオフラインよりも下方を照射範囲に決定する。 If it is estimated that there are no obstacles in the direction the driver is facing, it is assumed that there is a low possibility that pedestrians will be hidden by the obstacles from the driver's point of view. That is, it is assumed that the driver can visually recognize the pedestrian even if the light is applied only to the lower range where the light is applied only to the feet of the pedestrian. Therefore, the irradiation range determining unit 17 determines the irradiation range to be the area below the cutoff line, not including the area above the cutoffline, in the direction in which the driver is facing.
〈運転者が右方向を向いており、かつ、運転者が向いている方向に障害物があると推定される場合(以下、「ケースB-1」という。)〉
 この場合、照射範囲決定部17は、運転者が向いている方向(右方向)における照射範囲について、例えば、上下方向はカットオフラインよりも上方を含み、左右方向は運転者の向きから所定の角度だけプラスした角度となるまでの範囲を、照射範囲に決定する。
 詳細には、照射範囲決定部17は、運転者が向いている方向(右方向)において、照射範囲における上下方向の範囲を、例えば、ヘッドライト2の設置位置を基準として、当該設置位置からみてカットオフラインよりも上方に〇〇度までの範囲、と決定する
 また、照射範囲決定部17は、運転者が向いている方向(右方向)において、照射範囲における左右方向の照射範囲を、例えば、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端から、運転者の向きから所定の角度だけプラスした角度となるまでの範囲と決定する。実施の形態1では、運転者の向きからプラスする所定の角度は、例えば、0.5度とする。
<Case where the driver is facing to the right and it is estimated that there is an obstacle in the direction in which the driver is facing (hereinafter referred to as “Case B-1”)>
In this case, the irradiation range determining unit 17 determines the irradiation range in the direction the driver is facing (right direction). The irradiation range is determined as the range up to the angle that is added by .
Specifically, the irradiation range determination unit 17 determines the vertical range of the irradiation range in the direction in which the driver is facing (right direction), for example, with the installation position of the headlight 2 as a reference, as viewed from the installation position. Determine the range up to 〇〇 degrees above the cutoff line. In addition, the irradiation range determination unit 17 determines the irradiation range in the horizontal direction in the irradiation range in the direction the driver is facing (right direction), for example, The range is determined from the right end of the lane in which the vehicle 100 is traveling (here, the lane is a so-called lane) to an angle obtained by adding a predetermined angle to the direction of the driver. In Embodiment 1, the predetermined angle plus from the direction of the driver is, for example, 0.5 degrees.
 実施の形態1において、「ケースB-1」の場合の、照射範囲決定部17が決定した照射範囲の一例は、例えば、図4、図5、および、図6を用いて説明した「ケースA-1」の場合の、照射範囲決定部17が決定した照射範囲の一例とは、運転者の向きが右方向に変わるだけであるため、詳細な説明は省略する。
 例えば、車両100におけるヘッドライト2の取り付け位置が地面から1.2mの高さにあり、ヘッドライト2のロービームユニット212,222は、ロービームで車両100の位置から40m先までを照らすことができるとする。また、歩行者がいると仮定する車両100の前方の予め決められた距離は10mとし、当該歩行者の身長は、1.8mとする。また、運転者の向きは、+4度であったとする。また、向き判定部15が算出した正面方向範囲は、-1.78度~+1.78度とする。
 この場合、照射範囲決定部17は、運転者が向いている方向(右方向)において、ロービームのカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲を照射範囲の上下方向の範囲とし、運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端から+4.5度となるまでの範囲(+1.78度~+4.5度)を、照射範囲の左右方向の範囲とする。
 照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲(-1.78度~+1.78度)とする範囲を、照射範囲に決定する。
In Embodiment 1, an example of the irradiation range determined by the irradiation range determining unit 17 in the case of "Case B-1" is, for example, "Case A -1”, an example of the irradiation range determined by the irradiation range determining unit 17 is only a change in the direction of the driver to the right, so a detailed description thereof will be omitted.
For example, it is assumed that the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground, and the low beam units 212 and 222 of the headlight 2 can illuminate up to 40 m ahead of the position of the vehicle 100 with low beams. do. A predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m. It is also assumed that the direction of the driver is +4 degrees. Further, the front direction range calculated by the orientation determination unit 15 is assumed to be -1.78 degrees to +1.78 degrees.
In this case, the irradiation range determination unit 17 determines the range up to +5.2 degrees with respect to the installation position of the headlight 2 upward from the low beam cutoff line in the direction the driver is facing (right direction). The range in the vertical direction of the irradiation range is defined as the range (+1.78 degrees to +4.5 degrees) is the range in the horizontal direction of the irradiation range.
The irradiation range determining unit 17 maintains the vertical cutoff line in the front direction. 78 degrees to +1.78 degrees) is determined as the irradiation range.
〈運転者が右方向を向いており、かつ、運転者が向いている方向に障害物がないと推定される場合(以下、「ケースB-2」という。)〉
 この場合、照射範囲決定部17は、運転者が向いている方向(右方向)における照射範囲について、例えば、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は運転者の向きから所定の角度だけプラスした角度となるまでの範囲を、照射範囲に決定する。
<When it is estimated that the driver is facing to the right and there is no obstacle in the direction in which the driver is facing (hereinafter referred to as “Case B-2”)>
In this case, the irradiation range determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction in which the driver is facing (right direction). The irradiation range is determined to be below the off-line, and in the horizontal direction to an angle obtained by adding a predetermined angle from the direction of the driver.
 実施の形態1において、「ケースB-2」の場合の、照射範囲決定部17が決定した照射範囲の一例は、例えば、図7、図8、および、図9を用いて説明した「ケースA-2」の場合の、照射範囲決定部17が決定した照射範囲の一例とは、運転者の向きが右方向に変わるだけであるため、詳細な説明は省略する。
 例えば、車両100におけるヘッドライト2の取り付け位置が地面から1.2mの高さにあり、ヘッドライト2のロービームユニット212,222は、ロービームで車両100の位置から40m先までを照らすことができるとする。また、歩行者がいると仮定する車両100の前方の予め決められた距離は10mとし、当該歩行者の身長は、1.8mとする。また、運転者の向きは、+4度であったとする。また、向き判定部15が算出した正面方向範囲は、-1.78度~+1.78度とする。
 この場合、照射範囲決定部17は、運転者が向いている方向(右方向)において、ロービームのカットオフラインが維持される範囲を、照射範囲の上下方向の範囲とし、運転者の向きが、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の右端から+4.5度となるまでの範囲(+1.78度~+4.5度)を、照射範囲の左右方向の範囲とする。
 照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲(-1.78度~+1.78度)とする範囲を、照射範囲に決定する。
In Embodiment 1, an example of the irradiation range determined by the irradiation range determination unit 17 in the case of "Case B-2" is, for example, "Case A -2”, an example of the irradiation range determined by the irradiation range determination unit 17 is only a change in the direction of the driver to the right, so a detailed description thereof will be omitted.
For example, it is assumed that the mounting position of the headlight 2 in the vehicle 100 is 1.2 m above the ground, and the low beam units 212 and 222 of the headlight 2 can illuminate up to 40 m ahead of the position of the vehicle 100 with low beams. do. A predetermined distance in front of the vehicle 100 where it is assumed that there is a pedestrian is 10 m, and the height of the pedestrian is 1.8 m. It is also assumed that the direction of the driver is +4 degrees. Further, the front direction range calculated by the orientation determination unit 15 is assumed to be -1.78 degrees to +1.78 degrees.
In this case, the irradiation range determining unit 17 sets the range in which the low beam cutoff line is maintained in the direction in which the driver is facing (the right direction) as the range in the vertical direction of the irradiation range. The range (+1.78 degrees to +4.5 degrees) from the right end of the lane in which 100 is traveling (the so-called lane here) to +4.5 degrees is the range in the left and right direction of the irradiation range. do.
The irradiation range determining unit 17 maintains the vertical cutoff line in the front direction. 78 degrees to +1.78 degrees) is determined as the irradiation range.
〈運転者が左方向も右方向も向いていない場合(運転者の向きが正面方向範囲である場合)(以下、「ケースC」という。)〉
 この場合、照射範囲決定部17は、正面方向において、カットオフラインを維持し、カットオフラインよりも上方を含まず当該カットオフラインよりも下方がヘッドライト2の照射範囲となるようにする。
 詳細には、例えば正面方向範囲が-1.78度~+1.78度とすると、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲(-1.78度~+1.78度)とする範囲を、照射範囲に決定する。
<Case where the driver is facing neither to the left nor to the right (when the driver is facing the front direction range) (hereinafter referred to as “Case C”)>
In this case, the irradiation range determination unit 17 maintains the cutoff line in the front direction so that the irradiation range of the headlights 2 does not include the area above the cutoffline and is below the cutoffline.
Specifically, for example, if the range in the front direction is -1.78 degrees to +1.78 degrees, the cutoff line is maintained in the vertical direction, in other words, it is below the cutoff line and does not include the area above the cutoff line, In the horizontal direction, the frontal range (-1.78 degrees to +1.78 degrees) is determined as the irradiation range.
 照射範囲決定部17は、決定した、ヘッドライト2による光の照射範囲に関する情報(以下「照射範囲情報」という。)を、ヘッドライト制御部18に出力する。
 照射範囲情報には、例えば、ヘッドライト2による光の照射範囲がヘッドライト2の設置位置を基準に上下方向および左右方向の角度の範囲であらわされた情報が含まれる。
 照射範囲決定部17は、決定した照射範囲について、運転者の向きであらわされていた範囲については、ヘッドライト2の設置位置を基準とした範囲に変換して、照射範囲情報を作成する。
 なお、運転者の頭部位置とヘッドライト2の設置位置はわかっているため、照射範囲決定部17は、上記変換を行うことができる。
The irradiation range determination unit 17 outputs information regarding the determined irradiation range of light from the headlights 2 (hereinafter referred to as “irradiation range information”) to the headlight control unit 18 .
The irradiation range information includes, for example, information in which the irradiation range of the light from the headlight 2 is expressed as a range of angles in the vertical direction and the horizontal direction with respect to the installation position of the headlight 2 .
The irradiation range determining unit 17 converts the determined irradiation range represented by the orientation of the driver into a range based on the installation position of the headlight 2 to create irradiation range information.
Since the driver's head position and the installation position of the headlight 2 are known, the irradiation range determination unit 17 can perform the conversion described above.
 例えば、「ケースA-1」の場合、照射範囲決定部17は、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲を上下方向の範囲とし、運転者の向き-4.5~-1.78度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報を、ヘッドライト制御部18に出力する。
 なお、ヘッドライト2の設置位置とロービーム照射可能領域とがわかっているので、照射範囲決定部17は、カットオフラインよりも下方の範囲についても、ヘッドライト2の設置位置を基準とした角度に変換できる。
For example, in the case of "Case A-1", the irradiation range determination unit 17 defines the range in the vertical direction below the cutoff line, and corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver. The irradiation range (irradiation range in the front direction), which is the range in the left and right direction based on the installation position of the headlight 2, and +5.2 from the low beam cutoff line upward, based on the installation position of the headlight 2. The range in the vertical direction is defined as the range up to the degree, and the range in the horizontal direction is defined as the range based on the installation position of the headlight 2, which corresponds to the range from -4.5 to -1.78 degrees for the direction of the driver. The irradiation range information including information on the irradiation range (the irradiation range in the direction in which the driver is facing) is output to the headlight control unit 18 .
Since the installation position of the headlight 2 and the low beam irradiation area are known, the irradiation range determination unit 17 also converts the range below the cutoff line into an angle based on the installation position of the headlight 2. can.
 また、例えば、「ケースA-2」の場合、照射範囲決定部17は、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインより下方の範囲を上下方向の範囲とし、運転者の向き-4.5~-1.78度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報を、ヘッドライト制御部18に出力する。 Further, for example, in the case of "Case A-2", the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver. , the irradiation range (irradiation range in the front direction) is defined as the range in the horizontal direction based on the installation position of the headlight 2, and the range below the low beam cutoff line is defined as the vertical range. The irradiation range (irradiation range in the direction in which the driver is facing), which corresponds to the range of directions from -4.5 to -1.78 degrees and is the range in the left and right direction based on the installation position of the headlight 2. to the headlight control unit 18.
 また、例えば、「ケースB-1」の場合、照射範囲決定部17は、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲を上下方向の範囲とし、運転者の向き+1.78~+4.5度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報を、ヘッドライト制御部18に出力する。 Further, for example, in the case of “Case B-1”, the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of −1.78 degrees to +1.78 degrees in the direction of the driver. , the irradiation range (irradiation range in the front direction), which is the range in the left and right direction based on the installation position of the headlight 2, and +5 from the low beam cutoff line upwards, based on the installation position of the headlight 2 The vertical range is the range up to 0.2 degrees, and the horizontal range is the range based on the installation position of the headlight 2, which corresponds to the range of +1.78 to +4.5 degrees of the driver's direction. The irradiation range information including information on the irradiation range (the irradiation range in the direction in which the driver is facing) is output to the headlight control unit 18 .
 また、例えば、「ケースB-2」の場合、照射範囲決定部17は、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインより下方の範囲を上下方向の範囲とし、運転者の向き+1.78~+4.5度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報を、ヘッドライト制御部18に出力する。 Further, for example, in the case of “Case B-2”, the irradiation range determination unit 17 defines the vertical range below the cutoff line, and corresponds to the range of −1.78 degrees to +1.78 degrees in the direction of the driver. , the irradiation range (irradiation range in the front direction) is defined as the range in the horizontal direction based on the installation position of the headlight 2, and the range below the low beam cutoff line is defined as the vertical range. Information on the irradiation range (the irradiation range in the direction in which the driver is facing), which corresponds to the range of directions from +1.78 to +4.5 degrees and is the range in the left and right direction based on the installation position of the headlight 2. to the headlight control unit 18.
 例えば、「ケースC」の場合、照射範囲決定部17は、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)の情報を含む照射範囲情報を、ヘッドライト制御部18に出力する。 For example, in the case of “Case C”, the irradiation range determination unit 17 sets the vertical range below the cutoff line, and the headlights corresponding to the range of −1.78 degrees to +1.78 degrees toward the driver. 2, is output to the headlight control unit 18.
 ヘッドライト制御部18は、ヘッドライト2に対して、照射範囲決定部17が決定した照射範囲に光を照射させる。 The headlight control unit 18 causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17 .
 例えば、照射範囲決定部17から、ヘッドライト制御部18へ、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲を上下方向の範囲とし、運転者の向き-4.5~-1.78度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報が出力されたとする(上記「ケースA-1」の場合)。 For example, from the irradiation range determination unit 17 to the headlight control unit 18, the range in the vertical direction is below the cutoff line, and the headlight corresponds to the range of -1.78 degrees to +1.78 degrees in the direction of the driver. The irradiation range (irradiation range in the front direction), which is the range in the horizontal direction based on the installation position of 2, and +5.2 degrees from the low beam cutoff line, based on the installation position of the headlight 2. The range in the vertical direction is defined as the range up to and including the direction of the driver from -4.5 to -1.78 degrees, and the range based on the installation position of the headlight 2 is defined as the range in the horizontal direction. Suppose that irradiation range information including information on the irradiation range (the irradiation range in the direction the driver is facing) is output (in the case of "Case A-1" above).
 この場合、ヘッドライト制御部18は、ロービームユニット212,222の光源に対し、個々に、左右方向に-4.5度~+1.78度の範囲、かつ、上下方向にはカットオフラインよりも下方の範囲(以下「第1範囲」という。)に、光、すなわち、ロービームを照射させる制御を行う。ヘッドライト制御部18は、例えば、ロービームユニット212,222の複数の光源に対し、個々に、ロービームを照射させる制御を行う。ヘッドライト制御部18は、例えば、ロービームユニット212,222の複数の光源に対し、個々に、光軸を変化させて、上記第1範囲にロービームを照射させる制御を行う。ヘッドライト制御部18は、例えば、ロービームユニット212,222の複数の光源のうち、点灯させる光源を調整することで、上記第1範囲にロービームを照射させる制御を行ってもよい。実施の形態1において、点灯させる光源を調整するとは、例えば、複数の光源のうち点灯させる光源を選択する、または、複数の光源に対して点灯時の光量の調整を行うことをいう。
 加えて、ヘッドライト制御部18は、左右方向に-4.5度~-1.78度の範囲、かつ、上下方向にカットオフラインから上方へ、ヘッドライト2の設置位置を基準として+5.2度となるまでの範囲(以下「第2範囲」という。)にも、光を照射させる制御を行う。ヘッドライト制御部18は、例えば、ハイビームユニット211,221の複数の光源に対し、個々に、光軸を変化させて、上記第2範囲にハイビームを照射させる制御を行う。ヘッドライト制御部18は、例えば、ハイビームユニット211,221の複数の光源のうち、点灯させる光源を調整することで、上記第2範囲にハイビームを照射させる制御を行ってもよい。ヘッドライト制御部18は、例えば、補助光ユニット213,223の複数の光源に対し、個々に、光軸を変化させて上記第2範囲に補助光を照射させる制御を行ってもよいし、補助光ユニット213,223の複数の光源のうち点灯させる光源を調整することで、上記第2範囲に補助光を照射させる制御を行ってもよい。
In this case, the headlight control unit 18 controls the light sources of the low beam units 212 and 222 individually within a range of −4.5 degrees to +1.78 degrees in the horizontal direction and below the cutoff line in the vertical direction. (hereinafter referred to as “first range”) is controlled to irradiate light, that is, a low beam. For example, the headlight control unit 18 controls the plurality of light sources of the low beam units 212 and 222 to individually irradiate low beams. For example, the headlight control unit 18 controls the plurality of light sources of the low beam units 212 and 222 to individually change the optical axis and irradiate the first range with the low beam. For example, the headlight control unit 18 may adjust the light source to be turned on among the plurality of light sources of the low beam units 212 and 222, thereby performing control to irradiate the first range with the low beam. In Embodiment 1, adjusting the light source to be turned on means, for example, selecting a light source to be turned on from a plurality of light sources or adjusting the amount of light when the plurality of light sources are turned on.
In addition, the headlight control unit 18 has a range of -4.5 degrees to -1.78 degrees in the horizontal direction and +5.2 degrees upward from the cutoff line in the vertical direction with respect to the installation position of the headlight 2. Control is also performed to irradiate the light in a range (hereinafter referred to as a “second range”) up to the degree. For example, the headlight control unit 18 controls the plurality of light sources of the high beam units 211 and 221 to individually change the optical axis and irradiate the high beam in the second range. For example, the headlight control unit 18 may adjust the light source to be turned on among the plurality of light sources of the high beam units 211 and 221, thereby performing control to irradiate the second range with the high beam. For example, the headlight control unit 18 may individually change the optical axis of the plurality of light sources of the fill light units 213 and 223 to irradiate fill light in the second range. By adjusting the light source to be turned on among the plurality of light sources of the light units 213 and 223, control may be performed to irradiate the second range with auxiliary light.
 これにより、図4、図5、および、図6を用いて説明したような照射範囲にヘッドライト2が照射した光が照射されるようになる。
 ヘッドライト制御装置1は、運転者が左方向を向いており、運転者が向いている方向に障害物があると推定される場合、当該障害物によって運転者の視認性が損なわれることなく、運転者に対して、運転者が向いている方向に存在し得る歩行者等を視認しやすくできる。また、ヘッドライト制御装置1は、運転者の正面方向については、カットオフラインを維持することで、当該正面方向に歩行者等が存在していても、歩行者等にグレアを生じさせ難くできる。
As a result, the light emitted from the headlight 2 is emitted to the irradiation range as described with reference to FIGS. 4, 5 and 6 .
When the driver is facing leftward and it is estimated that there is an obstacle in the direction in which the driver is facing, the headlight control device 1 controls the visibility of the driver without impairing the driver's visibility due to the obstacle. This makes it easier for the driver to visually recognize a pedestrian or the like that may exist in the direction the driver is facing. In addition, the headlight control device 1 maintains a cut-off line in the front direction of the driver, so that even if a pedestrian or the like exists in the front direction, the pedestrian or the like is less likely to be glared.
 また、例えば、照射範囲決定部17から、ヘッドライト制御部18へ、カットオフラインよりも下方を上下方向の範囲とし、運転者の向き-1.78度~+1.78度の範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(正面方向における照射範囲)、および、ロービームのカットオフラインより下方の範囲を上下方向の範囲とし、運転者の向き-4.5~-1.78度までの範囲に対応する、ヘッドライト2の設置位置を基準とした範囲を左右方向の範囲とする照射範囲(運転者が向いている方向における照射範囲)の情報を含む照射範囲情報が出力されたとする(上記「ケースA-2」の場合)。 Further, for example, from the irradiation range determination unit 17 to the headlight control unit 18, the range in the vertical direction is below the cutoff line, and the range corresponds to the direction of the driver from -1.78 degrees to +1.78 degrees. The irradiation range (the irradiation range in the front direction) is defined as the range in the horizontal direction based on the installation position of the headlight 2, and the range below the low beam cutoff line is defined as the vertical range. Information on the irradiation range (the irradiation range in the direction the driver is facing), which corresponds to the range from 4.5 degrees to -1.78 degrees and is the range in the left and right direction based on the installation position of the headlight 2 Suppose that irradiation range information including is output (in the case of the above "Case A-2").
 この場合、ヘッドライト制御部18は、ロービームユニット212,222の光源に対し、個々に、左右方向に-4.5度~+1.78度の範囲、かつ、上下方向にはカットオフラインよりも下方の範囲、すなわち、上記第1範囲に、光、すなわち、ロービームを照射させる制御を行う。 In this case, the headlight control unit 18 controls the light sources of the low beam units 212 and 222 individually within a range of −4.5 degrees to +1.78 degrees in the horizontal direction and below the cutoff line in the vertical direction. , that is, the first range, is controlled to be irradiated with light, that is, a low beam.
 これにより、図7、図8、および、図9を用いて説明したような照射範囲にヘッドライト2が照射した光が照射されるようになる。
 ヘッドライト制御装置1は、運転者が左方向を向いており、運転者が向いている方向に障害物はないと推定される場合は、運転者に対して、運転者が向いている方向に存在し得る歩行者等を視認しやすくできるとともに、当該運転者が向いている方向に存在し得る歩行者等にグレアを生じさせ難くできる。なお、運転者が向いている方向に障害物がない場合には、カットオフラインよりも下方の範囲のように、歩行者の足元のみに光が照射される程度の下方の範囲が光の照射範囲となっていても、運転者は、歩行者等を視認できる。
As a result, the light emitted from the headlight 2 is emitted to the irradiation range as described with reference to FIGS. 7, 8 and 9 .
When the driver is facing leftward and it is estimated that there is no obstacle in the direction the driver is facing, the headlight control device 1 illuminates the driver in the direction the driver is facing. It is possible to make it easier to visually recognize possible pedestrians and the like, and to make glare less likely to occur to pedestrians and the like that may exist in the direction that the driver is facing. If there are no obstacles in the direction the driver is facing, the area below the cut-off line where only the pedestrian's feet are illuminated will be the area where the light is illuminated. Even in this case, the driver can visually recognize pedestrians and the like.
 このように、ヘッドライト制御装置1は、ヘッドライト2に対して、運転者が向いている方向の状況は、運転者が視認すべき対象、言い換えれば、歩行者が隠され得る状況であるかを考慮した点灯制御ができる。その結果、ヘッドライト制御装置1は、運転者の視認性を向上させるとともに、運転者が向いている方向に存在し得る歩行者等に対してグレアを生じさせ難くできる。 In this way, the headlight control device 1 determines whether the direction in which the driver is facing with respect to the headlight 2 is an object to be visually recognized by the driver, in other words, a pedestrian can be hidden. Lighting control can be performed in consideration of As a result, the headlight control device 1 can improve the visibility of the driver, and can make it difficult for pedestrians and the like, which may exist in the direction the driver is facing, to glare.
 なお、上述したようなヘッドライト制御部18によるヘッドライト2の制御方法は一例に過ぎない。ヘッドライト制御部18は、照射範囲情報にて特定される照射範囲に光が照射されるよう、ヘッドライト2を制御できていればよい。 The method of controlling the headlights 2 by the headlight control unit 18 as described above is merely an example. The headlight control unit 18 only needs to be able to control the headlights 2 so that the irradiation range specified by the irradiation range information is irradiated with light.
 また、ここでは、照射範囲決定部17が、運転者の向きであらわされていた範囲の、ヘッドライト2の設置位置を基準とした範囲への変換を行った上で、ヘッドライト制御部18に照射範囲情報を出力するようにしたが、これは一例に過ぎない。例えば、当該変換を、ヘッドライト制御部18が行ってもよい。 Further, here, after the irradiation range determination unit 17 converts the range represented by the direction of the driver into a range based on the installation position of the headlight 2, the headlight control unit 18 Although the irradiation range information is output, this is only an example. For example, the conversion may be performed by the headlight controller 18 .
 実施の形態1に係るヘッドライト制御装置1の動作について説明する。
 図10は、実施の形態1に係るヘッドライト制御装置1の動作について説明するためのフローチャートである。
 ヘッドライト制御装置1は、例えば、車両100の電源がオンにされると、車両100の電源がオフにされるまで、図10のフローチャートを用いて説明する動作を繰り返す。
The operation of the headlight control device 1 according to Embodiment 1 will be described.
FIG. 10 is a flow chart for explaining the operation of the headlight control device 1 according to the first embodiment.
For example, when the power of the vehicle 100 is turned on, the headlight control device 1 repeats the operation described using the flowchart of FIG. 10 until the power of the vehicle 100 is turned off.
 制御開始判定部13は、運転者の向きに基づくヘッドライト2の点灯制御を開始するか否かを判定する(ステップST1)。
 具体的には、ヘッドライト判定部11が、車両100に設けられている各種センサ等から車両情報を取得し、ヘッドライト2がオンの状態であるか、オフの状態であるかを判定する。ヘッドライト判定部11は、ヘッドライト状態判定結果を、制御開始判定部13に出力する。ヘッドライト判定部11は、ヘッドライト状態判定結果とあわせて車両情報を制御開始判定部13に出力する。
 また、走行場所判定部12は、位置情報取得装置から自車位置関連情報を取得し、車両100が現在走行している場所を判定する。走行場所判定部12は、走行場所情報を、制御開始判定部13に出力する。走行場所判定部12は、走行場所情報とあわせて自車位置関連情報を、制御開始判定部13に出力する。
 そして、制御開始判定部13は、ヘッドライト判定部11から出力されたヘッドライト状態判定結果と、走行場所判定部12から出力された走行場所情報とに基づき、運転者の向きに基づくヘッドライト2の点灯制御を開始するか否かを判定する。制御開始判定部13は、ヘッドライト状態判定結果および走行場所情報を制御開始判定用条件と比較することで、運転者の向きに基づくヘッドライト2の点灯制御を開始するか否かを判定する。
The control start determination unit 13 determines whether or not to start lighting control of the headlights 2 based on the orientation of the driver (step ST1).
Specifically, the headlight determination unit 11 acquires vehicle information from various sensors provided in the vehicle 100 and determines whether the headlights 2 are on or off. The headlight determination unit 11 outputs the headlight state determination result to the control start determination unit 13 . The headlight determination unit 11 outputs the vehicle information to the control start determination unit 13 together with the headlight state determination result.
Further, the travel location determining unit 12 acquires the vehicle location-related information from the location information acquisition device, and determines the location where the vehicle 100 is currently traveling. The travel location determination unit 12 outputs the travel location information to the control start determination unit 13 . The travel location determination unit 12 outputs the vehicle position-related information together with the travel location information to the control start determination unit 13 .
Then, based on the headlight state determination result output from the headlight determination unit 11 and the driving location information output from the driving location determination unit 12, the control start determination unit 13 determines whether the headlight 2 based on the orientation of the driver. It is determined whether or not to start the lighting control of . The control start determination unit 13 compares the headlight state determination result and the driving location information with the conditions for control start determination, thereby determining whether or not to start lighting control of the headlights 2 based on the direction of the driver.
 制御開始判定部13は、運転者の向きに基づくヘッドライト2の点灯制御を開始すると判定するまで(ステップST1の“NO”の場合)、ステップST1の処理を繰り返す。
 制御開始判定部13は、運転者の向きに基づくヘッドライト2の点灯制御を開始すると判定すると(ステップST1の“YES”の場合)、制御開始指示を、向き検出部14および照射範囲決定部17に出力する。制御開始判定部13は、照射範囲決定部17に、車両情報および自車位置関連情報も出力する。
The control start determination unit 13 repeats the process of step ST1 until it determines to start the lighting control of the headlights 2 based on the direction of the driver ("NO" in step ST1).
When the control start determination unit 13 determines to start the lighting control of the headlights 2 based on the direction of the driver (“YES” in step ST1), the control start instruction is sent to the direction detection unit 14 and the irradiation range determination unit 17. output to The control start determination unit 13 also outputs vehicle information and vehicle position-related information to the irradiation range determination unit 17 .
 向き検出部14は、ステップST1にて制御開始判定部13から開始判定情報が出力されると、撮像装置3から取得した撮像画像に基づき、運転者の向きを検出する(ステップST2)。
 向き検出部14は、検出した運転者の向きを、向き判定部15に出力する。
When the start determination information is output from the control start determination unit 13 in step ST1, the direction detection unit 14 detects the direction of the driver based on the captured image acquired from the imaging device 3 (step ST2).
The orientation detection unit 14 outputs the detected orientation of the driver to the orientation determination unit 15 .
 向き判定部15は、ステップST2にて向き検出部14が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する(ステップST3)。
 具体的には、向き判定部15は、向き検出部14が検出した運転者の向きが、正面方向範囲の最大値より大きい場合、運転者は右方向を向いていると判定する。
 また、向き判定部15は、向き検出部14が検出した運転者の向きが、正面方向範囲の最小値より小さい場合、運転者は左方向を向いていると判定する。
 なお、向き判定部15は、向き検出部14が検出した運転者の向きが、正面方向範囲内である場合、運転者は正面方向を向いていると判定する。
 向き判定部15は、向き判定結果を、障害物有無判定部16および照射範囲決定部17に出力する。また、向き判定部15は、向き検出部14が検出した運転者の向きを、障害物有無判定部16および照射範囲決定部17に出力する。
The orientation determination unit 15 determines whether the driver is facing left or right based on the orientation of the driver detected by the orientation detection unit 14 in step ST2 (step ST3).
Specifically, when the orientation of the driver detected by the orientation detection unit 14 is greater than the maximum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing right.
Further, when the orientation of the driver detected by the orientation detection unit 14 is smaller than the minimum value of the frontal direction range, the orientation determination unit 15 determines that the driver is facing left.
Note that the orientation determination unit 15 determines that the driver is facing the front when the orientation of the driver detected by the orientation detection unit 14 is within the frontal direction range.
Orientation determination unit 15 outputs the orientation determination result to obstacle presence/absence determination unit 16 and irradiation range determination unit 17 . Further, the orientation determination unit 15 outputs the orientation of the driver detected by the orientation detection unit 14 to the obstacle presence/absence determination unit 16 and the irradiation range determination unit 17 .
 障害物有無判定部16は、ステップST3にて向き判定部15が、運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、障害物検知センサ4から取得した距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する(ステップST4)。
 障害物有無判定部16は、障害物有無判定結果を、照射範囲決定部17に出力する。
If the direction determination unit 15 determines in step ST3 that the driver is facing leftward or rightward, the obstacle presence/absence determination unit 16 determines whether the direction of the driver detected by the direction detection unit 14 and the obstacle Based on the distance data acquired from the detection sensor 4, it is determined whether or not it is estimated that there is an obstacle in the direction the driver is facing (step ST4).
The obstacle presence/absence determination unit 16 outputs the obstacle presence/absence determination result to the irradiation range determination unit 17 .
 照射範囲決定部17は、ステップST2にて向き検出部14が検出した運転者の向きと、ステップST3にて向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、ステップST4にて障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果に基づき、車両100に設けられているヘッドライト2による光の照射範囲を決定する(ステップST5)。
 照射範囲決定部17は、照射範囲情報を、ヘッドライト制御部18に出力する。
The irradiation range determination unit 17 uses the direction of the driver detected by the direction detection unit 14 in step ST2 and the determination result of whether the driver is facing left or right as determined by the direction determination unit 15 in step ST3. Then, based on the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determining unit 16 in step ST4, the headlights 2 provided on the vehicle 100 are turned on. is determined (step ST5).
The irradiation range determination unit 17 outputs the irradiation range information to the headlight control unit 18 .
 ヘッドライト制御部18は、ヘッドライト2に対して、ステップST5にて照射範囲決定部17が決定した照射範囲に光を照射させる(ステップST6)。 The headlight control unit 18 causes the headlight 2 to irradiate the irradiation range determined by the irradiation range determination unit 17 in step ST5 (step ST6).
 図11は、図10のステップST5の処理の詳細について説明するためのフローチャートである。
 照射範囲決定部17は、図10のステップST3にて、向き判定部15によって、運転者が左方向または右方向を向いていると判定されたか否かを判定する(ステップST11)。
FIG. 11 is a flowchart for explaining the details of the process of step ST5 in FIG.
The irradiation range determination unit 17 determines whether or not the orientation determination unit 15 determines in step ST3 of FIG. 10 that the driver is facing leftward or rightward (step ST11).
 ステップST11において、向き判定部15によって運転者が左方向または右方向を向いていると判定された、と判定した場合(ステップST11の“YES”の場合)、照射範囲決定部17は、図10のステップST3にて、障害物有無判定部16によって、運転者が向いている方向に障害物があると推定されると判定されたか否かを判定する(ステップST12)。 When it is determined in step ST11 that the direction determining unit 15 determines that the driver is facing leftward or rightward (“YES” in step ST11), the irradiation range determining unit 17 In step ST3, the obstacle presence/absence determination unit 16 determines whether or not it is estimated that there is an obstacle in the direction the driver is facing (step ST12).
 ステップST12にて、障害物有無判定部16によって運転者が向いている方向に障害物があると推定されると判定された、と判定した場合(ステップST12の“YES”の場合)、照射範囲決定部17は、運転者が向いている方向(左方向または右方向)における照射範囲について、例えば、上下方向はカットオフラインよりも上方を含み、左右方向は運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を、照射範囲に決定する(ステップST13)。
 また、照射範囲決定部17は、運転者が向いている方向(左方向または右方向)において、照射範囲における左右方向の照射範囲を、例えば、車両100が走行している車線(ここでいう車線とはいわゆるレーン)の左端から、運転者の向きから所定の角度だけマイナスした角度となるまでの範囲と決定する。
 なお、照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲とする範囲を、照射範囲に決定する。
 そして、照射範囲決定部17は、照射範囲情報を、ヘッドライト制御部18に出力する。
If it is determined in step ST12 that the obstacle presence/absence determining unit 16 has determined that there is an obstacle in the direction the driver is facing ("YES" in step ST12), the irradiation range The determination unit 17 determines the irradiation range in the direction the driver is facing (leftward or rightward). The irradiation range is determined to be the range up to the angle obtained by this angle (step ST13).
In addition, the irradiation range determination unit 17 determines the irradiation range in the left-right direction in the irradiation range in the direction in which the driver is facing (the left direction or the right direction), for example, the lane in which the vehicle 100 is traveling (here, lane The range is determined as the range from the left end of the so-called lane to an angle obtained by subtracting a predetermined angle from the direction of the driver.
Note that the irradiation range determination unit 17 maintains the cutoff line in the front direction in the vertical direction, in other words, the irradiation range determination unit 17 does not include the area above the cutoff line but below the cutoff line, and the horizontal direction is the front direction range. Determine the range to be the illumination range.
The irradiation range determination unit 17 then outputs the irradiation range information to the headlight control unit 18 .
 ステップST12にて、障害物有無判定部16によって運転者が向いている方向に障害物がないと推定されると判定された、と判定した場合(ステップST12の“NO”の場合)、照射範囲決定部17は、運転者が向いている方向(左方向または右方向)における照射範囲について、例えば、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を、照射範囲に決定する(ステップST14)。
 なお、照射範囲決定部17は、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲とする範囲を、照射範囲に決定する。
If it is determined in step ST12 that the obstacle presence/absence determining unit 16 has determined that there is no obstacle in the direction the driver is facing (“NO” in step ST12), the irradiation range The determining unit 17 maintains, for example, the cutoff line in the vertical direction for the irradiation range in the direction (leftward or rightward direction) in which the driver is facing. In the left and right direction, the range up to the angle obtained by subtracting a predetermined angle from the direction of the driver is determined as the irradiation range (step ST14).
In addition, the irradiation range determination unit 17 maintains the cutoff line in the front direction in the vertical direction, in other words, the irradiation range determination unit 17 does not include the area above the cutoff line but below the cutoff line, and the horizontal direction is the front direction range. Determine the range to be the illumination range.
 ステップST11において、向き判定部15によって運転者が左方向または右方向を向いていると判定されなかった、と判定した場合(ステップST11の“NO”の場合)、言い換えれば、向き判定部15によって運転者は正面方向を向いていると判定されたと判定した場合、照射範囲決定部17は、正面方向において、カットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方がヘッドライト2の照射範囲となるようにする(ステップST15)。
 そして、照射範囲決定部17は、照射範囲情報を、ヘッドライト制御部18に出力する。
If it is determined in step ST11 that the direction determining unit 15 does not determine that the driver is facing leftward or rightward (“NO” in step ST11), in other words, the direction determining unit 15 When it is determined that the driver is facing the front, the irradiation range determining unit 17 maintains the cutoff line in the frontal direction. The downward direction is made to be the irradiation range of the headlight 2 (step ST15).
The irradiation range determination unit 17 then outputs the irradiation range information to the headlight control unit 18 .
 このように、ヘッドライト制御装置1は、検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定し、運転者は左方向または右方向を向いていると判定した場合、運転者の向きと距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する。そして、ヘッドライト制御装置1は、運転者の向きと、運転者は左方向または右方向を向いているかの判定結果と、運転者が向いている方向に障害物があると推定されるか否かの判定結果とに基づき照射範囲を決定し、ヘッドライト2に対し、決定した照射範囲に光を照射させる。
 ヘッドライト制御装置1は、運転者は左方向または右方向を向いていると判定し、かつ、運転者が向いている方向に障害物があると推定されると判定した場合は、運転者が向いている方向においてカットオフラインよりも上方を含む範囲をヘッドライトによる光の照射範囲に決定し、運転者は左方向または右方向を向いていると判定し、かつ、運転者が向いている方向に障害物がないと推定されると判定した場合は、運転者が向いている方向においてカットオフラインよりも上方を含まずカットオフラインよりも下方となる範囲を照射範囲に決定する。
In this way, the headlight control device 1 determines whether the driver is facing left or right based on the detected orientation of the driver, and determines that the driver is facing left or right. If so, it is determined whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, based on the direction of the driver and the distance data. Then, the headlight control device 1 uses the direction of the driver, the judgment result as to whether the driver is facing leftward or rightward, and whether or not it is estimated that there is an obstacle in the direction in which the driver is facing. The irradiation range is determined based on the determination result, and the headlight 2 is made to irradiate the determined irradiation range with light.
When the headlight control device 1 determines that the driver is facing leftward or rightward and that it is estimated that there is an obstacle in the direction the driver is facing, A range including above the cutoff line in the direction in which the driver is facing is determined as the light irradiation range of the headlights, it is determined that the driver is facing leftward or rightward, and the direction in which the driver is facing When it is determined that there is no obstacle in the direction in which the driver is facing, the irradiation range is determined as a range that does not include the area above the cutoff line and is below the cutoff line.
 運転者が向いている方向に基づくヘッドライトの点灯制御において運転者の視認性を向上させるためには、運転者が向いている方向においては、例えば、運転者が視認すべき対象(歩行者)を見落とさないよう、車両からみて左右方向および上下方向の広範囲に光が照射されることが好ましい。
 ただし、運転者が向いている方向に、運転者が視認すべき対象(歩行者)が隠されるような障害物がない場合には、例えば、歩行者の足元のみに光が照射される程度の下方の範囲のように、車両からみて下方にのみ光が照射されても、運転者は当該対象(歩行者)を視認できる。ここで、運転者が向いている方向に障害物がない場合に、車両からみて上方に光が照射されるようヘッドライトが点灯制御されると、運転者の視認性には影響がないにもかかわらず、運転者が視認すべき対象(歩行者)等に対して不必要なグレアを与えてしまい得る。
 上述したような従来技術では、このことが考慮されておらず、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向における状況は運転者が視認すべき対象(歩行者)が隠され得る状況であるかを考慮した点灯制御が行えていなかった。その結果、上述したような従来技術では、運転者の視認性への影響はないにもかかわらず、運転者が視認すべき対象(歩行者)等に対して不必要なグレアを与えてしまう可能性があった。
In order to improve the driver's visibility in the headlight lighting control based on the direction the driver is facing, for example, in the direction the driver is facing, the object (pedestrian) to be visually recognized by the driver It is preferable that the light is radiated over a wide range in the left-right direction and the up-down direction as viewed from the vehicle so that the light is not overlooked.
However, if there are no obstacles in the direction the driver is facing that would hide the object (pedestrian) that the driver should be visually recognizing, for example, the light will only illuminate the feet of the pedestrian. Even if the light is emitted only downward as seen from the vehicle, such as in the lower range, the driver can visually recognize the target (pedestrian). Here, when there is no obstacle in the direction the driver is facing, if the headlights are controlled to emit light upward as viewed from the vehicle, the driver's visibility will not be affected. Regardless, unnecessary glare may be given to objects (pedestrians) to be visually recognized by the driver.
In the prior art as described above, this is not taken into consideration, and in the headlight lighting control based on the direction the driver is facing, the situation in the direction the driver is facing is an object to be visually recognized by the driver. (Pedestrians) could not be hidden in lighting control. As a result, with the above-described conventional technology, although there is no effect on the driver's visibility, unnecessary glare may be given to objects (pedestrians) that the driver should visually recognize. had a nature.
 これに対し、実施の形態1に係るヘッドライト制御装置1は、上述のとおり、運転者の向きと、運転者は左方向または右方向を向いているかの判定結果と、運転者が向いている方向に障害物があると推定されるか否かの判定結果とに基づき照射範囲を決定し、ヘッドライト2に対し、決定した照射範囲に光を照射させる。
 そのため、ヘッドライト制御装置1は、車両100における、運転者が向いている方向に基づくヘッドライト2の点灯制御において、運転者が向いている方向における状況は運転者が視認すべき対象(歩行者)が隠され得る状況であるかを考慮した点灯制御を行うことができる。すなわち、ヘッドライト制御装置1は、車両100における、運転者が向いている方向に基づくヘッドライト2の制御において、運転者の視認性を向上させるとともに、運転者が向いている方向に存在し得る運転者が視認すべき対象(歩行者)等に対してグレアを生じさせ難くできる。
On the other hand, as described above, the headlight control device 1 according to Embodiment 1 includes the direction of the driver, the determination result as to whether the driver is facing leftward or rightward, and the direction of the driver. The irradiation range is determined based on the determination result of whether or not it is estimated that there is an obstacle in the direction, and the headlight 2 is caused to irradiate the determined irradiation range.
Therefore, in the lighting control of the headlights 2 in the vehicle 100 based on the direction in which the driver is facing, the headlight control device 1 determines the situation in the direction in which the driver is facing, which is an object (pedestrians) to be visually recognized by the driver. ) can be hidden. That is, in the control of the headlights 2 in the vehicle 100 based on the direction the driver is facing, the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object (pedestrian) or the like to be visually recognized by the driver.
 図12Aおよび図12Bは、実施の形態1に係るヘッドライト制御装置1のハードウェア構成の一例を示す図である。
 実施の形態1において、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の機能は、処理回路1001により実現される。すなわち、ヘッドライト制御装置1は、撮像装置3から取得した撮像画像に基づいて検出した運転者の向きと、当該撮像画像に基づいて判定した乗員の向きと、障害物検知センサ4から取得した距離データに基づいて判定した乗員が向いている方向に障害物があると推定されるか否かの判定結果とに基づき、ヘッドライト2の点灯制御を行うための処理回路1001を備える。
 処理回路1001は、図12Aに示すように専用のハードウェアであっても、図12Bに示すようにメモリ1005に格納されるプログラムを実行するプロセッサ1004であってもよい。
12A and 12B are diagrams showing an example of the hardware configuration of the headlight control device 1 according to Embodiment 1. FIG.
In Embodiment 1, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit Functions of the unit 17 and the headlight control unit 18 are realized by the processing circuit 1001 . That is, the headlight control device 1 detects the orientation of the driver based on the captured image acquired from the imaging device 3, the orientation of the passenger determined based on the captured image, and the distance acquired from the obstacle detection sensor 4. A processing circuit 1001 is provided for performing lighting control of the headlights 2 based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the occupant is facing, which is determined based on the data.
The processing circuitry 1001 may be dedicated hardware as shown in FIG. 12A or a processor 1004 that executes a program stored in memory 1005 as shown in FIG. 12B.
 処理回路1001が専用のハードウェアである場合、処理回路1001は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。 When the processing circuit 1001 is dedicated hardware, the processing circuit 1001 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 処理回路がプロセッサ1004の場合、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の機能は、ソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアは、プログラムとして記述され、メモリ1005に記憶される。プロセッサ1004は、メモリ1005に記憶されたプログラムを読み出して実行することにより、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の機能を実行する。すなわち、ヘッドライト制御装置1は、プロセッサ1004により実行されるときに、上述の図10のステップST1~ステップST6が結果的に実行されることになるプログラムを格納するためのメモリ1005を備える。また、メモリ1005に記憶されたプログラムは、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の処理の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリ1005とは、例えば、RAM、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 When the processing circuit is the processor 1004, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation The functions of the range determination unit 17 and the headlight control unit 18 are implemented by software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 1005 . Processor 1004 reads out and executes programs stored in memory 1005 to control headlight determination unit 11, driving location determination unit 12, control start determination unit 13, orientation detection unit 14, and orientation determination unit 15. , the functions of the obstacle presence/absence determination unit 16, the irradiation range determination unit 17, and the headlight control unit 18 are executed. That is, the headlight control device 1 includes a memory 1005 for storing a program that, when executed by the processor 1004, results in the execution of steps ST1 to ST6 of FIG. 10 described above. The programs stored in the memory 1005 include a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, and an obstacle presence/absence determination unit 16. It can also be said that the procedure or method of the processing of the irradiation range determining unit 17 and the headlight control unit 18 is executed by a computer. Here, the memory 1005 is, for example, a non-volatile memory such as RAM, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory). or volatile semiconductors Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. correspond to this.
 なお、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16については専用のハードウェアとしての処理回路1001でその機能を実現し、照射範囲決定部17と、ヘッドライト制御部18についてはプロセッサ1004がメモリ1005に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 また、ヘッドライト制御装置1は、ヘッドライト2、撮像装置3、または、障害物検知センサ4等の装置と、有線通信または無線通信を行う入力インタフェース装置1002および出力インタフェース装置1003を備える。
Note that the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, the irradiation range determination unit 17, A part of the functions of the headlight control unit 18 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware. For example, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the direction detection unit 14, the direction determination unit 15, and the obstacle presence/absence determination unit 16 are processed as dedicated hardware. The functions of the circuit 1001 can be realized, and the functions of the irradiation range determination unit 17 and the headlight control unit 18 can be realized by the processor 1004 reading and executing the programs stored in the memory 1005. .
The headlight control device 1 also includes a device such as the headlight 2, the imaging device 3, or the obstacle detection sensor 4, and an input interface device 1002 and an output interface device 1003 that perform wired or wireless communication.
 以上の実施の形態1では、照射範囲決定部17は、運転者が左方向または右方向を向いている場合、照射範囲における左右方向の範囲について、正面方向範囲に加えて運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまでの範囲とした。しかし、これは一例に過ぎない。照射範囲決定部17は、例えば、正面方向範囲を、運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまで水平左右方向にスイブルさせ、スイブルさせた後の範囲を、照射範囲の左右方向の範囲としてもよい。例えば、上述の「ケースA-1」の場合、照射範囲決定部17は、運転者の向き-4.5度~-0.94度までの範囲を、照射範囲における左右方向の範囲に決定してもよい。 In the first embodiment described above, when the driver is facing leftward or rightward, the irradiation range determination unit 17 determines the left-right direction range in the irradiation range in addition to the frontal direction range. The range is set to the angle minus or plus the angle of . However, this is only an example. The irradiation range determining unit 17, for example, swivels the frontal direction range in the horizontal left-right direction until it becomes an angle minus or plus a predetermined angle from the direction of the driver, and then shifts the range after swiveling to the left and right of the irradiation range. It may be a range of directions. For example, in the case of “Case A-1” described above, the irradiation range determination unit 17 determines the range from −4.5 degrees to −0.94 degrees in the direction of the driver as the range in the horizontal direction of the irradiation range. may
 また、以上の実施の形態1では、ヘッドライト制御装置1はヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13を備えていたが、これは一例に過ぎない。例えば、ヘッドライト制御装置1は、ヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13を備えず、ヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13の機能は、ヘッドライト制御装置1の外部においてヘッドライト制御装置1と接続されている装置に備えられてもよい。この場合、ヘッドライト制御装置1は、外部の装置から制御開始指示が出力されると、運転者が向いている方向に基づくヘッドライト2の点灯制御を行う。
 なお、この場合、図10のフローチャートを用いて説明したヘッドライト制御装置1の動作は、ステップST1の処理を省略できる。
Further, in Embodiment 1 described above, the headlight control device 1 includes the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, but this is merely an example. For example, the headlight control device 1 does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, and does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit. The functions 13 may be provided in a device connected to the headlight control device 1 outside the headlight control device 1 . In this case, when a control start instruction is output from an external device, the headlight control device 1 performs lighting control of the headlights 2 based on the direction in which the driver is facing.
In this case, the operation of the headlight control device 1 described using the flowchart of FIG. 10 can omit the processing of step ST1.
 また、以上の実施の形態1では、運転者が視認すべき対象とは、歩行者を想定していたが、これは一例に過ぎない。以上の実施の形態1において、運転者が視認すべき対象は、歩行者の他、例えば、スケートボードで移動している人、ローラースケートを履いた人、ベビーカーに乗って移動している子供等であってもよい。 Also, in Embodiment 1 described above, the target that the driver should visually recognize was assumed to be a pedestrian, but this is only an example. In the first embodiment described above, objects to be visually recognized by the driver include, in addition to pedestrians, people moving on skateboards, people wearing roller skates, children moving in strollers, and the like. may be
 また、以上の実施の形態1では、ヘッドライト制御装置1は、車両100に搭載される車載装置とし、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18とは、車載装置に備えられているものとした。これに限らず、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18のうち、一部が車両100の車載装置に備えられるものとし、その他が当該車載装置とネットワークを介して接続されるサーバに備えられてもよい。また、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17と、ヘッドライト制御部18の全部がサーバに備えられてもよい。 Further, in Embodiment 1 described above, the headlight control device 1 is an in-vehicle device mounted on the vehicle 100, and includes the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, and the orientation detection unit. It is assumed that the unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, the irradiation range determination unit 17, and the headlight control unit 18 are provided in the in-vehicle device. Not limited to this, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit 17 and the headlight control unit 18, a part thereof may be provided in an in-vehicle device of the vehicle 100, and the other may be provided in a server connected to the in-vehicle device via a network. In addition, a headlight determination unit 11, a driving place determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17, The entire headlight control unit 18 may be provided in the server.
 以上のように、実施の形態1に係るヘッドライト制御装置1は、車両100の運転者が撮像された撮像画像に基づき、運転者の向きを検出する向き検出部14と、向き検出部14が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する向き判定部15と、向き判定部15が、運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、物体を検出するセンサ(障害物検知センサ4)によって測定された、車外における物体までの距離に関する距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する障害物有無判定部16と、向き検出部14が検出した運転者の向きと、向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果とに基づき、車両100に設けられているヘッドライト2による光の照射範囲を決定する照射範囲決定部17と、ヘッドライト2に対して、照射範囲決定部17が決定した照射範囲に光を照射させるヘッドライト制御部18とを備えるように構成した。そのため、ヘッドライト制御装置1は、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向の状況は、運転者が視認すべき対象が隠され得る状況であるかを考慮した点灯制御ができる。つまり、ヘッドライト制御装置1は、車両100における、運転者が向いている方向に基づくヘッドライト2の制御において、運転者の視認性を向上させるとともに、運転者が向いている方向に存在し得る運転者が視認すべき対象等に対してグレアを生じさせ難くできる。 As described above, the headlight control device 1 according to Embodiment 1 includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100, and the orientation detection unit 14. A direction determination unit 15 that determines whether the driver is facing left or right based on the detected direction of the driver, and the direction determination unit 15 determines that the driver is facing left or right. Then, based on the orientation of the driver detected by the orientation detection unit 14 and the distance data regarding the distance to the object outside the vehicle, which is measured by the sensor that detects the object (obstacle detection sensor 4), the driver The obstacle presence/absence determination unit 16 that determines whether or not it is estimated that there is an obstacle in the facing direction, the direction of the driver detected by the direction detection unit 14, and the driver determined by the direction determination unit 15 are Based on the determination result as to whether the driver is facing leftward or rightward, and the determination result as to whether or not it is estimated that there is an obstacle in the direction in which the driver is facing, determined by the obstacle presence/absence determination unit 16, the vehicle An irradiation range determination unit 17 that determines the irradiation range of light by the headlight 2 provided in 100, and a headlight control unit that causes the headlight 2 to irradiate the irradiation range determined by the irradiation range determination unit 17. 18. Therefore, in the headlight control device 1, in the lighting control of the headlights based on the direction in which the driver is facing, the situation in which the driver is facing is a situation in which an object to be visually recognized by the driver may be hidden. It is possible to perform lighting control in consideration of whether That is, in controlling the headlights 2 in the vehicle 100 based on the direction the driver is facing, the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object or the like to be visually recognized by the driver.
 詳細には、実施の形態1に係るヘッドライト制御装置1は、ヘッドライト制御装置1において、照射範囲決定部17は、向き判定部15が運転者は左方向または右方向を向いていると判定し、かつ、障害物有無判定部16が、運転者が向いている方向に障害物があると推定されると判定した場合は、運転者が向いている方向においてカットオフラインよりも上方を含む範囲をヘッドライト2による光の照射範囲に決定し、向き判定部15が運転者は左方向または右方向を向いていると判定し、かつ、障害物有無判定部16が、運転者が向いている方向に障害物がないと推定されると判定した場合は、運転者が向いている方向においてカットオフラインよりも上方を含まずカットオフラインよりも下方となる範囲をヘッドライト2による光の照射範囲に決定するように構成した。そのため、ヘッドライト制御装置1は、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向の状況は、運転者が視認すべき対象が隠され得る状況であるかを考慮した点灯制御ができる。つまり、ヘッドライト制御装置1は、車両100における、運転者が向いている方向に基づくヘッドライト2の制御において、運転者の視認性を向上させるとともに、運転者が向いている方向に存在し得る運転者が視認すべき対象等に対してグレアを生じさせ難くできる。 Specifically, in the headlight control device 1 according to Embodiment 1, the irradiation range determination unit 17 determines that the direction determination unit 15 determines that the driver is facing leftward or rightward. In addition, when the obstacle presence/absence determination unit 16 determines that there is an obstacle in the direction in which the driver is facing, the range including above the cutoff line in the direction in which the driver is facing is the irradiation range of the light from the headlight 2, the orientation determination unit 15 determines that the driver is facing left or right, and the obstacle presence/absence determination unit 16 determines that the driver is facing When it is determined that there are no obstacles in the direction, the area below the cutoff line, not including the area above the cutoffline in the direction in which the driver is facing, is set as the irradiation range of the light from the headlights 2. configured to decide. Therefore, in the headlight control device 1, in the lighting control of the headlights based on the direction in which the driver is facing, the situation in which the driver is facing is a situation in which an object to be visually recognized by the driver may be hidden. It is possible to perform lighting control in consideration of whether That is, in controlling the headlights 2 in the vehicle 100 based on the direction the driver is facing, the headlight control device 1 improves the visibility of the driver and can be present in the direction the driver is facing. It is possible to make glare less likely to occur on an object or the like to be visually recognized by the driver.
実施の形態2.
 実施の形態1では、ヘッドライト制御装置は、運転者が左方向または右方向を向いており、かつ、運転者が向いている方向に障害物がないと推定されると判定した場合、運転者が向いている方向において、カットオフラインよりも下方を、照射範囲における上下方向の範囲としていた。これでも運転者は、運転者が向いている方向に存在し得る、運転者が視認すべき対象を視認できるが、実施の形態2では、運転者が向いている方向における運転者の視認性をより向上させる実施の形態について説明する。
Embodiment 2.
In Embodiment 1, when the headlight control device determines that the driver is facing leftward or rightward and it is estimated that there is no obstacle in the direction the driver is facing, the headlight control device The vertical range of the irradiation range was defined as the area below the cutoff line in the direction in which the . Even in this case, the driver can visually recognize an object that the driver should visually recognize, which may exist in the direction the driver is facing. A more improved embodiment will be described.
 図13は、実施の形態2に係るヘッドライト制御装置1aの構成例を示す図である。
 実施の形態2において、ヘッドライト制御装置1aは、車両100aに搭載されていることを想定する
 ヘッドライト制御装置1aは、車両100aの運転者の向きに基づいて、車両100aに設けられているヘッドライト2の灯火制御を行う。実施の形態2において、「運転車の向き」は、運転者の顔向き、または、運転者の視線方向であらわされる。
 実施の形態2では、ヘッドライト制御装置1aが行う、運転者の向きに基づくヘッドライト2の灯火制御は、例えば、夜間の駐車場、または、夜間の市街地等、車両100aが走行する道路の左右に駐車車両が多く、車両100aが比較的低速で走行するような場所において、ヘッドライト2がオンにされた場合に行われることを想定している。
FIG. 13 is a diagram showing a configuration example of a headlight control device 1a according to Embodiment 2. As shown in FIG.
In Embodiment 2, it is assumed that the headlight control device 1a is mounted on the vehicle 100a. Light control of light 2 is performed. In Embodiment 2, the "orientation of the driver's vehicle" is represented by the orientation of the driver's face or the direction of the driver's line of sight.
In Embodiment 2, the lighting control of the headlights 2 based on the direction of the driver performed by the headlight control device 1a is performed on the left and right of the road on which the vehicle 100a travels, such as in a parking lot at night or in an urban area at night. It is assumed that this is performed when the headlights 2 are turned on in a place where there are many parked vehicles and the vehicle 100a is traveling at a relatively low speed.
 図13において、実施の形態1にて図1を用いて説明したヘッドライト制御装置1と同様の構成については、同じ符号を付して重複した説明を省略する。
 実施の形態2に係るヘッドライト制御装置1aは、実施の形態1に係るヘッドライト制御装置1とは、対象有無判定部19を備えた点が異なる。
 また、実施の形態2に係るヘッドライト制御装置1aにおける照射範囲決定部17aの具体的な動作が、実施の形態1に係るヘッドライト制御装置1における照射範囲決定部17の具体的な動作とは異なる。
In FIG. 13 , the same reference numerals are assigned to the same configurations as those of the headlight control device 1 described with reference to FIG. 1 in Embodiment 1, and redundant descriptions will be omitted.
A headlight control device 1 a according to Embodiment 2 differs from the headlight control device 1 according to Embodiment 1 in that a target presence/absence determination section 19 is provided.
Further, the specific operation of the irradiation range determination unit 17a in the headlight control device 1a according to the second embodiment is different from the specific operation of the irradiation range determination unit 17 in the headlight control device 1 according to the first embodiment. different.
 対象有無判定部19は、障害物有無判定部16が、運転者が向いている方向に障害物がないと推定されると判定した場合に、向き検出部14が検出した運転者の向きと距離データとに基づいて、運転者が向いている方向に、運転者が視認すべき対象が存在していると推定されるか否かを判定する。実施の形態2においても、実施の形態1同様、運転者が視認すべき対象は、運転者が車両100aを運転中に急に車両100aの走行経路上に入り込む可能性があり、運転者が不測の事態を招かないよう注意を払う必要がある物体(主に移動体)を想定している。具体的には、実施の形態2において、視認すべき対象とは、歩行者を想定している。 When the obstacle presence/absence determination unit 16 determines that it is estimated that there is no obstacle in the direction in which the driver is facing, the object presence/absence determination unit 19 determines the direction and distance of the driver detected by the direction detection unit 14. Based on the data, it is determined whether or not it is estimated that an object to be visually recognized by the driver exists in the direction the driver is facing. In the second embodiment, as in the first embodiment, an object to be visually recognized by the driver may suddenly enter the travel route of the vehicle 100a while the driver is driving the vehicle 100a. It assumes an object (mainly a moving object) that needs to be paid attention to so as not to cause a situation. Specifically, in Embodiment 2, the target to be visually recognized is assumed to be a pedestrian.
 なお、実施の形態2では、障害物有無判定部16は、障害物有無判定結果を、照射範囲決定部17および対象有無判定部19に出力する。また、障害物有無判定部16は、向き判定部15から取得した運転者の向きと向き判定結果とを、対象有無判定部19に出力する。 Note that in the second embodiment, the obstacle presence/absence determination unit 16 outputs the obstacle presence/absence determination result to the irradiation range determination unit 17 and the target presence/absence determination unit 19 . The obstacle presence/absence determination unit 16 also outputs the direction of the driver acquired from the direction determination unit 15 and the direction determination result to the object presence/absence determination unit 19 .
 対象有無判定部19は、障害物検知センサ4から距離データを取得する。
 対象有無判定部19は、向き判定部15が運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、障害物検知センサ4から取得した距離データとに基づいて、運転者が向いている方向に歩行者が存在していると推定されるか否かを判定する。
The object presence/absence determination unit 19 acquires distance data from the obstacle detection sensor 4 .
When the direction determination unit 15 determines that the driver is facing leftward or rightward, the object presence/absence determination unit 19 determines the direction of the driver detected by the direction detection unit 14 and the direction of the driver obtained from the obstacle detection sensor 4. Based on the distance data, it is determined whether or not it is estimated that a pedestrian exists in the direction the driver is facing.
 対象有無判定部19は、運転者の向きと距離データとに基づき、例えば、運転者の向きに対し予め設定された範囲である障害物推定用向き範囲内であり、かつ、車両100の位置から視認距離までの範囲内において、予め設定された条件(以下「歩行者推定用条件」という。)を満たす物体が検出された場合、運転者が向いている方向に歩行者が存在すると推定されると判定する。
 対象有無判定部19は、歩行者推定用条件を満たす物体が検出されない場合、運転者が向いている方向に歩行者が存在すると推定されない、言い換えれば、運転者が向いている方向に歩行者は存在しないと推定されると判定する。
 歩行者推定用条件には、例えば、「一般的な人の大きさに相当する」との条件が設定されている。なお、これは一例に過ぎず、例えば、「距離データには、物体を検出したデータが1つ含まれていること」が設定されていてもよい。
 歩行者推定用条件は、対象有無判定部19が参照可能な場所に記憶されている。
Based on the direction of the driver and the distance data, the object presence/absence determination unit 19 determines whether the object is within the obstacle estimation direction range, which is a range preset with respect to the direction of the driver, and from the position of the vehicle 100. If an object that satisfies a preset condition (hereinafter referred to as "pedestrian estimation condition") is detected within the visual range, it is estimated that there is a pedestrian in the direction the driver is facing. I judge.
If an object that satisfies the pedestrian estimation condition is not detected, the object presence/absence determining unit 19 does not estimate that there is a pedestrian in the direction the driver is facing. It is determined that it is presumed not to exist.
For the pedestrian estimation condition, for example, the condition "equivalent to the size of a general person" is set. It should be noted that this is only an example, and for example, it may be set that "the distance data includes one object detection data".
The pedestrian estimation condition is stored in a location that the target presence/absence determining unit 19 can refer to.
 なお、実施の形態2において、対象有無判定部19は、運転者の向きと距離データとに基づいて、運転者が向いている方向に歩行者が存在していると推定されるか否かを判定するものであり、実際に歩行者が存在することを判定するものではない。 In the second embodiment, the target presence/absence determination unit 19 determines whether or not it is estimated that a pedestrian is present in the direction the driver is facing, based on the driver's orientation and distance data. It is a judgment, not a judgment that a pedestrian actually exists.
 対象有無判定部19は、運転者が向いている方向に歩行者が存在していると推定されるか否かの判定結果(以下「歩行者有無判定結果」という。)を、照射範囲決定部17aに出力する。 The target presence/absence determination unit 19 outputs the determination result of whether or not it is estimated that a pedestrian exists in the direction the driver is facing (hereinafter referred to as "pedestrian presence/absence determination result") to the irradiation range determination unit. 17a.
 照射範囲決定部17aは、向き検出部14が検出した運転者の向きと、向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果と、対象有無判定部19が判定した運転者が向いている方向に歩行者が存在すると推定されるか否かの判定結果とに基づき、車両100aに設けられているヘッドライト2による光の照射範囲を決定する。
 詳細には、照射範囲決定部17aは、ハイビーム照射可能領域、ロービーム照射可能領域、および、補助光照射可能領域のうち、どこまでの範囲を光が照射される範囲とするかを、ヘッドライト2による光の照射範囲として決定する。
 以下の説明において、ヘッドライト2による光の照射範囲のことを、単に「照射範囲」ともいう。
The irradiation range determination unit 17a combines the direction of the driver detected by the direction detection unit 14, the determination result of whether the driver is facing left or right as determined by the direction determination unit 15, and the obstacle presence/absence determination unit 16. The determination result of whether or not it is estimated that there is an obstacle in the direction that the driver is facing determined by is determined by the target presence/absence determination unit 19, and it is estimated that there is a pedestrian in the direction that the driver is facing. Based on the determination result of whether or not the headlight 2 is provided on the vehicle 100a, the irradiation range of the light is determined.
More specifically, the irradiation range determining unit 17a determines, by the headlights 2, the range of the high beam irradiation possible region, the low beam irradiation possible region, and the auxiliary light irradiation possible region to which the light is irradiated. Determined as the irradiation range of light.
In the following description, the light irradiation range of the headlights 2 is also simply referred to as "irradiation range".
 照射範囲決定部17aによる照射範囲の決定方法の一例について、説明する。
 なお、実施の形態2において、照射範囲決定部17aは、運転者の向きによらず、言い換えれば、運転者が正面方向、左方向、右方向のいずれを向いていても、正面方向については、カットオフラインを維持し、カットオフラインよりも下方が照射範囲となるようにする。照射範囲決定部17aは、運転者が左方向を向いている場合、または、運転者が右方向を向いている場合、正面方向に加え、運転者が向いている方向(左方向または右方向)における照射範囲を決定する。
An example of a method for determining the irradiation range by the irradiation range determining unit 17a will be described.
In Embodiment 2, the irradiation range determining unit 17a does not depend on the direction of the driver. Maintain the cutoff line so that the irradiation range is below the cutoff line. When the driver is facing left or right, the irradiation range determination unit 17a determines the direction the driver is facing (left or right) in addition to the front direction. Determine the irradiation range in
〈運転者が左方向または右方向を向いており、かつ、運転者が向いている方向に障害物があると推定される場合〉
 照射範囲決定部17aによる、運転者が左方向または右方向を向いている場合であって、障害物有無判定部16によって運転者が向いている方向に障害物があると推定されると判定された場合の照射範囲の決定方法は、実施の形態1において説明済みの、照射範囲決定部17による、運転者が左方向または右方向を向いている場合であって、障害物有無判定部16によって運転者が向いている方向に障害物があると推定されると判定された場合の照射範囲の決定方法(実施の形態1における「ケースA-1」および「ケースB-1」参照)と同様であるため、重複した説明を省略する。
<When the driver is facing left or right and it is estimated that there is an obstacle in the direction the driver is facing>
In the case where the driver is facing leftward or rightward, the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is an obstacle in the direction the driver is facing. The method for determining the irradiation range in this case is the irradiation range determination unit 17 described in the first embodiment, and the obstacle presence/absence determination unit 16 determines whether the driver is facing left or right. Same as the irradiation range determination method when it is determined that there is an obstacle in the direction the driver is facing (see "Case A-1" and "Case B-1" in Embodiment 1) Therefore, redundant description is omitted.
〈運転者が左方向または右方向を向いており、かつ、運転者が向いている方向に障害物がないと推定される場合〉
 この場合、照射範囲決定部17aは、対象有無判定部19が、運転者が向いている方向に歩行者が存在していると推定したか否かによって異なる範囲を照射範囲と決定する。
<When the driver is facing left or right and it is estimated that there is no obstacle in the direction the driver is facing>
In this case, the irradiation range determination unit 17a determines a different range as the irradiation range depending on whether or not the target presence/absence determination unit 19 has estimated that a pedestrian exists in the direction the driver is facing.
 照射範囲決定部17aは、運転者が左方向または右方向を向いている場合であって、障害物有無判定部16が、運転者が向いている方向に障害物がないと推定されると判定し、かつ、対象有無判定部19が、運転者が向いている方向に歩行者が存在していると推定されると判定した場合は、運転者が向いている方向(左方向または右方向)における照射範囲について、例えば、上下方向は歩行者の首よりも下とみなす範囲とし、左右方向は運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまでの範囲を、照射範囲に決定する。なお、照射範囲決定部17aは、運転者が左方向を向いている場合は、運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を照射範囲の左右方向の範囲とし、運転者が右方向を向いている場合は、運転者の向きから所定の角度だけプラスした角度となるまでの範囲を照射範囲の左右方向の範囲とする。
 照射範囲決定部17aは、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲とする範囲を、照射範囲に決定する。
When the driver is facing leftward or rightward, the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is no obstacle in the direction the driver is facing. And, when the object presence/absence determination unit 19 determines that it is estimated that a pedestrian exists in the direction the driver is facing, the direction the driver is facing (leftward or rightward) Regarding the irradiation range in , for example, the vertical direction is considered to be below the pedestrian's neck, and the horizontal direction is the range from the driver's direction minus or plus a predetermined angle to the irradiation range. do. When the driver is facing leftward, the irradiation range determination unit 17a determines the range in the left-right direction of the irradiation range up to an angle obtained by subtracting a predetermined angle from the direction of the driver. is directed to the right, the range up to an angle obtained by adding a predetermined angle to the direction of the driver is defined as the lateral range of the irradiation range.
The irradiation range determination unit 17a maintains the cutoff line in the vertical direction in the front direction. , to determine the irradiation range.
 照射範囲決定部17aによる、歩行者の首よりも下とみなす範囲の算出方法例について、説明する。
 例えば、照射範囲決定部17aは、対象有無判定部19が、歩行者が存在していると推定されると判定した際の距離データに基づき、車両100の前方において、車両100の位置からどれぐらい離れた位置に歩行者が存在していると推定されるかを判定する。そして、照射範囲決定部17aは、判定した車両100と歩行者との距離と、予め設定されている歩行者の身長とに基づいて、歩行者の首よりも下とみなす範囲を算出する。なお、管理者等は、予め、1.8m等、想定する歩行者の身長を設定し、設定した歩行者の身長に関する情報を、照射範囲決定部17aが参照可能な場所に記憶させておく。照射範囲決定部17aは、予め設定されている歩行者の身長に対し、一般に、首の位置は地面からどれぐらいの高さになるかを判定し、判定した、地面から首の位置までの高さと、車両100と歩行者との距離とに基づき、歩行者の首よりも下とみなす範囲を算出する。
An example of a calculation method of the range considered to be below the pedestrian's neck by the irradiation range determination unit 17a will be described.
For example, the irradiation range determination unit 17a determines how far from the position of the vehicle 100 in front of the vehicle 100 based on the distance data when the target presence/absence determination unit 19 determines that a pedestrian is estimated to exist. It is determined whether it is estimated that a pedestrian exists at a distant position. Based on the determined distance between the vehicle 100 and the pedestrian and the preset height of the pedestrian, the irradiation range determination unit 17a calculates a range considered to be below the neck of the pedestrian. Note that the administrator or the like sets the assumed height of the pedestrian, such as 1.8 m, in advance, and stores information about the set height of the pedestrian in a location that can be referred to by the irradiation range determination unit 17a. The irradiation range determination unit 17a generally determines how high the neck position is from the ground for a preset height of a pedestrian, and determines the determined height from the ground to the neck position. , and the distance between the vehicle 100 and the pedestrian, the range considered to be below the pedestrian's neck is calculated.
 一方、照射範囲決定部17aは、運転者が左方向または右方向を向いている場合であって、障害物有無判定部16が、運転者が向いている方向に障害物がないと推定されると判定し、かつ、対象有無判定部19が、運転者が向いている方向に歩行者は存在していないと推定されると判定した場合は、運転者が向いている方向(左方向または右方向)における照射範囲について、例えば、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は運転者の向きから所定の角度だけマイナスした角度となるまでの範囲を、照射範囲に決定する。照射範囲決定部17aは、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲とする範囲を、照射範囲に決定する。
 この照射範囲決定部17aによる照射範囲の決定方法は、実施の形態1における、運転者が左方向または右方向を向いている場合であって、障害物有無判定部16によって運転者が向いている方向に障害物がないと推定されると判定された場合の、照射範囲決定部17による照射範囲の決定方法(実施の形態1における「ケースA-2」および「ケースB-2」参照)と同様である。
On the other hand, when the driver is facing left or right, the irradiation range determination unit 17a determines that the obstacle presence/absence determination unit 16 estimates that there is no obstacle in the direction the driver is facing. and the object presence/absence determination unit 19 determines that it is estimated that there is no pedestrian in the direction the driver is facing, the direction the driver is facing (leftward or rightward direction), for example, the cutoff line is maintained in the vertical direction. The irradiation range is determined as the range until the angle becomes The irradiation range determining unit 17a maintains the cutoff line in the front direction in the vertical direction, in other words, does not include the area above the cutoff line but below the cutoff line, and sets the range in the horizontal direction as the front range. , to determine the irradiation range.
The irradiation range determination method by the irradiation range determination unit 17a is performed when the driver is facing left or right in the first embodiment, and the obstacle presence/absence determination unit 16 determines whether the driver is facing to the right or left. A method of determining an irradiation range by the irradiation range determining unit 17 when it is determined that there is no obstacle in the direction (see “Case A-2” and “Case B-2” in Embodiment 1); It is the same.
〈運転者が左方向も右方向も向いていない場合(運転者の向きが正面方向範囲である場合)〉
 照射範囲決定部17aによる、運転者が左方向も右方向も向いていない場合、言い換えれば、運転者が正面方向を向いている場合の照射範囲の決定方法は、実施の形態1において説明済みの、照射範囲決定部17による、運転者が正面方向を向いている場合の照射範囲の決定方法(実施の形態1の「ケースC」参照)と同様であるため、重複した説明を省略する。
<When the driver is neither facing left nor right (when the driver is facing the front direction)>
The method of determining the irradiation range by the irradiation range determining unit 17a when the driver is neither facing left nor right, in other words, when the driver is facing forward, is described in the first embodiment. , is the same as the method of determining the irradiation range by the irradiation range determining unit 17 when the driver is facing the front (see “Case C” in Embodiment 1), so redundant description will be omitted.
 照射範囲決定部17aは、照射範囲を決定すると、照射範囲情報を、ヘッドライト制御部18に出力する。照射範囲決定部17aは、決定した照射範囲について、運転者の向きであらわされていた範囲については、ヘッドライト2の設置位置を基準とした範囲に変換して、照射範囲情報を作成する。
 なお、ここでは、照射範囲決定部17aが、運転者の向きであらわされていた範囲の、ヘッドライト2の設置位置を基準とした範囲への変換を行った上で、ヘッドライト制御部18に照射範囲情報を出力するが、これは一例に過ぎない。例えば、当該変換を、ヘッドライト制御部18が行ってもよい。
After determining the irradiation range, the irradiation range determination unit 17 a outputs irradiation range information to the headlight control unit 18 . The irradiation range determining unit 17a creates irradiation range information by converting the determined irradiation range represented by the direction of the driver into a range based on the installation position of the headlights 2 .
Here, the irradiation range determination unit 17a converts the range represented by the direction of the driver into a range based on the installation position of the headlight 2, and then the headlight control unit 18 Although irradiation range information is output, this is only an example. For example, the conversion may be performed by the headlight control unit 18 .
 実施の形態2に係るヘッドライト制御装置1aの動作について説明する。
 図14は、実施の形態2に係るヘッドライト制御装置1aの動作について説明するためのフローチャートである。
 ヘッドライト制御装置1aは、例えば、車両100aの電源がオンにされると、車両100aの電源がオフにされるまで、図14のフローチャートを用いて説明する動作を繰り返す。
 図14のステップST1a~ステップST4a、ステップST6aの具体的な動作は、それぞれ、実施の形態1にて説明済みの、図10のステップST1~ステップST4、ステップST6の具体的な動作と同様であるため、重複した説明を省略する。
The operation of the headlight control device 1a according to Embodiment 2 will be described.
FIG. 14 is a flow chart for explaining the operation of the headlight control device 1a according to the second embodiment.
For example, when the power of the vehicle 100a is turned on, the headlight control device 1a repeats the operation described using the flowchart of FIG. 14 until the power of the vehicle 100a is turned off.
The specific operations of steps ST1a to ST4a and step ST6a of FIG. 14 are the same as the specific operations of steps ST1 to ST4 and ST6 of FIG. 10 already explained in Embodiment 1, respectively. Therefore, redundant description is omitted.
 対象有無判定部19は、ステップST4aにて障害物有無判定部16が、運転者が向いている方向に障害物はないと推定されると判定した場合に、ステップST2aにて向き検出部14が検出した運転者の向きと障害物検知センサ4から取得した距離データとに基づいて、運転者が向いている方向に歩行者が存在していると推定されるか否かを判定する(ステップST41a)。
 対象有無判定部19は、歩行者有無判定結果を、照射範囲決定部17aに出力する。
When the obstacle presence/absence determination unit 16 determines in step ST4a that it is estimated that there is no obstacle in the direction in which the driver is facing, the object presence/absence determination unit 19 determines that the direction detection unit 14 detects the obstacle in step ST2a. Based on the detected direction of the driver and the distance data obtained from the obstacle detection sensor 4, it is determined whether or not it is estimated that a pedestrian exists in the direction the driver is facing (step ST41a). ).
The target presence/absence determination unit 19 outputs the pedestrian presence/absence determination result to the irradiation range determination unit 17a.
 照射範囲決定部17aは、ステップST2aにて向き検出部14が検出した運転者の向きと、ステップST3aにて向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、ステップST4aにて障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果と、ステップST41aにて対象有無判定部19が判定した運転者が向いている方向に歩行者が存在すると推定されるか否かの判定結果とに基づき、車両100aに設けられているヘッドライト2による光の照射範囲を決定する(ステップST5a)。
 照射範囲決定部17aは、照射範囲情報を、ヘッドライト制御部18に出力する。
The irradiation range determination unit 17a uses the direction of the driver detected by the direction detection unit 14 in step ST2a and the determination result of whether the driver is facing left or right as determined by the direction determination unit 15 in step ST3a. Then, the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16 in step ST4a, and the object presence/absence determination unit 19 determines in step ST41a. Based on the determination result as to whether or not it is estimated that a pedestrian exists in the direction the driver is facing, the irradiation range of the light from the headlights 2 provided on the vehicle 100a is determined (step ST5a).
The irradiation range determination unit 17 a outputs the irradiation range information to the headlight control unit 18 .
 図15は、図14のステップST5aの処理の詳細について説明するためのフローチャートである。
 図15のステップST111~ステップST113、ステップST116、ステップST117の具体的な動作は、それぞれ、実施の形態1にて説明済みの、図11のステップST11~ステップST15の具体的な動作と同様であるため、重複した説明を省略する。
FIG. 15 is a flowchart for explaining the details of the process of step ST5a in FIG.
Specific operations of steps ST111 to ST113, steps ST116, and ST117 in FIG. 15 are the same as the specific operations in steps ST11 to ST15 of FIG. Therefore, redundant description is omitted.
 ステップST112にて、障害物有無判定部16によって運転者が向いている方向に障害物はないと推定されると判定された、と判定した場合(ステップST122の“NO”の場合)、照射範囲決定部17aは、図14のステップST41aにて、対象有無判定部19によって、運転者が向いている方向に歩行者が存在していると推定されると判定されたか否かを判定する(ステップST114)。 If it is determined in step ST112 that the obstacle presence/absence determining unit 16 has determined that there is no obstacle in the direction the driver is facing (“NO” in step ST122), the irradiation range The determination unit 17a determines in step ST41a of FIG. 14 whether or not the target presence/absence determination unit 19 has determined that a pedestrian is estimated to exist in the direction the driver is facing (step ST41a). ST114).
 ステップST114にて、対象有無判定部19によって、運転者が向いている方向に歩行者が存在していると推定されると判定された、と判定した場合(ステップST114の“YES”の場合)、照射範囲決定部17aは、運転者が向いている方向(左方向または右方向)における照射範囲について、例えば、上下方向は歩行者の首よりも下とみなす範囲とし、左右方向は運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまでの範囲を、照射範囲に決定する(ステップST115)。なお、照射範囲決定部17aは、正面方向については、上下方向はカットオフラインを維持し、言い換えれば、カットオフラインよりも上方を含まず当該カットオフラインよりも下方とし、左右方向は正面方向範囲とする範囲を、照射範囲に決定する。
 そして、照射範囲決定部17aは、照射範囲情報を、ヘッドライト制御部18に出力する。
When it is determined in step ST114 that the object presence/absence determination unit 19 has determined that a pedestrian is estimated to exist in the direction the driver is facing (in the case of "YES" in step ST114). , the irradiation range determination unit 17a determines the irradiation range in the direction in which the driver is facing (left direction or right direction). The range from the orientation to the angle minus or plus a predetermined angle is determined as the irradiation range (step ST115). In addition, the irradiation range determination unit 17a maintains the cutoff line in the vertical direction in the front direction. Determine the range to be the illumination range.
Then, the irradiation range determination unit 17 a outputs the irradiation range information to the headlight control unit 18 .
 このように、ヘッドライト制御装置1aは、運転者が左方向または右方向を向いており、運転者が向いている方向に障害物はないと推定されると判定し、かつ、運転者が向いている方向に歩行者が存在していると推定されると判定した場合は、運転者が向いている方向において、歩行者の首よりも下とみなす範囲を照射範囲に決定する。詳細には、ヘッドライト制御装置1aは、運転者が向いている方向において、上下方向の範囲を歩行者の首の位置よりも下とみなす範囲とし、左右方向の範囲を運転者の向きから所定の角度だけプラスまたはマイナスした角度までの範囲とする範囲を、照射範囲に決定する。 In this way, the headlight control device 1a determines that it is estimated that the driver is facing leftward or rightward and that there is no obstacle in the direction that the driver is facing. When it is determined that a pedestrian is estimated to be present in the direction the driver is facing, the range assumed to be below the neck of the pedestrian in the direction the driver is facing is determined as the irradiation range. Specifically, the headlight control device 1a sets the vertical range to be below the pedestrian's neck in the direction the driver is facing, and sets the horizontal range to a predetermined range from the driver's direction. The irradiation range is determined as the range up to the angle plus or minus the angle of .
 運転者が左方向または右方向を向いている場合であって、運転者が向いている方向に障害物はないと推定される場合、仮に、運転者が向いている方向に歩行者がいたとしても、当該歩行者の足元のみに光が照射される程度の下方の範囲に光が照射されるようになっていれば、運転者は歩行者を認識できる。
 とはいえ、運転者が向いている方向において、歩行者が存在すると推定されるのであれば、できるだけ上下方向に広範囲に光が照射されていたほうが、運転者は歩行者をより視認しやすくなる。
 一方で、際限なく上下方向に光の照射範囲を広げると、歩行者にグレアを与えてしまう可能性がある。
When the driver is facing left or right and it is estimated that there is no obstacle in the direction the driver is facing, even if there is a pedestrian in the direction the driver is facing Also, the driver can recognize the pedestrian if the light is emitted to a lower range to the extent that the light is emitted only to the foot of the pedestrian.
However, if it is estimated that there are pedestrians in the direction the driver is facing, it is easier for the driver to see the pedestrians if the light is emitted as widely as possible in the vertical direction. .
On the other hand, if the irradiation range of light is expanded in the vertical direction without limit, there is a possibility that glare will be given to pedestrians.
 実施の形態2に係るヘッドライト制御装置1aは、上述のとおり、運転者が左方向または右方向を向いており、運転者が向いている方向に障害物はないと推定されると判定し、かつ、運転者が向いている方向に歩行者が存在していると推定されると判定した場合は、運転者が向いている方向において、歩行者の首よりも下とみなす範囲を照射範囲に決定する。
 そのため、ヘッドライト制御装置1aは、運転者が向いている方向におけるヘッドライト2の点灯制御において、運転者に対して、運転者が向いている方向における視認性をより向上させることができるとともに、運転者が向いている方向に存在し得る歩行者に対しては、グレアを生じさせ難くできる。
 なお、運転者が向いている方向に障害物はないと推定される場合、歩行者が障害物によって隠されている可能性が低いため、歩行者に対し、当該歩行者の首から下の範囲のみに光が照射されるようになっていても、運転者は、歩行者をじゅうぶんに視認できると想定される。
As described above, the headlight control device 1a according to Embodiment 2 determines that the driver is facing left or right, and that it is estimated that there is no obstacle in the direction the driver is facing. In addition, if it is determined that there is a pedestrian in the direction the driver is facing, the area that is considered to be below the pedestrian's neck in the direction the driver is facing is set as the irradiation range. decide.
Therefore, the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur for pedestrians who may be present in the direction the driver is facing.
If it is estimated that there are no obstacles in the direction the driver is facing, the possibility that the pedestrian is hidden by the obstacle is low. It is assumed that the driver can sufficiently see the pedestrian even if the light is projected only on the vehicle.
 実施の形態2に係るヘッドライト制御装置1aのハードウェア構成は、実施の形態1において図12Aおよび図12Bを用いて説明したヘッドライト制御装置1のハードウェア構成と同様であるため、図示を省略する。
 実施の形態2において、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19の機能は、処理回路1001により実現される。すなわち、ヘッドライト制御装置1aは、撮像装置3から取得した撮像画像に基づいて検出した運転者の向きと、当該撮像画像に基づいて判定した乗員の向きと、障害物検知センサ4から取得した距離データに基づいて判定した乗員が向いている方向に障害物があると推定されるか否かの判定結果とに基づき、ヘッドライト2の点灯制御を行うための処理回路1001を備える。
The hardware configuration of the headlight control device 1a according to the second embodiment is the same as the hardware configuration of the headlight control device 1 described with reference to FIGS. 12A and 12B in the first embodiment, so illustration is omitted. do.
In the second embodiment, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit Functions of the unit 17 a , the headlight control unit 18 , and the target presence/absence determination unit 19 are realized by the processing circuit 1001 . That is, the headlight control device 1a detects the orientation of the driver based on the captured image acquired from the imaging device 3, the orientation of the passenger determined based on the captured image, and the distance acquired from the obstacle detection sensor 4. A processing circuit 1001 is provided for performing lighting control of the headlights 2 based on the determination result of whether or not it is estimated that there is an obstacle in the direction in which the occupant is facing, which is determined based on the data.
 処理回路1001は、メモリ1005に記憶されたプログラムを読み出して実行することにより、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19の機能を実行する。すなわち、ヘッドライト制御装置1aは、処理回路1001により実行されるときに、上述の図14のステップST1a~ステップST6aが結果的に実行されることになるプログラムを格納するためのメモリ1005を備える。また、メモリ1005に記憶されたプログラムは、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19の処理の手順または方法をコンピュータに実行させるものであるともいえる。
 ヘッドライト制御装置1aは、ヘッドライト2、撮像装置3、または、障害物検知センサ4等の装置と、有線通信または無線通信を行う入力インタフェース装置1002および出力インタフェース装置1003を備える。
The processing circuit 1001 reads out and executes the programs stored in the memory 1005, thereby controlling the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, the orientation detection unit 14, and the orientation determination unit. 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17a, a headlight control unit 18, and a target presence/absence determination unit 19 are executed. That is, the headlight control device 1a includes a memory 1005 for storing a program that, when executed by the processing circuit 1001, results in the execution of steps ST1a to ST6a of FIG. 14 described above. The programs stored in the memory 1005 include a headlight determination unit 11, a driving location determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, and an obstacle presence/absence determination unit 16. It can also be said that a computer is made to execute the procedures or methods of the processes of the irradiation range determination unit 17a, the headlight control unit 18, and the target presence/absence determination unit 19. FIG.
The headlight control device 1a includes devices such as the headlight 2, the imaging device 3, or the obstacle detection sensor 4, and an input interface device 1002 and an output interface device 1003 that perform wired or wireless communication.
 以上の実施の形態2では、照射範囲決定部17aは、運転者が左方向または右方向を向いている場合、照射範囲における左右方向の範囲について、正面方向範囲に加えて運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまでの範囲とした。しかし、これは一例に過ぎない。照射範囲決定部17aは、例えば、正面方向範囲を、運転者の向きから所定の角度だけマイナスまたはプラスした角度となるまで水平左右方向にスイブルさせ、スイブルさせた後の範囲を、照射範囲の左右方向の範囲としてもよい。 In the second embodiment described above, when the driver is facing leftward or rightward, the irradiation range determination unit 17a determines the left-right direction range in the irradiation range in addition to the frontal direction range. The range is set to the angle minus or plus the angle of . However, this is only an example. The irradiation range determining unit 17a, for example, swivels the frontal direction range in the horizontal left-right direction until it becomes an angle minus or plus a predetermined angle from the direction of the driver, and shifts the range after swiveling to the left and right of the irradiation range. It may be a range of directions.
 また、以上の実施の形態2では、ヘッドライト制御装置1aはヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13を備えていたが、これは一例に過ぎない。例えば、ヘッドライト制御装置1aは、ヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13を備えず、ヘッドライト判定部11、走行場所判定部12、および、制御開始判定部13の機能は、ヘッドライト制御装置1aの外部においてヘッドライト制御装置1と接続されている装置に備えられてもよい。この場合、ヘッドライト制御装置1aは、外部の装置から制御開始指示が出力されると、運転者が向いている方向に基づくヘッドライト2の点灯制御を行う。
 なお、この場合、図14のフローチャートを用いて説明したヘッドライト制御装置1aの動作は、ステップST1aの処理を省略できる。
Further, in the second embodiment described above, the headlight control device 1a includes the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, but this is merely an example. For example, the headlight control device 1a does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit 13, and does not include the headlight determination unit 11, the driving location determination unit 12, and the control start determination unit. The function 13 may be provided in a device connected to the headlight control device 1 outside the headlight control device 1a. In this case, when a control start instruction is output from an external device, the headlight control device 1a performs lighting control of the headlights 2 based on the direction in which the driver is facing.
In this case, the operation of the headlight control device 1a described with reference to the flowchart of FIG. 14 can omit the processing of step ST1a.
 また、以上の実施の形態2では、運転者が視認すべき対象とは、歩行者を想定していたが、これは一例に過ぎない。以上の実施の形態1において、運転者が視認すべき対象は、歩行者の他、例えば、スケートボードで移動している人、ローラースケートを履いた人、ベビーカーに乗って移動している子供等であってもよい。
 対象有無判定部19は、障害物有無判定部16が、運転者が向いている方向に障害物はないと推定されると判定した場合に、向き検出部14が検出した運転者の向きと距離データとに基づいて、運転者が向いている方向に運転者が視認すべき対象が存在していると推定されるか否かを判定する。照射範囲決定部17aは、対象有無判定部19が、運転者が視認すべき対象が存在していると推定されると判定した場合は、運転者が向いている方向において、対象にグレアを与えないと推定される高さよりも下方の範囲を照射範囲に決定する。
対象有無判定部19が、運転者が視認すべき対象が存在していると推定されると判定した場合は、運転者が向いている方向において、当該対象にグレアを与えないと推定される高さよりも下方の範囲を照射範囲に決定すればよい。詳細には、照射範囲決定部17aは、運転者が向いている方向において、上下方向の範囲を運転者が視認すべき対象にグレアを与えないと推定される高さよりも下方の範囲とし、左右方向の範囲を運転者の向きから所定の角度だけプラスまたはマイナスした角度までの範囲とする範囲を、照射範囲に決定する。
 なお、どれぐらいの高さがグレアを与えないと推定される高さであるかは、運転者が視認すべき対象に応じて、予め設定されている。
Also, in the above-described second embodiment, the object to be visually recognized by the driver is assumed to be a pedestrian, but this is only an example. In the first embodiment described above, objects to be visually recognized by the driver include, in addition to pedestrians, people moving on skateboards, people wearing roller skates, children moving in strollers, and the like. may be
When the obstacle presence/absence determination unit 16 determines that it is estimated that there is no obstacle in the direction in which the driver is facing, the object presence/absence determination unit 19 determines the direction and distance of the driver detected by the direction detection unit 14. Based on the data, it is determined whether or not it is estimated that an object to be visually recognized by the driver exists in the direction the driver is facing. When the target presence/absence determination unit 19 determines that an object to be visually recognized by the driver is estimated to exist, the irradiation range determination unit 17a applies glare to the target in the direction the driver is facing. The irradiation range is determined as the range below the height that is estimated to be non-existent.
When the object presence/absence determination unit 19 determines that it is estimated that there is an object to be visually recognized by the driver, a high light level that is estimated not to give glare to the object in the direction the driver is facing is set. A range below the height may be determined as the irradiation range. Specifically, the irradiation range determination unit 17a sets the vertical range in the direction in which the driver is facing to a range lower than the height estimated not to give glare to the target to be visually recognized by the driver. The irradiation range is determined as the range of directions from the direction of the driver to an angle obtained by adding or subtracting a predetermined angle.
It should be noted that the height at which it is estimated that glare does not occur is set in advance according to the object to be visually recognized by the driver.
 また、以上の実施の形態2では、ヘッドライト制御装置1aは、車両100aに搭載される車載装置とし、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19は、車載装置に備えられているものとした。これに限らず、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19のうち、一部が車両100aの車載装置に備えられるものとし、その他が当該車載装置とネットワークを介して接続されるサーバに備えられてもよい。また、ヘッドライト判定部11と、走行場所判定部12と、制御開始判定部13と、向き検出部14と、向き判定部15と、障害物有無判定部16と、照射範囲決定部17aと、ヘッドライト制御部18と、対象有無判定部19の全部がサーバに備えられてもよい。 In the second embodiment described above, the headlight control device 1a is an in-vehicle device mounted on the vehicle 100a, and includes the headlight determination unit 11, the driving location determination unit 12, the control start determination unit 13, and the direction detection unit. The unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, the irradiation range determination unit 17a, the headlight control unit 18, and the target presence/absence determination unit 19 are provided in the vehicle-mounted device. Not limited to this, the headlight determination unit 11, the driving place determination unit 12, the control start determination unit 13, the orientation detection unit 14, the orientation determination unit 15, the obstacle presence/absence determination unit 16, and the irradiation range determination unit 17a, the headlight control unit 18, and the target presence/absence determination unit 19, some of which are provided in the in-vehicle device of the vehicle 100a, and the others are provided in a server connected to the in-vehicle device via a network. good too. In addition, a headlight determination unit 11, a driving place determination unit 12, a control start determination unit 13, an orientation detection unit 14, an orientation determination unit 15, an obstacle presence/absence determination unit 16, an irradiation range determination unit 17a, All of the headlight control unit 18 and the target presence/absence determination unit 19 may be provided in the server.
 以上のように、実施の形態2によれば、ヘッドライト制御装置1aは、車両100aの運転者が撮像された撮像画像に基づき、運転者の向きを検出する向き検出部14と、向き検出部14が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する向き判定部15と、向き判定部15が、運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、物体を検出するセンサ(障害物検知センサ4)によって測定された、車外における物体までの距離に関する距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する障害物有無判定部16と、向き検出部14が検出した運転者の向きと、向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果に基づき、車両100aに設けられているヘッドライト2による光の照射範囲を決定する照射範囲決定部17aと、ヘッドライト2に対して、照射範囲決定部17aが決定した照射範囲に光を照射させるヘッドライト制御部18と、障害物有無判定部16が、運転者が向いている方向に障害物はないと推定されると判定した場合に、向き検出部14が検出した運転者の向きと距離データとに基づいて、運転者が向いている方向に運転者が視認すべき対象が存在していると推定されるか否かを判定する対象有無判定部19を備え、照射範囲決定部17aは、対象有無判定部19が、運転者が視認すべき対象が存在していると推定されると判定した場合は、運転者が向いている方向において、運転者が視認すべき対象にグレアを与えないと推定される高さよりも下方の範囲を照射範囲に決定するように構成した。そのため、ヘッドライト制御装置1aは、運転者が向いている方向におけるヘッドライト2の点灯制御において、運転者に対して、運転者が向いている方向における視認性をより向上させることができるとともに、運転者が向いている方向に存在し得る運転者が視認すべき対象等に対しては、グレアを生じさせ難くできる。 As described above, according to the second embodiment, the headlight control device 1a includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100a, and the orientation detection unit A direction determination unit 15 for determining whether the driver is facing left or right based on the direction of the driver detected by 14, and the direction determination unit 15 determines whether the driver is facing left or right. If it is determined that, based on the direction of the driver detected by the direction detection unit 14 and the distance data regarding the distance to the object outside the vehicle measured by the sensor (obstacle detection sensor 4) that detects the object, An obstacle presence/absence determination unit 16 that determines whether or not it is estimated that there is an obstacle in the direction the driver is facing; Based on the determination result of whether the driver is facing leftward or rightward, and the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16, An irradiation range determination unit 17a that determines the irradiation range of light from the headlights 2 provided in the vehicle 100a, and headlight control that causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17a. When the unit 18 and the obstacle presence/absence determination unit 16 determine that it is estimated that there is no obstacle in the direction the driver is facing, the direction of the driver detected by the direction detection unit 14 and the distance data Based on this, a target presence/absence determination unit 19 is provided for determining whether or not it is estimated that a target to be visually recognized by the driver exists in the direction the driver is facing. When the determining unit 19 determines that it is estimated that an object to be visually recognized by the driver exists, it is estimated that glare is not given to the object to be visually recognized by the driver in the direction in which the driver is facing. The irradiation range is determined to be the range below the height where the light is projected. Therefore, the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur with respect to objects to be visually recognized by the driver that may exist in the direction the driver is facing.
 また、実施の形態2によれば、ヘッドライト制御装置1aは、車両100aの運転者が撮像された撮像画像に基づき、運転者の向きを検出する向き検出部14と、向き検出部14が検出した運転者の向きに基づき、運転者は左方向または右方向を向いているかを判定する向き判定部15と、向き判定部15が、運転者は左方向または右方向を向いていると判定した場合、向き検出部14が検出した運転者の向きと、物体を検出するセンサ(障害物検知センサ4)によって測定された、車外における物体までの距離に関する距離データとに基づいて、運転者が向いている方向に障害物があると推定されるか否かを判定する障害物有無判定部16と、向き検出部14が検出した運転者の向きと、向き判定部15が判定した運転者は左方向または右方向を向いているかの判定結果と、障害物有無判定部16が判定した運転者が向いている方向に障害物があると推定されるか否かの判定結果に基づき、車両100aに設けられているヘッドライト2による光の照射範囲を決定する照射範囲決定部17aと、ヘッドライト2に対して、照射範囲決定部17aが決定した照射範囲に光を照射させるヘッドライト制御部18と、障害物有無判定部16が、運転者が向いている方向に障害物はないと推定されると判定した場合に、向き検出部14が検出した運転者の向きと距離データとに基づいて、運転者が向いている方向に歩行者が存在していると推定されるか否かを判定する対象有無判定部19を備え、照射範囲決定部17aは、対象有無判定部19が、歩行者が存在していると推定されると判定した場合は、運転者が向いている方向において、歩行者の首よりも下とみなす範囲を照射範囲に決定するように構成した。そのため、ヘッドライト制御装置1aは、運転者が向いている方向におけるヘッドライト2の点灯制御において、運転者に対して、運転者が向いている方向における視認性をより向上させることができるとともに、運転者が向いている方向に存在し得る運転者が視認すべき対象等に対しては、グレアを生じさせ難くできる。 Further, according to the second embodiment, the headlight control device 1a includes the orientation detection unit 14 that detects the orientation of the driver based on the captured image of the driver of the vehicle 100a, and the orientation detection unit 14 detects the orientation of the driver. A direction determining unit 15 for determining whether the driver is facing leftward or rightward based on the direction of the driver, and the direction determining unit 15 determines that the driver is facing leftward or rightward. In this case, based on the orientation of the driver detected by the orientation detection unit 14 and the distance data regarding the distance to the object outside the vehicle measured by the sensor that detects the object (obstacle detection sensor 4), the orientation of the driver is determined. The obstacle presence/absence determination unit 16 determines whether or not it is estimated that there is an obstacle in the direction in which the driver is pointing, the direction of the driver detected by the direction detection unit 14, and the direction of the driver determined by the direction determination unit 15 is left Based on the determination result of whether the driver is facing the direction or the right direction and the determination result of whether or not it is estimated that there is an obstacle in the direction the driver is facing determined by the obstacle presence/absence determination unit 16, the vehicle 100a An irradiation range determination unit 17a that determines the irradiation range of light by the provided headlights 2, and a headlight control unit 18 that causes the headlights 2 to irradiate the irradiation range determined by the irradiation range determination unit 17a. , when the obstacle presence/absence determination unit 16 determines that it is estimated that there is no obstacle in the direction in which the driver is facing, based on the direction of the driver and the distance data detected by the direction detection unit 14, A target presence/absence determination unit 19 is provided for determining whether or not it is estimated that a pedestrian exists in the direction the driver is facing. When it is determined that it is estimated to exist, the irradiation range is determined to be a range that is considered to be below the pedestrian's neck in the direction the driver is facing. Therefore, the headlight control device 1a can improve the visibility of the driver in the direction in which the driver is facing in lighting control of the headlights 2 in the direction in which the driver is facing. It is possible to make glare less likely to occur with respect to objects to be visually recognized by the driver that may exist in the direction the driver is facing.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
 本開示に係るヘッドライト制御装置は、運転者が向いている方向に基づくヘッドライトの点灯制御において、運転者が向いている方向の状況を考慮した点灯制御ができる。 The headlight control device according to the present disclosure can control the lighting of the headlights based on the direction in which the driver is facing, in consideration of the direction in which the driver is facing.
 1,1a ヘッドライト制御装置、11 ヘッドライト判定部、12 走行場所判定部、13 制御開始判定部、14 向き検出部、15 向き判定部、16 障害物有無判定部、17,17a 照射範囲決定部、18 ヘッドライト制御部、19 対象有無判定部、2 ヘッドライト、21 左ライト、22 右ライト、211,221 ハイビームユニット、212,222 ロービームユニット、213,223 補助光ユニット、3 撮像装置、4 障害物検知センサ、1001 処理回路、1002 入力インタフェース装置、1003 出力インタフェース装置、1004 プロセッサ、1005 メモリ。 1, 1a Headlight control device, 11 Headlight determination unit, 12 Driving location determination unit, 13 Control start determination unit, 14 Orientation detection unit, 15 Orientation determination unit, 16 Obstacle presence/absence determination unit, 17, 17a Irradiation range determination unit , 18 headlight control unit, 19 target presence/absence determination unit, 2 headlight, 21 left light, 22 right light, 211, 221 high beam unit, 212, 222 low beam unit, 213, 223 auxiliary light unit, 3 imaging device, 4 failure Object detection sensor, 1001 processing circuit, 1002 input interface device, 1003 output interface device, 1004 processor, 1005 memory.

Claims (8)

  1.  車両の運転者が撮像された撮像画像に基づき、前記運転者の向きを検出する向き検出部と、
     前記向き検出部が検出した前記運転者の向きに基づき、前記運転者は左方向または右方向を向いているかを判定する向き判定部と、
     前記向き判定部が、前記運転者は左方向または右方向を向いていると判定した場合、前記向き検出部が検出した前記運転者の向きと、物体を検出するセンサによって測定された、車外における前記物体までの距離に関する距離データとに基づいて、前記運転者が向いている方向に障害物があると推定されるか否かを判定する障害物有無判定部と、
     前記向き検出部が検出した前記運転者の向きと、前記向き判定部が判定した前記運転者は左方向または右方向を向いているかの判定結果と、前記障害物有無判定部が判定した前記運転者が向いている方向に前記障害物があると推定されるか否かの判定結果とに基づき、前記車両に設けられているヘッドライトによる光の照射範囲を決定する照射範囲決定部と、
     前記ヘッドライトに対して、前記照射範囲決定部が決定した前記照射範囲に前記光を照射させるヘッドライト制御部
     とを備えたヘッドライト制御装置。
    an orientation detection unit that detects the orientation of the driver based on an image of the driver of the vehicle;
    an orientation determination unit that determines whether the driver is facing left or right based on the orientation of the driver detected by the orientation detection unit;
    When the direction determination unit determines that the driver is facing leftward or rightward, the direction of the driver detected by the direction detection unit and the direction outside the vehicle measured by a sensor that detects an object an obstacle presence/absence determination unit that determines whether or not an obstacle is estimated to be present in the direction the driver is facing, based on distance data relating to the distance to the object;
    The direction of the driver detected by the direction detection unit, the determination result of whether the driver is facing leftward or rightward determined by the direction determination unit, and the driving determined by the obstacle presence/absence determination unit an irradiation range determination unit that determines an irradiation range of light from the headlights provided on the vehicle based on a determination result as to whether or not it is estimated that the obstacle is present in the direction in which the person is facing;
    and a headlight control unit that causes the headlight to irradiate the light to the irradiation range determined by the irradiation range determining unit.
  2.  前記照射範囲決定部は、
     前記向き判定部が前記運転者は左方向または右方向を向いていると判定し、かつ、前記障害物有無判定部が、前記運転者が向いている方向に前記障害物があると推定されると判定した場合は、前記運転者が向いている方向においてカットオフラインよりも上方を含む範囲を前記ヘッドライトによる前記光の前記照射範囲に決定し、前記向き判定部が前記運転者は左方向または右方向を向いていると判定し、かつ、前記障害物有無判定部が、前記運転者が向いている方向に前記障害物はないと推定されると判定した場合は、前記運転者が向いている方向において前記カットオフラインよりも上方を含まず前記カットオフラインよりも下方となる範囲を前記ヘッドライトによる前記光の前記照射範囲に決定する
     ことを特徴とする請求項1記載のヘッドライト制御装置。
    The irradiation range determination unit,
    The orientation determining unit determines that the driver is facing leftward or rightward, and the obstacle presence/absence determining unit estimates that the obstacle is in the direction the driver is facing. If it is determined that the direction in which the driver is facing, the range including above the cutoff line in the direction in which the driver is facing is determined as the irradiation range of the light by the headlights, and the direction determination unit determines whether the driver is facing leftward or When it is determined that the driver is facing to the right and the obstacle presence/absence determining unit determines that the obstacle is not present in the direction in which the driver is facing, 2. The headlight control device according to claim 1, wherein the irradiation range of the light from the headlight is determined as a range that does not include an area above the cutoff line but is below the cutoff line.
  3.  前記障害物有無判定部が、前記運転者が向いている方向に前記障害物はないと推定されると判定した場合に、前記向き検出部が検出した前記運転者の向きと前記距離データとに基づいて、前記運転者が向いている方向に前記運転者が視認すべき対象が存在していると推定されるか否かを判定する対象有無判定部を備え、
     前記照射範囲決定部は、前記対象有無判定部が、前記運転者が視認すべき対象が存在していると推定されると判定した場合は、前記運転者が向いている方向において、前記運転者が視認すべき対象にグレアを与えないと推定される高さよりも下方の範囲を前記照射範囲に決定する
     ことを特徴とする請求項2記載のヘッドライト制御装置。
    When the obstacle presence/absence determination unit determines that it is estimated that there is no obstacle in the direction the driver is facing, the direction of the driver detected by the direction detection unit and the distance data an object presence/absence determination unit that determines whether or not an object to be visually recognized by the driver is estimated to exist in the direction the driver is facing,
    When the target presence/absence determining unit determines that an object to be visually recognized by the driver is estimated to exist, the irradiation range determining unit determines that the driver is directed in the direction the driver is facing. 3. The headlight control device according to claim 2, wherein the irradiation range is determined as a range lower than a height estimated not to give glare to an object to be visually recognized.
  4.  前記運転者が視認すべき対象は歩行者であり、
     前記対象有無判定部は、前記障害物有無判定部が、前記運転者が向いている方向に前記障害物はないと推定されると判定した場合に、前記向き検出部が検出した前記運転者の向きと前記距離データとに基づいて、前記運転者が向いている方向に前記歩行者が存在していると推定されるか否かを判定し、
     前記照射範囲決定部は、前記対象有無判定部が、前記歩行者が存在していると推定されると判定した場合は、前記運転者が向いている方向において、前記歩行者の首よりも下とみなす範囲を前記照射範囲に決定する
     ことを特徴とする請求項3記載のヘッドライト制御装置。
    The object to be visually recognized by the driver is a pedestrian,
    When the obstacle presence/absence determination unit determines that it is estimated that the obstacle is not present in the direction in which the driver is facing, the object presence/absence determination unit determines whether the driver detected by the direction detection unit determining whether it is estimated that the pedestrian is present in the direction the driver is facing based on the orientation and the distance data;
    When the target presence/absence determination unit determines that the pedestrian is estimated to be present, the irradiation range determination unit determines that the illumination range is below the neck of the pedestrian in the direction the driver is facing. 4. The headlight control device according to claim 3, wherein the irradiation range is determined as the range considered to be the irradiation range.
  5.  前記向き判定部は、
     前記向き検出部が検出した前記運転者の向きが、前記車両が走行している車線の右端を向いた場合の向きよりも右を向いている場合、前記運転者は右方向を向いていると判定し、
     前記運転者の向きが、前記車両が走行している前記車線の左端を向いた場合の向きよりも左を向いている場合、前記運転者は左方向を向いていると判定する
     ことを特徴とする請求項1記載のヘッドライト制御装置。
    The orientation determination unit
    When the direction of the driver detected by the direction detection unit is more right than the direction when the vehicle is facing the right end of the lane in which the vehicle is traveling, it is determined that the driver is facing the right direction. judge,
    determining that the driver is facing to the left when the driver is facing to the left rather than facing the left end of the lane in which the vehicle is traveling. The headlight control device according to claim 1.
  6.  前記ヘッドライトはロービームユニット、ハイビームユニット、および、補助光ユニットで構成され、
     前記ヘッドライト制御部は、前記ロービームユニットを構成する複数の光源、前記ハイビームユニットを構成する複数の前記光源、または、前記補助光ユニットを構成する複数の前記光源の光軸の向きを調整することで、前記照射範囲に光を照射させる
     ことを特徴とする請求項1記載のヘッドライト制御装置。
    The headlight is composed of a low beam unit, a high beam unit, and an auxiliary light unit,
    The headlight control unit adjusts directions of optical axes of the plurality of light sources constituting the low beam unit, the plurality of light sources constituting the high beam unit, or the plurality of light sources constituting the auxiliary light unit. 2. The headlight control device according to claim 1, wherein the irradiation range is irradiated with light.
  7.  前記ヘッドライトはロービームユニット、ハイビームユニット、および、補助光ユニットで構成され、
     前記ヘッドライト制御部は、前記ロービームユニットを構成しアレイ状に配置されて前記車両の前方に前記光を照射する複数の光源、前記ハイビームユニットを構成しアレイ状に配置されて前記車両の前方に前記光を照射する複数の前記光源、または、前記補助光ユニットを構成しアレイ状に配置されて前記車両の前方に前記光を照射する複数の前記光源のうち、前記光を照射させる前記光源を調整することで、前記照射範囲に光を照射させる
     ことを特徴とする請求項1記載のヘッドライト制御装置。
    The headlight is composed of a low beam unit, a high beam unit, and an auxiliary light unit,
    The headlight control unit includes a plurality of light sources that constitute the low beam unit and are arranged in an array to irradiate the light in front of the vehicle, and a plurality of light sources that constitute the high beam unit and are arranged in an array in front of the vehicle. Among the plurality of light sources that irradiate the light, or the plurality of light sources that constitute the auxiliary light unit and are arranged in an array to irradiate the light in front of the vehicle, the light source that irradiates the light is selected. 2. The headlight control device according to claim 1, wherein the adjustment is performed to irradiate the irradiation range with light.
  8.  向き検出部が、車両の運転者が撮像された撮像画像に基づき、前記運転者の向きを検出するステップと、
     向き判定部が、前記向き検出部が検出した前記運転者の向きに基づき、前記運転者は左方向または右方向を向いているかを判定するステップと、
     障害物有無判定部が、前記向き判定部が、前記運転者は左方向または右方向を向いていると判定した場合、前記向き検出部が検出した前記運転者の向きと、物体を検出するセンサによって測定された、車外における前記物体までの距離に関する距離データとに基づいて、前記運転者が向いている方向に障害物があると推定されるか否かを判定するステップと、
     照射範囲決定部が、前記向き検出部が検出した前記運転者の向きと、前記向き判定部が判定した前記運転者は左方向または右方向を向いているかの判定結果と、前記障害物有無判定部が判定した前記運転者が向いている方向に前記障害物があると推定されるか否かの判定結果とに基づき、前記車両に設けられているヘッドライトによる光の照射範囲を決定するステップと、
     ヘッドライト制御部が、前記ヘッドライトに対して、前記照射範囲決定部が決定した前記照射範囲に前記光を照射させるステップ
     とを備えたヘッドライト制御方法。
    an orientation detection unit detecting the orientation of the driver based on a captured image of the driver of the vehicle;
    a direction determination unit determining whether the driver is facing leftward or rightward based on the direction of the driver detected by the direction detection unit;
    When the orientation determination unit determines that the driver is facing leftward or rightward, the obstacle presence/absence determination unit detects the direction of the driver detected by the direction detection unit and a sensor that detects an object. determining whether it is estimated that there is an obstacle in the direction the driver is facing, based on the distance data on the distance to the object outside the vehicle measured by
    The irradiation range determination unit determines the direction of the driver detected by the direction detection unit, the determination result of whether the driver is facing leftward or rightward determined by the direction determination unit, and the obstacle presence/absence determination. determining the irradiation range of the light from the headlights provided on the vehicle based on the determination result of whether or not the obstacle is estimated to be in the direction the driver is facing, determined by the unit; and,
    A headlight control method comprising: causing the headlight to emit the light to the irradiation range determined by the irradiation range determination section.
PCT/JP2022/009345 2022-03-04 2022-03-04 Headlight control device and headlight control method WO2023166696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024504296A JPWO2023166696A1 (en) 2022-03-04 2022-03-04
PCT/JP2022/009345 WO2023166696A1 (en) 2022-03-04 2022-03-04 Headlight control device and headlight control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009345 WO2023166696A1 (en) 2022-03-04 2022-03-04 Headlight control device and headlight control method

Publications (1)

Publication Number Publication Date
WO2023166696A1 true WO2023166696A1 (en) 2023-09-07

Family

ID=87883389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009345 WO2023166696A1 (en) 2022-03-04 2022-03-04 Headlight control device and headlight control method

Country Status (2)

Country Link
JP (1) JPWO2023166696A1 (en)
WO (1) WO2023166696A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184640A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Headlight device of vehicle
JP2009220631A (en) * 2008-03-13 2009-10-01 Koito Mfg Co Ltd Head lamp device for vehicle
JP2018026206A (en) * 2016-08-08 2018-02-15 市光工業株式会社 Vehicular lighting fixture
JP2021086703A (en) * 2019-11-27 2021-06-03 株式会社小糸製作所 Vehicular lighting fixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184640A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Headlight device of vehicle
JP2009220631A (en) * 2008-03-13 2009-10-01 Koito Mfg Co Ltd Head lamp device for vehicle
JP2018026206A (en) * 2016-08-08 2018-02-15 市光工業株式会社 Vehicular lighting fixture
JP2021086703A (en) * 2019-11-27 2021-06-03 株式会社小糸製作所 Vehicular lighting fixture

Also Published As

Publication number Publication date
JPWO2023166696A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US9527429B2 (en) Method and device for controlling a light emission of at least one headlight of a vehicle
US9126529B2 (en) Method for controlling a light emission of a headlight of a vehicle
JP5363085B2 (en) Headlight control device
JP4458809B2 (en) Method for controlling a light beam emitted from a lighting device of an automobile and a system for implementing this method
US8425092B2 (en) Headlamp control device and vehicle headlamp having headlamp control device
US8892301B2 (en) Apparatus and method for controlling head lamp of vehicle
JP5802659B2 (en) Method for controlling vehicle components
US20140379218A1 (en) Method and device for ascertaining a positionof an object in the surroundings of a vehicle
US20120275172A1 (en) Vehicular headlight apparatus
JP2004189223A (en) System for controlling orientation of head lamp for vehicle and its method
US20140347872A1 (en) Method and device for recognizing an illuminated roadway ahead of a vehicle
JP2012006482A (en) Control device, vehicle headlamp system, vehicle lighting fixture
US11400857B2 (en) Method for operating a high-beam assistance system of a motor vehicle
JP2020069969A (en) Vehicle control system
WO2023166696A1 (en) Headlight control device and headlight control method
JP2023506519A (en) Method for controlling lighting system of motor vehicle
JP5531919B2 (en) Headlight control device
US11794636B2 (en) Headlamp and headlamp control system
JP2021056075A (en) Driving controller for self-driving vehicles, target for stopping, and driving control system
WO2022049648A1 (en) Light distribution control device, light distribution control method, and light distribution control program
JP5533763B2 (en) In-vehicle radar system
WO2024047777A1 (en) Headlight control device and headlight control method
JP7378673B2 (en) Headlight control device, headlight control system, and headlight control method
WO2024057376A1 (en) Headlight control device and headlight control method
WO2024053007A1 (en) Driving assistance device and driving assistance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024504296

Country of ref document: JP