WO2022049648A1 - Light distribution control device, light distribution control method, and light distribution control program - Google Patents

Light distribution control device, light distribution control method, and light distribution control program Download PDF

Info

Publication number
WO2022049648A1
WO2022049648A1 PCT/JP2020/033156 JP2020033156W WO2022049648A1 WO 2022049648 A1 WO2022049648 A1 WO 2022049648A1 JP 2020033156 W JP2020033156 W JP 2020033156W WO 2022049648 A1 WO2022049648 A1 WO 2022049648A1
Authority
WO
WIPO (PCT)
Prior art keywords
light distribution
lane
distribution pattern
vehicle
driver
Prior art date
Application number
PCT/JP2020/033156
Other languages
French (fr)
Japanese (ja)
Inventor
政明 武安
啓輔 五十嵐
崇博 関
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/033156 priority Critical patent/WO2022049648A1/en
Priority to JP2021501353A priority patent/JP6929481B1/en
Publication of WO2022049648A1 publication Critical patent/WO2022049648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights

Definitions

  • This disclosure relates to the control of the light distribution of the headlights of the vehicle.
  • Visibility during night driving is greatly affected by the driving environment. For example, on a wet road surface in which rainwater is accumulated in asphalt, the reflectance of the road surface increases. Therefore, the amount of light that is specularly reflected from the road surface increases, and the amount of light that returns to the driver side decreases. As a result, glare to other vehicles due to an increase in specularly reflected light and a decrease in visibility due to a decrease in light returning to the driver side occur. In particular, as a puddle is generated and the road surface becomes dark, the visibility of the lane is lowered, and it becomes difficult for the driver to recognize the alignment of the lane. In addition, when the surroundings of the vehicle are dark and it is difficult to distinguish utility poles, delineators, and other roadside installations near the roadside, the driver's ability to recognize the alignment of the lane is reduced.
  • Patent Document 1 when a weather discriminating means capable of discriminating a bad weather condition (any one of rainfall, snowfall, and snowfall) and a weather discriminating means discriminating a bad weather condition, the irradiation range is set to a normal time.
  • a vehicle headlight device comprising a light distribution control means for narrowing the light distribution. Further, Patent Document 1 discloses that a vehicle headlight device prevents dazzling due to reflected light from the periphery of a region to be watched by the driver and reduces the burden on the driver.
  • the vehicle headlight device of Patent Document 1 narrows the irradiation range compared to the normal time in bad weather conditions. However, it may be difficult for the driver to recognize the lane alignment in bad weather conditions. Further, even if the irradiation range is narrowed, it is not always possible to obtain a light distribution that makes it easy for the driver to recognize the alignment of the lane.
  • the present disclosure is based on the above, and its main purpose is to realize a light distribution that makes it easy for the driver to recognize the lane alignment when it is difficult for the driver to recognize the lane alignment.
  • FIG. 1 The figure which shows the structural example of the vehicle which concerns on Embodiment 1.
  • FIG. 1 The figure which shows the structural example of the light distribution control apparatus which concerns on Embodiment 1.
  • FIG. The flowchart which shows the operation example of the light distribution control apparatus which concerns on Embodiment 1.
  • the flowchart which shows the example of the state determination process and the light distribution pattern selection process which concerns on Embodiment 1.
  • FIG. The figure which shows the example of the normal light distribution and the example of a lane-enhanced light distribution which concerns on Embodiment 1.
  • FIG. The flowchart which shows the example of the surrounding environment determination processing which concerns on Embodiment 1.
  • FIG. 1 shows a configuration example of the vehicle 10 according to the present embodiment. Note that FIG. 1 shows only the elements necessary for explaining the present embodiment. That is, the vehicle 10 includes an engine, a transmission, a brake, and the like, but these are not necessary for the description of the present embodiment, and thus are not shown in FIG.
  • the vehicle 10 includes a light distribution control device 100, a headlight (left) 110, a headlight (right) 120, a sensor group 130, a high-precision locator 141, a map database 142, and a driver monitoring device 143. , External communication device 144, integrated control device 150 and HUD 160.
  • the sensor group 130 is one or more sensors.
  • the sensor group 130 includes an in-vehicle camera 131, a radar device 132, a steering angle sensor 133, and a vehicle speed sensor 134.
  • the vehicle-mounted camera 131 photographs the front of the vehicle 10.
  • the light distribution control device 100 analyzes the image in front of the vehicle 10 taken by the in-vehicle camera 131 to determine the type of object in front of the vehicle 10 (vehicle, pedestrian, obstacle (animal, falling object, etc.)).
  • the type of vehicle preceding vehicle, oncoming vehicle), shape (passenger car, truck, etc.), distance and direction between the vehicle 10 and the object can be calculated.
  • the radar device 132 measures the distance between the object existing around the vehicle 10 and the vehicle 10 and the direction in which the object is located.
  • the rudder angle sensor 133 measures the steering direction.
  • the vehicle speed sensor 134 measures the speed of the vehicle 10.
  • the high-precision locator 141 calculates the current position of the vehicle 10 with high accuracy based on the positioning signal from the GNSS (Global Navigation Satellite System) satellite. In the present embodiment, the high-precision locator 141 calculates the absolute position (latitude, longitude) of the vehicle 10.
  • GNSS Global Navigation Satellite System
  • the map database 142 is a medium for storing map information.
  • the map information stored in the map database 142 is a highly accurate map including the position of the lane of the road, the position of the shoulder, the position of the sidewalk, the attribute of the lane (such as the right turn lane), and the information of the sign installed on the road. Information.
  • the driver monitoring device 143 monitors the state of the driver.
  • the driver monitoring device 143 is composed of, for example, an indoor camera, a steering wheel sensor, and a seat sensor.
  • the indoor camera detects the driver's line of sight, face orientation, and posture.
  • the steering wheel sensor detects the driver's heartbeat.
  • the seat sensor detects the pulse.
  • the light distribution control device 100 can estimate the driver's arousal level, concentration level, physical condition, etc. based on the monitoring result of the driver monitoring device 143.
  • the out-of-vehicle communication device 144 communicates with various devices outside the vehicle 10 via the network outside the vehicle 10.
  • the out-of-vehicle communication device 144 communicates with a server device, a roadside device, another vehicle, a diagnostic device used for maintenance and inspection of the vehicle 10, and the like.
  • the light distribution control device 100 can communicate with roadside devices, other vehicles, and the like, and acquire information on obstacles that cannot be detected by the sensor group 130 of the vehicle 10.
  • the HUD 160 is a transmissive display device that displays information superimposed on the field of view in front of the driver.
  • the HUD 160 can display information on the windshield or the like based on the instruction of the integrated control device 150.
  • the headlight (left) 110 and the headlight (right) 120 are lighting devices that illuminate the front of the vehicle 10, and are variable light distribution type headlights capable of selectively irradiating a plurality of divided regions. It is a light.
  • the divided area is divided at least horizontally, and may be divided vertically. Here, the divided area of the headlight is referred to as a “headlight divided area”.
  • the headlight (left) 110 and the headlight (right) 120 include a light source that illuminates a plurality of headlight division areas, and are composed of an LED (Light Emitting Diode) light source, a DMD (Digital Micromirror Device), and the like. Ru.
  • the headlight (left) 110 and the headlight (right) 120 also have a driver device for driving an LED light source or DMD, respectively.
  • FIG. 2 shows a configuration example of the light distribution control device 100.
  • the light distribution control device 100 is a computer. As shown in FIG. 2, the light distribution control device 100 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and a communication interface 904 as hardware. These hardware are connected to each other via a signal line.
  • the processor 901 is an IC (Integrated Circuit) that performs arithmetic processing, and controls other hardware.
  • the processor 901 is a CPU (Central Processing Unit).
  • the auxiliary storage device 903 is a non-volatile storage device.
  • the auxiliary storage device 903 is a ROM (Read Only Memory), an HDD (Hard Disk Drive), and a flash memory.
  • the communication interface 904 is an interface for communicating via the network and is connected to the network.
  • the communication interface 904 is a communication chip or a NIC (Network Interface Card).
  • the light distribution control device 100 includes an information acquisition unit 101, an information analysis unit 102, and a light distribution control unit 103 as functional configurations. These elements are realized by software.
  • the auxiliary storage device 903 stores a light distribution control program that realizes the information acquisition unit 101, the information analysis unit 102, and the light distribution control unit 103.
  • the light distribution control program is loaded from the auxiliary storage device 903 into the main storage device 902. Then, the processor 901 executes the light distribution control program.
  • FIG. 2 schematically shows a state in which the processor 901 is executing the light distribution control program.
  • the vehicle status information acquisition unit 1011 acquires vehicle status information from the network in the vehicle 10.
  • the vehicle state information indicates the state (behavior) of the vehicle.
  • the vehicle peripheral information acquisition unit 1012 acquires vehicle peripheral information from the network in the vehicle 10.
  • the vehicle peripheral information indicates the state (environment) around the vehicle.
  • the driver status information acquisition unit 1013 acquires driver status information from the network in the vehicle 10.
  • the driver status information indicates the driver status (behavior).
  • the information analysis unit 102 is composed of a state determination unit 1021 and a light distribution pattern selection unit 1022.
  • the state determination unit 1021 determines whether or not the current state is a state in which it is difficult for the driver to recognize the alignment of the lane in which the vehicle 10 is traveling.
  • the lane alignment is the shape of the lane in the traveling direction of the vehicle 10. More specifically, it is a shape in the traveling direction of the lateral line of the lane in which the vehicle 10 travels.
  • the lateral line is, for example, a white line on the roadside. Further, when the lane in which the vehicle 10 travels is in contact with another lane in the same traveling direction or the opposite traveling direction on at least one of the left and right, the lateral line also includes a boundary line with the other lane.
  • the state determination unit 1021 analyzes the state of the road surface of the lane based on the vehicle surrounding information and estimates that the road surface of the lane is wet
  • the current state is a state in which it is difficult for the driver to recognize the alignment of the lane. Is determined to be.
  • the state determination unit 1021 analyzes the brightness around the vehicle 10 based on the vehicle surrounding information and estimates that the brightness around the vehicle 10 is insufficient, the driver is in the lane in the current state. It may be determined that it is difficult to recognize the alignment of.
  • the state determination unit 1021 analyzes the driver's state based on the vehicle state information and the driver state information, and when it is estimated that the driver's concentration is insufficient, the current state is the driver's lane alignment. It may be determined that the state is difficult to recognize.
  • the process performed by the state determination unit 1021 corresponds to the state determination process.
  • the light distribution pattern selection unit 1022 is a light distribution pattern that makes it easier for the driver to recognize the lane alignment when the state determination unit 1021 determines that the current state is a state in which it is difficult for the driver to recognize the lane alignment. Select a recognition-enhancing light distribution pattern. That is, the light distribution pattern selection unit 1022 irradiates the outer edge of the lane as a recognition-enhancing light distribution pattern rather than the normal light distribution pattern, which is a light distribution pattern selected when the driver is not in a state where it is difficult to recognize the alignment of the lane. Select a light distribution pattern with many.
  • the light distribution pattern selection unit 1022 selects a light distribution pattern (hereinafter referred to as a lane enhancement pattern) that irradiates the lateral line of the lane more than the normal light distribution pattern as the recognition improvement light distribution pattern. Further, the light distribution pattern selection unit 1022 may select a light distribution pattern (hereinafter referred to as a road shoulder upward emphasis pattern) in which the light distribution pattern that irradiates the upper part of the road shoulder of the lane more than the normal light distribution pattern is selected as the recognition improvement light distribution pattern. be.
  • the process performed by the light distribution pattern selection unit 1022 corresponds to the light distribution pattern selection process.
  • the light distribution control unit 103 includes an irradiation area calculation unit 1031, a light irradiation range calculation unit 1032, and a light distribution information generation unit 1033.
  • the processing performed by the irradiation area calculation unit 1031, the light irradiation range calculation unit 1032, and the light distribution information generation unit 1033 is referred to as a light distribution control process.
  • the irradiation area calculation unit 1031 calculates the irradiation area based on the light distribution pattern selected by the light distribution pattern selection unit 1022.
  • the "irradiation area” is an area to be emphasized by irradiating with light.
  • the light irradiation range calculation unit 1032 calculates the light irradiation range based on the irradiation area calculated by the irradiation area calculation unit 1031.
  • the light distribution information generation unit 1033 determines the brightness and the optical axis control amount of each irradiation area.
  • FIG. 3 shows the flow of operation of the light distribution control device 100 according to the present embodiment.
  • step S11 the information acquisition unit 101 acquires information. More specifically, the vehicle state information acquisition unit 1011 acquires the vehicle state information, the vehicle peripheral information acquisition unit 1012 acquires the vehicle peripheral information, and the driver state information acquisition unit 1013 acquires the driver state information.
  • the vehicle state information is information indicating the state (behavior) of the vehicle.
  • the vehicle state information indicates an input state to the headlight (left) 110 and the headlight (right) 120, the speed of the vehicle 10, the steering angle of the steering wheel, the steering speed of the steering wheel, the position of the vehicle 10, and the like.
  • the vehicle peripheral information is information indicating the environment around the vehicle 10.
  • the vehicle peripheral information includes driving environment information and obstacle information.
  • the traveling environment information is information indicating the traveling environment of the vehicle 10.
  • Driving environment information includes weather, time zone, road signs, road shoulder installations (derinator, guardrail, electric pole, etc.), lane position, surrounding brightness, road attributes (general roads, motorways, etc.), and road surroundings.
  • FIG. 4 shows the details of step S12 (state determination process and light distribution pattern selection process) shown in FIG.
  • the reason why the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S123 of FIG. 4 is as follows.
  • the light distribution pattern selection unit 1022 selects a light distribution pattern (lane enhancement pattern) that irradiates spots so as to increase the road surface illuminance in the vicinity of the lateral line of the lane.
  • the brightness contrast is increased by increasing the brightness of the lateral line portion with respect to the asphalt surface by the light distribution according to the lane enhancement pattern (lane enhancement light distribution).
  • the lateral line can be seen prominently, and the driver's awareness of the lane alignment can be enhanced.
  • the state determination unit 1021 determines the surrounding environment. Specifically, the state determination unit 1021 determines the environment around the vehicle 10 based on the attributes of the traveling road, the attributes around the road, and the brightness of the surroundings shown in the vehicle peripheral information.
  • step S1241 the state determination unit 1021 determines whether or not the vehicle 10 is traveling on the "automobile exclusive road” based on the attributes of the traveling road.
  • step S1242 the state determination unit 1021 determines that the lane alignment is not currently in a difficult state.
  • the process proceeds to step S1243.
  • step S1243 the state determination unit 1021 determines whether or not the vehicle 10 is traveling in the "urban area” based on the attributes around the road.
  • step S1242 the state determination unit 1021 determines that the lane alignment is not currently difficult to recognize.
  • step S1244 the process proceeds to step S1244.
  • step S1244 it is determined whether or not the ambient brightness is equal to or higher than a specified value (for example, the ambient illuminance is 1000 lux or the like).
  • a specified value for example, the ambient illuminance is 1000 lux or the like.
  • the state determination unit 1021 determines that when the vehicle 10 is traveling on a motorway or an urban area, the street light maintains a constant brightness. On the other hand, when the vehicle 10 is not traveling on a motorway or an urban area, it is determined that the brightness is insufficient and it is difficult for the driver to recognize the alignment of the lane. In the example of FIG. 6, the state determination unit 1021 determines in steps S1241 and S1243 whether or not the vehicle 10 is traveling on a motorway or an urban area, but steps S1241 and S1243 may be omitted. That is, the state determination unit 1021 may perform only step S1244 to determine only whether or not the ambient brightness of the vehicle 10 is sufficient.
  • FIG. 7 shows an example of a light distribution according to a normal light distribution pattern and an example of a light distribution according to a road shoulder upward emphasis pattern.
  • FIG. 7A shows an example of a normal light distribution according to a normal light distribution pattern.
  • the normal light distribution in FIG. 7 (a) is the same as the normal light distribution in FIG. 5 (a).
  • FIG. 7B shows an example of the road shoulder upward emphasis light distribution according to the road shoulder upward enhancement pattern.
  • the light distribution above the road shoulder is added as compared with the normal light distribution ((a) in FIG. 7).
  • the reason why the light distribution pattern selection unit 1022 selects the road shoulder upward emphasis pattern in step S126 of FIG. 4 is as follows. If the environment in which the vehicle 10 is traveling is not an environment in which a constant brightness is maintained by street lights such as an automobile-only road or an urban area, the surrounding brightness is insufficient and the visibility of the lateral line is reduced. In addition, if the surrounding area is not bright enough, the visibility of the roadside installation is low. For this reason, the driver's ability to recognize the alignment of the lane is also reduced. In order to avoid this event, the light distribution pattern selection unit 1022 selects a light distribution pattern (road shoulder upper emphasis pattern) that spot-illuminates the upper part of the cut-off line of the headlight (low beam) at a position near the road shoulder.
  • a light distribution pattern road shoulder upper emphasis pattern
  • the state determination unit 1021 determines the state of the driver. Specifically, the state determination unit 1021 determines the driver's state from the line-of-sight position (line-of-sight stop time) included in the driver state information and the steering angle of the steering wheel included in the vehicle state information.
  • step S1271 the state determination unit 1021 determines the frequency of the driver's line-of-sight movement from the information on the driver's line-of-sight position.
  • the state determination unit 1021 determines in step S1272 that the state is not currently in a state where it is difficult to recognize the lane alignment.
  • the state determination unit 1021 calculates the standard deviation of the steering wheel steering speed in step S1273.
  • the state determination unit 1021 determines in step S1272 that the lane alignment is not currently difficult to recognize.
  • the process proceeds to step S1274.
  • the state determination unit 1021 is used by the driver. It is determined that the ability to recognize the alignment of the lane is reduced.
  • step S129 In the light distribution pattern selection unit 1022 selects a normal light distribution pattern as the light distribution pattern.
  • the light distribution pattern is determined in step S126.
  • the selection unit 1022 selects the road shoulder upper emphasis pattern as the light distribution pattern.
  • step S131 the irradiation area calculation unit 1031 determines whether the light distribution pattern selected in step S12 is a normal light distribution pattern or a light distribution pattern other than the normal light distribution pattern. If the light distribution pattern selected in step S12 is a normal light distribution pattern, the process proceeds to step S135. On the other hand, if the light distribution pattern selected in step S12 is other than the normal light distribution pattern, the process proceeds to step S132.
  • the irradiation area calculation unit 1031 determines the driver's gaze area by obtaining the traveling position 1 to 3 seconds after the speed of the vehicle 10, for example.
  • the start position of the gaze area is about 17 meters in front of the vehicle 10
  • the end position of the gaze area is about 50 meters in front of the vehicle 10.
  • the irradiation area calculation unit 1031 determines as a gaze area from a position about 17 meters in front of the vehicle 10 to a position about 50 meters in front of the vehicle 10.
  • the irradiation area calculation unit 1031 may determine the gaze area by obtaining the current driver's visual recognition position from the information of the driver's line-of-sight movement acquired by the driver monitoring device 143.
  • the irradiation area calculation unit 1031 estimates, for example, the position of the vehicle 10 after 1 second and the position of the vehicle 10 after 3 seconds as the position of the vehicle 10 in the future. Then, the irradiation area calculation unit 1031 designates the position of the vehicle 10 after 1 second as the start position of the gaze area, and designates the position of the vehicle 10 after 3 seconds as the end position of the gaze area. In this method, the irradiation area calculation unit 1031 determines the gaze area using the amount of change in the vehicle speed and the steering angle per time and the time (1 second and 3 seconds in this example).
  • step S134 the light irradiation range calculation unit 1032 calculates the light irradiation range. That is, the light irradiation range calculation unit 1032 calculates the light irradiation range for distributing light to the irradiation region determined in step S133. In this way, the light irradiation range calculation unit 1032 determines the light irradiation range to be irradiated by the recognition improvement light distribution pattern (lane enhancement pattern or road shoulder upper enhancement pattern) according to the speed of the vehicle 10, and determines the determined light irradiation range. Control the headlight (left) 110 and the headlight (right) 120 to illuminate
  • step S135 the light irradiation range calculation unit 1032 sets the light irradiation range to the initial state.
  • FIG. 10 shows the relationship between the irradiation region and the light irradiation range. Note that FIG. 10 shows only the light irradiation range on the left side for the sake of simplification of the figure.
  • the point O indicates the center position of the vehicle 10.
  • the point C indicates the start position of the gaze region.
  • the point D indicates the end position of the gaze area.
  • Points A and B are points where the gaze area and the lane intersect.
  • the light irradiation range (left side) is the range of the angles ( ⁇ AOC and ⁇ BOD) formed by the points O, A, and B.
  • the light irradiation range calculation unit 1032 also determines the light irradiation range (right side) in the same way.
  • step S142 the light distribution information generation unit 1033 determines whether or not the speed of the vehicle 10 is within the specified value. If the speed of the vehicle 10 is other than the specified value, the process proceeds to step S145. On the other hand, if the speed of the vehicle 10 is within the specified value, the process proceeds to step S143.
  • the light distribution information generation unit 1033 stores a relational expression (approximate expression) between the speed of the vehicle 10 and the optical axis control amount, and determines the optical axis control amount based on the speed of the vehicle 10.
  • a relational expression approximately expression
  • the light distribution information generation unit 1033 determines the optical axis control amount when the dedicated light source is used.
  • the light distribution information generation unit 1033 uses the headlights. Set the brightness of the divided area and the amount of optical axis control to the initial state.
  • the light irradiation range calculation unit 1032 calculates the light irradiation range based on the speed of the vehicle 10. In the present embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range using the weather information. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the light irradiation range calculation unit 1032 acquires the weather information from the vehicle surrounding information.
  • the weather indicated in the weather information is bad weather such as heavy rain, snowfall, fog, etc.
  • the light irradiation range calculation unit 1032 has a light irradiation range 10 that is larger than the light irradiation range calculated based on the speed of the vehicle 10 in step S134 of FIG.
  • the range narrowed to the side is set as the light irradiation range. That is, in the present embodiment, the light irradiation range calculation unit 1032 sets the light irradiation range to be irradiated by the recognition improvement light distribution pattern (lane enhancement pattern or road shoulder upper enhancement pattern) according to the current weather at the location of the vehicle 10.
  • the headlight (left) 110 and the headlight (right) 120 are controlled so as to irradiate the determined and determined light irradiation range.
  • the light irradiation range calculation unit 1032 calculates the light irradiation range based on the speed of the vehicle 10. In the present embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range using the obstacle information. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the light irradiation range calculation unit 1032 acquires the location position of the peripheral vehicle and / or the location position of the pedestrian included in the obstacle information of the vehicle peripheral information.
  • the light irradiation range calculation unit 1032 uses the location position of the peripheral vehicle and / or walking. Exclude the location of the person from the light irradiation range.
  • the light irradiation range calculation unit 1032 determines whether or not there is a moving body (peripheral vehicle and / or pedestrian) in the light irradiation range, and the moving body is located in the light irradiation range.
  • the headlight (left) 110 and the headlight (right) 120 are controlled so as not to irradiate the area where the moving body in the light irradiation range is located.
  • the light distribution information generation unit 1033 sets the brightness of the light irradiation range on both sides of the lane in which the vehicle 10 is traveling to the same brightness. In the present embodiment, when the vehicle 10 travels on a curved road, the light distribution information generation unit 1033 sets the brightness so that the illuminance inside the lane is higher than the illuminance outside the lane. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the light irradiation range calculation unit 1032 determines the light irradiation range so that the situation inside the curve can be more easily understood according to such characteristics of the driver. Further, the light distribution information generation unit 1033 sets the brightness so that the inside of the curve is bright and the outside of the curve is dark. That is, in the present embodiment, the light distribution information generation unit 1033 determines whether or not the light irradiation range determined by the light irradiation range calculation unit 1032 corresponds to the curved road portion of the lane, and the light irradiation range is the lane.
  • the direction in which the driver gazes is brighter than in other areas, so that the driver's awareness of the alignment of the lane can be enhanced.
  • the light irradiation range calculation unit 1032 calculates the light irradiation range based on the position of the road sign.
  • the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the light irradiation range calculation unit 1032 uses the absolute position of the vehicle 10 obtained by the high-precision locator 141 and the map information held in the map database 142 to indicate the road sign existing in the traveling direction of the vehicle 10. Get the position. Further, the light irradiation range calculation unit 1032 may analyze the image taken by the vehicle-mounted camera 131 to acquire the position of the road sign. When the acquired road sign is a stop road sign and the light distribution pattern selected in step S12 of FIG. 3 is a lane enhancement pattern, the light irradiation range calculation unit 1032 is in the lane near the road sign position. Include the area in the light irradiation range.
  • the light irradiation range calculation unit 1032 determines whether or not there is a temporary stop road sign outside the light irradiation range calculated in step S134 of FIG. 9, and is outside the light irradiation range.
  • the headlight (left) 110 and the headlight (right) 120 are controlled so as to irradiate the road sign in addition to the light irradiation range calculated in step S134.
  • the road sign for a stop sign has been described here as an example, the light irradiation range may be expanded so that another type of road sign (for example, a road sign forbidden to enter) is irradiated.
  • the driver can increase the recognition of the position of the stop line, and the driver can increase the recognition of the traveling direction.
  • the light irradiation range calculation unit 1032 may determine the light irradiation range in relation to the image image displayed on the display device (for example, HUD160).
  • the display device for example, HUD160
  • the light irradiation range calculation unit 1032 instructs the HUD 160 to display the image of the road sign in accordance with the position of the road sign via the integrated control device 150.
  • the HUD 160 displays an image of the road sign in accordance with the position of the road sign according to the instruction. Since the method of displaying an image on the HUD 160 is known, the description thereof is omitted.
  • the driver can increase the awareness of the road sign and the driver's awareness of the direction of travel can be enhanced.
  • Embodiment 6 when the luminance contrast value of the side line of the lane obtained by analyzing the image taken in front of the vehicle 10 is lower than the threshold value, the light distribution pattern selection unit 1022 selects the recognition-enhancing light distribution pattern. select. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • FIG. 12 shows a configuration example of the light distribution control device 100 according to the present embodiment.
  • the luminance contrast value calculation unit 104 is added.
  • the luminance contrast value calculation unit 104 is also realized by the light distribution control program.
  • the vehicle-mounted camera 131 shown in FIG. 1 can acquire luminance information in front of the vehicle 10.
  • the luminance contrast value calculation unit 104 acquires the luminance value in front of the vehicle 10 from the luminance information acquired by the vehicle-mounted camera 131.
  • the luminance contrast value calculation unit 104 calculates the luminance contrast value of the lateral line of the lane from the luminance value of the lateral line of the lane and the luminance value of the asphalt surface.
  • the luminance contrast value calculation unit 104 estimates the luminance value from the pixel value of the image in front of the vehicle 10 taken by the in-vehicle camera 131, and obtains the luminance value obtained by the estimation. It may be used to calculate the luminance contrast value. For example, the correspondence between the pixel value and the luminance value is evaluated in advance, a conversion table between the pixel value and the luminance value is generated, and the conversion table is stored in the auxiliary storage device 903. The luminance contrast value calculation unit 104 estimates the luminance value from the pixel values using the conversion table.
  • the light distribution pattern selection unit 1022 determines whether or not the luminance contrast value of the lateral line of the lane is smaller than the threshold value.
  • the threshold value is, for example, a luminance contrast value when the lateral line (white line) is evaluated as visible when traveling at night in the rain.
  • the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S45. If the luminance contrast value of the lateral line is not smaller than the threshold value, in step S46, the light distribution pattern selection unit 1022 continues to select the normal light distribution pattern.
  • the contrast of the lateral line is enhanced by performing a light distribution that emphasizes the lateral line, and the driver's lane is aligned. It can raise awareness.
  • step S53 the light distribution pattern selection unit 1022 instructs the visual saliency map generation unit 105 to generate a visual saliency map, and the visual saliency map generation unit 105 visually recognizes the image taken by the vehicle-mounted camera 131. Generate a target saliency map.
  • the light distribution pattern selection unit 1022 analyzes the visual saliency map generated by the visual saliency map generation unit 105, acquires the probability that the lateral line of the lane is gazed, and the lateral line is Determine if the probability of being gazed is less than the threshold.
  • the threshold value is, for example, the probability that the lateral line (white line) is gazed at when the lateral line (white line) is evaluated as visible when traveling at night in rainy weather.
  • the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S55. If the probability that the lateral line is gazed at is not smaller than the threshold value, in step S56, the light distribution pattern selection unit 1022 continues to select the normal light distribution pattern.
  • the light distribution control device 100 is assumed to have a luminance contrast value calculation unit 104 shown in FIG. 12 and a visual saliency map generation unit 105 shown in FIG.
  • a value determined in advance through an experiment or the like is used for the brightness of the headlight division region.
  • the luminance contrast value calculation unit 104 determines the luminance contrast. The value is calculated or the visual luminance map generation unit 105 generates the visual luminance map.
  • the light distribution information generation unit 1033 adjusts the brightness when irradiating with the recognition-enhancing light distribution pattern based on the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane. More specifically, when the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane is smaller than each threshold value, the light distribution information generation unit 1033 determines the headlight division region. Increase the brightness. On the other hand, when the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane greatly exceeds each threshold value, the light distribution information generation unit 1033 determines the brightness of the headlight division region. To weaken.
  • the threshold value of the luminance contrast value of the lateral line of the lane is, for example, the luminance contrast value when the lateral line (white line) is evaluated as visible when traveling at night in rainy weather.
  • the threshold value of the probability that the driver gazes at the lateral line of the lane is the probability that the lateral line is gazed at, for example, when the lateral line (white line) is evaluated to be visible during night driving in rainy weather. Is.
  • the "section" of the information acquisition unit 101, the information analysis unit 102, the light distribution control unit 103, the luminance contrast value calculation unit 104, and the visual saliency map generation unit 105 is referred to as a "circuit", “process”, or “procedure”. Alternatively, it may be read as “processing”. Further, the light distribution control device 100 may be realized by a processing circuit.
  • the processing circuit is, for example, a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

In the present invention, a state determination unit (1021) determines whether a current state is a state in which it is is difficult for the driver of a vehicle to recognize the linear shape of a lane in which the vehicle is travelling. If it has been determined by the state determination unit (1021) that the current state is a state in which it is difficult for the driver to recognize the linear shape of the lane, a light distribution pattern selection unit (1022) selects a recognition-improving light distribution pattern, which makes it easier for the driver to recognize the linear shape of the lane. A light distribution control unit (103) controls light distribution of a headlamp so that light will be projected in the recognition-improving light distribution pattern selected by the light distribution pattern selection unit (1022).

Description

配光制御装置、配光制御方法及び配光制御プログラムLight distribution control device, light distribution control method and light distribution control program
 本開示は、車両の前照灯の配光の制御に関する。 This disclosure relates to the control of the light distribution of the headlights of the vehicle.
 従来より、ADB(Adaptive Driving Beam)制御と呼ばれる技術が種々提案されている。ADB制御では、ADB制御を行う車両が、前方にある前方車両(先行車及び対向車)の位置を検出し、前方車両が所在する位置に光が照射されないようにハイビームの照射パターンを制御する。このようにすることで、前方車両に対するグレアを抑制することができる。
 ADB制御においては、車両前方カメラ、LiDAR(Light Detection and Ranging)等の検出手段による前方車両の検出結果とADB制御を行う車両の走行状態に基づいて、現状況に適した配光パターンが選択される。そして、選択された配光パターンが形成されるように車両用灯具が制御される。このようなADB制御は、車両の遠方視認性確保と前方車両へのグレア低減の両立に有効である。
Conventionally, various techniques called ADB (Adaptive Driving Beam) control have been proposed. In ADB control, the vehicle performing ADB control detects the position of the vehicle in front (preceding vehicle and oncoming vehicle) in front, and controls the irradiation pattern of the high beam so that the position where the vehicle in front is located is not irradiated with light. By doing so, glare on the vehicle in front can be suppressed.
In ADB control, a light distribution pattern suitable for the current situation is selected based on the detection result of the vehicle in front by the detection means such as the vehicle front camera and LiDAR (Light Detection and Ranging) and the running state of the vehicle that performs ADB control. To. Then, the lighting fixture for the vehicle is controlled so that the selected light distribution pattern is formed. Such ADB control is effective in ensuring the distant visibility of the vehicle and reducing glare to the vehicle in front.
 夜間走行時の視認性は走行環境に大きく左右される。例えば、アスファルトに雨水が溜まった状態の湿潤路面では、路面の反射率が高まる。このため、路面より正反射する光が増加し、ドライバー側に戻る光が減少する。この結果、正反射光の増加による他車両へのグレアと、ドライバー側に戻る光の減少に伴う視認性の低下が起こる。特に、水溜まりが発生することと路面が暗くなることに伴って、車線の視認性が低下し、ドライバーが車線の線形を認識することが困難となる。他に、車両周辺が暗く、路肩近傍にある電柱、デリネータ等の路肩設置物が判別し難い場合においてドライバーの車線の線形を認識する能力が低下する。 Visibility during night driving is greatly affected by the driving environment. For example, on a wet road surface in which rainwater is accumulated in asphalt, the reflectance of the road surface increases. Therefore, the amount of light that is specularly reflected from the road surface increases, and the amount of light that returns to the driver side decreases. As a result, glare to other vehicles due to an increase in specularly reflected light and a decrease in visibility due to a decrease in light returning to the driver side occur. In particular, as a puddle is generated and the road surface becomes dark, the visibility of the lane is lowered, and it becomes difficult for the driver to recognize the alignment of the lane. In addition, when the surroundings of the vehicle are dark and it is difficult to distinguish utility poles, delineators, and other roadside installations near the roadside, the driver's ability to recognize the alignment of the lane is reduced.
 例えば、特許文献1では、悪天候状態(降雨、降雪、積雪のうちのいずれか一つ)を判別可能な天候判別手段と、天候判別手段が悪天候状態を判別した場合に、照射範囲を通常時に対して狭くする配光制御手段とを備える車両用前照灯装置が開示されている。そして、特許文献1では、車両用前照灯装置が、ドライバーが注視する領域の周囲からの反射光による眩惑を防止し、ドライバーの負担を軽減することが開示されている。 For example, in Patent Document 1, when a weather discriminating means capable of discriminating a bad weather condition (any one of rainfall, snowfall, and snowfall) and a weather discriminating means discriminating a bad weather condition, the irradiation range is set to a normal time. Disclosed is a vehicle headlight device comprising a light distribution control means for narrowing the light distribution. Further, Patent Document 1 discloses that a vehicle headlight device prevents dazzling due to reflected light from the periphery of a region to be watched by the driver and reduces the burden on the driver.
特開2016-068793号公報Japanese Unexamined Patent Publication No. 2016-066793
 特許文献1の車両前照灯装置は、悪天候状態のときに照射範囲を通常時に対して狭くする。しかしながら、悪天候状態でなくてドライバーが車線の線形を認識しにくいことがある。また、照射範囲を狭くしたとしても、必ずしもドライバーが車線の線形を認識しやすい配光が得られるとは限らない。 The vehicle headlight device of Patent Document 1 narrows the irradiation range compared to the normal time in bad weather conditions. However, it may be difficult for the driver to recognize the lane alignment in bad weather conditions. Further, even if the irradiation range is narrowed, it is not always possible to obtain a light distribution that makes it easy for the driver to recognize the alignment of the lane.
 本開示は、以上に鑑みたものであり、ドライバーが車線の線形を認識しにくいときに、ドライバーが車線の線形を認識しやすい配光を実現することを主な目的とする。 The present disclosure is based on the above, and its main purpose is to realize a light distribution that makes it easy for the driver to recognize the lane alignment when it is difficult for the driver to recognize the lane alignment.
 本開示に係る配光制御装置は、
 車両の前照灯の配光を制御する配光制御装置であって、
 現在の状態が、前記車両が走行する車線の線形を前記車両のドライバーが認識しにくい状態であるか否かを判定する状態判定部と、
 前記状態判定部により前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定された場合に、前記ドライバーが前記車線の線形を認識しやすくなる配光パターンである認識向上配光パターンを選択する配光パターン選択部と、
 前記配光パターン選択部により選択された前記認識向上配光パターンで照射するように前記前照灯の配光を制御する配光制御部とを有する。
The light distribution control device according to the present disclosure is
It is a light distribution control device that controls the light distribution of the headlights of the vehicle.
A state determination unit that determines whether or not the current state is a state in which it is difficult for the driver of the vehicle to recognize the alignment of the lane in which the vehicle is traveling.
When the state determination unit determines that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane, the recognition improvement is a light distribution pattern that makes it easier for the driver to recognize the alignment of the lane. A light distribution pattern selection unit that selects a light distribution pattern,
It has a light distribution control unit that controls the light distribution of the headlight so as to irradiate with the recognition-enhancing light distribution pattern selected by the light distribution pattern selection unit.
 本開示によれば、ドライバーが車線の線形を認識しにくいときに、ドライバーが車線の線形を認識しやすい配光を実現することができる。 According to the present disclosure, when it is difficult for the driver to recognize the lane alignment, it is possible to realize a light distribution that makes it easy for the driver to recognize the lane alignment.
実施の形態1に係る車両の構成例を示す図。The figure which shows the structural example of the vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る配光制御装置の構成例を示す図。The figure which shows the structural example of the light distribution control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る配光制御装置の動作例を示すフローチャート。The flowchart which shows the operation example of the light distribution control apparatus which concerns on Embodiment 1. 実施の形態1に係る状態判定処理及び配光パターン選択処理の例を示すフローチャート。The flowchart which shows the example of the state determination process and the light distribution pattern selection process which concerns on Embodiment 1. FIG. 実施の形態1に係る通常配光の例と車線強調配光の例を示す図。The figure which shows the example of the normal light distribution and the example of a lane-enhanced light distribution which concerns on Embodiment 1. FIG. 実施の形態1に係る周辺環境判定処理の例を示すフローチャート。The flowchart which shows the example of the surrounding environment determination processing which concerns on Embodiment 1. 実施の形態1に係る通常配光の例と路肩上方強調配光の例を示す図。The figure which shows the example of the normal light distribution and the example of the road shoulder upper emphasis light distribution which concerns on Embodiment 1. FIG. 実施の形態1に係るドライバー状態判定処理の例を示すフローチャート。The flowchart which shows the example of the driver state determination processing which concerns on Embodiment 1. 実施の形態1に係る光照射範囲決定処理の例を示すフローチャート。The flowchart which shows the example of the light irradiation range determination process which concerns on Embodiment 1. 実施の形態1に係る光照射範囲の例を示す図。The figure which shows the example of the light irradiation range which concerns on Embodiment 1. 実施の形態1に係る配光情報生成処理の例を示すフローチャート。The flowchart which shows the example of the light distribution information generation processing which concerns on Embodiment 1. 実施の形態6に係る配光制御装置の構成例を示す図。The figure which shows the structural example of the light distribution control apparatus which concerns on Embodiment 6. 実施の形態6に係る配光パターン選択処理の例を示すフローチャート。The flowchart which shows the example of the light distribution pattern selection process which concerns on Embodiment 6. 実施の形態7に係る配光制御装置の構成例を示す図。The figure which shows the structural example of the light distribution control apparatus which concerns on Embodiment 7. 実施の形態7に係る配光パターン選択処理の例を示すフローチャート。The flowchart which shows the example of the light distribution pattern selection process which concerns on Embodiment 7.
 以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。 Hereinafter, embodiments will be described with reference to figures. In the following description and drawings of the embodiments, those having the same reference numerals indicate the same parts or corresponding parts.
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る車両10の構成例を示す。
 なお、図1では、本実施の形態の説明に必要な要素のみを示している。つまり、車両10は、エンジン、トランスミッション、ブレーキ等を備えるが、これらは本実施の形態の説明に必要がないため、図1では図示を省略している。
Embodiment 1.
*** Explanation of configuration ***
FIG. 1 shows a configuration example of the vehicle 10 according to the present embodiment.
Note that FIG. 1 shows only the elements necessary for explaining the present embodiment. That is, the vehicle 10 includes an engine, a transmission, a brake, and the like, but these are not necessary for the description of the present embodiment, and thus are not shown in FIG.
 図1に示すように、車両10は、配光制御装置100、前照灯(左)110、前照灯(右)120、センサ群130、高精度ロケータ141、地図データベース142、ドライバーモニタリング装置143、車外通信装置144、統合制御装置150及びHUD160を備える。 As shown in FIG. 1, the vehicle 10 includes a light distribution control device 100, a headlight (left) 110, a headlight (right) 120, a sensor group 130, a high-precision locator 141, a map database 142, and a driver monitoring device 143. , External communication device 144, integrated control device 150 and HUD 160.
 センサ群130は、1つ以上のセンサである。図1では、センサ群130には、車載カメラ131、レーダー装置132、舵角センサ133、車速センサ134が含まれる。 The sensor group 130 is one or more sensors. In FIG. 1, the sensor group 130 includes an in-vehicle camera 131, a radar device 132, a steering angle sensor 133, and a vehicle speed sensor 134.
 車載カメラ131は、車両10の前方を撮影する。車載カメラ131により撮影された車両10の前方の画像を配光制御装置100が分析することで、車両10の前方の物体の種別(車両、歩行者、障害物(動物及び落下物など))、車両の種別(先行車、対向車)、形状(乗用車、トラックなど)、車両10と物体との距離及び方向を算出することができる。
 レーダー装置132は、車両10の周囲に存在する物体と車両10との距離、及び、物体が位置する方向を計測する。
 舵角センサ133は、操舵の向きを計測する。
 車速センサ134は、車両10の速度を計測する。
The vehicle-mounted camera 131 photographs the front of the vehicle 10. The light distribution control device 100 analyzes the image in front of the vehicle 10 taken by the in-vehicle camera 131 to determine the type of object in front of the vehicle 10 (vehicle, pedestrian, obstacle (animal, falling object, etc.)). The type of vehicle (preceding vehicle, oncoming vehicle), shape (passenger car, truck, etc.), distance and direction between the vehicle 10 and the object can be calculated.
The radar device 132 measures the distance between the object existing around the vehicle 10 and the vehicle 10 and the direction in which the object is located.
The rudder angle sensor 133 measures the steering direction.
The vehicle speed sensor 134 measures the speed of the vehicle 10.
 高精度ロケータ141は、GNSS(Global Navigation Satellite System)衛星からの測位信号に基づいて、車両10の現在位置を高精度に算出する。本実施の形態では、高精度ロケータ141は、車両10の絶対位置(緯度、経度)を算出するものとする。 The high-precision locator 141 calculates the current position of the vehicle 10 with high accuracy based on the positioning signal from the GNSS (Global Navigation Satellite System) satellite. In the present embodiment, the high-precision locator 141 calculates the absolute position (latitude, longitude) of the vehicle 10.
 地図データベース142は、地図情報を記憶する媒体である。地図データベース142に記憶された地図情報は、道路の車線の位置、路肩の位置、歩道の位置、車線の属性(右折専用車線など)、道路に設置された標識の情報などを含む高精度な地図情報である。 The map database 142 is a medium for storing map information. The map information stored in the map database 142 is a highly accurate map including the position of the lane of the road, the position of the shoulder, the position of the sidewalk, the attribute of the lane (such as the right turn lane), and the information of the sign installed on the road. Information.
 ドライバーモニタリング装置143は、ドライバーの状態を監視する。ドライバーモニタリング装置143は、例えば、室内カメラ、ハンドルセンサー、シートセンサで構成される。
 室内カメラは、ドライバーの視線、顔の向き、姿勢を検知する。ハンドルセンサーは、ドライバーの心拍を検知する。シートセンサは、脈拍を検知する。
 配光制御装置100は、ドライバーモニタリング装置143の監視結果に基づき、ドライバーの覚醒度、集中度、体調などを推定することができる。
The driver monitoring device 143 monitors the state of the driver. The driver monitoring device 143 is composed of, for example, an indoor camera, a steering wheel sensor, and a seat sensor.
The indoor camera detects the driver's line of sight, face orientation, and posture. The steering wheel sensor detects the driver's heartbeat. The seat sensor detects the pulse.
The light distribution control device 100 can estimate the driver's arousal level, concentration level, physical condition, etc. based on the monitoring result of the driver monitoring device 143.
 車外通信装置144は、車両10外のネットワークを介して、車両10外の各種機器と通信を行う。
 例えば、車外通信装置144は、サーバ装置、路側器、他車両または車両10の保守点検で利用される診断器などと通信を行う。
 配光制御装置100は、車外通信装置144を用いることで、路側器、他車両等と通信し、車両10のセンサ群130では検知できない障害物の情報を取得することができる。
The out-of-vehicle communication device 144 communicates with various devices outside the vehicle 10 via the network outside the vehicle 10.
For example, the out-of-vehicle communication device 144 communicates with a server device, a roadside device, another vehicle, a diagnostic device used for maintenance and inspection of the vehicle 10, and the like.
By using the out-of-vehicle communication device 144, the light distribution control device 100 can communicate with roadside devices, other vehicles, and the like, and acquire information on obstacles that cannot be detected by the sensor group 130 of the vehicle 10.
 統合制御装置150は、センサ群130、高精度ロケータ141、地図データベース142、ドライバーモニタリング装置143、車外通信装置144で取得された情報を用いて車両10全体の動作を制御する。 The integrated control device 150 controls the operation of the entire vehicle 10 by using the information acquired by the sensor group 130, the high-precision locator 141, the map database 142, the driver monitoring device 143, and the out-of-vehicle communication device 144.
 HUD(Head-Up Display)160は、ドライバーの前方の視野に重畳して情報を表示する透過型の表示装置である。HUD160は、統合制御装置150の指示に基づいて、フロントガラスなどに情報を表示することができる。 The HUD (Head-Up Display) 160 is a transmissive display device that displays information superimposed on the field of view in front of the driver. The HUD 160 can display information on the windshield or the like based on the instruction of the integrated control device 150.
 配光制御装置100は、前照灯(左)110及び前照灯(右)120の配光を制御する。
 配光制御装置100は、ネットワークを介して、センサ群130、高精度ロケータ141、地図データベース142、ドライバーモニタリング装置143、車外通信装置144、前照灯(左)110及び前照灯(右)120と通信する。
 ネットワークは車両10内のネットワークである。ネットワークを介して行われる通信では、LIN(Local Interconnect Network)、CAN(Controller Area Network)、Ethernet(登録商標)、CXPI(Clock Extension Peripheral Interface)などの通信プロトコルが利用される。
 なお、配光制御装置100の動作手順は、配光制御方法に相当する。
The light distribution control device 100 controls the light distribution of the headlight (left) 110 and the headlight (right) 120.
The light distribution control device 100 includes a sensor group 130, a high-precision locator 141, a map database 142, a driver monitoring device 143, an external communication device 144, a headlight (left) 110, and a headlight (right) 120 via a network. Communicate with.
The network is a network in the vehicle 10. In communication performed via a network, communication protocols such as LIN (Local Area Network), CAN (Control Area Network), Ethernet (registered trademark), and CXPI (Lock Extension Peripheral Interface) are used.
The operation procedure of the light distribution control device 100 corresponds to the light distribution control method.
 前照灯(左)110及び前照灯(右)120は、車両10の前方を照射する照明装置であり、複数の分割領域に対して選択的に光照射可能な配光可変型の前照灯である。分割領域は、少なくとも水平方向に分割されており、垂直方向に分割されても構わない。ここで、前照灯の分割領域のことを「前照灯分割領域」と称する。
 前照灯(左)110及び前照灯(右)120は、複数の前照灯分割領域を照らす光源を備えており、LED(Light Emitting Diode)光源、DMD(Digital Micromirror Device)などで構成される。
 また、前照灯(左)110及び前照灯(右)120は、それぞれ、LED光源又はDMDを駆動するドライバー装置も有する。
The headlight (left) 110 and the headlight (right) 120 are lighting devices that illuminate the front of the vehicle 10, and are variable light distribution type headlights capable of selectively irradiating a plurality of divided regions. It is a light. The divided area is divided at least horizontally, and may be divided vertically. Here, the divided area of the headlight is referred to as a “headlight divided area”.
The headlight (left) 110 and the headlight (right) 120 include a light source that illuminates a plurality of headlight division areas, and are composed of an LED (Light Emitting Diode) light source, a DMD (Digital Micromirror Device), and the like. Ru.
The headlight (left) 110 and the headlight (right) 120 also have a driver device for driving an LED light source or DMD, respectively.
 図2は、配光制御装置100の構成例を示す。 FIG. 2 shows a configuration example of the light distribution control device 100.
 配光制御装置100は、コンピュータである。
 図2に示すように、配光制御装置100は、ハードウェアとして、プロセッサ901、主記憶装置902、補助記憶装置903及び通信インタフェース904を備える。これらのハードウェアは、信号線を介して互いに接続されている。
The light distribution control device 100 is a computer.
As shown in FIG. 2, the light distribution control device 100 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and a communication interface 904 as hardware. These hardware are connected to each other via a signal line.
 プロセッサ901は、演算処理を行うIC(Integrated Circuit)であり、他のハードウェアを制御する。例えば、プロセッサ901はCPU(Central Processing Unit)である。 The processor 901 is an IC (Integrated Circuit) that performs arithmetic processing, and controls other hardware. For example, the processor 901 is a CPU (Central Processing Unit).
 主記憶装置902は、揮発性の記憶装置である。主記憶装置902は、メモリ又はメインメモリとも呼ばれる。例えば、主記憶装置902はRAM(Random Access Memory)である。 The main storage device 902 is a volatile storage device. The main storage device 902 is also referred to as a memory or a main memory. For example, the main storage device 902 is a RAM (Random Access Memory).
 補助記憶装置903は、不揮発性の記憶装置である。例えば、補助記憶装置903は、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリである。 The auxiliary storage device 903 is a non-volatile storage device. For example, the auxiliary storage device 903 is a ROM (Read Only Memory), an HDD (Hard Disk Drive), and a flash memory.
 通信インタフェース904は、ネットワークを介して通信を行うためのインタフェースであり、ネットワークに接続される。例えば、通信インタフェース904は、通信チップ又はNIC(Network Interface Card)である。 The communication interface 904 is an interface for communicating via the network and is connected to the network. For example, the communication interface 904 is a communication chip or a NIC (Network Interface Card).
 配光制御装置100は、機能構成として、情報取得部101、情報解析部102及び配光制御部103を備える。これらの要素はソフトウェアで実現される。
 補助記憶装置903には、情報取得部101、情報解析部102及び配光制御部103を実現する配光制御プログラムが記憶されている。
 配光制御プログラムは、補助記憶装置903から主記憶装置902にロードされる。そして、プロセッサ901が配光制御プログラムを実行する。
 図2は、プロセッサ901が配光制御プログラムを実行している状態を模式的に表している。
The light distribution control device 100 includes an information acquisition unit 101, an information analysis unit 102, and a light distribution control unit 103 as functional configurations. These elements are realized by software.
The auxiliary storage device 903 stores a light distribution control program that realizes the information acquisition unit 101, the information analysis unit 102, and the light distribution control unit 103.
The light distribution control program is loaded from the auxiliary storage device 903 into the main storage device 902. Then, the processor 901 executes the light distribution control program.
FIG. 2 schematically shows a state in which the processor 901 is executing the light distribution control program.
 情報取得部101は、車両状態情報取得部1011、車両周辺情報取得部1012及びドライバー状態情報取得部1013で構成される。 The information acquisition unit 101 is composed of a vehicle status information acquisition unit 1011, a vehicle peripheral information acquisition unit 1012, and a driver status information acquisition unit 1013.
 車両状態情報取得部1011は、車両10内のネットワークより車両状態情報を取得する。車両状態情報は、車両の状態(挙動)を示す。 The vehicle status information acquisition unit 1011 acquires vehicle status information from the network in the vehicle 10. The vehicle state information indicates the state (behavior) of the vehicle.
 車両周辺情報取得部1012は、車両10内のネットワークより車両周辺情報を取得する。車両周辺情報は、車両の周辺の状態(環境)を示す。 The vehicle peripheral information acquisition unit 1012 acquires vehicle peripheral information from the network in the vehicle 10. The vehicle peripheral information indicates the state (environment) around the vehicle.
 ドライバー状態情報取得部1013は、車両10内のネットワークよりドライバー状態情報を取得する。ドライバー状態情報は、ドライバー状態(行動)を示す。 The driver status information acquisition unit 1013 acquires driver status information from the network in the vehicle 10. The driver status information indicates the driver status (behavior).
 情報解析部102は、状態判定部1021及び配光パターン選択部1022で構成される。 The information analysis unit 102 is composed of a state determination unit 1021 and a light distribution pattern selection unit 1022.
 状態判定部1021は、現在の状態が、車両10が走行する車線の線形をドライバーが認識しにくい状態であるか否かを判定する。車線の線形とは、車両10の進行方向での車線の形状である。より具体的には、車両10が走行する車線の側線の進行方向での形状である。側線は、例えば、路側の白線である。また、車両10が走行する車線が左右の少なくともいずれか一方で同じ進行方向又は逆の進行方向の他の車線と接している場合は、側線には他の車線との境界線も含まれる。
 例えば、状態判定部1021は、車両周辺情報に基づき、車線の路面の状態を解析し、車線の路面が濡れていると推定した場合に、現在の状態がドライバーが車線の線形を認識しにくい状態であると判定する。
 また、状態判定部1021は、車両周辺情報に基づき、車両10の周囲の明るさを解析し、車両10の周囲の明るさが不足していると推定した場合に、現在の状態がドライバーが車線の線形を認識しにくい状態であると判定してもよい。
 更に、状態判定部1021は、車両状態情報及びドライバー状態情報に基づき、ドライバーの状態を解析し、ドライバーの集中力が不足していると推定した場合に、現在の状態がドライバーが車線の線形を認識しにくい状態であると判定してもよい。
 なお、状態判定部1021により行われる処理は、状態判定処理に相当する。
The state determination unit 1021 determines whether or not the current state is a state in which it is difficult for the driver to recognize the alignment of the lane in which the vehicle 10 is traveling. The lane alignment is the shape of the lane in the traveling direction of the vehicle 10. More specifically, it is a shape in the traveling direction of the lateral line of the lane in which the vehicle 10 travels. The lateral line is, for example, a white line on the roadside. Further, when the lane in which the vehicle 10 travels is in contact with another lane in the same traveling direction or the opposite traveling direction on at least one of the left and right, the lateral line also includes a boundary line with the other lane.
For example, when the state determination unit 1021 analyzes the state of the road surface of the lane based on the vehicle surrounding information and estimates that the road surface of the lane is wet, the current state is a state in which it is difficult for the driver to recognize the alignment of the lane. Is determined to be.
Further, when the state determination unit 1021 analyzes the brightness around the vehicle 10 based on the vehicle surrounding information and estimates that the brightness around the vehicle 10 is insufficient, the driver is in the lane in the current state. It may be determined that it is difficult to recognize the alignment of.
Further, the state determination unit 1021 analyzes the driver's state based on the vehicle state information and the driver state information, and when it is estimated that the driver's concentration is insufficient, the current state is the driver's lane alignment. It may be determined that the state is difficult to recognize.
The process performed by the state determination unit 1021 corresponds to the state determination process.
 配光パターン選択部1022は、状態判定部1021により現在の状態がドライバーが車線の線形を認識しにくい状態であると判定された場合に、ドライバーが車線の線形を認識しやすくなる配光パターンである認識向上配光パターンを選択する。つまり、配光パターン選択部1022は、認識向上配光パターンとして、ドライバーが車線の線形を認識しにくい状態でないときに選択される配光パターンである通常配光パターンよりも車線の外縁への照射が多い配光パターンを選択する。
 例えば、配光パターン選択部1022は、認識向上配光パターンとして、通常配光パターンよりも車線の側線への照射が多い配光パターン(以下、車線強調パターンという)を選択する。また、配光パターン選択部1022は、認識向上配光パターンとして、通常配光パターンよりも車線の路肩の上方への照射が多い配光パターン(以下、路肩上方強調パターンという)を選択することもある。
 なお、配光パターン選択部1022により行われる処理は、配光パターン選択処理に相当する。
The light distribution pattern selection unit 1022 is a light distribution pattern that makes it easier for the driver to recognize the lane alignment when the state determination unit 1021 determines that the current state is a state in which it is difficult for the driver to recognize the lane alignment. Select a recognition-enhancing light distribution pattern. That is, the light distribution pattern selection unit 1022 irradiates the outer edge of the lane as a recognition-enhancing light distribution pattern rather than the normal light distribution pattern, which is a light distribution pattern selected when the driver is not in a state where it is difficult to recognize the alignment of the lane. Select a light distribution pattern with many.
For example, the light distribution pattern selection unit 1022 selects a light distribution pattern (hereinafter referred to as a lane enhancement pattern) that irradiates the lateral line of the lane more than the normal light distribution pattern as the recognition improvement light distribution pattern. Further, the light distribution pattern selection unit 1022 may select a light distribution pattern (hereinafter referred to as a road shoulder upward emphasis pattern) in which the light distribution pattern that irradiates the upper part of the road shoulder of the lane more than the normal light distribution pattern is selected as the recognition improvement light distribution pattern. be.
The process performed by the light distribution pattern selection unit 1022 corresponds to the light distribution pattern selection process.
 配光制御部103は、照射領域算出部1031、光照射範囲算出部1032及び配光情報生成部1033で構成される。
 なお、照射領域算出部1031、光照射範囲算出部1032及び配光情報生成部1033で行われる処理を配光制御処理という。
The light distribution control unit 103 includes an irradiation area calculation unit 1031, a light irradiation range calculation unit 1032, and a light distribution information generation unit 1033.
The processing performed by the irradiation area calculation unit 1031, the light irradiation range calculation unit 1032, and the light distribution information generation unit 1033 is referred to as a light distribution control process.
 照射領域算出部1031は、配光パターン選択部1022により選択された配光パターンに基づき、照射領域を算出する。
 ここで、「照射領域」は、光を照射して強調したい領域のことである。
The irradiation area calculation unit 1031 calculates the irradiation area based on the light distribution pattern selected by the light distribution pattern selection unit 1022.
Here, the "irradiation area" is an area to be emphasized by irradiating with light.
 光照射範囲算出部1032は、照射領域算出部1031により算出された照射領域に基づき、光照射範囲を算出する。 The light irradiation range calculation unit 1032 calculates the light irradiation range based on the irradiation area calculated by the irradiation area calculation unit 1031.
 配光情報生成部1033は、各照射領域の明るさと光軸制御量を決定する。 The light distribution information generation unit 1033 determines the brightness and the optical axis control amount of each irradiation area.
***動作の説明***
 次に、本実施の形態に係る配光制御装置100の動作例を説明する。
 図3は、本実施の形態に係る配光制御装置100の動作の流れを示す。
*** Explanation of operation ***
Next, an operation example of the light distribution control device 100 according to the present embodiment will be described.
FIG. 3 shows the flow of operation of the light distribution control device 100 according to the present embodiment.
 ステップS11において、情報取得部101が情報を取得する。
 より具体的には、車両状態情報取得部1011が車両状態情報を取得し、車両周辺情報取得部1012が車両周辺情報を取得し、ドライバー状態情報取得部1013がドライバー状態情報を取得する。
In step S11, the information acquisition unit 101 acquires information.
More specifically, the vehicle state information acquisition unit 1011 acquires the vehicle state information, the vehicle peripheral information acquisition unit 1012 acquires the vehicle peripheral information, and the driver state information acquisition unit 1013 acquires the driver state information.
 前述したように、車両状態情報は、車両の状態(挙動)を示す情報である。例えば、車両状態情報は、前照灯(左)110及び前照灯(右)120への入力状態、車両10の速度、ハンドル舵角、ハンドル操舵速度及び車両10の位置などを示す。
 また、車両周辺情報は、車両10の周辺の環境を示す情報である。車両周辺情報は、走行環境情報と障害物情報とを含む。走行環境情報は、車両10の走行環境を示す情報である。走行環境情報は、天候、時間帯、道路標識、路肩設置物(デリネータ、ガードレール、電柱など)、車線位置、周囲の明るさ、走行道路の属性(一般道、自動車専用道路など)、道路周辺の属性(市街地、郊外など)、路面状態(乾燥、湿潤、積雪など)などを示す。障害物情報は、車両の周囲に存在する障害物を示す情報である。障害物情報は、前方車両、後方車両、歩行者、動物及び落下物などの障害物を示す。
 ドライバー状態情報は、ドライバー状態を示す情報である。ドライバー状態情報には、ドライバーの視線、顔の向き、姿勢、心拍、脈拍などが示される。また、ドライバー状態情報に、ドライバーの視線位置(視線の停留時間)の情報が含まれていてもよい。
As described above, the vehicle state information is information indicating the state (behavior) of the vehicle. For example, the vehicle state information indicates an input state to the headlight (left) 110 and the headlight (right) 120, the speed of the vehicle 10, the steering angle of the steering wheel, the steering speed of the steering wheel, the position of the vehicle 10, and the like.
Further, the vehicle peripheral information is information indicating the environment around the vehicle 10. The vehicle peripheral information includes driving environment information and obstacle information. The traveling environment information is information indicating the traveling environment of the vehicle 10. Driving environment information includes weather, time zone, road signs, road shoulder installations (derinator, guardrail, electric pole, etc.), lane position, surrounding brightness, road attributes (general roads, motorways, etc.), and road surroundings. Indicates attributes (urban area, suburbs, etc.), road surface conditions (dry, wet, snow cover, etc.). Obstacle information is information indicating obstacles existing around the vehicle. Obstacle information indicates obstacles such as vehicles in front, vehicles behind, pedestrians, animals and falling objects.
The driver status information is information indicating the driver status. The driver status information includes the driver's line of sight, face orientation, posture, heartbeat, pulse, and the like. Further, the driver status information may include information on the driver's line-of-sight position (line-of-sight stop time).
 次に、ステップS12において、情報解析部102が状態の判定及び配光パターンの選択を行う。
 より具体的には、状態判定部1021が、車両状態情報と車両周辺情報とドライバー状態情報とを用いて、現在の状態が、車両10が走行する車線の線形をドライバーが認識しにくい状態であるか否かを判定する。
 更に、状態判定部1021の判定結果に基づき、配光パターン選択部1022が配光パターンを選択する。つまり、配光パターン選択部1022は、通常配光パターン及び認識向上配光パターンのいずれかを選択する。
Next, in step S12, the information analysis unit 102 determines the state and selects the light distribution pattern.
More specifically, the state determination unit 1021 uses the vehicle state information, the vehicle peripheral information, and the driver state information, and the current state is a state in which it is difficult for the driver to recognize the alignment of the lane in which the vehicle 10 travels. Judge whether or not.
Further, the light distribution pattern selection unit 1022 selects a light distribution pattern based on the determination result of the state determination unit 1021. That is, the light distribution pattern selection unit 1022 selects either a normal light distribution pattern or a recognition-enhancing light distribution pattern.
 次に、ステップS13において、配光制御部103が光照射範囲を決定する。
 より具体的には、照射領域算出部1031が、ステップS12で選択された配光パターンと車両状態情報と車両周辺情報とを用いて、照射領域を算出する。また、光照射範囲算出部1032が、照射領域を照射する光照射範囲を算出する。
Next, in step S13, the light distribution control unit 103 determines the light irradiation range.
More specifically, the irradiation area calculation unit 1031 calculates the irradiation area using the light distribution pattern selected in step S12, the vehicle state information, and the vehicle peripheral information. Further, the light irradiation range calculation unit 1032 calculates the light irradiation range for irradiating the irradiation area.
 次に、ステップS14において、配光情報生成部1033が配光情報を生成する。
 より具体的には、配光情報生成部1033が、ステップS13で算出された光照射範囲に配光を行うために、前照灯分割領域の明るさと光軸制御量を決定する。
Next, in step S14, the light distribution information generation unit 1033 generates light distribution information.
More specifically, the light distribution information generation unit 1033 determines the brightness and the optical axis control amount of the headlight division region in order to distribute the light to the light irradiation range calculated in step S13.
 図4は、図3に示すステップS12(状態判定処理及び配光パターン選択処理)の詳細を示す。 FIG. 4 shows the details of step S12 (state determination process and light distribution pattern selection process) shown in FIG.
 ステップS121において、状態判定部1021が、路面状態を判定する。
 具体的には、状態判定部1021は、車両周辺情報に含まれる路面状態情報より路面が湿潤状態か否かを判定する。
 路面が湿潤状態の場合は、状態判定部1021は、現在、車線の線形の認識が困難な状態にあると判定する(ステップS122でYES)。つまり、状態判定部1021は、現在の状態が、ドライバーが車線の線形を認識しにくい状態であると判定する。
 現在、車線の線形の認識が困難な状態にあると状態判定部1021に判定された場合は、処理はステップS123に移行する。一方、路面が湿潤状態ではなく、車線の線形の認識が困難な状態にはないと状態判定部1021に判定された場合は、処理はステップS124に移行する。
In step S121, the state determination unit 1021 determines the road surface condition.
Specifically, the state determination unit 1021 determines whether or not the road surface is in a wet state based on the road surface condition information included in the vehicle peripheral information.
When the road surface is in a wet state, the state determination unit 1021 determines that the lane alignment is currently difficult to recognize (YES in step S122). That is, the state determination unit 1021 determines that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane.
If the state determination unit 1021 determines that the lane alignment is currently difficult to recognize, the process proceeds to step S123. On the other hand, when the state determination unit 1021 determines that the road surface is not in a wet state and the lane alignment is not in a difficult state, the process proceeds to step S124.
 ステップS123では、状態判定部1021の車線の線形の認識が困難な状態にあるとの判定結果に基づき、配光パターン選択部1022が、配光パターンとして車線強調パターンを選択する。車線強調パターンは、前述の通り、車線の側線の路面照度を高める配光パターンである。 In step S123, the light distribution pattern selection unit 1022 selects the lane enhancement pattern as the light distribution pattern based on the determination result that the lane alignment of the state determination unit 1021 is difficult to recognize. As described above, the lane enhancement pattern is a light distribution pattern that enhances the road surface illuminance of the lateral line of the lane.
 図5は、通常配光パターンに従った配光例と車線強調パターンに従った配光例を示す。
 図5の(a)は、通常配光パターンに従った通常配光の例を示す。
 図5の(b)は、車線強調パターンに従った車線強調配光の例を示す。
 車線強調配光(図5の(b))では、通常配光(図5の(a))と比較して、車線の両側線(路側の白線と他の車線との境界線)への配光が追加されている。
FIG. 5 shows an example of a light distribution according to a normal light distribution pattern and an example of a light distribution according to a lane enhancement pattern.
FIG. 5A shows an example of normal light distribution according to a normal light distribution pattern.
FIG. 5B shows an example of lane-enhanced light distribution according to the lane-enhanced pattern.
In the lane-enhanced light distribution ((b) in FIG. 5), the distribution to both sides of the lane (the boundary line between the white line on the road side and the other lane) is compared with the normal light distribution ((a) in FIG. 5). Light has been added.
 図4のステップS123で配光パターン選択部1022が車線強調パターンを選択する理由は以下の通りである。
 路面が湿潤状態の場合、道路上の水溜まりの影響により、道路のアスファルト面や側線部分の輝度が低下する。この結果、ドライバーが車線の線形を視認することが難しくなる。
 本事象を解決するために、配光パターン選択部1022は、車線の側線近傍の路面照度を高めるようにスポット的に照射する配光パターン(車線強調パターン)を選択する。車線強調パターンに従った配光(車線強調配光)によりアスファルト面に対する側線部分の輝度が強まることで、輝度コントラストが大きくなる。この結果、側線が際立って見え、車線の線形に対するドライバーの認識を高めることができる。
The reason why the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S123 of FIG. 4 is as follows.
When the road surface is wet, the brightness of the asphalt surface and the lateral line portion of the road is reduced due to the influence of the puddle on the road. As a result, it becomes difficult for the driver to visually recognize the alignment of the lane.
In order to solve this phenomenon, the light distribution pattern selection unit 1022 selects a light distribution pattern (lane enhancement pattern) that irradiates spots so as to increase the road surface illuminance in the vicinity of the lateral line of the lane. The brightness contrast is increased by increasing the brightness of the lateral line portion with respect to the asphalt surface by the light distribution according to the lane enhancement pattern (lane enhancement light distribution). As a result, the lateral line can be seen prominently, and the driver's awareness of the lane alignment can be enhanced.
 図4に戻り、ステップS124では、状態判定部1021が周辺環境を判定する。
 具体的には、状態判定部1021は、車両周辺情報に示される走行道路の属性、道路周辺の属性、周囲の明るさにより、車両10の周辺の環境を判定する。
Returning to FIG. 4, in step S124, the state determination unit 1021 determines the surrounding environment.
Specifically, the state determination unit 1021 determines the environment around the vehicle 10 based on the attributes of the traveling road, the attributes around the road, and the brightness of the surroundings shown in the vehicle peripheral information.
 ステップS124の周辺環境判定処理の詳細を図6を参照して説明する。 The details of the peripheral environment determination process in step S124 will be described with reference to FIG.
 まず、ステップS1241において、状態判定部1021は、走行道路の属性より、車両10が「自動車専用道路」を走行しているか否かを判定する。
 車両10が「自動車専用道路」を走行している場合は、ステップS1242において、状態判定部1021は、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、車両10が「自動車専用道路」を走行していない場合は、処理がステップS1243に進む。
First, in step S1241, the state determination unit 1021 determines whether or not the vehicle 10 is traveling on the "automobile exclusive road" based on the attributes of the traveling road.
When the vehicle 10 is traveling on the "automobile exclusive road", in step S1242, the state determination unit 1021 determines that the lane alignment is not currently in a difficult state.
On the other hand, if the vehicle 10 is not traveling on the "motorway", the process proceeds to step S1243.
 ステップS1243では、状態判定部1021は、道路周辺の属性より、車両10が「市街地」を走行しているか否かを判定する。
 車両10が「市街地」を走行している場合は、ステップS1242において、状態判定部1021は、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、車両10が「市街地」を走行していない場合は、処理がステップS1244に進む。
In step S1243, the state determination unit 1021 determines whether or not the vehicle 10 is traveling in the "urban area" based on the attributes around the road.
When the vehicle 10 is traveling in the "urban area", in step S1242, the state determination unit 1021 determines that the lane alignment is not currently difficult to recognize.
On the other hand, if the vehicle 10 is not traveling in the "urban area", the process proceeds to step S1244.
 ステップS1244では、周囲の明るさが規定値(例えば、周辺照度が1000ルクスなど)以上か否かを判定する。
 周囲の明るさが規定値以上である場合は、ステップS1242において、状態判定部1021は、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、周囲の明るさが規定値未満である場合は、ステップS1245において、状態判定部1021は、現在、車線の線形の認識が困難な状態にあると判定する。
In step S1244, it is determined whether or not the ambient brightness is equal to or higher than a specified value (for example, the ambient illuminance is 1000 lux or the like).
When the ambient brightness is equal to or higher than the specified value, in step S1242, the state determination unit 1021 determines that the lane alignment is not currently difficult to recognize.
On the other hand, when the ambient brightness is less than the specified value, in step S1245, the state determination unit 1021 determines that the lane alignment is currently difficult to recognize.
 図6の例では、状態判定部1021は、車両10が自動車専用道路又は市街地を走行している場合は、街灯により一定の明るさが保たれていると判定する。一方、車両10が、自動車専用道路又は市街地を走行していない場合は、明るさが不足しており、ドライバーが車線の線形を認識することが難しいと判定する。
 図6の例では、状態判定部1021は、ステップS1241及びステップS1243において車両10が自動車専用道路又は市街地を走行しているか否かを判定するが、ステップS1241及びステップS1243を省略してもよい。つまり、状態判定部1021は、ステップS1244のみを行って、車両10の周囲の明るさが十分であるか否かのみを判定するようにしてもよい。
In the example of FIG. 6, the state determination unit 1021 determines that when the vehicle 10 is traveling on a motorway or an urban area, the street light maintains a constant brightness. On the other hand, when the vehicle 10 is not traveling on a motorway or an urban area, it is determined that the brightness is insufficient and it is difficult for the driver to recognize the alignment of the lane.
In the example of FIG. 6, the state determination unit 1021 determines in steps S1241 and S1243 whether or not the vehicle 10 is traveling on a motorway or an urban area, but steps S1241 and S1243 may be omitted. That is, the state determination unit 1021 may perform only step S1244 to determine only whether or not the ambient brightness of the vehicle 10 is sufficient.
 図4に戻って、ステップS125において車線の線形の認識が困難ではない場合、すなわち、状態判定部1021がステップS1242で車線の線形の認識が困難な状態にはないと判定した場合は、処理がステップS127に進む。
 一方、ステップS125において車線の線形の認識が困難である場合、すなわち、状態判定部1021がステップS1245で車線の線形の認識が困難な状態にあると判定した場合は、ステップS126において、配光パターン選択部1022が、配光パターンとして路肩上方強調パターンを選択する。路肩上方強調パターンは、前述の通り、車線の路肩の上方への照射が多い配光パターンである。路肩上方強調パターンでは、路肩近傍設置物(電柱など)を多く照射することができる。
Returning to FIG. 4, if it is not difficult to recognize the lane alignment in step S125, that is, if the state determination unit 1021 determines in step S1242 that the lane alignment is not difficult to recognize, the process is performed. The process proceeds to step S127.
On the other hand, when it is difficult to recognize the lane alignment in step S125, that is, when the state determination unit 1021 determines in step S1245 that the lane alignment is difficult to recognize, the light distribution pattern is determined in step S126. The selection unit 1022 selects the road shoulder upper emphasis pattern as the light distribution pattern. As described above, the road shoulder upper emphasis pattern is a light distribution pattern in which the upper part of the road shoulder of the lane is often irradiated. In the road shoulder upper emphasis pattern, a large number of objects installed near the road shoulder (such as utility poles) can be irradiated.
 図7は、通常配光パターンに従った配光例と路肩上方強調パターンに従った配光例を示す。
 図7の(a)は、通常配光パターンに従った通常配光の例を示す。図7の(a)の通常配光は図5の(a)の通常配光と同じである。
 図7の(b)は、路肩上方強調パターンに従った路肩上方強調配光の例を示す。
 路肩上方強調配光(図7の(b))では、通常配光(図7の(a))と比較して路肩上方への配光が追加されている。
FIG. 7 shows an example of a light distribution according to a normal light distribution pattern and an example of a light distribution according to a road shoulder upward emphasis pattern.
FIG. 7A shows an example of a normal light distribution according to a normal light distribution pattern. The normal light distribution in FIG. 7 (a) is the same as the normal light distribution in FIG. 5 (a).
FIG. 7B shows an example of the road shoulder upward emphasis light distribution according to the road shoulder upward enhancement pattern.
In the light distribution enhanced above the road shoulder ((b) in FIG. 7), the light distribution above the road shoulder is added as compared with the normal light distribution ((a) in FIG. 7).
 図4のステップS126において配光パターン選択部1022が路肩上方強調パターンを選択する理由は以下の通りである。
 車両10が走行している環境が自動車専用道路又は市街地のように街灯により一定の明るさが保たれる環境ではない場合は、周囲の明るさが足りず側線の視認性が落ちる。また、周辺の明るさが足りないと路肩設置物の視認性も低い。このため、ドライバーの車線の線形を認識する能力も低下してしまう。
 本事象を回避するために、配光パターン選択部1022は、路肩近傍位置で前照灯(ロービーム)のカットオフラインの上方をスポット的に照射する配光パターン(路肩上方強調パターン)を選択する。路肩上方強調パターンに従った配光(路肩上方強調配光)により路肩近傍設置物(電柱など)をより明るく照らすことで、路肩近傍設置物が際立って見え、車線の線形に対するドライバーの認識を高めることができる。
The reason why the light distribution pattern selection unit 1022 selects the road shoulder upward emphasis pattern in step S126 of FIG. 4 is as follows.
If the environment in which the vehicle 10 is traveling is not an environment in which a constant brightness is maintained by street lights such as an automobile-only road or an urban area, the surrounding brightness is insufficient and the visibility of the lateral line is reduced. In addition, if the surrounding area is not bright enough, the visibility of the roadside installation is low. For this reason, the driver's ability to recognize the alignment of the lane is also reduced.
In order to avoid this event, the light distribution pattern selection unit 1022 selects a light distribution pattern (road shoulder upper emphasis pattern) that spot-illuminates the upper part of the cut-off line of the headlight (low beam) at a position near the road shoulder. By illuminating the installation near the road shoulder (electric pole, etc.) more brightly with the light distribution according to the road shoulder upper emphasis pattern (road shoulder upper emphasis light distribution), the installation near the road shoulder can be seen conspicuously, and the driver's awareness of the lane alignment is enhanced. be able to.
 図4に戻り、ステップS127において、状態判定部1021がドライバーの状態を判定する。
 具体的には、状態判定部1021は、ドライバー状態情報に含まれる視線位置(視線の停留時間)、車両状態情報に含まれるハンドル舵角の情報より、ドライバーの状態を判定する。
Returning to FIG. 4, in step S127, the state determination unit 1021 determines the state of the driver.
Specifically, the state determination unit 1021 determines the driver's state from the line-of-sight position (line-of-sight stop time) included in the driver state information and the steering angle of the steering wheel included in the vehicle state information.
 ステップS127のドライバー状態判定処理を図8を参照して説明する。 The driver state determination process in step S127 will be described with reference to FIG.
 まず、ステップS1271において、状態判定部1021は、ドライバーの視線位置の情報より、ドライバーの視線移動の頻度を判定する。
 そして、視線移動の頻度が閾値よりも多くない場合は、状態判定部1021は、ステップS1272において、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、視線移動の頻度が閾値よりも多い場合は、状態判定部1021は、ステップS1273において、ハンドル操舵速度の標準偏差を算出する。そして、ハンドル操舵速度の標準偏差が閾値よりも大きくない場合は、状態判定部1021は、ステップS1272において、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、ハンドル操舵速度の標準偏差が閾値よりも大きい場合は、処理がステップS1274に進む。
First, in step S1271, the state determination unit 1021 determines the frequency of the driver's line-of-sight movement from the information on the driver's line-of-sight position.
When the frequency of line-of-sight movement is not higher than the threshold value, the state determination unit 1021 determines in step S1272 that the state is not currently in a state where it is difficult to recognize the lane alignment.
On the other hand, when the frequency of line-of-sight movement is higher than the threshold value, the state determination unit 1021 calculates the standard deviation of the steering wheel steering speed in step S1273. When the standard deviation of the steering wheel steering speed is not larger than the threshold value, the state determination unit 1021 determines in step S1272 that the lane alignment is not currently difficult to recognize.
On the other hand, if the standard deviation of the steering wheel steering speed is larger than the threshold value, the process proceeds to step S1274.
 ステップS1274では、状態判定部1021は、ドライバーの集中度を判定する。
 例えば、状態判定部1021は、ドライバーの顔の向き、姿勢、心拍数、脈拍数等に基づいて、ドライバーの集中度を判定する。状態判定部1021は、ドライバーの集中度を任意の方法で判定することができる。
 ドライバーの集中度が通常の場合は、状態判定部1021は、ステップS1272において、現在、車線の線形の認識が困難な状態にはないと判定する。
 一方、ドライバーの集中度が通常ではない場合、すなわち、ドライバーの集中力が不足している場合は、状態判定部1021は、ステップS1275において、現在、車線の線形の認識が困難な状態にはあると判定する。
In step S1274, the state determination unit 1021 determines the degree of concentration of the driver.
For example, the state determination unit 1021 determines the degree of concentration of the driver based on the direction, posture, heart rate, pulse rate, etc. of the driver's face. The state determination unit 1021 can determine the concentration level of the driver by any method.
When the driver's concentration is normal, the state determination unit 1021 determines in step S1272 that the lane alignment is not currently difficult to recognize.
On the other hand, when the driver's concentration is not normal, that is, when the driver's concentration is insufficient, the state determination unit 1021 is currently in a state where it is difficult to recognize the lane alignment in step S1275. Is determined.
 このように、ドライバーの視線移動が少ない(視線の停留時間が長い)場合、または、ハンドル操作が不安定(ハンドル操舵速度の標準偏差が大きい)な場合などにおいて、状態判定部1021は、ドライバーの車線の線形を認識する能力が低下していると判定する。 In this way, when the driver's line-of-sight movement is small (the line-of-sight stay time is long), or when the steering wheel operation is unstable (the standard deviation of the steering wheel steering speed is large), the state determination unit 1021 is used by the driver. It is determined that the ability to recognize the alignment of the lane is reduced.
 図4に戻って、ステップS128において車線の線形の認識が困難ではない場合、すなわち、状態判定部1021がステップS1272で車線の線形の認識が困難な状態にはないと判定した場合は、ステップS129において、配光パターン選択部1022が、配光パターンとして通常配光パターンを選択する。
 一方、ステップS128において車線の線形の認識が困難である場合、すなわち、状態判定部1021がステップS1275で車線の線形の認識が困難な状態にあると判定した場合は、ステップS126において、配光パターン選択部1022が、配光パターンとして路肩上方強調パターンを選択する。
Returning to FIG. 4, when it is not difficult to recognize the lane alignment in step S128, that is, when the state determination unit 1021 determines in step S1272 that the lane alignment is not difficult to recognize, step S129 In, the light distribution pattern selection unit 1022 selects a normal light distribution pattern as the light distribution pattern.
On the other hand, when it is difficult to recognize the lane alignment in step S128, that is, when the state determination unit 1021 determines in step S1275 that the lane alignment is difficult to recognize, the light distribution pattern is determined in step S126. The selection unit 1022 selects the road shoulder upper emphasis pattern as the light distribution pattern.
 次に、図9及び図10を参照して、図3のステップS13(光照射範囲決定処理)を説明する。 Next, step S13 (light irradiation range determination process) of FIG. 3 will be described with reference to FIGS. 9 and 10.
 ステップS131において、照射領域算出部1031は、ステップS12で選択された配光パターンが通常配光パターンであるか、通常配光パターン以外の配光パターンであるかを判定する。
 ステップS12で選択された配光パターンが通常配光パターンである場合は、処理がステップS135に進む。一方、ステップS12で選択された配光パターンが通常配光パターン以外である場合は、処理がステップS132に進む。
In step S131, the irradiation area calculation unit 1031 determines whether the light distribution pattern selected in step S12 is a normal light distribution pattern or a light distribution pattern other than the normal light distribution pattern.
If the light distribution pattern selected in step S12 is a normal light distribution pattern, the process proceeds to step S135. On the other hand, if the light distribution pattern selected in step S12 is other than the normal light distribution pattern, the process proceeds to step S132.
 ステップS132では、照射領域算出部1031が、車両10の速度が規定値(例えば、時速15km~時速80kmの間)内であるか否かを判定する。
 車両10の速度が規定値内であれば、処理がステップS133に進む。
 一方、車両10の速度が規定値外であれば、処理がステップS135に進む。
 このように、照射領域算出部1031が車両10の速度に基づく判定を行うことで、低速走行時の車線強調配光又は路肩上方強調配光に伴う周辺交通参加者へのグレアを防止することができる。更に、高速走行時の車線強調配光又は路肩上方強調配光に伴う遠方視認性の低下を防止することができる。
In step S132, the irradiation area calculation unit 1031 determines whether or not the speed of the vehicle 10 is within a specified value (for example, between 15 km / h and 80 km / h).
If the speed of the vehicle 10 is within the specified value, the process proceeds to step S133.
On the other hand, if the speed of the vehicle 10 is out of the specified value, the process proceeds to step S135.
In this way, by making the determination based on the speed of the vehicle 10 by the irradiation area calculation unit 1031, it is possible to prevent glare to the surrounding traffic participants due to the lane-enhanced light distribution or the roadside-upper-emphasized light distribution during low-speed driving. can. Further, it is possible to prevent a decrease in distant visibility due to lane-enhanced light distribution or road shoulder-enhanced light distribution during high-speed driving.
 ステップS133では、照射領域算出部1031が、車両周辺情報より、車両10が走行している車線の両端(右側と左側)の車両10を基準とする水平方向の相対位置である車線位置を取得する。
 まず、照射領域算出部1031は、高精度ロケータ141で求めた車両10の絶対位置と地図データベース142に保持されている地図情報を用いて車線位置を求めることができる。また、照射領域算出部1031は、車載カメラ131により撮影された画像を解析して車線位置を求めてもよい。
 次に、照射領域算出部1031は、車両10の速度より、ドライバーが注視する領域を決定する。一般的には、ドライバーは1秒~3秒後の走行位置の周辺を注視すると言われている。このため、照射領域算出部1031は、例えば、車両10の速度より、1秒~3秒後の走行位置を求めてドライバーの注視領域を決定する。車両10が時速60kmで走行している場合は、注視領域の開始位置は車両10の前方約17メートルの位置であり、注視領域の終端位置は車両10の前方約50メートルの位置である。この例では、照射領域算出部1031は、車両10の前方約17メートルの位置から車両10の前方約50メートルの位置までを注視領域として決定する。
 また、照射領域算出部1031は、ドライバーモニタリング装置143で取得したドライバーの視線移動の情報より、現在のドライバーの視認位置を求めて注視領域を決定してもよい。
In step S133, the irradiation area calculation unit 1031 acquires the lane position, which is a horizontal relative position with respect to the vehicle 10 at both ends (right side and left side) of the lane in which the vehicle 10 is traveling, from the vehicle peripheral information. ..
First, the irradiation area calculation unit 1031 can obtain the lane position by using the absolute position of the vehicle 10 obtained by the high-precision locator 141 and the map information held in the map database 142. Further, the irradiation area calculation unit 1031 may analyze the image taken by the vehicle-mounted camera 131 to obtain the lane position.
Next, the irradiation area calculation unit 1031 determines the area to be watched by the driver from the speed of the vehicle 10. Generally, it is said that the driver gazes around the running position after 1 to 3 seconds. Therefore, the irradiation area calculation unit 1031 determines the driver's gaze area by obtaining the traveling position 1 to 3 seconds after the speed of the vehicle 10, for example. When the vehicle 10 is traveling at a speed of 60 km / h, the start position of the gaze area is about 17 meters in front of the vehicle 10, and the end position of the gaze area is about 50 meters in front of the vehicle 10. In this example, the irradiation area calculation unit 1031 determines as a gaze area from a position about 17 meters in front of the vehicle 10 to a position about 50 meters in front of the vehicle 10.
Further, the irradiation area calculation unit 1031 may determine the gaze area by obtaining the current driver's visual recognition position from the information of the driver's line-of-sight movement acquired by the driver monitoring device 143.
 なお、車両10が曲路走行を行う可能性がある。
 照射領域算出部1031は、地図データベース142に保持されている地図情報から車両10が曲路走行を行うか否かを判定することができる。また、照射領域算出部1031は、車載カメラ131により撮影された画像を解析して車両10が曲路走行を行うか否かを判定してもよい。照射領域算出部1031は、これらのいずれかの方法で車線の曲率を求め、求めた曲率を利用して、ドライバーの注視領域を決定する。
 また、照射領域算出部1031は、ハンドル舵角量を利用してドライバーの注視領域を決定してもよい。
 この場合は、照射領域算出部1031は、車両状態情報より、車速の情報及びハンドル舵角の情報を取得する。そして、照射領域算出部1031は、過去周期と現周期との値の差から、車速及びハンドル舵角の時間当たりの変化量を求める。そして、照射領域算出部1031は、求めた車速及びハンドル舵角の時間当たりの変化量を用いて、高精度ロケータ141で求めた現在の車両10の位置から、将来の車両10の位置を求める。
 そして、照射領域算出部1031は、将来の車両10の位置からドライバーの注視領域を決定する。
 照射領域算出部1031は、例えば、将来の車両10の位置として1秒後の車両10の位置と3秒後の車両10の位置を推定する。そして、照射領域算出部1031は、1秒後の車両10の位置を注視領域の開始位置に指定し、3秒後の車両10の位置を注視領域の終端位置に指定する。この方法では、照射領域算出部1031は、車速及びハンドル舵角の時間当たりの変化量と時間(本例では1秒と3秒)とを用いて注視領域を決定する。
The vehicle 10 may travel on a curved road.
The irradiation area calculation unit 1031 can determine whether or not the vehicle 10 travels on a curved road from the map information stored in the map database 142. Further, the irradiation area calculation unit 1031 may analyze the image taken by the vehicle-mounted camera 131 to determine whether or not the vehicle 10 travels on a curved road. The irradiation area calculation unit 1031 obtains the curvature of the lane by any of these methods, and determines the gaze area of the driver by using the obtained curvature.
Further, the irradiation area calculation unit 1031 may determine the gaze area of the driver by using the steering angle amount of the steering wheel.
In this case, the irradiation area calculation unit 1031 acquires the vehicle speed information and the steering wheel steering angle information from the vehicle state information. Then, the irradiation area calculation unit 1031 obtains the amount of change in the vehicle speed and the steering angle per hour from the difference between the values of the past cycle and the current cycle. Then, the irradiation area calculation unit 1031 obtains the position of the future vehicle 10 from the position of the current vehicle 10 obtained by the high-precision locator 141 by using the obtained vehicle speed and the amount of change in the steering angle per time.
Then, the irradiation area calculation unit 1031 determines the gaze area of the driver from the position of the vehicle 10 in the future.
The irradiation area calculation unit 1031 estimates, for example, the position of the vehicle 10 after 1 second and the position of the vehicle 10 after 3 seconds as the position of the vehicle 10 in the future. Then, the irradiation area calculation unit 1031 designates the position of the vehicle 10 after 1 second as the start position of the gaze area, and designates the position of the vehicle 10 after 3 seconds as the end position of the gaze area. In this method, the irradiation area calculation unit 1031 determines the gaze area using the amount of change in the vehicle speed and the steering angle per time and the time (1 second and 3 seconds in this example).
 そして、照射領域算出部1031は、上記のいずれかの方法により決定した注視領域の距離にある車線位置を照射領域に指定する。つまり、照射領域算出部1031は、車両10が走行している車線の、注視領域に沿った両端の間の領域を照射領域に指定する。 Then, the irradiation area calculation unit 1031 designates the lane position at the distance of the gaze area determined by any of the above methods as the irradiation area. That is, the irradiation area calculation unit 1031 designates the area between both ends of the lane in which the vehicle 10 is traveling along the gaze area as the irradiation area.
 ステップS134では、光照射範囲算出部1032が、光照射範囲を算出する。
 つまり、光照射範囲算出部1032は、ステップS133で決定した照射領域に配光を行うための光照射範囲を算出する。このように、光照射範囲算出部1032は、認識向上配光パターン(車線強調パターン又は路肩上方強調パターン)で照射する光照射範囲を車両10の速度に応じて決定し、決定した光照射範囲を照射するように前照灯(左)110及び前照灯(右)120を制御する
In step S134, the light irradiation range calculation unit 1032 calculates the light irradiation range.
That is, the light irradiation range calculation unit 1032 calculates the light irradiation range for distributing light to the irradiation region determined in step S133. In this way, the light irradiation range calculation unit 1032 determines the light irradiation range to be irradiated by the recognition improvement light distribution pattern (lane enhancement pattern or road shoulder upper enhancement pattern) according to the speed of the vehicle 10, and determines the determined light irradiation range. Control the headlight (left) 110 and the headlight (right) 120 to illuminate
 ステップS135では、光照射範囲算出部1032が、光照射範囲を初期状態に設定する。 In step S135, the light irradiation range calculation unit 1032 sets the light irradiation range to the initial state.
 図10は照射領域と光照射範囲の関係を示す。なお、図10では、図の簡略化のために左側の光照射範囲のみを示している。
 図10において、点Oは車両10の中心位置を示す。また、点Cは注視領域の開始位置を示す。また、点Dは注視領域の終端位置を示す。点Aと点Bは注視領域と車線が交差する点である。
 ここで、光照射範囲(左側)は、点Oと点A、点Bがなす角度(∠AOCと∠BOD)の範囲になる。
 光照射範囲算出部1032は、光照射範囲(右側)も同様の考え方で決定する。
FIG. 10 shows the relationship between the irradiation region and the light irradiation range. Note that FIG. 10 shows only the light irradiation range on the left side for the sake of simplification of the figure.
In FIG. 10, the point O indicates the center position of the vehicle 10. Further, the point C indicates the start position of the gaze region. Further, the point D indicates the end position of the gaze area. Points A and B are points where the gaze area and the lane intersect.
Here, the light irradiation range (left side) is the range of the angles (∠AOC and ∠BOD) formed by the points O, A, and B.
The light irradiation range calculation unit 1032 also determines the light irradiation range (right side) in the same way.
 次に、図11を参照して、図3のステップS14の配光情報生成処理を説明する。 Next, with reference to FIG. 11, the light distribution information generation process in step S14 of FIG. 3 will be described.
 ステップS141において、配光情報生成部1033が、図3のステップS12で選択された配光パターンが通常配光パターンであるか否かを判定する。
 図3のステップS12で選択された配光パターンが通常配光パターンである場合は、処理がステップS145に進む。
 一方、図3のステップS12で選択された配光パターンが通常配光パターンでない場合は、処理がステップS142に進む。
In step S141, the light distribution information generation unit 1033 determines whether or not the light distribution pattern selected in step S12 of FIG. 3 is a normal light distribution pattern.
If the light distribution pattern selected in step S12 of FIG. 3 is a normal light distribution pattern, the process proceeds to step S145.
On the other hand, if the light distribution pattern selected in step S12 of FIG. 3 is not a normal light distribution pattern, the process proceeds to step S142.
 ステップS142では、配光情報生成部1033は、車両10の速度が規定値以内であるか否かを判定する。
 車両10の速度が規定値以外である場合は、処理がステップS145に進む。
 一方、車両10の速度が規定値以内である場合は、処理がステップS143に進む。
In step S142, the light distribution information generation unit 1033 determines whether or not the speed of the vehicle 10 is within the specified value.
If the speed of the vehicle 10 is other than the specified value, the process proceeds to step S145.
On the other hand, if the speed of the vehicle 10 is within the specified value, the process proceeds to step S143.
 ステップS143では、配光情報生成部1033は、前照灯分割領域の明るさを決定する。
 ここで、配光情報生成部1033は、前照灯(左)110及び前照灯(右)120の各々の前照灯分割領域の照射範囲を表す情報として、左限角度と右限角度を予め記憶しているものとする。配光情報生成部1033は、図9のステップS134で決定した光照射範囲の角度と前照灯(左)110及び前照灯(右)120の各々の光照射範囲の角度とを比較し、点灯対象となる前照灯分割領域を決定する。例えば、配光情報生成部1033は、点灯対象となる前照灯分割領域の明るさを最大光量の80%、点灯対象とならない前照灯分割領域の明るさを最大光量の0%(つまり消灯)と設定する。前照灯分割領域の明るさは予め実験などを通じて値を決めておく。
In step S143, the light distribution information generation unit 1033 determines the brightness of the headlight division region.
Here, the light distribution information generation unit 1033 sets the left limit angle and the right limit angle as information representing the irradiation range of each headlight division region of the headlight (left) 110 and the headlight (right) 120. It is assumed that it is memorized in advance. The light distribution information generation unit 1033 compares the angle of the light irradiation range determined in step S134 of FIG. 9 with the angle of each light irradiation range of the headlight (left) 110 and the headlight (right) 120. Determine the headlight division area to be lit. For example, the light distribution information generation unit 1033 sets the brightness of the headlight division area to be lit to 80% of the maximum light amount and the brightness of the headlight division area not to be lit to 0% of the maximum light amount (that is, turns off). ). The brightness of the headlight division area is determined in advance through experiments and the like.
 ステップS144では、配光情報生成部1033は、光軸制御量を決定する。
 光軸制御量は、車線強調パターンと路肩上方強調パターンとで異なる値となる。配光情報生成部1033は、車線強調パターンでは路面照度が高まる配光になるように光軸を制御する。一方、路肩上方強調パターンでは、配光情報生成部1033は、ロービームの照射範囲よりも上方部分の明るさが高まる配光になるように光軸を制御する。
 光照射範囲に対する配光として、ハイビームを利用する場合で考える。ハイビームの照射範囲は上方を向いているため、路面を照らすには適していない。そこで、配光情報生成部1033は、光軸を下方に下げることにより路面を照らすように光軸制御量を決定する。光軸を下方に下げるための制御量(光軸を下げる角度)は、予め実験などを通じて決定しておく。例えば、光軸を下げた場合の照射範囲を測定しておき、配光情報生成部1033は、本照射範囲と光照射範囲の関係などから光軸を下方に下げるための制御量を決定する。例えば、配光情報生成部1033は、車両10の速度と光軸制御量の関係式(近似式)を記憶しておき、車両10の速度に基づき光軸制御量を決定する。
 なお、配光情報生成部1033は、ハイビームではなく、光照射範囲へ配光可能な専用光源が用いられている場合は、専用光源を用いる場合の光軸制御量を決定する。
In step S144, the light distribution information generation unit 1033 determines the optical axis control amount.
The optical axis control amount has different values for the lane enhancement pattern and the road shoulder upper enhancement pattern. The light distribution information generation unit 1033 controls the optical axis so that the light distribution increases the road surface illuminance in the lane enhancement pattern. On the other hand, in the road shoulder upper emphasis pattern, the light distribution information generation unit 1033 controls the optical axis so that the brightness of the portion above the irradiation range of the low beam is increased.
Consider the case where a high beam is used as the light distribution for the light irradiation range. Since the irradiation range of the high beam points upward, it is not suitable for illuminating the road surface. Therefore, the light distribution information generation unit 1033 determines the optical axis control amount so as to illuminate the road surface by lowering the optical axis downward. The control amount (angle for lowering the optical axis) for lowering the optical axis is determined in advance through experiments or the like. For example, the irradiation range when the optical axis is lowered is measured, and the light distribution information generation unit 1033 determines the control amount for lowering the optical axis from the relationship between the main irradiation range and the light irradiation range. For example, the light distribution information generation unit 1033 stores a relational expression (approximate expression) between the speed of the vehicle 10 and the optical axis control amount, and determines the optical axis control amount based on the speed of the vehicle 10.
When a dedicated light source capable of distributing light to the light irradiation range is used instead of the high beam, the light distribution information generation unit 1033 determines the optical axis control amount when the dedicated light source is used.
 図3のステップS12で選択された配光パターンが通常配光パターンである場合、または車両10の速度が規定値以外である場合は、ステップS145において、配光情報生成部1033が、前照灯分割領域の明るさと光軸制御量を初期状態に設定する。 If the light distribution pattern selected in step S12 of FIG. 3 is a normal light distribution pattern, or if the speed of the vehicle 10 is other than the specified value, in step S145, the light distribution information generation unit 1033 uses the headlights. Set the brightness of the divided area and the amount of optical axis control to the initial state.
 配光情報生成部1033は、ステップS143~ステップS145で求めた各前照灯分割領域の明るさ、光軸制御量に基づいて、前照灯(左)110及び前照灯(右)120の制御を行う。車両用前照灯における、各光源の点灯方法、光軸の制御(レベリングモータ制御)方法は既知であるため、説明を割愛する。 The light distribution information generation unit 1033 of the headlight (left) 110 and the headlight (right) 120 based on the brightness and the optical axis control amount of each headlight division region obtained in steps S143 to S145. Take control. Since the lighting method of each light source and the control method of the optical axis (leveling motor control) in the headlight for a vehicle are known, the description thereof is omitted.
***実施の形態の効果の説明***
  本実施の形態によれば、ドライバーが車線の線形を認識しにくいときに、ドライバーが車線の線形を認識しやすい配光を実現することができる。
  より具体的には、本実施の形態では、車線の線形の認識が困難な状況下において、車線の側線又は路肩設置物といった車線の線形の認識を高める効果のある物に強調して光を照射することで車線の線形を際立てることができる。この結果、ドライバーの車線の線形の認識を高めることができ、夜間又は悪天候時の安全走行に寄与することができる。
*** Explanation of the effect of the embodiment ***
According to the present embodiment, when it is difficult for the driver to recognize the lane alignment, it is possible to realize a light distribution that makes it easy for the driver to recognize the lane alignment.
More specifically, in the present embodiment, in a situation where it is difficult to recognize the lane alignment, light is focused on an object that has an effect of enhancing the recognition of the lane alignment, such as a lane side line or a roadside installation. By doing so, the alignment of the lane can be emphasized. As a result, the driver's recognition of the lane alignment can be enhanced, which can contribute to safe driving at night or in bad weather.
 実施の形態2.
 実施の形態1では、光照射範囲算出部1032が車両10の速度に基づいて光照射範囲を算出する。本実施の形態では、光照射範囲算出部1032は、天候情報を用いて光照射範囲を算出する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 2.
In the first embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range based on the speed of the vehicle 10. In the present embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range using the weather information.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
 光照射範囲算出部1032は、車両周辺情報より天候情報を取得する。天候情報に示される天候が大雨、降雪、霧などの悪天候である場合は、光照射範囲算出部1032は、図9のステップS134において車両10の速度に基づいて算出した光照射範囲よりも車両10側に狭めた範囲を光照射範囲と設定する。
 つまり、本実施の形態では、光照射範囲算出部1032は、認識向上配光パターン(車線強調パターン又は路肩上方強調パターン)で照射する光照射範囲を車両10の所在位置の現在の天候に応じて決定し、決定した光照射範囲を照射するように前照灯(左)110及び前照灯(右)120を制御する。
The light irradiation range calculation unit 1032 acquires the weather information from the vehicle surrounding information. When the weather indicated in the weather information is bad weather such as heavy rain, snowfall, fog, etc., the light irradiation range calculation unit 1032 has a light irradiation range 10 that is larger than the light irradiation range calculated based on the speed of the vehicle 10 in step S134 of FIG. The range narrowed to the side is set as the light irradiation range.
That is, in the present embodiment, the light irradiation range calculation unit 1032 sets the light irradiation range to be irradiated by the recognition improvement light distribution pattern (lane enhancement pattern or road shoulder upper enhancement pattern) according to the current weather at the location of the vehicle 10. The headlight (left) 110 and the headlight (right) 120 are controlled so as to irradiate the determined and determined light irradiation range.
 本実施の形態によれば、雨滴などによる光の拡散反射などに伴うドライバーへのグレアを低減しつつ、ドライバーの車線の線形への認識を高めることができる。 According to this embodiment, it is possible to increase the driver's recognition of the lane alignment while reducing glare to the driver due to diffuse reflection of light due to raindrops or the like.
実施の形態3.
 実施の形態1では、光照射範囲算出部1032が車両10の速度に基づいて光照射範囲を算出する。本実施の形態では、光照射範囲算出部1032は、障害物情報を用いて光照射範囲を算出する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 3.
In the first embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range based on the speed of the vehicle 10. In the present embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range using the obstacle information.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
 光照射範囲算出部1032は、車両周辺情報の障害物情報に含まれる周辺車両の所在位置及び/又は歩行者の所在位置を取得する。取得した周辺車両の所在位置及び/又は歩行者の所在位置が図9のステップS134において算出した光照射範囲に含まれる場合に、光照射範囲算出部1032は、周辺車両の所在位置及び/又は歩行者の所在位置を光照射範囲から除外する。
 つまり、本実施の形態では、光照射範囲算出部1032は、光照射範囲に移動体(周辺車両及び/又は歩行者)が存在するか否かを判定し、光照射範囲に移動体が所在する場合に、光照射範囲の移動体が所在する領域を照射しないように前照灯(左)110及び前照灯(右)120を制御する。
The light irradiation range calculation unit 1032 acquires the location position of the peripheral vehicle and / or the location position of the pedestrian included in the obstacle information of the vehicle peripheral information. When the acquired location position of the peripheral vehicle and / or the location position of the pedestrian is included in the light irradiation range calculated in step S134 of FIG. 9, the light irradiation range calculation unit 1032 uses the location position of the peripheral vehicle and / or walking. Exclude the location of the person from the light irradiation range.
That is, in the present embodiment, the light irradiation range calculation unit 1032 determines whether or not there is a moving body (peripheral vehicle and / or pedestrian) in the light irradiation range, and the moving body is located in the light irradiation range. In this case, the headlight (left) 110 and the headlight (right) 120 are controlled so as not to irradiate the area where the moving body in the light irradiation range is located.
 本実施の形態によれば、ドライバーの車線の線形への認識を高めるとともに、周辺交通者へのグレアを低減することができる。 According to this embodiment, it is possible to raise the driver's awareness of the alignment of the lane and reduce glare to surrounding traffic.
実施の形態4.
 実施の形態1では、実施の形態1では、配光情報生成部1033が、車両10が走行している車線の両側の光照射範囲の明るさを、同じ明るさに設定する。本実施の形態では、車両10が曲路を走行する場合に、配光情報生成部1033が、車線の内側の照度が車線の外側の照度よりも高くなるように明るさを設定する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 4.
In the first embodiment, in the first embodiment, the light distribution information generation unit 1033 sets the brightness of the light irradiation range on both sides of the lane in which the vehicle 10 is traveling to the same brightness. In the present embodiment, when the vehicle 10 travels on a curved road, the light distribution information generation unit 1033 sets the brightness so that the illuminance inside the lane is higher than the illuminance outside the lane.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
 ドライバーはカーブ(曲路)に進入してからカーブを抜けるまでの間のほとんどにおいて、タンジェントポイント(視点を通る直線とカーブ内側との接点)を注視していると言われている。光照射範囲算出部1032は、ドライバーのこのような特性に合わせてカーブ内側の状況がより分かり易くなるように光照射範囲を決定する。また、配光情報生成部1033は、カーブ内側を明るく、カーブ外側が暗くなるように明るさを設定する。
 つまり、本実施の形態では、配光情報生成部1033は、光照射範囲算出部1032により決定された光照射範囲が車線の曲路部分に該当するか否かを判定し、光照射範囲が車線の曲路部分に該当する場合に、車両10の進行方向での車線の内側の照度が車両10の進行方向での車線の外側の照度よりも高くなるように前照灯(左)110及び前照灯(右)120を制御する。
It is said that the driver pays close attention to the tangent point (the point of contact between the straight line passing through the viewpoint and the inside of the curve) most of the time from entering the curve to exiting the curve. The light irradiation range calculation unit 1032 determines the light irradiation range so that the situation inside the curve can be more easily understood according to such characteristics of the driver. Further, the light distribution information generation unit 1033 sets the brightness so that the inside of the curve is bright and the outside of the curve is dark.
That is, in the present embodiment, the light distribution information generation unit 1033 determines whether or not the light irradiation range determined by the light irradiation range calculation unit 1032 corresponds to the curved road portion of the lane, and the light irradiation range is the lane. Headlight (left) 110 and the front so that the light inside the lane in the direction of travel of the vehicle 10 is higher than the light outside the lane in the direction of travel of the vehicle 10 when it corresponds to the curved road portion of. Controls the light (right) 120.
 本実施の形態によれば、ドライバーが注視する方向が他の領域よりも明るくなることで、ドライバーの車線の線形への認識を高めることができる。 According to this embodiment, the direction in which the driver gazes is brighter than in other areas, so that the driver's awareness of the alignment of the lane can be enhanced.
実施の形態5.
 本実施の形態では、光照射範囲算出部1032は、道路標識の位置に基づき光照射範囲を算出する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 5.
In the present embodiment, the light irradiation range calculation unit 1032 calculates the light irradiation range based on the position of the road sign.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
 本実施の形態では、光照射範囲算出部1032は、高精度ロケータ141で求めた車両10の絶対位置と地図データベース142で保持している地図情報により、車両10の進行方向に存在する道路標識の位置を取得する。また、光照射範囲算出部1032は、車載カメラ131で撮影した画像を解析して道路標識の位置を取得してもよい。
 そして、取得した道路標識が一時停止の道路標識であり、図3のステップS12で選択された配光パターンが車線強調パターンである場合に、光照射範囲算出部1032は、道路標識位置付近の車線領域を光照射範囲に含める。
 つまり、本実施の形態では、光照射範囲算出部1032は、図9のステップS134において算出した光照射範囲の外に一時停止の道路標識が存在するか否かを判定し、光照射範囲の外に一時停止の道路標識が存在する場合に、ステップS134において算出した光照射範囲に加えて当該道路標識を照射するように前照灯(左)110及び前照灯(右)120を制御する。
 なお、ここでは、一例として一時停止の道路標識を説明したが、他の種類の道路標識(例えば、進入禁止の道路標識)が照射されるように光照射範囲を拡張してもよい。
In the present embodiment, the light irradiation range calculation unit 1032 uses the absolute position of the vehicle 10 obtained by the high-precision locator 141 and the map information held in the map database 142 to indicate the road sign existing in the traveling direction of the vehicle 10. Get the position. Further, the light irradiation range calculation unit 1032 may analyze the image taken by the vehicle-mounted camera 131 to acquire the position of the road sign.
When the acquired road sign is a stop road sign and the light distribution pattern selected in step S12 of FIG. 3 is a lane enhancement pattern, the light irradiation range calculation unit 1032 is in the lane near the road sign position. Include the area in the light irradiation range.
That is, in the present embodiment, the light irradiation range calculation unit 1032 determines whether or not there is a temporary stop road sign outside the light irradiation range calculated in step S134 of FIG. 9, and is outside the light irradiation range. When there is a temporary stop road sign, the headlight (left) 110 and the headlight (right) 120 are controlled so as to irradiate the road sign in addition to the light irradiation range calculated in step S134.
Although the road sign for a stop sign has been described here as an example, the light irradiation range may be expanded so that another type of road sign (for example, a road sign forbidden to enter) is irradiated.
 本実施の形態によれば、ドライバーが停止線の位置への認識を高めることができ、ドライバーの進行方向に対する認識を高めることができる。 According to the present embodiment, the driver can increase the recognition of the position of the stop line, and the driver can increase the recognition of the traveling direction.
 また、光照射範囲算出部1032は、表示装置(例えば、HUD160)に表示するイメージ画像との関係で光照射範囲を決定してもよい。以下では、HUD160に道路標識のイメージ画像を表示する例を説明する。
 光照射範囲算出部1032は、車両周辺情報より道路標識を検知した場合、統合制御装置150を介してHUD160に道路標識のイメージ画像を道路標識の位置に合わせて表示するよう指示する。HUD160は、指示に従い、道路標識のイメージ画像を道路標識の位置に合わせて表示する。HUD160へのイメージ画像の表示方法は既知であるため説明を割愛する。
 図3のステップS12で選択された配光パターンが車線強調パターン又は路肩上方強調パターンである場合に、配光情報生成部1033は、図9のステップS134において算出した光照射範囲に道路標識が存在しHUD160に道路標識のイメージ画像が道路標識の位置に合わせて表示されるか否かを判定する。光照射範囲に道路標識が存在しHUD160に道路標識のイメージ画像が道路標識の位置に合わせて表示される場合は、配光情報生成部1033は、HUD160上の道路標識のイメージ画像への視認性を高めるために、道路標識への照射を抑えるように前照灯(左)110及び前照灯(右)120を制御する。このように道路標識への照射を抑えることでHUD160に表示する道路標識のイメージ画像への視認性を高めることができる。
Further, the light irradiation range calculation unit 1032 may determine the light irradiation range in relation to the image image displayed on the display device (for example, HUD160). Hereinafter, an example of displaying an image of a road sign on the HUD 160 will be described.
When the road sign is detected from the vehicle surrounding information, the light irradiation range calculation unit 1032 instructs the HUD 160 to display the image of the road sign in accordance with the position of the road sign via the integrated control device 150. The HUD 160 displays an image of the road sign in accordance with the position of the road sign according to the instruction. Since the method of displaying an image on the HUD 160 is known, the description thereof is omitted.
When the light distribution pattern selected in step S12 of FIG. 3 is a lane enhancement pattern or a road shoulder upper enhancement pattern, the light distribution information generation unit 1033 has a road sign in the light irradiation range calculated in step S134 of FIG. It is determined whether or not the image of the road sign is displayed on the HUD 160 according to the position of the road sign. When there is a road sign in the light irradiation range and the image of the road sign is displayed on the HUD 160 according to the position of the road sign, the light distribution information generation unit 1033 has visibility to the image of the road sign on the HUD 160. The headlight (left) 110 and the headlight (right) 120 are controlled so as to suppress the irradiation of the road sign. By suppressing the irradiation of the road sign in this way, it is possible to improve the visibility of the image of the road sign displayed on the HUD 160.
 以上のような制御を行うことで、ドライバーが道路標識への認識を高めることができ、ドライバーの進行方向に対する認識を高めることができる。 By performing the above control, the driver can increase the awareness of the road sign and the driver's awareness of the direction of travel can be enhanced.
実施の形態6.
 本実施の形態では、車両10の前方を撮影した画像を解析して得られた車線の側線の輝度コントラスト値が閾値よりも低い場合に、配光パターン選択部1022が、認識向上配光パターンを選択する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 6.
In the present embodiment, when the luminance contrast value of the side line of the lane obtained by analyzing the image taken in front of the vehicle 10 is lower than the threshold value, the light distribution pattern selection unit 1022 selects the recognition-enhancing light distribution pattern. select.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明***
 図12は、本実施の形態に係る配光制御装置100の構成例を示す。
 図2と比較して、図12では、輝度コントラスト値算出部104が追加されている。輝度コントラスト値算出部104も配光制御プログラムにより実現される。
 また、本実施の形態では、図1に示す車載カメラ131は、車両10の前方の輝度情報を取得可能である。
 輝度コントラスト値算出部104は、車載カメラ131が取得した輝度情報より車両10の前方の輝度値を取得する。そして、輝度コントラスト値算出部104は、車線の側線の輝度値とアスファルト面の輝度値より、車線の側線の輝度コントラスト値を算出する。
 本実施の形態では、上述のように、車載カメラ131が輝度情報を取得可能なことを前提にする。車載カメラ131が輝度情報を取得できない場合は、輝度コントラスト値算出部104が車載カメラ131により撮影された車両10の前方の画像の画素値から輝度値を推定し、推定により得られた輝度値を用いて輝度コントラスト値を算出してもよい。例えば、事前に画素値と輝度値との対応関係を評価しておき、画素値と輝度値との間の変換テーブルを生成し、変換テーブルを補助記憶装置903に格納しておく。輝度コントラスト値算出部104は、変換テーブルを用いて画素値から輝度値を推定する。
*** Explanation of configuration ***
FIG. 12 shows a configuration example of the light distribution control device 100 according to the present embodiment.
Compared with FIG. 2, in FIG. 12, the luminance contrast value calculation unit 104 is added. The luminance contrast value calculation unit 104 is also realized by the light distribution control program.
Further, in the present embodiment, the vehicle-mounted camera 131 shown in FIG. 1 can acquire luminance information in front of the vehicle 10.
The luminance contrast value calculation unit 104 acquires the luminance value in front of the vehicle 10 from the luminance information acquired by the vehicle-mounted camera 131. Then, the luminance contrast value calculation unit 104 calculates the luminance contrast value of the lateral line of the lane from the luminance value of the lateral line of the lane and the luminance value of the asphalt surface.
In the present embodiment, as described above, it is premised that the vehicle-mounted camera 131 can acquire luminance information. When the in-vehicle camera 131 cannot acquire the luminance information, the luminance contrast value calculation unit 104 estimates the luminance value from the pixel value of the image in front of the vehicle 10 taken by the in-vehicle camera 131, and obtains the luminance value obtained by the estimation. It may be used to calculate the luminance contrast value. For example, the correspondence between the pixel value and the luminance value is evaluated in advance, a conversion table between the pixel value and the luminance value is generated, and the conversion table is stored in the auxiliary storage device 903. The luminance contrast value calculation unit 104 estimates the luminance value from the pixel values using the conversion table.
 本実施の形態では、配光パターン選択部1022は、車線の側線の輝度コントラスト値が閾値よりも低い場合に、認識向上配光パターンを選択する。 In the present embodiment, the light distribution pattern selection unit 1022 selects the recognition-enhancing light distribution pattern when the luminance contrast value of the lateral line of the lane is lower than the threshold value.
***動作の説明***
 図13は、本実施の形態に係る動作例を示す。
*** Explanation of operation ***
FIG. 13 shows an operation example according to the present embodiment.
 ステップS41において、図4に示した動作(ステップS121~ステップS129)が行われた後に、ステップS42において、配光パターン選択部1022は、ステップS41で選択された配光パターンが通常配光パターンであるか否かを判定する。
 ステップS41で選択された配光パターンが通常配光パターンでない場合は、処理が終了する。
 一方、ステップS41で選択された配光パターンが通常配光パターンである場合は、処理がステップS43に進む。
After the operation shown in FIG. 4 (steps S121 to S129) is performed in step S41, in step S42, the light distribution pattern selection unit 1022 uses the normal light distribution pattern as the light distribution pattern selected in step S41. Determine if it exists.
If the light distribution pattern selected in step S41 is not a normal light distribution pattern, the process ends.
On the other hand, if the light distribution pattern selected in step S41 is a normal light distribution pattern, the process proceeds to step S43.
 ステップS43では、配光パターン選択部1022が輝度コントラスト値算出部104に輝度コントラスト値の算出を指示し、輝度コントラスト値算出部104が車載カメラ131により取得された輝度情報から車線の側線の輝度コントラスト値を算出する。 In step S43, the light distribution pattern selection unit 1022 instructs the luminance contrast value calculation unit 104 to calculate the luminance contrast value, and the luminance contrast value calculation unit 104 instructs the luminance contrast value calculation unit 104 to calculate the luminance contrast of the side line of the lane from the luminance information acquired by the in-vehicle camera 131. Calculate the value.
 次に、ステップS44において、配光パターン選択部1022が、車線の側線の輝度コントラスト値が閾値より小さいか否かを判定する。閾値は、例えば、雨天夜間走行時において側線(白線)を視認可能と評価した際の輝度コントラスト値である。
 側線の輝度コントラスト値が閾値より小さい場合は、ドライバーが車線の線形を認識しにくい状態であるため、配光パターン選択部1022は、ステップS45において、車線強調パターンを選択する。
 側線の輝度コントラスト値が閾値より小さくない場合は、ステップS46において、配光パターン選択部1022は、引き続き通常配光パターンを選択する。
Next, in step S44, the light distribution pattern selection unit 1022 determines whether or not the luminance contrast value of the lateral line of the lane is smaller than the threshold value. The threshold value is, for example, a luminance contrast value when the lateral line (white line) is evaluated as visible when traveling at night in the rain.
When the luminance contrast value of the lateral line is smaller than the threshold value, it is difficult for the driver to recognize the alignment of the lane. Therefore, the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S45.
If the luminance contrast value of the lateral line is not smaller than the threshold value, in step S46, the light distribution pattern selection unit 1022 continues to select the normal light distribution pattern.
***実施の形態の効果の説明***
 本実施の形態によれば、路面が湿潤状態以外の状態でもドライバーが側線を認識しにくい場合は、側線を強調する配光を行うことで、側線のコントラストを高め、ドライバーの車線の線形への認識を高めることができる。
*** Explanation of the effect of the embodiment ***
According to the present embodiment, when it is difficult for the driver to recognize the lateral line even when the road surface is not in a wet state, the contrast of the lateral line is enhanced by performing a light distribution that emphasizes the lateral line, and the driver's lane is aligned. It can raise awareness.
実施の形態7.
 本実施の形態では、配光パターン選択部1022は、ドライバーの視覚的顕著性マップを解析して得られたドライバーが車線の側線を注視する確率が閾値よりも低い場合に、認識向上配光パターンを選択する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 7.
In the present embodiment, the light distribution pattern selection unit 1022 analyzes the visual saliency map of the driver, and when the probability that the driver gazes at the lateral line of the lane is lower than the threshold value, the recognition improvement light distribution pattern Select.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明***
 図13は、本実施の形態に係る配光制御装置100の構成例を示す。
 図2と比較して、図13では、視覚的顕著性マップ生成部105が追加されている。視覚的顕著性マップ生成部105も配光制御プログラムにより実現される。
 視覚的顕著性マップ生成部105は、車載カメラ131で撮影した車両10の前方の画像より視覚的顕著性マップを生成する。ここで、視覚的顕著性とは、人の注視の引き付けやすさを示す指標(人が注視する確率)である。そして、解析対象の画像から推定された各ピクセルを注視する確率である視覚的顕著性が表された画像を視覚的顕著性マップという。視覚的顕著性マップは、人が画像を見たときに注視しやすい部分を画像特徴量から推定する計算モデルを用いて生成される。本計算モデルについては、様々な手法が提案されており、既知であるため説明を割愛する。
*** Explanation of configuration ***
FIG. 13 shows a configuration example of the light distribution control device 100 according to the present embodiment.
In comparison with FIG. 2, in FIG. 13, a visual saliency map generation unit 105 is added. The visual saliency map generation unit 105 is also realized by the light distribution control program.
The visual saliency map generation unit 105 generates a visual saliency map from the image in front of the vehicle 10 taken by the vehicle-mounted camera 131. Here, the visual prominence is an index (probability of a person's gaze) indicating the ease of attracting a person's gaze. An image showing the visual saliency, which is the probability of gazing at each pixel estimated from the image to be analyzed, is called a visual saliency map. The visual saliency map is generated by using a computational model that estimates a part that is easy for a person to gaze at when looking at an image from an image feature amount. Various methods have been proposed for this calculation model, and since they are already known, explanations are omitted.
 本実施の形態では、配光パターン選択部1022は、視覚的顕著性マップ生成部105により生成されたドライバーの視覚的顕著性マップを解析して得られたドライバーが車線の側線を注視する確率が閾値よりも低い場合に、認識向上配光パターンを選択する。 In the present embodiment, the light distribution pattern selection unit 1022 has a probability that the driver obtained by analyzing the visual saliency map of the driver generated by the visual saliency map generation unit 105 gazes at the side line of the lane. When it is lower than the threshold value, the recognition improvement light distribution pattern is selected.
***動作の説明***
 図15は、本実施の形態に係る動作例を示す。
*** Explanation of operation ***
FIG. 15 shows an operation example according to the present embodiment.
 ステップS51において、図4に示した動作(ステップS121~ステップS129)が行われた後に、ステップS52において、配光パターン選択部1022は、ステップS51で選択された配光パターンが通常配光パターンであるか否かを判定する。
 ステップS51で選択された配光パターンが通常配光パターンでない場合は、処理が終了する。
 一方、ステップS51で選択された配光パターンが通常配光パターンである場合は、処理がステップS53に進む。
After the operation shown in FIG. 4 (steps S121 to S129) is performed in step S51, in step S52, the light distribution pattern selection unit 1022 uses the normal light distribution pattern as the light distribution pattern selected in step S51. Determine if it exists.
If the light distribution pattern selected in step S51 is not a normal light distribution pattern, the process ends.
On the other hand, if the light distribution pattern selected in step S51 is a normal light distribution pattern, the process proceeds to step S53.
 ステップS53では、配光パターン選択部1022が視覚的顕著性マップ生成部105に視覚的顕著性マップの生成を指示し、視覚的顕著性マップ生成部105が車載カメラ131により撮影された画像から視覚的顕著性マップを生成する。 In step S53, the light distribution pattern selection unit 1022 instructs the visual saliency map generation unit 105 to generate a visual saliency map, and the visual saliency map generation unit 105 visually recognizes the image taken by the vehicle-mounted camera 131. Generate a target saliency map.
 次に、ステップS54において、配光パターン選択部1022が、視覚的顕著性マップ生成部105により生成された視覚的顕著性マップを解析し、車線の側線が注視される確率を取得し、側線が注視される確率が閾値より小さいか否かを判定する。閾値は、例えば、雨天夜間走行時において側線(白線)を視認可能と評価した際の側線が注視される確率である。
 側線が注視される確率が閾値より小さい場合は、ドライバーが車線の線形を認識しにくい状態であるため、配光パターン選択部1022は、ステップS55において、車線強調パターンを選択する。
 側線が注視される確率が閾値より小さくない場合は、ステップS56において、配光パターン選択部1022は、引き続き通常配光パターンを選択する。
Next, in step S54, the light distribution pattern selection unit 1022 analyzes the visual saliency map generated by the visual saliency map generation unit 105, acquires the probability that the lateral line of the lane is gazed, and the lateral line is Determine if the probability of being gazed is less than the threshold. The threshold value is, for example, the probability that the lateral line (white line) is gazed at when the lateral line (white line) is evaluated as visible when traveling at night in rainy weather.
When the probability that the lateral line is gazed at is smaller than the threshold value, it is difficult for the driver to recognize the alignment of the lane. Therefore, the light distribution pattern selection unit 1022 selects the lane enhancement pattern in step S55.
If the probability that the lateral line is gazed at is not smaller than the threshold value, in step S56, the light distribution pattern selection unit 1022 continues to select the normal light distribution pattern.
***実施の形態の効果の説明***
 本実施の形態によれば、路面が湿潤状態以外の状態でもドライバーが側線を認識しにくい場合は、側線を強調する配光を行うことで、側線のコントラストを高め、ドライバーの車線の線形への認識を高めることができる。
*** Explanation of the effect of the embodiment ***
According to the present embodiment, when it is difficult for the driver to recognize the lateral line even when the road surface is not in a wet state, the contrast of the lateral line is enhanced by performing a light distribution that emphasizes the lateral line, and the driver's lane is aligned. It can raise awareness.
実施の形態8.
 本実施の形態に係る配光制御装置100は、図示は省略するが、図12に示した輝度コントラスト値算出部104及び図14に示した視覚的顕著性マップ生成部105を有するものとする。
 実施の形態1では、前照灯分割領域の明るさには、予め実験などを通じて決定された値が用いられる。
 本実施の形態では、実験などを通じて決定された値を用いて認識向上配光パターン(車線強調パターン又は路肩上方強調パターン)で照射領域が照射された際に、輝度コントラスト値算出部104による輝度コントラスト値の算出、または、視覚的顕著性マップ生成部105による視覚的顕著性マップの生成が行われる。そして、配光情報生成部1033は、車線の側線の輝度コントラスト値、または、ドライバーが車線の側線を注視する確率に基づき、認識向上配光パターンで照射する際の明るさを調整する。
 より具体的には、車線の側線の輝度コントラスト値、または、ドライバーが車線の側線を注視する確率が、それぞれの閾値よりも小さい場合は、配光情報生成部1033は、前照灯分割領域の明るさを強くする。一方で、車線の側線の輝度コントラスト値、または、ドライバーが車線の側線を注視する確率が、それぞれの閾値を大幅に上回る場合は、配光情報生成部1033は、前照灯分割領域の明るさを弱くする。
 車線の側線の輝度コントラスト値の閾値は、実施の形態6に示したように、例えば、雨天夜間走行時において側線(白線)を視認可能と評価した際の輝度コントラスト値である。
 また、ドライバーが車線の側線を注視する確率の閾値は、実施の形態7で示したように、例えば、雨天夜間走行時において側線(白線)を視認可能と評価した際の側線が注視される確率である。
Embodiment 8.
Although not shown, the light distribution control device 100 according to the present embodiment is assumed to have a luminance contrast value calculation unit 104 shown in FIG. 12 and a visual saliency map generation unit 105 shown in FIG.
In the first embodiment, a value determined in advance through an experiment or the like is used for the brightness of the headlight division region.
In the present embodiment, when the irradiation area is irradiated with the recognition-enhancing light distribution pattern (lane enhancement pattern or road shoulder upper enhancement pattern) using the values determined through experiments or the like, the luminance contrast value calculation unit 104 determines the luminance contrast. The value is calculated or the visual luminance map generation unit 105 generates the visual luminance map. Then, the light distribution information generation unit 1033 adjusts the brightness when irradiating with the recognition-enhancing light distribution pattern based on the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane.
More specifically, when the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane is smaller than each threshold value, the light distribution information generation unit 1033 determines the headlight division region. Increase the brightness. On the other hand, when the luminance contrast value of the side line of the lane or the probability that the driver gazes at the side line of the lane greatly exceeds each threshold value, the light distribution information generation unit 1033 determines the brightness of the headlight division region. To weaken.
As shown in the sixth embodiment, the threshold value of the luminance contrast value of the lateral line of the lane is, for example, the luminance contrast value when the lateral line (white line) is evaluated as visible when traveling at night in rainy weather.
Further, as shown in the seventh embodiment, the threshold value of the probability that the driver gazes at the lateral line of the lane is the probability that the lateral line is gazed at, for example, when the lateral line (white line) is evaluated to be visible during night driving in rainy weather. Is.
 本実施の形態によれば、ドライバーの車線の線形への認識を高めることができ、かつ、周辺交通者にグレアを与えない、適度な路面照度を実現することができる。 According to the present embodiment, it is possible to enhance the driver's awareness of the alignment of the lane and to realize an appropriate road surface illuminance that does not give glare to the surrounding traffic.
 以上、実施の形態1~8を説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 また、これらの実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
Although the embodiments 1 to 8 have been described above, two or more of these embodiments may be combined and implemented.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined and carried out.
In addition, the configurations and procedures described in these embodiments may be changed as necessary.
***ハードウェア構成の補足説明***
 最後に、配光制御装置100のハードウェア構成の補足説明を行う。
*** Supplementary explanation of hardware configuration ***
Finally, a supplementary explanation of the hardware configuration of the light distribution control device 100 will be given.
 補助記憶装置903には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、配光制御プログラムを実行する。
 プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、情報取得部101、情報解析部102、配光制御部103、輝度コントラスト値算出部104及び視覚的顕著性マップ生成部105の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、主記憶装置902、補助記憶装置903、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、配光制御プログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、配光制御プログラムが格納された可搬記録媒体を流通させてもよい。
The OS (Operating System) is also stored in the auxiliary storage device 903.
Then, at least a part of the OS is executed by the processor 901.
The processor 901 executes the light distribution control program while executing at least a part of the OS.
When the processor 901 executes the OS, task management, memory management, file management, communication control, and the like are performed.
Further, at least information, data, signal values, and variable values indicating the processing results of the information acquisition unit 101, the information analysis unit 102, the light distribution control unit 103, the brightness contrast value calculation unit 104, and the visual saliency map generation unit 105. Either is stored in at least one of the registers and cache memory in the main storage device 902, the auxiliary storage device 903, and the processor 901.
Further, the light distribution control program may be stored in a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disc, or a DVD. Then, a portable recording medium in which the light distribution control program is stored may be distributed.
 また、情報取得部101、情報解析部102、配光制御部103、輝度コントラスト値算出部104及び視覚的顕著性マップ生成部105の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 また、配光制御装置100は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 この場合は、情報取得部101、情報解析部102、配光制御部103、輝度コントラスト値算出部104及び視覚的顕著性マップ生成部105は、それぞれ処理回路の一部として実現される。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
Further, the "section" of the information acquisition unit 101, the information analysis unit 102, the light distribution control unit 103, the luminance contrast value calculation unit 104, and the visual saliency map generation unit 105 is referred to as a "circuit", "process", or "procedure". Alternatively, it may be read as "processing".
Further, the light distribution control device 100 may be realized by a processing circuit. The processing circuit is, for example, a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array).
In this case, the information acquisition unit 101, the information analysis unit 102, the light distribution control unit 103, the luminance contrast value calculation unit 104, and the visual saliency map generation unit 105 are each realized as a part of the processing circuit.
In this specification, the superordinate concept of the processor and the processing circuit is referred to as "processing circuit Lee".
That is, the processor and the processing circuit are specific examples of the "processing circuit Lee", respectively.
 10 車両、100 配光制御装置、101 情報取得部、102 情報解析部、103 配光制御部、104 輝度コントラスト値算出部、105 視覚的顕著性マップ生成部、110 前照灯(左)、120 前照灯(右)、130 センサ群、131 車載カメラ、132 レーダー装置、133 舵角センサ、134 車速センサ、141 高精度ロケータ、142 地図データベース、143 ドライバーモニタリング装置、144 車外通信装置、150 統合制御装置、160 HUD、901 プロセッサ、902 主記憶装置、903 補助記憶装置、904 通信インタフェース、1011 車両状態情報取得部、1012 車両周辺情報取得部、1013 ドライバー状態情報取得部、1021 状態判定部、1022 配光パターン選択部、1031 照射領域算出部、1032 光照射範囲算出部、1033 配光情報生成部。 10 vehicle, 100 light distribution control device, 101 information acquisition unit, 102 information analysis unit, 103 light distribution control unit, 104 brightness contrast value calculation unit, 105 visual prominence map generation unit, 110 headlight (left), 120 Headlight (right), 130 sensor group, 131 in-vehicle camera, 132 radar device, 133 steering angle sensor, 134 vehicle speed sensor, 141 high-precision locator, 142 map database, 143 driver monitoring device, 144 out-of-vehicle communication device, 150 integrated control Device, 160 HUD, 901 processor, 902 main storage device, 903 auxiliary storage device, 904 communication interface, 1011 vehicle status information acquisition unit, 1012 vehicle peripheral information acquisition unit, 1013 driver status information acquisition unit, 1021 status determination unit, 1022 distribution Light pattern selection unit, 1031 irradiation area calculation unit, 1032 light irradiation range calculation unit, 1033 light distribution information generation unit.

Claims (17)

  1.  車両の前照灯の配光を制御する配光制御装置であって、
     現在の状態が、前記車両が走行する車線の線形を前記車両のドライバーが認識しにくい状態であるか否かを判定する状態判定部と、
     前記状態判定部により前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定された場合に、前記ドライバーが前記車線の線形を認識しやすくなる配光パターンである認識向上配光パターンを選択する配光パターン選択部と、
     前記配光パターン選択部により選択された前記認識向上配光パターンで照射するように前記前照灯の配光を制御する配光制御部とを有する配光制御装置。
    It is a light distribution control device that controls the light distribution of the headlights of the vehicle.
    A state determination unit that determines whether or not the current state is a state in which it is difficult for the driver of the vehicle to recognize the alignment of the lane in which the vehicle is traveling.
    When the state determination unit determines that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane, the recognition improvement is a light distribution pattern that makes it easier for the driver to recognize the alignment of the lane. A light distribution pattern selection unit that selects a light distribution pattern,
    A light distribution control device having a light distribution control unit that controls the light distribution of the headlight so as to irradiate with the recognition-enhancing light distribution pattern selected by the light distribution pattern selection unit.
  2.  前記配光パターン選択部は、
     前記認識向上配光パターンとして、前記ドライバーが前記車線の線形を認識しにくい状態でないときに選択される配光パターンである通常配光パターンよりも前記車線の外縁への照射が多い配光パターンを選択する請求項1に記載の配光制御装置。
    The light distribution pattern selection unit is
    As the recognition-enhancing light distribution pattern, a light distribution pattern that irradiates the outer edge of the lane more than the normal light distribution pattern, which is a light distribution pattern selected when the driver is not in a state where it is difficult to recognize the alignment of the lane. The light distribution control device according to claim 1 to be selected.
  3.  前記状態判定部は、
     前記車線の路面の状態を解析し、前記車線の路面が濡れていると推定した場合に、前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定し、
     前記配光パターン選択部は、
     前記認識向上配光パターンとして、前記通常配光パターンよりも前記車線の側線への照射が多い配光パターンを選択する請求項2に記載の配光制御装置。
    The state determination unit
    When the state of the road surface of the lane is analyzed and it is estimated that the road surface of the lane is wet, it is determined that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane.
    The light distribution pattern selection unit is
    The light distribution control device according to claim 2, wherein as the recognition-enhancing light distribution pattern, a light distribution pattern that irradiates the lateral line of the lane more than the normal light distribution pattern is selected.
  4.  前記状態判定部は、
     前記車両の周囲の明るさを解析し、前記車両の周囲の明るさが不足していると推定した場合に、前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定し、
     前記配光パターン選択部は、
     前記認識向上配光パターンとして、前記通常配光パターンよりも前記車線の路肩の上方への照射が多い配光パターンを選択する請求項2に記載の配光制御装置。
    The state determination unit
    When the brightness around the vehicle is analyzed and it is estimated that the brightness around the vehicle is insufficient, it is determined that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane. death,
    The light distribution pattern selection unit is
    The light distribution control device according to claim 2, wherein as the recognition-enhancing light distribution pattern, a light distribution pattern that irradiates more above the road shoulder of the lane than the normal light distribution pattern is selected.
  5.  前記状態判定部は、
     前記ドライバーの状態を解析し、前記ドライバーの集中力が不足していると推定した場合に、前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定し、
     前記配光パターン選択部は、
     前記認識向上配光パターンとして、前記通常配光パターンよりも前記車線の路肩の上方への照射が多い配光パターンを選択する請求項2に記載の配光制御装置。
    The state determination unit
    When the state of the driver is analyzed and it is estimated that the driver's concentration is insufficient, it is determined that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane.
    The light distribution pattern selection unit is
    The light distribution control device according to claim 2, wherein as the recognition-enhancing light distribution pattern, a light distribution pattern that irradiates more above the road shoulder of the lane than the normal light distribution pattern is selected.
  6.  前記状態判定部は、
     前記ドライバーの視線移動及び前記ドライバーのハンドル操作の少なくともいずれかを解析して前記ドライバーの集中力が不足しているか否かを推定する請求項5に記載の配光制御装置。
    The state determination unit
    The light distribution control device according to claim 5, wherein at least one of the driver's line-of-sight movement and the driver's steering wheel operation is analyzed to estimate whether or not the driver's concentration is insufficient.
  7.  前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を前記車両の速度に応じて決定し、決定した前記光照射範囲を照射するように前記前照灯を制御する請求項1に記載の配光制御装置。
    The light distribution control unit is
    The light distribution control according to claim 1, wherein the light irradiation range to be irradiated by the recognition-enhancing light distribution pattern is determined according to the speed of the vehicle, and the headlight is controlled so as to irradiate the determined light irradiation range. Device.
  8.  前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を前記車両の所在位置の現在の天候に応じて決定し、決定した前記光照射範囲を照射するように前記前照灯を制御する請求項1に記載の配光制御装置。
    The light distribution control unit is
    According to claim 1, the light irradiation range to be irradiated by the recognition-enhancing light distribution pattern is determined according to the current weather at the location of the vehicle, and the headlight is controlled so as to irradiate the determined light irradiation range. The light distribution control device described.
  9.  前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を決定し、決定した前記光照射範囲に移動体が所在するか否かを判定し、前記光照射範囲に前記移動体が所在する場合に、前記光照射範囲の前記移動体が所在する領域を照射しないように前記前照灯を制御する請求項1に記載の配光制御装置。
    The light distribution control unit is
    The light irradiation range to be irradiated by the recognition-enhancing light distribution pattern is determined, it is determined whether or not the moving body is located in the determined light irradiation range, and when the moving body is located in the light irradiation range, the said. The light distribution control device according to claim 1, wherein the headlight is controlled so as not to irradiate the area where the moving body is located in the light irradiation range.
  10.  前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を決定し、決定した前記光照射範囲が前記車線の曲路部分に該当するか否かを判定し、前記光照射範囲が前記車線の曲路部分に該当する場合に、前記車両の進行方向での前記車線の内側の照度が前記車両の進行方向での前記車線の外側の照度よりも高くなるように前記前照灯を制御する請求項1に記載の配光制御装置。
    The light distribution control unit is
    The light irradiation range to be irradiated by the recognition improvement light distribution pattern is determined, it is determined whether or not the determined light irradiation range corresponds to the curved road portion of the lane, and the light irradiation range is the curved road portion of the lane. The first aspect of the present invention is to control the headlight so that the illuminance inside the lane in the traveling direction of the vehicle is higher than the illuminance outside the lane in the traveling direction of the vehicle. The light distribution control device described.
  11.  前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を決定し、決定した前記光照射範囲の外に道路標識が存在するか否かを判定し、前記光照射範囲の外に前記道路標識が存在する場合に、前記光照射範囲に加えて前記道路標識を照射するように前記前照灯を制御する請求項1に記載の配光制御装置。
    The light distribution control unit is
    The light irradiation range to be irradiated by the recognition-enhancing light distribution pattern is determined, it is determined whether or not a road sign exists outside the determined light irradiation range, and the road sign exists outside the light irradiation range. The light distribution control device according to claim 1, wherein the headlight is controlled so as to irradiate the road sign in addition to the light irradiation range.
  12.  前記車両には、HUD(Head-Up Display)が配置されており、
     前記配光制御部は、
     前記認識向上配光パターンで照射する光照射範囲を決定し、決定した前記光照射範囲に道路標識が存在し前記HUDに前記道路標識の位置に合わせて前記道路標識のイメージ画像が表示されるか否かを判定し、前記光照射範囲に道路標識が存在し前記HUDに前記道路標識の位置に合わせて前記道路標識のイメージ画像が表示される場合に、前記道路標識への照射を抑えるように前記前照灯を制御する請求項1に記載の配光制御装置。
    A HUD (Head-Up Display) is arranged in the vehicle.
    The light distribution control unit is
    Whether the light irradiation range to be irradiated by the recognition-enhancing light distribution pattern is determined, the road sign exists in the determined light irradiation range, and the image of the road sign is displayed on the HUD according to the position of the road sign. When it is determined whether or not the road sign is present in the light irradiation range and the image image of the road sign is displayed on the HUD in accordance with the position of the road sign, the irradiation of the road sign is suppressed. The light distribution control device according to claim 1, which controls the headlight.
  13.  前記配光パターン選択部は、
     前記車両の前方を撮影した画像を解析して得られた前記車線の側線の輝度コントラスト値が閾値よりも低い場合に、前記認識向上配光パターンを選択する請求項1に記載の配光制御装置。
    The light distribution pattern selection unit is
    The light distribution control device according to claim 1, wherein the recognition-enhancing light distribution pattern is selected when the luminance contrast value of the side line of the lane obtained by analyzing the image taken in front of the vehicle is lower than the threshold value. ..
  14.  前記配光パターン選択部は、
     前記ドライバーの視覚的顕著性マップを解析して得られた前記ドライバーが前記車線の側線を注視する確率が閾値よりも低い場合に、前記認識向上配光パターンを選択する請求項1に記載の配光制御装置。
    The light distribution pattern selection unit is
    The arrangement according to claim 1, wherein the recognition-enhancing light distribution pattern is selected when the probability that the driver gazes at the lateral line of the lane is lower than the threshold value obtained by analyzing the visual saliency map of the driver. Optical control device.
  15.  前記配光制御部は、
     既定の明るさ及び前記認識向上配光パターンで照射している際に前記車両の前方を撮影した画像を解析して得られた前記車線の側線の輝度コントラスト値、及び前記既定の明るさ及び前記認識向上配光パターンで照射している際の前記ドライバーの視覚的顕著性マップを解析して得られた前記ドライバーが前記車線の側線を注視する確率の少なくともいずれかに基づき、前記認識向上配光パターンで照射する際の明るさを調整する請求項1に記載の配光制御装置。
    The light distribution control unit is
    The luminance contrast value of the side line of the lane obtained by analyzing the image taken in front of the vehicle while irradiating with the predetermined brightness and the recognition-enhancing light distribution pattern, and the predetermined brightness and the said. The recognition-enhancing light distribution is based on at least one of the probabilities that the driver gazes at the side line of the lane obtained by analyzing the visual luminance map of the driver when irradiating with the recognition-enhancing light distribution pattern. The light distribution control device according to claim 1, wherein the brightness is adjusted when irradiating with a pattern.
  16.  車両の前照灯の配光を制御するコンピュータが、
     現在の状態が、前記車両が走行する車線の線形を前記車両のドライバーが認識しにくい状態であるか否かを判定し、
     前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定された場合に、前記ドライバーが前記車線の線形を認識しやすくなる配光パターンである認識向上配光パターンを選択し、
     選択された前記認識向上配光パターンで照射するように前記前照灯の配光を制御する配光制御方法。
    The computer that controls the light distribution of the vehicle's headlights
    It is determined whether or not the current state is a state in which it is difficult for the driver of the vehicle to recognize the alignment of the lane in which the vehicle is traveling.
    When it is determined that the current state is a state in which it is difficult for the driver to recognize the alignment of the lane, the recognition-enhancing light distribution pattern, which is a light distribution pattern that makes it easier for the driver to recognize the alignment of the lane, is selected. death,
    A light distribution control method for controlling the light distribution of the headlight so as to irradiate with the selected recognition-enhancing light distribution pattern.
  17.  車両の前照灯の配光を制御するコンピュータに、
     現在の状態が、前記車両が走行する車線の線形を前記車両のドライバーが認識しにくい状態であるか否かを判定する状態判定処理と、
     前記状態判定処理により前記現在の状態が前記ドライバーが前記車線の線形を認識しにくい状態であると判定された場合に、前記ドライバーが前記車線の線形を認識しやすくなる配光パターンである認識向上配光パターンを選択する配光パターン選択処理と、
     前記配光パターン選択処理により選択された前記認識向上配光パターンで照射するように前記前照灯の配光を制御する配光制御処理とを実行させる配光制御プログラム。
    For computers that control the light distribution of vehicle headlights,
    A state determination process for determining whether or not the current state is a state in which it is difficult for the driver of the vehicle to recognize the alignment of the lane in which the vehicle is traveling.
    When the current state is determined by the state determination process to be a state in which it is difficult for the driver to recognize the alignment of the lane, the recognition improvement is a light distribution pattern that makes it easier for the driver to recognize the alignment of the lane. Light distribution pattern selection process to select the light distribution pattern and
    A light distribution control program for executing a light distribution control process for controlling the light distribution of the headlight so as to irradiate with the recognition-enhancing light distribution pattern selected by the light distribution pattern selection process.
PCT/JP2020/033156 2020-09-01 2020-09-01 Light distribution control device, light distribution control method, and light distribution control program WO2022049648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/033156 WO2022049648A1 (en) 2020-09-01 2020-09-01 Light distribution control device, light distribution control method, and light distribution control program
JP2021501353A JP6929481B1 (en) 2020-09-01 2020-09-01 Light distribution control device, light distribution control method and light distribution control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033156 WO2022049648A1 (en) 2020-09-01 2020-09-01 Light distribution control device, light distribution control method, and light distribution control program

Publications (1)

Publication Number Publication Date
WO2022049648A1 true WO2022049648A1 (en) 2022-03-10

Family

ID=77456350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033156 WO2022049648A1 (en) 2020-09-01 2020-09-01 Light distribution control device, light distribution control method, and light distribution control program

Country Status (2)

Country Link
JP (1) JP6929481B1 (en)
WO (1) WO2022049648A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121916A1 (en) * 2022-12-06 2024-06-13 三菱電機株式会社 Headlight control device, headlight control method, and headlight control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321440A (en) * 1998-05-18 1999-11-24 Koito Mfg Co Ltd Lighting fixture device for vehicle
JP2011016505A (en) * 2009-07-10 2011-01-27 Koito Mfg Co Ltd Headlamp device for vehicle
JP2014017094A (en) * 2012-07-06 2014-01-30 Sharp Corp Lighting system and vehicular head lamp
JP2015003628A (en) * 2013-06-21 2015-01-08 株式会社小糸製作所 Lamp system for vehicle
JP2016068654A (en) * 2014-09-29 2016-05-09 三菱電機株式会社 Projection control system for vehicle and control method of image projection
JP2018043666A (en) * 2016-09-15 2018-03-22 株式会社小糸製作所 Vehicular lighting fixture system
JP2019121520A (en) * 2018-01-09 2019-07-22 株式会社Subaru Headlight device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6527679B2 (en) * 2014-09-30 2019-06-05 株式会社Subaru Vehicle headlight device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321440A (en) * 1998-05-18 1999-11-24 Koito Mfg Co Ltd Lighting fixture device for vehicle
JP2011016505A (en) * 2009-07-10 2011-01-27 Koito Mfg Co Ltd Headlamp device for vehicle
JP2014017094A (en) * 2012-07-06 2014-01-30 Sharp Corp Lighting system and vehicular head lamp
JP2015003628A (en) * 2013-06-21 2015-01-08 株式会社小糸製作所 Lamp system for vehicle
JP2016068654A (en) * 2014-09-29 2016-05-09 三菱電機株式会社 Projection control system for vehicle and control method of image projection
JP2018043666A (en) * 2016-09-15 2018-03-22 株式会社小糸製作所 Vehicular lighting fixture system
JP2019121520A (en) * 2018-01-09 2019-07-22 株式会社Subaru Headlight device

Also Published As

Publication number Publication date
JPWO2022049648A1 (en) 2022-03-10
JP6929481B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US9527429B2 (en) Method and device for controlling a light emission of at least one headlight of a vehicle
US9371031B2 (en) Method for controlling a headlamp system for a vehicle, and headlamp system
JP5097648B2 (en) Headlamp control device and vehicle headlamp device
US8862336B2 (en) Method for controlling a headlamp system for a vehicle, and headlamp system
CN103874931B (en) For the method and apparatus of the position of the object in the environment for asking for vehicle
US9340148B2 (en) Method and control unit for distance-dependent adjustment of the illumination range of a lighting system for a vehicle
US8892301B2 (en) Apparatus and method for controlling head lamp of vehicle
US20130051042A1 (en) Method for controlling a light emission of a headlight of a vehicle
EP3475121B1 (en) Imaging system with adaptive high beam control
US9586515B2 (en) Method and device for recognizing an illuminated roadway ahead of a vehicle
US11400857B2 (en) Method for operating a high-beam assistance system of a motor vehicle
JP5361901B2 (en) Headlight control device
US11571969B2 (en) External communication suppression device for driving automation
US9376052B2 (en) Method for estimating a roadway course and method for controlling a light emission of at least one headlight of a vehicle
JP5481074B2 (en) Lighting environment determination apparatus and program
JP6929481B1 (en) Light distribution control device, light distribution control method and light distribution control program
WO2022244085A1 (en) Headlight control device, headlight control system, and headlight control method
JP7511788B2 (en) Headlight control device and headlight control method
WO2024047777A1 (en) Headlight control device and headlight control method
WO2024121916A1 (en) Headlight control device, headlight control method, and headlight control system
JP2024014291A (en) Road surface drawing system
KR20240027333A (en) Simulation image generation method and system for ADB evaluation of test vehicle, and ADB evaluation system using thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021501353

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952388

Country of ref document: EP

Kind code of ref document: A1