WO2023166684A1 - Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent - Google Patents
Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent Download PDFInfo
- Publication number
- WO2023166684A1 WO2023166684A1 PCT/JP2022/009222 JP2022009222W WO2023166684A1 WO 2023166684 A1 WO2023166684 A1 WO 2023166684A1 JP 2022009222 W JP2022009222 W JP 2022009222W WO 2023166684 A1 WO2023166684 A1 WO 2023166684A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- vegetable protein
- improving agent
- food
- plant protein
- Prior art date
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 42
- 235000021118 plant-derived protein Nutrition 0.000 title abstract description 10
- 108010064851 Plant Proteins Proteins 0.000 title abstract 9
- 235000013361 beverage Nutrition 0.000 title abstract 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 28
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical class C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims abstract description 27
- 235000004279 alanine Nutrition 0.000 claims abstract description 27
- 239000004310 lactic acid Substances 0.000 claims abstract description 24
- 235000014655 lactic acid Nutrition 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Chemical class 0.000 claims abstract description 19
- 239000004480 active ingredient Substances 0.000 claims abstract description 17
- 108010082495 Dietary Plant Proteins Proteins 0.000 claims description 104
- 235000018102 proteins Nutrition 0.000 claims description 49
- 108090000623 proteins and genes Proteins 0.000 claims description 49
- 102000004169 proteins and genes Human genes 0.000 claims description 49
- 239000000796 flavoring agent Substances 0.000 claims description 34
- 235000013339 cereals Nutrition 0.000 claims description 31
- 235000019634 flavors Nutrition 0.000 claims description 31
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 27
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 27
- 230000000704 physical effect Effects 0.000 claims description 25
- 235000013372 meat Nutrition 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 14
- 241000251468 Actinopterygii Species 0.000 claims description 10
- 235000021374 legumes Nutrition 0.000 claims description 9
- 235000013336 milk Nutrition 0.000 claims description 6
- 239000008267 milk Substances 0.000 claims description 6
- 210000004080 milk Anatomy 0.000 claims description 6
- 244000144972 livestock Species 0.000 claims description 3
- 235000019629 palatability Nutrition 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 235000010469 Glycine max Nutrition 0.000 description 64
- 244000068988 Glycine max Species 0.000 description 59
- 238000012360 testing method Methods 0.000 description 56
- 235000015220 hamburgers Nutrition 0.000 description 32
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical group CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 28
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 27
- 239000001527 calcium lactate Substances 0.000 description 27
- 235000011086 calcium lactate Nutrition 0.000 description 27
- 229960002401 calcium lactate Drugs 0.000 description 27
- 239000000047 product Substances 0.000 description 21
- 235000019640 taste Nutrition 0.000 description 19
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 18
- 239000000835 fiber Substances 0.000 description 18
- 239000001540 sodium lactate Substances 0.000 description 18
- 235000011088 sodium lactate Nutrition 0.000 description 18
- 229940005581 sodium lactate Drugs 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 16
- 235000002639 sodium chloride Nutrition 0.000 description 16
- 108010084695 Pea Proteins Proteins 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 235000019702 pea protein Nutrition 0.000 description 13
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 description 13
- 239000001521 potassium lactate Substances 0.000 description 13
- 235000011085 potassium lactate Nutrition 0.000 description 13
- 229960001304 potassium lactate Drugs 0.000 description 13
- YVBAUDVGOFCUSG-UHFFFAOYSA-N 2-pentylfuran Chemical compound CCCCCC1=CC=CO1 YVBAUDVGOFCUSG-UHFFFAOYSA-N 0.000 description 12
- 235000013322 soy milk Nutrition 0.000 description 12
- 240000007594 Oryza sativa Species 0.000 description 10
- 235000007164 Oryza sativa Nutrition 0.000 description 10
- 235000021329 brown rice Nutrition 0.000 description 10
- 230000001143 conditioned effect Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 235000009566 rice Nutrition 0.000 description 10
- 235000019688 fish Nutrition 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 235000010749 Vicia faba Nutrition 0.000 description 7
- 240000006677 Vicia faba Species 0.000 description 7
- 235000002098 Vicia faba var. major Nutrition 0.000 description 7
- 229960003767 alanine Drugs 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 240000004713 Pisum sativum Species 0.000 description 6
- 235000010582 Pisum sativum Nutrition 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000006072 paste Substances 0.000 description 6
- 108010073771 Soybean Proteins Proteins 0.000 description 5
- 235000013527 bean curd Nutrition 0.000 description 5
- 235000019658 bitter taste Nutrition 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- 239000003039 volatile agent Substances 0.000 description 5
- 239000004278 EU approved seasoning Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 244000062793 Sorghum vulgare Species 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 235000008429 bread Nutrition 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 235000011194 food seasoning agent Nutrition 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000019713 millet Nutrition 0.000 description 4
- 235000012149 noodles Nutrition 0.000 description 4
- 235000016709 nutrition Nutrition 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- 229960000448 lactic acid Drugs 0.000 description 3
- 235000014593 oils and fats Nutrition 0.000 description 3
- 229940001941 soy protein Drugs 0.000 description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 240000001417 Vigna umbellata Species 0.000 description 2
- 235000011453 Vigna umbellata Nutrition 0.000 description 2
- 235000021120 animal protein Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229940001447 lactate Drugs 0.000 description 2
- 150000003893 lactate salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 235000015927 pasta Nutrition 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000021067 refined food Nutrition 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 235000014102 seafood Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002470 solid-phase micro-extraction Methods 0.000 description 2
- 235000019614 sour taste Nutrition 0.000 description 2
- 229940071440 soy protein isolate Drugs 0.000 description 2
- 235000019710 soybean protein Nutrition 0.000 description 2
- 235000013599 spices Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 244000239348 Echinochloa crus galli var. praticola Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 240000005856 Lyophyllum decastes Species 0.000 description 1
- 235000013194 Lyophyllum decastes Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 235000006089 Phaseolus angularis Nutrition 0.000 description 1
- 241001098054 Pollachius pollachius Species 0.000 description 1
- 241000785681 Sander vitreus Species 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 240000007098 Vigna angularis Species 0.000 description 1
- 235000010711 Vigna angularis Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000003084 food emulsifier Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000008519 pasta sauces Nutrition 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 235000020266 pea milk Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000019600 saltiness Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
- A23J3/16—Vegetable proteins from soybean
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L13/00—Meat products; Meat meal; Preparation or treatment thereof
- A23L13/40—Meat products; Meat meal; Preparation or treatment thereof containing additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
- A23L27/21—Synthetic spices, flavouring agents or condiments containing amino acids
Definitions
- the present invention relates to a vegetable protein flavor improving agent, a vegetable protein physical property improving agent, and a food or drink containing the same.
- Food and drink containing legumes such as soybeans, barley such as wheat, and cereals such as rice are rich in vegetable protein and have high nutritional value.
- Patent Documents 2 and 3 Techniques using trehalose for such foods and drinks are known (Patent Documents 2 and 3), and only the taste and odor are described, but the measurement of physical properties is not mentioned. It is not even clear if it has improved.
- an object of the present invention is to provide a technique for improving the flavor and physical properties of foods and drinks that use vegetable protein to increase the palatability.
- the present inventors have made intensive studies to solve the above problems, and found that one or more selected from the group consisting of lactic acid, its metal salts, and alanine is the flavor of food and drink using vegetable protein.
- the present inventors have completed the present invention based on the discovery that the properties can be improved.
- the present invention is a vegetable protein flavor improving agent characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
- the present invention is a vegetable protein physical property improving agent characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
- the present invention is a food or drink characterized by containing vegetable protein and one or more selected from the group consisting of lactic acid, its metal salts, and alanine.
- the flavor improver and physical property improver for vegetable protein of the present invention improve the flavor of vegetable protein such as bitterness, grassy odor and off-flavour, and physical properties such as breaking strength, brittleness and elasticity, thereby improving palatability. can be high.
- the food and drink of the present invention contain vegetable protein, they are highly palatable and can be ingested on a daily basis.
- FIG. 10 shows the results of breaking strength analysis of soybean hamburgers of Test Example 7.
- FIG. 10 is a diagram showing the results of analysis (bitterness/off-flavour) of the soybean hamburger steak of Test Example 2 using a taste sensor.
- FIG. 10 is a diagram showing the results of analysis (complex taste/ripened taste) of the soybean hamburger of Test Example 2 using a taste sensor.
- Fig. 12 is a diagram showing the results of volatile component analysis of soy protein in Test Example 12 (upper: soy protein/no addition group, lower: soy protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- Fig. 12 is a diagram showing the results of volatile component analysis of soy protein in Test Example 12 (upper: soy protein/no addition group, lower: soy protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- FIG. 2 shows the results of volatile component analysis of pea protein in Test Example 12 (upper: pea protein/no addition group, lower: pea protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- Fig. 3 is a diagram showing the results of volatile component analysis of broad bean protein in Test Example 12 (upper: broad bean protein/no addition group, lower: broad bean protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- Fig. 3 is a diagram showing the results of volatile component analysis of broad bean protein in Test Example 12 (upper: broad bean protein/no addition group, lower: broad bean protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- Fig. 3 is a diagram showing the results of volatile component analysis of broad bean protein in Test Example 12 (upper: broad bean protein/no addition group
- FIG. 2 is a diagram showing the results of volatile component analysis of brown rice protein of Test Example 12 (upper: brown rice protein/no addition group, lower: brown rice protein/5% calcium lactate addition group: compound 1 in the figure is hexanal; Compound 2 shows 2-pentyl furan.).
- the vegetable protein flavor improving agent of the present invention contains, as an active ingredient, one or more selected from the group consisting of lactic acid, its metal salts, and alanine.
- metal salts of lactic acid include calcium lactate, sodium lactate and potassium lactate.
- Commercially available lactic acid, calcium lactate, sodium lactate, potassium lactate, and alanine can be used in the form of DL-, D-, and L-forms without particular limitations.
- lactic acid, calcium lactate, sodium lactate and potassium lactate are preferred, and calcium lactate, sodium lactate and potassium lactate are more preferred.
- the vegetable protein flavor improving agent of the present invention is added with 1 selected from the group consisting of lactic acid, its metal salts, and alanine. Seeds or two or more may be added to contain 0.01 to 10% by mass (hereinafter simply referred to as "%") of the vegetable protein.
- % 0.01 to 10% by mass
- the vegetable protein's bitterness, grassy odor, off-taste, and other flavors are enhanced. can be improved.
- vegetable protein refers to those containing plant-derived protein contained in plants.
- this vegetable protein for example, not only "vegetable protein” specified in Japanese Agricultural Standards (JAS) 0838 (Ministry of Agriculture, Forestry and Fisheries Notification No. 679 on August 19, 2019), but also beans Alternatively, cereal powder, beans or cereal milk, and the like can be mentioned.
- JS Japanese Agricultural Standards
- "vegetable protein” is defined as a product that has been processed to increase the protein content by processing seeds and nuts for oil extraction such as soybeans or their defatted products, or grain powders such as wheat (main raw material). It gives functions such as gel formation, emulsification, or chewiness by physical action such as heating and pressure, and is molded into powder, paste, granules or fibers, and the vegetable protein content (mainly The protein content derived from the raw material, the value converted to anhydride) exceeds 50%, or the above ingredients include edible oils and fats, salt, starch, quality improvers, emulsifiers, antioxidants, Colorants, fragrances, seasonings, etc.
- the beans used as raw materials are seeds for oil extraction such as soybeans
- the beans targeted by the present invention are not limited to seeds for oil extraction.
- the protein content can be measured by a known method such as the Kjeldahl method, as described in this standard.
- Separated protein is, for example, protein that is separated from defatted beans.
- Extracted protein is, for example, water-extracted from defatted beans and dried.
- Concentrated protein is made by washing defatted beans with a solvent so as not to elute the protein, removing sugars, odorants, coloring substances, etc. contained in the beans, and increasing the protein content. It is then dried.
- protein content For example, if defatted soybeans are the main raw material, isolated protein is 93-97%, extracted protein is 50-60%, and concentrated protein is If present, it has a protein content of 60-70%.
- the above “vegetable protein” can be further divided into powdered vegetable protein, pasty vegetable protein, granular vegetable protein, and fibrous vegetable protein.
- Powdered vegetable protein is dried and powdered from "vegetable protein", and the particles pass through a test sieve with an opening of 500 ⁇ m specified in JIS Z 8801-1. and a granulated product.
- Paste-like vegetable protein is paste-like or curd-like "vegetable protein”.
- Granular vegetable protein is "vegetable protein” that has been shaped into grains or flakes and has a meat-like texture.
- the fibrous vegetable protein is a type of "vegetable protein” formed into fibrous form and having a meat-like structure.
- the presence or absence of defatting, the operation for increasing the protein content, the shape, etc. can be used alone or in combination as appropriate.
- soybeans and wheat as the main raw materials, they are not limited to these.
- grains such as rice (including brown rice), millet, millet, barnyard millet, oats, corn and rice bran can also be used. Cereals are sometimes considered to include legumes, but as used herein, grains do not include legumes.
- those derived from beans or grains are preferable.
- those derived from soybeans, peas, and fava beans are more preferable.
- those derived from cereals those derived from brown rice are more preferable.
- the above beans or cereal powder is obtained by pulverizing defatted or non-defatted beans or cereals into powder. Specifically, defatted soybean flour, kinako (roasted soybean flour), brown rice powder, rice flour, pea powder, faba powder, and the like are used.
- the milk of beans or cereals is a filtrate obtained by adding water to defatted or non-defatted beans or cereals, grinding, and filtering, and has a solid content of, for example, about 7%.
- soy milk derived from soybeans
- pea milk derived from peas
- soy milk is preferred, and soy milk is more preferred.
- the above vegetable proteins can be used singly or in combination of two or more.
- the vegetable protein described above can also be combined with a commercially available plant-derived alternative to animal protein.
- the vegetable protein physical property improving agent of the present invention contains one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients. It contains as The metal salt of lactic acid, the content as an active ingredient, and the vegetable protein that improves the physical properties are the same as those of the vegetable protein flavor improver of the present invention.
- the vegetable protein physical property improving agent of the present invention is obtained by combining one or more selected from the group consisting of lactic acid, its metal salts, and alanine in the above amounts with the vegetable protein. Physical properties such as breaking strength, brittleness and elasticity of white can be improved.
- the flavor improving agent for vegetable protein and the physical property improving agent for vegetable protein of the present invention can contain other food materials, if necessary, to the extent that the flavor and physical properties are not impaired.
- food materials include yeast extracts, nucleic acid-based seasonings, saccharides, polysaccharide thickeners, animal proteins, and the like.
- the food and drink containing is excellent in the flavor and physical properties of the vegetable protein.
- Food and drink are not particularly limited as long as they contain the vegetable protein described above.
- Specific examples of food and drink include soybean flour, soymilk, tofu, processed soybean products (soybean hamburgers), bean curd refuse, red bean paste, pasta, snacks, etc., which are made from peas, and fava beans.
- Meat-like processed foods, vegetable seafood, and other foods and drinks containing vegetable protein derived from beans such as red bean paste made from adzuki beans are exemplified.
- vegetable proteins derived from cereals include, for example, rice (cooked rice) made from rice, bread, noodles, cereals, dumpling skins, etc., and rice (cooked rice) made from brown rice.
- the food and drink may be a food and drink that partially contains the above-described vegetable protein-containing food and drink.
- Specific food and drink products include tofu hamburgers, kamaboko pastes, soy milk, pasta (pasta sauce), tuna, and the like.
- food and drink examples include, but are not limited to, beef, pork, and chicken.
- the fish meat is not particularly limited, but examples thereof include walleye pollack, rays, sharks, lizards, guji, tuna, and bonito.
- Food and drink containing vegetable protein and livestock meat include, for example, hamburgers containing minced meat and defatted soybean processed products, fried chicken, meat buns, steamed dumplings, and meat dumplings.
- Food and drink products containing vegetable protein and fish meat include, for example, fish paste products such as boiled fish paste containing vegetable protein and fish meat, fish sausages, and flakes.
- the above-described food and drink may contain one or more selected from the group consisting of lactic acid, its metal salts, and alanine at any stage of cooking or processing in a normal food and drink manufacturing method.
- the method of incorporating one or more selected from the group consisting of lactic acid, its metal salts, and alanine in food and drink is not particularly limited, but it may be used as a powder or after being made into an aqueous solution, for example, by spraying, immersing, or kneading. and the like, preferably by spraying or kneading to include in the food or drink.
- Vegetable protein Extracted or concentrated protein from soybeans, soymilk from soybeans Active ingredients: Lactic acid, calcium lactate, sodium lactate, potassium lactate, alanine
- Vegetable protein Isolated protein from beans other than soybeans, extracted protein , concentrated protein, soymilk of beans other than soybeans, vegetable protein derived from cereals Active ingredients: calcium lactate, sodium lactate, potassium lactate, alanine When combined with protein, calcium lactate, sodium lactate, and potassium lactate were confirmed to have the effect of suppressing the grassy smell of legumes. confirmed.)
- Vegetable protein soy protein isolate Active ingredients: sodium lactate, potassium lactate, alanine is more juicy.
- Vegetable protein Protein extract or protein concentrate from soybeans Active ingredients: Calcium lactate, sodium lactate, potassium lactate, alanine
- Vegetable protein Isolated protein from beans other than soybeans, protein extract, protein concentrate, grains
- Vegetable protein derived Active ingredients Calcium lactate, sodium lactate, potassium lactate, alanine
- Vegetable protein Soy protein isolate Active ingredients: Sodium lactate, potassium lactate, alanine When combined, it makes it more moist and reduces the poor adhesion that crumbles and is brittle.Calcium lactate improves the texture and brings it closer to a meat-like texture.
- Example 1 Production of soy hamburgers After adding the additives shown in Table 2 to the soybean hamburger base having the formulation shown in Table 1, the mixture was kneaded by hand for 5 minutes in the same manner as a normal hamburger. 200 g of the mixture was weighed out, the air was removed, and the mixture was packed in a mold with a diameter of 8.5 cm and molded to produce a soybean hamburger steak by standardizing the operation.
- Test example 1 Soy hamburger sensory test The soybean hamburger steaks of test groups 1 to 8 obtained in Example 1 were baked on a hot plate at 200° C. for 5 minutes on each side, and then allowed to cool to room temperature. This soybean hamburger was eaten by 10 panelists and evaluated according to the first criteria for grassy smell and juiciness. The results are shown in Table 3. The results of free evaluation of flavor, texture, etc. are also shown.
- Test example 2 Analysis of soy hamburger by taste sensor: The soybean hamburger produced in Example 1 was measured using a taste recognition device TS5000Z (manufactured by Intelligent Sensor Technology Co., Ltd.) at the Taste and Aroma Strategic Research Institute. Among them, the bitterness and rough taste of calcium lactate in test group 5 (Fig. 2) and the complex taste and aged taste of sodium lactate in test group 6 (Fig. 3) are shown.
- TS5000Z manufactured by Intelligent Sensor Technology Co., Ltd.
- each hamburger was diluted 5 times with pure water at 60°C and pulverized and mixed in a blender. Next, the mixture was centrifuged at 3,000 rpm for 10 minutes, filtered through a non-woven fabric after cooling, and oil and fat were removed with an oil-removing sheet to obtain a sample.
- the soybean protein used as the raw material has a reduced bitterness and off-flavour, and is comparable to the hamburger of test group 2. It was found that when sodium lactate and potassium lactate were used, the hamburger steak of Test Group 2 had a complex taste and aged taste comparable to those of the hamburger steak.
- Example 2 Preparation of soy milk: The additives shown in Table 4 were weighed against non-adjusted soymilk (solid content of 9% or more). It was prepared uniformly by sufficiently stirring with a stirrer.
- Test example 3 Sensory test of soy milk: The soymilk of test groups 1 to 5 obtained in Example 2 was eaten by 10 panelists, and the grassy smell was evaluated according to the same evaluation criteria as the first evaluation. The results are shown in Table 5.
- Kamaboko was produced according to the recipe shown in Table 6 according to a conventional method.
- Test example 4 Sensory test of kamaboko with pea protein: The kamaboko of Test Groups 1 and 2 obtained in Example 3 were heated in a water bath at 90° C. for 30 minutes and cooled at room temperature for 1 hour or more. This pea protein-containing kamaboko was eaten by 10 panelists and evaluated according to the same evaluation criteria as those for showing the grassy smell at the beginning. The results are shown in Table 8. In addition, the results of free evaluation of other flavor and the like are also shown.
- Test example 5 Kamaboko sensory test: The kamaboko prepared in Example 9 was evaluated by 10 panelists for grassiness according to the same evaluation criteria as the first described criteria. The results are shown in Table 10. In addition, the contents of the free evaluation of the flavor and the like are also described.
- the green odor (taste and smell) of kamaboko mixed with pea protein was reduced by the addition of sodium lactate and calcium lactate, but calcium lactate was superior.
- the addition of sodium lactate made it slightly saltier.
- Kamaboko mixed with fava bean protein and brown rice protein had a reduced grassy smell (taste and smell) due to the addition of sodium lactate.
- the saltiness was slightly stronger.
- the brown rice protein had an unpleasant odor and taste like rice bran, which was considerably reduced by the addition of sodium lactate.
- Example 5 Preparation of powdery pea protein aqueous solution: 0.5 g of powdered pea protein (non-defatted, isolated protein, powdered, protein content of 80% or more) was diluted 10-fold with pure water in a screw-cap bottle. Prepared as described in Table 11 for pea protein.
- Test example 6 Sensory test of aqueous solution with pea protein: Ten panelists evaluated the odor of the aqueous solution prepared in Example 5, which was heated in a constant temperature bath at 60°C for 120 minutes. Evaluation was made by a point addition system in which 3 points, 2 points, and 1 point are added in order from the one with the strongest smell of peas. The results are shown in Table 12.
- Example 6 Production of soy hamburgers: Based on the soybean hamburger with the formulation in Table 1 of Example 1, after adding the additives listed in Table 2, knead by hand for 5 minutes in the same way as a normal hamburger, remove the air, weigh 50 g and measure 6 cm in diameter. packed in a mold. The thickness was about 2 cm.
- the elasticity in the present invention means that the greater the breaking strain rate, the stronger the elasticity. In addition, it means that the greater the drop of the crest at the breaking point, the greater the brittleness. From the strength measurement results, it was found that the non-additive group had greater brittleness and less elasticity than the control group. Due to the presence of defatted soybean processed products, the size of the grains in the hamburger steak differs, making it brittle and easy to crumble. However, in the sodium lactate addition group of test group 6 and the potassium lactate addition group of test group 7, the brittleness that occurs in the defatted soybean processed product was reduced, and it was considered that the texture contributed to the improvement of moistness and juiciness.
- the calcium lactate addition group of test group 5 showed a waveform similar to that of test group 2, and a tendency to improve elasticity compared to the non-addition group was observed. From this, it was shown that it is possible to improve physical properties by adding lactates. It was considered that the alanine addition group had little effect on the physical properties and showed an effect only in terms of flavor.
- Test example 8 Volatile component analysis of soy hamburgers: The soybean hamburger pieces used in Test Example 6 were crushed by hand into a size that fits in a vial for GC/MS, packed in 5g portions, and stored in a refrigerator at -25°C. This was thawed in a constant temperature bath at 3°C for measurement.
- the vial was placed on a heater set at 60° C. ( ⁇ 2° C.) and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min), the adsorbed part was desorbed, and the volatile components of the soybean hamburger were measured under the following conditions.
- Hexanal which is one of the substances that cause the grassy smell of soybeans, decreased in the test plots to which lactate and alanine were added, compared to the additive-free test plot 1. This proved that the grassy smell of soybeans could be reduced in test plots 3 to 8.
- Example 7 Preparation of defatted soybean processed product aqueous solution: 5 g of the defatted soybean product (same as that used in Example 1) was weighed into a homogenizer cup, diluted 10 times with pure water, and 0.5 g of the additive shown in Table 12 was weighed into the homogenizer cup and stirred at 10,000 rpm and 10 Homogenize for 1 minute. A defatted soybean processed product aqueous solution was prepared from the above.
- Test example 9 Volatile component analysis of defatted soybean products: 5 g of the aqueous solution prepared in Example 7 was decanted into a dedicated vial. This was placed on a heater set at 60° C. ⁇ 2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the defatted soybean processed product were measured under the following conditions. Table 14 shows the peak area of hexanal.
- test group 2 with the addition of calcium lactate may have suppressed hexanal. Ta.
- Example 8 Preparation of defatted soybean product refined liquid: 5 g of defatted soybean processed product (the same product used in Example 1) was weighed into a homogenizer cup and diluted 10 times with pure water. ) was weighed and homogenized at 10,000 rpm for 10 minutes. Thereafter, the mixture was centrifuged at 9,000 rpm for 10 minutes, and the supernatant was filtered through a syringe filter (0.45 ⁇ m) to prepare a purified defatted soybean product solution.
- a syringe filter (0.45 ⁇ m
- Test example 10 Volatile Component Analysis of Defatted Processed Soybean Purified Liquid 5 g of the defatted processed soybean purified liquid produced in Example 8 was weighed into a dedicated vial, placed on a heater set at 60 ° C ⁇ 2 ° C, and heated for 120 minutes. did. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the refined liquid of the defatted processed soybean product were measured under the same conditions as in Test Example 9. Table 16 shows the peak area of hexanal.
- Example 9 Preparation of powdered soybean aqueous solution: 0.5 g of powdered soybean (defatted, separated protein, powdered, protein content of 90% or more) is weighed into a vial and diluted 10-fold with pure water. 5% g of the additive in Table 17 was weighed there to prepare a powdered soybean aqueous solution.
- Test example 11 Volatile component analysis of powdered soybean aqueous solution: The powdered soybean aqueous solution produced in the vial bottle in Example 5 was placed on a heater set at 60° C. ⁇ 2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was extracted from the vial, inserted into the injection part of the GC, and the volatile components of the defatted processed soybean purified liquid were measured under the same conditions as in Test Example 9. Table 18 shows the peak area of hexanal.
- Example 10 Preparation of vegetable protein aqueous solution: Powdered vegetable protein (soybean protein (defatted, isolated protein, powdered, protein content 90% or more), pea protein (no defatted, isolated protein, powdered, protein content 80% or more ), broad bean protein (non-defatted, isolated protein, powder, protein content 90% or more), brown rice (non-defatted, concentrated protein, powder, protein content 80% or more))) into a screw vial. It was weighed and diluted 10 times with pure water. 5% of calcium lactate was weighed into each of them except for the additive-free group to make them turbid. A non-addition group was obtained by adding no calcium lactate.
- Test example 12 Volatile component analysis of vegetable protein: The screw vial containing the aqueous solution prepared in Example 10 was placed on a heater set at 60° C. ⁇ 2° C., and heated with a stirrer for 120 minutes while making it cloudy. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into a heated screw vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min) to desorb the adsorbed portion, and the volatile components were measured under the same conditions as in Test Example 8. The results of volatile component analysis are shown in Figures 4-7. The peak areas of hexanal and 2-pentylfuran are shown in Tables 19 and 20, respectively.
- the present invention can be used to enhance the palatability of foods and drinks that use vegetable protein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Beans For Foods Or Fodder (AREA)
Abstract
Provided are: a plant protein flavor-improving agent and a plant protein physical property–improving agent that are characterized by containing one or more substance selected from the group that consists of lactic acid, metal salts of lactic acid, and alanine as an active ingredient; and a food or beverage product that uses the plant protein flavor-improving agent and the plant protein physical property–improving agent. The present invention thereby provides a flavor- and physical property–improving technology for increasing the palatability of food or beverage products that use plant proteins.
Description
本発明は、植物性たん白用風味改善剤ならびに植物性たん白用物性改善剤およびこれを含有する飲食品に関する。
The present invention relates to a vegetable protein flavor improving agent, a vegetable protein physical property improving agent, and a food or drink containing the same.
大豆等の豆類、小麦等の麦類や米等の穀類を含む飲食品は、植物性たん白を豊富に含み栄養価も高いものである。
Food and drink containing legumes such as soybeans, barley such as wheat, and cereals such as rice are rich in vegetable protein and have high nutritional value.
しかしながら、これら植物性たん白を含む飲食品は、風味や物性に問題があることが知られており、具体的に植物性たん白の原料が豆類の場合には、雑味や苦み等を有することがある。風味の一部である呈味を改善する方法の一つとして、例えば、豆乳および豆腐の呈味を改善するために、(A)有機酸類を含有する油脂、(B)糖類、糖アルコール、多価アルコールからなる群から選択される1種以上並びに(C)食品用乳化剤を含有する乳化油脂組成物であることを特徴とする豆乳及び豆腐用呈味改善剤等が知られている(特許文献1)。
However, food and drink containing these vegetable proteins are known to have problems in flavor and physical properties. Sometimes. As one method for improving taste, which is a part of flavor, for example, in order to improve the taste of soymilk and tofu, (A) oils and fats containing organic acids, (B) sugars, sugar alcohols, poly A taste improver for soymilk and tofu characterized by being an emulsified fat composition containing one or more selected from the group consisting of a functional alcohol and (C) a food emulsifier is known (Patent Document 1).
一方、肉や魚の代替物として、植物性たん白を含む飲食品が利用されるようになってきている。このような飲食品に対してトレハロースを利用する技術が知られており(特許文献2、3)、呈味、臭いについてのみ述べられているが、物性測定については触れられていないため、物性が改善されたかすらも不明である。
On the other hand, as a substitute for meat and fish, foods and drinks containing vegetable protein are being used. Techniques using trehalose for such foods and drinks are known (Patent Documents 2 and 3), and only the taste and odor are described, but the measurement of physical properties is not mentioned. It is not even clear if it has improved.
近年では、肉や魚の代替物にはより嗜好性が高いものが要求され、そのような用途で使用する場合には、これまでの風味や物性の改善技術では、十分でないことがあった。
In recent years, meat and fish substitutes are required to be more palatable, and when used for such purposes, conventional techniques for improving flavor and physical properties are sometimes not sufficient.
従って、本発明の課題は、植物性たん白を利用した飲食品の嗜好性を高めるための風味や物性の改善技術を提供することである。
Therefore, an object of the present invention is to provide a technique for improving the flavor and physical properties of foods and drinks that use vegetable protein to increase the palatability.
本発明者らは、上記課題を解決するために鋭意研究した結果、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上が、植物性たん白を利用した飲食品の風味や物性を改善できることを見出し、本発明を完成させた。
The present inventors have made intensive studies to solve the above problems, and found that one or more selected from the group consisting of lactic acid, its metal salts, and alanine is the flavor of food and drink using vegetable protein. The present inventors have completed the present invention based on the discovery that the properties can be improved.
すなわち、本発明は、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有することを特徴とする植物性たん白用風味改善剤である。
That is, the present invention is a vegetable protein flavor improving agent characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
また、本発明は、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有することを特徴とする植物性たん白物性改善剤である。
Further, the present invention is a vegetable protein physical property improving agent characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
更に、本発明は、植物性たん白と、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上とを含有することを特徴とする飲食品である。
Furthermore, the present invention is a food or drink characterized by containing vegetable protein and one or more selected from the group consisting of lactic acid, its metal salts, and alanine.
本発明の植物性たん白用風味改善剤および物性改善剤は、植物性たん白の苦み、青臭さ、雑味等の風味や、破断強度、もろさ、弾力等の物性を改善して嗜好性が高いものとすることができる。
The flavor improver and physical property improver for vegetable protein of the present invention improve the flavor of vegetable protein such as bitterness, grassy odor and off-flavour, and physical properties such as breaking strength, brittleness and elasticity, thereby improving palatability. can be high.
また、本発明の飲食品は、植物性たん白を含んでいながらも、嗜好性が高く、日常的に摂取することが可能となる。
In addition, although the food and drink of the present invention contain vegetable protein, they are highly palatable and can be ingested on a daily basis.
本発明の植物性たん白用風味改善剤は、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有するものである。ここで乳酸の金属塩とは、例えば、乳酸カルシウム、乳酸ナトリウム、乳酸カリウム等が挙げられる。乳酸、乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニンは市販品のものをDL体、D体、L体等のものを特に制限なく利用できる。これら有効成分の中でも乳酸、乳酸カルシウム、乳酸ナトリウム、乳酸カリウムが好ましく、乳酸カルシウム、乳酸ナトリウム、乳酸カリウムがより好ましい。
The vegetable protein flavor improving agent of the present invention contains, as an active ingredient, one or more selected from the group consisting of lactic acid, its metal salts, and alanine. Examples of metal salts of lactic acid include calcium lactate, sodium lactate and potassium lactate. Commercially available lactic acid, calcium lactate, sodium lactate, potassium lactate, and alanine can be used in the form of DL-, D-, and L-forms without particular limitations. Among these active ingredients, lactic acid, calcium lactate, sodium lactate and potassium lactate are preferred, and calcium lactate, sodium lactate and potassium lactate are more preferred.
本発明の植物性たん白用風味改善剤を植物性たん白の風味を改善する有効成分とするには、後記する植物性たん白に、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上添加して、植物性たん白質の0.01~10質量%(以下、単に「%」という)含有させればよい。特に乳酸およびその金属塩を用いる場合には後記する植物性たん白に添加して、植物性たん白質の0.05~5%となるように含有させることが好ましく、アラニンを用いる場合には後記する植物性たん白に添加して、植物性たん白質の0.05~1%となるように含有させることが好ましい。このような量で乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上と、植物性たん白と組み合わせることにより植物性たん白質の苦み、青臭さ、雑味等の風味を改善することができる。
In order to use the vegetable protein flavor improving agent of the present invention as an active ingredient for improving the flavor of vegetable protein, the vegetable protein described later is added with 1 selected from the group consisting of lactic acid, its metal salts, and alanine. Seeds or two or more may be added to contain 0.01 to 10% by mass (hereinafter simply referred to as "%") of the vegetable protein. In particular, when using lactic acid and its metal salt, it is preferable to add it to the vegetable protein described later so that it is contained in an amount of 0.05 to 5% of the vegetable protein, and when alanine is used, it is described later. It is preferable to add it to the vegetable protein to be used so that it is contained so as to be 0.05 to 1% of the vegetable protein. By combining one or two or more selected from the group consisting of lactic acid, its metal salts, and alanine in such an amount with the vegetable protein, the vegetable protein's bitterness, grassy odor, off-taste, and other flavors are enhanced. can be improved.
本発明において、植物性たん白とは、植物に含まれる植物由来のたん白質を含むものをいう。この植物性たん白としては、 例えば、日本農林規格(JAS)0838(令和元年8月19日農林水産省告示第679号)で規定されている「植物性たん白」だけでなく、豆類または穀類の粉末、豆類または穀類のミルク等が挙げられる。
In the present invention, vegetable protein refers to those containing plant-derived protein contained in plants. As this vegetable protein, for example, not only "vegetable protein" specified in Japanese Agricultural Standards (JAS) 0838 (Ministry of Agriculture, Forestry and Fisheries Notification No. 679 on August 19, 2019), but also beans Alternatively, cereal powder, beans or cereal milk, and the like can be mentioned.
日本農林規格において、「植物性たん白」は大豆等の採油用の種実もしくはその脱脂物または小麦等の穀類の粉末(主原料)に加工処理を施してたん白質含有率を高めたものに、加熱、加圧等の物理的作用によりゲル形成性、乳化性等の機能又は噛み応えを与え、粉末状、ペースト状、粒状又は繊維状に成形したものであって、植物たん白質含有率(主原料に由来するたん白質含有率であって、無水物に換算した値)が50%を超えるもの、あるいは、前記のものに、食用油脂、食塩、でん粉、品質改良剤、乳化剤、酸化防止剤、着色料、香料、調味料等を加えたもの(調味料又は香辛料により調味したものであって,調味料及び香辛料の原材料及び添加物に占める重量の割合が3%以上のものを除く。)であって、前記と同様に植物たん白質含有率が50%を超えるものである。農林規格では、原料となる豆類を大豆等の採油用の種実と規定しているが、本発明で対象とする豆類は採油用種実に限定されるものではない。なお、たん白の含量はこの規格にも記載されているようにケルダール法等の公知の方法で測定することができる。
According to Japanese Agricultural Standards, "vegetable protein" is defined as a product that has been processed to increase the protein content by processing seeds and nuts for oil extraction such as soybeans or their defatted products, or grain powders such as wheat (main raw material). It gives functions such as gel formation, emulsification, or chewiness by physical action such as heating and pressure, and is molded into powder, paste, granules or fibers, and the vegetable protein content (mainly The protein content derived from the raw material, the value converted to anhydride) exceeds 50%, or the above ingredients include edible oils and fats, salt, starch, quality improvers, emulsifiers, antioxidants, Colorants, fragrances, seasonings, etc. (excluding those seasoned with seasonings or spices that account for 3% or more by weight of seasonings and spices in the raw materials and additives) It has a vegetable protein content of more than 50% as in the above. Although the agricultural and forestry standards stipulate that the beans used as raw materials are seeds for oil extraction such as soybeans, the beans targeted by the present invention are not limited to seeds for oil extraction. The protein content can be measured by a known method such as the Kjeldahl method, as described in this standard.
上記「植物性たん白」のたん白質含有率を高めるために、例えば、分離たん白、抽出たん白、濃縮たん白等とする操作が行われる。
In order to increase the protein content of the above "vegetable protein", for example, operations are performed to make it into isolated protein, extracted protein, concentrated protein, etc.
分離たん白とは、例えば、脱脂等をした豆からたん白質のみを分離したものである。抽出たん白とは、例えば、脱脂等をした豆から水抽出したものを乾燥させたものである。濃縮たん白は、例えば、脱脂等をした豆をたん白質を溶出させないように溶剤で洗浄して、豆中に含まれる糖や有臭成分、着色物質等を除去し、たん白含量を上げた後、乾燥させたものである。これらはたん白の含量で区分されていて、例えば、脱脂した大豆を主原料とする場合、分離たん白であれば93~97%、抽出たん白であれば50~60%、濃縮たん白であれば60~70%のたん白の含量である。
Separated protein is, for example, protein that is separated from defatted beans. Extracted protein is, for example, water-extracted from defatted beans and dried. Concentrated protein is made by washing defatted beans with a solvent so as not to elute the protein, removing sugars, odorants, coloring substances, etc. contained in the beans, and increasing the protein content. It is then dried. These are categorized by protein content. For example, if defatted soybeans are the main raw material, isolated protein is 93-97%, extracted protein is 50-60%, and concentrated protein is If present, it has a protein content of 60-70%.
上記「植物性たん白」は、更に、形状で粉末状植物性たん白、ペースト状植物性たん白、粒状植物性たん白、繊維状植物性たん白に分けることもできる。
The above "vegetable protein" can be further divided into powdered vegetable protein, pasty vegetable protein, granular vegetable protein, and fibrous vegetable protein.
粉末状植物性たん白とは、「植物性たん白」のうち乾燥して粉末状としたものであって、その粒子がJIS Z 8801-1に規定する目開き500μmの試験用ふるいを通過するものおよびこれを粒状に成形したものである。ペースト状植物性たん白とは、「植物性たん白」のうちペースト状またはカード状のものである。粒状植物性たん白とは「植物性たん白」のうち粒状又はフレーク状に成形したものであって、かつ、肉様の組織を有するものである。繊維状植物性たん白とは「植物性たん白」のうち繊維状に成形したものであって、かつ、肉様の組織を有するものである。
Powdered vegetable protein is dried and powdered from "vegetable protein", and the particles pass through a test sieve with an opening of 500 μm specified in JIS Z 8801-1. and a granulated product. Paste-like vegetable protein is paste-like or curd-like "vegetable protein". Granular vegetable protein is "vegetable protein" that has been shaped into grains or flakes and has a meat-like texture. The fibrous vegetable protein is a type of "vegetable protein" formed into fibrous form and having a meat-like structure.
上記植物性たん白を得るにあたり、脱脂の有無、たん白質含有率を高めるための操作、形状等については適宜単独または組み合わせることができる。
In obtaining the above vegetable protein, the presence or absence of defatting, the operation for increasing the protein content, the shape, etc. can be used alone or in combination as appropriate.
なお、上記日本農林規格では大豆等、小麦等が主原料として記載されているが、これに限らず、例えば、大豆の他、エンドウ、ソラマメ、小豆、ヘンプ豆、カロブ豆等の豆類、小麦の他、米(玄米を含む)、あわ、きび、ひえ、オーツ、トウモロコシ、糠等の穀類等も用いることができる。穀類には豆類が含まれると判断されることもあるが、本明細書において、穀類は豆類を含まない。
Although the Japanese Agricultural Standards describe soybeans and wheat as the main raw materials, they are not limited to these. In addition, grains such as rice (including brown rice), millet, millet, barnyard millet, oats, corn and rice bran can also be used. Cereals are sometimes considered to include legumes, but as used herein, grains do not include legumes.
これら植物性たん白の中でも、豆類由来のものまたは穀類由来のものが好ましい。豆類由来のものの中でも、大豆、エンドウ、ソラマメ由来のものがより好ましい。穀類由来のものの中でも玄米由来のものがより好ましい。
Among these vegetable proteins, those derived from beans or grains are preferable. Among those derived from beans, those derived from soybeans, peas, and fava beans are more preferable. Among those derived from cereals, those derived from brown rice are more preferable.
上記豆類または穀類の粉末は、脱脂または脱脂していない豆類または穀類を粉砕して粉にしたものである。具体的には、脱脂大豆粉、きなこ、玄米粉(ブラウンライスパウダー)、米粉、エンドウパウダー、ファバパウダー等と呼ばれるものである。
The above beans or cereal powder is obtained by pulverizing defatted or non-defatted beans or cereals into powder. Specifically, defatted soybean flour, kinako (roasted soybean flour), brown rice powder, rice flour, pea powder, faba powder, and the like are used.
上記豆類または穀類のミルクは、脱脂または脱脂していない豆類または穀類に水を加えて摩砕し、濾過した濾液であり、例えば、固形分含量が7%程度のものである。具体的には、豆乳(大豆由来)、ピーミルク(エンドウ由来)等と呼ばれるものである。これらの中でも豆類のミルクが好ましく、豆乳がより好ましい。
The milk of beans or cereals is a filtrate obtained by adding water to defatted or non-defatted beans or cereals, grinding, and filtering, and has a solid content of, for example, about 7%. Specifically, soy milk (derived from soybeans), pea milk (derived from peas), and the like are used. Among these, bean milk is preferred, and soy milk is more preferred.
上記した植物性たん白は1種または2種以上を組み合わせて用いることもできる。また、上記した植物性たん白は、市販されている植物由来の動物性たん白代替食品等と組み合わせることもできる。
The above vegetable proteins can be used singly or in combination of two or more. The vegetable protein described above can also be combined with a commercially available plant-derived alternative to animal protein.
本発明の植物性たん白用物性改善剤も、本発明の植物性たん白用風味改善剤と同様に、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有するものである。乳酸の金属塩や、有効成分としての含有量も、物性を改善する植物性たん白も、本発明の植物性たん白用風味改善剤と同様である。
The vegetable protein physical property improving agent of the present invention, like the vegetable protein flavor improving agent of the present invention, contains one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients. It contains as The metal salt of lactic acid, the content as an active ingredient, and the vegetable protein that improves the physical properties are the same as those of the vegetable protein flavor improver of the present invention.
本発明の植物性たん白用物性改善剤は、上記した量で乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上と、植物性たん白と組み合わせることにより、植物性たん白の破断強度、もろさ、弾力等の物性を改善することができる。
The vegetable protein physical property improving agent of the present invention is obtained by combining one or more selected from the group consisting of lactic acid, its metal salts, and alanine in the above amounts with the vegetable protein. Physical properties such as breaking strength, brittleness and elasticity of white can be improved.
本発明の植物性たん白用風味改善剤および植物性たん白用物性改善剤には、必要により、風味や物性を損なわない程度に、他の食品素材を含有することができる。例えば、食品素材としては、酵母エキス、核酸系調味料、糖類、増粘多糖類、動物性たん白等があげられる。
The flavor improving agent for vegetable protein and the physical property improving agent for vegetable protein of the present invention can contain other food materials, if necessary, to the extent that the flavor and physical properties are not impaired. For example, food materials include yeast extracts, nucleic acid-based seasonings, saccharides, polysaccharide thickeners, animal proteins, and the like.
本発明の植物性たん白用風味改善剤および植物性たん白用物性改善剤の有効成分である乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上と、植物性たん白を含有させた飲食品は、植物性たん白の風味や物性が改善された優れたものとなる。
one or more selected from the group consisting of lactic acid, a metal salt thereof, and alanine, which are active ingredients of the vegetable protein flavor improving agent and the vegetable protein physical property improving agent of the present invention; The food and drink containing is excellent in the flavor and physical properties of the vegetable protein.
飲食品としては、特に限定されず、上記した植物性たん白を含有する飲食品であればよい。具体的な飲食品としては、例えば、大豆を原料とするきなこ、豆乳、豆腐、大豆加工品(大豆ハンバーグ)、おから等、エンドウを原料とするあんこ、パスタ、スナック等、ソラマメを原料とする肉様加工食品、植物性シーフード等、小豆を原料とするあんこ等の豆類由来の植物性たん白を含有する飲食品が挙げられる。また、例えば、穀類由来の植物性たん白としては、例えば、米を原料とするご飯(炊飯したもの)、パン、麺、シリアル、餃子の皮等、玄米を原料とするご飯(炊飯したもの)、パン、麺、シリアル、餃子の皮等、小麦を原料とする麺、パン等、あわを原料とするシリアル、完全栄養食等、きびを原料とするシリアル、完全栄養食等の穀類由来の植物性たん白を含有する飲食品が挙げられる。これらの中でも肉様加工食品、植物性シーフード、パン、麺や完全栄養食などが好ましい。
Food and drink are not particularly limited as long as they contain the vegetable protein described above. Specific examples of food and drink include soybean flour, soymilk, tofu, processed soybean products (soybean hamburgers), bean curd refuse, red bean paste, pasta, snacks, etc., which are made from peas, and fava beans. Meat-like processed foods, vegetable seafood, and other foods and drinks containing vegetable protein derived from beans such as red bean paste made from adzuki beans are exemplified. In addition, for example, vegetable proteins derived from cereals include, for example, rice (cooked rice) made from rice, bread, noodles, cereals, dumpling skins, etc., and rice (cooked rice) made from brown rice. , bread, noodles, cereals, gyoza skins, etc., wheat-based noodles, bread, etc., millet-based cereals, complete nutrition foods, millet-based cereals, complete nutrition foods Food and drink containing sexual protein are mentioned. Among these, meat-like processed foods, vegetable seafood, bread, noodles, complete nutritional foods, and the like are preferable.
また、飲食品としては、上記した植物性たん白を含有する飲食品を一部含有する飲食品でもよい。具体的な飲食品としては、豆腐ハンバーグ、かまぼこ等の練りもの、豆乳、パスタ(パスタソース)、ツナ等が挙げられる。
In addition, the food and drink may be a food and drink that partially contains the above-described vegetable protein-containing food and drink. Specific food and drink products include tofu hamburgers, kamaboko pastes, soy milk, pasta (pasta sauce), tuna, and the like.
更に、飲食品としては、植物性たん白に更に畜肉または魚肉を含有する飲食品が好ましい。畜肉は、特に限定されないが、例えば、牛、豚、鳥等が挙げられる。また、魚肉は、特に限定されないが、例えば、スケトウダラ、エイ、サメ、エソ・グジ・ツナ・カツオ等が挙げられる。植物性たん白と畜肉を含有する飲食品としては、例えば、挽肉と脱脂大豆加工品を含有するハンバーグ、唐揚げ、肉まん、シュウマイ、肉団子等が挙げられる。また、植物性たん白と魚肉を含有する飲食品としては、例えば、植物性たん白と魚肉を含有するちくわ、さつま揚げ等の練り製品、魚肉ソーセージ、フレーク等が挙げられる。
Furthermore, as food and drink, food and drink containing animal meat or fish meat in addition to vegetable protein are preferable. Examples of livestock meat include, but are not limited to, beef, pork, and chicken. The fish meat is not particularly limited, but examples thereof include walleye pollack, rays, sharks, lizards, guji, tuna, and bonito. Food and drink containing vegetable protein and livestock meat include, for example, hamburgers containing minced meat and defatted soybean processed products, fried chicken, meat buns, steamed dumplings, and meat dumplings. Food and drink products containing vegetable protein and fish meat include, for example, fish paste products such as boiled fish paste containing vegetable protein and fish meat, fish sausages, and flakes.
上記した飲食品は、通常の飲食品の製造方法において、調理、加工の何れかの段階において乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を含有させればよい。乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を飲食品に含有させる方法は特に限定されないが、粉末のままあるいは水溶液等にした後、例えば、噴霧、浸漬、練り込み等、好ましくは噴霧、練り込みにより飲食品に含有させる方法が挙げられる。
The above-described food and drink may contain one or more selected from the group consisting of lactic acid, its metal salts, and alanine at any stage of cooking or processing in a normal food and drink manufacturing method. The method of incorporating one or more selected from the group consisting of lactic acid, its metal salts, and alanine in food and drink is not particularly limited, but it may be used as a powder or after being made into an aqueous solution, for example, by spraying, immersing, or kneading. and the like, preferably by spraying or kneading to include in the food or drink.
本発明の植物性たん白用風味改善剤と、植物性たん白の好ましい態様としては以下のものが挙げられる。
植物性たん白:大豆の抽出たん白または濃縮たん白、大豆の豆乳
有効成分:乳酸、乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白、大豆以外の豆類の豆乳、穀類由来の植物性たん
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
(特に、魚肉と大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白を組み合わせた場合、乳酸カルシウム、乳酸ナトリウム、乳酸カリウムは、豆類の青臭さを抑制する効果が確認された。乳酸カルシウムは、これに加えて、魚介感を強く感じられる味わいになる効果が確認された。)
植物性たん白:大豆の分離たん白
有効成分:乳酸ナトリウム、乳酸カリウム、アラニン
(特に、畜肉と大豆の分離たん白を組み合わせた場合、乳酸ナトリウム、乳酸カリウムはジューシー感を増すが、乳酸ナトリウムの方がよりジューシー感が強い。) Preferred embodiments of the vegetable protein flavor improving agent of the present invention and the vegetable protein are as follows.
Vegetable protein: Extracted or concentrated protein from soybeans, soymilk from soybeans Active ingredients: Lactic acid, calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Isolated protein from beans other than soybeans, extracted protein , concentrated protein, soymilk of beans other than soybeans, vegetable protein derived from cereals Active ingredients: calcium lactate, sodium lactate, potassium lactate, alanine When combined with protein, calcium lactate, sodium lactate, and potassium lactate were confirmed to have the effect of suppressing the grassy smell of legumes. confirmed.)
Vegetable protein: soy protein isolate Active ingredients: sodium lactate, potassium lactate, alanine is more juicy.)
植物性たん白:大豆の抽出たん白または濃縮たん白、大豆の豆乳
有効成分:乳酸、乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白、大豆以外の豆類の豆乳、穀類由来の植物性たん
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
(特に、魚肉と大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白を組み合わせた場合、乳酸カルシウム、乳酸ナトリウム、乳酸カリウムは、豆類の青臭さを抑制する効果が確認された。乳酸カルシウムは、これに加えて、魚介感を強く感じられる味わいになる効果が確認された。)
植物性たん白:大豆の分離たん白
有効成分:乳酸ナトリウム、乳酸カリウム、アラニン
(特に、畜肉と大豆の分離たん白を組み合わせた場合、乳酸ナトリウム、乳酸カリウムはジューシー感を増すが、乳酸ナトリウムの方がよりジューシー感が強い。) Preferred embodiments of the vegetable protein flavor improving agent of the present invention and the vegetable protein are as follows.
Vegetable protein: Extracted or concentrated protein from soybeans, soymilk from soybeans Active ingredients: Lactic acid, calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Isolated protein from beans other than soybeans, extracted protein , concentrated protein, soymilk of beans other than soybeans, vegetable protein derived from cereals Active ingredients: calcium lactate, sodium lactate, potassium lactate, alanine When combined with protein, calcium lactate, sodium lactate, and potassium lactate were confirmed to have the effect of suppressing the grassy smell of legumes. confirmed.)
Vegetable protein: soy protein isolate Active ingredients: sodium lactate, potassium lactate, alanine is more juicy.)
本発明の植物性たん白用物性改善剤と、植物性たん白の好ましい態様としては以下のものが挙げられる。
植物性たん白:大豆の抽出たん白または濃縮たん白
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白、穀類由来の植物性たん白
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆の分離たん白
有効成分:乳酸ナトリウム、乳酸カリウム、アラニン
(特に、畜肉と大豆の分離たん白を組み合わせた場合、よりしっとりさせることで、崩れやすく脆い結着性の悪さを軽減する。乳酸カルシウムは歯ごたえ向上、肉様の食感に近づける。) Preferred embodiments of the plant-based protein property-improving agent of the present invention and the plant-based protein are as follows.
Vegetable protein: Protein extract or protein concentrate from soybeans Active ingredients: Calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Isolated protein from beans other than soybeans, protein extract, protein concentrate, grains Vegetable protein derived Active ingredients: Calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Soy protein isolate Active ingredients: Sodium lactate, potassium lactate, alanine When combined, it makes it more moist and reduces the poor adhesion that crumbles and is brittle.Calcium lactate improves the texture and brings it closer to a meat-like texture.)
植物性たん白:大豆の抽出たん白または濃縮たん白
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆以外の豆類の分離たん白、抽出たん白、濃縮たん白、穀類由来の植物性たん白
有効成分:乳酸カルシウム、乳酸ナトリウム、乳酸カリウム、アラニン
植物性たん白:大豆の分離たん白
有効成分:乳酸ナトリウム、乳酸カリウム、アラニン
(特に、畜肉と大豆の分離たん白を組み合わせた場合、よりしっとりさせることで、崩れやすく脆い結着性の悪さを軽減する。乳酸カルシウムは歯ごたえ向上、肉様の食感に近づける。) Preferred embodiments of the plant-based protein property-improving agent of the present invention and the plant-based protein are as follows.
Vegetable protein: Protein extract or protein concentrate from soybeans Active ingredients: Calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Isolated protein from beans other than soybeans, protein extract, protein concentrate, grains Vegetable protein derived Active ingredients: Calcium lactate, sodium lactate, potassium lactate, alanine Vegetable protein: Soy protein isolate Active ingredients: Sodium lactate, potassium lactate, alanine When combined, it makes it more moist and reduces the poor adhesion that crumbles and is brittle.Calcium lactate improves the texture and brings it closer to a meat-like texture.)
以下、本発明の実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
The present invention will be described in detail below with reference to examples of the present invention, but the present invention is not limited to these examples.
なお、以下の実施例において青臭さとジューシーさは以下の基準で評価した。
<青臭さ評価基準>
(評点)(内容)
7:強い
6:少し強い
5:わずかに強い
4:標準
3:わずかに弱い
2:少し弱い
1:弱い In the following examples, grassiness and juiciness were evaluated according to the following criteria.
<Grassiness evaluation criteria>
(Rating) (Content)
7: Strong 6: Slightly strong 5: Slightly strong 4: Normal 3: Slightly weak 2: Slightly weak 1: Weak
<青臭さ評価基準>
(評点)(内容)
7:強い
6:少し強い
5:わずかに強い
4:標準
3:わずかに弱い
2:少し弱い
1:弱い In the following examples, grassiness and juiciness were evaluated according to the following criteria.
<Grassiness evaluation criteria>
(Rating) (Content)
7: Strong 6: Slightly strong 5: Slightly strong 4: Normal 3: Slightly weak 2: Slightly weak 1: Weak
<ジューシーさ評価基準>
(評点)(内容)
7:強い
6:少し強い
5:わずかに強い
4:標準
3:わずかに弱い
2:少し弱い
1:弱い <Juicy evaluation criteria>
(Rating) (Content)
7: Strong 6: Slightly strong 5: Slightly strong 4: Normal 3: Slightly weak 2: Slightly weak 1: Weak
(評点)(内容)
7:強い
6:少し強い
5:わずかに強い
4:標準
3:わずかに弱い
2:少し弱い
1:弱い <Juicy evaluation criteria>
(Rating) (Content)
7: Strong 6: Slightly strong 5: Slightly strong 4: Normal 3: Slightly weak 2: Slightly weak 1: Weak
実 施 例 1
大豆ハンバーグの製造:
表1の処方の大豆ハンバーグベースに、表2に記載の添加物を添加した後、通常のハンバーグと同様に5分間手でこねた。そこから200g量り取り、空気を抜き、直径8.5cmの金型に詰めて成型することで、操作を統一して大豆ハンバーグを製造した。 Example 1
Production of soy hamburgers:
After adding the additives shown in Table 2 to the soybean hamburger base having the formulation shown in Table 1, the mixture was kneaded by hand for 5 minutes in the same manner as a normal hamburger. 200 g of the mixture was weighed out, the air was removed, and the mixture was packed in a mold with a diameter of 8.5 cm and molded to produce a soybean hamburger steak by standardizing the operation.
大豆ハンバーグの製造:
表1の処方の大豆ハンバーグベースに、表2に記載の添加物を添加した後、通常のハンバーグと同様に5分間手でこねた。そこから200g量り取り、空気を抜き、直径8.5cmの金型に詰めて成型することで、操作を統一して大豆ハンバーグを製造した。 Example 1
Production of soy hamburgers:
After adding the additives shown in Table 2 to the soybean hamburger base having the formulation shown in Table 1, the mixture was kneaded by hand for 5 minutes in the same manner as a normal hamburger. 200 g of the mixture was weighed out, the air was removed, and the mixture was packed in a mold with a diameter of 8.5 cm and molded to produce a soybean hamburger steak by standardizing the operation.
試 験 例 1
大豆ハンバーグの官能試験:
実施例1で得られた試験区1~8の大豆ハンバーグを200℃にしたホットプレートで片面5分ずつ焼成した後、室温まで放冷した。この大豆ハンバーグについて、10名のパネラーが食し、最初に示した青臭さとジューシーさの基準に従って評価した。その結果を表3に示した。また、風味や食感等を自由評価した結果も共に示した。 Test example 1
Soy hamburger sensory test:
The soybean hamburger steaks of test groups 1 to 8 obtained in Example 1 were baked on a hot plate at 200° C. for 5 minutes on each side, and then allowed to cool to room temperature. This soybean hamburger was eaten by 10 panelists and evaluated according to the first criteria for grassy smell and juiciness. The results are shown in Table 3. The results of free evaluation of flavor, texture, etc. are also shown.
大豆ハンバーグの官能試験:
実施例1で得られた試験区1~8の大豆ハンバーグを200℃にしたホットプレートで片面5分ずつ焼成した後、室温まで放冷した。この大豆ハンバーグについて、10名のパネラーが食し、最初に示した青臭さとジューシーさの基準に従って評価した。その結果を表3に示した。また、風味や食感等を自由評価した結果も共に示した。 Test example 1
Soy hamburger sensory test:
The soybean hamburger steaks of test groups 1 to 8 obtained in Example 1 were baked on a hot plate at 200° C. for 5 minutes on each side, and then allowed to cool to room temperature. This soybean hamburger was eaten by 10 panelists and evaluated according to the first criteria for grassy smell and juiciness. The results are shown in Table 3. The results of free evaluation of flavor, texture, etc. are also shown.
以上の通り、試験区3~8において、青臭さは低減しており脱脂大豆加工品の風味が改善された。また、試験区6ではジューシーさが特に向上しており、大豆ハンバーグの物性(歯ごたえ、弾力)も改善された。
As described above, in test plots 3 to 8, the grassy smell was reduced and the flavor of the defatted soybean processed product was improved. In addition, the juiciness was particularly improved in test group 6, and the physical properties (crissiness, elasticity) of the soybean hamburger were also improved.
試 験 例 2
大豆ハンバーグの味覚センサーによる分析:
実施例1で製造した大豆ハンバーグについて、味香り戦略研究所にて味覚認識装置TS5000Z(インテリジェントセンサーテクノロジー社製)を用いて測定した。中でも結果が顕著であった試験区5の乳酸カルシウムの苦み・雑味(図2)および試験区6の乳酸ナトリウムの複雑味・熟成味(図3)について示した。 Test example 2
Analysis of soy hamburger by taste sensor:
The soybean hamburger produced in Example 1 was measured using a taste recognition device TS5000Z (manufactured by Intelligent Sensor Technology Co., Ltd.) at the Taste and Aroma Strategic Research Institute. Among them, the bitterness and rough taste of calcium lactate in test group 5 (Fig. 2) and the complex taste and aged taste of sodium lactate in test group 6 (Fig. 3) are shown.
大豆ハンバーグの味覚センサーによる分析:
実施例1で製造した大豆ハンバーグについて、味香り戦略研究所にて味覚認識装置TS5000Z(インテリジェントセンサーテクノロジー社製)を用いて測定した。中でも結果が顕著であった試験区5の乳酸カルシウムの苦み・雑味(図2)および試験区6の乳酸ナトリウムの複雑味・熟成味(図3)について示した。 Test example 2
Analysis of soy hamburger by taste sensor:
The soybean hamburger produced in Example 1 was measured using a taste recognition device TS5000Z (manufactured by Intelligent Sensor Technology Co., Ltd.) at the Taste and Aroma Strategic Research Institute. Among them, the bitterness and rough taste of calcium lactate in test group 5 (Fig. 2) and the complex taste and aged taste of sodium lactate in test group 6 (Fig. 3) are shown.
なお、各ハンバーグは前処理として、60℃の純水で5倍希釈し、ブレンダーにて粉砕混合した。次いで3,000rpm、10分間遠心分離し、冷却後に不織布で濾過し、脂取りシートで油脂分を除去したものをサンプルとした。
As a pretreatment, each hamburger was diluted 5 times with pure water at 60°C and pulverized and mixed in a blender. Next, the mixture was centrifuged at 3,000 rpm for 10 minutes, filtered through a non-woven fabric after cooling, and oil and fat were removed with an oil-removing sheet to obtain a sample.
乳酸カルシウムを用いた大豆ハンバーグについては、原料である大豆たん白による苦み・雑味が低減され、試験区2のハンバーグと遜色のないことがわかった。
乳酸ナトリウム、乳酸カリウムを用いたときには、試験区2のハンバーグと遜色のない複雑味・熟成味があることがわかった。 Regarding the soybean hamburger using calcium lactate, it was found that the soybean protein used as the raw material has a reduced bitterness and off-flavour, and is comparable to the hamburger of test group 2.
It was found that when sodium lactate and potassium lactate were used, the hamburger steak of Test Group 2 had a complex taste and aged taste comparable to those of the hamburger steak.
乳酸ナトリウム、乳酸カリウムを用いたときには、試験区2のハンバーグと遜色のない複雑味・熟成味があることがわかった。 Regarding the soybean hamburger using calcium lactate, it was found that the soybean protein used as the raw material has a reduced bitterness and off-flavour, and is comparable to the hamburger of test group 2.
It was found that when sodium lactate and potassium lactate were used, the hamburger steak of Test Group 2 had a complex taste and aged taste comparable to those of the hamburger steak.
実 施 例 2
豆乳の調製:
成分無調整豆乳(固形分9%以上)に対し表4の添加物を秤量した。スターラーで十分に攪拌することで、均一に調製した。 Example 2
Preparation of soy milk:
The additives shown in Table 4 were weighed against non-adjusted soymilk (solid content of 9% or more). It was prepared uniformly by sufficiently stirring with a stirrer.
豆乳の調製:
成分無調整豆乳(固形分9%以上)に対し表4の添加物を秤量した。スターラーで十分に攪拌することで、均一に調製した。 Example 2
Preparation of soy milk:
The additives shown in Table 4 were weighed against non-adjusted soymilk (solid content of 9% or more). It was prepared uniformly by sufficiently stirring with a stirrer.
試 験 例 3
豆乳の官能試験:
実施例2で得られた試験区1~5の豆乳について、10名のパネラーが食し、青臭さを最初に示したのと同様の評価基準に従って評価した。その結果を表5に示した。 Test example 3
Sensory test of soy milk:
The soymilk of test groups 1 to 5 obtained in Example 2 was eaten by 10 panelists, and the grassy smell was evaluated according to the same evaluation criteria as the first evaluation. The results are shown in Table 5.
豆乳の官能試験:
実施例2で得られた試験区1~5の豆乳について、10名のパネラーが食し、青臭さを最初に示したのと同様の評価基準に従って評価した。その結果を表5に示した。 Test example 3
Sensory test of soy milk:
The soymilk of test groups 1 to 5 obtained in Example 2 was eaten by 10 panelists, and the grassy smell was evaluated according to the same evaluation criteria as the first evaluation. The results are shown in Table 5.
どの試験区も、大豆の青臭さを低減する効果が示された。乳酸カルシウムでは0.03%でも効果が見られたが、0.05%と比較するとマスキング効果は弱かった。また、乳酸添加区では0.05%、0.1%ともに青臭さの軽減効効果がみられた。0.1%では添加によって異味(酸味)が感じられる懸念もあったが、酸味等の異味は感じられなかった。
All test plots showed the effect of reducing the grassy smell of soybeans. With calcium lactate, an effect was observed even at 0.03%, but the masking effect was weaker than with 0.05%. In addition, in the lactic acid addition group, both 0.05% and 0.1% were effective in reducing grassy smell. At 0.1%, there was a concern that an off-taste (sour taste) would be felt due to the addition, but no off-taste such as sour taste was felt.
実 施 例 3
エンドウたん白入りかまぼこの製造:
表6の処方で常法に従ってかまぼこを製造した。 Example 3
Production of kamaboko with pea protein:
Kamaboko was produced according to the recipe shown in Table 6 according to a conventional method.
エンドウたん白入りかまぼこの製造:
表6の処方で常法に従ってかまぼこを製造した。 Example 3
Production of kamaboko with pea protein:
Kamaboko was produced according to the recipe shown in Table 6 according to a conventional method.
試 験 例 4
エンドウたん白入りかまぼこの官能試験:
実施例3で得られた試験区1~2のかまぼこを、90℃の水浴で30分間加熱し、常温で1時間以上冷却した。このエンドウたん白入りかまぼこについて、10名のパネラーが食し、青臭さを最初に示したのと同様の評価基準に従って評価した。その結果を表8に示した。また、その他風味等を自由評価した結果も共に示した。 Test example 4
Sensory test of kamaboko with pea protein:
The kamaboko of Test Groups 1 and 2 obtained in Example 3 were heated in a water bath at 90° C. for 30 minutes and cooled at room temperature for 1 hour or more. This pea protein-containing kamaboko was eaten by 10 panelists and evaluated according to the same evaluation criteria as those for showing the grassy smell at the beginning. The results are shown in Table 8. In addition, the results of free evaluation of other flavor and the like are also shown.
エンドウたん白入りかまぼこの官能試験:
実施例3で得られた試験区1~2のかまぼこを、90℃の水浴で30分間加熱し、常温で1時間以上冷却した。このエンドウたん白入りかまぼこについて、10名のパネラーが食し、青臭さを最初に示したのと同様の評価基準に従って評価した。その結果を表8に示した。また、その他風味等を自由評価した結果も共に示した。 Test example 4
Sensory test of kamaboko with pea protein:
The kamaboko of Test Groups 1 and 2 obtained in Example 3 were heated in a water bath at 90° C. for 30 minutes and cooled at room temperature for 1 hour or more. This pea protein-containing kamaboko was eaten by 10 panelists and evaluated according to the same evaluation criteria as those for showing the grassy smell at the beginning. The results are shown in Table 8. In addition, the results of free evaluation of other flavor and the like are also shown.
以上の通り、試験区2において、エンドウたん白入りかまぼこの風味が改善された。乳酸カルシウムで効果が示されたことから、他の乳酸塩でも同様の効果が示されると考えられる。
As described above, in test group 2, the flavor of pea protein-containing kamaboko was improved. Since the effect was shown with calcium lactate, it is thought that other lactate salts will show similar effects.
実 施 例 4
かまぼこの調製:
表9の処方に従い(表中の単位はg)、常法に従ってかまぼこを調製した。 Example 4
Preparation of kamaboko:
According to the recipe in Table 9 (the unit in the table is g), Kamaboko was prepared according to a conventional method.
かまぼこの調製:
表9の処方に従い(表中の単位はg)、常法に従ってかまぼこを調製した。 Example 4
Preparation of kamaboko:
According to the recipe in Table 9 (the unit in the table is g), Kamaboko was prepared according to a conventional method.
試 験 例 5
かまぼこの官能試験:
実施例9で調製したかまぼこを、10名のパネラーが最初に記載した基準と同様の評価基準に従って青臭さを評価した。その結果を表10に示した。また、風味等について自由評価した内容も共に記載した。 Test example 5
Kamaboko sensory test:
The kamaboko prepared in Example 9 was evaluated by 10 panelists for grassiness according to the same evaluation criteria as the first described criteria. The results are shown in Table 10. In addition, the contents of the free evaluation of the flavor and the like are also described.
かまぼこの官能試験:
実施例9で調製したかまぼこを、10名のパネラーが最初に記載した基準と同様の評価基準に従って青臭さを評価した。その結果を表10に示した。また、風味等について自由評価した内容も共に記載した。 Test example 5
Kamaboko sensory test:
The kamaboko prepared in Example 9 was evaluated by 10 panelists for grassiness according to the same evaluation criteria as the first described criteria. The results are shown in Table 10. In addition, the contents of the free evaluation of the flavor and the like are also described.
エンドウたん白を配合したかまぼこは、乳酸ナトリウム、乳酸カルシウムの添加により、青臭さ(味、臭い)は低減したが、乳酸カルシウムの方が優れていた。乳酸ナトリウムの添加により、塩味がわずかに強くなった。
ソラマメたん白、玄米たん白を配合したかまぼこは、乳酸ナトリウムの添加により、青臭さ(味、臭い)は低減した。塩味がわずかに強くなった。玄米たん白には、糠のような不快臭、不快味がかなり強かったが、乳酸ナトリウムの添加によりかなり低減した。 The green odor (taste and smell) of kamaboko mixed with pea protein was reduced by the addition of sodium lactate and calcium lactate, but calcium lactate was superior. The addition of sodium lactate made it slightly saltier.
Kamaboko mixed with fava bean protein and brown rice protein had a reduced grassy smell (taste and smell) due to the addition of sodium lactate. The saltiness was slightly stronger. The brown rice protein had an unpleasant odor and taste like rice bran, which was considerably reduced by the addition of sodium lactate.
ソラマメたん白、玄米たん白を配合したかまぼこは、乳酸ナトリウムの添加により、青臭さ(味、臭い)は低減した。塩味がわずかに強くなった。玄米たん白には、糠のような不快臭、不快味がかなり強かったが、乳酸ナトリウムの添加によりかなり低減した。 The green odor (taste and smell) of kamaboko mixed with pea protein was reduced by the addition of sodium lactate and calcium lactate, but calcium lactate was superior. The addition of sodium lactate made it slightly saltier.
Kamaboko mixed with fava bean protein and brown rice protein had a reduced grassy smell (taste and smell) due to the addition of sodium lactate. The saltiness was slightly stronger. The brown rice protein had an unpleasant odor and taste like rice bran, which was considerably reduced by the addition of sodium lactate.
実 施 例 5
粉末状エンドウたん白水溶液の調製:
粉末状エンドウたん白(脱脂なし、分離たん白、粉末状、たん白含量 80%以上)0.5gをスクリュー管瓶中で純水を用いて10倍希釈した。エンドウたん白に対して表11に記載の通り調整した。 Example 5
Preparation of powdery pea protein aqueous solution:
0.5 g of powdered pea protein (non-defatted, isolated protein, powdered, protein content of 80% or more) was diluted 10-fold with pure water in a screw-cap bottle. Prepared as described in Table 11 for pea protein.
粉末状エンドウたん白水溶液の調製:
粉末状エンドウたん白(脱脂なし、分離たん白、粉末状、たん白含量 80%以上)0.5gをスクリュー管瓶中で純水を用いて10倍希釈した。エンドウたん白に対して表11に記載の通り調整した。 Example 5
Preparation of powdery pea protein aqueous solution:
0.5 g of powdered pea protein (non-defatted, isolated protein, powdered, protein content of 80% or more) was diluted 10-fold with pure water in a screw-cap bottle. Prepared as described in Table 11 for pea protein.
試 験 例 6
エンドウたん白入り水溶液の官能試験:
実施例5で調整した水溶液を、60℃の恒温槽で120分間加熱したものについて、10名のパネラーが臭いを判定した。最もエンドウの臭いが強く感じられるものから順に3点、2点、1点を加点する加点方式で評価した。その結果を表12に示した。 Test example 6
Sensory test of aqueous solution with pea protein:
Ten panelists evaluated the odor of the aqueous solution prepared in Example 5, which was heated in a constant temperature bath at 60°C for 120 minutes. Evaluation was made by a point addition system in which 3 points, 2 points, and 1 point are added in order from the one with the strongest smell of peas. The results are shown in Table 12.
エンドウたん白入り水溶液の官能試験:
実施例5で調整した水溶液を、60℃の恒温槽で120分間加熱したものについて、10名のパネラーが臭いを判定した。最もエンドウの臭いが強く感じられるものから順に3点、2点、1点を加点する加点方式で評価した。その結果を表12に示した。 Test example 6
Sensory test of aqueous solution with pea protein:
Ten panelists evaluated the odor of the aqueous solution prepared in Example 5, which was heated in a constant temperature bath at 60°C for 120 minutes. Evaluation was made by a point addition system in which 3 points, 2 points, and 1 point are added in order from the one with the strongest smell of peas. The results are shown in Table 12.
表12より、試験区1に比べ試験区2、3でエンドウの青臭さが減少している傾向が示された。
From Table 12, it was shown that the grassy smell of peas tended to decrease in test plots 2 and 3 compared to test plot 1.
実 施 例 6
大豆ハンバーグの製造:
実施例1の表1の処方の大豆ハンバーグをベースに、表2に記載の添加物を添加した後、通常のハンバーグと同様に5分間手でこね、空気を抜き、50gを秤量し直径6cmの金型に詰めた。厚さは約2cmだった。 Example 6
Production of soy hamburgers:
Based on the soybean hamburger with the formulation in Table 1 of Example 1, after adding the additives listed in Table 2, knead by hand for 5 minutes in the same way as a normal hamburger, remove the air, weigh 50 g and measure 6 cm in diameter. packed in a mold. The thickness was about 2 cm.
大豆ハンバーグの製造:
実施例1の表1の処方の大豆ハンバーグをベースに、表2に記載の添加物を添加した後、通常のハンバーグと同様に5分間手でこね、空気を抜き、50gを秤量し直径6cmの金型に詰めた。厚さは約2cmだった。 Example 6
Production of soy hamburgers:
Based on the soybean hamburger with the formulation in Table 1 of Example 1, after adding the additives listed in Table 2, knead by hand for 5 minutes in the same way as a normal hamburger, remove the air, weigh 50 g and measure 6 cm in diameter. packed in a mold. The thickness was about 2 cm.
試 験 例 7
大豆ハンバーグの破断強度分析:
実施例6で得られた試験区1~8の大豆ハンバーグを200℃にしたホットプレートで表面5分、裏面4分焼成した後、網の上に置き、3℃の恒温槽で1時間冷却した。この大豆ハンバーグについて以下の条件で破断強度を測定した。その結果を図1(N=4で代表値を図1に記載した)に示した。 Test example 7
Breaking strength analysis of soybean hamburger:
After baking the soybean hamburgers of test groups 1 to 8 obtained in Example 6 on a hot plate set to 200 ° C. for 5 minutes on the front side and 4 minutes on the back side, placed on a net and cooled in a constant temperature bath at 3 ° C. for 1 hour. . The breaking strength of this soybean hamburger was measured under the following conditions. The results are shown in FIG. 1 (N=4 and representative values are shown in FIG. 1).
大豆ハンバーグの破断強度分析:
実施例6で得られた試験区1~8の大豆ハンバーグを200℃にしたホットプレートで表面5分、裏面4分焼成した後、網の上に置き、3℃の恒温槽で1時間冷却した。この大豆ハンバーグについて以下の条件で破断強度を測定した。その結果を図1(N=4で代表値を図1に記載した)に示した。 Test example 7
Breaking strength analysis of soybean hamburger:
After baking the soybean hamburgers of test groups 1 to 8 obtained in Example 6 on a hot plate set to 200 ° C. for 5 minutes on the front side and 4 minutes on the back side, placed on a net and cooled in a constant temperature bath at 3 ° C. for 1 hour. . The breaking strength of this soybean hamburger was measured under the following conditions. The results are shown in FIG. 1 (N=4 and representative values are shown in FIG. 1).
<使用機器・器具>
・クリープメータ/株式会社山電
・プランジャー /No,49 くさび型
(大豆ハンバーグの中央にプランジャーがあたるように設置した。)
<分析条件>
・ロードセル /20kgf
・アンプの倍率/1倍
・格納ピッチ /0.04[sec]
・測定歪率 /99[%]
・測定速度 /1[mm/sec]
・サンプル高さ/約20[mm]
・接触面積 /30[mm2] <Equipment and equipment used>
・Creep meter / Yamaden Co., Ltd. ・Plunger / No. 49 wedge type (The plunger was installed so that it hits the center of the soybean hamburger.)
<Analysis conditions>
・Load cell /20kgf
・Amplifier magnification/1 times ・Storage pitch/0.04 [sec]
・Measurement distortion rate /99 [%]
・Measurement speed /1 [mm/sec]
・Sample height / about 20 [mm]
・Contact area/30 [mm 2 ]
・クリープメータ/株式会社山電
・プランジャー /No,49 くさび型
(大豆ハンバーグの中央にプランジャーがあたるように設置した。)
<分析条件>
・ロードセル /20kgf
・アンプの倍率/1倍
・格納ピッチ /0.04[sec]
・測定歪率 /99[%]
・測定速度 /1[mm/sec]
・サンプル高さ/約20[mm]
・接触面積 /30[mm2] <Equipment and equipment used>
・Creep meter / Yamaden Co., Ltd. ・Plunger / No. 49 wedge type (The plunger was installed so that it hits the center of the soybean hamburger.)
<Analysis conditions>
・Load cell /20kgf
・Amplifier magnification/1 times ・Storage pitch/0.04 [sec]
・Measurement distortion rate /99 [%]
・Measurement speed /1 [mm/sec]
・Sample height / about 20 [mm]
・Contact area/30 [mm 2 ]
本発明における弾力は、破断歪率が大きい程強くなることを指す。また、破断点の山の落差が大きくなる程、脆さは大きくなることを指す。強度測定の結果から、無添加区はコントロール区に比べ、脆さは大きく、弾力は小さくなることが分かった。脱脂大豆加工品が含まれることにより、ハンバーグ内の粒の大きさが異なり、脆く、崩れやすくなったと考えられる。しかし、試験区6の乳酸ナトリウム添加区、試験区7の乳酸カリウム添加区は脱脂大豆加工品で生じる脆さが少なくなり、食感としてはしっとりさやジューシーさの向上に寄与したと考えられた。また、試験区5の乳酸カルシウム添加区では試験区2と似たような波形を示し、無添加区に比べ弾力が向上する傾向がみられた。このことから、乳酸塩類を添加することで、物性を改善することが可能であることが示された。アラニン添加区については物性への影響は少なく、風味の面でのみ効果を示したと考えられた。
The elasticity in the present invention means that the greater the breaking strain rate, the stronger the elasticity. In addition, it means that the greater the drop of the crest at the breaking point, the greater the brittleness. From the strength measurement results, it was found that the non-additive group had greater brittleness and less elasticity than the control group. Due to the presence of defatted soybean processed products, the size of the grains in the hamburger steak differs, making it brittle and easy to crumble. However, in the sodium lactate addition group of test group 6 and the potassium lactate addition group of test group 7, the brittleness that occurs in the defatted soybean processed product was reduced, and it was considered that the texture contributed to the improvement of moistness and juiciness. In addition, the calcium lactate addition group of test group 5 showed a waveform similar to that of test group 2, and a tendency to improve elasticity compared to the non-addition group was observed. From this, it was shown that it is possible to improve physical properties by adding lactates. It was considered that the alanine addition group had little effect on the physical properties and showed an effect only in terms of flavor.
試 験 例 8
大豆ハンバーグの揮発性成分分析:
試験例6で使用した大豆ハンバーグの欠片をGC/MS用のバイアルに収まる大きさに手で砕き、5gずつ詰め、-25℃にして冷蔵保存した。測定の際にはこれを3℃の恒温槽で解凍した。これを60℃(±2℃)に設定したヒーターの上にバイアルを設置し、120分加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GC/MSのインジェクション部に挿入して、所定時間(2min)保持し、吸着部分を脱離させて、大豆ハンバーグの揮発性成分を以下の条件で測定した。 Test example 8
Volatile component analysis of soy hamburgers:
The soybean hamburger pieces used in Test Example 6 were crushed by hand into a size that fits in a vial for GC/MS, packed in 5g portions, and stored in a refrigerator at -25°C. This was thawed in a constant temperature bath at 3°C for measurement. The vial was placed on a heater set at 60° C. (±2° C.) and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min), the adsorbed part was desorbed, and the volatile components of the soybean hamburger were measured under the following conditions.
大豆ハンバーグの揮発性成分分析:
試験例6で使用した大豆ハンバーグの欠片をGC/MS用のバイアルに収まる大きさに手で砕き、5gずつ詰め、-25℃にして冷蔵保存した。測定の際にはこれを3℃の恒温槽で解凍した。これを60℃(±2℃)に設定したヒーターの上にバイアルを設置し、120分加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GC/MSのインジェクション部に挿入して、所定時間(2min)保持し、吸着部分を脱離させて、大豆ハンバーグの揮発性成分を以下の条件で測定した。 Test example 8
Volatile component analysis of soy hamburgers:
The soybean hamburger pieces used in Test Example 6 were crushed by hand into a size that fits in a vial for GC/MS, packed in 5g portions, and stored in a refrigerator at -25°C. This was thawed in a constant temperature bath at 3°C for measurement. The vial was placed on a heater set at 60° C. (±2° C.) and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min), the adsorbed part was desorbed, and the volatile components of the soybean hamburger were measured under the following conditions.
<使用機器・器具>
・GC-17A/QP5000
・検出器:МS(質量分析計)
・SPMEファイバー (50/30um DVB/CAR/PDMS)
<昇温条件>
40℃、5min→200℃
23min hold
Rate 5℃/min
<カラム>
ULBON HR-20M 0.25mmI.D.×50m
<測定条件>
・スプリットレス
・気化室温度 /230℃
・インターフェース温度 /250℃
・サンプリング時間 /2.00[min]
・キャリアガス圧力 /107[kPa]
・カラム流量 /1.2[ml/min]
・線速度 /30[cm/sec]
・スプリット比 /50
・前流量 /64.5[ml/min]
・印加電圧 /1.5kV
・測定質量範囲 /30~400
・キャリアガス /He <Equipment and equipment used>
・GC-17A/QP5000
・Detector: МS (mass spectrometer)
・SPME fiber (50/30um DVB/CAR/PDMS)
<Temperature rising conditions>
40°C, 5 min→200°C
23min hold
Rate 5°C/min
<Column>
ULBON HR-20M 0.25mm I.D. D. ×50m
<Measurement conditions>
・Splitless ・Vaporization chamber temperature / 230℃
・Interface temperature /250℃
・Sampling time /2.00 [min]
・Carrier gas pressure /107 [kPa]
・Column flow rate /1.2 [ml/min]
・Linear velocity/30 [cm/sec]
・Split ratio /50
・Pre-flow rate /64.5 [ml/min]
・Applied voltage /1.5 kV
・Measurement mass range /30 to 400
・Carrier gas /He
・GC-17A/QP5000
・検出器:МS(質量分析計)
・SPMEファイバー (50/30um DVB/CAR/PDMS)
<昇温条件>
40℃、5min→200℃
23min hold
Rate 5℃/min
<カラム>
ULBON HR-20M 0.25mmI.D.×50m
<測定条件>
・スプリットレス
・気化室温度 /230℃
・インターフェース温度 /250℃
・サンプリング時間 /2.00[min]
・キャリアガス圧力 /107[kPa]
・カラム流量 /1.2[ml/min]
・線速度 /30[cm/sec]
・スプリット比 /50
・前流量 /64.5[ml/min]
・印加電圧 /1.5kV
・測定質量範囲 /30~400
・キャリアガス /He <Equipment and equipment used>
・GC-17A/QP5000
・Detector: МS (mass spectrometer)
・SPME fiber (50/30um DVB/CAR/PDMS)
<Temperature rising conditions>
40°C, 5 min→200°C
23min hold
Rate 5°C/min
<Column>
ULBON HR-20M 0.25mm I.D. D. ×50m
<Measurement conditions>
・Splitless ・Vaporization chamber temperature / 230℃
・Interface temperature /250℃
・Sampling time /2.00 [min]
・Carrier gas pressure /107 [kPa]
・Column flow rate /1.2 [ml/min]
・Linear velocity/30 [cm/sec]
・Split ratio /50
・Pre-flow rate /64.5 [ml/min]
・Applied voltage /1.5 kV
・Measurement mass range /30 to 400
・Carrier gas /He
大豆の青臭さの原因物質の1つであるヘキサナールは無添加の試験区1と比較し、その他乳酸塩やアラニンを添加した試験区では減少した。これにより試験区3~8では大豆の青臭さを低減できていることが裏付けられた。
Hexanal, which is one of the substances that cause the grassy smell of soybeans, decreased in the test plots to which lactate and alanine were added, compared to the additive-free test plot 1. This proved that the grassy smell of soybeans could be reduced in test plots 3 to 8.
実 施 例 7
脱脂大豆加工品水溶液の調製:
ホモジナイザーカップに脱脂大豆加工品(実施例1で使用したものと同じもの)5gを秤量し、純水で10倍希釈したものに表12の添加物を0.5g量り入れて10,000rpm、10分間ホモジナイズした。以上より脱脂大豆加工品水溶液を調整した。 Example 7
Preparation of defatted soybean processed product aqueous solution:
5 g of the defatted soybean product (same as that used in Example 1) was weighed into a homogenizer cup, diluted 10 times with pure water, and 0.5 g of the additive shown in Table 12 was weighed into the homogenizer cup and stirred at 10,000 rpm and 10 Homogenize for 1 minute. A defatted soybean processed product aqueous solution was prepared from the above.
脱脂大豆加工品水溶液の調製:
ホモジナイザーカップに脱脂大豆加工品(実施例1で使用したものと同じもの)5gを秤量し、純水で10倍希釈したものに表12の添加物を0.5g量り入れて10,000rpm、10分間ホモジナイズした。以上より脱脂大豆加工品水溶液を調整した。 Example 7
Preparation of defatted soybean processed product aqueous solution:
5 g of the defatted soybean product (same as that used in Example 1) was weighed into a homogenizer cup, diluted 10 times with pure water, and 0.5 g of the additive shown in Table 12 was weighed into the homogenizer cup and stirred at 10,000 rpm and 10 Homogenize for 1 minute. A defatted soybean processed product aqueous solution was prepared from the above.
試 験 例 9
脱脂大豆加工品の揮発性成分分析:
実施例7で調整した水溶液を専用のバイアルに5gデカントで量り入れた。これを60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、脱脂大豆加工品の揮発性成分を以下の条件で測定した。ヘキサナールのピーク面積を表14に示した。 Test example 9
Volatile component analysis of defatted soybean products:
5 g of the aqueous solution prepared in Example 7 was decanted into a dedicated vial. This was placed on a heater set at 60° C.±2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the defatted soybean processed product were measured under the following conditions. Table 14 shows the peak area of hexanal.
脱脂大豆加工品の揮発性成分分析:
実施例7で調整した水溶液を専用のバイアルに5gデカントで量り入れた。これを60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、脱脂大豆加工品の揮発性成分を以下の条件で測定した。ヘキサナールのピーク面積を表14に示した。 Test example 9
Volatile component analysis of defatted soybean products:
5 g of the aqueous solution prepared in Example 7 was decanted into a dedicated vial. This was placed on a heater set at 60° C.±2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the defatted soybean processed product were measured under the following conditions. Table 14 shows the peak area of hexanal.
<使用機器・器具>
・GC-17A/カラム:G-300(30m)
・検出器:FID
・SPMEファイバー:50/30um DVB/CAR/PDMS
・クロマトパックCR-7A plus
<昇温条件>
40℃、5min→200℃
23min hold
Rate 5℃/min
<測定条件>
・気化室温度 /230℃
・キャリアガス /He
・カラム流量 /22ml/min
・検出器温度 /200℃
・検出器機感度 /100
・注入方法 /全量注入 <Equipment and equipment used>
・GC-17A/column: G-300 (30m)
・Detector: FID
・SPME fiber: 50/30um DVB/CAR/PDMS
・Chromatopack CR-7A plus
<Temperature rising conditions>
40°C, 5 min→200°C
23min hold
Rate 5°C/min
<Measurement conditions>
・Vaporization chamber temperature /230℃
・Carrier gas /He
・Column flow rate /22ml/min
・Detector temperature /200℃
・Detector sensitivity /10 0
・Injection method / full injection
・GC-17A/カラム:G-300(30m)
・検出器:FID
・SPMEファイバー:50/30um DVB/CAR/PDMS
・クロマトパックCR-7A plus
<昇温条件>
40℃、5min→200℃
23min hold
Rate 5℃/min
<測定条件>
・気化室温度 /230℃
・キャリアガス /He
・カラム流量 /22ml/min
・検出器温度 /200℃
・検出器機感度 /100
・注入方法 /全量注入 <Equipment and equipment used>
・GC-17A/column: G-300 (30m)
・Detector: FID
・SPME fiber: 50/30um DVB/CAR/PDMS
・Chromatopack CR-7A plus
<Temperature rising conditions>
40°C, 5 min→200°C
23min hold
Rate 5°C/min
<Measurement conditions>
・Vaporization chamber temperature /230℃
・Carrier gas /He
・Column flow rate /22ml/min
・Detector temperature /200℃
・Detector sensitivity /10 0
・Injection method / full injection
無添加の試験区1や、従来効果があるとされているトレハロースを添加した試験区3と比較して、乳酸カルシウムを添加した試験区2の方がヘキサナールを抑制している可能性が示唆された。
Compared to test group 1 with no additive and test group 3 with the addition of trehalose, which is considered to be effective in the past, test group 2 with the addition of calcium lactate may have suppressed hexanal. Ta.
実 施 例 8
脱脂大豆加工品精製液の調製:
ホモジナイザーカップに脱脂大豆加工品(実施例1で使用したものと同じもの)5gを秤量し、純水で10倍希釈したものに表6の添加物を0.1g(50%品は0.2g)量り入れて10,000rpm、10分間ホモジナイズした。その後、9,000rpm、10分間遠心分離して上清をシリンジフィルター(0.45μm)で濾過したものを脱脂大豆加工品精製液として調整した。 Example 8
Preparation of defatted soybean product refined liquid:
5 g of defatted soybean processed product (the same product used in Example 1) was weighed into a homogenizer cup and diluted 10 times with pure water. ) was weighed and homogenized at 10,000 rpm for 10 minutes. Thereafter, the mixture was centrifuged at 9,000 rpm for 10 minutes, and the supernatant was filtered through a syringe filter (0.45 μm) to prepare a purified defatted soybean product solution.
脱脂大豆加工品精製液の調製:
ホモジナイザーカップに脱脂大豆加工品(実施例1で使用したものと同じもの)5gを秤量し、純水で10倍希釈したものに表6の添加物を0.1g(50%品は0.2g)量り入れて10,000rpm、10分間ホモジナイズした。その後、9,000rpm、10分間遠心分離して上清をシリンジフィルター(0.45μm)で濾過したものを脱脂大豆加工品精製液として調整した。 Example 8
Preparation of defatted soybean product refined liquid:
5 g of defatted soybean processed product (the same product used in Example 1) was weighed into a homogenizer cup and diluted 10 times with pure water. ) was weighed and homogenized at 10,000 rpm for 10 minutes. Thereafter, the mixture was centrifuged at 9,000 rpm for 10 minutes, and the supernatant was filtered through a syringe filter (0.45 μm) to prepare a purified defatted soybean product solution.
試 験 例 10
脱脂大豆加工品精製液の揮発性成分分析
実施例8で製造した脱脂大豆加工品精製液を専用のバイアルに5g量り入れ、60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、そのまま脱脂大豆加工品精製液の揮発性成分を試験例9と同様の条件で測定した。ヘキサナールのピーク面積を表16に示した。 Test example 10
Volatile Component Analysis of Defatted Processed Soybean Purified Liquid 5 g of the defatted processed soybean purified liquid produced in Example 8 was weighed into a dedicated vial, placed on a heater set at 60 ° C ± 2 ° C, and heated for 120 minutes. did. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the refined liquid of the defatted processed soybean product were measured under the same conditions as in Test Example 9. Table 16 shows the peak area of hexanal.
脱脂大豆加工品精製液の揮発性成分分析
実施例8で製造した脱脂大豆加工品精製液を専用のバイアルに5g量り入れ、60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、そのまま脱脂大豆加工品精製液の揮発性成分を試験例9と同様の条件で測定した。ヘキサナールのピーク面積を表16に示した。 Test example 10
Volatile Component Analysis of Defatted Processed Soybean Purified Liquid 5 g of the defatted processed soybean purified liquid produced in Example 8 was weighed into a dedicated vial, placed on a heater set at 60 ° C ± 2 ° C, and heated for 120 minutes. did. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC, and the volatile components of the refined liquid of the defatted processed soybean product were measured under the same conditions as in Test Example 9. Table 16 shows the peak area of hexanal.
乳酸塩とアラニンを添加した試験区2~5では、臭いの低減効果が知られているトレハロースよりもヘキサナールのピーク面積の低減が見られた。中でも乳酸カルシウムを添加した試験区2で最もヘキサナール量が低減していることが示された。
In test plots 2 to 5 to which lactate and alanine were added, the peak area of hexanal was reduced more than trehalose, which is known to have an odor-reducing effect. Among them, it was shown that the amount of hexanal was reduced most in test group 2 to which calcium lactate was added.
実 施 例 9
粉末状大豆水溶液の調製:
粉末状大豆(脱脂あり、分離たん白、粉末状、たん白含量 90%以上)0.5gをバイアル瓶に秤量し、純水で10倍希釈する。そこに表17の添加物を5%g秤量し、粉末状大豆水溶液を調整した。 Example 9
Preparation of powdered soybean aqueous solution:
0.5 g of powdered soybean (defatted, separated protein, powdered, protein content of 90% or more) is weighed into a vial and diluted 10-fold with pure water. 5% g of the additive in Table 17 was weighed there to prepare a powdered soybean aqueous solution.
粉末状大豆水溶液の調製:
粉末状大豆(脱脂あり、分離たん白、粉末状、たん白含量 90%以上)0.5gをバイアル瓶に秤量し、純水で10倍希釈する。そこに表17の添加物を5%g秤量し、粉末状大豆水溶液を調整した。 Example 9
Preparation of powdered soybean aqueous solution:
0.5 g of powdered soybean (defatted, separated protein, powdered, protein content of 90% or more) is weighed into a vial and diluted 10-fold with pure water. 5% g of the additive in Table 17 was weighed there to prepare a powdered soybean aqueous solution.
試 験 例 11
粉末状大豆水溶液の揮発性成分分析:
実施例5でバイアル瓶中に製造した粉末状大豆水溶液を、60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、そのまま脱脂大豆加工品精製液の揮発性成分を試験例9と同様の条件で測定した。ヘキサナールのピーク面積を表18に示した。 Test example 11
Volatile component analysis of powdered soybean aqueous solution:
The powdered soybean aqueous solution produced in the vial bottle in Example 5 was placed on a heater set at 60° C.±2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was extracted from the vial, inserted into the injection part of the GC, and the volatile components of the defatted processed soybean purified liquid were measured under the same conditions as in Test Example 9. Table 18 shows the peak area of hexanal.
粉末状大豆水溶液の揮発性成分分析:
実施例5でバイアル瓶中に製造した粉末状大豆水溶液を、60℃±2℃に設定したヒーターの上に設置し、120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したバイアル中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GCのインジェクション部に挿入し、そのまま脱脂大豆加工品精製液の揮発性成分を試験例9と同様の条件で測定した。ヘキサナールのピーク面積を表18に示した。 Test example 11
Volatile component analysis of powdered soybean aqueous solution:
The powdered soybean aqueous solution produced in the vial bottle in Example 5 was placed on a heater set at 60° C.±2° C. and heated for 120 minutes. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into the heated vial and allowed to adsorb volatiles for 30 minutes. The fiber was extracted from the vial, inserted into the injection part of the GC, and the volatile components of the defatted processed soybean purified liquid were measured under the same conditions as in Test Example 9. Table 18 shows the peak area of hexanal.
乳酸カルシウムを添加した試験区2で、無添加区に比べ有意にヘキサナール量が低減していることが示された。
It was shown that the amount of hexanal was significantly reduced in test group 2 with the addition of calcium lactate compared to the non-addition group.
実 施 例 10
植物性たん白水溶液の調製:
粉末状の植物性たん白(大豆たん白(脱脂あり、分離たん白、粉末状、たん白含量 90%以上)、エンドウたん白(脱脂なし、分離たん白、粉末状、たん白含量 80%以上)、ソラマメたん白(脱脂なし、分離たん白、粉末状、たん白含量 90%以上)、玄米(脱脂なし、濃縮たん白、粉末状、たん白含量 80%以上))5gをスクリューバイアル瓶に秤量し、純水で10倍希釈した。無添加区以外、これらにそれぞれ乳酸カルシウムを5%量り入れ、混濁した。また、乳酸カルシウムを添加しないものを無添加区とした。 Example 10
Preparation of vegetable protein aqueous solution:
Powdered vegetable protein (soybean protein (defatted, isolated protein, powdered, protein content 90% or more), pea protein (no defatted, isolated protein, powdered, protein content 80% or more ), broad bean protein (non-defatted, isolated protein, powder, protein content 90% or more), brown rice (non-defatted, concentrated protein, powder, protein content 80% or more))) into a screw vial. It was weighed and diluted 10 times with pure water. 5% of calcium lactate was weighed into each of them except for the additive-free group to make them turbid. A non-addition group was obtained by adding no calcium lactate.
植物性たん白水溶液の調製:
粉末状の植物性たん白(大豆たん白(脱脂あり、分離たん白、粉末状、たん白含量 90%以上)、エンドウたん白(脱脂なし、分離たん白、粉末状、たん白含量 80%以上)、ソラマメたん白(脱脂なし、分離たん白、粉末状、たん白含量 90%以上)、玄米(脱脂なし、濃縮たん白、粉末状、たん白含量 80%以上))5gをスクリューバイアル瓶に秤量し、純水で10倍希釈した。無添加区以外、これらにそれぞれ乳酸カルシウムを5%量り入れ、混濁した。また、乳酸カルシウムを添加しないものを無添加区とした。 Example 10
Preparation of vegetable protein aqueous solution:
Powdered vegetable protein (soybean protein (defatted, isolated protein, powdered, protein content 90% or more), pea protein (no defatted, isolated protein, powdered, protein content 80% or more ), broad bean protein (non-defatted, isolated protein, powder, protein content 90% or more), brown rice (non-defatted, concentrated protein, powder, protein content 80% or more))) into a screw vial. It was weighed and diluted 10 times with pure water. 5% of calcium lactate was weighed into each of them except for the additive-free group to make them turbid. A non-addition group was obtained by adding no calcium lactate.
試 験 例 12
植物性たん白の揮発性成分分析:
実施例10で調整した水溶液が入ったスクリューバイアル瓶を、60℃±2℃に設定したヒーターの上に設置し、スターラーで混濁しながら120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したスクリューバイアル瓶中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GC/MSのインジェクション部に挿入して、所定時間(2min)保持し、吸着部分を脱離させ、揮発性成分を試験例8と同様の条件で測定した。揮発性成分分析の結果を図4~7に示した。また、ヘキサナールおよび2-ペンチルフランのピーク面積をそれぞれ表19および表20に示した。 Test example 12
Volatile component analysis of vegetable protein:
The screw vial containing the aqueous solution prepared in Example 10 was placed on a heater set at 60° C.±2° C., and heated with a stirrer for 120 minutes while making it cloudy. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into a heated screw vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min) to desorb the adsorbed portion, and the volatile components were measured under the same conditions as in Test Example 8. The results of volatile component analysis are shown in Figures 4-7. The peak areas of hexanal and 2-pentylfuran are shown in Tables 19 and 20, respectively.
植物性たん白の揮発性成分分析:
実施例10で調整した水溶液が入ったスクリューバイアル瓶を、60℃±2℃に設定したヒーターの上に設置し、スターラーで混濁しながら120分間加熱した。その間、ファイバーのコンディショニング(He中、230℃)を1時間行った。加熱したスクリューバイアル瓶中に、コンディショニングしたファイバーを挿入し、30分間揮発性物質を吸着させた。バイアルからファイバーを抜き出し、GC/MSのインジェクション部に挿入して、所定時間(2min)保持し、吸着部分を脱離させ、揮発性成分を試験例8と同様の条件で測定した。揮発性成分分析の結果を図4~7に示した。また、ヘキサナールおよび2-ペンチルフランのピーク面積をそれぞれ表19および表20に示した。 Test example 12
Volatile component analysis of vegetable protein:
The screw vial containing the aqueous solution prepared in Example 10 was placed on a heater set at 60° C.±2° C., and heated with a stirrer for 120 minutes while making it cloudy. Meanwhile, the fiber was conditioned (230° C. in He) for 1 hour. The conditioned fiber was inserted into a heated screw vial and allowed to adsorb volatiles for 30 minutes. The fiber was pulled out from the vial, inserted into the injection part of the GC/MS, held for a predetermined time (2 min) to desorb the adsorbed portion, and the volatile components were measured under the same conditions as in Test Example 8. The results of volatile component analysis are shown in Figures 4-7. The peak areas of hexanal and 2-pentylfuran are shown in Tables 19 and 20, respectively.
乳酸カルシウム5%添加区では、無添加区に比べ全体的にピーク面積が減少する傾向があることが確認された(図4~7)。主要ピークとして、豆類の青臭さの代表であるヘキサナールや油脂の酸化臭で知られる2-ペンチルフランなどのピークが減少していた(表19および20)。
It was confirmed that in the 5% calcium lactate addition group, the overall peak area tended to decrease compared to the non-addition group (Figs. 4 to 7). As major peaks, the peaks of hexanal, which is representative of the grassy smell of legumes, and 2-pentylfuran, which is known as the oxidized smell of oils and fats, decreased (Tables 19 and 20).
本発明は、植物性たん白を利用した飲食品の嗜好性を高めるために利用することができる。
The present invention can be used to enhance the palatability of foods and drinks that use vegetable protein.
Claims (17)
- 乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有することを特徴とする植物性たん白用風味改善剤。 A vegetable protein flavor improving agent characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
- 植物性たん白が、豆類由来である請求項1記載の植物性たん白用風味改善剤。 The flavor improver for vegetable protein according to claim 1, wherein the vegetable protein is derived from legumes.
- 豆類由来の植物性たん白が、分離たん白、抽出たん白または濃縮たん白である請求項2記載の植物性たん白用風味改善剤。 The vegetable protein flavor improving agent according to claim 2, wherein the vegetable protein derived from beans is isolated protein, extracted protein or concentrated protein.
- 植物性たん白が、豆類もしくは穀類の粉末または豆類もしくは穀類のミルクである請求項1記載の植物性たん白用風味改善剤。 The vegetable protein flavor improving agent according to claim 1, wherein the vegetable protein is beans or cereals powder or beans or cereals milk.
- 植物性たん白が、穀類由来である請求項1記載の植物性たん白用風味改善剤。 The vegetable protein flavor improving agent according to claim 1, wherein the vegetable protein is derived from cereals.
- 乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上を有効成分として含有することを特徴とする植物性たん白用物性改善剤。 A physical property improving agent for vegetable protein, characterized by containing one or more selected from the group consisting of lactic acid, its metal salts, and alanine as active ingredients.
- 植物性たん白が、豆類由来である請求項6記載の植物性たん白用物性改善剤。 The physical property improving agent for vegetable protein according to claim 6, wherein the vegetable protein is derived from legumes.
- 豆類由来の植物性たん白が、分離たん白、抽出たん白または濃縮たん白である請求項7記載の植物性たん白用物性改善剤。 The physical property improving agent for vegetable protein according to claim 7, wherein the vegetable protein derived from beans is isolated protein, extracted protein or concentrated protein.
- 植物性たん白が、豆類もしくは穀類の粉末または豆類もしくは穀類のミルクである請求項6記載の植物性たん白用物性改善剤。 The physical property improving agent for vegetable protein according to claim 6, wherein the vegetable protein is beans or cereals powder or beans or cereals milk.
- 植物性たん白が、穀類由来である請求項6記載の植物性たん白用物性改善剤。 The physical property improving agent for vegetable protein according to claim 6, wherein the vegetable protein is derived from cereals.
- 植物性たん白と、乳酸およびその金属塩、アラニンからなる群から選ばれる1種または2種以上とを含有することを特徴とする飲食品。 A food or drink characterized by containing vegetable protein and one or more selected from the group consisting of lactic acid, its metal salts, and alanine.
- 植物性たん白が、豆類由来である請求項11記載の飲食品。 The food or drink according to claim 11, wherein the vegetable protein is derived from legumes.
- 豆類由来の植物性たん白が、分離たん白、抽出たん白または濃縮たん白である請求項12記載の飲食品。 The food or drink according to claim 12, wherein the legume-derived vegetable protein is isolated protein, extracted protein or concentrated protein.
- 植物性たん白が、豆類もしくは穀類の粉末または豆類もしくは穀類のミルクである請求項11記載の飲食品。 The food or drink according to claim 11, wherein the vegetable protein is beans or cereals powder or beans or cereals milk.
- 植物性たん白が、穀類由来である請求項11記載の飲食品。 The food or drink according to claim 11, wherein the vegetable protein is derived from cereals.
- 更に、畜肉を含有するものである請求項11~15の何れか1項に記載の飲食品。 The food or drink according to any one of claims 11 to 15, which further contains livestock meat.
- 更に、魚肉を含有するものである請求項11~16の何れか1項に記載の飲食品。 The food or drink according to any one of claims 11 to 16, which further contains fish meat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009222 WO2023166684A1 (en) | 2022-03-03 | 2022-03-03 | Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009222 WO2023166684A1 (en) | 2022-03-03 | 2022-03-03 | Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166684A1 true WO2023166684A1 (en) | 2023-09-07 |
Family
ID=87883385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009222 WO2023166684A1 (en) | 2022-03-03 | 2022-03-03 | Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023166684A1 (en) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6185165A (en) * | 1984-10-04 | 1986-04-30 | Kikkoman Corp | Preparation of seasoning |
JPH0420266A (en) * | 1990-05-14 | 1992-01-23 | Towa Kasei Kogyo Kk | Quality improver of marine kneaded product and method for improving quality of marine kneaded product using the same improver |
JPH06141783A (en) * | 1992-06-05 | 1994-05-24 | Fuji Oil Co Ltd | Production of soybean protein powder |
JPH07327642A (en) * | 1994-06-13 | 1995-12-19 | Asama Kasei Kk | Production of fish or meat kneaded product and quality-improving agent |
JP2001000148A (en) * | 1999-04-20 | 2001-01-09 | Okuno Chem Ind Co Ltd | Meat quality improver |
JP2001327253A (en) * | 2000-05-23 | 2001-11-27 | Fuji Oil Co Ltd | Method for producing textured protein |
JP2005328795A (en) * | 2004-05-21 | 2005-12-02 | Musashino Chemical Laboratory Ltd | Powdery food additive pharmaceutical preparation having defatted soybean powder as base material |
WO2009057554A1 (en) * | 2007-10-30 | 2009-05-07 | Fuji Oil Company Limited | Enriched liquid food comprising soybean protein material |
WO2009060678A1 (en) * | 2007-11-08 | 2009-05-14 | Fuji Oil Company, Limited | Soy protein gel and method of producing the same |
JP2011000073A (en) * | 2009-06-19 | 2011-01-06 | House Foods Corp | Cheeselike food composition and method for producing the same |
WO2013047644A1 (en) * | 2011-09-30 | 2013-04-04 | 不二製油株式会社 | Production method for texturized soy protein |
CN103859465A (en) * | 2014-02-26 | 2014-06-18 | 廊坊师范学院 | High-protein tilapia fish ball and preparation method thereof |
JP2015023853A (en) * | 2013-07-29 | 2015-02-05 | キユーピー株式会社 | Vegetable protein-containing food, and masking method for masking immaturity of vegetable protein in vegetable protein-containing food |
JP2016149967A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Mizkan Holdings | Packaged minced meat-like chilled food, and method for producing the same |
WO2017014253A1 (en) * | 2015-07-21 | 2017-01-26 | テーブルマーク株式会社 | Novel fermented seasoning composition |
JP2018174923A (en) * | 2017-04-06 | 2018-11-15 | 日清オイリオグループ株式会社 | Method for manufacturing tissue soybean protein |
JP2019071851A (en) * | 2017-10-18 | 2019-05-16 | 三栄源エフ・エフ・アイ株式会社 | Flavor improving agent for vegetable protein-containing composition, and flavor improving method |
JP2019122347A (en) * | 2018-01-19 | 2019-07-25 | ヤマサ醤油株式会社 | Liquid seasoning containing granular soybean protein processed food |
-
2022
- 2022-03-03 WO PCT/JP2022/009222 patent/WO2023166684A1/en unknown
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6185165A (en) * | 1984-10-04 | 1986-04-30 | Kikkoman Corp | Preparation of seasoning |
JPH0420266A (en) * | 1990-05-14 | 1992-01-23 | Towa Kasei Kogyo Kk | Quality improver of marine kneaded product and method for improving quality of marine kneaded product using the same improver |
JPH06141783A (en) * | 1992-06-05 | 1994-05-24 | Fuji Oil Co Ltd | Production of soybean protein powder |
JPH07327642A (en) * | 1994-06-13 | 1995-12-19 | Asama Kasei Kk | Production of fish or meat kneaded product and quality-improving agent |
JP2001000148A (en) * | 1999-04-20 | 2001-01-09 | Okuno Chem Ind Co Ltd | Meat quality improver |
JP2001327253A (en) * | 2000-05-23 | 2001-11-27 | Fuji Oil Co Ltd | Method for producing textured protein |
JP2005328795A (en) * | 2004-05-21 | 2005-12-02 | Musashino Chemical Laboratory Ltd | Powdery food additive pharmaceutical preparation having defatted soybean powder as base material |
WO2009057554A1 (en) * | 2007-10-30 | 2009-05-07 | Fuji Oil Company Limited | Enriched liquid food comprising soybean protein material |
WO2009060678A1 (en) * | 2007-11-08 | 2009-05-14 | Fuji Oil Company, Limited | Soy protein gel and method of producing the same |
JP2011000073A (en) * | 2009-06-19 | 2011-01-06 | House Foods Corp | Cheeselike food composition and method for producing the same |
WO2013047644A1 (en) * | 2011-09-30 | 2013-04-04 | 不二製油株式会社 | Production method for texturized soy protein |
JP2015023853A (en) * | 2013-07-29 | 2015-02-05 | キユーピー株式会社 | Vegetable protein-containing food, and masking method for masking immaturity of vegetable protein in vegetable protein-containing food |
CN103859465A (en) * | 2014-02-26 | 2014-06-18 | 廊坊师范学院 | High-protein tilapia fish ball and preparation method thereof |
JP2016149967A (en) * | 2015-02-17 | 2016-08-22 | 株式会社Mizkan Holdings | Packaged minced meat-like chilled food, and method for producing the same |
WO2017014253A1 (en) * | 2015-07-21 | 2017-01-26 | テーブルマーク株式会社 | Novel fermented seasoning composition |
JP2018174923A (en) * | 2017-04-06 | 2018-11-15 | 日清オイリオグループ株式会社 | Method for manufacturing tissue soybean protein |
JP2019071851A (en) * | 2017-10-18 | 2019-05-16 | 三栄源エフ・エフ・アイ株式会社 | Flavor improving agent for vegetable protein-containing composition, and flavor improving method |
JP2019122347A (en) * | 2018-01-19 | 2019-07-25 | ヤマサ醤油株式会社 | Liquid seasoning containing granular soybean protein processed food |
Non-Patent Citations (2)
Title |
---|
IMAMURA MIHO, TSUNEO SATO, OSAMU HATAMOTO: "Effects on Thresholds for Sweet and Umami Tastants in Soy Sauce", NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, vol. 56, no. 7, 1 July 2009 (2009-07-01), pages 384 - 393, XP093087562 * |
LAMKEY JAMES W., DUNLAVY KIMBERLY A., DOLEZAL H. GLEN: "CHANGES IN THE PALATABILITY OF BEEF CHUCK MUSCLES WITH THE ADDITION OF SODIUM LACTATE AND SOY PROTEIN ISOLATE", JOURNAL OF MUSCLE FOODS, TRUMBULL, CT, US, vol. 4, no. 3, 1 July 1993 (1993-07-01), US , pages 193 - 206, XP093087563, ISSN: 1046-0756, DOI: 10.1111/j.1745-4573.1993.tb00502.x * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101921209B1 (en) | Composition for use in preparing burger patty premix and method for making burger patties having it | |
WO2017061524A1 (en) | Method for producing flavoring oil | |
US20230102970A1 (en) | Vegetable protein-containing food | |
JP2022133196A (en) | Cheese-like seasoning oil | |
JP4471306B2 (en) | Seasoning for food salt reduction and / or calorie reduction. | |
KR20140135041A (en) | A composition of artificial meat and a method of preparing the same | |
Raghuvanshi et al. | Uses of soybean: products and preparation. | |
JP7413467B2 (en) | Method for producing flavoring agent | |
WO2023166684A1 (en) | Plant protein flavor-improving agent, plant protein physical property–improving agent, and food or beverage product containing plant protein flavor-improving agent and plant protein physical property–improving agent | |
JP7011095B1 (en) | Flavoring agent and flavoring method | |
KR101299611B1 (en) | Chicken hamburg patty containing angelica dietary fiber and manufacturing method thereof | |
JP2547573B2 (en) | Beverage manufacturing method | |
KR102522725B1 (en) | Mealworm optimal mix proportioning and antioxidant activity in mealworm oatmeal | |
JP2006109801A (en) | Processed bean and method for producing the same | |
CN118829362A (en) | Flavor improving agent for vegetable protein, physical property improving agent for vegetable protein, and food and drink containing same | |
KR101348975B1 (en) | Patty Composition Included Duck, Patty Manufacturing Method And Patty Using the same | |
KR101587448B1 (en) | Method for production of pork patty with soybean curd residue | |
KR102561208B1 (en) | Chicken breast processed food that can be used as meat paper or patty | |
KR20130116975A (en) | Low-fat chicken sausage containing angelica dietary fiber and manufacturing method thereof | |
JP2613234B2 (en) | Process for producing processed edible mushroom foods with excellent palatability and digestibility | |
KR102351917B1 (en) | A process for the preparation of hot bar and the hot baa prepared therefrom | |
WO2023032659A1 (en) | Meat-like flavor imparting agent, use of tomato-flavored oil to impart meat-like flavor, method for imparting meat-like flavor to food, and method for producing meat-like flavor imparting agent | |
JPS58205462A (en) | Food product containing wholly defatted soybean cake | |
KR20170068866A (en) | Composition for Cookie Containing Eel Meet & Bone and Cookie Using Thereof and Manufacturing Method | |
KR20150020155A (en) | A composition of artificial rice meat and a method of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929828 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024504285 Country of ref document: JP Kind code of ref document: A |