WO2023166664A1 - Distortion compensation device - Google Patents

Distortion compensation device Download PDF

Info

Publication number
WO2023166664A1
WO2023166664A1 PCT/JP2022/009143 JP2022009143W WO2023166664A1 WO 2023166664 A1 WO2023166664 A1 WO 2023166664A1 JP 2022009143 W JP2022009143 W JP 2022009143W WO 2023166664 A1 WO2023166664 A1 WO 2023166664A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission signal
sequence
signal
delay amount
power amplifier
Prior art date
Application number
PCT/JP2022/009143
Other languages
French (fr)
Japanese (ja)
Inventor
僚 柏木
武史 安田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024504267A priority Critical patent/JPWO2023166664A1/ja
Priority to PCT/JP2022/009143 priority patent/WO2023166664A1/en
Publication of WO2023166664A1 publication Critical patent/WO2023166664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits

Definitions

  • the present disclosure relates to a distortion compensator in a power amplifier.
  • a power amplifier used in a wireless communication system amplifies an input waveform and outputs an output waveform by linearly increasing output power in accordance with an increase in input power.
  • DPD digital predistortion
  • a transmission signal that has passed through a power amplifier is used as a feedback signal, and a distortion compensation coefficient is calculated from the difference between the feedback signal after passing through the power amplifier and the transmission signal before passing through the power amplifier. Furthermore, the distortion is compensated by giving the transmission signal the opposite distortion to that of the power amplifier using the calculated distortion compensation coefficient.
  • the distortion compensation coefficient it is necessary to synchronize the transmission signal before passing through the power amplifier and the feedback signal after passing through the power amplifier. Therefore, by delaying the transmission signal before passing through the power amplifier based on the delay amount of the feedback signal after passing through the power amplifier, the transmission signal before passing through the power amplifier and the feedback signal after passing through the power amplifier are synchronized.
  • Patent Document 1 discloses a distortion compensator that realizes DPD by estimating the delay amount of a feedback signal using a specific signal included in a transmission signal such as a pilot signal or a preamble signal.
  • the specific signal used for estimating the delay amount of the feedback signal changes depending on the radio communication system.
  • the delay amount of the feedback signal based on an arbitrary signal, if the signal is not unique within the observed range, the signal may appear redundantly. There is a possibility of misestimating the amount of delay. Therefore, in order to apply DPD to a general-purpose wireless communication system, a specific signal in transmission signals must be known.
  • the present disclosure has been made to solve the problems described above, and provides a distortion compensator capable of performing correct estimation even if the delay amount of a feedback signal is estimated based on an arbitrary signal. With the goal.
  • a distortion compensation apparatus includes a transmission signal generator that generates a transmission signal, a modulator that digitally modulates the transmission signal generated by the transmission signal generator, and the transmission digitally modulated by the modulator.
  • a distortion compensation calculation unit that compensates for signal distortion based on a distortion compensation coefficient;
  • a DA converter that converts the transmission signal whose distortion is compensated by the distortion compensation calculation unit into an analog signal; an attenuator for generating a feedback signal by attenuating the transmission signal amplified by the power amplifier; and converting the feedback signal generated by the attenuator into a digital signal.
  • a demodulator for demodulating the feedback signal converted into a digital signal by the AD converter; and a delay for estimating a delay amount of the feedback signal from the unique sequence generated by the duplicate sequence removal unit and the feedback signal demodulated by the demodulator. and delaying the transmission signal digitally modulated by the modulator based on the delay amount of the feedback signal estimated by the delay amount estimating section.
  • Distortion compensation for calculating the distortion compensation coefficient from a delay device for synchronizing the feedback signal converted into a digital signal, and the digitally modulated transmission signal synchronized with each other and the feedback signal converted into the digital signal. and a coefficient calculator.
  • the delay amount of the feedback signal is estimated based on the unique sequence, which is a sequence obtained by removing overlapping sequences from the transmission signal. Even if there is, the delay amount of the feedback signal can be correctly estimated.
  • FIG. 1 is a block diagram of a distortion compensation device according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of a transmission signal;
  • FIG. FIG. 10 is a diagram showing an example of a unique sequence of length 1;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 10 is a diagram showing an example of a unique sequence of length 1;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 13 illustrates an example of a unique sequence of length 2;
  • FIG. 10
  • FIG. 13 illustrates an example of a unique sequence of length 2; 4 is a flow chart showing the operation of a duplicated series removal unit; 10 is a flowchart showing sequence counting processing; 9 is a flowchart showing unique sequence output processing; 2 is a block diagram of a distortion compensation device according to Embodiment 2; FIG. FIG. 4 is a diagram for explaining nonlinear characteristics of a power amplifier; FIG. 11 is a block diagram of a distortion compensator according to Embodiment 3; FIG. 10 is a block diagram of a distortion compensator according to Embodiment 4;
  • FIG. 1 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 1.
  • the distortion compensation apparatus according to Embodiment 1 includes a transmission signal generator 1, a modulator 2, a distortion compensation calculation unit 3, a DA converter 4, a power amplifier 5, an output switching unit 6, a power line 7, A dummy load 8 , an attenuator 9 , an AD converter 10 , a demodulator 11 , a redundant series remover 12 , a delay amount estimator 13 , a delayer 14 and a distortion compensation coefficient calculator 15 are provided.
  • the input of modulator 2 is connected to the output of transmission signal generator 1 .
  • the input of the distortion compensation calculator 3 is connected to the output of the modulator 2 and the output of the distortion compensation coefficient calculator 15 .
  • the input of the DA converter 4 is connected to the output of the distortion compensation calculator 3 .
  • the input of power amplifier 5 is connected to the output of DA converter 4 .
  • the input of output switching unit 6 is connected to the output of power amplifier 5 .
  • the input of the power line 7 is connected to the output of the output switching section 6 .
  • the input of the dummy load 8 is connected to the output of the output switching section 6 .
  • the input of attenuator 9 is connected to the output of power amplifier 5 .
  • the input of AD converter 10 is connected to the output of attenuator 9 .
  • the input of demodulator 11 is connected to the output of AD converter 10 .
  • the input of the duplicate sequence removal section 12 is connected to the output of the transmission signal generator 1 .
  • the input of the delay amount estimator 13 is connected to the output of the demodulator 11 and the output of the duplicate sequence remover 12 .
  • the input of delay device 14 is connected to the output of modulator 2 and the output of delay amount estimator 13 .
  • the input of the distortion compensation coefficient calculator 15 is connected to the output of the AD converter 10 and the output of the delay device 14 .
  • the transmission signal generator 1 generates a transmission signal 16 as illustrated in FIG.
  • the transmission signal 16 consists of a series of digital data.
  • FIG. 2 is an example of the transmission signal 16.
  • FIG. The transmission signal 16 in FIG. 2 is a hexadecimal binary sequence, and transitions in the order of 0A ⁇ 0B ⁇ 0C ⁇ 0A ⁇ 0B ⁇ 0C ⁇ 0D ⁇ 11 ⁇ 22 ⁇ 11 ⁇ 22 ⁇ 0A ⁇ 0B ⁇ 0C.
  • the modulator 2 digitally modulates the transmission signal 16 .
  • Digital modulation schemes performed by the modulator 2 include BPSK, QPSK, DPSK, 8PSK, 16QAM, 32APSK, 64QAM, 128QAM, 256QAM, 1024QAM, ASK, and OFDM.
  • the distortion compensation calculator 3 uses the distortion compensation coefficient calculated by the distortion compensation coefficient calculator 15 to compensate the transmission signal 16 to cancel the distortion of the power amplifier 5 .
  • Algorithms used by the distortion compensation calculator 3 to compensate the transmission signal 16 include LUTs (lookup tables), FIR filters, NNs (neural networks), and the like.
  • the distortion compensation calculator 3 outputs the transmission signal 16 modulated by the modulator 2 to the DA converter 4 as it is only when the delay amount estimator 13 estimates the delay amount.
  • the DA converter 4 converts the transmission signal 16 compensated by the distortion compensation calculator 3 into an analog signal.
  • the power amplifier 5 amplifies the transmission signal 16 converted into an analog signal by the DA converter 4 .
  • the output switching unit 6 controls whether the transmission signal 16 amplified by the power amplifier 5 is output to the power line 7 or to the dummy load 8 . Specifically, the output switching unit 6 outputs the transmission signal 16 to the dummy load 8 when the delay amount estimation unit 13 estimates the delay amount, and outputs the transmission signal 16 to the dummy load 8 when the delay amount estimation unit 13 does not estimate the delay amount. 16 to the power line 7 .
  • the power line 7 aerially transmits the transmission signal 16 amplified by the power amplifier 5 .
  • the dummy load 8 terminates the transmission signal 16 amplified by the power amplifier 5 .
  • the attenuator 9 attenuates the transmission signal 16 amplified by the power amplifier 5 so that it can be input to the AD converter 10 as a feedback signal.
  • the AD converter 10 converts the feedback signal attenuated by the attenuator 9 from an analog signal to a digital signal.
  • the demodulator 11 demodulates the feedback signal converted into a digital signal by the AD converter 10 .
  • the demodulation method performed by the demodulator 11 is the same as that used by the modulator 2 .
  • the duplicate sequence removal unit 12 removes duplicate sequences from the transmission signal 16 to generate a unique sequence 17 as exemplified in FIGS.
  • the unique sequence 17 is composed of a constant-length sequence obtained by excluding duplicate sequences of a constant length from the transmission signal 16 and an offset time from the transmission start time.
  • the length of the unique sequence 17 (that is, the “fixed length” described above) may be any length, and may be specified in advance.
  • FIG. 3 is a unique sequence 17 of length 1 generated from the transmission signal 16 of FIG.
  • the transmission signal 16 in FIG. 2 includes 0A, 0B, 0C, 0D, 11, and 22 as a sequence of length 1.
  • 0A, 0B, 0C, 11, and 22 are excluded due to duplication, and only 0D remains as a unique sequence 17.
  • FIG. 1 is a unique sequence 17 of length 1 generated from the transmission signal 16 of FIG.
  • the transmission signal 16 in FIG. 2 includes 0A, 0B, 0C, 0D, 11, and 22 as a sequence of length 1.
  • 0A, 0B, 0C, 11, and 22 are excluded due to duplication, and only 0D remains as a unique sequence 17.
  • FIG. 1 is a unique sequence 17 of length 1 generated from the transmission signal 16 of FIG.
  • the transmission signal 16 in FIG. 2 includes 0A, 0B, 0C, 0D, 11, and 22 as a sequence of length 1.
  • the unique sequence 17 is an extracted sequence having a length of 1 or more with no overlap (that is, appearing only once) within the observed range of the transmitted signal 16 .
  • the unique sequence 17 is thus uniquely determined without appearing multiple times in the observed range of the transmitted signal 16 and the corresponding feedback signal.
  • the duplicate series removal unit 12 counts the number of series overlaps, and proceeds to step S2. Then, in the unique sequence output process of step S2, the duplicate sequence removal unit 12 extracts non-overlapping sequences from the sequences counted in step S1, and outputs the extracted sequences as unique sequences 17. FIG.
  • step S1 in FIG. 9 the series counting process (step S1 in FIG. 9) will be described using the flowchart in FIG.
  • step S11 the duplicate sequence removal unit 12 acquires the transmission signal 16 output from the transmission signal generator 1, stores the transmission signal 16 in a fixed-length memory area secured in advance, Proceed to step S12.
  • step S12 the duplicate sequence removal unit 12 checks whether or not the transmission signal 16 exists in the memory area, and if it exists, the process proceeds to step S13.
  • step S13 the duplicate sequence removal unit 12 acquires a sequence of a certain length from the head of the transmission signal 16 existing in the memory area, and proceeds to step S14.
  • the transmission signal 16 transitions in the order of 0A->0B->0C->0A->0B->0C->0D->11->22->11->22->0A->0B->0C as shown in FIG.
  • a sequence of length 1 from the beginning is "0A”
  • a sequence of length 2 from the beginning is "0A ⁇ 0B”.
  • step S14 the duplicate sequence removal unit 12 confirms whether the sequence acquired in step S13 is registered in the dictionary. If not, the process proceeds to step S16.
  • step S15 the duplicate series removal unit 12 increases by one the number of repetitions of the series registered in the dictionary (the same series as obtained in step S13), and proceeds to step S18.
  • step S16 the duplicate series removal unit 12 registers the series acquired in step S13 in the dictionary together with the time information of the series, and proceeds to step S17. If the length of the series acquired in step S13 is 2 or more, the time at the beginning of the series is set as the time of the series. For example, the length of the sequence acquired in step S13 is 2, and the transmission signal 16 is 0A ⁇ 0B ⁇ 0C ⁇ 0A ⁇ 0B ⁇ 0C ⁇ 0D ⁇ 11 ⁇ 22 ⁇ 11 ⁇ 22 ⁇ When transitioning in the order of 0A ⁇ 0B ⁇ 0C, the time of the head sequence “0A ⁇ 0B” of length 2 is 0, and the time of the sequence “0D ⁇ 11” is 6.
  • step S17 the duplicate sequence removal unit 12 sets the number of repetitions of the sequence registered in the dictionary in step S16 to an initial value of 1, and proceeds to step S18.
  • the number of repetitions of a sequence registered in the dictionary is 1, it means that the sequence appears once in the transmission signal 16 .
  • step S18 the duplicate sequence removal unit 12 advances the transmission signal 16 by one symbol, and returns to step S12. Assuming that the transmission signal 16 transits in the order of 0A ⁇ 0B ⁇ 0C ⁇ 0A ⁇ 0B ⁇ 0C ⁇ 0D ⁇ 11 ⁇ 22 ⁇ 11 ⁇ 22 ⁇ 0A ⁇ 0B ⁇ 0C as shown in FIG. When the transmission signal 16 is advanced by one symbol, the leading 0A is removed, and the transmission signal 16 is stored in the fixed-length memory area as 0B ⁇ 0C ⁇ 0A ⁇ 0B ⁇ 0C ⁇ 0D ⁇ 11 ⁇ 22 ⁇ 11 ⁇ 22 ⁇ 0A ⁇ 0B ⁇ 0C remains.
  • the redundant sequence removing unit 12 repeats the above operations, and as a result of advancing the transmission signal 16 by one symbol in step S18, when there is no transmission signal 16 left in the fixed length memory area, in step S12 A determination of NO is made, and the series counting process ends.
  • step S2 in FIG. 9 the above unique series output processing (step S2 in FIG. 9) will be described using the flowchart in FIG.
  • step S21 the duplicate series removal unit 12 checks whether or not the series exists in the dictionary. If the series exists in the dictionary, the process proceeds to step S22.
  • step S22 the duplicate series removal unit 12 extracts one of the series existing in the dictionary, and proceeds to step S23.
  • step S23 the duplicate sequence removing unit 12 confirms whether the number of times of repetition of the sequence extracted from the dictionary in step S22 is 1. If it is only once, the process proceeds to step S24. If the number of repetitions of the sequence is other than 1, that is, if the number of appearances of the sequence in the transmission signal 16 is two or more, the registration of the sequence is deleted from the dictionary, and the process returns to step S21.
  • step S24 the duplicate series removal unit 12 outputs the series extracted from the dictionary in step S22 and the time information of the series as a unique series 17.
  • the delay amount estimator 13 estimates the delay amount of the feedback signal from the unique sequence 17 generated by the duplicated sequence remover 12 and the feedback signal demodulated by the demodulator 11 . Specifically, the delay amount estimating unit 13 finds a sequence that matches the unique sequence 17 from the feedback signal, acquires the start time of the found sequence, and adds the time of the unique sequence 17 to the start time to obtain a delay. Estimate quantity.
  • the unique sequence 17 used by the delay amount estimating unit 13 to estimate the delay amount of the feedback signal is a unique sequence that appears only once in the range where the transmission signal 16 is observed. can be estimated correctly.
  • the delay amount estimating section 13 determines the delay amount and stops the operation.
  • the delay unit 14 delays the transmission signal 16 demodulated by the demodulator 11 based on the delay amount estimated by the delay amount estimating unit 13, thereby converting the transmission signal into the feedback signal converted into a digital signal by the AD converter 10. 16 are synchronized.
  • a distortion compensation coefficient calculator 15 calculates a distortion compensation coefficient from the feedback signal converted into a digital signal by the AD converter 10 and the transmission signal 16 delayed by the delay device 14, which are synchronized with each other, and calculates the calculated distortion compensation.
  • the coefficients are provided to the distortion compensation calculator 3 .
  • Algorithms for calculating the distortion compensation coefficient by the distortion compensation coefficient calculator 15 include, for example, LMS (Least Mean Square), NLMS (Normalized Least Mean Square), and RLS (Recursive Least Square).
  • the delay amount of the feedback signal is estimated based on the unique sequence 17 obtained by removing the duplicate sequence from the transmission signal 16.
  • the amount of delay can be estimated without error.
  • the distortion compensation coefficient is calculated correctly, and the compensation of the output waveform due to the nonlinear operation of the power amplifier 5 is accurately compensated.
  • FIG. 12 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 2.
  • FIG. The configuration of the distortion compensator of FIG. 12 is obtained by adding a gain/attenuation adjustment section 18 to the configuration of FIG.
  • the input of the power amplifier 5 is connected to the output of the DA converter 4 and the output of the gain/attenuation adjustment section 18 .
  • the input of attenuator 9 is connected to the output of power amplifier 5 and the output of gain/attenuation adjuster 18 .
  • Other configurations are the same as those in FIG.
  • the power amplifier 5 amplifies the transmission signal 16 converted into an analog signal by the DA converter 4 based on the gain output from the gain/attenuation adjustment section 18 .
  • FIG. 13 shows an example of a gain curve in power amplifier 5.
  • FIG. 13 shows a gain curve 19 including a nonlinear region and a gain curve 20 with only a linear region.
  • the horizontal axis of the graph in FIG. 13 indicates the input power
  • the vertical axis indicates the output power
  • the slope of the gain curve corresponds to the gain.
  • the gain curve 20 in the linear region only has a constant slope.
  • the gain curve 19 including the nonlinear region has a constant slope in the linear region 21, but the slope is not constant in the nonlinear region 22, and the output power does not increase linearly in response to the increase in the input power. is distorted.
  • a gain/attenuation adjustment unit 18 adjusts the gain of the power amplifier 5 and the attenuation of the attenuator 9 . Specifically, the gain/attenuation adjustment unit 18 sets the gain of the power amplifier 5 to a predetermined value so that the power amplifier 5 operates linearly when the delay amount estimation unit 13 estimates the delay amount of the feedback signal. , and the attenuation amount of the attenuator 9 is predetermined so that the level of the transmission signal 16 output from the DA converter 4 matches the level of the feedback signal input to the AD converter 10. value.
  • the gain/attenuation amount adjustment unit 18 adjusts the gain of the power amplifier 5 to a predetermined value so that the power amplifier 5 operates nonlinearly. , and then the attenuation amount of the attenuator 9 is set to value.
  • the delay amount estimating section 13 estimates the delay amount of the feedback signal
  • the power amplifier 5 is set to the linear region. , and obtaining a feedback signal without distortion, it is possible to estimate the delay amount of the feedback signal during multi-level modulation without error.
  • the transmission signal generator 1 is caused to output the transmission signal 16 at a timing when the system including the distortion compensator (hereinafter simply referred to as "system") does not transmit the transmission signal 16 from the power line 7, and the transmission signal
  • system the system including the distortion compensator
  • the unique sequence 17 obtained from 16 is used to estimate the delay amount of the feedback signal.
  • the unique sequence 17 generated from the transmission signal 16 output by the transmission signal generator 1 is temporarily stored, and the stored unique sequence 17 is reproduced at the timing when the system does not transmit the transmission signal 16 from the power line 7. Then, the reproduced unique sequence 17 is used to estimate the delay amount of the feedback signal.
  • FIG. 14 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 3.
  • FIG. The configuration of the distortion compensating device in FIG. 14 is obtained by adding a sequence accumulating section 23 and a sequence reproducing section 24 to the configuration in FIG.
  • the input of modulator 2 is connected to the output of transmission signal generator 1 and the output of sequence regenerator 24 .
  • the input of the delay amount estimator 13 is connected to the output of the demodulator 11 , the output of the redundant sequence remover 12 and the output of the sequence reproducer 24 .
  • the input of sequence accumulation section 23 is connected to the output of duplicate sequence removal section 12 .
  • the input of the sequence reproducing section 24 is connected to the output of the sequence storing section 23 .
  • Other configurations are the same as those in FIG.
  • the series accumulation unit 23 accumulates the unique series 17 generated by the duplicate series removal unit 12 .
  • the sequence reproducing unit 24 outputs the unique sequence 17 accumulated in the sequence accumulating unit 23 to the modulator 2 and the delay amount estimating unit 13 at the timing when the transmission signal generator 1 does not transmit the transmission signal 16 .
  • the modulator 2 digitally modulates the transmission signal 16 output from the transmission signal generator 1 or the unique sequence 17 output from the sequence regenerator 24 . Specifically, when the system transmits the transmission signal 16 from the power line 7, the modulator 2 digitally modulates the transmission signal 16 output from the transmission signal generator 1, and the system transmits the transmission signal 16 from the power line 7. If not, the unique sequence 17 output by the sequence reproduction unit 24 is digitally modulated.
  • the delay amount estimating section 13 estimates the delay amount of the feedback signal from the unique sequence 17 output from the duplicate sequence removing section 12 or the sequence reproducing section 24 and the feedback signal demodulated by the demodulator 11 . Specifically, when the system transmits a transmission signal 16, the delay amount estimating unit 13 estimates the delay amount of the feedback signal using the unique sequence 17 output from the duplicate sequence removing unit 12, and the system transmits When the signal 16 is not transmitted, the delay amount of the feedback signal is estimated using the unique sequence 17 output from the sequence regenerator 24 .
  • the output switching unit 6 controls whether the transmission signal 16 or the unique sequence 17 amplified by the power amplifier 5 is output to the power line 7 or to the dummy load 8 . Specifically, the output switching unit 6 outputs the transmission signal 16 amplified by the power amplifier 5 to the power line 7 when the system transmits the transmission signal 16, and outputs the transmission signal 16 to the power line 7 when the system does not transmit the transmission signal 16. 5 to output the unique sequence 17 amplified by 5 to the dummy load 8 .
  • the transmission signal generator 1 does not output the transmission signal 16 at the timing when the system does not transmit the transmission signal 16, and the feedback signal is generated at the timing when the system does not transmit the transmission signal 16. can be estimated.
  • the delay amount of the feedback signal is estimated at the timing when the system does not transmit the transmission signal 16. It is difficult to apply to systems with very short timings that do not Embodiment 4 shows a distortion compensator that can also be applied to a system in which the transmission signal 16 is intermittently transmitted.
  • FIG. 15 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 4.
  • FIG. 1 the distortion compensation device shown in FIG. are made redundant into two systems, one of the two systems of circuits is a first system 31 and the other is a second system 32 . Further, instead of the output switching section 6 and the dummy load 8, an input switching section 25 is provided. The input of the input switching section 25 is connected to the outputs of the power amplifiers 5 of the first system 31 and the second system 32 , and the input of the power line 7 is connected to the output of the input switching section 25 .
  • Other configurations are the same as those in FIG.
  • the input switching unit 25 outputs the transmission signal 16 amplified by the power amplifier 5 of the first system 31 to the power line 7 or outputs the transmission signal 16 amplified by the power amplifier 5 of the second system 32 to the power line 7. synchronously with the transmission signal 16 transmitted from the power line 7 by the system. Specifically, the input switching unit 25 outputs the transmission signal 16 amplified by the power amplifier 5 of the first system 31 to the power line 7 every time the system completes continuous transmission of the transmission signal 16 from the power line 7. or to output the transmission signal 16 amplified by the power amplifier 5 of the second system 32 to the power line 7 .
  • the demodulator 11 In conjunction with switching by the input switching unit 25, the demodulator 11 converts the feedback signal converted into a digital signal by the AD converter 10 of the first system 31 and the digital signal by the AD converter 10 of the second system 32. demodulate one of the received feedback signals. Specifically, the demodulator 11 demodulates the feedback signal corresponding to the transmission signal 16 that is not output to the power line 7 by the input switching unit 25 .
  • the delay amount estimator 13 estimates the delay amount of the feedback signal from the unique sequence 17 generated by the duplicated sequence remover 12 and the feedback signal demodulated by the demodulator 11 . Further, the delay amount estimating section 13 updates the delay amount in one of the delay device 14 of the first system 31 and the delay device 14 of the second system 32 in conjunction with switching by the input switching section 25 . Specifically, the delay amount estimating unit 13 determines whether the transmission signal 16 in the delay device 14 of the first system 31 or the second system 32 is not output to the power line 7 by the input switching unit 25 . update the amount of delay.
  • the first system 31 and the second system 32 alternately transmit the transmission signal 16 from the power line 7, and the transmission signal of the first system 31 and the second system 32 16 is not transmitted, the delay amount of the feedback signal can be estimated. Therefore, even when the system including the distortion compensator transmits the transmission signal 16 intermittently, the delay amount of the feedback signal can be estimated.

Abstract

In this distortion compensation device, a duplicated sequence removal unit (12) generates a unique sequence (17), which is a sequence obtained by removing a duplicated sequence from a transmission signal (16). A delay amount estimation unit (13) estimates, from the unique sequence (17) and a feedback signal corresponding to the transmission signal (16) that has passed through a power amplifier (5), an amount of delay of the feedback signal. A delay device (14) delays the transmission signal (16) on the basis of the amount of delay of the feedback signal that has been estimated, thereby synchronizing the transmission signal (16) and the feedback signal. A distortion compensation coefficient calculation unit (15) calculates, from the transmission signal (16) and the feedback signal that are synchronized with each other, a distortion compensation coefficient for compensating a distortion of the transmission signal (16).

Description

歪み補償装置distortion compensator
 本開示は、電力増幅器における歪み補償装置に関するものである。 The present disclosure relates to a distortion compensator in a power amplifier.
 無線通信システムで用いられる電力増幅器は、入力電力の増加に応じて出力電力を線形に増加させることによって、入力波形を増幅した出力波形を出力する。しかし、入力電力の増加に伴って出力電力が飽和すると、電力増幅器の非線形動作により出力波形が歪む。電力増幅器の非線形動作による歪みを補償するために、電力増幅器で発生する歪みと逆の歪みを入力波形に予め与えることで出力波形の歪みを低減させるディジタルプリディストーション(DPD)と呼ばれる歪み補償の技術がある。 A power amplifier used in a wireless communication system amplifies an input waveform and outputs an output waveform by linearly increasing output power in accordance with an increase in input power. However, when the output power saturates as the input power increases, the nonlinear operation of the power amplifier distorts the output waveform. A distortion compensation technique called digital predistortion (DPD), which reduces the distortion of the output waveform by pre-applying distortion to the input waveform that is the opposite of the distortion generated by the power amplifier in order to compensate for the distortion caused by the non-linear operation of the power amplifier. There is
 DPDでは、電力増幅器を通過した送信信号をフィードバック信号として用い、電力増幅器通過後のフィードバック信号と電力増幅器通過前の送信信号との差から、歪補償係数を算出する。さらに、算出された歪補償係数を用いて、送信信号に電力増幅器と逆の歪みを与えることで歪みが補償される。ここで、歪補償係数の算出にあたり、電力増幅器通過前の送信信号と電力増幅器通過後のフィードバック信号とは、互いに同期する必要がある。そのため、電力増幅器通過後のフィードバック信号の遅延量に基づいて、電力増幅器通過前の送信信号を遅延させることで、電力増幅器通過前の送信信号と電力増幅器通過後のフィードバック信号とを同期させる。 In DPD, a transmission signal that has passed through a power amplifier is used as a feedback signal, and a distortion compensation coefficient is calculated from the difference between the feedback signal after passing through the power amplifier and the transmission signal before passing through the power amplifier. Furthermore, the distortion is compensated by giving the transmission signal the opposite distortion to that of the power amplifier using the calculated distortion compensation coefficient. Here, in calculating the distortion compensation coefficient, it is necessary to synchronize the transmission signal before passing through the power amplifier and the feedback signal after passing through the power amplifier. Therefore, by delaying the transmission signal before passing through the power amplifier based on the delay amount of the feedback signal after passing through the power amplifier, the transmission signal before passing through the power amplifier and the feedback signal after passing through the power amplifier are synchronized.
 例えば、下記の特許文献1には、パイロット信号やプリアンブル信号など、送信信号に含まれる特定の信号を用いてフィードバック信号の遅延量を推定し、DPDを実現する歪み補償装置が開示されている。 For example, Patent Document 1 below discloses a distortion compensator that realizes DPD by estimating the delay amount of a feedback signal using a specific signal included in a transmission signal such as a pilot signal or a preamble signal.
特開2011-19154号公報JP 2011-19154 A
 特許文献1の歪み補償装置では、フィードバック信号の遅延量を推定するために用いる特定の信号が、無線通信システムに依存して変わる。任意の信号に基づいてフィードバック信号の遅延量を推定する場合、観測された範囲内で当該信号が一意でなければ、当該信号が重複して出現することがあるため、歪み補償装置がフィードバック信号の遅延量の推定を誤る可能性がある。そのため、汎用的な無線通信システムにDPDを適用するには、送信信号における特定の信号が既知でなければならない。 In the distortion compensator of Patent Document 1, the specific signal used for estimating the delay amount of the feedback signal changes depending on the radio communication system. When estimating the delay amount of the feedback signal based on an arbitrary signal, if the signal is not unique within the observed range, the signal may appear redundantly. There is a possibility of misestimating the amount of delay. Therefore, in order to apply DPD to a general-purpose wireless communication system, a specific signal in transmission signals must be known.
 本開示は以上のような課題を解決するためになされたものであり、任意の信号に基づいてフィードバック信号の遅延量を推定しても、正しい推定を行うことができる歪み補償装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present disclosure has been made to solve the problems described above, and provides a distortion compensator capable of performing correct estimation even if the delay amount of a feedback signal is estimated based on an arbitrary signal. With the goal.
 本開示に係る歪み補償装置は、送信信号を生成する送信信号発生器と、前記送信信号発生器により生成された前記送信信号をディジタル変調する変調器と、前記変調器によりディジタル変調された前記送信信号の歪みを歪補償係数に基づいて補償する歪補償演算部と、前記歪補償演算部により歪みが補償された前記送信信号をアナログ信号に変換するDA変換器と、前記DA変換器により変換された前記送信信号を増幅する電力増幅器と、前記電力増幅器により増幅された前記送信信号を減衰させることで、フィードバック信号を生成する減衰器と、前記減衰器により生成された前記フィードバック信号をディジタル信号に変換するAD変換器と、前記AD変換器によりディジタル信号に変換された前記フィードバック信号を復調する復調器と、前記送信信号発生器により生成された前記送信信号から重複する系列を除去して得られる系列である一意系列を生成する重複系列除去部と、前記重複系列除去部により生成された前記一意系列と前記復調器により復調された前記フィードバック信号とから、前記フィードバック信号の遅延量を推定する遅延量推定部と、前記遅延量推定部により推定された前記フィードバック信号の前記遅延量に基づいて、前記変調器によりディジタル変調された前記送信信号を遅延させることで、ディジタル変調された前記送信信号とディジタル信号に変換された前記フィードバック信号とを同期させる遅延器と、互いに同期されたディジタル変調された前記送信信号とディジタル信号に変換された前記フィードバック信号とから、前記歪補償係数を算出する歪補償係数算出部と、を備える。 A distortion compensation apparatus according to the present disclosure includes a transmission signal generator that generates a transmission signal, a modulator that digitally modulates the transmission signal generated by the transmission signal generator, and the transmission digitally modulated by the modulator. a distortion compensation calculation unit that compensates for signal distortion based on a distortion compensation coefficient; a DA converter that converts the transmission signal whose distortion is compensated by the distortion compensation calculation unit into an analog signal; an attenuator for generating a feedback signal by attenuating the transmission signal amplified by the power amplifier; and converting the feedback signal generated by the attenuator into a digital signal. a demodulator for demodulating the feedback signal converted into a digital signal by the AD converter; and a delay for estimating a delay amount of the feedback signal from the unique sequence generated by the duplicate sequence removal unit and the feedback signal demodulated by the demodulator. and delaying the transmission signal digitally modulated by the modulator based on the delay amount of the feedback signal estimated by the delay amount estimating section. Distortion compensation for calculating the distortion compensation coefficient from a delay device for synchronizing the feedback signal converted into a digital signal, and the digitally modulated transmission signal synchronized with each other and the feedback signal converted into the digital signal. and a coefficient calculator.
 本開示に係る歪み補償装置によれば、送信信号から重複する系列を除去して得られる系列である一意系列に基づいて、フィードバック信号の遅延量が推定されるため、送信信号が任意の信号であっても、フィードバック信号の遅延量を正しく推定することができる。 According to the distortion compensation apparatus according to the present disclosure, the delay amount of the feedback signal is estimated based on the unique sequence, which is a sequence obtained by removing overlapping sequences from the transmission signal. Even if there is, the delay amount of the feedback signal can be correctly estimated.
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
実施の形態1に係る歪み補償装置のブロック図である。1 is a block diagram of a distortion compensation device according to Embodiment 1; FIG. 送信信号の例を示す図である。FIG. 4 is a diagram showing an example of a transmission signal; FIG. 長さが1の一意系列の例を示す図である。FIG. 10 is a diagram showing an example of a unique sequence of length 1; 長さが2の一意系列の例を示す図である。FIG. 13 illustrates an example of a unique sequence of length 2; 長さが2の一意系列の例を示す図である。FIG. 13 illustrates an example of a unique sequence of length 2; 長さが2の一意系列の例を示す図である。FIG. 13 illustrates an example of a unique sequence of length 2; 長さが2の一意系列の例を示す図である。FIG. 13 illustrates an example of a unique sequence of length 2; 長さが2の一意系列の例を示す図である。FIG. 13 illustrates an example of a unique sequence of length 2; 重複系列除去部の動作を示すフローチャートである。4 is a flow chart showing the operation of a duplicated series removal unit; 系列計数処理を示すフローチャートである。10 is a flowchart showing sequence counting processing; 一意系列出力処理を示すフローチャートである。9 is a flowchart showing unique sequence output processing; 実施の形態2に係る歪み補償装置のブロック図である。2 is a block diagram of a distortion compensation device according to Embodiment 2; FIG. 電力増幅器の非線形特性を説明するための図である。FIG. 4 is a diagram for explaining nonlinear characteristics of a power amplifier; 実施の形態3に係る歪み補償装置のブロック図である。FIG. 11 is a block diagram of a distortion compensator according to Embodiment 3; 実施の形態4に係る歪み補償装置のブロック図である。FIG. 10 is a block diagram of a distortion compensator according to Embodiment 4;
 <実施の形態1>
 図1は、実施の形態1に係る歪み補償装置の構成を示すブロック図である。図1のように、実施の形態1に係る歪み補償装置は、送信信号発生器1、変調器2、歪補償演算部3、DA変換器4、電力増幅器5、出力切替部6、電力線7、疑似負荷8、減衰器9、AD変換器10、復調器11、重複系列除去部12、遅延量推定部13、遅延器14、および歪補償係数算出部15を備える。
<Embodiment 1>
FIG. 1 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 1. FIG. As shown in FIG. 1, the distortion compensation apparatus according to Embodiment 1 includes a transmission signal generator 1, a modulator 2, a distortion compensation calculation unit 3, a DA converter 4, a power amplifier 5, an output switching unit 6, a power line 7, A dummy load 8 , an attenuator 9 , an AD converter 10 , a demodulator 11 , a redundant series remover 12 , a delay amount estimator 13 , a delayer 14 and a distortion compensation coefficient calculator 15 are provided.
 変調器2の入力は、送信信号発生器1の出力と接続される。歪補償演算部3の入力は、変調器2の出力と、歪補償係数算出部15の出力とに接続される。DA変換器4の入力は、歪補償演算部3の出力と接続される。電力増幅器5の入力は、DA変換器4の出力と接続される。出力切替部6の入力は、電力増幅器5の出力と接続される。電力線7の入力は、出力切替部6の出力と接続される。疑似負荷8の入力は、出力切替部6の出力と接続される。減衰器9の入力は、電力増幅器5の出力と接続される。AD変換器10の入力は、減衰器9の出力と接続される。復調器11の入力は、AD変換器10の出力と接続される。重複系列除去部12の入力は、送信信号発生器1の出力と接続される。遅延量推定部13の入力は、復調器11の出力と、重複系列除去部12の出力と接続される。遅延器14の入力は、変調器2の出力と、遅延量推定部13の出力と接続される。歪補償係数算出部15の入力は、AD変換器10の出力と、遅延器14の出力と接続される。 The input of modulator 2 is connected to the output of transmission signal generator 1 . The input of the distortion compensation calculator 3 is connected to the output of the modulator 2 and the output of the distortion compensation coefficient calculator 15 . The input of the DA converter 4 is connected to the output of the distortion compensation calculator 3 . The input of power amplifier 5 is connected to the output of DA converter 4 . The input of output switching unit 6 is connected to the output of power amplifier 5 . The input of the power line 7 is connected to the output of the output switching section 6 . The input of the dummy load 8 is connected to the output of the output switching section 6 . The input of attenuator 9 is connected to the output of power amplifier 5 . The input of AD converter 10 is connected to the output of attenuator 9 . The input of demodulator 11 is connected to the output of AD converter 10 . The input of the duplicate sequence removal section 12 is connected to the output of the transmission signal generator 1 . The input of the delay amount estimator 13 is connected to the output of the demodulator 11 and the output of the duplicate sequence remover 12 . The input of delay device 14 is connected to the output of modulator 2 and the output of delay amount estimator 13 . The input of the distortion compensation coefficient calculator 15 is connected to the output of the AD converter 10 and the output of the delay device 14 .
 送信信号発生器1は、図2に例示されるような送信信号16を発生する。送信信号16はディジタルデータの系列で構成される。図2は送信信号16の一例である。図2の送信信号16は、16進数のバイナリ系列であり、0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0Cの順に遷移する。 The transmission signal generator 1 generates a transmission signal 16 as illustrated in FIG. The transmission signal 16 consists of a series of digital data. FIG. 2 is an example of the transmission signal 16. FIG. The transmission signal 16 in FIG. 2 is a hexadecimal binary sequence, and transitions in the order of 0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0C.
 変調器2は、送信信号16をディジタル変調する。変調器2が行うディジタル変調の方式としては、BPSK、QPSK、DPSK、8PSK、16QAM、32APSK、64QAM、128QAM、256QAM、1024QAM、ASK、OFDMなどがある。 The modulator 2 digitally modulates the transmission signal 16 . Digital modulation schemes performed by the modulator 2 include BPSK, QPSK, DPSK, 8PSK, 16QAM, 32APSK, 64QAM, 128QAM, 256QAM, 1024QAM, ASK, and OFDM.
 歪補償演算部3は、歪補償係数算出部15で算出された歪補償係数を用いて、電力増幅器5の歪みを打ち消すために送信信号16を補償する。歪補償演算部3が送信信号16を補償するために用いるアルゴリズムとしては、LUT(ルックアップテーブル)、FIRフィルタ、NN(ニューラルネットワーク)などがある。歪補償演算部3は、遅延量推定部13が遅延量を推定するときにのみ、変調器2が変調した送信信号16をDA変換器4にそのまま出力する。 The distortion compensation calculator 3 uses the distortion compensation coefficient calculated by the distortion compensation coefficient calculator 15 to compensate the transmission signal 16 to cancel the distortion of the power amplifier 5 . Algorithms used by the distortion compensation calculator 3 to compensate the transmission signal 16 include LUTs (lookup tables), FIR filters, NNs (neural networks), and the like. The distortion compensation calculator 3 outputs the transmission signal 16 modulated by the modulator 2 to the DA converter 4 as it is only when the delay amount estimator 13 estimates the delay amount.
 DA変換器4は、歪補償演算部3で補償された送信信号16をアナログ信号に変換する。 The DA converter 4 converts the transmission signal 16 compensated by the distortion compensation calculator 3 into an analog signal.
 電力増幅器5は、DA変換器4によりアナログ信号に変換された送信信号16を増幅する。 The power amplifier 5 amplifies the transmission signal 16 converted into an analog signal by the DA converter 4 .
 出力切替部6は、電力増幅器5により増幅された送信信号16を電力線7に出力するか疑似負荷8に出力するかを制御する。具体的には、出力切替部6は、遅延量推定部13が遅延量を推定するとき、送信信号16を疑似負荷8に出力し、遅延量推定部13が遅延量を推定しないとき、送信信号16を電力線7に出力する。 The output switching unit 6 controls whether the transmission signal 16 amplified by the power amplifier 5 is output to the power line 7 or to the dummy load 8 . Specifically, the output switching unit 6 outputs the transmission signal 16 to the dummy load 8 when the delay amount estimation unit 13 estimates the delay amount, and outputs the transmission signal 16 to the dummy load 8 when the delay amount estimation unit 13 does not estimate the delay amount. 16 to the power line 7 .
 電力線7は、電力増幅器5により増幅された送信信号16を空中送信する。 The power line 7 aerially transmits the transmission signal 16 amplified by the power amplifier 5 .
 疑似負荷8は、電力増幅器5により増幅された送信信号16を終端する。 The dummy load 8 terminates the transmission signal 16 amplified by the power amplifier 5 .
 減衰器9は、電力増幅器5により増幅された送信信号16を、フィードバック信号としてAD変換器10に入力可能な範囲になるように減衰させる。 The attenuator 9 attenuates the transmission signal 16 amplified by the power amplifier 5 so that it can be input to the AD converter 10 as a feedback signal.
 AD変換器10は、減衰器9により減衰されたフィードバック信号をアナログ信号からディジタル信号に変換する。 The AD converter 10 converts the feedback signal attenuated by the attenuator 9 from an analog signal to a digital signal.
 復調器11は、AD変換器10によりディジタル信号に変換されたフィードバック信号を復調する。復調器11が行う復調の方式は、変調器2と同じ方式とする。 The demodulator 11 demodulates the feedback signal converted into a digital signal by the AD converter 10 . The demodulation method performed by the demodulator 11 is the same as that used by the modulator 2 .
 重複系列除去部12は、送信信号16から重複系列を除去することで、図3~図8に例示されるような一意系列17を生成する。一意系列17は、送信信号16から一定の長さの重複した系列を排除して得られる当該一定の長さの系列と、送信開始時刻からのオフセット時刻とで構成される。一意系列17の長さ(すなわち上記「一定の長さ」)は、任意の長さでよく、予め指定しておいてもよい。 The duplicate sequence removal unit 12 removes duplicate sequences from the transmission signal 16 to generate a unique sequence 17 as exemplified in FIGS. The unique sequence 17 is composed of a constant-length sequence obtained by excluding duplicate sequences of a constant length from the transmission signal 16 and an offset time from the transmission start time. The length of the unique sequence 17 (that is, the “fixed length” described above) may be any length, and may be specified in advance.
 図3は、図2の送信信号16から生成される長さが1の一意系列17である。図2の送信信号16には、長さが1の系列として、0A、0B、0C、0D、11、22が含まれている。そのうちの0A、0B、0C、11、22は重複が見られるため除外され、0Dのみが一意系列17として残る。 FIG. 3 is a unique sequence 17 of length 1 generated from the transmission signal 16 of FIG. The transmission signal 16 in FIG. 2 includes 0A, 0B, 0C, 0D, 11, and 22 as a sequence of length 1. In FIG. Among them, 0A, 0B, 0C, 11, and 22 are excluded due to duplication, and only 0D remains as a unique sequence 17. FIG.
 図4~図8は、図2の送信信号16から生成される長さが2の一意系列17である。図2の送信信号16には、長さが2の系列として、「0A→0B」、「0B→0C」、「0C→0A」、「0C→0D」、「0D→11」、「11→22」、「22→11」、「22→0A」が含まれている。そのうちの「0A→0B」、「0B→0C」、「11→22」は重複が見られるため除外され、「0C→0A」(図4)、「0C→0D」(図5)、「0D→11」(図6)、「22→11」(図7)、「22→0A」(図8)が一意系列17として残る。図4~図8のように、送信信号16から複数の一意系列17が得られることがあるが、遅延量推定部13ではそのうちの1つが用いられる。 4 to 8 are unique sequences 17 of length 2 generated from the transmission signal 16 of FIG. In the transmission signal 16 of FIG. 2, as a sequence of length 2, "0A→0B", "0B→0C", "0C→0A", "0C→0D", "0D→11", "11→ 22”, “22→11”, and “22→0A”. Among them, "0A→0B", "0B→0C", and "11→22" are excluded because they overlap, and "0C→0A" (Fig. 4), "0C→0D" (Fig. 5), "0D →11” (FIG. 6), “22→11” (FIG. 7), and “22→0A” (FIG. 8) remain as the unique sequence 17 . As shown in FIGS. 4 to 8, a plurality of unique sequences 17 may be obtained from the transmission signal 16, one of which is used in the delay amount estimator 13. FIG.
 このように、一意系列17は、送信信号16の観測された範囲内で重複のない(つまり、1回しか出現しない)1以上の長さを有する系統を抽出したものである。よって、一意系列17は、送信信号16の観測された範囲およびそれに対応するフィードバック信号に複数回現れることはなく、一意的に定まる。 Thus, the unique sequence 17 is an extracted sequence having a length of 1 or more with no overlap (that is, appearing only once) within the observed range of the transmitted signal 16 . The unique sequence 17 is thus uniquely determined without appearing multiple times in the observed range of the transmitted signal 16 and the corresponding feedback signal.
 ここで、重複系列除去部12が一意系列17を生成する方法を図9のフローチャートを用いて説明する。 Here, the method for generating the unique sequence 17 by the duplicate sequence removing unit 12 will be described using the flowchart of FIG.
 まず、ステップS1の系列計数処理にて、重複系列除去部12は、系列の重複回数を数え、ステップS2に進む。そして、ステップS2の一意系列出力処理にて、重複系列除去部12は、ステップS1で数えた系列のうちから重複していない系列を抽出し、抽出した系列を一意系列17として出力する。 First, in the series counting process in step S1, the duplicate series removal unit 12 counts the number of series overlaps, and proceeds to step S2. Then, in the unique sequence output process of step S2, the duplicate sequence removal unit 12 extracts non-overlapping sequences from the sequences counted in step S1, and outputs the extracted sequences as unique sequences 17. FIG.
 次に、上記の系列計数処理(図9のステップS1)について、図10のフローチャートを用いて説明する。 Next, the series counting process (step S1 in FIG. 9) will be described using the flowchart in FIG.
 まず、ステップS11にて、重複系列除去部12は、送信信号発生器1から出力された送信信号16を取得し、予め確保しておいた固定長のメモリ領域に送信信号16を保存して、ステップS12に進む。 First, in step S11, the duplicate sequence removal unit 12 acquires the transmission signal 16 output from the transmission signal generator 1, stores the transmission signal 16 in a fixed-length memory area secured in advance, Proceed to step S12.
 ステップS12では、重複系列除去部12は、当該メモリ領域に送信信号16が存在するか否かを確認し、存在していればステップS13に進む。 In step S12, the duplicate sequence removal unit 12 checks whether or not the transmission signal 16 exists in the memory area, and if it exists, the process proceeds to step S13.
 ステップS13では、重複系列除去部12は、当該メモリ領域に存在する送信信号16における先頭から一定の長さの系列を取得し、ステップS14に進む。例えば、送信信号16が図2に示したように0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0Cの順に遷移するものと仮定すると、先頭から長さ1の系列は「0A」であり、先頭から長さ2の系列は「0A→0B」である。 In step S13, the duplicate sequence removal unit 12 acquires a sequence of a certain length from the head of the transmission signal 16 existing in the memory area, and proceeds to step S14. For example, assuming that the transmission signal 16 transitions in the order of 0A->0B->0C->0A->0B->0C->0D->11->22->11->22->0A->0B->0C as shown in FIG. A sequence of length 1 from the beginning is "0A", and a sequence of length 2 from the beginning is "0A→0B".
 ステップS14では、重複系列除去部12は、ステップS13で取得した系列が辞書に登録されているか否かを確認し、ステップS13で取得した系列が辞書に登録されていればステップS15に進み、登録されていなければステップS16に進む。 In step S14, the duplicate sequence removal unit 12 confirms whether the sequence acquired in step S13 is registered in the dictionary. If not, the process proceeds to step S16.
 ステップS15では、重複系列除去部12は、辞書に登録されている当該系列(ステップS13で取得したものと同じ系列)の重複回数を1つ増やし、ステップS18に進む。 In step S15, the duplicate series removal unit 12 increases by one the number of repetitions of the series registered in the dictionary (the same series as obtained in step S13), and proceeds to step S18.
 ステップS16では、重複系列除去部12は、ステップS13で取得した系列を、その系列の時刻の情報とともに辞書に登録し、ステップS17に進む。ステップS13で取得される系列の長さが2以上の場合は、その系列の先頭の時刻を当該系列の時刻とする。例えば、ステップS13で取得される系列の長さが2であり、送信信号16が図2に示したように0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0Cの順に遷移する場合、先頭の長さ2の系列「0A→0B」の時刻は0となり、系列「0D→11」の時刻は6となる。 In step S16, the duplicate series removal unit 12 registers the series acquired in step S13 in the dictionary together with the time information of the series, and proceeds to step S17. If the length of the series acquired in step S13 is 2 or more, the time at the beginning of the series is set as the time of the series. For example, the length of the sequence acquired in step S13 is 2, and the transmission signal 16 is 0A→0B→0C→0A→0B→0C→0D→11→22→11→22→ When transitioning in the order of 0A→0B→0C, the time of the head sequence “0A→0B” of length 2 is 0, and the time of the sequence “0D→11” is 6.
 ステップS17では、重複系列除去部12は、ステップS16で辞書に登録した系列の重複回数を初期値の1にして、ステップS18に進む。つまり、辞書に登録されている系列の重複回数が1であることは、その系列が送信信号16において1回出現したことを意味している。 In step S17, the duplicate sequence removal unit 12 sets the number of repetitions of the sequence registered in the dictionary in step S16 to an initial value of 1, and proceeds to step S18. In other words, when the number of repetitions of a sequence registered in the dictionary is 1, it means that the sequence appears once in the transmission signal 16 .
 ステップS18では、重複系列除去部12は、送信信号16を1シンボルだけ進め、ステップS12へ戻る。送信信号16が図2に示したように0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0Cの順に遷移すると仮定すると、1回目のステップS18で送信信号16が1シンボル進められると、先頭の0Aが除外されて、上記の固定長のメモリ領域には、送信信号16として、0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0Cが残ることになる。 In step S18, the duplicate sequence removal unit 12 advances the transmission signal 16 by one symbol, and returns to step S12. Assuming that the transmission signal 16 transits in the order of 0A→0B→0C→0A→0B→0C→0D→11→22→11→22→0A→0B→0C as shown in FIG. When the transmission signal 16 is advanced by one symbol, the leading 0A is removed, and the transmission signal 16 is stored in the fixed-length memory area as 0B→0C→0A→0B→0C→0D→11→22→ 11→22→0A→0B→0C remains.
 系列計数処理では、重複系列除去部12は以上の動作を繰り返し、ステップS18で送信信号16が1シンボル進められた結果、上記の固定長のメモリ領域に残る送信信号16が無くなると、ステップS12でNOと判断され、系列計数処理は終了する。 In the sequence counting process, the redundant sequence removing unit 12 repeats the above operations, and as a result of advancing the transmission signal 16 by one symbol in step S18, when there is no transmission signal 16 left in the fixed length memory area, in step S12 A determination of NO is made, and the series counting process ends.
 次に、上記の一意系列出力処理(図9のステップS2)について、図11のフローチャートを用いて説明する。 Next, the above unique series output processing (step S2 in FIG. 9) will be described using the flowchart in FIG.
 まず、ステップS21にて、重複系列除去部12は、辞書に系列が存在しているか否かを確認し、辞書に系列が存在すればステップS22に進む。 First, in step S21, the duplicate series removal unit 12 checks whether or not the series exists in the dictionary.If the series exists in the dictionary, the process proceeds to step S22.
 ステップS22では、重複系列除去部12は、辞書に存在する系列のうちの1つを取り出し、ステップS23に進む。 In step S22, the duplicate series removal unit 12 extracts one of the series existing in the dictionary, and proceeds to step S23.
 ステップS23では、重複系列除去部12は、ステップS22で辞書から取り出した系列の重複回数が1か否かを確認し、当該系列の重複回数が1、つまり送信信号16における当該系列の出現回数が1回だけであれば、ステップS24に進む。また、当該系列の重複回数が1以外、つまり送信信号16における当該系列の出現回数が2回以上であれば、当該系列の登録を辞書から削除して、ステップS21に戻る。 In step S23, the duplicate sequence removing unit 12 confirms whether the number of times of repetition of the sequence extracted from the dictionary in step S22 is 1. If it is only once, the process proceeds to step S24. If the number of repetitions of the sequence is other than 1, that is, if the number of appearances of the sequence in the transmission signal 16 is two or more, the registration of the sequence is deleted from the dictionary, and the process returns to step S21.
 ステップS24では、重複系列除去部12は、ステップS22で辞書から取り出した系列と当該系列の時刻の情報を、一意系列17として出力する。 In step S24, the duplicate series removal unit 12 outputs the series extracted from the dictionary in step S22 and the time information of the series as a unique series 17.
 なお、重複回数が1の系列が見つからず、ステップS21からステップS23が繰り返し実行された結果、辞書に登録された系列が無くなると、ステップS21でNOと判断され、一意系列出力処理は終了する。 It should be noted that if a series with a repetition count of 1 is not found and as a result of repeatedly executing steps S21 to S23, there is no series registered in the dictionary, NO is determined in step S21 and the unique series output process ends.
 図1に戻り、遅延量推定部13は、重複系列除去部12により生成された一意系列17と、復調器11により復調されたフィードバック信号とから、フィードバック信号の遅延量を推定する。具体的には、遅延量推定部13は、一意系列17と一致する系列をフィードバック信号から見付け、見つかった系列の開始時刻を取得し、その開始時刻に一意系列17の時刻を足すことで、遅延量を推定する。遅延量推定部13がフィードバック信号の遅延量の推定に用いる一意系列17は、送信信号16の観測された範囲に1回しか出現しない一意な系列であるため、遅延量推定部13は、フィードバック信号の遅延量を正しく推定することができる。遅延量の推定が完了すると、遅延量推定部13は、遅延量を確定して動作を停止する。 Returning to FIG. 1, the delay amount estimator 13 estimates the delay amount of the feedback signal from the unique sequence 17 generated by the duplicated sequence remover 12 and the feedback signal demodulated by the demodulator 11 . Specifically, the delay amount estimating unit 13 finds a sequence that matches the unique sequence 17 from the feedback signal, acquires the start time of the found sequence, and adds the time of the unique sequence 17 to the start time to obtain a delay. Estimate quantity. The unique sequence 17 used by the delay amount estimating unit 13 to estimate the delay amount of the feedback signal is a unique sequence that appears only once in the range where the transmission signal 16 is observed. can be estimated correctly. When the estimation of the delay amount is completed, the delay amount estimating section 13 determines the delay amount and stops the operation.
 遅延器14は、遅延量推定部13で推定された遅延量に基づき、復調器11が復調した送信信号16を遅延させることで、AD変換器10によりディジタル信号に変換されたフィードバック信号に送信信号16を同期させる。 The delay unit 14 delays the transmission signal 16 demodulated by the demodulator 11 based on the delay amount estimated by the delay amount estimating unit 13, thereby converting the transmission signal into the feedback signal converted into a digital signal by the AD converter 10. 16 are synchronized.
 歪補償係数算出部15は、互いに同期した、AD変換器10によりディジタル信号に変換されたフィードバック信号と遅延器14により遅延された送信信号16とから、歪補償係数を算出し、算出した歪補償係数を歪補償演算部3に提供する。歪補償係数算出部15が歪補償係数を算出するアルゴリズムとしては、例えばLMS(最小平均二乗)、NLMS(正規化最小平均二乗)、RLS(再帰的最小二乗)などがある。 A distortion compensation coefficient calculator 15 calculates a distortion compensation coefficient from the feedback signal converted into a digital signal by the AD converter 10 and the transmission signal 16 delayed by the delay device 14, which are synchronized with each other, and calculates the calculated distortion compensation. The coefficients are provided to the distortion compensation calculator 3 . Algorithms for calculating the distortion compensation coefficient by the distortion compensation coefficient calculator 15 include, for example, LMS (Least Mean Square), NLMS (Normalized Least Mean Square), and RLS (Recursive Least Square).
 このように、実施の形態1に係る歪み補償装置によれば、フィードバック信号の遅延量が、送信信号16から重複系列を除去して得られる一意系列17に基づいて推定されるため、フィードバック信号の遅延量を誤りなく推定できる。その結果、歪補償係数が正しく計算され、電力増幅器5の非線形動作による出力波形の補償が精度良く補償される。 As described above, according to the distortion compensation apparatus according to Embodiment 1, the delay amount of the feedback signal is estimated based on the unique sequence 17 obtained by removing the duplicate sequence from the transmission signal 16. The amount of delay can be estimated without error. As a result, the distortion compensation coefficient is calculated correctly, and the compensation of the output waveform due to the nonlinear operation of the power amplifier 5 is accurately compensated.
 <実施の形態2>
 実施の形態2では、電力増幅器5の利得を線形領域に調整することで、多値変調時におけるフィードバック信号のシンボル誤りを抑制し、それによって、フィードバック信号の遅延量が誤って推定されることを防止する。
<Embodiment 2>
In the second embodiment, by adjusting the gain of the power amplifier 5 in the linear region, the symbol error of the feedback signal during multi-level modulation is suppressed, thereby erroneously estimating the delay amount of the feedback signal. To prevent.
 図12は、実施の形態2に係る歪み補償装置の構成を示すブロック図である。図12の歪み補償装置の構成は、図1の構成に対し、利得/減衰量調整部18を追加したものである。また、電力増幅器5の入力は、DA変換器4の出力と、利得/減衰量調整部18の出力とに接続される。減衰器9の入力は、電力増幅器5の出力と、利得/減衰量調整部18の出力とに接続される。それ以外の構成は図1と同様である。 FIG. 12 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 2. FIG. The configuration of the distortion compensator of FIG. 12 is obtained by adding a gain/attenuation adjustment section 18 to the configuration of FIG. Also, the input of the power amplifier 5 is connected to the output of the DA converter 4 and the output of the gain/attenuation adjustment section 18 . The input of attenuator 9 is connected to the output of power amplifier 5 and the output of gain/attenuation adjuster 18 . Other configurations are the same as those in FIG.
 本実施の形態では、電力増幅器5は、DA変換器4によりアナログ信号に変換された送信信号16を、利得/減衰量調整部18から出力される利得に基づいて増幅する。 In this embodiment, the power amplifier 5 amplifies the transmission signal 16 converted into an analog signal by the DA converter 4 based on the gain output from the gain/attenuation adjustment section 18 .
 電力増幅器5が理想的な線形増幅器である場合、入力電力が増加すると出力電力が直線的に増加する。しかし、電力増幅器5が理想的な線形増幅器でない場合、入力電力が増加すると出力電力が直線的に増加することなく飽和する。図13に、電力増幅器5における利得曲線の例を示す。図13には、非線形領域を含む利得曲線19と、線形領域のみの利得曲線20とが図示されている。図13のグラフの横軸は入力電力、縦軸は出力電力を示し、利得曲線の傾きが利得に相当する。線形領域のみの利得曲線20は傾きが一定である。非線形領域を含む利得曲線19は、線形領域21では傾きが一定であるが、非線形領域22では傾きが一定ではなく、入力電力の増加に対応して出力電力が直線的に増加しないため、出力信号に歪みが生じる。 If the power amplifier 5 is an ideal linear amplifier, the output power increases linearly as the input power increases. However, if the power amplifier 5 is not an ideal linear amplifier, the output power will saturate without linearly increasing as the input power increases. FIG. 13 shows an example of a gain curve in power amplifier 5. In FIG. FIG. 13 shows a gain curve 19 including a nonlinear region and a gain curve 20 with only a linear region. The horizontal axis of the graph in FIG. 13 indicates the input power, the vertical axis indicates the output power, and the slope of the gain curve corresponds to the gain. The gain curve 20 in the linear region only has a constant slope. The gain curve 19 including the nonlinear region has a constant slope in the linear region 21, but the slope is not constant in the nonlinear region 22, and the output power does not increase linearly in response to the increase in the input power. is distorted.
 利得/減衰量調整部18は、電力増幅器5の利得および減衰器9の減衰量を調整する。具体的には、利得/減衰量調整部18は、遅延量推定部13がフィードバック信号の遅延量を推定する際、電力増幅器5が線形動作するように、電力増幅器5の利得を予め定められた値に調整し、その上でDA変換器4が出力する送信信号16のレベルとAD変換器10に入力されるフィードバック信号のレベルとが一致するように、減衰器9の減衰量を予め定められた値に調整する。また、遅延量推定部13でフィードバック信号の遅延量の推定が完了した後、利得/減衰量調整部18は、電力増幅器5が非線形動作するように、電力増幅器5の利得を予め定められた値に調整し、その上でDA変換器4が出力する送信信号16のレベルとAD変換器10に入力されるフィードバック信号のレベルとが一致するように、減衰器9の減衰量を予め定められた値に調整する。 A gain/attenuation adjustment unit 18 adjusts the gain of the power amplifier 5 and the attenuation of the attenuator 9 . Specifically, the gain/attenuation adjustment unit 18 sets the gain of the power amplifier 5 to a predetermined value so that the power amplifier 5 operates linearly when the delay amount estimation unit 13 estimates the delay amount of the feedback signal. , and the attenuation amount of the attenuator 9 is predetermined so that the level of the transmission signal 16 output from the DA converter 4 matches the level of the feedback signal input to the AD converter 10. value. Further, after the delay amount estimation unit 13 completes the estimation of the delay amount of the feedback signal, the gain/attenuation amount adjustment unit 18 adjusts the gain of the power amplifier 5 to a predetermined value so that the power amplifier 5 operates nonlinearly. , and then the attenuation amount of the attenuator 9 is set to value.
 このように、実施の形態2の歪み補償装置によれば、実施の形態1で得られる効果に加え、遅延量推定部13がフィードバック信号の遅延量を推定する際に、電力増幅器5を線形領域で動作させて、歪みのないフィードバック信号を得ることで、多値変調時におけるフィードバック信号の遅延量を誤りなく推定することができる。 As described above, according to the distortion compensation apparatus of the second embodiment, in addition to the effects obtained in the first embodiment, when the delay amount estimating section 13 estimates the delay amount of the feedback signal, the power amplifier 5 is set to the linear region. , and obtaining a feedback signal without distortion, it is possible to estimate the delay amount of the feedback signal during multi-level modulation without error.
 <実施の形態3>
 実施の形態1では、歪み補償装置を含むシステム(以下、単に「システム」という)が送信信号16を電力線7から送信しないタイミングで、送信信号発生器1に送信信号16を出力させ、その送信信号16から得られる一意系列17を用いてフィードバック信号の遅延量が推定される。実施の形態3では、送信信号発生器1が出力した送信信号16から生成された一意系列17を一旦蓄積し、システムが送信信号16を電力線7から送信しないタイミングで蓄積された一意系列17を再生し、再生された一意系列17を用いてフィードバック信号の遅延量を推定する。
<Embodiment 3>
In Embodiment 1, the transmission signal generator 1 is caused to output the transmission signal 16 at a timing when the system including the distortion compensator (hereinafter simply referred to as "system") does not transmit the transmission signal 16 from the power line 7, and the transmission signal The unique sequence 17 obtained from 16 is used to estimate the delay amount of the feedback signal. In the third embodiment, the unique sequence 17 generated from the transmission signal 16 output by the transmission signal generator 1 is temporarily stored, and the stored unique sequence 17 is reproduced at the timing when the system does not transmit the transmission signal 16 from the power line 7. Then, the reproduced unique sequence 17 is used to estimate the delay amount of the feedback signal.
 図14は、実施の形態3に係る歪み補償装置の構成を示すブロック図である。図14の歪み補償装置の構成は、図1の構成に対し、系列蓄積部23および系列再生部24を追加したものである。また、変調器2の入力は、送信信号発生器1の出力と、系列再生部24の出力とに接続される。遅延量推定部13の入力は、復調器11の出力と、重複系列除去部12の出力と、系列再生部24の出力とに接続される。系列蓄積部23の入力は、重複系列除去部12の出力と接続される。系列再生部24の入力は、系列蓄積部23の出力と接続される。それ以外の構成は図1と同様である。 FIG. 14 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 3. FIG. The configuration of the distortion compensating device in FIG. 14 is obtained by adding a sequence accumulating section 23 and a sequence reproducing section 24 to the configuration in FIG. The input of modulator 2 is connected to the output of transmission signal generator 1 and the output of sequence regenerator 24 . The input of the delay amount estimator 13 is connected to the output of the demodulator 11 , the output of the redundant sequence remover 12 and the output of the sequence reproducer 24 . The input of sequence accumulation section 23 is connected to the output of duplicate sequence removal section 12 . The input of the sequence reproducing section 24 is connected to the output of the sequence storing section 23 . Other configurations are the same as those in FIG.
 系列蓄積部23は、重複系列除去部12が発生した一意系列17を蓄積する。系列再生部24は、送信信号発生器1が送信信号16の送信を行わないタイミングで、系列蓄積部23に蓄積された一意系列17を、変調器2および遅延量推定部13へ出力する。 The series accumulation unit 23 accumulates the unique series 17 generated by the duplicate series removal unit 12 . The sequence reproducing unit 24 outputs the unique sequence 17 accumulated in the sequence accumulating unit 23 to the modulator 2 and the delay amount estimating unit 13 at the timing when the transmission signal generator 1 does not transmit the transmission signal 16 .
 変調器2は、送信信号発生器1から出力される送信信号16、または、系列再生部24から出力される一意系列17を、ディジタル変調する。具体的には、変調器2は、システムが送信信号16を電力線7から送信するときは、送信信号発生器1が出力する送信信号16をディジタル変調し、システムが送信信号16を電力線7から送信しないときは、系列再生部24が出力する一意系列17をディジタル変調する。 The modulator 2 digitally modulates the transmission signal 16 output from the transmission signal generator 1 or the unique sequence 17 output from the sequence regenerator 24 . Specifically, when the system transmits the transmission signal 16 from the power line 7, the modulator 2 digitally modulates the transmission signal 16 output from the transmission signal generator 1, and the system transmits the transmission signal 16 from the power line 7. If not, the unique sequence 17 output by the sequence reproduction unit 24 is digitally modulated.
 遅延量推定部13は、重複系列除去部12または系列再生部24から出力される一意系列17と復調器11により復調されたフィードバック信号とから、フィードバック信号の遅延量を推定する。具体的には、遅延量推定部13は、システムが送信信号16を送信するときは、重複系列除去部12から出力される一意系列17を用いてフィードバック信号の遅延量を推定し、システムが送信信号16を送信しないときは、系列再生部24から出力される一意系列17を用いてフィードバック信号の遅延量を推定する。 The delay amount estimating section 13 estimates the delay amount of the feedback signal from the unique sequence 17 output from the duplicate sequence removing section 12 or the sequence reproducing section 24 and the feedback signal demodulated by the demodulator 11 . Specifically, when the system transmits a transmission signal 16, the delay amount estimating unit 13 estimates the delay amount of the feedback signal using the unique sequence 17 output from the duplicate sequence removing unit 12, and the system transmits When the signal 16 is not transmitted, the delay amount of the feedback signal is estimated using the unique sequence 17 output from the sequence regenerator 24 .
 出力切替部6は、電力増幅器5により増幅された送信信号16または一意系列17を電力線7に出力するか疑似負荷8に出力するか制御する。具体的には、出力切替部6は、システムが送信信号16を送信するとき、電力増幅器5により増幅された送信信号16を電力線7に出力し、システムが送信信号16を送信しないとき、電力増幅器5により増幅された一意系列17を疑似負荷8に出力する。 The output switching unit 6 controls whether the transmission signal 16 or the unique sequence 17 amplified by the power amplifier 5 is output to the power line 7 or to the dummy load 8 . Specifically, the output switching unit 6 outputs the transmission signal 16 amplified by the power amplifier 5 to the power line 7 when the system transmits the transmission signal 16, and outputs the transmission signal 16 to the power line 7 when the system does not transmit the transmission signal 16. 5 to output the unique sequence 17 amplified by 5 to the dummy load 8 .
 実施の形態3に係る歪み補償装置によれば、システムが送信信号16を送信しないタイミングで送信信号発生器1に送信信号16を出力させることなく、システムが送信信号16を送信しないタイミングでフィードバック信号の遅延量を推定することができる。 According to the distortion compensator according to the third embodiment, the transmission signal generator 1 does not output the transmission signal 16 at the timing when the system does not transmit the transmission signal 16, and the feedback signal is generated at the timing when the system does not transmit the transmission signal 16. can be estimated.
 <実施の形態4>
 実施の形態3では、システムが送信信号16を送信しないタイミングでフィードバック信号の遅延量を推定したが、実施の形態3は、送信信号16を断続的に送信するシステム(つまり、送信信号16を送信しないタイミングが非常に短いシステム)への適用は困難である。実施の形態4では、送信信号16を断続的に送信するシステムにも適用可能な歪み補償装置を示す。
<Embodiment 4>
In the third embodiment, the delay amount of the feedback signal is estimated at the timing when the system does not transmit the transmission signal 16. It is difficult to apply to systems with very short timings that do not Embodiment 4 shows a distortion compensator that can also be applied to a system in which the transmission signal 16 is intermittently transmitted.
 図15は、実施の形態4による歪み補償装置の構成を示すブロック図である。図15に示す歪み補償装置は、図1の構成に対し、歪補償演算部3、DA変換器4、電力増幅器5、減衰器9、AD変換器10、遅延器14および歪補償係数算出部15からなる回路を冗長化して2系統にし、その2系統の回路の片方を第1系統31、もう片方を第2系統32としたものである。また、出力切替部6および疑似負荷8に代えて、入力切替部25が設けられている。入力切替部25の入力は、第1系統31および第2系統32の電力増幅器5の出力と接続され、電力線7の入力は、入力切替部25の出力と接続される。それ以外の構成は図1と同様である。 FIG. 15 is a block diagram showing the configuration of a distortion compensation device according to Embodiment 4. FIG. 1, the distortion compensation device shown in FIG. are made redundant into two systems, one of the two systems of circuits is a first system 31 and the other is a second system 32 . Further, instead of the output switching section 6 and the dummy load 8, an input switching section 25 is provided. The input of the input switching section 25 is connected to the outputs of the power amplifiers 5 of the first system 31 and the second system 32 , and the input of the power line 7 is connected to the output of the input switching section 25 . Other configurations are the same as those in FIG.
 入力切替部25は、第1系統31の電力増幅器5により増幅された送信信号16を電力線7に出力するか、第2系統32の電力増幅器5により増幅された送信信号16を電力線7に出力するかを、システムが電力線7から送信する送信信号16に同期して切り替える。具体的には、入力切替部25は、システムが連続した送信信号16の電力線7からの送信を完了する毎に、第1系統31の電力増幅器5により増幅された送信信号16を電力線7に出力するか、第2系統32の電力増幅器5により増幅された送信信号16を電力線7に出力するかを切り替える。 The input switching unit 25 outputs the transmission signal 16 amplified by the power amplifier 5 of the first system 31 to the power line 7 or outputs the transmission signal 16 amplified by the power amplifier 5 of the second system 32 to the power line 7. synchronously with the transmission signal 16 transmitted from the power line 7 by the system. Specifically, the input switching unit 25 outputs the transmission signal 16 amplified by the power amplifier 5 of the first system 31 to the power line 7 every time the system completes continuous transmission of the transmission signal 16 from the power line 7. or to output the transmission signal 16 amplified by the power amplifier 5 of the second system 32 to the power line 7 .
 復調器11は、入力切替部25による切り替えに連動して、第1系統31のAD変換器10によりディジタル信号に変換されたフィードバック信号と、第2系統32のAD変換器10によりディジタル信号に変換されたフィードバック信号のうちの一方を復調する。具体的には、復調器11は、入力切替部25により電力線7に出力されていない方の送信信号16に対応するフィードバック信号を復調する。 In conjunction with switching by the input switching unit 25, the demodulator 11 converts the feedback signal converted into a digital signal by the AD converter 10 of the first system 31 and the digital signal by the AD converter 10 of the second system 32. demodulate one of the received feedback signals. Specifically, the demodulator 11 demodulates the feedback signal corresponding to the transmission signal 16 that is not output to the power line 7 by the input switching unit 25 .
 遅延量推定部13は、重複系列除去部12により生成された一意系列17と、復調器11により復調されたフィードバック信号とから、フィードバック信号の遅延量を推定する。また、遅延量推定部13は、入力切替部25による切り替えに連動して、第1系統31の遅延器14および第2系統32の遅延器14のうちの一方における遅延量を更新する。具体的には、遅延量推定部13は、第1系統31と第2系統32とのうち、入力切替部25により送信信号16が電力線7に出力されていない方の遅延器14における送信信号16の遅延量を更新する。 The delay amount estimator 13 estimates the delay amount of the feedback signal from the unique sequence 17 generated by the duplicated sequence remover 12 and the feedback signal demodulated by the demodulator 11 . Further, the delay amount estimating section 13 updates the delay amount in one of the delay device 14 of the first system 31 and the delay device 14 of the second system 32 in conjunction with switching by the input switching section 25 . Specifically, the delay amount estimating unit 13 determines whether the transmission signal 16 in the delay device 14 of the first system 31 or the second system 32 is not output to the power line 7 by the input switching unit 25 . update the amount of delay.
 実施の形態4に係る歪み補償装置によれば、第1系統31と第2系統32とが交互に送信信号16を電力線7から送信し、第1系統31および第2系統32のうちの送信信号16を送信していない方においてフィードバック信号の遅延量を推定することができる。そのため、歪み補償装置を含むシステムが送信信号16を断続的に送信する場合であっても、フィードバック信号の遅延量を推定することができる。 According to the distortion compensation apparatus according to Embodiment 4, the first system 31 and the second system 32 alternately transmit the transmission signal 16 from the power line 7, and the transmission signal of the first system 31 and the second system 32 16 is not transmitted, the delay amount of the feedback signal can be estimated. Therefore, even when the system including the distortion compensator transmits the transmission signal 16 intermittently, the delay amount of the feedback signal can be estimated.
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that it is possible to freely combine each embodiment, and to modify or omit each embodiment as appropriate.
 上記した説明は、すべての態様において、例示であって、例示されていない無数の変形例が想定され得るものと解される。 It is understood that the above description is an example in all aspects, and that countless variations not illustrated can be assumed.
 1 送信信号発生器、2 変調器、3 歪補償演算部、4 DA変換器、5 電力増幅器、6 出力切替部、7 電力線、8 疑似負荷、9 減衰器、10 AD変換器、11 復調器、12 重複系列除去部、13 遅延量推定部、14 遅延器、15 歪補償係数算出部、16 送信信号、17 一意系列、18 利得/減衰量調整部、19 非線形領域を含む利得曲線、20 線形領域のみの利得曲線、21 線形領域、22 非線形領域、23 系列蓄積部、24 系列再生部、25 入力切替部、31 第1系統、32 第2系統。 1 transmission signal generator, 2 modulator, 3 distortion compensation calculation section, 4 DA converter, 5 power amplifier, 6 output switching section, 7 power line, 8 dummy load, 9 attenuator, 10 AD converter, 11 demodulator, 12 duplicate sequence removal unit, 13 delay amount estimation unit, 14 delay device, 15 distortion compensation coefficient calculation unit, 16 transmission signal, 17 unique sequence, 18 gain/attenuation amount adjustment unit, 19 gain curve including nonlinear region, 20 linear region 21 linear area, 22 non-linear area, 23 series storage unit, 24 series reproduction unit, 25 input switching unit, 31 first system, 32 second system.

Claims (5)

  1.  送信信号を生成する送信信号発生器と、
     前記送信信号発生器により生成された前記送信信号をディジタル変調する変調器と、
     前記変調器によりディジタル変調された前記送信信号の歪みを歪補償係数に基づいて補償する歪補償演算部と、
     前記歪補償演算部により歪みが補償された前記送信信号をアナログ信号に変換するDA変換器と、
     前記DA変換器により変換された前記送信信号を増幅する電力増幅器と、
     前記電力増幅器により増幅された前記送信信号を減衰させることで、フィードバック信号を生成する減衰器と、
     前記減衰器により生成された前記フィードバック信号をディジタル信号に変換するAD変換器と、
     前記AD変換器によりディジタル信号に変換された前記フィードバック信号を復調する復調器と、
     前記送信信号発生器により生成された前記送信信号から重複する系列を除去して得られる系列である一意系列を生成する重複系列除去部と、
     前記重複系列除去部により生成された前記一意系列と前記復調器により復調された前記フィードバック信号とから、前記フィードバック信号の遅延量を推定する遅延量推定部と、
     前記遅延量推定部により推定された前記フィードバック信号の前記遅延量に基づいて、前記変調器によりディジタル変調された前記送信信号を遅延させることで、ディジタル変調された前記送信信号とディジタル信号に変換された前記フィードバック信号とを同期させる遅延器と、
     互いに同期されたディジタル変調された前記送信信号とディジタル信号に変換された前記フィードバック信号とから、前記歪補償係数を算出する歪補償係数算出部と、
    を備える歪み補償装置。
    a transmission signal generator for generating a transmission signal;
    a modulator that digitally modulates the transmission signal generated by the transmission signal generator;
    a distortion compensation calculation unit that compensates for distortion of the transmission signal digitally modulated by the modulator based on a distortion compensation coefficient;
    a DA converter that converts the transmission signal whose distortion is compensated by the distortion compensation calculation unit into an analog signal;
    a power amplifier that amplifies the transmission signal converted by the DA converter;
    an attenuator that generates a feedback signal by attenuating the transmission signal amplified by the power amplifier;
    an AD converter that converts the feedback signal generated by the attenuator into a digital signal;
    a demodulator for demodulating the feedback signal converted into a digital signal by the AD converter;
    a duplicate sequence removal unit that generates a unique sequence that is a sequence obtained by removing duplicate sequences from the transmission signal generated by the transmission signal generator;
    a delay amount estimation unit that estimates the delay amount of the feedback signal from the unique sequence generated by the duplicate sequence removal unit and the feedback signal demodulated by the demodulator;
    By delaying the transmission signal digitally modulated by the modulator based on the delay amount of the feedback signal estimated by the delay amount estimator, the digitally modulated transmission signal and the digital signal are converted. a delay for synchronizing the feedback signal with the
    a distortion compensation coefficient calculation unit that calculates the distortion compensation coefficient from the digitally modulated transmission signal and the feedback signal converted into a digital signal that are synchronized with each other;
    A distortion compensator comprising:
  2.  前記電力増幅器の利得および前記減衰器の減衰量を調整する利得/減衰量調整部をさらに備え、
     前記利得/減衰量調整部は、
     前記遅延量推定部が前記フィードバック信号の前記遅延量を推定する際は、前記電力増幅器が線形動作し、且つ、前記DA変換器が出力する前記送信信号のレベルと前記AD変換器に入力される前記フィードバック信号のレベルとが一致するように、前記電力増幅器の利得および前記減衰器の減衰量を調整し、
     前記遅延量推定部が前記フィードバック信号の前記遅延量の推定を完了した後は、前記電力増幅器が非線形動作し、且つ、前記DA変換器が出力する前記送信信号のレベルと前記AD変換器に入力される前記フィードバック信号のレベルとが一致するように、前記電力増幅器の利得および前記減衰器の減衰量を調整する、
    請求項1に記載の歪み補償装置。
    further comprising a gain/attenuation adjuster that adjusts the gain of the power amplifier and the attenuation of the attenuator;
    The gain/attenuation adjustment unit
    When the delay amount estimating unit estimates the delay amount of the feedback signal, the power amplifier operates linearly, and the level of the transmission signal output from the DA converter and the level of the transmission signal are input to the AD converter. Adjust the gain of the power amplifier and the attenuation of the attenuator so that the level of the feedback signal matches,
    After the delay amount estimator completes the estimation of the delay amount of the feedback signal, the power amplifier operates nonlinearly, and the level of the transmission signal output from the DA converter and the level of the transmission signal input to the AD converter Adjust the gain of the power amplifier and the attenuation of the attenuator so that the level of the feedback signal to be applied matches.
    A distortion compensator according to claim 1 .
  3.  前記電力増幅器により増幅された前記送信信号を、前記送信信号を空中送信する電力線に出力するか、前記送信信号を終端する疑似負荷に出力するかを切り替える出力切替部をさらに備える、
    請求項1または請求項2に記載の歪み補償装置。
    further comprising an output switching unit that switches between outputting the transmission signal amplified by the power amplifier to a power line for transmitting the transmission signal over the air or outputting the transmission signal to a dummy load that terminates the transmission signal,
    3. A distortion compensator according to claim 1 or 2.
  4.  前記重複系列除去部により生成された前記一意系列を蓄積する系列蓄積部と、
     前記系列蓄積部に蓄積された前記一意系列を、前記電力増幅器により増幅された前記送信信号が前記電力線から送信されないタイミングで、前記変調器および前記遅延量推定部へ出力する系列再生部と、
    をさらに備え、
     前記電力増幅器により増幅された前記送信信号が前記電力線から送信されるとき、前記変調器は、前記送信信号発生器が出力する前記送信信号をディジタル変調し、前記遅延量推定部は、前記重複系列除去部が出力する前記一意系列を用いて前記フィードバック信号の前記遅延量を推定し、
     前記電力増幅器により増幅された前記送信信号が前記電力線から送信されないとき、前記変調器は、前記系列再生部が出力する前記一意系列をディジタル変調し、前記遅延量推定部は、前記系列再生部が出力する前記一意系列を用いて前記フィードバック信号の前記遅延量を推定する、
    請求項3に記載の歪み補償装置。
    a sequence accumulation unit for accumulating the unique sequence generated by the duplicate sequence removal unit;
    a sequence recovery unit that outputs the unique sequence accumulated in the sequence accumulation unit to the modulator and the delay amount estimation unit at a timing at which the transmission signal amplified by the power amplifier is not transmitted from the power line;
    further comprising
    When the transmission signal amplified by the power amplifier is transmitted from the power line, the modulator digitally modulates the transmission signal output from the transmission signal generator, estimating the delay amount of the feedback signal using the unique sequence output by the removal unit;
    When the transmission signal amplified by the power amplifier is not transmitted from the power line, the modulator digitally modulates the unique sequence output from the sequence regenerator, and the delay amount estimator causes the sequence regenerator to estimating the delay amount of the feedback signal using the unique sequence to be output;
    4. A distortion compensator according to claim 3.
  5.  前記歪補償演算部、前記DA変換器、前記電力増幅器、前記減衰器、前記AD変換器、前記遅延器、および前記歪補償係数算出部からなる回路を2系統備え、
     第1系統の前記電力増幅器により増幅された前記送信信号と第2系統の前記電力増幅器により増幅された前記送信信号とのどちらを前記送信信号を空中送信する電力線に出力するかを切り替える入力切替部をさらに備え、
     前記復調器は、前記入力切替部により前記電力線に出力されていない方の前記送信信号に対応する前記フィードバック信号を復調し、
     前記遅延量推定部は、前記第1系統と前記第2系統とのうち、前記入力切替部により前記送信信号が前記電力線に出力されていない方の前記遅延器における前記送信信号の遅延量を更新する、
    請求項1または請求項2に記載の歪み補償装置。
    Two circuits comprising the distortion compensation calculation unit, the DA converter, the power amplifier, the attenuator, the AD converter, the delay device, and the distortion compensation coefficient calculation unit,
    An input switching unit for switching which of the transmission signal amplified by the power amplifier of the first system and the transmission signal amplified by the power amplifier of the second system to be output to a power line for aerial transmission of the transmission signal. further comprising
    The demodulator demodulates the feedback signal corresponding to the transmission signal that is not output to the power line by the input switching unit,
    The delay amount estimating unit updates the delay amount of the transmission signal in the delay unit of the first system or the second system to which the transmission signal is not output to the power line by the input switching unit. do,
    3. A distortion compensator according to claim 1 or 2.
PCT/JP2022/009143 2022-03-03 2022-03-03 Distortion compensation device WO2023166664A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024504267A JPWO2023166664A1 (en) 2022-03-03 2022-03-03
PCT/JP2022/009143 WO2023166664A1 (en) 2022-03-03 2022-03-03 Distortion compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009143 WO2023166664A1 (en) 2022-03-03 2022-03-03 Distortion compensation device

Publications (1)

Publication Number Publication Date
WO2023166664A1 true WO2023166664A1 (en) 2023-09-07

Family

ID=87883301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009143 WO2023166664A1 (en) 2022-03-03 2022-03-03 Distortion compensation device

Country Status (2)

Country Link
JP (1) JPWO2023166664A1 (en)
WO (1) WO2023166664A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019029A (en) * 2009-07-08 2011-01-27 Mitsubishi Electric Corp Transmitter for array antenna
JP2012010243A (en) * 2010-06-28 2012-01-12 Kyocera Corp Communication apparatus and distortion correction method
JP2013197897A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Transmitter and transmission method
WO2014141333A1 (en) * 2013-03-15 2014-09-18 日本電気株式会社 Communication device and method of minimizing distortion for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019029A (en) * 2009-07-08 2011-01-27 Mitsubishi Electric Corp Transmitter for array antenna
JP2012010243A (en) * 2010-06-28 2012-01-12 Kyocera Corp Communication apparatus and distortion correction method
JP2013197897A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Transmitter and transmission method
WO2014141333A1 (en) * 2013-03-15 2014-09-18 日本電気株式会社 Communication device and method of minimizing distortion for same

Also Published As

Publication number Publication date
JPWO2023166664A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US9071313B2 (en) Method and apparatus for demodulation of a desired signal in the presence of nonlinear-distorted interference
US5900778A (en) Adaptive parametric signal predistorter for compensation of time varying linear and nonlinear amplifier distortion
EP1181771B1 (en) Broadcast transmission system with distributed correction
US9608718B2 (en) Method and apparatus for demodulation of a desired signal by constellation-independent cancellation of nonlinear-distorted interference
JP7198251B2 (en) Non-linear precoding by transmitter
AU752776B2 (en) Adaptive pre-equalization apparatus for correcting linear distortion of a non-ideal data transmission system
JP4071526B2 (en) Nonlinear distortion compensation apparatus and transmission apparatus
KR100448892B1 (en) Apparatus and Method for Pre-distortion for Nonlinear Distortion of High Power Amplifier
KR100279948B1 (en) Apparatus and method for linearized power amplification
US20030058959A1 (en) Combined digital adaptive pre-distorter and pre-equalizer system for modems in link hopping radio networks
JP2008546261A (en) Apparatus and method for predistorting baseband digital signal
KR102207829B1 (en) Communication Apparatus and Method for High Efficiency Satellite Service
EP1371202B1 (en) Predistortion for correction of non-linearities and group delay in satellite communications
US6473133B1 (en) Broadcast transmission system with correction for distortion caused by amplifying and signal conditioning components at a different rate
EP1089428B1 (en) Nonlinear compensator
WO2023166664A1 (en) Distortion compensation device
JP6487731B2 (en) Receiver
KR100739552B1 (en) apparatus for receiving a signal of orthogonal frequency division multiplexing
JP2001203609A (en) Amplitude distortion compensation method and wireless communication system
JP6641121B2 (en) Digital signal transmitter
Deleu et al. Per block pre-distortion of a multi-carrier non-linear satellite communication channel
JP2000252946A (en) Distortion compensation circuit for ofdm
KR20140076144A (en) Distortion compensation apparatus
JP2023024198A (en) Digital signal transmission device
JP2021164098A (en) Signal processor and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024504267

Country of ref document: JP