WO2023166628A1 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
WO2023166628A1
WO2023166628A1 PCT/JP2022/008938 JP2022008938W WO2023166628A1 WO 2023166628 A1 WO2023166628 A1 WO 2023166628A1 JP 2022008938 W JP2022008938 W JP 2022008938W WO 2023166628 A1 WO2023166628 A1 WO 2023166628A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
discharge
hermetic compressor
main shaft
compression mechanism
Prior art date
Application number
PCT/JP2022/008938
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 木本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/008938 priority Critical patent/WO2023166628A1/en
Publication of WO2023166628A1 publication Critical patent/WO2023166628A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a hermetic compressor mounted on an air conditioner or the like.
  • a conventional hermetic compressor is connected to an electric motor section having a stator and a rotor in a closed container having an oil reservoir at the bottom, and a main shaft below the electric motor section. and a compression mechanism that compresses the Refrigerant compressed by the compression mechanism is discharged from the compression mechanism into the sealed container, and discharged from the discharge pipe to the outside of the sealed container.
  • the refrigerating machine oil in the oil reservoir is supplied to the bearing that rotatably supports the main shaft to lubricate the bearing. Ejected.
  • the refrigerating machine oil discharged from the end of the bearing is caught in the refrigerant gas flowing inside the closed container and flows out of the closed container together with the refrigerant gas. It is likely to run out.
  • the cover is cylindrical, and the inner wall surface of the cover is a vertical surface extending in the axial direction. Therefore, the refrigerating machine oil adhering to the inner wall surface of the cover is mainly subjected to centrifugal force in the radial direction, and only its own weight acts in the direction of gravity. In other words, in the hermetic compressor of Patent Document 1, most of the force acting on the refrigerating machine oil adhering to the inner wall surface of the cover when it is blown out of the cover from the lower end of the cover is centrifugal force in the radial direction. Yes, the force in the direction of gravity is small.
  • the refrigerating machine oil blown outside the cover from the lower end of the cover tends to be swirled up by a slight swirling flow of the refrigerant gas flowing in the closed container, and is discharged out of the hermetic compressor together with the refrigerant gas flow.
  • An object of the present invention is to provide a hermetic compressor capable of
  • a hermetic compressor includes a hermetic container in which an oil reservoir portion for storing refrigerator oil is formed, a compression mechanism portion disposed in the hermetic container for compressing a refrigerant, and an upper portion of the compression mechanism portion in the hermetic container.
  • an electric motor portion disposed in the compression mechanism portion; a main shaft for transmitting rotational force of the electric motor portion to the compression mechanism portion; and a bearing portion for rotatably supporting the main shaft below the electric motor portion;
  • a hermetic compressor in which oil is supplied to a bearing portion through an oil supply hole formed in a main shaft. and has a hollow cover into which refrigerating machine oil lubricating the bearings flows. The cover has a conical shape whose diameter increases from top to bottom.
  • the hermetic compressor includes a hollow cover into which refrigerating machine oil lubricating the bearings flows, and the cover has a conical shape whose diameter increases from top to bottom. Due to the conical shape of the cover, the centrifugal force acting on the refrigerating machine oil adhering to the inner wall surface of the cover includes an obliquely downward force component along the inner wall surface of the cover. That is, a force in the direction of gravity acts on the refrigerating machine oil adhering to the inner wall surface of the cover, and this force in the direction of gravity acts on the refrigerating machine oil when it is blown out from the lower end of the cover to the outside of the cover. Therefore, the hermetic compressor can prevent the refrigerating machine oil from being drawn up by the refrigerant gas flow and discharged to the outside of the hermetic compressor.
  • FIG. 1 is a schematic longitudinal sectional view of a hermetic compressor according to Embodiment 1;
  • FIG. 2 is a schematic enlarged view of the vicinity of an upper bearing of the hermetic compressor according to Embodiment 1.
  • FIG. 2 is a plan view of a discharge muffler of the hermetic compressor according to Embodiment 1.
  • FIG. 10 is an explanatory view of the action of the cover of the hermetic compressor according to the comparative example;
  • FIG. 4 is an explanatory view of the action of the cover of the hermetic compressor according to Embodiment 1;
  • FIG. 8 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 2;
  • FIG. 8 is a plan view of a discharge muffler of a hermetic compressor according to Embodiment 2;
  • FIG. 11 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 3;
  • FIG. 11 is a plan view of a discharge muffler of a hermetic compressor according to Embodiment 4;
  • FIG. 11 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 4;
  • FIG. 5 is a plan view of a discharge muffler of a hermetic compressor according to a comparative example; It is a schematic enlarged view of the upper bearing vicinity in the hermetic compressor which concerns on a comparative example.
  • FIG. 1 is a schematic longitudinal sectional view of a hermetic compressor 100 according to Embodiment 1.
  • FIG. FIG. 2 is a schematic enlarged view of the vicinity of the upper bearing 14 of the hermetic compressor 100 according to the first embodiment.
  • FIG. 3 is a plan view of discharge muffler 17 of hermetic compressor 100 according to the first embodiment.
  • the cover 60 and the coolant channel holes 23 are indicated by dotted lines in order to clarify the positional relationship between the discharge muffler 17 and the cover 60 and the coolant channel holes 23 .
  • the hermetic compressor 100 is a rotary compressor. It is sufficient if the compressor is provided with a bearing end of .
  • the hermetic compressor 100 is described as a rotary compressor with one cylinder, but may be a rotary compressor with a plurality of cylinders.
  • the hermetic compressor 100 includes a compression mechanism section 10 that compresses the refrigerant and an electric motor section 20 that drives the compression mechanism section 10 inside the hermetic container 1 .
  • the compression mechanism section 10 and the electric motor section 20 are connected by the main shaft 11 , and the compression mechanism section 10 is housed in the lower portion of the sealed container 1 and the electric motor section 20 is housed in the upper portion of the sealed container 1 .
  • the longitudinal direction of the sealed container 1 is called the axial direction
  • the direction perpendicular to the axial direction is called the radial direction.
  • the inner wall surface side of the sealed container 1 is defined as the outer side.
  • the hermetic compressor 100 is a so-called vertical compressor that is used with the main shaft 11 in the direction of gravity.
  • a suction muffler 41 is provided adjacent to the closed container 1 outside the closed container 1 .
  • the suction muffler 41 has a role of storing the liquid refrigerant and silencing the refrigerant noise.
  • the suction muffler 41 is connected to a later-described cylinder 13 of the compression mechanism 10 by a suction connecting pipe 42 .
  • a discharge pipe 43 for discharging the refrigerant compressed by the compression mechanism section 10 is connected to the upper portion of the sealed container 1 .
  • an oil reservoir 50 is formed to hold refrigerator oil.
  • a portion of the compression mechanism 10 is immersed in the oil reservoir 50 .
  • Refrigerating machine oil stored in oil reservoir 50 is supplied to main shaft 11, compression mechanism 10, upper bearing 14, lower bearing 15, etc. through oil supply hole 11a formed in main shaft 11.
  • the oil supply hole 11a has a vertical hole 11a1 extending in the axial direction and a plurality of horizontal holes 11a2 extending radially from the vertical hole 11a1.
  • the main shaft 11 transmits the rotational force of the electric motor section 20 to the compression mechanism section 10 and is rotatably supported by the upper bearing 14 and the lower bearing 15 .
  • the upper bearing 14 has a bearing portion 14a and a flange portion 14b.
  • the bearing portion 14a is a cylindrical portion that rotatably supports the main shaft 11.
  • the flange portion 14b is located at one end in the axial direction of the bearing portion 14a and is a portion that expands in a disc shape from the hole through which the main shaft 11 passes.
  • the lower bearing 15 has a bearing portion 15a and a disk-shaped flange portion 15b extending on one side of the bearing portion 15a.
  • the bearing portion 14a and the bearing portion 15a are composed of slide bearings.
  • the compression mechanism section 10 includes an annular cylinder 13, a piston 16 housed in the cylinder 13 and slidably fitted to the eccentric shaft section 12 of the main shaft 11, and vanes (not shown).
  • the vanes are slidably arranged in vane grooves (not shown) provided in the cylinder 13 .
  • the radially outer side of the vane is open to the space of the airtight atmosphere of the airtight container 1 . Openings at both axial ends of the cylinder 13 are closed by the flange portion 14 b of the upper bearing 14 and the flange portion 15 b of the lower bearing 15 to form a cylinder chamber 30 inside the cylinder 13 .
  • a suction port 40 extending radially is formed in the cylinder 13 , and a suction coupling pipe 42 extending from a suction muffler 41 is connected to the suction port 40 .
  • the cylinder 13 is formed with a discharge port (not shown) through which the refrigerant compressed in the cylinder chamber 30 is discharged from the cylinder chamber 30 .
  • the discharge port (not shown) communicates with a through hole (not shown) of a discharge mechanism (not shown) provided in the flange portion 14b of the upper bearing 14, and a discharge muffler 17 covers the discharge mechanism. is attached to the upper bearing 14 .
  • the discharge muffler 17 has a plate-shaped upper wall portion 17a, a side wall portion 17b extending downward from the outer peripheral edge of the upper wall portion 17a, and a flange portion 17c protruding radially outward from the lower end portion of the side wall portion 17b. and covers the space into which the refrigerant compressed by the compression mechanism 10 is discharged.
  • illustration of the flange portion 17c is omitted.
  • a through hole 17a1 is formed in the central portion of the upper wall portion 17a, and the bearing portion 14a of the upper bearing 14 is passed through the through hole 17a1.
  • a discharge portion 171 for discharging the refrigerant in the discharge muffler 17 into the sealed container is formed in the upper wall portion 17a.
  • the discharge part 171 is a part that discharges the refrigerant in the cover 60 from a position higher in the axial direction than the lower end surface 60b of the cover 60, as shown in FIG.
  • the discharge portion 171 has a discharge hole 171a passing through the upper wall portion 17a and a cylindrical discharge wall 171b projecting upward from the peripheral wall of the discharge hole 171a. 1 and 2, the discharge wall 171b has a burring shape formed by burring the upper wall portion 17a of the discharge muffler 17.
  • the processing method is not limited.
  • the discharge part 171 is located outside the outer peripheral edge 60c of the lower end surface 60b of the cover 60. That is, the discharge portion 171 is located outside the cover 60 when viewed in the axial direction as shown in FIG. Moreover, as shown in FIG. 3, a plurality of ejection portions 171 are formed at intervals in the circumferential direction.
  • the electric motor section 20 is arranged above the upper bearing 14 .
  • the electric motor section 20 includes a stator 22 formed in an annular shape and a rotor 21 rotatably supported inside the stator 22 .
  • a coolant passage hole 23 is formed through the rotor 21 in the axial direction. As shown in FIG. 3, a plurality of coolant passage holes 23 are formed at intervals in the circumferential direction.
  • the refrigerant passage hole 23 guides the refrigerant gas discharged from the compression mechanism portion 10 to the upper portion of the closed container 1, and allows the refrigerating machine oil guided to the upper portion of the closed container 1 together with the refrigerant gas to fall to the lower portion of the closed container 1. have the role of Also, between the stator 22 and the closed container 1 , there is a space that has the same function as the coolant passage hole 23 and that communicates the upper portion and the lower portion of the closed container 1 .
  • a cover 60 is arranged between the electric motor section 20 and the discharge muffler 17 to prevent the refrigerating machine oil from being lifted up and discharged from the hermetic compressor 100 .
  • the cover 60 is hollow and penetrates in the axial direction, and has a conical shape whose diameter increases from the top to the bottom.
  • the expression “conical” refers to a general shape in which the diameter increases from the top to the bottom, and does not strictly refer to a cone with a sharp tip.
  • the cover 60 is arranged concentrically with the main shaft 11 so that the refrigerating machine oil flows into the cover 60 after lubricating the bearing portion 14a.
  • the opening diameter of the upper end portion of the cover 60 is larger than the outer diameter of the bearing portion 14a, and a gap is formed between the cover 60 and the bearing portion 14a.
  • the refrigerating machine oil flows out from the upper end 141 of the bearing portion 14a and flows into the cover 60 through the gap.
  • the cover 60 is fixed to the lower end surface of the rotor 21 and rotates together with the rotor 21 .
  • the upper end of the cover 60 is positioned lower than the upper end 141 of the bearing portion 14a.
  • the cover 60 may be configured to cover the upper end 141 of the bearing portion 14a. That is, the positional relationship in the axial direction between the upper end of the cover 60 and the upper end 141 of the bearing portion 14a may be reversed from that shown in the drawing.
  • the hermetic compressor 100 only needs to be configured such that the refrigerating machine oil after lubricating the bearing portion 14 a flows into the cover 60 .
  • An oil separation plate 18 is fixed to the upper portion of the main shaft 11 to separate the refrigerant oil containing the refrigerant oil.
  • the oil separator plate 18 may be fixed to the rotor 21 .
  • the oil separation plate 18 rotates with the rotation of the main shaft 11, and can separate the refrigerating machine oil from the refrigerant by flying it in the outer peripheral direction by centrifugal force.
  • the refrigerating machine oil separated by the oil separation plate 18 falls into the oil reservoir 50 through a gap or the like in the electric motor section 20 .
  • the rotational force of the electric motor portion 20 is transmitted to the main shaft 11 by driving the electric motor portion 20 .
  • the rotational force transmitted to the main shaft 11 is transmitted to the eccentric shaft portion 12 attached to the main shaft 11 , and the piston 16 rotates eccentrically within the cylinder chamber 30 together with the eccentric shaft portion 12 .
  • low-pressure refrigerant is supplied into the cylinder chamber 30 from the intake muffler 41 via the intake connecting pipe 42 and the intake port 40 .
  • the rotation of the piston 16 reduces the volume of the cylinder chamber 30 and compresses the refrigerant.
  • a vane (not shown) is pressed against the piston 16 by the high pressure refrigerant in the closed container 1 .
  • the vane slides radially in the vane groove in conjunction with the movement of the piston 16 and serves to divide the cylinder chamber 30 into a low-pressure space and a high-pressure space.
  • Refrigerant sucked into the low-pressure space in the cylinder chamber 30 from the suction port 40 is compressed in the high-pressure space.
  • the compressed refrigerant is once discharged into the discharge muffler 17 from a discharge mechanism (not shown) formed in the upper bearing 14 .
  • the refrigerant discharged into the discharge muffler 17 is discharged from the discharge portion 171 of the discharge muffler 17 into the internal space of the sealed container 1 .
  • the refrigerant gas discharged into the internal space of the sealed container 1 flows into the space above the electric motor section 20 through the refrigerant passage holes 23 formed in the electric motor section 20 and the like.
  • the refrigerating machine oil is centrifugally separated from the refrigerant gas by the oil separation plate 18 fixed to the upper part of the main shaft 11, and the refrigerant gas is discharged from the discharge pipe 43 to the outside of the sealed container 1 and flows through the refrigerant circuit, whereupon the refrigerating machine oil is discharged. is returned to the oil reservoir 50 along the inner wall surface of the sealed container 1.
  • the main shaft 11 of the hermetic compressor 100 functions as a centrifugal pump.
  • the vertical hole 11a1 of the oil supply hole 11a in the main shaft 11 functions as a centrifugal pump to suck up the refrigerating machine oil from the oil reservoir 50.
  • FIG. The sucked refrigerating machine oil passes through the vertical hole 11a1 and the horizontal hole 11a2, and is supplied to the lower bearing 15, the cylinder chamber 30, and the bearing portion 14a of the upper bearing .
  • the refrigerator oil supplied to the bearing portion 14 a flows out from the upper end 141 of the upper bearing 14 .
  • FIG. 4 is an explanatory view of the action of the cover 600 of the hermetic compressor according to the comparative example.
  • 5A and 5B are explanatory views of the action of the cover 60 of the hermetic compressor according to the first embodiment.
  • the cover 600 of the comparative example has a cylindrical shape extending in the axial direction as shown in FIG. 4, and the inner diameter is the same throughout the axial direction. Therefore, since the inner wall surface 600a is a vertical surface extending in the vertical direction, the centrifugal force F1 acting on the refrigerating machine oil 700 inside the cover 600 rotating in the direction of the arrow R is only a radial component. Therefore, when the refrigerator oil 700 flows out from the lower end portion of the cover 600, it is thrown in the radial direction, in other words, in the lateral direction.
  • the cover 60 of Embodiment 1 has a conical shape whose diameter increases from the top to the bottom as shown in FIG. Therefore, the inner wall surface 60a is a sloped surface that slopes radially outward toward the bottom. Therefore, the centrifugal force F1 acting on the refrigerating machine oil 70 adhering to the inner wall surface 60a of the cover 60 is divided into a force component Fa along the inner wall surface 60a and a force component Fb perpendicular to the inner wall surface 60a. decomposed.
  • the refrigerating machine oil 70 is subjected to the obliquely downward force component Fa along the inner wall surface 60a, so that the refrigerating machine oil 70 is flung obliquely downward from the lower end of the cover 60 radially outward.
  • the force component Fa includes a force component in the direction of gravity. Therefore, the refrigerating machine oil 70 blown from the lower end portion of the cover 60 is less likely to be swept up by the refrigerant gas.
  • the refrigerating machine oil is drawn up by the refrigerant gas flowing in the hermetic container 1, specifically, by the refrigerant gas discharged from the discharge muffler 17, and flows out of the hermetic compressor. It can be suppressed that it is discharged to.
  • the refrigerating machine oil blown obliquely downward from the lower end of the cover 60 is sprayed onto the upper wall portion 17a of the discharge muffler 17, and then downward along the upper wall portion 17a and the side wall portion 17b of the discharge muffler 17. It flows back to the oil reservoir 50 .
  • the discharge part 171 discharges the refrigerant from a position higher than the lower end surface 60 b of the cover 60 .
  • the hermetic compressor 100 has a path for refrigerating machine oil that flows out from the lower end of the cover 60 and returns to the oil reservoir 50, and a flow of refrigerant gas that is discharged from the discharge part 171 and directed to the refrigerant flow path holes 23 and the like. can be separated from the road.
  • the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 from being involved in the refrigerant gas that flows out from the discharge portion 171 and heads toward the refrigerant flow path holes 23 and the like. The amount discharged to the outside of the hermetic compressor can be reduced.
  • the axial distance G between the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17 is significantly smaller than the radial distance L between the lower end surface 60b of the cover 60 and the upper bearing 14. (G ⁇ L).
  • the hermetic compressor 100 of Embodiment 1 is a compressor in which the oil in the oil reservoir 50 formed in the hermetic container 1 is supplied to the bearing 15a through the oil supply hole 11a formed in the main shaft 11.
  • the hermetic compressor 100 is fixed to the electric motor portion 20 and arranged concentrically with the main shaft 11 between the electric motor portion 20 and the compression mechanism portion 10.
  • a hollow cover 60 into which refrigerating machine oil lubricating the bearing portion 15a flows. Prepare.
  • the cover 60 has a conical shape whose diameter increases from the top to the bottom.
  • the inner wall surface 60a of the cover 60 of the hermetic compressor 100 forms an inclined surface that inclines radially outward as it goes downward. Therefore, the centrifugal force F1 acting on the refrigerating machine oil 70 adhering to the inner wall surface 60a has an obliquely downward force component Fa along the inner wall surface 60a. That is, a force in the direction of gravity acts on the refrigerating machine oil adhering to the inner wall surface 60a of the cover 60, and this force in the direction of gravity acts on the refrigerating machine oil when it is blown out from the lower end of the cover 60 to the outside of the cover. . Therefore, the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end of the cover 60 from being drawn up by the refrigerant gas flowing in the hermetic container 1 and discharged to the outside of the hermetic compressor.
  • the hermetic compressor 100 of Embodiment 1 also includes a discharge muffler 17 that covers the space into which the refrigerant compressed by the compression mechanism 10 is discharged.
  • the discharge muffler 17 is disposed between the compression mechanism portion 10 and the electric motor portion 20, and includes a plate-like upper wall portion 17a having a through hole 17a1 through which the bearing portion 15a is passed, and a lower portion from the outer peripheral edge of the upper wall portion 17a. and a side wall portion 17b extending to the
  • the upper wall portion 17a of the discharge muffler 17 is formed with a discharge portion 171 having a discharge hole 171a for discharging the refrigerant in the discharge muffler 17 from a position higher than the lower end surface 60b of the cover 60 .
  • the hermetic compressor 100 has a path for the refrigerating machine oil that flows out from the lower end of the cover 60 and returns to the oil reservoir 50, and a path for the refrigerant gas that is discharged from the discharge portion 171 and directed to the refrigerant passage holes 23 and the like. can be separated from the flow path.
  • the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end of the cover 60 from being caught in the refrigerant gas flowing in the hermetic container 1, and as a result, is discharged to the outside of the hermetic compressor. can be reduced.
  • FIG. 6 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the second embodiment.
  • the configuration of the second embodiment is the same as that of the first embodiment except for the discharge muffler 17 .
  • FIG. 7 is a plan view of discharge muffler 17 of hermetic compressor 100 according to the second embodiment.
  • the cover 60 and the coolant channel holes 23 are indicated by dotted lines in order to clarify the positional relationship between the discharge muffler 17 and the cover 60 and the coolant channel holes 23 .
  • illustration of the flange portion 17c is omitted in FIG.
  • the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • the discharge muffler 17 according to the second embodiment has a recess 172 recessed downward in the upper wall portion 17a of the discharge muffler 17 according to the first embodiment.
  • a plurality of recesses 172 are formed at intervals in the circumferential direction as shown in FIG.
  • FIG. 7 shows an example in which there are three depressions 172, the number of depressions 172 is not limited.
  • the recess 172 extends radially outward from a position radially inward of the inner peripheral edge 60d of the lower end surface 60b of the cover 60 to the side wall portion 17b, and is open radially outward. ing.
  • the opening portion 62 which is a portion opened downward, is formed between the inner peripheral edge 60d of the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17 when viewed in the axial direction. It is a portion surrounded by the outer edge 17aa and indicated by dots.
  • the refrigerating machine oil that has flowed out from the lower end of the cover 60 easily flows into the depression 172 through the open portion 62 which is wider than the gap between the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17.
  • Arrows in FIG. 6 indicate the flow of the refrigerating machine oil in the cover 60 from the opening 62 into the depression 172 .
  • the refrigerating machine oil that has flowed out from the lower end of the cover 60 can easily flow from the open portion 62 to the depression 172 , so to speak, to concentrate in the depression 172 .
  • the hermetic compressor 100 can suppress the refrigerating machine oil from being swirled up by the refrigerant gas flow discharged from the discharge portion 171 , as compared with the case where the discharge muffler 17 is not provided with the recess 172 .
  • the hermetic compressor 100 of the second embodiment can obtain the same effects as those of the first embodiment, and the following effects can be obtained by providing the recess 172 in the discharge muffler 17 .
  • the discharge passage of the refrigerating machine oil and the refrigerant gas passage from the discharge portion 171 can be separated. can be suppressed.
  • FIG. 8 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the third embodiment.
  • the configuration of the third embodiment is the same as that of the second embodiment except for the discharge muffler 17 .
  • the following description focuses on the configuration of the third embodiment that differs from the second embodiment, and the configurations not described in the third embodiment are the same as those of the second embodiment.
  • a discharge muffler 17 according to Embodiment 3 differs from Embodiments 1 and 2 in the configuration of a discharge portion 171 .
  • the upper wall portion 17a is formed in a stepped shape to form a discharge portion 171.
  • the discharge portion 171 of Embodiment 3 has a convex portion 171c that protrudes upward from the upper wall portion 17a to a position higher than the height of the lower end surface 60b of the cover 60.
  • the convex portion 171c has an axis It has a configuration in which a discharge hole 171a penetrating in the direction is formed.
  • the discharge portion 171 discharges the refrigerant gas inside the cover 60 from a position higher in the axial direction than the lower end surface 60 b of the cover 60 . Therefore, the hermetic compressor 100 of the third embodiment can obtain the same effects as those of the first embodiment.
  • FIG. 8 illustrates a configuration in which the discharge muffler 17 has the recess 172 of the second embodiment
  • the discharge muffler 17 of the third embodiment may be configured without the recess 172 .
  • the discharge muffler 17 of the third embodiment can obtain the same effect as the first embodiment when it does not have the recess 172, and can obtain the same effect as the second embodiment when it has the recess 172.
  • FIG. 8 illustrates a configuration in which the discharge muffler 17 has the recess 172 of the second embodiment
  • the discharge muffler 17 of the third embodiment may be configured without the recess 172 .
  • the discharge muffler 17 of the third embodiment can obtain the same effect as the first embodiment when it does
  • the discharge portion 171 of Embodiment 1 when the discharge portion 171 of Embodiment 1 is formed by burring a sheet metal, the height of the discharge wall 171b is limited by the diameter of the discharge hole 171a.
  • the discharge portion 171 of Embodiment 3 since the discharge portion 171 of Embodiment 3 has a stepped shape, the convex portion 171c can be formed by press working or the like, and the height of the discharge portion 171 can be easily adjusted regardless of the diameter of the discharge hole 171a.
  • the structure can make it taller. Since the height of the discharge portion 171 can be increased in the hermetic compressor 100 of Embodiment 3, the separation effect between the oil discharge channel and the refrigerant gas channel can be increased.
  • Embodiment 4 specifies the radial positional relationship between the discharge hole 171a of the discharge muffler 17 and the refrigerant passage hole 23 in the above-described Embodiments 1 to 3.
  • FIG. 4
  • FIG. 9 is a plan view of the discharge muffler 17 of the hermetic compressor 100 according to Embodiment 4.
  • FIG. 9 In order to clarify the positional relationship between the discharge muffler 17, the cover 60, and the refrigerant passage holes 23, FIG. 9 , C is an imaginary circle connecting the innermost ends, which are the radially inner ends of the coolant passage holes 23 .
  • FIG. 10 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the fourth embodiment.
  • Hermetic compressor 100 according to Embodiment 4 is arranged such that at least part of discharge hole 171a is located inside imaginary circle C. As shown in FIG.
  • FIG. 11 is a plan view of a discharge muffler of a hermetic compressor according to a comparative example.
  • FIG. 12 is a schematic enlarged view of the vicinity of an upper bearing in a hermetic compressor according to a comparative example.
  • the refrigerating machine oil flowing out from the lower end portion of the cover 60 is sprayed onto the upper wall portion 17a of the discharge muffler 17.
  • Some of the refrigerating machine oil sprayed onto the upper wall portion 17a of the discharge muffler 17 may collide with the discharge wall 171b of the discharge portion 171 and be rolled up, or may be rolled up by the refrigerant gas flow or the like.
  • the white arrows indicate the swirl flow of the refrigerant gas
  • the solid arrows indicate the flow of the refrigerating machine oil.
  • the discharge hole 1710 is positioned outside the virtual circle C when viewed in the axial direction.
  • the refrigerating machine oil that is stirred up as described above directly flows into the refrigerant flow path hole 23. easy to invade.
  • the hermetic compressor 100 of Embodiment 4 at least part of the discharge hole 171a is located inside the virtual circle C as shown in FIGS.
  • the refrigerating machine oil that has been lifted up as described above is spun in the centrifugal direction by the refrigerant gas flow discharged from the discharge hole 171 a and the swirl flow generated by the rotation of the rotor 21 , and directly into the refrigerant passage hole 23 .
  • the swirling flow moves radially inward and approaches the lower end of the cover 60 as compared with the comparative example, as shown in FIG. Therefore, the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 and has been swirled up is caught in the swirling flow from the discharge hole 171 a and receives centrifugal force, and does not go directly to the refrigerant flow path hole 23 .
  • the hermetic compressor 100 of the fourth embodiment can further suppress the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 from being swirled up and entering the refrigerant passage holes 23 .
  • hermetic compressor 100 of Embodiment 4 can further suppress discharge of refrigerating machine oil to the outside of the hermetic compressor.
  • the hermetic compressor 100 of Embodiment 4 can obtain the same effects as those of Embodiments 1 to 3, and at least part of the discharge hole 171a is positioned inside the virtual circle C, It is possible to further suppress the refrigerating machine oil from being discharged to the outside of the hermetic compressor.

Abstract

This hermetic compressor comprises: a hermetic container in which an oil reservoir for storing refrigerating machine oil is formed; a compression mechanism unit that is arranged in the hermetic container and compresses a refrigerant; an electric motor unit that is arranged in the hermetic container above the compression mechanism unit and drives the compression mechanism unit; a main shaft that transmits the rotational force of the electric motor unit to the compression mechanism unit; and a bearing unit that rotatably supports the main shaft below the electric motor unit. In the hermetic compressor, oil in the oil reservoir is supplied to the bearing unit through an oil supply hole formed in the main shaft. The hermetic compressor includes a hollow cover that is fixed to the electric motor unit and arranged concentrically with respect to the main shaft between the electric motor unit and the compression mechanism unit, and into which the refrigerating machine oil that lubricated the bearing unit flows, the cover having a conical shape with a diameter increasing from top to bottom.

Description

密閉型圧縮機hermetic compressor
 本開示は、空調機等に搭載される密閉型圧縮機に関する。 The present disclosure relates to a hermetic compressor mounted on an air conditioner or the like.
 従来の密閉型圧縮機は、底部に油溜まり部が形成された密閉容器内に、固定子および回転子を有する電動機部と、電動機部の下方に主軸を介して連結され、主軸の回転によって冷媒を圧縮する圧縮機構部とを備えている。圧縮機構部で圧縮された冷媒は、圧縮機構部から密閉容器内に吐出され、吐出管から密閉容器外へ吐出される。この種の密閉型圧縮機では、主軸を回転自在に支持する軸受に油溜まり部の冷凍機油を供給して軸受を潤滑しており、潤滑後の冷凍機油は、軸受の端部から軸受外に排出される。密閉型圧縮機では、軸受の端部から排出された冷凍機油が、密閉容器内を流動する冷媒ガスに巻き込まれ、冷媒ガスとともに密閉容器外へ流出し、密閉型圧縮機内を潤滑する冷凍機油が枯渇する恐れがある。 A conventional hermetic compressor is connected to an electric motor section having a stator and a rotor in a closed container having an oil reservoir at the bottom, and a main shaft below the electric motor section. and a compression mechanism that compresses the Refrigerant compressed by the compression mechanism is discharged from the compression mechanism into the sealed container, and discharged from the discharge pipe to the outside of the sealed container. In this type of hermetic compressor, the refrigerating machine oil in the oil reservoir is supplied to the bearing that rotatably supports the main shaft to lubricate the bearing. Ejected. In a hermetic compressor, the refrigerating machine oil discharged from the end of the bearing is caught in the refrigerant gas flowing inside the closed container and flows out of the closed container together with the refrigerant gas. It is likely to run out.
 これに対し、電動機部の回転子の下側端面に円筒状のカバーを固定した密閉型圧縮機がある(例えば、特許文献1参照)。特許文献1の密閉型圧縮機において、カバーは、主軸に同心円状で且つ軸受の端部を内包する高さ位置に配置されている。特許文献1の密閉型圧縮機では、軸受の端部から排出した冷凍機油をカバーの内壁面で受け取り、内壁面に付着した冷凍機油を、カバーの下端部から遠心力でカバーの外側へ飛ばし、飛ばされた冷凍機油を油溜まり部に戻すようにしている。 On the other hand, there is a hermetic compressor in which a cylindrical cover is fixed to the lower end face of the rotor of the electric motor section (see Patent Document 1, for example). In the hermetic compressor of Patent Literature 1, the cover is concentric with the main shaft and arranged at a height position that includes the end portion of the bearing. In the hermetic compressor of Patent Document 1, the refrigerating machine oil discharged from the end of the bearing is received by the inner wall surface of the cover, and the refrigerating machine oil adhering to the inner wall surface is blown out of the cover from the lower end of the cover by centrifugal force, The blown refrigerating machine oil is returned to the oil reservoir.
特開2002-327693号公報JP-A-2002-327693
 特許文献1の密閉型圧縮機では、カバーが円筒状であり、カバーの内壁面が軸方向に延びる鉛直面である。このため、カバーの内壁面に付着した冷凍機油には、主として径方向の遠心力が作用し、重力方向には自重が作用するのみである。つまり、特許文献1の密閉型圧縮機では、カバーの内壁面に付着した冷凍機油に対して、カバーの下端部からカバー外へ飛ばされる際に作用する力は、径方向の遠心力がほとんどであり、重力方向の力が小さい。このため、カバーの下端部からカバー外へ飛ばされた冷凍機油は、密閉容器内を流動する冷媒ガスのわずかな旋回流で巻き上がりやすく、冷媒ガス流とともに密閉型圧縮機外へ吐出される。 In the hermetic compressor of Patent Document 1, the cover is cylindrical, and the inner wall surface of the cover is a vertical surface extending in the axial direction. Therefore, the refrigerating machine oil adhering to the inner wall surface of the cover is mainly subjected to centrifugal force in the radial direction, and only its own weight acts in the direction of gravity. In other words, in the hermetic compressor of Patent Document 1, most of the force acting on the refrigerating machine oil adhering to the inner wall surface of the cover when it is blown out of the cover from the lower end of the cover is centrifugal force in the radial direction. Yes, the force in the direction of gravity is small. For this reason, the refrigerating machine oil blown outside the cover from the lower end of the cover tends to be swirled up by a slight swirling flow of the refrigerant gas flowing in the closed container, and is discharged out of the hermetic compressor together with the refrigerant gas flow.
 本開示はこのような点を鑑みなされたもので、カバーの下端部からカバー外に飛ばされた冷凍機油が、冷媒ガス流によって巻き上げられて密閉型圧縮機外に吐出されることを抑制することが可能な密閉型圧縮機を提供することを目的とする。 The present disclosure has been made in view of these points, and aims to suppress the refrigerating machine oil blown out of the cover from the lower end of the cover from being blown up by the refrigerant gas flow and discharged outside the hermetic compressor. An object of the present invention is to provide a hermetic compressor capable of
 本開示に係る密閉型圧縮機は、冷凍機油を溜める油溜まり部が形成された密閉容器と、密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、密閉容器内で圧縮機構部の上方に配置され、圧縮機構部を駆動する電動機部と、電動機部の回転力を圧縮機構部に伝達する主軸と、電動機部の下方で主軸を回転自在に支持する軸受部と、を備え、油溜まり部の油が主軸に形成された給油穴を介して軸受部に供給される密閉型圧縮機であって、電動機部に固定されて電動機部と圧縮機構部との間に主軸に対して同心円状に配置され、軸受部を潤滑した冷凍機油が流入する中空のカバーを備え、カバーは、上方から下方に向かうに連れて径が拡大する円錐状である。 A hermetic compressor according to the present disclosure includes a hermetic container in which an oil reservoir portion for storing refrigerator oil is formed, a compression mechanism portion disposed in the hermetic container for compressing a refrigerant, and an upper portion of the compression mechanism portion in the hermetic container. an electric motor portion disposed in the compression mechanism portion; a main shaft for transmitting rotational force of the electric motor portion to the compression mechanism portion; and a bearing portion for rotatably supporting the main shaft below the electric motor portion; A hermetic compressor in which oil is supplied to a bearing portion through an oil supply hole formed in a main shaft. and has a hollow cover into which refrigerating machine oil lubricating the bearings flows. The cover has a conical shape whose diameter increases from top to bottom.
 本開示によれば、密閉型圧縮機は、軸受部を潤滑した冷凍機油が流入する中空のカバーを備え、カバーは、上方から下方に向かうに連れて径が拡大する円錐状である。カバーが円錐状であることで、カバーの内壁面に付着した冷凍機油に作用する遠心力には、カバーの内壁面に沿う斜め下方向の力成分が含まれる。つまり、カバーの内壁面に付着した冷凍機油には重力方向の力が作用し、この重力方向の力が、カバーの下端部からカバー外へ飛ばされる際に冷凍機油に対して作用する。このため、密閉型圧縮機は、冷凍機油が冷媒ガス流によって巻き上げられて密閉型圧縮機外へ吐出されることを抑制できる。 According to the present disclosure, the hermetic compressor includes a hollow cover into which refrigerating machine oil lubricating the bearings flows, and the cover has a conical shape whose diameter increases from top to bottom. Due to the conical shape of the cover, the centrifugal force acting on the refrigerating machine oil adhering to the inner wall surface of the cover includes an obliquely downward force component along the inner wall surface of the cover. That is, a force in the direction of gravity acts on the refrigerating machine oil adhering to the inner wall surface of the cover, and this force in the direction of gravity acts on the refrigerating machine oil when it is blown out from the lower end of the cover to the outside of the cover. Therefore, the hermetic compressor can prevent the refrigerating machine oil from being drawn up by the refrigerant gas flow and discharged to the outside of the hermetic compressor.
実施の形態1に係る密閉型圧縮機の概略縦断面図である。1 is a schematic longitudinal sectional view of a hermetic compressor according to Embodiment 1; FIG. 実施の形態1に係る密閉型圧縮機の上軸受付近の概略拡大図である。2 is a schematic enlarged view of the vicinity of an upper bearing of the hermetic compressor according to Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機の吐出マフラの平面図である。2 is a plan view of a discharge muffler of the hermetic compressor according to Embodiment 1. FIG. 比較例に係る密閉型圧縮機のカバーの作用説明図である。FIG. 10 is an explanatory view of the action of the cover of the hermetic compressor according to the comparative example; 実施の形態1に係る密閉型圧縮機のカバーの作用説明図である。FIG. 4 is an explanatory view of the action of the cover of the hermetic compressor according to Embodiment 1; 実施の形態2に係る密閉型圧縮機の上軸受付近の概略拡大図である。FIG. 8 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 2; 実施の形態2に係る密閉型圧縮機の吐出マフラの平面図である。FIG. 8 is a plan view of a discharge muffler of a hermetic compressor according to Embodiment 2; 実施の形態3に係る密閉型圧縮機の上軸受付近の概略拡大図である。FIG. 11 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 3; 実施の形態4に係る密閉型圧縮機の吐出マフラの平面図である。FIG. 11 is a plan view of a discharge muffler of a hermetic compressor according to Embodiment 4; 実施の形態4に係る密閉型圧縮機の上軸受付近の概略拡大図である。FIG. 11 is a schematic enlarged view of the vicinity of an upper bearing of a hermetic compressor according to Embodiment 4; 比較例に係る密閉型圧縮機の吐出マフラの平面図である。FIG. 5 is a plan view of a discharge muffler of a hermetic compressor according to a comparative example; 比較例に係る密閉型圧縮機における上軸受付近の概略拡大図である。It is a schematic enlarged view of the upper bearing vicinity in the hermetic compressor which concerns on a comparative example.
 以下、実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態により本開示が限定されるものではない。また、図1を含む以下の図面では、各構成部材の相対的な寸法の関係および形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとする。 Embodiments will be described below based on the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. In addition, in the following drawings including FIG. 1, the relative dimensional relationship and shape of each component may differ from the actual ones. Also, in the following drawings, the same reference numerals denote the same or equivalent parts, and this applies throughout the specification.
実施の形態1.
 図1は、実施の形態1に係る密閉型圧縮機100の概略縦断面図である。図2は、実施の形態1に係る密閉型圧縮機100の上軸受14付近の概略拡大図である。図3は、実施の形態1に係る密閉型圧縮機100の吐出マフラ17の平面図である。図3には、吐出マフラ17とカバー60および冷媒流路孔23との位置関係を明示するため、カバー60および冷媒流路孔23を点線で示している。
Embodiment 1.
FIG. 1 is a schematic longitudinal sectional view of a hermetic compressor 100 according to Embodiment 1. FIG. FIG. 2 is a schematic enlarged view of the vicinity of the upper bearing 14 of the hermetic compressor 100 according to the first embodiment. FIG. 3 is a plan view of discharge muffler 17 of hermetic compressor 100 according to the first embodiment. In FIG. 3 , the cover 60 and the coolant channel holes 23 are indicated by dotted lines in order to clarify the positional relationship between the discharge muffler 17 and the cover 60 and the coolant channel holes 23 .
 以下では、密閉型圧縮機100がロータリ圧縮機である例を説明するが、密閉型圧縮機100は、ロータリ圧縮機に限らず、圧縮機構部から吐出管までの吐出ガスの経路内に、軸受の軸受端が設けられた圧縮機であればよい。なお、本実施の形態1では、密閉型圧縮機100が、シリンダが1つのロータリ圧縮機を記載しているが、シリンダが複数のロータリ圧縮機であってもよい。 In the following, an example in which the hermetic compressor 100 is a rotary compressor will be described. It is sufficient if the compressor is provided with a bearing end of . In the first embodiment, the hermetic compressor 100 is described as a rotary compressor with one cylinder, but may be a rotary compressor with a plurality of cylinders.
 密閉型圧縮機100は、密閉容器1の内部に、冷媒を圧縮する圧縮機構部10と、圧縮機構部10を駆動する電動機部20とを備えている。圧縮機構部10と電動機部20とは、主軸11で連結され、圧縮機構部10が密閉容器1の下部に、電動機部20が密閉容器1の上部に収納されている。なお、以下の説明では、密閉容器1の長手方向を軸方向、この軸方向に垂直な方向を径方向と呼び、軸方向の紙面上を上方向、紙面下を下方向、径方向の軸中心側を内側、密閉容器1の内壁面側を外側とする。密閉型圧縮機100は、主軸11が重力方向となる状態で使用される、いわゆる縦置き型の圧縮機である。 The hermetic compressor 100 includes a compression mechanism section 10 that compresses the refrigerant and an electric motor section 20 that drives the compression mechanism section 10 inside the hermetic container 1 . The compression mechanism section 10 and the electric motor section 20 are connected by the main shaft 11 , and the compression mechanism section 10 is housed in the lower portion of the sealed container 1 and the electric motor section 20 is housed in the upper portion of the sealed container 1 . In the following description, the longitudinal direction of the sealed container 1 is called the axial direction, and the direction perpendicular to the axial direction is called the radial direction. The inner wall surface side of the sealed container 1 is defined as the outer side. The hermetic compressor 100 is a so-called vertical compressor that is used with the main shaft 11 in the direction of gravity.
 密閉容器1の外部には、密閉容器1に隣接して吸入マフラ41が設けられている。吸入マフラ41は、液冷媒を貯留するとともに冷媒音を消音する役割を有する。吸入マフラ41は、吸入連結管42により圧縮機構部10の後述のシリンダ13に連結されている。密閉容器1の上部には、圧縮機構部10で圧縮された冷媒を吐出する吐出管43が接続されている。密閉容器1の下部には、冷凍機油を溜める油溜まり部50が形成されている。油溜まり部50には、圧縮機構部10の一部が浸漬している。油溜まり部50に溜められた冷凍機油は、主軸11内に形成された給油穴11aを通って主軸11、圧縮機構部10、上軸受14および下軸受15等に供給される。給油穴11aは、軸方向に延びる縦穴11a1と、縦穴11a1から径方向に延びる複数の横穴11a2とを有する。 A suction muffler 41 is provided adjacent to the closed container 1 outside the closed container 1 . The suction muffler 41 has a role of storing the liquid refrigerant and silencing the refrigerant noise. The suction muffler 41 is connected to a later-described cylinder 13 of the compression mechanism 10 by a suction connecting pipe 42 . A discharge pipe 43 for discharging the refrigerant compressed by the compression mechanism section 10 is connected to the upper portion of the sealed container 1 . At the bottom of the closed container 1, an oil reservoir 50 is formed to hold refrigerator oil. A portion of the compression mechanism 10 is immersed in the oil reservoir 50 . Refrigerating machine oil stored in oil reservoir 50 is supplied to main shaft 11, compression mechanism 10, upper bearing 14, lower bearing 15, etc. through oil supply hole 11a formed in main shaft 11. As shown in FIG. The oil supply hole 11a has a vertical hole 11a1 extending in the axial direction and a plurality of horizontal holes 11a2 extending radially from the vertical hole 11a1.
 主軸11は、電動機部20の回転力を圧縮機構部10に伝達するものであり、上軸受14および下軸受15によって回転自在に支持されている。上軸受14は、軸受部14aとフランジ部14bとを有している。軸受部14aは、主軸11を回転自在に支持する円筒状の部分である。フランジ部14bは、軸受部14aの軸方向の一方の端にあり、主軸11が通過する穴から円盤状に拡がった部分である。また、下軸受15も同様に、軸受部15aと軸受部15aの片側に円盤状に拡がったフランジ部15bとを有している。軸受部14aおよび軸受部15aは、すべり軸受で構成されている。 The main shaft 11 transmits the rotational force of the electric motor section 20 to the compression mechanism section 10 and is rotatably supported by the upper bearing 14 and the lower bearing 15 . The upper bearing 14 has a bearing portion 14a and a flange portion 14b. The bearing portion 14a is a cylindrical portion that rotatably supports the main shaft 11. As shown in FIG. The flange portion 14b is located at one end in the axial direction of the bearing portion 14a and is a portion that expands in a disc shape from the hole through which the main shaft 11 passes. Similarly, the lower bearing 15 has a bearing portion 15a and a disk-shaped flange portion 15b extending on one side of the bearing portion 15a. The bearing portion 14a and the bearing portion 15a are composed of slide bearings.
 圧縮機構部10は、環状のシリンダ13と、シリンダ13内に収納され、主軸11の偏心軸部12に摺動自在に嵌合するピストン16と、ベーン(図示せず)とを備えている。ベーンは、シリンダ13に設けられたベーン溝(図示せず)に摺動自在に配置されている。ベーンの径方向外側は、密閉容器1の吐出ガス雰囲気の空間に開放されている。シリンダ13の軸方向両端の開口部は、上軸受14のフランジ部14bおよび下軸受15のフランジ部15bによって閉塞されてシリンダ13内にシリンダ室30を形成している。 The compression mechanism section 10 includes an annular cylinder 13, a piston 16 housed in the cylinder 13 and slidably fitted to the eccentric shaft section 12 of the main shaft 11, and vanes (not shown). The vanes are slidably arranged in vane grooves (not shown) provided in the cylinder 13 . The radially outer side of the vane is open to the space of the airtight atmosphere of the airtight container 1 . Openings at both axial ends of the cylinder 13 are closed by the flange portion 14 b of the upper bearing 14 and the flange portion 15 b of the lower bearing 15 to form a cylinder chamber 30 inside the cylinder 13 .
 シリンダ13には、径方向に延びる吸入口40が形成され、吸入口40に吸入マフラ41から延びる吸入連結管42が接続されている。これにより、吸入マフラ41から密閉容器1内に吸入された冷媒がシリンダ室30に導かれる。また、シリンダ13には、シリンダ室30内で圧縮された冷媒をシリンダ室30から吐出する吐出口(図示せず)が形成されている。吐出口(図示せず)は、上軸受14のフランジ部14bに設けられた吐出機構(図示せず)の貫通孔(図示せず)に連通しており、吐出機構を覆うように吐出マフラ17が上軸受14に取り付けられている。 A suction port 40 extending radially is formed in the cylinder 13 , and a suction coupling pipe 42 extending from a suction muffler 41 is connected to the suction port 40 . As a result, the refrigerant sucked into the sealed container 1 from the intake muffler 41 is guided to the cylinder chamber 30 . Further, the cylinder 13 is formed with a discharge port (not shown) through which the refrigerant compressed in the cylinder chamber 30 is discharged from the cylinder chamber 30 . The discharge port (not shown) communicates with a through hole (not shown) of a discharge mechanism (not shown) provided in the flange portion 14b of the upper bearing 14, and a discharge muffler 17 covers the discharge mechanism. is attached to the upper bearing 14 .
 吐出マフラ17は、板状の上壁部17aと、上壁部17aの外周縁から下方に延びる側壁部17bと、側壁部17bの下端部から径方向外側に突出するフランジ部17cと、を有し、圧縮機構部10によって圧縮された冷媒が吐出される空間を覆う。図3では、フランジ部17cの図示は省略している。上壁部17aの中心部には貫通孔17a1が形成されており、この貫通孔17a1に上軸受14の軸受部14aが通されている。また、上壁部17aには、吐出マフラ17内の冷媒を密閉容器内に吐出する吐出部171が形成されている。 The discharge muffler 17 has a plate-shaped upper wall portion 17a, a side wall portion 17b extending downward from the outer peripheral edge of the upper wall portion 17a, and a flange portion 17c protruding radially outward from the lower end portion of the side wall portion 17b. and covers the space into which the refrigerant compressed by the compression mechanism 10 is discharged. In FIG. 3, illustration of the flange portion 17c is omitted. A through hole 17a1 is formed in the central portion of the upper wall portion 17a, and the bearing portion 14a of the upper bearing 14 is passed through the through hole 17a1. A discharge portion 171 for discharging the refrigerant in the discharge muffler 17 into the sealed container is formed in the upper wall portion 17a.
 吐出部171は、図2に示すようにカバー60の下端面60bよりも軸方向に高い位置からカバー60内の冷媒を吐出する部分である。吐出部171は、上壁部17aを貫通する吐出孔171aと、吐出孔171aの周壁から上方に突出する筒状の吐出壁171bとを有する。図1および図2では、吐出壁171bが吐出マフラ17の上壁部17aをバーリング加工することによって形成されたバーリング形状としているが、吐出孔171aの周壁に円筒部を溶接するなど吐出壁171bの加工方法は限定されない。 The discharge part 171 is a part that discharges the refrigerant in the cover 60 from a position higher in the axial direction than the lower end surface 60b of the cover 60, as shown in FIG. The discharge portion 171 has a discharge hole 171a passing through the upper wall portion 17a and a cylindrical discharge wall 171b projecting upward from the peripheral wall of the discharge hole 171a. 1 and 2, the discharge wall 171b has a burring shape formed by burring the upper wall portion 17a of the discharge muffler 17. The processing method is not limited.
 吐出部171は、カバー60の下端面60bの外周縁60cの外側に位置している。つまり、吐出部171は、図3に示すように軸方向に見て、カバー60よりも外側に位置している。また、吐出部171は、図3に示すように周方向に間隔を空けて複数形成されている。 The discharge part 171 is located outside the outer peripheral edge 60c of the lower end surface 60b of the cover 60. That is, the discharge portion 171 is located outside the cover 60 when viewed in the axial direction as shown in FIG. Moreover, as shown in FIG. 3, a plurality of ejection portions 171 are formed at intervals in the circumferential direction.
 電動機部20は、上軸受14の上方に配置されている。電動機部20は、環状に形成された固定子22と、この固定子22の内部で回転し得るように支持された回転子21とを備える。回転子21には、軸方向に貫通する冷媒流路孔23が形成されている。冷媒流路孔23は、図3に示すように周方向に間隔を空けて複数形成されている。冷媒流路孔23は、圧縮機構部10から吐出された冷媒ガスを密閉容器1の上部へ導くとともに、冷媒ガスとともに密閉容器1の上部に導かれた冷凍機油を密閉容器1の下部に落とすための役割を持つ。また、固定子22と密閉容器1の間にも、密閉容器1の上部と下部を連通する、冷媒流路孔23と同様の役割を持つ空間が存在する。 The electric motor section 20 is arranged above the upper bearing 14 . The electric motor section 20 includes a stator 22 formed in an annular shape and a rotor 21 rotatably supported inside the stator 22 . A coolant passage hole 23 is formed through the rotor 21 in the axial direction. As shown in FIG. 3, a plurality of coolant passage holes 23 are formed at intervals in the circumferential direction. The refrigerant passage hole 23 guides the refrigerant gas discharged from the compression mechanism portion 10 to the upper portion of the closed container 1, and allows the refrigerating machine oil guided to the upper portion of the closed container 1 together with the refrigerant gas to fall to the lower portion of the closed container 1. have the role of Also, between the stator 22 and the closed container 1 , there is a space that has the same function as the coolant passage hole 23 and that communicates the upper portion and the lower portion of the closed container 1 .
 電動機部20と吐出マフラ17との間には、冷凍機油が巻き上げられて密閉型圧縮機100から吐出されること抑制するためのカバー60が配置されている。カバー60は、軸方向に貫通した中空状であり、上方から下方に向かうに連れて径が拡大する円錐状に構成されている。なお、本明細書において「円錐状」の表現には、上方から下方に向かうにつれて径が拡大する形状全般を指すものとし、先端が尖っている円錐を厳密に指すものではない。カバー60は、主軸11に同心円状に配置され、軸受部14aを潤滑後の冷凍機油がカバー60内に流入するようになっている。具体的には、カバー60の上端部の開口径は、軸受部14aの外径よりも大きく、カバー60と軸受部14aとの間に隙間が形成されている。軸受部14aを潤滑後の冷凍機油は、軸受部14aの上端141から流出し、その隙間からカバー60内に流入する。カバー60は、回転子21の下端面に固定されており、回転子21とともに回転する。 A cover 60 is arranged between the electric motor section 20 and the discharge muffler 17 to prevent the refrigerating machine oil from being lifted up and discharged from the hermetic compressor 100 . The cover 60 is hollow and penetrates in the axial direction, and has a conical shape whose diameter increases from the top to the bottom. In this specification, the expression “conical” refers to a general shape in which the diameter increases from the top to the bottom, and does not strictly refer to a cone with a sharp tip. The cover 60 is arranged concentrically with the main shaft 11 so that the refrigerating machine oil flows into the cover 60 after lubricating the bearing portion 14a. Specifically, the opening diameter of the upper end portion of the cover 60 is larger than the outer diameter of the bearing portion 14a, and a gap is formed between the cover 60 and the bearing portion 14a. After lubricating the bearing portion 14a, the refrigerating machine oil flows out from the upper end 141 of the bearing portion 14a and flows into the cover 60 through the gap. The cover 60 is fixed to the lower end surface of the rotor 21 and rotates together with the rotor 21 .
 なお、図1および図2等では、カバー60の上端が軸受部14aの上端141よりも低い位置にあるが、例えば軸受部14aの上端141の位置が図示の位置よりも低く、径方向に見てカバー60が軸受部14aの上端141を覆うように構成されてもよい。つまり、カバー60の上端と軸受部14aの上端141との軸方向の位置関係が、図示の位置と逆でもよい。要するに、密閉型圧縮機100は、軸受部14aを潤滑後の冷凍機油がカバー60内に流入するように構成されていればよい。 1 and 2, the upper end of the cover 60 is positioned lower than the upper end 141 of the bearing portion 14a. Alternatively, the cover 60 may be configured to cover the upper end 141 of the bearing portion 14a. That is, the positional relationship in the axial direction between the upper end of the cover 60 and the upper end 141 of the bearing portion 14a may be reversed from that shown in the drawing. In short, the hermetic compressor 100 only needs to be configured such that the refrigerating machine oil after lubricating the bearing portion 14 a flows into the cover 60 .
 主軸11の上部には、冷凍機油を含んだ冷媒から冷凍機油を分離する油分離板18が固定されている。油分離板18は、回転子21に固定されてもよい。油分離板18は、主軸11の回転に伴って回転し、遠心力によって冷凍機油を外周方向に飛ばして冷媒から分離することができる。油分離板18によって分離された冷凍機油は、電動機部20の隙間等を通って油溜まり部50に落下する。 An oil separation plate 18 is fixed to the upper portion of the main shaft 11 to separate the refrigerant oil containing the refrigerant oil. The oil separator plate 18 may be fixed to the rotor 21 . The oil separation plate 18 rotates with the rotation of the main shaft 11, and can separate the refrigerating machine oil from the refrigerant by flying it in the outer peripheral direction by centrifugal force. The refrigerating machine oil separated by the oil separation plate 18 falls into the oil reservoir 50 through a gap or the like in the electric motor section 20 .
 次に、上記のように構成された密閉型圧縮機100の動作について説明する。電動機部20が駆動することによって、電動機部20の回転力が主軸11に伝達される。主軸11に伝達された回転力は、主軸11に取り付けられた偏心軸部12に伝達され、偏心軸部12とともにピストン16がシリンダ室30内で偏心回転する。 Next, the operation of the hermetic compressor 100 configured as described above will be described. The rotational force of the electric motor portion 20 is transmitted to the main shaft 11 by driving the electric motor portion 20 . The rotational force transmitted to the main shaft 11 is transmitted to the eccentric shaft portion 12 attached to the main shaft 11 , and the piston 16 rotates eccentrically within the cylinder chamber 30 together with the eccentric shaft portion 12 .
 ピストン16がシリンダ室30内で回転すると、吸入マフラ41から吸入連結管42および吸入口40を介して低圧の冷媒がシリンダ室30内に供給される。ピストン16が回転することによって、シリンダ室30の容積が縮小し、冷媒が圧縮される。ベーン(図示せず)は、密閉容器1内の高圧の冷媒によって、ピストン16に押し付けられている。ベーンは、ピストン16の動きと連動してベーン溝内を径方向に摺動し、シリンダ室30を低圧空間と高圧空間とに仕切る役割を果たす。吸入口40からシリンダ室30内の低圧空間に吸入された冷媒は、高圧空間で圧縮される。圧縮された冷媒は、上軸受14に形成された吐出機構(図示せず)から吐出マフラ17内に一旦、吐出される。 When the piston 16 rotates within the cylinder chamber 30 , low-pressure refrigerant is supplied into the cylinder chamber 30 from the intake muffler 41 via the intake connecting pipe 42 and the intake port 40 . The rotation of the piston 16 reduces the volume of the cylinder chamber 30 and compresses the refrigerant. A vane (not shown) is pressed against the piston 16 by the high pressure refrigerant in the closed container 1 . The vane slides radially in the vane groove in conjunction with the movement of the piston 16 and serves to divide the cylinder chamber 30 into a low-pressure space and a high-pressure space. Refrigerant sucked into the low-pressure space in the cylinder chamber 30 from the suction port 40 is compressed in the high-pressure space. The compressed refrigerant is once discharged into the discharge muffler 17 from a discharge mechanism (not shown) formed in the upper bearing 14 .
 吐出マフラ17内に吐出された冷媒は、吐出マフラ17の吐出部171から密閉容器1の内部空間に吐出される。密閉容器1の内部空間に吐出された冷媒ガスは、電動機部20に形成された冷媒流路孔23等を通り、電動機部20の上方の空間に流入する。この際、主軸11の上部に固定された油分離板18によって冷媒ガスから冷凍機油が遠心分離され、冷媒ガスは吐出管43から密閉容器1の外部に放出されて冷媒回路内を流れ、冷凍機油は密閉容器1の内壁面に沿って油溜まり部50に戻される。 The refrigerant discharged into the discharge muffler 17 is discharged from the discharge portion 171 of the discharge muffler 17 into the internal space of the sealed container 1 . The refrigerant gas discharged into the internal space of the sealed container 1 flows into the space above the electric motor section 20 through the refrigerant passage holes 23 formed in the electric motor section 20 and the like. At this time, the refrigerating machine oil is centrifugally separated from the refrigerant gas by the oil separation plate 18 fixed to the upper part of the main shaft 11, and the refrigerant gas is discharged from the discharge pipe 43 to the outside of the sealed container 1 and flows through the refrigerant circuit, whereupon the refrigerating machine oil is discharged. is returned to the oil reservoir 50 along the inner wall surface of the sealed container 1.
 密閉型圧縮機100は、主軸11が遠心ポンプの役割を果たす。密閉型圧縮機100は、主軸11の回転に伴い、主軸11内の給油穴11aの縦穴11a1の部分が遠心ポンプとなって油溜まり部50から冷凍機油を吸い上げる。吸い上げられた冷凍機油は、縦穴11a1および横穴11a2を通過し、下軸受15、シリンダ室30、上軸受14の軸受部14aに給油される。軸受部14aに給油された冷凍機油は、上軸受14の上端141から流出する。上軸受14の上端141から流出した冷凍機油は、回転子21とともに回転するカバー60内に流入して内壁面60aに衝突して付着する。カバー60の内壁面60aに付着した冷凍機油は、内壁面60aを伝ってカバー60の下端部に到達し、遠心力によりカバー60外に飛ばされる。カバー60外へ飛ばされた冷凍機油は、吐出マフラ17の上壁部17aに吹き付けられ、上壁部17aを径方向外側に向かって流れた後、側壁部17bに沿って下方に流れて油溜まり部50に戻される。 The main shaft 11 of the hermetic compressor 100 functions as a centrifugal pump. In the hermetic compressor 100, as the main shaft 11 rotates, the vertical hole 11a1 of the oil supply hole 11a in the main shaft 11 functions as a centrifugal pump to suck up the refrigerating machine oil from the oil reservoir 50. FIG. The sucked refrigerating machine oil passes through the vertical hole 11a1 and the horizontal hole 11a2, and is supplied to the lower bearing 15, the cylinder chamber 30, and the bearing portion 14a of the upper bearing . The refrigerator oil supplied to the bearing portion 14 a flows out from the upper end 141 of the upper bearing 14 . Refrigerating machine oil flowing out from the upper end 141 of the upper bearing 14 flows into the cover 60 that rotates together with the rotor 21, collides with the inner wall surface 60a, and adheres thereto. Refrigerating machine oil adhering to the inner wall surface 60a of the cover 60 reaches the lower end of the cover 60 along the inner wall surface 60a and is blown out of the cover 60 by centrifugal force. The refrigerating machine oil blown out of the cover 60 is sprayed against the upper wall portion 17a of the discharge muffler 17, flows outward in the radial direction through the upper wall portion 17a, and then flows downward along the side wall portion 17b to form an oil pool. Returned to section 50 .
 ここで、カバー60のさらに詳細な作用について説明する。 Here, more detailed actions of the cover 60 will be described.
 図4は、比較例に係る密閉型圧縮機のカバー600の作用説明図である。図5は、実施の形態1に係る密閉型圧縮機のカバー60の作用説明図である。 FIG. 4 is an explanatory view of the action of the cover 600 of the hermetic compressor according to the comparative example. 5A and 5B are explanatory views of the action of the cover 60 of the hermetic compressor according to the first embodiment.
 比較例のカバー600は、図4に示すように軸方向に延びる円筒形状であり、内径が軸方向に亘って同一である。よって、内壁面600aは上下方向に延びる鉛直面であるため、矢印R方向に回転するカバー600内の冷凍機油700に作用する遠心力F1は、径方向の成分のみである。このため、冷凍機油700は、カバー600の下端部から外側へ流出する際に、径方向、言い換えれば真横方向に飛ばされる。 The cover 600 of the comparative example has a cylindrical shape extending in the axial direction as shown in FIG. 4, and the inner diameter is the same throughout the axial direction. Therefore, since the inner wall surface 600a is a vertical surface extending in the vertical direction, the centrifugal force F1 acting on the refrigerating machine oil 700 inside the cover 600 rotating in the direction of the arrow R is only a radial component. Therefore, when the refrigerator oil 700 flows out from the lower end portion of the cover 600, it is thrown in the radial direction, in other words, in the lateral direction.
 これに対し、実施の形態1のカバー60は、図5に示すように上方から下方に向かうに連れて径が拡大する円錐状である。よって、内壁面60aは、下方に向かうにしたがって径方向外側に傾斜する傾斜面となっている。このため、カバー60の内壁面60aに付着した冷凍機油70に作用する遠心力F1は、内壁面60aに沿う斜め下方向の力成分Faと、内壁面60aに垂直な方向の力成分Fbとに分解される。このように、冷凍機油70には、内壁面60aに沿う斜め下方向の力成分Faが作用するため、冷凍機油70は、カバー60の下端部から径方向外側に、斜め下方向に飛ばされる。ここで、力成分Faは重力方向の力成分を含む。このため、カバー60の下端部から飛ばされた冷凍機油70は、冷媒ガスによって巻き上げられにくい。 On the other hand, the cover 60 of Embodiment 1 has a conical shape whose diameter increases from the top to the bottom as shown in FIG. Therefore, the inner wall surface 60a is a sloped surface that slopes radially outward toward the bottom. Therefore, the centrifugal force F1 acting on the refrigerating machine oil 70 adhering to the inner wall surface 60a of the cover 60 is divided into a force component Fa along the inner wall surface 60a and a force component Fb perpendicular to the inner wall surface 60a. decomposed. In this manner, the refrigerating machine oil 70 is subjected to the obliquely downward force component Fa along the inner wall surface 60a, so that the refrigerating machine oil 70 is flung obliquely downward from the lower end of the cover 60 radially outward. Here, the force component Fa includes a force component in the direction of gravity. Therefore, the refrigerating machine oil 70 blown from the lower end portion of the cover 60 is less likely to be swept up by the refrigerant gas.
 したがって、実施の形態1の密閉型圧縮機100は、冷凍機油が、密閉容器1内を流動する冷媒ガス、具体的には吐出マフラ17から吐出された冷媒ガスによって巻き上げられて密閉型圧縮機外へ吐出されることを抑制できる。なお、カバー60の下端部から斜め下方向に飛ばされた冷凍機油は、吐出マフラ17の上壁部17aに吹き付けられた後、吐出マフラ17の上壁部17aおよび側壁部17bに沿って下方に流れ、油溜まり部50に戻される。 Therefore, in the hermetic compressor 100 of Embodiment 1, the refrigerating machine oil is drawn up by the refrigerant gas flowing in the hermetic container 1, specifically, by the refrigerant gas discharged from the discharge muffler 17, and flows out of the hermetic compressor. It can be suppressed that it is discharged to. The refrigerating machine oil blown obliquely downward from the lower end of the cover 60 is sprayed onto the upper wall portion 17a of the discharge muffler 17, and then downward along the upper wall portion 17a and the side wall portion 17b of the discharge muffler 17. It flows back to the oil reservoir 50 .
 また、吐出部171は、カバー60の下端面60bよりも高い位置から冷媒を吐出する。このため、密閉型圧縮機100は、カバー60の下端部から流出して油溜まり部50に戻る冷凍機油の経路と、吐出部171から吐出されて冷媒流路孔23等に向かう冷媒ガスの流路とを分離できる。これにより、密閉型圧縮機100は、カバー60の下端部から流出した冷凍機油が、吐出部171から流出して冷媒流路孔23等に向かう冷媒ガスに巻き込まれることを抑制でき、結果的に密閉型圧縮機外へ吐出される量を低減できる。 Also, the discharge part 171 discharges the refrigerant from a position higher than the lower end surface 60 b of the cover 60 . For this reason, the hermetic compressor 100 has a path for refrigerating machine oil that flows out from the lower end of the cover 60 and returns to the oil reservoir 50, and a flow of refrigerant gas that is discharged from the discharge part 171 and directed to the refrigerant flow path holes 23 and the like. can be separated from the road. As a result, the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 from being involved in the refrigerant gas that flows out from the discharge portion 171 and heads toward the refrigerant flow path holes 23 and the like. The amount discharged to the outside of the hermetic compressor can be reduced.
 また、カバー60の下端面60bと吐出マフラ17の上壁部17aとの軸方向の距離Gは、カバー60の下端面60bと上軸受14との径方向の距離Lに比べて大幅に小さい距離にするとよい(G<L)。このようにすると、カバー60の下端部から放出される冷凍機油の大半が巻き上がらずに吐出マフラ17の上壁部17aの上に直ちに付着して捕捉される。さらに、カバー60の下端面60bと吐出部171の上端面171a1との軸方向の距離Hは、下端面60bと吐出マフラ17の上壁部17aとの軸方向の距離Gよりも大きい距離にするとよい(H>G)。このようにすると、カバー60の下端部から放出される冷凍機油が吐出部171から吐出されるガスによって巻き上げられることを防止する効果が高まる。 Further, the axial distance G between the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17 is significantly smaller than the radial distance L between the lower end surface 60b of the cover 60 and the upper bearing 14. (G<L). With this configuration, most of the refrigerating machine oil discharged from the lower end of the cover 60 is not swirled up and immediately adheres to the upper wall portion 17a of the discharge muffler 17 and is captured. Furthermore, if the axial distance H between the lower end surface 60b of the cover 60 and the upper end surface 171a1 of the discharge portion 171 is set to be greater than the axial distance G between the lower end surface 60b and the upper wall portion 17a of the discharge muffler 17, Good (H>G). By doing so, the effect of preventing the refrigerating machine oil discharged from the lower end portion of the cover 60 from being stirred up by the gas discharged from the discharge portion 171 is enhanced.
 実施の形態1の密閉型圧縮機100は、密閉容器1に形成された油溜まり部50の油が主軸11に形成された給油穴11aを介して軸受部15aに供給される圧縮機である。密閉型圧縮機100は、電動機部20に固定されて電動機部20と圧縮機構部10との間に主軸11に同心円状に配置され、軸受部15aを潤滑した冷凍機油が流入する中空のカバー60を備える。カバー60は、上方から下方に向かうに連れて径が拡大する円錐状である。 The hermetic compressor 100 of Embodiment 1 is a compressor in which the oil in the oil reservoir 50 formed in the hermetic container 1 is supplied to the bearing 15a through the oil supply hole 11a formed in the main shaft 11. The hermetic compressor 100 is fixed to the electric motor portion 20 and arranged concentrically with the main shaft 11 between the electric motor portion 20 and the compression mechanism portion 10. A hollow cover 60 into which refrigerating machine oil lubricating the bearing portion 15a flows. Prepare. The cover 60 has a conical shape whose diameter increases from the top to the bottom.
 上記構成により、密閉型圧縮機100のカバー60は、内壁面60aが、下方に向かうにしたがって径方向外側に傾斜する傾斜面となる。このため、内壁面60aに付着した冷凍機油70に作用する遠心力F1は、内壁面60aに沿う斜め下方向の力成分Faを有する。つまり、カバー60の内壁面60aに付着した冷凍機油には重力方向の力が作用し、この重力方向の力が、カバー60の下端部からカバー外へ飛ばされる際に冷凍機油に対して作用する。したがって、密閉型圧縮機100は、カバー60の下端部から流出した冷凍機油が、密閉容器1内を流動する冷媒ガスによって巻き上げられて密閉型圧縮機外へ吐出されることを抑制できる。 With the above configuration, the inner wall surface 60a of the cover 60 of the hermetic compressor 100 forms an inclined surface that inclines radially outward as it goes downward. Therefore, the centrifugal force F1 acting on the refrigerating machine oil 70 adhering to the inner wall surface 60a has an obliquely downward force component Fa along the inner wall surface 60a. That is, a force in the direction of gravity acts on the refrigerating machine oil adhering to the inner wall surface 60a of the cover 60, and this force in the direction of gravity acts on the refrigerating machine oil when it is blown out from the lower end of the cover 60 to the outside of the cover. . Therefore, the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end of the cover 60 from being drawn up by the refrigerant gas flowing in the hermetic container 1 and discharged to the outside of the hermetic compressor.
 また、実施の形態1の密閉型圧縮機100は、圧縮機構部10によって圧縮された冷媒が吐出される空間を覆う吐出マフラ17を備える。吐出マフラ17は、圧縮機構部10と電動機部20との間に配置され、軸受部15aが通される貫通孔17a1を有する板状の上壁部17aと、上壁部17aの外周縁から下方に延びる側壁部17bとを有する。吐出マフラ17の上壁部17aには、カバー60の下端面60bよりも高い位置から吐出マフラ17内の冷媒を吐出する吐出孔171aを有する吐出部171が形成されている。 The hermetic compressor 100 of Embodiment 1 also includes a discharge muffler 17 that covers the space into which the refrigerant compressed by the compression mechanism 10 is discharged. The discharge muffler 17 is disposed between the compression mechanism portion 10 and the electric motor portion 20, and includes a plate-like upper wall portion 17a having a through hole 17a1 through which the bearing portion 15a is passed, and a lower portion from the outer peripheral edge of the upper wall portion 17a. and a side wall portion 17b extending to the The upper wall portion 17a of the discharge muffler 17 is formed with a discharge portion 171 having a discharge hole 171a for discharging the refrigerant in the discharge muffler 17 from a position higher than the lower end surface 60b of the cover 60 .
 上記構成により、密閉型圧縮機100は、カバー60の下端部から流出して油溜まり部50に戻る冷凍機油の経路と、吐出部171から吐出されて冷媒流路孔23等に向かう冷媒ガスの流路とを分離できる。これにより、密閉型圧縮機100は、カバー60の下端部から流出した冷凍機油が密閉容器1内を流動する冷媒ガスに巻き込まれることを抑制でき、結果的に密閉型圧縮機外へ吐出される量を低減できる。 With the above configuration, the hermetic compressor 100 has a path for the refrigerating machine oil that flows out from the lower end of the cover 60 and returns to the oil reservoir 50, and a path for the refrigerant gas that is discharged from the discharge portion 171 and directed to the refrigerant passage holes 23 and the like. can be separated from the flow path. As a result, the hermetic compressor 100 can prevent the refrigerating machine oil that has flowed out from the lower end of the cover 60 from being caught in the refrigerant gas flowing in the hermetic container 1, and as a result, is discharged to the outside of the hermetic compressor. can be reduced.
実施の形態2.
 図6は、実施の形態2に係る密閉型圧縮機100の上軸受14付近の概略拡大図である。実施の形態2は、吐出マフラ17以外の構成は実施の形態1に示したものと同様である。図7は、実施の形態2に係る密閉型圧縮機100の吐出マフラ17の平面図である。図7には、吐出マフラ17とカバー60および冷媒流路孔23との位置関係を明示するため、カバー60および冷媒流路孔23を点線で示している。また、図7においてフランジ部17cの図示は省略している。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
FIG. 6 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the second embodiment. The configuration of the second embodiment is the same as that of the first embodiment except for the discharge muffler 17 . FIG. 7 is a plan view of discharge muffler 17 of hermetic compressor 100 according to the second embodiment. In FIG. 7 , the cover 60 and the coolant channel holes 23 are indicated by dotted lines in order to clarify the positional relationship between the discharge muffler 17 and the cover 60 and the coolant channel holes 23 . Further, illustration of the flange portion 17c is omitted in FIG. Hereinafter, the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 実施の形態2における吐出マフラ17は、実施の形態1の吐出マフラ17の上壁部17aに、下方に凹んだ窪み172を有する。窪み172は、図7に示すように周方向に間隔を空けて複数形成されている。図7では、窪み172が3つの例を示しているが、個数は問わない。窪み172は、軸方向に見て、カバー60の下端面60bの内周縁60dよりも径方向の内側の位置から側壁部17bに至るまで径方向の外側に延びており、径方向外側に開放されている。この窪み172により、カバー60は、一部が吐出マフラ17の上壁部17aに対向せず、下方に開放されている。下方に開放された部分である開放部62は、具体的には、図7に示すように、軸方向に見てカバー60の下端面60bの内周縁60dと吐出マフラ17の上壁部17aの外郭縁17aaとで囲まれた部分であり、ドットで示した部分である。 The discharge muffler 17 according to the second embodiment has a recess 172 recessed downward in the upper wall portion 17a of the discharge muffler 17 according to the first embodiment. A plurality of recesses 172 are formed at intervals in the circumferential direction as shown in FIG. Although FIG. 7 shows an example in which there are three depressions 172, the number of depressions 172 is not limited. When viewed in the axial direction, the recess 172 extends radially outward from a position radially inward of the inner peripheral edge 60d of the lower end surface 60b of the cover 60 to the side wall portion 17b, and is open radially outward. ing. Due to this depression 172, a part of the cover 60 does not face the upper wall portion 17a of the discharge muffler 17 and is open downward. Specifically, as shown in FIG. 7, the opening portion 62, which is a portion opened downward, is formed between the inner peripheral edge 60d of the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17 when viewed in the axial direction. It is a portion surrounded by the outer edge 17aa and indicated by dots.
 上記構成により、カバー60の下端部から流出した冷凍機油は、カバー60の下端面60bと吐出マフラ17の上壁部17aとの隙間に比べて広い開放部62から窪み172へ流れやすい。図6の矢印は、カバー60内の冷凍機油が、開放部62から窪み172へ流れ込む流れを示している。このように、カバー60の下端部から流出した冷凍機油は、開放部62から窪み172へ流れやすくなり、いわば窪み172に集中して流れる。これにより、密閉型圧縮機100は、冷凍機油の排出流路を吐出部171から離すことができる。よって、密閉型圧縮機100は、吐出マフラ17に窪み172を設けない場合に比べて、冷凍機油が吐出部171から吐出される冷媒ガス流によって巻き上げられることを抑制できる。 Due to the above configuration, the refrigerating machine oil that has flowed out from the lower end of the cover 60 easily flows into the depression 172 through the open portion 62 which is wider than the gap between the lower end surface 60b of the cover 60 and the upper wall portion 17a of the discharge muffler 17. Arrows in FIG. 6 indicate the flow of the refrigerating machine oil in the cover 60 from the opening 62 into the depression 172 . In this way, the refrigerating machine oil that has flowed out from the lower end of the cover 60 can easily flow from the open portion 62 to the depression 172 , so to speak, to concentrate in the depression 172 . Thereby, in the hermetic compressor 100 , the discharge passage for the refrigerating machine oil can be separated from the discharge portion 171 . Therefore, the hermetic compressor 100 can suppress the refrigerating machine oil from being swirled up by the refrigerant gas flow discharged from the discharge portion 171 , as compared with the case where the discharge muffler 17 is not provided with the recess 172 .
 実施の形態2の密閉型圧縮機100は、実施の形態1と同様の効果が得られるとともに、吐出マフラ17に窪み172を設けたことで、以下の効果が得られる。実施の形態2の密閉型圧縮機100は、冷凍機油の排出流路と吐出部171からの冷媒ガス流路とを分離でき、冷凍機油が冷媒ガス流に巻き込まれて密閉型圧縮機外へ吐出されることを抑制できる。 The hermetic compressor 100 of the second embodiment can obtain the same effects as those of the first embodiment, and the following effects can be obtained by providing the recess 172 in the discharge muffler 17 . In the hermetic compressor 100 of the second embodiment, the discharge passage of the refrigerating machine oil and the refrigerant gas passage from the discharge portion 171 can be separated. can be suppressed.
実施の形態3.
 図8は、実施の形態3に係る密閉型圧縮機100の上軸受14付近の概略拡大図である。実施の形態3は、吐出マフラ17以外の構成は実施の形態2に示したものと同様である。以下、実施の形態3が実施の形態2と異なる構成を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態2と同様である。
Embodiment 3.
FIG. 8 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the third embodiment. The configuration of the third embodiment is the same as that of the second embodiment except for the discharge muffler 17 . The following description focuses on the configuration of the third embodiment that differs from the second embodiment, and the configurations not described in the third embodiment are the same as those of the second embodiment.
 実施の形態3における吐出マフラ17は、吐出部171の構成が実施の形態1および実施の形態2と異なる。実施の形態3の吐出マフラ17は、上壁部17aが段付き形状に構成されて吐出部171を構成している。具体的には、実施の形態3の吐出部171は、上壁部17aからカバー60の下端面60bの高さよりも高い位置まで上方に突出する凸部171cを有し、凸部171cに、軸方向に貫通する吐出孔171aが形成された構成を有する。 A discharge muffler 17 according to Embodiment 3 differs from Embodiments 1 and 2 in the configuration of a discharge portion 171 . In the discharge muffler 17 of the third embodiment, the upper wall portion 17a is formed in a stepped shape to form a discharge portion 171. As shown in FIG. Specifically, the discharge portion 171 of Embodiment 3 has a convex portion 171c that protrudes upward from the upper wall portion 17a to a position higher than the height of the lower end surface 60b of the cover 60. The convex portion 171c has an axis It has a configuration in which a discharge hole 171a penetrating in the direction is formed.
 上記構成により、吐出部171は、カバー60の下端面60bよりも軸方向に高い位置からカバー60内の冷媒ガスを吐出する。このため、実施の形態3の密閉型圧縮機100は、実施の形態1と同様の効果が得られる。なお、図8には、吐出マフラ17が実施の形態2の窪み172を有する構成を図示しているが、実施の形態3の吐出マフラ17は、窪み172を有しない構成としてもよい。実施の形態3の吐出マフラ17は、窪み172を有しない場合、実施の形態1と同様の効果が得られ、窪み172を有する場合、実施の形態2と同様の効果が得られる。 With the above configuration, the discharge portion 171 discharges the refrigerant gas inside the cover 60 from a position higher in the axial direction than the lower end surface 60 b of the cover 60 . Therefore, the hermetic compressor 100 of the third embodiment can obtain the same effects as those of the first embodiment. Although FIG. 8 illustrates a configuration in which the discharge muffler 17 has the recess 172 of the second embodiment, the discharge muffler 17 of the third embodiment may be configured without the recess 172 . The discharge muffler 17 of the third embodiment can obtain the same effect as the first embodiment when it does not have the recess 172, and can obtain the same effect as the second embodiment when it has the recess 172. FIG.
 また、上記実施の形態1の吐出部171は、板金のバーリング加工で形成される場合、吐出孔171aの直径によって吐出壁171bの高さが制限される。これに対し、実施の形態3の吐出部171は、段付き形状であるため、プレス加工等で凸部171cを形成でき、吐出部171の高さを、吐出孔171aの直径に依らず簡易な構造で高くできる。実施の形態3の密閉型圧縮機100は、吐出部171の高さを高くできるため、油排出流路と冷媒ガス流路との分離効果を大きくできる。 Further, when the discharge portion 171 of Embodiment 1 is formed by burring a sheet metal, the height of the discharge wall 171b is limited by the diameter of the discharge hole 171a. On the other hand, since the discharge portion 171 of Embodiment 3 has a stepped shape, the convex portion 171c can be formed by press working or the like, and the height of the discharge portion 171 can be easily adjusted regardless of the diameter of the discharge hole 171a. The structure can make it taller. Since the height of the discharge portion 171 can be increased in the hermetic compressor 100 of Embodiment 3, the separation effect between the oil discharge channel and the refrigerant gas channel can be increased.
実施の形態4.
 実施の形態4は、上記実施の形態1~3において、吐出マフラ17の吐出孔171aと冷媒流路孔23との径方向の位置関係を特定したものである。
Embodiment 4.
Embodiment 4 specifies the radial positional relationship between the discharge hole 171a of the discharge muffler 17 and the refrigerant passage hole 23 in the above-described Embodiments 1 to 3. FIG.
 図9は、実施の形態4に係る密閉型圧縮機100の吐出マフラ17の平面図である。図9には、吐出マフラ17とカバー60および冷媒流路孔23との位置関係を明示するため、カバー60の外周縁60cおよび冷媒流路孔23を点線で示している。図9において、Cは、各冷媒流路孔23の径方向内側の端部である最内端を繋いだ仮想円である。図10は、実施の形態4に係る密閉型圧縮機100の上軸受14付近の概略拡大図である。実施の形態4に係る密閉型圧縮機100は、吐出孔171aの少なくとも一部が仮想円Cよりも内側に位置するように配置されている。 9 is a plan view of the discharge muffler 17 of the hermetic compressor 100 according to Embodiment 4. FIG. In order to clarify the positional relationship between the discharge muffler 17, the cover 60, and the refrigerant passage holes 23, FIG. In FIG. 9 , C is an imaginary circle connecting the innermost ends, which are the radially inner ends of the coolant passage holes 23 . FIG. 10 is a schematic enlarged view of the vicinity of upper bearing 14 of hermetic compressor 100 according to the fourth embodiment. Hermetic compressor 100 according to Embodiment 4 is arranged such that at least part of discharge hole 171a is located inside imaginary circle C. As shown in FIG.
 上記構成の効果について、比較例と比べて説明する。 The effect of the above configuration will be explained in comparison with a comparative example.
 図11は、比較例に係る密閉型圧縮機の吐出マフラの平面図である。図12は、比較例に係る密閉型圧縮機における上軸受付近の概略拡大図である。 FIG. 11 is a plan view of a discharge muffler of a hermetic compressor according to a comparative example. FIG. 12 is a schematic enlarged view of the vicinity of an upper bearing in a hermetic compressor according to a comparative example.
 実施の形態4および比較例のどちらの場合も、カバー60の下端部から流出した冷凍機油は、吐出マフラ17の上壁部17aに吹き付けられる。吐出マフラ17の上壁部17aに吹き付けられた冷凍機油の一部は、吐出部171の吐出壁171bに衝突して巻き上げられたり、冷媒ガス流などによって巻き上げられたりする可能性がある。なお、図10および図12において、白抜き矢印は冷媒ガスの旋回流、実線矢印は冷凍機油の流れを示している。 In both the fourth embodiment and the comparative example, the refrigerating machine oil flowing out from the lower end portion of the cover 60 is sprayed onto the upper wall portion 17a of the discharge muffler 17. Some of the refrigerating machine oil sprayed onto the upper wall portion 17a of the discharge muffler 17 may collide with the discharge wall 171b of the discharge portion 171 and be rolled up, or may be rolled up by the refrigerant gas flow or the like. 10 and 12, the white arrows indicate the swirl flow of the refrigerant gas, and the solid arrows indicate the flow of the refrigerating machine oil.
 ここで、図11および図12に示す比較例では、吐出孔1710が、軸方向に見て仮想円Cよりも外側に位置する。この場合、カバー60の下端部から冷媒流路孔23までの経路に巻き上げられた冷凍機油の流れを阻害する要素がないため、上記のように巻き上げられた冷凍機油が直接、冷媒流路孔23に侵入しやすい。 Here, in the comparative example shown in FIGS. 11 and 12, the discharge hole 1710 is positioned outside the virtual circle C when viewed in the axial direction. In this case, since there is no element that obstructs the flow of the refrigerating machine oil that is wound up in the path from the lower end of the cover 60 to the refrigerant flow path hole 23, the refrigerating machine oil that is stirred up as described above directly flows into the refrigerant flow path hole 23. easy to invade.
 一方、実施の形態4の密閉型圧縮機100では、図9および図10に示すように吐出孔171aの少なくとも一部が仮想円Cよりも内側に位置する。この場合、上記のように巻き上げられた冷凍機油は、吐出孔171aから吐出される冷媒ガス流と回転子21の回転によって発生する旋回流とによって遠心方向へ飛ばされ、冷媒流路孔23に直接向かわない。 On the other hand, in the hermetic compressor 100 of Embodiment 4, at least part of the discharge hole 171a is located inside the virtual circle C as shown in FIGS. In this case, the refrigerating machine oil that has been lifted up as described above is spun in the centrifugal direction by the refrigerant gas flow discharged from the discharge hole 171 a and the swirl flow generated by the rotation of the rotor 21 , and directly into the refrigerant passage hole 23 . don't go
 より具体的に説明する。吐出孔171aから吐出された冷媒流によって吐出部171付近に発生する旋回流は、吐出壁171bの上部から外周部にかけて作用し、吐出壁171bの内側には作用しないと想定される。ここで、図10と図12とを比較すると、図12に示す比較例では、白抜き矢印で示す旋回流が図10に比べて径方向外側に位置しており、カバー60の下端部から離れている。このため、比較例の構成では、カバー60の下端部から流出して巻き上げられた冷凍機油が、旋回流に邪魔されずに直接冷媒流路孔23に向かいやすい。 I will explain more specifically. It is assumed that the swirling flow generated near the discharge portion 171 by the refrigerant flow discharged from the discharge hole 171a acts from the upper portion to the outer peripheral portion of the discharge wall 171b and does not act on the inside of the discharge wall 171b. 10 and 12, in the comparative example shown in FIG. 12, the swirling flow indicated by the white arrow is located radially outward compared to FIG. ing. Therefore, in the configuration of the comparative example, the refrigerating machine oil that flows out from the lower end portion of the cover 60 and is swirled up is likely to go directly to the refrigerant passage hole 23 without being disturbed by the swirling flow.
一方、実施の形態4の密閉型圧縮機100は、図10に示すように旋回流が比較例に比べて径方向内側に移動し、カバー60の下端部に近づいている。このため、カバー60の下端部から流出して巻き上げられた冷凍機油は、吐出孔171aからの旋回流に巻き込まれて遠心力を受け、冷媒流路孔23へ直接向かわない。 On the other hand, in the hermetic compressor 100 of the fourth embodiment, the swirling flow moves radially inward and approaches the lower end of the cover 60 as compared with the comparative example, as shown in FIG. Therefore, the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 and has been swirled up is caught in the swirling flow from the discharge hole 171 a and receives centrifugal force, and does not go directly to the refrigerant flow path hole 23 .
以上より、実施の形態4の密閉型圧縮機100は、カバー60の下端部から流出した冷凍機油が巻き上げられて冷媒流路孔23に侵入することをより抑制できる。その結果、実施の形態4の密閉型圧縮機100は、冷凍機油が密閉型圧縮機外に吐出されることをより抑制できる。 As described above, the hermetic compressor 100 of the fourth embodiment can further suppress the refrigerating machine oil that has flowed out from the lower end portion of the cover 60 from being swirled up and entering the refrigerant passage holes 23 . As a result, hermetic compressor 100 of Embodiment 4 can further suppress discharge of refrigerating machine oil to the outside of the hermetic compressor.
 実施の形態4の密閉型圧縮機100は、実施の形態1~3と同様の効果が得られるとともに、吐出孔171aの少なくとも一部が仮想円Cよりも内側に位置するようにしたことで、冷凍機油が密閉型圧縮機外に吐出されることをより抑制できる。 The hermetic compressor 100 of Embodiment 4 can obtain the same effects as those of Embodiments 1 to 3, and at least part of the discharge hole 171a is positioned inside the virtual circle C, It is possible to further suppress the refrigerating machine oil from being discharged to the outside of the hermetic compressor.
 1 密閉容器、10 圧縮機構部、11 主軸、11a 給油穴、11a1 縦穴、11a2 横穴、12 偏心軸部、13 シリンダ、14 上軸受、14a 軸受部、14b フランジ部、15 下軸受、15a 軸受部、15b フランジ部、16 ピストン、17 吐出マフラ、17a 上壁部、17a1 貫通孔、17aa 外郭縁、17b 側壁部、17c フランジ部、18 油分離板、20 電動機部、21 回転子、22 固定子、23 冷媒流路孔、30 シリンダ室、40 吸入口、41 吸入マフラ、42 吸入連結管、43 吐出管、50 油溜まり部、60 カバー、60a 内壁面、60b 下端面、60c 外周縁、60d 内周縁、62 開放部、70 冷凍機油、100 密閉型圧縮機、141 上端、171 吐出部、171a 吐出孔、171a1 上端面、171b 吐出壁、171c 凸部、172 窪み。 1 closed container, 10 compression mechanism, 11 main shaft, 11a oil supply hole, 11a1 vertical hole, 11a2 horizontal hole, 12 eccentric shaft, 13 cylinder, 14 upper bearing, 14a bearing, 14b flange, 15 lower bearing, 15a bearing, 15b flange portion 16 piston 17 discharge muffler 17a upper wall portion 17a1 through hole 17aa outer edge 17b side wall portion 17c flange portion 18 oil separation plate 20 electric motor portion 21 rotor 22 stator 23 Refrigerant passage hole 30 Cylinder chamber 40 Suction port 41 Suction muffler 42 Suction connecting pipe 43 Discharge pipe 50 Oil reservoir 60 Cover 60a Inner wall surface 60b Lower end surface 60c Outer peripheral edge 60d Inner peripheral edge 62 open part, 70 refrigerator oil, 100 hermetic compressor, 141 upper end, 171 discharge part, 171a discharge hole, 171a1 upper end surface, 171b discharge wall, 171c convex part, 172 recess.

Claims (5)

  1.  冷凍機油を溜める油溜まり部が形成された密閉容器と、前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、前記密閉容器内で前記圧縮機構部の上方に配置され、前記圧縮機構部を駆動する電動機部と、前記電動機部の回転力を前記圧縮機構部に伝達する主軸と、前記電動機部の下方で前記主軸を回転自在に支持する軸受部と、を備え、前記油溜まり部の油が前記主軸に形成された給油穴を介して前記軸受部に供給される密閉型圧縮機であって、
     前記電動機部に固定されて前記電動機部と前記圧縮機構部との間に前記主軸に対して同心円状に配置され、前記軸受部を潤滑した冷凍機油が流入する中空のカバーを備え、
     前記カバーは、上方から下方に向かうに連れて径が拡大する円錐状である密閉型圧縮機。
    A closed container in which an oil reservoir for storing refrigerating machine oil is formed; a compression mechanism arranged in the closed container for compressing a refrigerant; and a compression mechanism arranged above the compression mechanism in the closed container. a main shaft for transmitting the rotational force of the electric motor to the compression mechanism; and a bearing for rotatably supporting the main shaft below the electric motor. oil is supplied to the bearing portion through an oil supply hole formed in the main shaft,
    a hollow cover that is fixed to the electric motor unit and arranged concentrically with respect to the main shaft between the electric motor unit and the compression mechanism unit and into which refrigerating machine oil lubricating the bearing unit flows;
    The cover is a conical hermetic compressor whose diameter increases from the top to the bottom.
  2.  前記圧縮機構部と前記電動機部との間に配置され、前記軸受部が通される貫通孔を有する板状の上壁部および前記上壁部の外周縁から下方に延びる側壁部を有し、前記圧縮機構部によって圧縮された冷媒が吐出される空間を覆う吐出マフラを備え、
     前記吐出マフラの前記上壁部には、前記カバーの下端面よりも高い位置から前記吐出マフラ内の冷媒を吐出する吐出孔を有する吐出部が形成されている請求項1記載の密閉型圧縮機。
    a plate-shaped upper wall portion disposed between the compression mechanism portion and the electric motor portion and having a through hole through which the bearing portion passes; and a side wall portion extending downward from an outer peripheral edge of the upper wall portion, A discharge muffler covering a space into which the refrigerant compressed by the compression mechanism is discharged,
    2. The hermetic compressor according to claim 1, wherein the upper wall portion of the discharge muffler is formed with a discharge portion having a discharge hole for discharging the refrigerant in the discharge muffler from a position higher than the lower end surface of the cover. .
  3.  前記吐出マフラは、前記上壁部に、下方に凹んだ窪みを有し、
     前記窪みは、前記主軸の軸方向に見て前記カバーの下端面の内周縁よりも前記主軸の径方向の内側の位置から前記側壁部に至るまで前記径方向の外側に延びて形成されている請求項2記載の密閉型圧縮機。
    The discharge muffler has a recess recessed downward in the upper wall,
    The recess extends radially outward from a position radially inward of the main shaft from the inner peripheral edge of the lower end surface of the cover to the side wall portion when viewed in the axial direction of the main shaft. A hermetic compressor according to claim 2.
  4.  前記電動機部は、前記主軸の軸方向に貫通する冷媒流路孔を周方向に間隔を空けて複数有し、
     前記吐出部の前記吐出孔は、前記カバーよりも外側に配置され、且つ、前記軸方向に見て、前記吐出孔の少なくとも一部が、複数の前記冷媒流路孔のそれぞれにおける前記主軸の径方向の最内端を繋いだ仮想円よりも内側に位置するように配置されている請求項2または請求項3記載の密閉型圧縮機。
    The electric motor unit has a plurality of coolant passage holes penetrating in the axial direction of the main shaft at intervals in the circumferential direction,
    The discharge hole of the discharge portion is arranged outside the cover, and at least a part of the discharge hole corresponds to the diameter of the main shaft of each of the plurality of refrigerant passage holes when viewed in the axial direction. 4. The hermetic compressor according to claim 2 or 3, wherein the compressor is arranged inside a virtual circle connecting the innermost ends of the directions.
  5.  前記吐出部は、前記上壁部から前記カバーの下端面の高さよりも高い位置まで上方に突出する凸部を有し、前記凸部に、前記主軸の軸方向に貫通して前記吐出孔が形成されている請求項2~請求項4のいずれか一項に記載の密閉型圧縮機。 The discharge portion has a projection projecting upward from the upper wall portion to a position higher than the lower end surface of the cover, and the discharge hole is formed through the projection in the axial direction of the main shaft. The hermetic compressor according to any one of claims 2 to 4, wherein the hermetic compressor is formed.
PCT/JP2022/008938 2022-03-02 2022-03-02 Hermetic compressor WO2023166628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008938 WO2023166628A1 (en) 2022-03-02 2022-03-02 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008938 WO2023166628A1 (en) 2022-03-02 2022-03-02 Hermetic compressor

Publications (1)

Publication Number Publication Date
WO2023166628A1 true WO2023166628A1 (en) 2023-09-07

Family

ID=87883249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008938 WO2023166628A1 (en) 2022-03-02 2022-03-02 Hermetic compressor

Country Status (1)

Country Link
WO (1) WO2023166628A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946383A (en) * 1982-09-10 1984-03-15 Nippon Denso Co Ltd Enclosed type compressor
JPS60183289U (en) * 1984-05-16 1985-12-05 三洋電機株式会社 Rotary compressor oil supply mechanism
JPH09151885A (en) * 1995-11-29 1997-06-10 Sanyo Electric Co Ltd Hermetic type rotary compressor
JP2016094923A (en) * 2014-11-17 2016-05-26 ダイキン工業株式会社 Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946383A (en) * 1982-09-10 1984-03-15 Nippon Denso Co Ltd Enclosed type compressor
JPS60183289U (en) * 1984-05-16 1985-12-05 三洋電機株式会社 Rotary compressor oil supply mechanism
JPH09151885A (en) * 1995-11-29 1997-06-10 Sanyo Electric Co Ltd Hermetic type rotary compressor
JP2016094923A (en) * 2014-11-17 2016-05-26 ダイキン工業株式会社 Compressor

Similar Documents

Publication Publication Date Title
JP5647989B2 (en) Compressor
JP5255157B2 (en) Compressor
CN108286522B (en) Compressor with a compressor housing having a plurality of compressor blades
CN112555158A (en) Exhaust oil content structure, compressor and air conditioner
JP5444850B2 (en) Compressor
WO2023166628A1 (en) Hermetic compressor
JP2014025427A (en) Compressor
WO2021079486A1 (en) Hermetic refrigerant compressor
JP4606639B2 (en) Hermetic rotary compressor
JP5861035B2 (en) Compressor
JPWO2016084121A1 (en) Compressor
WO2021124768A1 (en) Compressor
US20080101974A1 (en) Rotary compressor
JP4164917B2 (en) High pressure dome compressor
WO2021064945A1 (en) Sealed-type refrigerant compressor
JP5126387B2 (en) Compressor
JP2005083234A (en) Compressor
JP6635672B2 (en) Displacement compressor
JP2019082269A (en) Oil separator
WO2012157224A1 (en) Compressor
JP2016031024A (en) Compressor
JP2001295766A (en) Closed compressor
JPWO2013069287A1 (en) Compressor
WO2023090148A1 (en) Compressor
JPH04321789A (en) Oil separator for compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929773

Country of ref document: EP

Kind code of ref document: A1