WO2023166577A1 - Pattern forming method and inkjet printing device - Google Patents
Pattern forming method and inkjet printing device Download PDFInfo
- Publication number
- WO2023166577A1 WO2023166577A1 PCT/JP2022/008726 JP2022008726W WO2023166577A1 WO 2023166577 A1 WO2023166577 A1 WO 2023166577A1 JP 2022008726 W JP2022008726 W JP 2022008726W WO 2023166577 A1 WO2023166577 A1 WO 2023166577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- ink
- printing
- image data
- dots
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 374
- 238000007641 inkjet printing Methods 0.000 title claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims description 40
- 239000011248 coating agent Substances 0.000 claims description 39
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 229910000679 solder Inorganic materials 0.000 claims description 16
- 239000012943 hotmelt Substances 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 7
- 230000009974 thixotropic effect Effects 0.000 claims description 4
- 238000007639 printing Methods 0.000 abstract description 261
- 230000007261 regionalization Effects 0.000 description 90
- 238000010586 diagram Methods 0.000 description 54
- 150000001875 compounds Chemical class 0.000 description 25
- 239000002609 medium Substances 0.000 description 20
- 239000000049 pigment Substances 0.000 description 18
- 230000008859 change Effects 0.000 description 14
- 239000003349 gelling agent Substances 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 239000003999 initiator Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- 230000002457 bidirectional effect Effects 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000002270 dispersing agent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 238000001879 gelation Methods 0.000 description 7
- 239000003086 colorant Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 description 5
- 241000219122 Cucurbita Species 0.000 description 4
- 235000009852 Cucurbita pepo Nutrition 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- -1 carboxylic acid ester compound Chemical class 0.000 description 4
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000001052 yellow pigment Substances 0.000 description 3
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- PBWGCNFJKNQDGV-UHFFFAOYSA-N 6-phenylimidazo[2,1-b][1,3]thiazol-5-amine Chemical compound N1=C2SC=CN2C(N)=C1C1=CC=CC=C1 PBWGCNFJKNQDGV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229940090958 behenyl behenate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- KCNOEZOXGYXXQU-UHFFFAOYSA-N heptatriacontan-19-one Chemical compound CCCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCCC KCNOEZOXGYXXQU-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
Definitions
- the present invention relates to a pattern forming method and an inkjet printing apparatus. More particularly, the present invention relates to a pattern forming method for forming a pattern with no streaks and good reproducibility, and an inkjet printing apparatus for forming the pattern.
- Patent Document 1 discloses a method for manufacturing a multilayer wiring board having an interlayer insulating film by a droplet discharge method (inkjet method), but there are problems such as the occurrence of bulges depending on the combination of the substrate and the ink, and the fact that different substrates are used. When a pattern is formed across the substrates, there is a problem that the ink flows to the substrate with high wettability due to the difference in the wettability of each substrate with respect to the ink.
- Patent Document 2 discloses a method of applying droplets of an insulating film forming material at different distances from the peripheral edge based on the wettability of the underlayer on the substrate.
- the wettability of each substrate is significantly different, there arises a problem that the ink flows.
- the ink flows even when pattern formation is performed over a substrate having unevenness, there is a problem that the ink flows.
- Patent Document 3 which discloses the invention of the present inventor, attempts to solve the above problem by specifying the viscosity of the ink at the time of ejection and after landing in the pattern formation of the insulating layer by the inkjet method. Since the used insulating layer forming ink having a phase change mechanism has high dot fixability after landing, it is considered that there is room for further improvement with respect to the occurrence of streak-like unevenness in the scanning direction.
- Patent Document 4 in an inkjet type one-pass printer, a plurality of adjacent pixels are grouped together, and by adjusting the amount of liquid droplets ejected in one pixel within the group, It is described that the number of pixels to be ejected can be reduced, and gloss streaks in the transport direction can be suppressed. However, when this method is applied to the multi-pass method, the present inventor has found that streaks appear in the direction perpendicular to the conveying direction.
- a multi-pass method is mainly used when the resolution is high for the purpose of high-definition pattern printing, but the time between passes is long in printing with the multi-pass method, and streak-like unevenness is likely to occur. It should be noted that streak-like unevenness not only affects the appearance, but also poses a serious problem when an insulating film or a conductive film is formed because it causes unevenness in insulation or unevenness in conductivity.
- the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide a pattern forming method with no streaks and good reproducibility, and an inkjet printing apparatus for forming the pattern. .
- the present inventors investigated the causes of the above problems and found that the positions of the dots on which the droplets land are random (overall uniformity or periodicity) in the pattern portion excluding the boundary portion. A state in which randomness or unpredictability without regularity is recognized), and at the boundary, by controlling to have continuity or periodicity, a pattern with no streaks and good reproducibility The inventors have found that it is possible to form the present invention. That is, the above problems related to the present invention are solved by the following means.
- a pattern forming method by an inkjet printing method based on pattern image data In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. , The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged.
- a pattern forming method by an inkjet printing method based on pattern image data In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern.
- the droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
- the positions of the dots on which the droplets are landed are controlled so as not to have continuity or periodicity in the pattern portion excluding the boundary portion and also in the sub-scanning direction of the ink ejection device.
- the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the droplets are landed are continuous or periodic in the main scanning direction of the ink ejection device. divided into multiple parts so as not to have 5.
- the ink ejection device relatively reciprocates in the main scanning direction, 6.
- the pattern forming method according to any one of items 2 to 5, wherein ink droplets are ejected in both the forward pass and the return pass.
- An inkjet printing device that forms a pattern based on image data of the pattern, An inkjet printing apparatus, wherein a pattern is formed by the pattern forming method according to any one of items 1 to 9.
- an ink ejection device having a plurality of nozzle holes or a substrate as a print medium moves multiple times, and ink droplets are ejected from the nozzles of the ink ejection device to the substrate as the print medium.
- the position of the dot where the droplet lands is (I) Control so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity; (II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device; That is, it was found that a high-resolution and high-definition pattern can be printed by using the random multi-pass method.
- a pattern forming method by an inkjet printing method according to the present invention will be described in comparison with a conventional pattern forming method. For example, a method of printing image data using an inkjet head with a resolution of 600 dpi in multiple passes by moving the inkjet head in the direction of the nozzle row so that the output resolution is 1200 dpi will be described.
- the inkjet printing method shown in FIG. 1 is called a block method.
- printing is performed with the same nozzles, and the head is moved in the nozzle row direction by a distance (21.2 ⁇ m) corresponding to the output resolution of 1200 dpi.
- 1200 dpi printing is completed by the second scan.
- the landing of droplets is continuously performed in "one scan” and "two scans” as shown, and streaks are likely to occur in the transport direction.
- the ink-jet printing method shown in FIG. 2 is called an interleave method.
- the first scan in the transport direction one pixel is skipped by the same nozzle for printing, and in the second scan in the transport direction, printing is performed by the first scan.
- the head is moved in the direction of the nozzle row by the distance (21.2 ⁇ m) of the resolution of 1200 dpi, and similarly the third and fourth times are printed, and the printing of the output resolution of 1200 dpi is completed.
- the order of impact is cyclical, such as "1st scan" to "4th scan", and streaks are likely to occur.
- the inkjet printing method shown in FIG. 3 is a “random multi-pass method” that is a so-called “random” landing according to the present invention. 1200 dpi printing is completed with a total of 8 passes so that the landing order is random. Note that the number of passes may be increased. Also, the number of passes may be increased by further thinning out the conveying direction. By using the random multi-pass method, droplets are landed randomly, so streaks are less noticeable.
- the term "random" refers to rules such as overall identity or periodicity for the mutual positional relationship of dots in a pattern formation method that is premised on controlling within the condition range described later.
- a state of perceived randomness or unpredictability refers to the state shown in FIG. 3, for example.
- the above random multi-pass method is mainly used for the pattern portion, and the mutual positional relationship of dots is used for the vicinity of the boundary between the pattern portion and the non-pattern portion. It has been found that pattern reproducibility is improved by controlling to have continuity or periodicity.
- Schematic diagram showing pattern formation method by block method Schematic diagram showing pattern formation method by interleave method
- Schematic diagram showing a pattern forming method by a random multipass method according to the present invention A diagram showing image data used in the random multipath method (A)
- FIG. 10 is a diagram showing a 256-gradation gray image that does not have a constant periodicity with adjacent pixels;
- FIG. 4 is a diagram showing an example of a case in which the directions of columns and rows of pixels in image data are not parallel to the main scanning direction and sub-scanning direction of the ink ejection device; Schematic diagram (front view) showing a multi-pass inkjet printer Schematic diagram showing multi-pass inkjet printer (top view) A diagram showing an example of a pattern according to the present invention. A diagram showing an example of a boundary portion according to the present invention. A diagram showing a method of printing at 1200 dpi with random landing using one inkjet head with a resolution of 600 dpi. FIG.
- FIG. 4 is a diagram showing an example of image data used for forming a boundary portion according to the present invention.
- FIG. 4 is a diagram showing an example of image data used for forming a boundary portion according to the present invention.
- FIG. 10 is a diagram showing image data used to form a boundary when the boundary includes a coating film of dots positioned near the boundary between the patterned portion and the non-patterned portion in addition to the boundary forming portion;
- a diagram showing an example of a pattern and its boundary Diagram showing an example pattern (rectangle) at the boundary A diagram showing image data corresponding to a pattern example (rectangle) at the boundary
- Schematic diagram of nozzles of an ink ejection device used in an example of a printing method (block method) (using different nozzles) for an example pattern (rectangular) on a border A diagram showing an example of a printing method (interleave method) of a pattern example (rectangle) at the boundary
- FIG. 10 is a diagram (1 scan to 8 scans) showing a method (pattern formation method A) in which pattern formation is first completed in the boundary portion and then pattern formation is performed in the pattern portion excluding the boundary portion;
- FIG. 10 is a diagram (9 scans to 12 scans) showing a method (pattern formation method A) in which pattern formation is first completed in the boundary portion and then pattern formation is performed in the pattern portion excluding the boundary portion;
- FIG. 10 is a diagram (9 scans to 12 scans) showing a method (pattern formation method A) in which pattern formation is first completed in the boundary portion and then pattern formation is performed in the pattern portion excluding the boundary portion;
- FIG. 10 is a diagram (1 scan to 8 scans) showing a method (pattern formation method A) in which pattern formation is first completed in the boundary portion and then pattern formation is performed in the pattern portion excluding the boundary portion;
- FIG. 10 is a diagram (9 scans to 12 scans) showing a method (pattern formation method A) in which pattern formation is first completed in the boundary
- FIG. 10 is a diagram showing a method (pattern formation method B) in which pattern formation in a boundary portion and pattern formation in a pattern portion other than the boundary portion are simultaneously started and pattern formation in the boundary portion is completed first;
- a diagram showing a method of printing with a resolution of 2400 dpi using one inkjet head with a nozzle resolution of 600 dpi with random landing and divided printing (number of image divisions: 4) (1 scan to 8 scans)
- Diagram showing a method of printing with a resolution of 2400 dpi using one inkjet head with a nozzle resolution of 600 dpi with random landing and divided printing (number of image divisions: 4) (9 scans to 16 scans)
- FIG. 11 is a diagram showing a case where the positions of the dots on which the ejected droplets land are the same;
- FIG. 1 is a top view showing an inkjet printing apparatus 100 using a multipass method;
- FIG. 2 is a diagram showing a method of printing with an inkjet printer 1 (the head moves in the X direction and the substrate moves in the Y direction);
- FIG. 4 is a diagram showing a method of printing with an inkjet printing apparatus 100 (the head moves in the Y direction and the substrate moves in the X direction);
- FIG. 1 is a top view showing an inkjet printing apparatus 100 using a multipass method
- FIG. 2 is a diagram showing a method of printing with an inkjet printer 1 (the head moves in the X direction and the substrate moves in the Y direction)
- FIG. 4 is a diagram showing a method of printing with an inkjet printing apparatus 100 (the head moves in the Y direction and the substrate moves in the X direction);
- FIG. 2 shows a method of printing with an inkjet printing device in which the substrate moves in both the X and Y directions.
- FIG. 10 is a diagram showing a method of performing forward/reverse mixed printing in which the ink ejection device moves relatively in a combination of the forward direction and the reverse direction with respect to the sub-scanning direction;
- a diagram showing a printing method in which the direction of the ink ejection device itself is not perpendicular or parallel to either the X direction or the Y direction, but is oblique.
- FIG. 10 is a diagram showing a method (pattern forming method C) in which pattern formation is first started in a pattern portion excluding the boundary portion, and pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are completed at the same time;
- FIG. 10 is a diagram showing a method (pattern forming method D) of simultaneously starting pattern formation in a boundary portion and pattern formation in a pattern portion excluding the boundary portion;
- FIG. 10 is a diagram showing a method (pattern forming method D) of simultaneously starting pattern formation in a boundary portion and pattern formation in a pattern portion excluding the boundary portion;
- FIG. 10 is a diagram showing a method (pattern forming method C) in which pattern formation is first started in a pattern portion excluding the boundary portion, and pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are completed at the same
- FIG. 10 is a diagram showing a method (pattern formation method B) in which pattern formation in a boundary portion (rhombus) and pattern formation in a pattern portion other than the boundary portion are simultaneously started and pattern formation in the boundary portion is completed first;
- FIG. 10 is a diagram showing a method of printing all image data by a block method without distinguishing pattern portions between boundary portions and pattern portions excluding boundary portions, and using image data as one piece of image data;
- An example of a printing method (block method) for an example pattern (gourd shape) at the boundary An example of a printing method (block method, division printing) of a pattern example (gourd shape) at the boundary 100x optical micrographs of prints A and B in which punched squares parallel to the main scanning direction and sub-scanning direction are arranged under the same printing conditions as prints 2 and 12, respectively.
- a pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data, In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern.
- the droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion.
- control not to The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
- a pattern forming method by an inkjet printing method based on pattern image data In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern.
- the droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
- the boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
- the positions of the dots on which the liquid droplets are landed are further adjusted in the sub-scanning of the ink ejection device in the pattern portion excluding the boundary portion. It is preferable to control the directions so that they do not have continuity or periodicity.
- the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the position of the dot on which the droplet is landed is determined by the ink ejection device.
- the image data is divided into a plurality of pieces so as not to have continuity or periodicity in the main scanning direction, and the divided image data are sequentially overlapped and printed.
- the ink ejection device relatively reciprocate in the main scanning direction and eject ink droplets in both the forward and backward passes.
- an ink in which the ratio ⁇ 2/ ⁇ 1 of the viscosity ⁇ 1 at the ejection temperature and the viscosity ⁇ 2 at the landing temperature is 100 or more.
- any one of hot-melt type, gelling type, and thixotropic type ink is preferable to use any one of hot-melt type, gelling type, and thixotropic type ink as the ink.
- solder resist ink As the ink.
- the inkjet printing apparatus of the present invention can form a pattern by the pattern forming method of the present invention.
- a pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data, In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a printing medium is moved multiple times and droplets of ink are ejected from the nozzles of the ink ejection device onto the substrate as the printing medium to form a pattern, The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and The position of the dot on which the droplet lands, In the pattern part excluding the boundary part, (I) controlling so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity; (II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device; The boundary portion is controlled so as to have continuity
- the positions of the dots on which the droplets are landed are random in the pattern portion excluding the boundary portion (a state in which randomness or unpredictability without regularity such as overall identity or periodicity is recognized)
- the boundaries By controlling the boundaries so as to have continuity or periodicity, it is possible to form a high-definition pattern with no streaks or spots and good reproducibility.
- ink containing functional materials such as insulators and conductors is used, it is possible to form a pattern with uniform insulating properties and conductive properties and good adhesion of the coating film.
- "having continuity or periodicity” means having continuity to the extent that it can be visually observed when droplets are landed to form a coating film of dots.
- the dot positions are continuous over a wide range without leaving an interval, the continuity of the dot coating film formed by landing the liquid droplets on the positions can be visually observed.
- the interval is extremely narrow (for example, 1 to 2 dots) and is periodic over a wide range, the dot coating film formed by landing the droplets at that position can be visually observed. Continuity appears to some extent. Conversely, when the interval is wide, even if it is periodic, the continuity is not visible to the naked eye.
- the droplets are not caused to land on the positions. It is difficult to visually observe the continuity of the dot coating film formed by this method. Therefore, if the range is too narrow to be visually observed, sufficient randomness can be obtained even if the positions of the dots on which the droplets are landed are partially continuous.
- the number of dots here is an example and is not necessarily limited to this.
- the “pattern portion” refers to a portion where a pattern (in the narrow sense shown below) is formed, and the “non-pattern portion” refers to a portion where no pattern is formed.
- the term “pattern” narrowly refers to a coating film formed on a substrate using ink, and broadly refers to the entirety of multiple coatings formed on a substrate. Say.
- boundary portion refers to an aggregate of the dot coating film located near the boundary between the pattern portion and the non-pattern portion among the dot coating films constituting the pattern portion. It includes a dot coating that contributes to the formation of the boundary of the non-patterned area (hereinafter also referred to as "boundary formation area").
- FIG. 5 is a diagram showing an example of a pattern according to the present invention in which open squares are arranged within squares, and one square corresponds to one dot coating film.
- the area indicated by 11 is a "non-patterned area” where no pattern is formed
- the areas indicated by 12, 13 and 14 are “patterned areas” where a pattern is formed
- the line indicated by 15 is It represents "the boundary between the pattern area and the non-pattern area”.
- the boundary 15 between the patterned portion and the non-patterned portion does not have an area.
- regions indicated by 12 and 13 located near the boundary 15 between the patterned portion and the non-patterned portion represent the "boundary portion” defined above, and the region indicated by 14 is the "boundary portion "pattern part excluding”.
- the area indicated by 12 represents a "boundary forming part", which is a group of dot coating films that contribute to the formation of the boundary between the patterned part and the non-patterned part, and is included in the boundary part 16 indispensably.
- the area indicated by 13 represents "the boundary portion excluding the boundary forming portion", but it is not necessarily included in the boundary portion 16, and may or may not be included.
- the border 13 excluding the border forming part is located adjacent to the border forming part 12 .
- the term "dot” refers to the smallest unit of pixel that constitutes an ink image formed on a printing medium by an inkjet printing method, and is the portion of a coating film that is formed by a single ink droplet.
- a pixel in the ink image corresponding to one pixel in the image data to be printed may be formed by a plurality of dots (droplets).
- the positions of the dots on which the liquid droplets are to land are set to: (I) Control is performed so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity. (II) In the main scanning direction of the ink ejection device It is characterized by being controlled so as not to have continuity or periodicity.
- the positions of the dots on which the droplets are landed are random (randomness or unpredictability without regularity such as overall identity or periodicity) state), that is, by using the random multipass method, it is possible to form a high-definition pattern free of streaks and spots.
- random multipath method A
- random multipath method B
- the above control condition (I) defines a condition for randomizing the positions of the dots on which the liquid droplets are to land, from the viewpoint of the arrangement of the pixels forming the image data. Further, the control condition (II) defines a condition for randomizing the positions of the dots onto which the liquid droplets are to land, from the viewpoint of the scanning direction of the ink ejection device. In other words, the above control conditions (I) and (II) are defined from different viewpoints with respect to conditions for randomizing the positions of dots on which droplets are to land.
- the random multipath methods (A) and (B) will be described in detail below.
- FIG. 4 is a diagram showing image data used in the random multipass method (A), in which each dot is formed with a uniform amount of liquid.
- each dot may be formed with a different amount of liquid using multi-gradation random image data as shown in FIG. In this case, the liquid volume of the dots is changed in accordance with the gradation or density of each pixel. Similar image data can also be used in random multipath (B), which will be described later.
- the dots are formed in such a manner that the pixels forming the image data are not continuous in the row and column directions, but are landed at intervals, and the intervals are not constant.
- dots are formed in positions where dots are not formed in the same way so that dots do not overlap.
- the number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
- the printing method in this embodiment will be described below from the viewpoint of the random multipass method (A).
- FIG. 11 shows a method of printing at 1200 dpi by random landing using one inkjet head with a resolution of 600 dpi.
- Pattern formation by the random multi-pass method (A) in the present embodiment shown in FIG. 3 is, as shown in FIG.
- Random multipath method (B) In the random multi-pass method (B), the positions of dots on which droplets are landed are controlled so as not to have continuity or periodicity in the main scanning direction of the ink ejection device.
- the image data used in the random multipath method (A) can be used.
- Ink landing in this embodiment will be described from the viewpoint of the random multi-pass method (B).
- the dots are landed at intervals so as not to have continuity or periodicity in the main scanning direction, and the dots are formed at irregular intervals.
- dots are formed in positions where dots are not formed in the same way so that dots do not overlap.
- the number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
- FIG. 11 shows a method of printing 1200 dpi with random landing using one inkjet head with a resolution of 600 dpi.
- the Y direction is the main scanning direction
- the X direction is the sub scanning direction.
- Pattern formation by the random multi-pass method (B) in this embodiment shown in FIG. 3 is, as shown in FIG. (equivalent to one pixel of 1200 dpi), and printing is performed again by scanning four times in the Y direction, thereby completing printing with a total of eight movements (passes) (see FIGS. 8A and 8B for the apparatus). .
- the pixel column and row directions in the image data are parallel to the main scanning direction and sub-scanning direction in the ink ejection device, but they do not necessarily have to be parallel, and non-parallel directions are also possible. be done.
- FIG. 7 shows an example in which the directions of columns and rows of pixels in image data are not parallel to the main scanning direction and sub-scanning direction in the ink ejection device.
- the portion indicated by the ellipse in FIG. 7 does not have continuity in the row and column directions of pixels in the image data, but it can be said that it has continuity in the main scanning direction of the ink ejection device. Therefore, the printing method indicated by the ellipse in FIG. 7 corresponds to the random multi-pass method (A) and does not correspond to the random multi-pass method (B).
- the printing method is applicable to both the random multi-pass method (A) and (B).
- the ink ejection device moves in the main scanning direction, deposits droplets in the main scanning direction a plurality of times, then moves in the sub-scanning direction, and then moves in the main scanning direction. It moves in the scanning direction and lands droplets a plurality of times. Therefore, when droplets are continuously landed on the positions of two dots adjacent to each other in the main scanning direction, the time difference between the formation of the coating films of the two dots becomes extremely short.
- the ink ejecting device lands droplets on the position of the first dot, and then moves in the main scanning direction. After moving to complete the landing of droplets in the main scanning direction, it moves in the sub-scanning direction, and then moves in the main scanning direction to cause the droplets to land on the position of the second dot.
- the time difference between the formation of the coating films of the two dots is longer than that in the main scanning direction. Therefore, when the positions of the dots on which the droplets are landed have continuity in the main scanning direction, streaks and spots are more likely to occur than when they have continuity in the sub-scanning direction.
- the random multi-pass method (B) by controlling the positions of the dots on which the droplets land so that they do not have continuity or periodicity in the main scanning direction of the ink ejection device, high-definition streaks can be obtained. It is possible to form a pattern with no mottled unevenness, and the effect can be enhanced by controlling the pattern so that it does not have continuity or periodicity even in the sub-scanning direction.
- FIG. 29 shows a method of performing printing with a resolution of 2400 dpi using one inkjet head with a nozzle resolution of 600 dpi and performing random landing and divided printing.
- the original image data in which each dot is formed with a uniform amount of liquid is used.
- each dot is formed with a different amount of liquid.
- this original image data is split into two, split image data is created, and then each split image data is sequentially overlaid and printed. Therefore, divided image data is created so that each pixel does not overlap when printed in an overlapping manner. In addition, divided image data is created so that the positions of dots on which droplets are to land do not have continuity or periodicity in the main scanning direction of the ink ejection device.
- Divided image data can be created with image processing software such as Adobe's image processing software Photoshop 2020.
- image processing software such as Adobe's image processing software Photoshop 2020.
- a gray image is converted to monochrome two-tone by an error diffusion method or the like using Photoshop to create a random black and white image.
- the image is then color-inverted to produce an image in which black and white are reversed.
- the obtained two images are divided images of black solid data in which impacts are random and do not overlap.
- FIG. 31 shows a method of printing with a resolution of 2400 dpi using one ink jet head with a nozzle resolution of 600 dpi and random landing. In this method, printing is completed for each main scanning direction.
- printing in the main scanning direction is completed by two consecutive scans, for example, 1 scan and 2 scans.
- division printing is completed by two discontinuous scans of 1 scan and 5 scans.
- FIGS. 30A and 30B show a method of dividing the original image data into four and performing divided printing similar to that of FIG. In this case, printing in the main scanning direction is completed by 4 discontinuous scans of 1 scan, 5 scans, 9 scans and 13 scans.
- random landing refers to controlling the positions of dots on which droplets land so as not to have continuity and periodicity in the main scanning direction of the ink ejection device.
- FIG. 32 shows a method of performing divided printing similar to that of FIG. 29, but in 1 scan and 5 scans, the positions of the dots on which droplets are ejected from the leftmost nozzle and the middle nozzle are the same. is.
- the streaks and unevenness which are the problems to be solved by the present invention, tend to occur when the positions of the dots onto which the droplets land are continuous or periodic in the main scanning direction, but are not continuous or periodic in the sub-scanning direction. is difficult to occur. Therefore, as shown in FIG. 32, even if the positions of the dots on which droplets ejected from different nozzles are landed are the same in some scans, the occurrence of streaks and unevenness can be sufficiently suppressed.
- the ink ejecting device relatively reciprocates in the main scanning direction and ejects the ink droplets in both the forward and backward passes.
- bidirectional printing a printing method that satisfies the above control conditions.
- FIG. 38 shows a method of performing bidirectional printing in which the ink ejection device relatively reciprocates in the main scanning direction and ejects ink droplets in both the forward and backward passes.
- division printing is performed, but it is not always necessary to perform division printing.
- the ink ejection device In one scan, the ink ejection device relatively moves in the direction of the arrow (forward movement) while ejecting ink droplets. Next, in two scans, the ink ejection device relatively moves in the direction of the arrow so as to form a row of dots on the right side adjacent to the row of dots formed in one scan, while ejecting ink droplets. It moves relatively in the direction of the arrow (return movement). This is repeated, and printing is completed after a total of eight scans.
- the term "moving relatively” means that either one of the ink ejection device and the substrate as the printing medium may move, or both may move. and the substrate as a printing medium, the relative movement of the ink ejection device.
- the substrate may be fixed and the ink ejection device may be moved in the direction of the arrow, or the ink ejection device may be fixed and the substrate is moved in the direction opposite to the arrow.
- the ink ejection device In unidirectional printing as shown in FIG. 29, the ink ejection device relatively reciprocates in the main scanning direction, but ejects ink droplets only in the forward pass and only moves in the backward pass. Therefore, bidirectional printing can shorten the printing time and improve productivity.
- the ink ejection device moves in a combination of the normal direction and the reverse direction relative to the sub-scanning direction.
- FIG. 39 shows a method of performing forward/reverse mixed printing in which the ink ejection device relatively moves in a combination of forward and reverse directions with respect to the sub-scanning direction.
- division printing is performed in FIG. 39, it is not always necessary to perform division printing.
- the ink ejection device In one scan, the ink ejection device relatively moves in the main scanning direction and ejects ink droplets. Next, in two scans, the ink ejection device relatively moves in the direction of the arrow so that a row of dots is formed on the right side of the row of dots formed in one scan with an interval of one dot therebetween. It moves in the main scanning direction and ejects ink droplets. Then, in three scans, the ink ejection device relatively moves in the direction of the arrow so that a row of dots is formed between the row of dots formed in one scan and the row of dots formed in two scans. It moves in the scanning direction and ejects ink droplets. This is repeated, and printing is completed after a total of eight scans.
- dots are formed so as to be adjacent to the formed dots. Adjacent dots are formed before the ink is fixed, causing streaks and unevenness.
- dots are formed with a gap between them. Therefore, adjacent dots are formed after the ink of the dots is fixed, and streaks and unevenness are less likely to occur.
- dots are formed with a gap between them. Therefore, adjacent landings interact with ink (dots) that landed first, reducing the occurrence of landing deviations. Pattern formability is improved.
- the positions of the dots on which the droplets are to land are set to: Control is performed so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
- a pattern with good reproducibility can be formed by controlling the boundary to have continuity or periodicity.
- the “boundary portion” refers to an aggregate of dot coating films located near the boundary between the pattern portion and the non-pattern portion among the dot coating films constituting the pattern portion. , at least a coating film of dots that contributes to the formation of a boundary between a patterned portion and a non-patterned portion (hereinafter also referred to as a “boundary forming portion”).
- FIG. 9 shows an example of a pattern according to the present invention
- FIG. 10 shows an example of its boundary.
- the boundary portion 16 is linearly formed along the boundary between the non-pattern portion and the pattern portion.
- FIG. 12 shows image data used to form the boundary shown in FIG.
- one dot corresponds to one pixel forming the image data.
- each pixel is linearly arranged.
- the "longitudinal direction in which the pixels constituting the image data are arranged” means the direction along the line formed by connecting the arranged pixels. shown.
- the boundary portion 16 may not be linearly formed.
- the direction in which each pixel is adjacent is defined as "the longitudinal direction in which each pixel constituting the image data is arranged”, and the order in which each pixel is adjacent is controlled to have continuity or periodicity. do.
- FIG. 9 shows an example in which a pattern is formed around the non-patterned portion, and the image data corresponding to the boundary portion 16 shown in FIG. 10 and the boundary portion 16 shown in FIG. and the line ends are closed, but the boundary and the image data corresponding to it are not necessarily limited to such a shape, and the line ends are not closed may be
- the boundary portion is composed only of the boundary forming portion, but the boundary portion may further include a dot coating film located near the boundary between the pattern portion and the non-pattern portion. .
- a dot coating film located near the boundary between the pattern portion and the non-pattern portion.
- FIG. 13 shows an example in which the boundary portion 16 includes, in addition to the boundary forming portion 12, a coating film 13 of dots located near the boundary between the pattern portion and the non-pattern portion (the boundary portion excluding the boundary forming portion).
- FIG. 14 show image data used to form the boundary shown in FIG.
- one dot corresponds to one pixel forming the image data.
- the boundary portion has a uniform width and is a region along the boundary between the pattern portion and the non-pattern portion.
- the "width” here means the length (the number of dots) in the direction perpendicular to the boundary between the pattern area and the non-pattern area.
- the boundary portion 16 shown in FIG. 10 can have a width of one dot, and the boundary portion 16 shown in FIG. 13 can have a width of two dots.
- FIG. 15 shows an example of patterns and their boundaries.
- the left end indicates each pattern
- the middle indicates a boundary portion of one dot width in the pattern
- the right end indicates a boundary portion of two dots width in the pattern.
- the width of the boundary is not particularly limited, but from the viewpoint of pattern reproducibility, it is preferable to generate streaks in the boundary, and the number of dots in the width is preferably within the range of 1 to 3.
- FIG. 17 shows image data corresponding to the pattern example (rectangle) shown in FIG.
- Each pixel constituting the image data is arranged parallel to the row and column directions, and the row and column directions of the pixels in the image data and the main scanning direction and sub-scanning direction of the ink discharge device are aligned.
- the directions are parallel. Therefore, in the pattern forming method described below, ink droplets are caused to land continuously or periodically in the main scanning direction and the sub-scanning direction of the ink discharge device, so that the positions of the dots where the droplets land are displayed in the image. It is possible to control to have continuity or periodicity according to the longitudinal order in which the pixels constituting the data are arranged.
- the pixels constituting the image data do not necessarily have to be arranged in parallel with the row and column directions.
- the direction and sub-scanning direction need not be parallel.
- FIG. 18 shows an example of a printing method (block method) of a pattern example (rectangle) in the boundary.
- Ink droplets are landed continuously (block system) in the main scanning direction and sub-scanning direction of the ink ejection device, and the positions of the dots on which the droplets are landed are arranged by the pixels constituting the image data. It is controlled to have continuity according to the ordered order in the longitudinal direction.
- ink droplets After making ink droplets land continuously in the main scanning direction in one scan, it moves in the sub-scanning direction, and after making ink droplets continuously land in the sub-scanning direction in two scans and three scans, Ink droplets are landed continuously in the main scanning direction by four scans, and printing is completed.
- the printing method has continuity in the main scanning direction, and has continuity and periodicity in the sub-scanning direction, so it is possible to form high-definition straight lines.
- the same nozzle is used to land droplets on adjacent dot positions in the sub-scanning direction, but different nozzles may be used.
- FIG. 19 shows an example (using different nozzles) of a printing method (block method) for an example pattern (rectangle) at the boundary.
- block method for an example pattern (rectangle) at the boundary.
- ink droplets to land continuously (block system) in the main scanning direction and sub-scanning direction of the ink ejection device, the positions of the dots on which the droplets land are determined by the pixels that make up the image data. It is controlled to have continuity according to the ordered order in the longitudinal direction.
- different nozzles are used to land droplets on adjacent dot positions in the sub-scanning direction.
- ink droplets are ejected from nozzles 26, 27 and 28 (see FIG. 20) in one scan, and after moving in the sub-scanning direction, nozzles 25 and 26 are ejected in two scans. and 27 eject ink droplets. In this manner, ink droplets ejected from each nozzle land in order in the sub-scanning direction.
- the number of passes may increase and the printing time may become longer.
- FIGS. 21 and 22 show an example of a printing method (interleave method) of a pattern example (rectangle) at the boundary.
- ink droplets to land periodically (interleaved) in the main scanning direction and the sub-scanning direction of the ink ejection device, the positions of the dots where the droplets land are determined by the pixels that make up the image data. It is controlled to have periodicity according to the order in the longitudinal direction.
- the image data is divided into two and the above-described divided printing is performed.
- printing is completed based on the second divided image data.
- printing based on the first divided image data and printing based on the second divided image data are performed in parallel. Specifically, one scan is performed based on the first divided image data, and then one scan is performed based on the second divided image data. Repeat this to complete printing.
- Both of the printing methods have periodicity in the main scanning direction and the sub-scanning direction, so highly precise straight lines can be formed. Since it takes less time to form a straight line, a more precise straight line can be formed.
- the method shown in FIG. 21 completes printing by 1 scan and 5 scans, but the method shown in FIG. is completed. Therefore, the method shown in FIG. 22 can shorten the time until the coating film of the adjacent dots is formed.
- the printing method at the boundary may be either the block method or the interleave method.
- the block method it is possible to form extremely fine straight lines in the main scanning direction
- the interleave method it is possible to form highly fine straight lines in both the main scanning direction and the sub-scanning direction. can.
- FIG. 23 shows an example of the printing method (the random multi-pass method described above) of an example pattern (rectangle) at the boundary.
- FIG. 23 shows that the boundary portion and the pattern portion excluding the boundary portion are all formed by the random multipass method without changing the pattern forming method.
- the method shown in FIG. 23 can also form a straight line that poses no practical problem, but the use of the block method or interleave method allows the formation of a finer straight line.
- FIG. 24 shows an example of a printing method (block method) of a pattern example (rhombus) at the boundary. Even when the pixels constituting the image data are not arranged in parallel with the row and column directions, the positions of the dots on which the liquid droplets are to land can be determined according to the arrangement of the pixels constituting the image data. It is controlled to have continuity or periodicity according to the order in the longitudinal direction.
- ink droplets land in the main scanning direction in one scan, it moves in the sub-scanning direction, and ink droplets land in the main scanning direction in two scans. At this time, the droplet is caused to land at a position adjacent to the position of the dot on which the droplet has landed in the first scan. Also for the 3rd scan and the 4th scan, the droplet is caused to land at a position adjacent to the position of the dot where the droplet landed in the previous scan.
- FIG. 51 shows an example of a printing method (block method) of a pattern example (gourd shape) at the boundary.
- block method of a pattern example (gourd shape) at the boundary.
- FIG. 52 shows an example of a printing method (block method, division printing) of a pattern example (gourd shape) in a boundary portion.
- the division printing can be used even when the pixels constituting the image data in the boundary are not arranged parallel to the row and column directions and visually recognized as a curved line. can be done.
- each pixel constituting the image data has continuity in the order in which the pixels are arranged in the longitudinal direction.
- FIG. 25 shows an example of a printing method (random multi-pass method) of a pattern example (rhombus) at the boundary. Note that the positions of the dots on which the droplets are to land are random in the longitudinal direction in which the pixels forming the image data are arranged.
- the method shown in FIG. 25 can also form a straight line with no practical problem, but the method shown in FIG. 24 can form a highly precise straight line.
- the formation of the coating film of the dots on the boundary portion is completed prior to the formation of the coating film of the dots on the pattern portion excluding the boundary portion.
- pattern formation method A A method of first completing pattern formation in the boundary portion and then pattern formation in the pattern portion excluding the boundary portion.
- pattern formation method B A method of simultaneously starting pattern formation in a boundary portion and pattern formation in a pattern portion excluding the boundary portion, and completing pattern formation in the boundary portion first. There are two methods.
- pattern formation at the boundary is first completed, and then the pattern at the boundary is completed.
- a method of forming a pattern is preferred.
- a pattern forming method by division printing will be described below using the image data shown in FIG. As described above, it is preferable to increase (increase) the number of divisions in the pattern area excluding the boundary area, but it is preferable to reduce the number of divisions in the boundary area.
- divided image data ⁇ is image data corresponding to pattern formation in the boundary portion
- divided image data ⁇ and ⁇ are image data corresponding to pattern formation in the pattern portion excluding the boundary portion divided into two. This is the image data obtained by
- FIGS. 27A and 27B show a method (pattern formation method A) of first completing pattern formation in the boundary portion and then pattern formation in the pattern portion excluding the boundary portion.
- Divided image data No. 1 to No. 3 corresponds to the divided image data ⁇ to ⁇ , and the divided image data No. 1 to No. Complete printing in the order of 3.
- FIG. 28 shows a method (pattern formation method B) in which pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are simultaneously started, and pattern formation in the boundary portion is completed first.
- the divided data ⁇ and ⁇ are divided into one divided image data number. 1, the divided image data ⁇ is divided into divided image data No. 2, and divided image data No. 1 to No. 2 to complete printing.
- FIG. 43 shows a method (pattern formation method C) in which pattern formation is first started in a pattern portion excluding the boundary portion, and pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are completed at the same time. show.
- the divided image data ⁇ is divided into divided image data No. 1, the divided image data ⁇ and ⁇ are divided into one divided image data No. 2, and divided image data No. 1 to No. 2 to complete printing.
- FIGS. 44 and 45 show a method (pattern formation method D) of simultaneously starting pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion.
- any of the pattern formation methods A to D a highly precise straight line can be formed at the boundary and the pattern reproducibility is good. It is preferable to use pattern formation method A, and it is more preferable to use pattern formation method A.
- pattern formation method A is more preferred.
- FIG. 46 shows a method in which the boundary portion and the pattern portion excluding the boundary portion are all formed by the random multipass method without changing the pattern forming method. Even with this method, a straight line can be formed at the boundary without practical problems, but using the pattern forming method of the present invention provides a higher effect.
- the image data (divided image data ⁇ ) used for pattern formation at the boundary is such that each pixel constituting the image data is arranged in parallel to the row and column directions.
- FIG. 47 shows a pattern formation method in which the pixels constituting the image data corresponding to the pattern formation at the boundary are not arranged parallel to the row and column directions.
- FIG. 47 shows a method (pattern formation method B) in which pattern formation in a boundary portion (rhombus) and pattern formation in a pattern portion excluding the boundary portion are simultaneously started, and pattern formation in the boundary portion is completed first.
- the pattern formation method described above is used even when the pixels constituting the image data corresponding to the pattern formation at the boundary are not arranged in parallel with the row and column directions. can be used to form a pattern.
- the liquid volume of the droplets to be landed may be the same or different, and the liquid volume of the droplets to be landed may be changed between the boundary portion and the pattern portion excluding the boundary portion. You may let
- the pattern formed on the substrate can be smoothed by increasing the amount of liquid droplets that land on the recesses or the periphery including the recesses. Variation in functionality such as insulation can be suppressed.
- the ratio ⁇ 2/ ⁇ 1 of the viscosity ⁇ 1 at the temperature when the ink is ejected to the viscosity ⁇ 2 at the temperature when the ink is landed is preferably 100 or more.
- ⁇ 2/ ⁇ 1 100 or more, it is possible to suppress the occurrence of bulges and form a high-definition pattern.
- ⁇ 2/ ⁇ 1 200 or more, further 500 or more, it is possible to form a high-definition pattern even on a substrate having unevenness or a different material.
- ink such as a hot-melt type, a gelling type, or a thixotropic type, as described later.
- the viscosity at the time of ink ejection and landing is not particularly limited as long as it is within the range satisfying the above ratio.
- the viscosity ( ⁇ 1) when the temperature at the time of ejection is 75° C. From the point of view, it is preferably in the range of 3 to 15 mPa ⁇ s.
- the viscosity ( ⁇ 2) when the temperature at the time of impact is room temperature (25° C.) is 1 ⁇ 10 2 to 1 ⁇ , from the viewpoint that the ink is fixed on the substrate at the time of impact and the occurrence of bulging can be suppressed. It is preferably within the range of 10 4 mPa ⁇ s.
- Viscosity ⁇ 2 at the temperature at the time of landing is the ink flow that is caused by the wetting and spreading of the ink on the substrate (not due to the impact of landing). It can be called a viscosity, and more specifically, it is a viscosity that the ink reaches within one second after it lands on the substrate.
- the “viscosity ⁇ 1 at the temperature at the time of ejection” is the temperature of the head when the ink is ejected from the head.
- Viscosity was measured by setting the ink in a temperature-controllable stress-controlled rheometer (eg, Physica MCR300, manufactured by AntonPaar), heating to 100°C, and cooling to 25°C at a cooling rate of 0.1°C/s. , to make a viscosity measurement.
- the measurement can be performed using a cone plate with a diameter of 75.033 mm and a cone angle of 1.017° (eg CP75-1, manufactured by Anton Paar).
- Temperature control can be performed using a temperature control device, for example, a Peltier element type temperature control device (TEK150P/MC1) attached to PhysicaMCR300.
- the condition of the viscosity ratio ⁇ 2/ ⁇ 1 of the ink according to the present invention can be appropriately satisfied by, for example, setting physical conditions such as the composition of the ink and the temperature and humidity when the ink lands.
- the ink according to the present invention preferably has the ability to change its viscosity by a phase change mechanism such as hot melt, thixotropy, or gelation.
- a phase change mechanism such as hot melt, thixotropy, or gelation.
- hot melt refers to melting by applying heat
- phase change mechanism by hot melt refers to a state of being heated (melted) and having a low viscosity (at the time of ejection), and then being cooled. It refers to a mechanism that shifts to a state of high viscosity (at the time of impact).
- phase change mechanism by hot melt it is preferable to change the temperature of the ink between when it is ejected and when it lands. For example, there is a method of heating the ink at the time of ejection and cooling the ink at the time of landing, and it is preferable to perform either one or both of these methods.
- a heater for heating the ink filled in the inkjet head and a cooling means for cooling the substrate are used. It is preferable to appropriately use a temperature adjusting means such as.
- thixotropy refers to a property intermediate between plastic solids such as gels and non-Newtonian liquids such as sols, where the viscosity changes over time.
- phase change mechanism due to thixotropy refers to the state in which the viscosity is low (at the time of ejection) under the action of shear stress due to stirring, vibration, etc., and the viscosity increases when the action of shear stress is reduced or stopped. It refers to the phase change mechanism that shifts to a high state (after impact).
- a shear stress imparting means for applying agitation or vibration (microvibration) to the ink filled in the inkjet head can be appropriately used to develop a phase change mechanism by thixotropy.
- phase change mechanism due to gelation refers to the aggregation of polymer networks and fine particles formed by chemical or physical aggregation from a low viscosity state (at the time of ejection) due to the independent mobility of solutes. It refers to a phase change mechanism in which solutes lose their independent mobility and form aggregated structures due to interactions with structures, etc., and transition to a highly viscous state (at the time of impact).
- the ink preferably contains a gelling agent such as an oil gelling agent (details will be described later).
- the phase change mechanism due to gelation it is preferable to change the temperature of the ink between when it is ejected and when it lands.
- the ink is heated to a temperature above the sol-gel phase transition temperature (gelation temperature) during ejection to form a sol, the ink is cooled below the sol-gel phase transition temperature (gelation temperature) upon impact.
- a gelling method is preferred.
- the ink used in the present invention is preferably a thermosetting inkjet ink that contains a compound having a thermosetting functional group and a gelling agent and undergoes a sol-gel phase transition due to temperature. Further, the thermosetting inkjet ink more preferably contains a compound having a photopolymerizable functional group and a photopolymerization initiator.
- Thermosetting functional groups include, for example, a hydroxy group, a carboxy group, an isocyanate group, an epoxy group, a (meth)acrylic group, a maleimide group, a mercapto group, and an alkoxy group. These may be used individually by 1 type, or 2 or more types may be used together.
- the gelling agent is preferably maintained in a state of being uniformly dispersed in the cured film cured by light and heat, thereby preventing permeation of moisture into the cured film.
- the gelling agent preferably contains at least one compound represented by the following general formula (G1) or (G2).
- the gelling agent can be uniformly dispersed in the cured film without impairing the curability of the ink.
- general formula (G1) R 1 —CO—R 2
- R 1 to R 4 each independently represent an optionally branched alkyl chain having a linear portion of 12 or more carbon atoms. ]
- the ketone wax represented by the general formula (G1) or the ester wax represented by the general formula (G2) has 12 or more carbon atoms in the linear or branched hydrocarbon group (alkyl chain).
- the crystallinity of the gelling agent is higher, the water resistance is improved, and there is more sufficient space in the following card house structure. Therefore, an ink medium such as a solvent and a photopolymerizable compound can be sufficiently contained in the space, and the pinning property of the ink is further enhanced.
- the number of carbon atoms in the linear or branched hydrocarbon group (alkyl chain) is preferably 26 or less. There is no need to overheat the ink when printing.
- R 1 and R 2 or R 3 and R 4 are straight chain hydrocarbon groups having 12 or more and 23 or less carbon atoms.
- carbon A hydrocarbon group having from 12 to 23 atoms is preferred.
- both R 1 and R 2 or both R 3 and R 4 are more preferably saturated hydrocarbon groups having 11 or more and less than 23 carbon atoms.
- the content of the gelling agent is preferably within the range of 0.5 to 5.0% by mass with respect to the total mass of the ink.
- the content of the gelling agent in the inkjet ink is more preferably in the range of 0.5 to 2.5% by mass.
- the gelling agent crystallize in the ink at a temperature equal to or lower than the gelling temperature of the ink.
- the gelation temperature is the temperature at which the gelling agent undergoes a phase transition from sol to gel and the viscosity of the ink suddenly changes when the ink that has been solified or liquefied by heating is cooled.
- the solified or liquefied ink is cooled while measuring the viscosity with a viscoelasticity measuring device (for example, MCR300, manufactured by Physica), and the temperature at which the viscosity rises rapidly is measured as the temperature of the ink. It can be the gelation temperature.
- the compound having a photopolymerizable functional group may be any compound that reacts with irradiation of actinic rays to polymerize or crosslink to cure the ink.
- Examples of photopolymerizable compounds include radically polymerizable compounds and cationically polymerizable compounds.
- a photopolymerizable compound may be a monomer, a polymerizable oligomer, a prepolymer, or a mixture thereof.
- the inkjet ink may contain only one type of photopolymerizable compound, or two or more types thereof.
- the radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, more preferably a (meth)acrylate.
- examples of such compounds include compounds having the aforementioned (meth)acryl groups.
- the cationic polymerizable compound can be an epoxy compound, a vinyl ether compound, an oxetane compound, or the like.
- the inkjet ink may contain only one kind of cationic polymerizable compound, or may contain two or more kinds thereof.
- the photopolymerization initiator is a photoradical initiator when the photopolymerizable compound is a radically polymerizable compound, and a photoacid generator when the photopolymerizable compound is a cationic polymerizable compound. preferable.
- the ink of the present invention may contain only one type of photopolymerization initiator, or two or more types thereof.
- the photoinitiator may be a combination of both a photoradical initiator and a photoacid generator.
- Photoradical initiators include cleavage radical initiators and hydrogen abstraction radical initiators.
- the ink used in the present invention may further contain a colorant as needed.
- the colorant may be a dye or a pigment, but a pigment is preferred because it has good dispersibility in the constituent components of the ink and has excellent weather resistance.
- Dispersion of the pigment is such that the volume average particle size of the pigment particles is preferably in the range of 0.08 to 0.5 ⁇ m, the maximum particle size is preferably in the range of 0.3 to 10 ⁇ m, more preferably 0.3 to 3 ⁇ m. is preferably within the range of Dispersion of the pigment is adjusted by selection of the pigment, dispersant and dispersion medium, dispersion conditions, filtration conditions, and the like.
- a dispersant and a dispersing aid may be further included in order to improve the dispersibility of the pigment.
- the total amount of the dispersant and dispersing aid is preferably within the range of 1 to 50% by mass based on the pigment.
- the ink used in the present invention may further contain a dispersing medium for dispersing the pigment, if necessary.
- a solvent may be included in the ink as a dispersion medium, but in order to suppress the residual solvent in the formed print, a photopolymerizable compound (especially a monomer with low viscosity) as described above is used as the dispersion medium. is preferred.
- the ink may contain one or two or more colorants to obtain a desired color.
- the content of the colorant is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 0.4 to 10% by mass, based on the total amount of the ink.
- the ink used in the present invention may further contain other components such as polymerization inhibitors, surfactants, curing accelerators, coupling agents, ion scavengers, etc., as long as the effects of the present invention can be obtained. Only one kind of these components may be contained in the ink, or two or more kinds thereof may be contained. From the viewpoint of curability, a solvent-free ink is originally preferable, but a solvent may be added to adjust the viscosity of the ink.
- the ink used in the present invention preferably has a phase transition point within the range of 40°C or higher and lower than 100°C.
- the phase transition point is 40° C. or higher, the ink quickly gels after landing on the print medium, resulting in higher pinning properties.
- the phase transition point is less than 100° C., the ink handleability is improved and the ejection stability is enhanced.
- the phase transition point of the ink is more preferably in the range of 40 to 60°C.
- the average dispersed particle size of the pigment particles according to the present invention is preferably within the range of 50 to 150 nm, more preferably within the range of 80 to 130 nm. preferable. Also, the maximum particle size is preferably in the range of 300 to 1000 nm.
- the "average dispersed particle diameter" of pigment particles refers to a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Since ink containing a coloring agent has a high density and does not transmit light with the measuring instrument, the ink is diluted 200 times for measurement. The measurement temperature is normal temperature (25°C).
- the ink used in the present invention is preferably a solder resist ink for forming a solder resist pattern used for printed circuit boards.
- a solder resist ink for forming a solder resist pattern used for printed circuit boards.
- the method for forming a solder resist pattern using the ink used in the present invention includes the following (1) step of ejecting the ink from the nozzle of the inkjet head and making it land on the printed circuit board on which the circuit is formed, and (3) below. and a step of heating the ink for final curing.
- the ink used in the present invention contains a compound having a photopolymerizable functional group and a photopolymerization initiator, the deposited ink is irradiated with an actinic ray between steps (1) and (3). It is preferable that a step (step (2)) of temporarily curing the ink is included.
- Step (1) droplets of the ink of the present invention are ejected from an inkjet head and landed on a printed circuit board, which is a printing medium, at a position corresponding to the solder resist pattern to be formed, and patterned. Either an on-demand method or a continuous method may be used as the ejection method from the inkjet head.
- Ejection stability can be improved by ejecting heated ink droplets from the inkjet head.
- the ink temperature during ejection is preferably in the range of 40 to 100° C., and more preferably in the range of 40 to 90° C. in order to further improve the ejection stability.
- the temperature of the ink when the inkjet head is filled is (gelling temperature + 10) ° C. ⁇ (gelling The temperature is preferably set at +30°C. If the temperature of the ink in the inkjet head is lower than (gelling temperature + 10)°C, the ink gels in the inkjet head or on the surface of the nozzle, and the ink dischargeability tends to decrease. On the other hand, if the temperature of the ink in the inkjet head exceeds (gelling temperature + 30)°C, the ink becomes too hot, and the ink components may deteriorate.
- the method of heating the ink is not particularly limited.
- at least one of an ink tank constituting the head carriage, an ink supply system such as a supply pipe and an ink tank in the front chamber immediately before the head, a pipe with a filter, a piezo head, etc. is heated by a panel heater, a ribbon heater, or thermal water.
- the amount of ink droplets to be ejected is preferably in the range of 2 to 20 pL in terms of printing speed and image quality.
- the printed circuit board is not particularly limited, but for example, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy, synthetic fiber epoxy, fluorine/polyethylene/PPO/cyanate ester All grades (FR-4, etc.) copper clad laminates, polyimide films, PET films, glass substrates, ceramic substrates, wafer plates, etc. A stainless steel plate or the like is preferable.
- Step (2) the ink landed in the step (1) is irradiated with actinic rays to temporarily cure the ink.
- Actinic rays can be selected from, for example, electron beams, ultraviolet rays, ⁇ rays, ⁇ rays, and X rays, and preferably ultraviolet rays. Irradiation of ultraviolet rays can be performed under the condition of a wavelength of 395 nm using, for example, a water-cooled LED manufactured by Phoseon Technology. By using an LED as a light source, it is possible to suppress poor curing of the ink due to melting of the ink by the radiant heat of the light source.
- Irradiation of ultraviolet rays has a wavelength in the range of 370 to 410 nm, and the peak illuminance on the surface of the solder resist pattern is preferably in the range of 0.5 to 10 W/cm 2 , more preferably 1 to 5 W/cm 2 . Keep it within the range. From the viewpoint of suppressing the ink from being irradiated with radiant heat, the amount of light irradiated to the solder resist pattern is preferably less than 500 mJ/cm 2 . Irradiation with actinic rays is preferably performed within 0.001 to 300 seconds after the ink has landed, and is more preferably performed within 0.001 to 60 seconds in order to form a high-definition solder resist pattern. .
- Step (3) In the step (3), after the temporary curing in (2), the ink is further heated to be fully cured.
- the heating method for example, it is preferable to put in an oven set within the range of 110 to 180° C. for 10 to 60 minutes.
- the ink used in the present invention can be used not only as the ink for forming the solder resist pattern described above, but also as an adhesive, a sealant, a circuit protective agent, and the like for electronic parts.
- the part where the solder resist pattern is provided is not particularly limited, but as described above, when it is formed across different members or when it is formed across uneven members , the effect of the present invention is particularly significant.
- FIG. 8 are schematic diagrams showing a multi-pass type inkjet printing apparatus 1, and are A front view and B top view.
- This inkjet printing apparatus 1 is basically a printing apparatus that ejects ink by a multi-pass method in which a head 3 reciprocates to perform overlapping printing.
- a directional linear stage 4, a table 5 on which a substrate is placed, a Y-directional linear stage 6 for moving the table 5, and the like are provided.
- the inkjet printer 1 performs printing by moving the head 3 in the X direction and moving the table 5 on which the substrate is placed in the Y direction.
- the inkjet printing apparatus 1 includes a device for controlling ejection of ink from the head 3 and a computer for controlling the XY stage.
- a computer that controls the XY stage controls the operation of the XY stage based on the image data.
- the computer includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the carriage 2 with the head 3 mounted thereon is mounted on the linear stage 4 in the X direction, and is moved to a desired position by the computer controlling the XY stage.
- the table 5 on which the substrate is placed moves in the Y direction, and ink is ejected from the head when the substrate passes under the head.
- An encoder installed on the linear stage 6 in the Y direction and a device for controlling the ejection of ink from the head 3 are interlocked, and ink is ejected at the resolution of the image data according to the encoder signal.
- the head When printing at a resolution higher than that of the head in the X direction, the head is moved a plurality of times in the X direction for printing. For example, when printing 2400 dpi with one inkjet head with a resolution of 600 dpi, after printing the first scan in the Y direction, the head moves 10.6 ⁇ m in the X direction (equivalent to one pixel of 2400 dpi) and moves in the Y direction. Print the second scan. Further, the head moves 10.6 ⁇ m in the X direction, prints the third scan in the Y direction, moves 10.6 ⁇ m in the X direction, prints the fourth scan in the Y direction, and completes printing.
- printing is performed in only one transport direction, but printing may be performed in both directions (also referred to as “bidirectional printing”). Further, when the print area is larger than the head width, printing is performed by moving in the X direction by the width of the head.
- the main scanning direction and the sub-scanning direction of the ink ejection device may not be perpendicular or parallel to the nozzle rows, and only one of the ink ejection device and the substrate as the printing medium moves to form a pattern. Even if both move and form a pattern, streaks and unevenness are less likely to occur.
- An ink ejection device (synonymous with the above-mentioned "head") has a plurality of nozzle holes for ejecting ink.
- the nozzle holes are preferably arranged in a row. ) may not be perpendicular or parallel, and is not particularly limited.
- FIG. 41 shows a printing method in which the direction of the nozzle row is neither perpendicular nor parallel to either the X direction or the Y direction, but oblique.
- An inkjet printing apparatus having slanted nozzle rows can also be used in the pattern forming method of the present invention.
- FIG. 42 shows a printing method in which the direction of the ink ejection device itself is not perpendicular or parallel to either the X direction or the Y direction, but is oblique.
- the angle between the ink ejection device and the main scanning direction By appropriately changing the angle between the ink ejection device and the main scanning direction, the interval between dots to be formed can be changed, so the nozzle resolution can be increased without increasing the number of ink ejection devices.
- Such an inkjet printing apparatus can also be used in the pattern forming method of the present invention.
- printing is performed by moving the head in the X direction and the substrate in the Y direction.
- An apparatus, an inkjet printing apparatus in which the substrate moves in both the X direction and the Y direction, and an inkjet printing apparatus in which the head moves in both the X direction and the Y direction can also be used in the pattern forming method of the present invention.
- FIG. 34 shows a method of printing with the inkjet printing device 1 described above.
- the head In one scan, the head is fixed, and when the substrate moves in the direction of the arrow and passes under the head, ink droplets are ejected from the head. The head actually moves in the main scanning direction.
- the head moves in the direction of the arrow, and the substrate moves in the direction of the arrow again to eject ink droplets. This is repeated to complete printing.
- the carriage 2 with the head 3 mounted thereon is mounted on the linear stage 6 in the Y direction, and is moved to a desired position by the computer controlling the XY stage.
- the printing method in the X direction after performing printing in the main scanning direction of the Y direction, the table 5 on which the substrate is placed moves in the X direction, and printing in the next main scanning direction of the Y direction is performed.
- the encoder installed on the linear stage 4 in the X direction and the device that controls the ejection of ink from the head 3 are interlocked, and the ink is printed at the resolution of the image data according to the encoder signal. Dispense.
- FIG. 35 shows a method of printing with the inkjet printing device 100.
- the head moves in the main scanning direction on the fixed substrate and ejects ink droplets.
- the substrate moves in the direction of the arrow, so that the head relatively moves in the sub-scanning direction in terms of the positional relationship between the substrate and the head.
- the ink ejection device moves in the main scanning direction on the fixed substrate again and ejects ink droplets. This is repeated to complete printing.
- FIG. 36 shows a method of printing with an inkjet printing device in which the substrate moves in both the X and Y directions.
- the head In one scan, the head is fixed, and when the substrate moves in the direction of the arrow and passes under the head, ink droplets are ejected from the head. The head actually moves in the main scanning direction.
- the substrate moves in the direction of the arrow, so that the head relatively moves in the sub-scanning direction in terms of the positional relationship between the substrate and the head.
- the ink ejection device moves in the main scanning direction on the fixed substrate again and ejects ink droplets. This is repeated to complete printing.
- FIG. 37 shows a method of printing with an inkjet printing device in which the head moves in both the X and Y directions.
- the head moves in the main scanning direction on the fixed substrate and ejects ink droplets.
- the head moves in the direction of the arrow, and the substrate moves in the direction of the arrow again to eject ink droplets. This is repeated to complete printing.
- the number of scans can be reduced and the printing time can be shortened.
- FIG. 40 shows a method of printing with a resolution of 2400 dpi by dividing printing using four inkjet heads with a nozzle resolution of 600 dpi.
- the four inkjet heads are staggered and attached to the carriage at a pitch of 2400 dpi resolution.
- a multi-gradation random gray image may be used, and the liquid volume may be controlled corresponding to the gradation or density of each pixel.
- the pattern formed on the substrate can be smoothed by increasing the amount of liquid droplets that land on the recesses or the periphery including the recesses. Variation in functionality such as insulation can be suppressed.
- random multi-gradation gray image data such as that shown in FIG. 16 can be created.
- the black portion of 0 to 86 gradations is 7 pL
- the gray portion of 87 to 172 gradations is 3.5 pL
- the white portion of 173 to 255 gradations is 0 pL. Allocate quantity.
- dots with different liquid volumes corresponding to each pixel is possible by changing the ejection waveform when ink is ejected from the nozzles, or by forming multiple dots for the same pixel.
- a method of printing by the random multi-pass method in the present invention there is a method of printing by dividing the original image into a plurality of random non-overlapping images, and a method of randomly determining the impact by an inkjet ejection control system using a function such as a random number.
- Divided image data can be created by the following method. It can be created with image processing software such as Adobe's image processing software Photoshop 2020. For example, a gray image can be converted to monochrome 2-tone using the error diffusion method using Photoshop to create a random black and white image. do. The image is then color-inverted to produce an image in which black and white are reversed.
- image processing software such as Adobe's image processing software Photoshop 2020.
- a gray image can be converted to monochrome 2-tone using the error diffusion method using Photoshop to create a random black and white image. do.
- the image is then color-inverted to produce an image in which black and white are reversed.
- Dispersant 1 EFKA7701 (manufactured by BASF) 5.6 parts by mass Dispersant 2: Solsperse 22000 (manufactured by Lubrizol Japan) 0.4 parts by mass dispersion medium: dipropylene glycol diacrylate (containing 0.2% UV-10) 80.6 parts by mass Pigment: PY185 (manufactured by BASF, Paliotol Yellow D1155) 13.4 parts by mass
- the mixture was filtered through a Teflon (registered trademark) 3 ⁇ m membrane filter manufactured by ADVATEC to prepare Ink 1.
- the viscosity ( ⁇ 1) at a temperature of 75°C during ink discharge was 8.5 mPa s
- the viscosity ( ⁇ 2) at room temperature (25°C) which is the temperature at the time of landing, was 9.2 mPa s. .
- a printed matter 1 was produced by printing a print pattern with a UV-LED light source having a wavelength of 395 nm and exposing and curing with irradiation energy of 500 mJ/cm 2 .
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see FIG. 28, divided image data Resolution: 2400 dpi ⁇ 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Boundary part printing method Block method, see Fig.
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see Fig. 44, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern part printing method excluding border part Random multi-pass method, see Fig. 44
- Boundary part printing method Interleave method, see Fig.
- Print pattern 2 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 2 Divided image data: see Fig. 45, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern part printing method excluding border part Random multi-pass method, see Fig. 45
- Boundary part printing method Interleave method, see Fig.
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see Fig. 43, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern part printing method excluding border part Random multi-pass method, see Fig. 43
- Boundary part printing method Block method, see Fig.
- the image data was divided into the boundary portion and the pattern portion excluding the boundary portion.
- the pixels should not be overlapped when printed, and should have a certain periodicity, not in the order of the rows and columns in which the pixels are arranged.
- divided image data No. is assigned so as to correspond to the block method. 1 to No. 3 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
- Print pattern 3 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 3 Divided image data: see FIGS. 27A and B, divided image data Resolution: 2400 dpi ⁇ 2400 dpi (conveyance direction) Number of passes: 12 times (600dpi x 8)
- Pattern part printing method excluding border part Random multi-pass method, see Fig. 27
- Boundary part printing method Block method, see Fig.
- Print pattern Place 2mm x 2mm open squares (rhombuses) non-parallel to the main scanning direction and sub-scanning direction in a 70mm x 70mm square
- Number of image divisions 2 Divided image data: see Fig. 47, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern part printing method excluding border part Random multi-pass method, see Fig. 47
- Boundary part printing method Block method, see Fig.
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see Fig. 48, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern area printing method excluding border area Random multi-pass method, see Fig.
- Boundary area printing method Block method Boundary area width dot count: 2 Print order: Pattern formation method B Liquid volume distribution: 3.5 pL on the entire surface Head temperature (temperature during ink ejection): 75°C Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
- Example 9>> A printed matter 9 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
- the image data As shown in FIG. 49, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns in which the pixels are arranged so that the pixels do not overlap when printed.
- the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed. However, the printing direction was bidirectional.
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see Fig. 49, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Boundary area printing method Block method Boundary area width dot count: 1
- Print order Pattern formation method B Liquid volume distribution: 3.5 pL on the entire surface Head temperature (temperature during ink ejection): 75°C
- Substrate temperature temperature at the time of ink landing): Room temperature (25°C)
- the pattern portion is not distinguished between the boundary portion and the pattern portion excluding the boundary portion, and the image data to be used is one image data (no division printing), and all block method printed by
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and subscanning direction is placed in a 70mm x 70mm square Resolution: 2400dpi x 2400dpi (conveyance direction) Number of passes: 4 times (600dpi x 4)
- Pattern part printing method Block method, see Fig. 50
- Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
- Print pattern A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2 Divided image data: see Fig. 46, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction) Number of passes: 8 times (600dpi x 8)
- Pattern part printing method random multi-pass method, see FIG. 46
- Liquid volume distribution 3.5 pL on the entire surface Head temperature (temperature during ink ejection): 75°C
- Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
- ⁇ Border Linearity (Pattern Reproducibility)> Twenty distances between opposite sides of the cut squares (non-pattern portions) of the pattern in the obtained printed matter were measured, and the linearity was evaluated based on the deviation from the arithmetic mean value.
- ⁇ The maximum deviation amount is 2 ⁇ m or less.
- ⁇ The maximum deviation amount is more than 2 ⁇ m and 3 ⁇ m or less.
- ⁇ The maximum deviation amount is more than 3 ⁇ m and 5 ⁇ m or less.
- ⁇ The maximum deviation amount is more than 5 ⁇ m and 10 ⁇ m or less.
- x The maximum amount of deviation is more than 10 ⁇ m. It should be noted that ⁇ and above was regarded as having no problem in practical use.
- FIG. 53 shows 100-fold optical micrographs of printed matter A and B, which are produced under the same printing conditions as printed matter 2 and 12, respectively, and in which open squares are arranged parallel to the main scanning direction and the sub-scanning direction.
- printed material A printing conditions similar to printed material 2
- B printing conditions similar to printed material 12
- some streaks can be seen in the pattern part except for the boundary part.
- no streaks were observed visually.
- the random multi-pass method is used in the pattern portion excluding the boundary portion ((I) each pixel constituting the image data (II) not having a constant periodicity in the order of the rows and columns in which the ink ejection device is arranged, and (II) not having continuity or periodicity in the main scanning direction of the ink ejection device ) can suppress the occurrence of streaks.
- the boundary portion has continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged. It can be seen that the control improves the linearity at the boundary.
- the pattern forming method A or B is used (the formation of the dot coating film in the boundary portion is completed prior to the formation of the dot coating film in the pattern portion excluding the boundary portion). Therefore, it can be seen that the linearity at the boundary is further improved.
- Ink 1 has a viscosity at 25°C (room temperature) within the range of a suitable viscosity for ink ejection, so in Example 1 and Comparative Example 1, the ink was ejected at room temperature without heating.
- the head temperature was changed to 75° C., and the printed material produced in the same manner as in Example 1 , a result similar to that of Example 1 (printed matter 1) was obtained.
- the linearity at the boundary is further improved by using an ink in which the ratio ⁇ 2/ ⁇ 1 between the viscosity ⁇ 1 at the ejection temperature and the viscosity ⁇ 2 at the landing temperature is 100 or more. I know you do.
- the pattern forming method of the present invention By using the pattern forming method of the present invention, a pattern with no streaks and good reproducibility can be formed. Therefore, when ink containing functional materials such as insulators and conductors is used, it is possible to form patterns with uniform insulating and conductive properties.
- the pattern forming method of the invention can be preferably used.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ink Jet (AREA)
Abstract
The present invention addresses the problem of providing a pattern forming method that causes no streaks and has excellent reproducibility, and an inkjet printing device that forms the pattern. The pattern forming method of the present invention is based on a system in which an ink ejection device having a plurality of nozzle holes or a substrate serving as a printing medium is moved a plurality of times, and liquid droplets of ink are discharged from the nozzles of the ink ejection device onto the substrate serving as the printing medium to form the pattern. The method is characterized in that landing of liquid droplets of the ink that are used to form a film of dots constituting the pattern formed on the substrate occurs a plurality of times, and the positions of the dots at which the liquid droplets are caused to land are controlled so that, in a pattern part other than a boundary part, the dot positions are not in accordance with the orders of rows and columns in which the respective pixels constituting image data are arrayed, and do not have fixed periodicity, and so that, in the boundary part, the dot positions are in accordance with the order in a longitudinal direction in which the respective pixels constituting the image data are arrayed, and have continuity or periodicity.
Description
本発明は、パターン形成方法及びインクジェット印刷装置に関する。より詳しくは、スジがなく、再現性が良好であるパターンを形成するパターン形成方法、及び当該パターンを形成するインクジェット印刷装置に関する。
The present invention relates to a pattern forming method and an inkjet printing apparatus. More particularly, the present invention relates to a pattern forming method for forming a pattern with no streaks and good reproducibility, and an inkjet printing apparatus for forming the pattern.
近年、機能性材料を含むインクを用いたインクジェット印刷方式(以下において、単に「インクジェット方式」ともいう。)により、電子デバイスのパターンを形成する技術の研究開発が進められている。
In recent years, research and development of technology for forming patterns of electronic devices by means of an inkjet printing method using ink containing functional materials (hereinafter also simply referred to as "inkjet method") has been promoted.
特許文献1では、液滴吐出方式(インクジェット方式)による層間絶縁膜を有する多層配線基板の製造方法が開示されているが、基板とインクの組み合わせによってはバルジが発生するといった問題や、異なる基板に跨ってパターン形成を行う場合に、各基板のインクに対する濡れ性の違いにより、インクが濡れ性の高い基板側に流れてしまうといった問題が生じた。
Patent Document 1 discloses a method for manufacturing a multilayer wiring board having an interlayer insulating film by a droplet discharge method (inkjet method), but there are problems such as the occurrence of bulges depending on the combination of the substrate and the ink, and the fact that different substrates are used. When a pattern is formed across the substrates, there is a problem that the ink flows to the substrate with high wettability due to the difference in the wettability of each substrate with respect to the ink.
そこで、特許文献2では、絶縁膜形成材料の液滴を基板上の下地の濡れ特性に基づいて、周縁部からの距離を異ならせて塗布する方法が開示されている。しかし、各下地の濡れ特性が大きく異なると、インクが流れてしまうといった問題が生じた。また、凹凸のある基板に跨ってパターン形成を行う場合においても、インクが流れてしまうといった問題が生じた。
Therefore, Patent Document 2 discloses a method of applying droplets of an insulating film forming material at different distances from the peripheral edge based on the wettability of the underlayer on the substrate. However, if the wettability of each substrate is significantly different, there arises a problem that the ink flows. In addition, even when pattern formation is performed over a substrate having unevenness, there is a problem that the ink flows.
これを受けて、本発明者の発明を開示した特許文献3では、インクジェット法による絶縁層のパターン形成における、出射時及び着弾後のインクの粘度を規定することにより上記問題の解決を図ったが、用いた相変化機構を有する絶縁層形成インクは、着弾後のドット固定性が高いため、スキャン方向でスジ状のムラの発生については、更なる改善の余地があると考えられる。
In response to this, Patent Document 3, which discloses the invention of the present inventor, attempts to solve the above problem by specifying the viscosity of the ink at the time of ejection and after landing in the pattern formation of the insulating layer by the inkjet method. Since the used insulating layer forming ink having a phase change mechanism has high dot fixability after landing, it is considered that there is room for further improvement with respect to the occurrence of streak-like unevenness in the scanning direction.
また、特許文献4では、インクジェット方式のワンパスプリンタにおいて、隣接する複数の画素を一組のグループとし、グループ内のある一画素で吐出する液滴量を調整することにより、一組のグループ内の吐出する画素数を減らし、搬送方向の光沢スジを抑制することができると記載されている。しかし、この方法をマルチパス方式において適用すると、搬送方向と直交する方向のスジが見られることが、本発明者の検討でわかった。
Further, in Patent Document 4, in an inkjet type one-pass printer, a plurality of adjacent pixels are grouped together, and by adjusting the amount of liquid droplets ejected in one pixel within the group, It is described that the number of pixels to be ejected can be reduced, and gloss streaks in the transport direction can be suppressed. However, when this method is applied to the multi-pass method, the present inventor has found that streaks appear in the direction perpendicular to the conveying direction.
高精細なパターン印刷を目的として高解像度にする場合、主にマルチパス方式が用いられるが、マルチパス方式での印刷はパス間の時間が長く、スジ状のムラが起こりやすい。
なお、スジ状のムラは、外観だけでなく、絶縁膜や導電膜を形成する際には、絶縁ムラや導電ムラとなってしまうため、大きな問題となる。 A multi-pass method is mainly used when the resolution is high for the purpose of high-definition pattern printing, but the time between passes is long in printing with the multi-pass method, and streak-like unevenness is likely to occur.
It should be noted that streak-like unevenness not only affects the appearance, but also poses a serious problem when an insulating film or a conductive film is formed because it causes unevenness in insulation or unevenness in conductivity.
なお、スジ状のムラは、外観だけでなく、絶縁膜や導電膜を形成する際には、絶縁ムラや導電ムラとなってしまうため、大きな問題となる。 A multi-pass method is mainly used when the resolution is high for the purpose of high-definition pattern printing, but the time between passes is long in printing with the multi-pass method, and streak-like unevenness is likely to occur.
It should be noted that streak-like unevenness not only affects the appearance, but also poses a serious problem when an insulating film or a conductive film is formed because it causes unevenness in insulation or unevenness in conductivity.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、スジがなく、再現性が良好であるパターン形成方法、及び当該パターンを形成するインクジェット印刷装置提供することである。
The present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide a pattern forming method with no streaks and good reproducibility, and an inkjet printing apparatus for forming the pattern. .
本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、液滴を着弾させるドットの位置について、境界部を除くパターン部では、ランダム(全体的な同一性又は周期性等の規則性が無い無作為性又は予測不可能性が認識される状態)とし、境界部では、連続性又は周期性を有するように制御することにより、スジがなく、再現性が良好なパターンを形成することができることを見出し本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。 In order to solve the above problems, the present inventors investigated the causes of the above problems and found that the positions of the dots on which the droplets land are random (overall uniformity or periodicity) in the pattern portion excluding the boundary portion. A state in which randomness or unpredictability without regularity is recognized), and at the boundary, by controlling to have continuity or periodicity, a pattern with no streaks and good reproducibility The inventors have found that it is possible to form the present invention.
That is, the above problems related to the present invention are solved by the following means.
すなわち、本発明に係る上記課題は、以下の手段により解決される。 In order to solve the above problems, the present inventors investigated the causes of the above problems and found that the positions of the dots on which the droplets land are random (overall uniformity or periodicity) in the pattern portion excluding the boundary portion. A state in which randomness or unpredictability without regularity is recognized), and at the boundary, by controlling to have continuity or periodicity, a pattern with no streaks and good reproducibility The inventors have found that it is possible to form the present invention.
That is, the above problems related to the present invention are solved by the following means.
1.パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 1. A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged.
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 1. A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged.
2.パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 2. A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged.
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 2. A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged.
3.前記液滴を着弾させる前記ドットの位置を、前記境界部を除く前記パターン部においては、更に前記インク吐出装置の副走査方向においても連続性又は周期性を有さないように制御する
ことを特徴とする第2項に記載のパターン形成方法。 3. The positions of the dots on which the droplets are landed are controlled so as not to have continuity or periodicity in the pattern portion excluding the boundary portion and also in the sub-scanning direction of the ink ejection device. The pattern forming method according toitem 2.
ことを特徴とする第2項に記載のパターン形成方法。 3. The positions of the dots on which the droplets are landed are controlled so as not to have continuity or periodicity in the pattern portion excluding the boundary portion and also in the sub-scanning direction of the ink ejection device. The pattern forming method according to
4.前記境界部における前記ドットの塗膜の形成を、前記境界部を除く前記パターン部における前記ドットの塗膜の形成よりも先に完了させる
ことを特徴とする第1項から第3項までのいずれか一項に記載のパターン形成方法。 4. Any one ofitems 1 to 3, wherein the formation of the coating film of the dots in the boundary portion is completed prior to the formation of the coating film of the dots in the pattern portion excluding the boundary portion. 1. The pattern forming method according to 1.
ことを特徴とする第1項から第3項までのいずれか一項に記載のパターン形成方法。 4. Any one of
5.前記パターンの前記画像データを、重ねて印刷した場合に各画素が重ならないよう、かつ、前記液滴を着弾させる前記ドットの位置が、前記インク吐出装置の前記主走査方向において連続性又は周期性を有さないように、複数に分割し、
前記分割した前記画像データを順次重ねて印刷する
ことを特徴とする第2項から第4項までのいずれか一項に記載のパターン形成方法。 5. When the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the droplets are landed are continuous or periodic in the main scanning direction of the ink ejection device. divided into multiple parts so as not to have
5. The pattern forming method according to any one ofitems 2 to 4, wherein the divided image data are sequentially overlapped and printed.
前記分割した前記画像データを順次重ねて印刷する
ことを特徴とする第2項から第4項までのいずれか一項に記載のパターン形成方法。 5. When the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the droplets are landed are continuous or periodic in the main scanning direction of the ink ejection device. divided into multiple parts so as not to have
5. The pattern forming method according to any one of
6.前記インク吐出装置が、相対的に前記主走査方向に往復移動し、
往路及び復路どちらにおいてもインクの液滴を吐出する
ことを特徴とする第2項から第5項までのいずれか一項に記載のパターン形成方法。 6. The ink ejection device relatively reciprocates in the main scanning direction,
6. The pattern forming method according to any one ofitems 2 to 5, wherein ink droplets are ejected in both the forward pass and the return pass.
往路及び復路どちらにおいてもインクの液滴を吐出する
ことを特徴とする第2項から第5項までのいずれか一項に記載のパターン形成方法。 6. The ink ejection device relatively reciprocates in the main scanning direction,
6. The pattern forming method according to any one of
7.前記インクとして、吐出時の温度における粘度η1と着弾時の温度における粘度η2との比率η2/η1が、100以上であるインクを用いる
ことを特徴とする第1項から第6項までのいずれか一項に記載のパターン形成方法。 7. 7. Any one ofitems 1 to 6, wherein the ratio η2/η1 of the viscosity η1 at the ejection temperature to the viscosity η2 at the landing temperature is 100 or more. 1. The pattern forming method according to item 1.
ことを特徴とする第1項から第6項までのいずれか一項に記載のパターン形成方法。 7. 7. Any one of
8.前記インクとして、ホットメルトタイプ、ゲル化タイプ又はチキソトロピータイプのいずれかのタイプのインクを用いる
ことを特徴とする第1項から第7項までのいずれか一項に記載のパターン形成方法。 8. 8. The pattern forming method according to any one ofitems 1 to 7, wherein any one of hot-melt type, gelling type and thixotropic type ink is used as the ink.
ことを特徴とする第1項から第7項までのいずれか一項に記載のパターン形成方法。 8. 8. The pattern forming method according to any one of
9.前記インクとして、ソルダーレジストインクを用いる
ことを特徴とする第1項から第8項までのいずれか一項に記載のパターン形成方法。 9. 9. The pattern forming method according to any one ofitems 1 to 8, wherein a solder resist ink is used as the ink.
ことを特徴とする第1項から第8項までのいずれか一項に記載のパターン形成方法。 9. 9. The pattern forming method according to any one of
10.パターンの画像データに基づきパターンを形成するインクジェット印刷装置であって、
第1項から第9項までのいずれか一項に記載のパターン形成方法によりパターンを形成する
ことを特徴とするインクジェット印刷装置。 10. An inkjet printing device that forms a pattern based on image data of the pattern,
An inkjet printing apparatus, wherein a pattern is formed by the pattern forming method according to any one ofitems 1 to 9.
第1項から第9項までのいずれか一項に記載のパターン形成方法によりパターンを形成する
ことを特徴とするインクジェット印刷装置。 10. An inkjet printing device that forms a pattern based on image data of the pattern,
An inkjet printing apparatus, wherein a pattern is formed by the pattern forming method according to any one of
本発明の上記手段により、スジがなく、再現性が良好であるパターンを形成するパターン形成方法、及び当該パターンを形成するインクジェット印刷装置を提供することができる。
According to the above means of the present invention, it is possible to provide a pattern forming method for forming a pattern having no streaks and good reproducibility, and an inkjet printing apparatus for forming the pattern.
本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.
本発明者が検討を重ねたところ、複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出してパターンを形成するマルチパス方式において、液滴を着弾させるドットの位置を、
(I)画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する、
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する、
すなわち、ランダムマルチパス方式とすることにより、高解像度で高精細なパターンを印刷することができることがわかった。 As a result of repeated studies by the present inventors, an ink ejection device having a plurality of nozzle holes or a substrate as a print medium moves multiple times, and ink droplets are ejected from the nozzles of the ink ejection device to the substrate as the print medium. In the multi-pass method that forms a pattern by ejecting, the position of the dot where the droplet lands is
(I) Control so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity;
(II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device;
That is, it was found that a high-resolution and high-definition pattern can be printed by using the random multi-pass method.
(I)画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する、
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する、
すなわち、ランダムマルチパス方式とすることにより、高解像度で高精細なパターンを印刷することができることがわかった。 As a result of repeated studies by the present inventors, an ink ejection device having a plurality of nozzle holes or a substrate as a print medium moves multiple times, and ink droplets are ejected from the nozzles of the ink ejection device to the substrate as the print medium. In the multi-pass method that forms a pattern by ejecting, the position of the dot where the droplet lands is
(I) Control so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity;
(II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device;
That is, it was found that a high-resolution and high-definition pattern can be printed by using the random multi-pass method.
本発明に係るインクジェット印刷方式によるパターン形成方法について、従来のパターン形成方法と対比して説明する。
例えば、画像データを解像度600dpiのインクジェットヘッドを用いて、出力解像度が1200dpiとなるように、インクジェットヘッドをノズル列方向に移動して、複数回の移動(パス)で印刷する方法について説明する。 A pattern forming method by an inkjet printing method according to the present invention will be described in comparison with a conventional pattern forming method.
For example, a method of printing image data using an inkjet head with a resolution of 600 dpi in multiple passes by moving the inkjet head in the direction of the nozzle row so that the output resolution is 1200 dpi will be described.
例えば、画像データを解像度600dpiのインクジェットヘッドを用いて、出力解像度が1200dpiとなるように、インクジェットヘッドをノズル列方向に移動して、複数回の移動(パス)で印刷する方法について説明する。 A pattern forming method by an inkjet printing method according to the present invention will be described in comparison with a conventional pattern forming method.
For example, a method of printing image data using an inkjet head with a resolution of 600 dpi in multiple passes by moving the inkjet head in the direction of the nozzle row so that the output resolution is 1200 dpi will be described.
図1に示すインクジェット印刷方式は、ブロック方式といわれるもので、1回目の搬送方向のスキャンで、同一ノズルで印刷し、ヘッドを1200dpiの出力解像度の距離(21.2μm)だけノズル列方向に移動し2回目のスキャンで1200dpiの印刷が完了する。
この場合、図1のとおり、液滴の着弾は図示するように「1スキャン」及び「2スキャン」と連続で行われ、搬送方向にスジが発生しやすくなる。 The inkjet printing method shown in FIG. 1 is called a block method. In the first scan in the transport direction, printing is performed with the same nozzles, and the head is moved in the nozzle row direction by a distance (21.2 μm) corresponding to the output resolution of 1200 dpi. Then, 1200 dpi printing is completed by the second scan.
In this case, as shown in FIG. 1, the landing of droplets is continuously performed in "one scan" and "two scans" as shown, and streaks are likely to occur in the transport direction.
この場合、図1のとおり、液滴の着弾は図示するように「1スキャン」及び「2スキャン」と連続で行われ、搬送方向にスジが発生しやすくなる。 The inkjet printing method shown in FIG. 1 is called a block method. In the first scan in the transport direction, printing is performed with the same nozzles, and the head is moved in the nozzle row direction by a distance (21.2 μm) corresponding to the output resolution of 1200 dpi. Then, 1200 dpi printing is completed by the second scan.
In this case, as shown in FIG. 1, the landing of droplets is continuously performed in "one scan" and "two scans" as shown, and streaks are likely to occur in the transport direction.
図2に示すインクジェット印刷方式は、インターリーブ方式といわれるもので、1回目の搬送方向のスキャンで、同一ノズルにより1画素とばしで印刷し、2回目の搬送方向のスキャンで1回目のスキャンで印刷された部分の間の画素を印刷し、その後ヘッドを1200dpiの解像度の距離(21.2μm)だけノズル列方向に移動し、同様に3回目、4回目と印刷して出力解像度1200dpiの印刷が完了する。
この場合も図示するように着弾順が「1スキャン」~「4スキャン」のように周期的になり、スジが発生しやすくなる。 The ink-jet printing method shown in FIG. 2 is called an interleave method. In the first scan in the transport direction, one pixel is skipped by the same nozzle for printing, and in the second scan in the transport direction, printing is performed by the first scan. After that, the head is moved in the direction of the nozzle row by the distance (21.2 μm) of the resolution of 1200 dpi, and similarly the third and fourth times are printed, and the printing of the output resolution of 1200 dpi is completed. .
In this case as well, as shown in the figure, the order of impact is cyclical, such as "1st scan" to "4th scan", and streaks are likely to occur.
この場合も図示するように着弾順が「1スキャン」~「4スキャン」のように周期的になり、スジが発生しやすくなる。 The ink-jet printing method shown in FIG. 2 is called an interleave method. In the first scan in the transport direction, one pixel is skipped by the same nozzle for printing, and in the second scan in the transport direction, printing is performed by the first scan. After that, the head is moved in the direction of the nozzle row by the distance (21.2 μm) of the resolution of 1200 dpi, and similarly the third and fourth times are printed, and the printing of the output resolution of 1200 dpi is completed. .
In this case as well, as shown in the figure, the order of impact is cyclical, such as "1st scan" to "4th scan", and streaks are likely to occur.
図3に示すインクジェット印刷方式は、本発明に係るいわゆる「ランダム」な着弾である「ランダムマルチパス方式」である。着弾順がランダムになるように合計8回のパスで1200dpiの印刷を完了している。なお、パス回数は更に多くしてもよい。また、搬送方向を更に間引いてパス回数を増やしてもよい。
ランダムマルチパス方式を用いることにより、液滴の着弾がランダムに行われるため、スジが目立ちにくくなる。 The inkjet printing method shown in FIG. 3 is a “random multi-pass method” that is a so-called “random” landing according to the present invention. 1200 dpi printing is completed with a total of 8 passes so that the landing order is random. Note that the number of passes may be increased. Also, the number of passes may be increased by further thinning out the conveying direction.
By using the random multi-pass method, droplets are landed randomly, so streaks are less noticeable.
ランダムマルチパス方式を用いることにより、液滴の着弾がランダムに行われるため、スジが目立ちにくくなる。 The inkjet printing method shown in FIG. 3 is a “random multi-pass method” that is a so-called “random” landing according to the present invention. 1200 dpi printing is completed with a total of 8 passes so that the landing order is random. Note that the number of passes may be increased. Also, the number of passes may be increased by further thinning out the conveying direction.
By using the random multi-pass method, droplets are landed randomly, so streaks are less noticeable.
なお、本発明において、「ランダム」とは、後述する条件範囲内に制御することを前提としたパターンの形成方法において、ドットの相互の位置関係について、全体的な同一性又は周期性等の規則性が無い無作為性又は予測不可能性が認識される状態のことをいう。具体的には、例えば、図3に示されている状態のことをいう。
In the present invention, the term "random" refers to rules such as overall identity or periodicity for the mutual positional relationship of dots in a pattern formation method that is premised on controlling within the condition range described later. A state of perceived randomness or unpredictability. Specifically, it refers to the state shown in FIG. 3, for example.
以上の、対比例から推察されるように、インク液滴の着弾箇所及び順序をランダムにすることにより、印刷された画像における隣接する各画素又はドット間で周期性が無く全体的にスジやムラが発生しにくくなるものと考えられる。
As can be inferred from the above comparison, by randomizing the landing positions and order of the ink droplets, there is no periodicity between adjacent pixels or dots in the printed image, and overall streaks and unevenness are observed. is considered to be less likely to occur.
本発明者が更に検討を重ねたところ、当該ランダムマルチパス方式を用いることにより、パターン部におけるスジやムラを発生しにくくすることはできるが、パターン部と非パターン部との境界においては画像データどおりのパターンを再現するのが難しい、すなわち、例えば、画像データにおけるパターンの境界が直線であっても、実際には、パターンの境界において高精細な直線を形成するのが難しく、更に改良の余地があることがわかった。
As a result of further studies by the present inventors, it was found that by using the random multi-pass method, streaks and unevenness can be made less likely to occur in the pattern area. In other words, even if the pattern boundary in the image data is a straight line, it is actually difficult to form a highly precise straight line at the pattern boundary, and there is room for further improvement. It turns out that there is
これに対して、本発明者が検討を重ねたところ、主にパターン部については、上記のランダムマルチパス方式を用い、パターン部と非パターン部の境界付近については、ドットの相互の位置関係について、連続性又は周期性を有するよう制御することにより、パターンの再現性が向上することがわかった。
On the other hand, as a result of repeated studies by the inventors of the present invention, the above random multi-pass method is mainly used for the pattern portion, and the mutual positional relationship of dots is used for the vicinity of the boundary between the pattern portion and the non-pattern portion. It has been found that pattern reproducibility is improved by controlling to have continuity or periodicity.
本発明のパターン形成方法は、パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 A pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 A pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
また、パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。
この特徴は、下記実施形態に共通する又は対応する技術的特徴である。 Further, a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
This feature is a technical feature common to or corresponding to the following embodiments.
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。
この特徴は、下記実施形態に共通する又は対応する技術的特徴である。 Further, a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
This feature is a technical feature common to or corresponding to the following embodiments.
本発明の実施形態としては、パターンにおけるスジの発生を抑制する観点から、前記液滴を着弾させる前記ドットの位置を、前記境界部を除く前記パターン部においては、更に前記インク吐出装置の副走査方向においても連続性又は周期性を有さないように制御することが好ましい。
As an embodiment of the present invention, from the viewpoint of suppressing the occurrence of streaks in the pattern, the positions of the dots on which the liquid droplets are landed are further adjusted in the sub-scanning of the ink ejection device in the pattern portion excluding the boundary portion. It is preferable to control the directions so that they do not have continuity or periodicity.
良好なパターン再現性が得られる観点から、前記境界部における前記ドットの塗膜の形成を、前記境界部を除く前記パターン部における前記ドットの塗膜の形成よりも先に完了させることが好ましい。
From the viewpoint of obtaining good pattern reproducibility, it is preferable to complete the formation of the coating film of the dots in the boundary portion before the formation of the coating film of the dots in the pattern portion excluding the boundary portion.
パターンにおけるスジの発生を抑制する観点から、前記パターンの前記画像データを、重ねて印刷した場合に各画素が重ならないよう、かつ、前記液滴を着弾させる前記ドットの位置が、前記インク吐出装置の前記主走査方向において連続性又は周期性を有さないように、複数に分割し、前記分割した前記画像データを順次重ねて印刷することが好ましい。
From the viewpoint of suppressing the occurrence of streaks in the pattern, when the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the position of the dot on which the droplet is landed is determined by the ink ejection device. Preferably, the image data is divided into a plurality of pieces so as not to have continuity or periodicity in the main scanning direction, and the divided image data are sequentially overlapped and printed.
パターン形成の時間を短縮できる観点から、前記インク吐出装置が、相対的に前記主走査方向に往復移動し、往路及び復路どちらにおいてもインクの液滴を吐出することが好ましい。
From the viewpoint of shortening the pattern formation time, it is preferable that the ink ejection device relatively reciprocate in the main scanning direction and eject ink droplets in both the forward and backward passes.
パターン形成性が向上する観点から、前記インクとして、吐出時の温度における粘度η1と着弾時の温度における粘度η2との比率η2/η1が、100以上であるインクを用いることが好ましい。
From the viewpoint of improving the pattern formability, it is preferable to use an ink in which the ratio η2/η1 of the viscosity η1 at the ejection temperature and the viscosity η2 at the landing temperature is 100 or more.
パターン形成性が向上する観点から、前記インクとして、ホットメルトタイプ、ゲル化タイプ又はチキソトロピータイプのいずれかのタイプのインクを用いることが好ましい。
From the viewpoint of improving pattern formability, it is preferable to use any one of hot-melt type, gelling type, and thixotropic type ink as the ink.
発明の目的にあったアプリケーションの観点から、例えば、回路パターンを絶縁膜で保護する場合の問題点を解決できる観点から、前記インクとして、ソルダーレジストインクを用いることが好ましい。
From the point of view of the application that meets the object of the invention, for example, from the point of view of solving the problem of protecting the circuit pattern with an insulating film, it is preferable to use a solder resist ink as the ink.
本発明のインクジェット印刷装置は、本発明のパターン形成方法により、パターンを形成することができる。
The inkjet printing apparatus of the present invention can form a pattern by the pattern forming method of the present invention.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
The following is a detailed description of the present invention, its components, and the forms and modes for carrying out the present invention. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
≪本発明のパターン形成方法の概要≫
本発明のパターン形成方法は、パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出してパターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、
境界部を除くパターン部においては、
(I)前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 <<Outline of the pattern forming method of the present invention>>
A pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a printing medium is moved multiple times and droplets of ink are ejected from the nozzles of the ink ejection device onto the substrate as the printing medium to form a pattern,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The position of the dot on which the droplet lands,
In the pattern part excluding the boundary part,
(I) controlling so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity;
(II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device;
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
本発明のパターン形成方法は、パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出してパターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、
境界部を除くパターン部においては、
(I)前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 <<Outline of the pattern forming method of the present invention>>
A pattern forming method of the present invention is a pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a printing medium is moved multiple times and droplets of ink are ejected from the nozzles of the ink ejection device onto the substrate as the printing medium to form a pattern,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The position of the dot on which the droplet lands,
In the pattern part excluding the boundary part,
(I) controlling so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity;
(II) controlling so that there is no continuity or periodicity in the main scanning direction of the ink ejection device;
The boundary portion is controlled so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
すなわち、液滴を着弾させるドットの位置について、境界部を除くパターン部では、ランダム(全体的な同一性又は周期性等の規則性が無い無作為性又は予測不可能性が認識される状態)とし、境界部では、連続性又は周期性を有するように制御することにより、高精細でスジやまだらムラがなく、再現性が良好なパターンを形成することができる。そして、絶縁体や導電体といった機能性材料を含むインクを用いた場合には、絶縁特性や導電特性が均一であり、かつ、塗膜の密着が良好であるパターンを形成することができる。
That is, the positions of the dots on which the droplets are landed are random in the pattern portion excluding the boundary portion (a state in which randomness or unpredictability without regularity such as overall identity or periodicity is recognized) By controlling the boundaries so as to have continuity or periodicity, it is possible to form a high-definition pattern with no streaks or spots and good reproducibility. When ink containing functional materials such as insulators and conductors is used, it is possible to form a pattern with uniform insulating properties and conductive properties and good adhesion of the coating film.
なお、本発明において、「連続性又は周期性を有する」とは、液滴を着弾させてドットの塗膜を形成させた際に目視できる程度に連続性を有することをいう。ドットの位置が間隔を空けずに広範囲にわたって連続している場合には、その位置に液滴を着弾させて形成されるドットの塗膜は、その連続性を目視できる。また、間隔を空けていても、その間隔が極めて狭く(例えば1~2ドット)、広範囲にわたって周期的であれば、その位置に液滴を着弾させて形成されるドットの塗膜は、目視できる程度に連続性が発現する。逆に、その間隔が広い場合には、周期的であっても、目視できる程度に連続性が発現しない。
In addition, in the present invention, "having continuity or periodicity" means having continuity to the extent that it can be visually observed when droplets are landed to form a coating film of dots. When the dot positions are continuous over a wide range without leaving an interval, the continuity of the dot coating film formed by landing the liquid droplets on the positions can be visually observed. Further, even if there is an interval, if the interval is extremely narrow (for example, 1 to 2 dots) and is periodic over a wide range, the dot coating film formed by landing the droplets at that position can be visually observed. Continuity appears to some extent. Conversely, when the interval is wide, even if it is periodic, the continuity is not visible to the naked eye.
したがって、境界部を除くパターン部においては、液滴を着弾させるドットの位置が、例えば2~5ドット程度の範囲内で間隔を空けずに連続していても、その位置に液滴を着弾させて形成されるドットの塗膜は、その連続性を目視することは難しい。そのため、目視できない程度に狭い範囲であれば、液滴を着弾させるドットの位置が、部分的に連続性有していても、十分なランダム性が得られる。
ただし、ここでのドット数は例であり、必ずしもこの限りではない。 Therefore, in the pattern portion excluding the boundary portion, even if the positions of the dots on which the droplets are to land are continuous without an interval within a range of, for example, 2 to 5 dots, the droplets are not caused to land on the positions. It is difficult to visually observe the continuity of the dot coating film formed by this method. Therefore, if the range is too narrow to be visually observed, sufficient randomness can be obtained even if the positions of the dots on which the droplets are landed are partially continuous.
However, the number of dots here is an example and is not necessarily limited to this.
ただし、ここでのドット数は例であり、必ずしもこの限りではない。 Therefore, in the pattern portion excluding the boundary portion, even if the positions of the dots on which the droplets are to land are continuous without an interval within a range of, for example, 2 to 5 dots, the droplets are not caused to land on the positions. It is difficult to visually observe the continuity of the dot coating film formed by this method. Therefore, if the range is too narrow to be visually observed, sufficient randomness can be obtained even if the positions of the dots on which the droplets are landed are partially continuous.
However, the number of dots here is an example and is not necessarily limited to this.
本発明において、「パターン部」とは、パターン(下記で示す狭義の意)が形成されている箇所のことをいい、「非パターン部」とは、パターンが形成されていない箇所のことをいう。
なお、本発明において、「パターン」とは、狭義には、インクを用いて基板上に形成される塗膜のことをいい、広義には、基板上に形成される複数の塗膜全体のことをいう。 In the present invention, the “pattern portion” refers to a portion where a pattern (in the narrow sense shown below) is formed, and the “non-pattern portion” refers to a portion where no pattern is formed. .
In the present invention, the term “pattern” narrowly refers to a coating film formed on a substrate using ink, and broadly refers to the entirety of multiple coatings formed on a substrate. Say.
なお、本発明において、「パターン」とは、狭義には、インクを用いて基板上に形成される塗膜のことをいい、広義には、基板上に形成される複数の塗膜全体のことをいう。 In the present invention, the “pattern portion” refers to a portion where a pattern (in the narrow sense shown below) is formed, and the “non-pattern portion” refers to a portion where no pattern is formed. .
In the present invention, the term “pattern” narrowly refers to a coating film formed on a substrate using ink, and broadly refers to the entirety of multiple coatings formed on a substrate. Say.
また、「境界部」とは、パターン部を構成するドットの塗膜のうち、パターン部と非パターン部の境界付近に位置するドットの塗膜の集合体のことをいい、少なくとも、パターン部と非パターン部の境界の形成に寄与するドットの塗膜(以下、「境界形成部」ともいう。)を含む。
In addition, the “boundary portion” refers to an aggregate of the dot coating film located near the boundary between the pattern portion and the non-pattern portion among the dot coating films constituting the pattern portion. It includes a dot coating that contributes to the formation of the boundary of the non-patterned area (hereinafter also referred to as "boundary formation area").
図を用いて詳しく説明する。
図5は、四角の中に抜き四角を配置した本発明に係るパターンの一例を示す図であり、マス一つ分がドットの塗膜一つ分に対応する。 A detailed description will be given with reference to the drawings.
FIG. 5 is a diagram showing an example of a pattern according to the present invention in which open squares are arranged within squares, and one square corresponds to one dot coating film.
図5は、四角の中に抜き四角を配置した本発明に係るパターンの一例を示す図であり、マス一つ分がドットの塗膜一つ分に対応する。 A detailed description will be given with reference to the drawings.
FIG. 5 is a diagram showing an example of a pattern according to the present invention in which open squares are arranged within squares, and one square corresponds to one dot coating film.
11で示される領域は、パターンが形成されていない「非パターン部」を、12、13及び14で示される領域は、パターンが形成されている「パターン部」を、15で示される線は、「パターン部と非パターン部の境界」を表す。ただし、実際には、パターン部と非パターン部の境界15は領域を有さない。
The area indicated by 11 is a "non-patterned area" where no pattern is formed, the areas indicated by 12, 13 and 14 are "patterned areas" where a pattern is formed, and the line indicated by 15 is It represents "the boundary between the pattern area and the non-pattern area". However, actually, the boundary 15 between the patterned portion and the non-patterned portion does not have an area.
パターン部と非パターン部の境界15付近に位置する12及び13で示される領域(16で示される領域)は、上記で定義する「境界部」を表し、14で示される領域は、「境界部を除くパターン部」を表す。
The regions indicated by 12 and 13 (region indicated by 16) located near the boundary 15 between the patterned portion and the non-patterned portion represent the "boundary portion" defined above, and the region indicated by 14 is the "boundary portion "pattern part excluding".
12で示される領域は、パターン部と非パターン部の境界の形成に寄与するドットの塗膜の集合体である「境界形成部」を表し、境界部16に必須で含まれる。一方、13で示される領域は、「境界形成部を除く境界部」を表すが、境界部16に必須で含まれる必要はなく、あってもなくてもよい。境界形成部を除く境界部13は、境界形成部12に隣接して位置する。
The area indicated by 12 represents a "boundary forming part", which is a group of dot coating films that contribute to the formation of the boundary between the patterned part and the non-patterned part, and is included in the boundary part 16 indispensably. On the other hand, the area indicated by 13 represents "the boundary portion excluding the boundary forming portion", but it is not necessarily included in the boundary portion 16, and may or may not be included. The border 13 excluding the border forming part is located adjacent to the border forming part 12 .
また、本発明において、「ドット」とは、インクジェット印刷法によって印刷媒体に形成されるインク画像を構成する最小単位の画素のことをいい、インク液の1液滴で形成される塗膜部分のことをいう。したがって、印刷対象の画像データにおける1画素に対応するインク画像における画素は、複数のドット(液滴)で形成される場合もあり得る。
In the present invention, the term "dot" refers to the smallest unit of pixel that constitutes an ink image formed on a printing medium by an inkjet printing method, and is the portion of a coating film that is formed by a single ink droplet. Say things. Therefore, a pixel in the ink image corresponding to one pixel in the image data to be printed may be formed by a plurality of dots (droplets).
[1 境界部を除くパターン部におけるパターン形成方法]
本発明のパターン形成方法は、前記液滴を着弾させる前記ドットの位置を、本発明に係る境界部を除くパターン部においては、
(I)前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する
ことを特徴とする。 [1 Pattern Forming Method in Pattern Portion Excluding Boundary Portion]
In the pattern forming method of the present invention, the positions of the dots on which the liquid droplets are to land are set to:
(I) Control is performed so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity. (II) In the main scanning direction of the ink ejection device It is characterized by being controlled so as not to have continuity or periodicity.
本発明のパターン形成方法は、前記液滴を着弾させる前記ドットの位置を、本発明に係る境界部を除くパターン部においては、
(I)前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する
(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する
ことを特徴とする。 [1 Pattern Forming Method in Pattern Portion Excluding Boundary Portion]
In the pattern forming method of the present invention, the positions of the dots on which the liquid droplets are to land are set to:
(I) Control is performed so that the pixels constituting the image data are not in the order of the rows and columns in which they are arranged and do not have a certain periodicity. (II) In the main scanning direction of the ink ejection device It is characterized by being controlled so as not to have continuity or periodicity.
前述のとおり、境界部を除くパターン部では、液滴を着弾させるドットの位置を、ランダム(全体的な同一性又は周期性等の規則性が無い無作為性又は予測不可能性が認識される状態)とすることにより、すなわち、ランダムマルチパス方式を用いることにより、高精細でスジやまだらムラがないパターンを形成することができる。
As described above, in the pattern portion excluding the boundary portion, the positions of the dots on which the droplets are landed are random (randomness or unpredictability without regularity such as overall identity or periodicity) state), that is, by using the random multipass method, it is possible to form a high-definition pattern free of streaks and spots.
本発明では、上記制御条件(I)を満たす方式を、「ランダムマルチパス方式(A)」、上記制御条件(II)を満たす方式を「ランダムマルチパス方式(B)」と称することにする。
In the present invention, the method that satisfies the above control condition (I) is called "random multipath method (A)", and the method that satisfies the above control condition (II) is called "random multipath method (B)".
上記制御条件(I)は、画像データを構成する各画素の配列の観点から、液滴を着弾させるドットの位置をランダムとする条件を規定している。また、上記制御条件(II)は、インク吐出装置の走査方向の観点から、液滴を着弾させるドットの位置をランダムとする条件を規定している。
すなわち、上記制御条件(I)及び(II)は、液滴を着弾させるドットの位置をランダムとする条件について、異なる観点から規定したものである。
以下、ランダムマルチパス方式(A)及び(B)について詳しく説明する。 The above control condition (I) defines a condition for randomizing the positions of the dots on which the liquid droplets are to land, from the viewpoint of the arrangement of the pixels forming the image data. Further, the control condition (II) defines a condition for randomizing the positions of the dots onto which the liquid droplets are to land, from the viewpoint of the scanning direction of the ink ejection device.
In other words, the above control conditions (I) and (II) are defined from different viewpoints with respect to conditions for randomizing the positions of dots on which droplets are to land.
The random multipath methods (A) and (B) will be described in detail below.
すなわち、上記制御条件(I)及び(II)は、液滴を着弾させるドットの位置をランダムとする条件について、異なる観点から規定したものである。
以下、ランダムマルチパス方式(A)及び(B)について詳しく説明する。 The above control condition (I) defines a condition for randomizing the positions of the dots on which the liquid droplets are to land, from the viewpoint of the arrangement of the pixels forming the image data. Further, the control condition (II) defines a condition for randomizing the positions of the dots onto which the liquid droplets are to land, from the viewpoint of the scanning direction of the ink ejection device.
In other words, the above control conditions (I) and (II) are defined from different viewpoints with respect to conditions for randomizing the positions of dots on which droplets are to land.
The random multipath methods (A) and (B) will be described in detail below.
[1.1 ランダムマルチパス方式(A)]
ランダムマルチパス方式(A)では、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する。 [1.1 Random multipath method (A)]
In the random multi-pass method (A), the positions of the dots on which the liquid droplets are landed are not in accordance with the order of the rows and columns in which the pixels constituting the image data are arranged, and are not periodic. to control.
ランダムマルチパス方式(A)では、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する。 [1.1 Random multipath method (A)]
In the random multi-pass method (A), the positions of the dots on which the liquid droplets are landed are not in accordance with the order of the rows and columns in which the pixels constituting the image data are arranged, and are not periodic. to control.
以下、本発明に係るランダムマルチパス方式(A)によるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件(I)を満たしていれば、本発明の技術的範囲に含まれる。
An example of an embodiment of the pattern forming method by the random multipass method (A) according to the present invention will be described below. It is included in the technical scope of the present invention.
図4は、ランダムマルチパス方式(A)に用いられる画像データを示す図であり、各ドットが均一な液量で形成される。また、図6のような多階調のランダムな画像データを用いて、異なる液量で各ドットを形成してもよい。この場合、各画素の階調又は濃度に対応させてドットの液量を変化させる。
なお、後述のランダムマルチパス(B)においても、同様の画像データを用いることができる。 FIG. 4 is a diagram showing image data used in the random multipass method (A), in which each dot is formed with a uniform amount of liquid. Alternatively, each dot may be formed with a different amount of liquid using multi-gradation random image data as shown in FIG. In this case, the liquid volume of the dots is changed in accordance with the gradation or density of each pixel.
Similar image data can also be used in random multipath (B), which will be described later.
なお、後述のランダムマルチパス(B)においても、同様の画像データを用いることができる。 FIG. 4 is a diagram showing image data used in the random multipass method (A), in which each dot is formed with a uniform amount of liquid. Alternatively, each dot may be formed with a different amount of liquid using multi-gradation random image data as shown in FIG. In this case, the liquid volume of the dots is changed in accordance with the gradation or density of each pixel.
Similar image data can also be used in random multipath (B), which will be described later.
本実施形態におけるインクの着弾について、ランダムマルチパス方式(A)の観点から説明する。
1回のスキャンにおいて、画像データを構成する各画素が配列された行及び列の方向に連続せず、間隔をあけて着弾し、その間隔が一定でないようにドットを形成する。2回目以降のスキャンについては、ドットが形成されていない位置に、同様にしてドットを形成し、ドットが重複しないようにする。各回のスキャンにおいて、形成するドットの数は一定でなくてもよい。なお、スキャンの回数は更に増やしてもよい。 The landing of ink in this embodiment will be described from the viewpoint of the random multi-pass method (A).
In one scan, the dots are formed in such a manner that the pixels forming the image data are not continuous in the row and column directions, but are landed at intervals, and the intervals are not constant. For the second and subsequent scans, dots are formed in positions where dots are not formed in the same way so that dots do not overlap. The number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
1回のスキャンにおいて、画像データを構成する各画素が配列された行及び列の方向に連続せず、間隔をあけて着弾し、その間隔が一定でないようにドットを形成する。2回目以降のスキャンについては、ドットが形成されていない位置に、同様にしてドットを形成し、ドットが重複しないようにする。各回のスキャンにおいて、形成するドットの数は一定でなくてもよい。なお、スキャンの回数は更に増やしてもよい。 The landing of ink in this embodiment will be described from the viewpoint of the random multi-pass method (A).
In one scan, the dots are formed in such a manner that the pixels forming the image data are not continuous in the row and column directions, but are landed at intervals, and the intervals are not constant. For the second and subsequent scans, dots are formed in positions where dots are not formed in the same way so that dots do not overlap. The number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
以下、本実施形態における印刷方法について、ランダムマルチパス方式(A)の観点から説明する。
The printing method in this embodiment will be described below from the viewpoint of the random multipass method (A).
図11は、解像度600dpiのインクジェットヘッドを1個用いて1200dpiの印刷をランダムな着弾で行う方法を示す。
図3に示す本実施形態におけるランダムマルチパス方式(A)によるパターン形成は、図11に示すように、インクジェットヘッドがY方向(搬送方向)に4回のスキャンによる印刷をした後、X方向に21.2μm(1200dpiの1画素相当)移動し、再度Y方向に4回のスキャンによる印刷をすることにより、合計8回の移動(パス)で印刷が完了する(装置については、図8A及び図8B参照。)。 FIG. 11 shows a method of printing at 1200 dpi by random landing using one inkjet head with a resolution of 600 dpi.
Pattern formation by the random multi-pass method (A) in the present embodiment shown in FIG. 3 is, as shown in FIG. By moving 21.2 μm (equivalent to one pixel of 1200 dpi) and printing again by scanning four times in the Y direction, printing is completed with a total of eight movements (passes) (see FIGS. 8A and 8A for the apparatus). 8B).
図3に示す本実施形態におけるランダムマルチパス方式(A)によるパターン形成は、図11に示すように、インクジェットヘッドがY方向(搬送方向)に4回のスキャンによる印刷をした後、X方向に21.2μm(1200dpiの1画素相当)移動し、再度Y方向に4回のスキャンによる印刷をすることにより、合計8回の移動(パス)で印刷が完了する(装置については、図8A及び図8B参照。)。 FIG. 11 shows a method of printing at 1200 dpi by random landing using one inkjet head with a resolution of 600 dpi.
Pattern formation by the random multi-pass method (A) in the present embodiment shown in FIG. 3 is, as shown in FIG. By moving 21.2 μm (equivalent to one pixel of 1200 dpi) and printing again by scanning four times in the Y direction, printing is completed with a total of eight movements (passes) (see FIGS. 8A and 8A for the apparatus). 8B).
[1.2 ランダムマルチパス方式(B)]
ランダムマルチパス方式(B)では、液滴を着弾させるドットの位置を、インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する。 [1.2 Random multipath method (B)]
In the random multi-pass method (B), the positions of dots on which droplets are landed are controlled so as not to have continuity or periodicity in the main scanning direction of the ink ejection device.
ランダムマルチパス方式(B)では、液滴を着弾させるドットの位置を、インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する。 [1.2 Random multipath method (B)]
In the random multi-pass method (B), the positions of dots on which droplets are landed are controlled so as not to have continuity or periodicity in the main scanning direction of the ink ejection device.
以下、本発明に係るランダムマルチパス方式(B)によるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件(II)を満たしていれば、本発明の技術的範囲に含まれる。
An example of an embodiment of the pattern forming method by the random multipass method (B) according to the present invention will be described below. It is included in the technical scope of the present invention.
画像データについては、前述のとおり、ランダムマルチパス方式(A)に用いられる画像データを用いることができる。
As for the image data, as described above, the image data used in the random multipath method (A) can be used.
本実施形態におけるインクの着弾について、ランダムマルチパス方式(B)の観点から説明する。
1回のスキャンにおいて、主走査方向に連続性又は周期性を有さないように、間隔をあけて着弾し、その間隔が一定でないようにドットを形成する。2回目以降のスキャンについては、ドットが形成されていない位置に、同様にしてドットを形成し、ドットが重複しないようにする。各回のスキャンにおいて、形成するドットの数は一定でなくてもよい。なお、スキャンの回数は更に増やしてもよい。 Ink landing in this embodiment will be described from the viewpoint of the random multi-pass method (B).
In one scan, the dots are landed at intervals so as not to have continuity or periodicity in the main scanning direction, and the dots are formed at irregular intervals. For the second and subsequent scans, dots are formed in positions where dots are not formed in the same way so that dots do not overlap. The number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
1回のスキャンにおいて、主走査方向に連続性又は周期性を有さないように、間隔をあけて着弾し、その間隔が一定でないようにドットを形成する。2回目以降のスキャンについては、ドットが形成されていない位置に、同様にしてドットを形成し、ドットが重複しないようにする。各回のスキャンにおいて、形成するドットの数は一定でなくてもよい。なお、スキャンの回数は更に増やしてもよい。 Ink landing in this embodiment will be described from the viewpoint of the random multi-pass method (B).
In one scan, the dots are landed at intervals so as not to have continuity or periodicity in the main scanning direction, and the dots are formed at irregular intervals. For the second and subsequent scans, dots are formed in positions where dots are not formed in the same way so that dots do not overlap. The number of dots formed in each scan does not have to be constant. Note that the number of scans may be further increased.
以下、本実施形態における印刷方法について、ランダムマルチパス方式(B)の観点から説明する。
The printing method in this embodiment will be described below from the viewpoint of the random multipass method (B).
図11は、解像度600dpiのインクジェットヘッドを1個用いて1200dpiの印刷をランダムな着弾で行う方法を示す。ここでは、Y方向を主走査方向、X方向を副走査方向とする。
FIG. 11 shows a method of printing 1200 dpi with random landing using one inkjet head with a resolution of 600 dpi. Here, the Y direction is the main scanning direction, and the X direction is the sub scanning direction.
図3に示す本実施形態におけるランダムマルチパス方式(B)によるパターン形成は、図11に示すように、インクジェットヘッドがY方向に4回のスキャンによる印刷をした後、X方向に21.2μm(1200dpiの1画素相当)移動し、再度Y方向に4回のスキャンによる印刷をすることにより、合計8回の移動(パス)で印刷が完了する(装置については、図8A及び図8B参照。)。
Pattern formation by the random multi-pass method (B) in this embodiment shown in FIG. 3 is, as shown in FIG. (equivalent to one pixel of 1200 dpi), and printing is performed again by scanning four times in the Y direction, thereby completing printing with a total of eight movements (passes) (see FIGS. 8A and 8B for the apparatus). .
上記方法では、画像データにおける画素の列及び行の方向と、インク吐出装置における主走査方向及び副走査方向が、平行であるが、必ずしも、平行である必要はなく、非平行である場合も考えられる。
In the above method, the pixel column and row directions in the image data are parallel to the main scanning direction and sub-scanning direction in the ink ejection device, but they do not necessarily have to be parallel, and non-parallel directions are also possible. be done.
図7に、画像データにおける画素の列及び行の方向と、インク吐出装置における主走査方向及び副走査方向が、非平行である場合の一例を示す。
例えば、図7の楕円で示す部分は、画像データにおける画素の列及び行の方向においては連続性を有していないが、インク吐出装置における主走査方向においては連続性を有しているといえるため、図7の楕円で示す部分の印刷方法は、ランダムマルチパス方式(A)に該当し、ランダムマルチパス方式(B)には該当しない。 FIG. 7 shows an example in which the directions of columns and rows of pixels in image data are not parallel to the main scanning direction and sub-scanning direction in the ink ejection device.
For example, the portion indicated by the ellipse in FIG. 7 does not have continuity in the row and column directions of pixels in the image data, but it can be said that it has continuity in the main scanning direction of the ink ejection device. Therefore, the printing method indicated by the ellipse in FIG. 7 corresponds to the random multi-pass method (A) and does not correspond to the random multi-pass method (B).
例えば、図7の楕円で示す部分は、画像データにおける画素の列及び行の方向においては連続性を有していないが、インク吐出装置における主走査方向においては連続性を有しているといえるため、図7の楕円で示す部分の印刷方法は、ランダムマルチパス方式(A)に該当し、ランダムマルチパス方式(B)には該当しない。 FIG. 7 shows an example in which the directions of columns and rows of pixels in image data are not parallel to the main scanning direction and sub-scanning direction in the ink ejection device.
For example, the portion indicated by the ellipse in FIG. 7 does not have continuity in the row and column directions of pixels in the image data, but it can be said that it has continuity in the main scanning direction of the ink ejection device. Therefore, the printing method indicated by the ellipse in FIG. 7 corresponds to the random multi-pass method (A) and does not correspond to the random multi-pass method (B).
なお、高精細でスジやまだらムラがないパターンを形成する観点から、ランダムマルチパス方式(A)及び(B)どちらにも該当する印刷方法であることが好ましい。
From the viewpoint of forming a high-definition pattern with no streaks or spots, it is preferable that the printing method is applicable to both the random multi-pass method (A) and (B).
また、ランダムマルチパス方式(B)では、副走査方向においても連続性又は周期性を有さないように制御することが好ましい。
In addition, in the random multi-pass method (B), it is preferable to control so that there is no continuity or periodicity in the sub-scanning direction as well.
上記印刷方法において述べたように、マルチパス方式では、インク吐出装置が主走査方向に移動して複数回にわたって主走査方向に液滴を着弾させた後、副走査方向に移動し、次いで、主走査方向に移動して複数回にわたって液滴を着弾させる。そのため、主走査方向に隣接する二つのドットの位置に連続的に液滴を着弾させると、当該二つのドットの塗膜が形成される時間差は極めて短くなる。
As described in the above printing method, in the multi-pass method, the ink ejection device moves in the main scanning direction, deposits droplets in the main scanning direction a plurality of times, then moves in the sub-scanning direction, and then moves in the main scanning direction. It moves in the scanning direction and lands droplets a plurality of times. Therefore, when droplets are continuously landed on the positions of two dots adjacent to each other in the main scanning direction, the time difference between the formation of the coating films of the two dots becomes extremely short.
一方、副走査方向に隣接する二つのドットの位置に連続的に液滴を着弾させるとすると、インク吐出装置は、一つ目のドットの位置に液滴を着弾させた後、主走査方向に移動して主走査方向における液滴の着弾を完了させた後、副走査方向に移動し、次いで、主走査方向に移動して二つ目のドットの位置に液滴を着弾させることになるため、当該二つのドットの塗膜が形成される時間差は主走査方向と比較して長くなる。そのため、液滴を着弾させるドットの位置が主走査方向に連続性を有する場合は、副走査方向に連続性を有する場合と比較して、スジやまだらムラが発生しやすい。
On the other hand, if droplets are to land continuously on two dot positions adjacent to each other in the sub-scanning direction, the ink ejecting device lands droplets on the position of the first dot, and then moves in the main scanning direction. After moving to complete the landing of droplets in the main scanning direction, it moves in the sub-scanning direction, and then moves in the main scanning direction to cause the droplets to land on the position of the second dot. , the time difference between the formation of the coating films of the two dots is longer than that in the main scanning direction. Therefore, when the positions of the dots on which the droplets are landed have continuity in the main scanning direction, streaks and spots are more likely to occur than when they have continuity in the sub-scanning direction.
したがって、ランダムマルチパス方式(B)においては、液滴を着弾させるドットの位置を、インク吐出装置の主走査方向において連続性又は周期性を有さないように制御することにより、高精細でスジやまだらムラがないパターンを形成することができるが、さらに、副走査方向においても連続性又は周期性を有さないように制御することにより、その効果を高めることができる。
Therefore, in the random multi-pass method (B), by controlling the positions of the dots on which the droplets land so that they do not have continuity or periodicity in the main scanning direction of the ink ejection device, high-definition streaks can be obtained. It is possible to form a pattern with no mottled unevenness, and the effect can be enhanced by controlling the pattern so that it does not have continuity or periodicity even in the sub-scanning direction.
[1.3 分割印刷]
本発明の実施形態としては、前記パターンの前記画像データを、重ねて印刷した場合に各画素が重ならないよう、かつ、前記液滴を着弾させる前記ドットの位置が、前記インク吐出装置の前記主走査方向において連続性又は周期性を有さないように、複数に分割し、前記分割した前記画像データを順次重ねて印刷することも好ましい。 [1.3 Split printing]
As an embodiment of the present invention, when the image data of the pattern are printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the liquid droplets are to land are adjusted to the main dot positions of the ink ejection device. It is also preferable to divide the image data into a plurality of pieces so as not to have continuity or periodicity in the scanning direction, and to print the divided image data sequentially overlapping each other.
本発明の実施形態としては、前記パターンの前記画像データを、重ねて印刷した場合に各画素が重ならないよう、かつ、前記液滴を着弾させる前記ドットの位置が、前記インク吐出装置の前記主走査方向において連続性又は周期性を有さないように、複数に分割し、前記分割した前記画像データを順次重ねて印刷することも好ましい。 [1.3 Split printing]
As an embodiment of the present invention, when the image data of the pattern are printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the liquid droplets are to land are adjusted to the main dot positions of the ink ejection device. It is also preferable to divide the image data into a plurality of pieces so as not to have continuity or periodicity in the scanning direction, and to print the divided image data sequentially overlapping each other.
本発明では、上記制御条件を満たす印刷方法を「分割印刷」と称することにする。
In the present invention, a printing method that satisfies the above control conditions will be referred to as "divided printing".
以下、本発明に係る分割印刷によるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件を満たしていれば、本発明の技術的範囲に含まれる。なお、以下の図示による説明では、本発明に係る境界部を除くパターン部において分割印刷を適用する例を示しているが、境界部における上記制御条件を満たしていれば、本発明に係る境界部においても適用することができる。
An example of an embodiment of a pattern forming method by divisional printing according to the present invention will be described below, but the present invention is not limited to the embodiments and aspects of the following example, and any pattern forming method that satisfies the above control conditions is included in the technical scope of the present invention. be Note that the following description using illustrations shows an example in which the divisional printing is applied to the pattern portion excluding the boundary portion according to the present invention. It can also be applied in
図29は、ノズル解像度600dpiのインクジェットヘッドを1個用いて解像度2400dpiの印刷をランダムな着弾かつ分割印刷で行う方法を示す。図29では、各ドットが均一な液量で形成されている元画像データを用いるが、図6のような多階調のランダムな元画像データを用いて、異なる液量で各ドットを形成してもよい。
FIG. 29 shows a method of performing printing with a resolution of 2400 dpi using one inkjet head with a nozzle resolution of 600 dpi and performing random landing and divided printing. In FIG. 29, the original image data in which each dot is formed with a uniform amount of liquid is used. However, using the random original image data with multiple tones as shown in FIG. 6, each dot is formed with a different amount of liquid. may
分割印刷では、この元画像データを二つに分割し、分割画像データを作製したのち、分割画像データごとに順次重ねて印刷する。そのため、重ねて印刷した場合に各画素が重ならないように分割画像データを作製する。また、液滴を着弾させるドットの位置が、インク吐出装置の主走査方向において連続性及び周期性を有さないように分割画像データを作製する。
In split printing, this original image data is split into two, split image data is created, and then each split image data is sequentially overlaid and printed. Therefore, divided image data is created so that each pixel does not overlap when printed in an overlapping manner. In addition, divided image data is created so that the positions of dots on which droplets are to land do not have continuity or periodicity in the main scanning direction of the ink ejection device.
分割画像データは、アドビ社の画像処理ソフトPhotoshop 2020などの画像処理ソフトで作製することができる。例えば、グレー画像を、Photoshopを用いて誤差拡散法などでモノクロ2階調化し、白と黒のランダムな画像を作製する。次にその画像を色調反転させて白と黒の反転した画像を作製する。得られた2枚の画像は着弾がランダムで重なり合わない黒ベタデータの分割画像となる。
Divided image data can be created with image processing software such as Adobe's image processing software Photoshop 2020. For example, a gray image is converted to monochrome two-tone by an error diffusion method or the like using Photoshop to create a random black and white image. The image is then color-inverted to produce an image in which black and white are reversed. The obtained two images are divided images of black solid data in which impacts are random and do not overlap.
以下、分割印刷について、図29、30A、30B及び31を比較して説明する。
図31は、ノズル解像度600dpiのインクジェットヘッドを1個用いて解像度2400dpiの印刷をランダムな着弾で行う方法を示す。この方法では、主走査方向ごとに印刷を完了させる。 Divided printing will be described below by comparing FIGS.
FIG. 31 shows a method of printing with a resolution of 2400 dpi using one ink jet head with a nozzle resolution of 600 dpi and random landing. In this method, printing is completed for each main scanning direction.
図31は、ノズル解像度600dpiのインクジェットヘッドを1個用いて解像度2400dpiの印刷をランダムな着弾で行う方法を示す。この方法では、主走査方向ごとに印刷を完了させる。 Divided printing will be described below by comparing FIGS.
FIG. 31 shows a method of printing with a resolution of 2400 dpi using one ink jet head with a nozzle resolution of 600 dpi and random landing. In this method, printing is completed for each main scanning direction.
図31では、主走査方向の印刷を、例えば1スキャン及び2スキャンの連続する2回のスキャンで完了している。一方、分割印刷では、図29で示す通り、1スキャン及び5スキャンの連続しない2回のスキャンで完了している。
In FIG. 31, printing in the main scanning direction is completed by two consecutive scans, for example, 1 scan and 2 scans. On the other hand, as shown in FIG. 29, division printing is completed by two discontinuous scans of 1 scan and 5 scans.
このように、分割印刷では、主走査方向の印刷を完了するまでの時間が比較的長くなるため、インクが固定しやすく、インクの流動を抑制でき、スジやムラが発生しにくくなる。
In this way, in divided printing, it takes a relatively long time to complete printing in the main scanning direction, so the ink can be easily fixed, the flow of ink can be suppressed, and streaks and unevenness are less likely to occur.
図30A及びBは、元画像データを四つに分割し、図29と同様の分割印刷を行う方法を示す。この場合、主走査方向の印刷を1スキャン、5スキャン、9スキャン及び13スキャンの連続しない4回のスキャンで完了している。
FIGS. 30A and 30B show a method of dividing the original image data into four and performing divided printing similar to that of FIG. In this case, printing in the main scanning direction is completed by 4 discontinuous scans of 1 scan, 5 scans, 9 scans and 13 scans.
このように、元画像データの分割数を増やすことにより、主走査方向の印刷を完了するまでのスキャン数が増えるため、印刷を完了するまでの時間が更に長くなり、よりスジやムラが発生しにくくなり、表面粗さを低減できる。
By increasing the number of divisions of the original image data in this way, the number of scans required to complete printing in the main scanning direction increases, so the time required to complete printing becomes even longer, and streaks and unevenness are more likely to occur. It becomes difficult to use, and the surface roughness can be reduced.
また、主走査方向の印刷が完了するまでに、副走査方向にも印刷が行われるため、着弾時の粘度が比較的高いインクや相転移時間の比較的早いインクを用いる場合であっても、主走査方向の線状にインクが固定化されにくく、スジやムラが発生しにくい。さらに、スキャン数が増えることで、隣接する着弾で、先に着弾したインク液滴(ドット)との相互作用で着弾ずれが起きることを低減でき、パターン形成性が向上する。
In addition, since printing is also performed in the sub-scanning direction by the time printing in the main scanning direction is completed, even when using ink with relatively high viscosity at the time of landing or ink with a relatively fast phase transition time, Ink is less likely to be fixed linearly in the main scanning direction, and streaks and unevenness are less likely to occur. Furthermore, by increasing the number of scans, it is possible to reduce the occurrence of deviation in landing due to interaction with ink droplets (dots) that have previously landed in adjacent landings, thereby improving pattern formability.
本実施形態において、「ランダムな着弾」とは、液滴を着弾させるドットの位置が、インク吐出装置の主走査方向において連続性及び周期性を有さないように制御することをいう。
In the present embodiment, "random landing" refers to controlling the positions of dots on which droplets land so as not to have continuity and periodicity in the main scanning direction of the ink ejection device.
図32は、図29と同様の分割印刷を行う方法を示しているが、1スキャン及び5スキャンにおいて、左端のノズルと真ん中のノズルからそれぞれ吐出された、液滴を着弾させるドットの位置が同一である。
FIG. 32 shows a method of performing divided printing similar to that of FIG. 29, but in 1 scan and 5 scans, the positions of the dots on which droplets are ejected from the leftmost nozzle and the middle nozzle are the same. is.
本発明の解決課題であるスジやムラは、液滴を着弾させるドットの位置が、主走査方向において連続的又は周期的であると発生しやすいが、副走査方向において連続的又は周期的であっても発生しづらい。そのため、図32に示すように、一部のスキャンにおいて、異なるノズルからそれぞれ吐出された液滴を着弾させるドットの位置を同一としても、スジやムラの発生を十分に抑制できる。
The streaks and unevenness, which are the problems to be solved by the present invention, tend to occur when the positions of the dots onto which the droplets land are continuous or periodic in the main scanning direction, but are not continuous or periodic in the sub-scanning direction. is difficult to occur. Therefore, as shown in FIG. 32, even if the positions of the dots on which droplets ejected from different nozzles are landed are the same in some scans, the occurrence of streaks and unevenness can be sufficiently suppressed.
[1.4 双方向印刷]
本発明の実施形態としては、インク吐出装置が、相対的に前記主走査方向に往復移動し、往路及び復路どちらにおいても前記インクの液滴を吐出することも好ましい。 [1.4 Bidirectional printing]
As an embodiment of the present invention, it is also preferable that the ink ejecting device relatively reciprocates in the main scanning direction and ejects the ink droplets in both the forward and backward passes.
本発明の実施形態としては、インク吐出装置が、相対的に前記主走査方向に往復移動し、往路及び復路どちらにおいても前記インクの液滴を吐出することも好ましい。 [1.4 Bidirectional printing]
As an embodiment of the present invention, it is also preferable that the ink ejecting device relatively reciprocates in the main scanning direction and ejects the ink droplets in both the forward and backward passes.
本発明では、上記制御条件を満たす印刷方法を「双方向印刷」と称することにする。
In the present invention, a printing method that satisfies the above control conditions is called "bidirectional printing".
以下、本発明に係る双方向印刷によるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件を満たしていれば、本発明の技術的範囲に含まれる。なお、以下の図示による説明では、本発明に係る境界部を除くパターン部において双方向印刷を適用する例を示しているが、境界部における上記制御条件を満たしていれば、本発明に係る境界部においても適用することができる。
Hereinafter, an example of an embodiment of a pattern forming method by bidirectional printing according to the present invention will be described. included. Note that the following illustration shows an example in which bi-directional printing is applied to the pattern portion excluding the boundary portion according to the present invention. It can also be applied in the department.
図38は、インク吐出装置が、相対的に主走査方向に往復移動し、往路及び復路どちらにおいてもインクの液滴を吐出する双方向印刷を行う方法を示す。なお、図38では、分割印刷を行っているが、必ずしも分割印刷を行う必要はない。
FIG. 38 shows a method of performing bidirectional printing in which the ink ejection device relatively reciprocates in the main scanning direction and ejects ink droplets in both the forward and backward passes. In addition, in FIG. 38, division printing is performed, but it is not always necessary to perform division printing.
1スキャンにおいて、インク吐出装置は、インクの液滴を吐出しながら矢印の方向に相対的に移動(往路移動)する。次に、2スキャンにおいて、1スキャンで形成したドットの列の隣接する右側にドットの列が形成されるよう、インク吐出装置は矢印方向に相対的に移動し、インクの液滴を吐出しながら矢印の方向に相対的に移動(復路移動)する。これを繰り返し、合計8回のスキャンで印刷が完了する。
In one scan, the ink ejection device relatively moves in the direction of the arrow (forward movement) while ejecting ink droplets. Next, in two scans, the ink ejection device relatively moves in the direction of the arrow so as to form a row of dots on the right side adjacent to the row of dots formed in one scan, while ejecting ink droplets. It moves relatively in the direction of the arrow (return movement). This is repeated, and printing is completed after a total of eight scans.
なお、「相対的に移動する」とは、本実施形態においては、インク吐出装置及び印刷媒体としての基板は、どちらか一方のみが移動しても、両方が移動してもよく、インク吐出装置と印刷媒体としての基板との二者の位置関係において、相対的にインク吐出装置が移動することをいう。
It should be noted that, in the present embodiment, the term "moving relatively" means that either one of the ink ejection device and the substrate as the printing medium may move, or both may move. and the substrate as a printing medium, the relative movement of the ink ejection device.
したがって、図38の1スキャンにおいては、基板を固定して、インク吐出装置を矢印の方向に移動させてもよいし、インク吐出装置を固定して、基板を矢印とは逆の方向に移動させてもよい。
Therefore, in one scan of FIG. 38, the substrate may be fixed and the ink ejection device may be moved in the direction of the arrow, or the ink ejection device may be fixed and the substrate is moved in the direction opposite to the arrow. may
図29で示すような、片方向印刷では、インク吐出装置は相対的に主走査方向に往復移動するが、往路においてのみインクの液滴を吐出し、復路は移動するのみである。よって、双方向印刷を行うことにより、印刷時間を短縮でき、生産性が向上する。
In unidirectional printing as shown in FIG. 29, the ink ejection device relatively reciprocates in the main scanning direction, but ejects ink droplets only in the forward pass and only moves in the backward pass. Therefore, bidirectional printing can shorten the printing time and improve productivity.
[1.5 正逆混合印刷]
本発明の実施形態としては、インク吐出装置が、相対的に副走査方向に対して正方向及び逆方向の組み合わせで移動することも好ましい。 [1.5 Forward/reverse mixed printing]
As an embodiment of the present invention, it is also preferable that the ink ejection device moves in a combination of the normal direction and the reverse direction relative to the sub-scanning direction.
本発明の実施形態としては、インク吐出装置が、相対的に副走査方向に対して正方向及び逆方向の組み合わせで移動することも好ましい。 [1.5 Forward/reverse mixed printing]
As an embodiment of the present invention, it is also preferable that the ink ejection device moves in a combination of the normal direction and the reverse direction relative to the sub-scanning direction.
本発明では、上記制御条件を満たす印刷方法を「正逆混合印刷」と称することにする。
In the present invention, a printing method that satisfies the above control conditions will be referred to as "forward/reverse mixed printing".
以下、本発明に係る正逆混合印刷によるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件を満たしていれば、本発明の技術的範囲に含まれる。なお、以下の図示による説明では、本発明に係る境界部を除くパターン部において正逆混合印刷を適用する例を示しているが、境界部における上記制御条件を満たしていれば、本発明に係る境界部においても適用することができる。
Hereinafter, an example of an embodiment of a pattern forming method by forward/reverse mixed printing according to the present invention will be described. include. Note that the following illustration shows an example in which the forward/reverse mixed printing is applied to the pattern portion excluding the boundary portion according to the present invention. It can also be applied at boundaries.
図39は、インク吐出装置が、相対的に副走査方向に対して正方向及び逆方向の組み合わせで移動する正逆混合印刷を行う方法を示す。なお、図39では、分割印刷を行っているが、必ずしも分割印刷を行う必要はない。
FIG. 39 shows a method of performing forward/reverse mixed printing in which the ink ejection device relatively moves in a combination of forward and reverse directions with respect to the sub-scanning direction. In addition, although division printing is performed in FIG. 39, it is not always necessary to perform division printing.
1スキャンで、インク吐出装置は、相対的に主走査方向に移動し、インクの液滴を吐出する。次に、2スキャンにおいて、1スキャンで形成したドットの列の右側にドット一つ分の間隔を開けてドットの列が形成されるよう、インク吐出装置は矢印方向に相対的に移動し、更に主走査方向に移動し、インクの液滴を吐出する。そして、3スキャンにおいて、1スキャンで形成したドットの列と2スキャンで形成したドットの列の間にドットの列が形成されるよう、インク吐出装置は矢印方向に相対的に移動し、更に主走査方向に移動し、インクの液滴を吐出する。これを繰り返し、合計8回のスキャンで印刷が完了する。
In one scan, the ink ejection device relatively moves in the main scanning direction and ejects ink droplets. Next, in two scans, the ink ejection device relatively moves in the direction of the arrow so that a row of dots is formed on the right side of the row of dots formed in one scan with an interval of one dot therebetween. It moves in the main scanning direction and ejects ink droplets. Then, in three scans, the ink ejection device relatively moves in the direction of the arrow so that a row of dots is formed between the row of dots formed in one scan and the row of dots formed in two scans. It moves in the scanning direction and ejects ink droplets. This is repeated, and printing is completed after a total of eight scans.
図29で示すような、インク吐出装置の相対的な移動の方向が、一方向のみである正方向印刷では、場合によっては形成したドットに隣接するように更にドットが形成されるため、ドットのインクが固定化する前に隣接するドットが形成され、スジやムラの原因となる。一方、正逆混合印刷では、形成されたドットと間隔を空けてドットが形成されるため、ドットのインクが固定化した後に隣接するドットが形成され、スジやムラが発生しにくくなる。また、正逆混合印刷では、形成されたドットと間隔を空けてドットが形成されるため、隣接する着弾で、先に着弾したインク(ドット)との相互作用で着弾ずれの発生を低減でき、パターン形成性が向上する。
As shown in FIG. 29, in normal-direction printing in which the relative movement of the ink ejection device is only in one direction, in some cases, additional dots are formed so as to be adjacent to the formed dots. Adjacent dots are formed before the ink is fixed, causing streaks and unevenness. On the other hand, in forward/reverse mixed printing, dots are formed with a gap between them. Therefore, adjacent dots are formed after the ink of the dots is fixed, and streaks and unevenness are less likely to occur. In addition, in forward/reverse mixed printing, dots are formed with a gap between them. Therefore, adjacent landings interact with ink (dots) that landed first, reducing the occurrence of landing deviations. Pattern formability is improved.
[2 境界部におけるパターン形成方法]
本発明のパターン形成方法は、前記液滴を着弾させる前記ドットの位置を、本発明に係る境界部においては、
前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 [2 Pattern formation method at boundary]
In the pattern forming method of the present invention, the positions of the dots on which the droplets are to land are set to:
Control is performed so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
本発明のパターン形成方法は、前記液滴を着弾させる前記ドットの位置を、本発明に係る境界部においては、
前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とする。 [2 Pattern formation method at boundary]
In the pattern forming method of the present invention, the positions of the dots on which the droplets are to land are set to:
Control is performed so as to have continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged.
前述のとおり、境界部では、連続性又は周期性を有するように制御することにより、再現性が良好なパターンを形成することができる。
As described above, a pattern with good reproducibility can be formed by controlling the boundary to have continuity or periodicity.
以下、本発明に係る境界部におけるパターン形成方法の実施形態の一例について説明するが、下記例の実施形態・態様に限られず、上記制御条件を満たしていれば、本発明の技術的範囲に含まれる。
Hereinafter, an example of the pattern forming method at the boundary according to the present invention will be described. be
前述のとおり、本発明において、「境界部」とは、パターン部を構成するドットの塗膜のうち、パターン部と非パターン部の境界付近に位置するドットの塗膜の集合体のことをいい、少なくとも、パターン部と非パターン部の境界の形成に寄与するドットの塗膜(以下、「境界形成部」ともいう。)を含む。
As described above, in the present invention, the “boundary portion” refers to an aggregate of dot coating films located near the boundary between the pattern portion and the non-pattern portion among the dot coating films constituting the pattern portion. , at least a coating film of dots that contributes to the formation of a boundary between a patterned portion and a non-patterned portion (hereinafter also referred to as a “boundary forming portion”).
図9は、本発明に係るパターンの一例を示し、図10は、その境界部の一例を示す。非パターン部11が、複数個のドット分に対応する面積を有する場合には、境界部16は、非パターン部とパターン部の境界に沿って、線状に形成される。図12は、図10で示す境界部の形成に用いられる画像データを示す。ここでは、ドット一つ分が画像データを構成する画素一つ分に対応する。
FIG. 9 shows an example of a pattern according to the present invention, and FIG. 10 shows an example of its boundary. When the non-pattern portion 11 has an area corresponding to a plurality of dots, the boundary portion 16 is linearly formed along the boundary between the non-pattern portion and the pattern portion. FIG. 12 shows image data used to form the boundary shown in FIG. Here, one dot corresponds to one pixel forming the image data.
境界部16に対応する画像データにおいても、各画素は線状に配列される。
本発明において、「画像データを構成する各画素が配列された長手方向」とは、配列された各画素間を結んで形成される線に沿う方向のことであり、図12において矢印の方向で示される。 Also in the image data corresponding to theboundary portion 16, each pixel is linearly arranged.
In the present invention, the "longitudinal direction in which the pixels constituting the image data are arranged" means the direction along the line formed by connecting the arranged pixels. shown.
本発明において、「画像データを構成する各画素が配列された長手方向」とは、配列された各画素間を結んで形成される線に沿う方向のことであり、図12において矢印の方向で示される。 Also in the image data corresponding to the
In the present invention, the "longitudinal direction in which the pixels constituting the image data are arranged" means the direction along the line formed by connecting the arranged pixels. shown.
また、図12で示すように、非パターン部11が有する面積が極めて小さい場合には、境界部16は、線状に形成されない場合がある。この場合、対応する画像データにおいて、各画素が隣接する方向を、「画像データを構成する各画素が配列された長手方向」とし、各画素が隣接する順に連続性又は周期性を有するように制御する。
Also, as shown in FIG. 12, when the area of the non-pattern portion 11 is extremely small, the boundary portion 16 may not be linearly formed. In this case, in the corresponding image data, the direction in which each pixel is adjacent is defined as "the longitudinal direction in which each pixel constituting the image data is arranged", and the order in which each pixel is adjacent is controlled to have continuity or periodicity. do.
図9では、非パターン部を取り囲むように周囲にパターンを形成する例を示しており、図10で示される境界部16、及び図12で示される境界部16に対応する画像データは、線状であり、かつ線の端と端が閉じた形となっているが、境界部及びそれに対応する画像データは、必ずしもこのような形には限定されず、線の端と端が閉じていない形であってもよい。
FIG. 9 shows an example in which a pattern is formed around the non-patterned portion, and the image data corresponding to the boundary portion 16 shown in FIG. 10 and the boundary portion 16 shown in FIG. and the line ends are closed, but the boundary and the image data corresponding to it are not necessarily limited to such a shape, and the line ends are not closed may be
上記境界部の一例では、境界部が、境界形成部のみで構成される場合を示したが、境界部は、更にパターン部と非パターン部の境界付近に位置するドットの塗膜を含んでもよい。図13にその一例を示す。
In the above example of the boundary portion, the boundary portion is composed only of the boundary forming portion, but the boundary portion may further include a dot coating film located near the boundary between the pattern portion and the non-pattern portion. . An example is shown in FIG.
図13は、境界部16が、境界形成部12に加えて、パターン部と非パターン部の境界付近に位置するドットの塗膜(境界形成部を除く境界部)13を含む場合の一例を示し、図14は、図13で示す境界部の形成に用いられる画像データを示す。ここでは、ドット一つ分が画像データを構成する画素一つ分に対応する。
FIG. 13 shows an example in which the boundary portion 16 includes, in addition to the boundary forming portion 12, a coating film 13 of dots located near the boundary between the pattern portion and the non-pattern portion (the boundary portion excluding the boundary forming portion). , and FIG. 14 show image data used to form the boundary shown in FIG. Here, one dot corresponds to one pixel forming the image data.
境界部は、均一な幅で、パターン部と非パターン部の境界に沿う領域であることが好ましい。ここでの「幅」とは、パターン部と非パターン部の境界に対して垂直方向の長さ(ドット数)のことをいう。
It is preferable that the boundary portion has a uniform width and is a region along the boundary between the pattern portion and the non-pattern portion. The "width" here means the length (the number of dots) in the direction perpendicular to the boundary between the pattern area and the non-pattern area.
例えば、図10で示される境界部16については、幅がドット一つ分、図13で示される境界部16については、幅がドット二つ分とすることができる。
For example, the boundary portion 16 shown in FIG. 10 can have a width of one dot, and the boundary portion 16 shown in FIG. 13 can have a width of two dots.
図15に、パターンとその境界部の一例を示す。図15において、左端は、各パターンを示し、真ん中は、そのパターンにおける幅ドット一つ分の境界部を示し、右端は、そのパターンにおける幅ドット二つ分の境界部を示す。
FIG. 15 shows an example of patterns and their boundaries. In FIG. 15, the left end indicates each pattern, the middle indicates a boundary portion of one dot width in the pattern, and the right end indicates a boundary portion of two dots width in the pattern.
境界部の幅は、特に制限されないが、パターン再現性の観点から、境界部はスジを発生させることが好ましく、幅のドット数は、1~3の範囲内であることが好ましい。
The width of the boundary is not particularly limited, but from the viewpoint of pattern reproducibility, it is preferable to generate streaks in the boundary, and the number of dots in the width is preferably within the range of 1 to 3.
以下、境界部におけるパターン形成方法について、図16に示すパターン例(長方形)を用いて説明する。図17は、図16に示すパターン例(長方形)に対応する画像データを示す。
A method of forming a pattern in a boundary portion will be described below using the pattern example (rectangle) shown in FIG. 16 . FIG. 17 shows image data corresponding to the pattern example (rectangle) shown in FIG.
当該画像データを構成する各画素は、行及び列の方向に対して平行に配列されており、かつ、当該画像データにおける画素の列及び行の方向と、インク吐出装置における主走査方向及び副走査方向は平行である。そのため、以下に示すパターン形成方法については、インク吐出装置の主走査方向及び副走査方向に連続的又は周期的にインクの液滴を着弾させることにより、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御することができる。
Each pixel constituting the image data is arranged parallel to the row and column directions, and the row and column directions of the pixels in the image data and the main scanning direction and sub-scanning direction of the ink discharge device are aligned. The directions are parallel. Therefore, in the pattern forming method described below, ink droplets are caused to land continuously or periodically in the main scanning direction and the sub-scanning direction of the ink discharge device, so that the positions of the dots where the droplets land are displayed in the image. It is possible to control to have continuity or periodicity according to the longitudinal order in which the pixels constituting the data are arranged.
なお、必ずしも、画像データを構成する各画素は、行及び列の方向に対して平行に配列される必要はなく、また、画像データにおける画素の列及び行の方向と、インク吐出装置における主走査方向及び副走査方向は平行である必要はない。
It should be noted that the pixels constituting the image data do not necessarily have to be arranged in parallel with the row and column directions. The direction and sub-scanning direction need not be parallel.
図18は、境界部におけるパターン例(長方形)の印刷方法(ブロック方式)の一例を示す。なお、インク吐出装置の主走査方向及び副走査方向に連続(ブロック方式)してインクの液滴を着弾させることにより、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性を有するように制御する。
FIG. 18 shows an example of a printing method (block method) of a pattern example (rectangle) in the boundary. Ink droplets are landed continuously (block system) in the main scanning direction and sub-scanning direction of the ink ejection device, and the positions of the dots on which the droplets are landed are arranged by the pixels constituting the image data. It is controlled to have continuity according to the ordered order in the longitudinal direction.
1スキャンで主走査方向に連続的にインクの液滴を着弾させた後、副走査方向に移動し、2スキャン及び3スキャンで副走査方向に連続的にインクの液滴を着弾させた後、4スキャンで主走査方向に連続的にインクの液滴を着弾させ、印刷が完了する。
After making ink droplets land continuously in the main scanning direction in one scan, it moves in the sub-scanning direction, and after making ink droplets continuously land in the sub-scanning direction in two scans and three scans, Ink droplets are landed continuously in the main scanning direction by four scans, and printing is completed.
当該印刷方法では、主走査方向においては連続性を有し、副走査方向においては連続性及び周期性を有するため、高精細な直線を形成することができる。
The printing method has continuity in the main scanning direction, and has continuity and periodicity in the sub-scanning direction, so it is possible to form high-definition straight lines.
当該印刷方法では、副走査方向に隣接するドットの位置への液滴の着弾は、同一のノズルで行っているが、異なるノズルで行ってもよい。
In the printing method, the same nozzle is used to land droplets on adjacent dot positions in the sub-scanning direction, but different nozzles may be used.
図19は、境界部におけるパターン例(長方形)の印刷方法(ブロック方式)の一例(異なるノズル使用)を示す。同じく、インク吐出装置の主走査方向及び副走査方向に連続(ブロック方式)してインクの液滴を着弾させることにより、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性を有するように制御する。ただし、図19で示す方法では、副走査方向に隣接するドットの位置への液滴の着弾は、異なるノズルで行っている。
FIG. 19 shows an example (using different nozzles) of a printing method (block method) for an example pattern (rectangle) at the boundary. Similarly, by causing ink droplets to land continuously (block system) in the main scanning direction and sub-scanning direction of the ink ejection device, the positions of the dots on which the droplets land are determined by the pixels that make up the image data. It is controlled to have continuity according to the ordered order in the longitudinal direction. However, in the method shown in FIG. 19, different nozzles are used to land droplets on adjacent dot positions in the sub-scanning direction.
図19で示す方法では、1スキャンにおいては、ノズル26、27及び28(図20参照。)からインクの液滴を吐出し、副走査方向に移動した後、2スキャンにおいては、ノズル25、26及び27からインクの液滴を吐出している。このようにして、副走査方向に各ノズルから吐出されたインクの液滴が順に着弾していく。
In the method shown in FIG. 19, ink droplets are ejected from nozzles 26, 27 and 28 (see FIG. 20) in one scan, and after moving in the sub-scanning direction, nozzles 25 and 26 are ejected in two scans. and 27 eject ink droplets. In this manner, ink droplets ejected from each nozzle land in order in the sub-scanning direction.
当該印刷方法を用いることにより、パス数が増え、印刷時間が長くなる場合があるが、ノズルに着弾曲がり等の不具合があっても、その影響を小さくすることができる。
By using this printing method, the number of passes may increase and the printing time may become longer.
図21及び図22は、境界部におけるパターン例(長方形)の印刷方法(インターリーブ方式)の一例を示す。なお、インク吐出装置の主走査方向及び副走査方向に周期的(インターリーブ方式)にインクの液滴を着弾させることにより、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向の順番のとおりに、周期性を有するように制御する。
FIGS. 21 and 22 show an example of a printing method (interleave method) of a pattern example (rectangle) at the boundary. In addition, by causing ink droplets to land periodically (interleaved) in the main scanning direction and the sub-scanning direction of the ink ejection device, the positions of the dots where the droplets land are determined by the pixels that make up the image data. It is controlled to have periodicity according to the order in the longitudinal direction.
どちらの印刷方法も、画像データを二つに分割し、前述の分割印刷を行う。
図21で示す方法では、一つ目の分割画像データに基づいて印刷を完了させた後、二つ目の分割画像データに基づいて印刷を完了させる。
図22で示す方法では、一つ目の分割画像データに基づく印刷と二つ目の分割画像データに基づく印刷を並行して行う。詳しくは、一つ目の分割画像データに基づいて、1回のスキャンを行った後、二つ目の分割画像データに基づいて、1回のスキャンを行う。これを繰り返して印刷を完了させる。 In either printing method, the image data is divided into two and the above-described divided printing is performed.
In the method shown in FIG. 21, after printing is completed based on the first divided image data, printing is completed based on the second divided image data.
In the method shown in FIG. 22, printing based on the first divided image data and printing based on the second divided image data are performed in parallel. Specifically, one scan is performed based on the first divided image data, and then one scan is performed based on the second divided image data. Repeat this to complete printing.
図21で示す方法では、一つ目の分割画像データに基づいて印刷を完了させた後、二つ目の分割画像データに基づいて印刷を完了させる。
図22で示す方法では、一つ目の分割画像データに基づく印刷と二つ目の分割画像データに基づく印刷を並行して行う。詳しくは、一つ目の分割画像データに基づいて、1回のスキャンを行った後、二つ目の分割画像データに基づいて、1回のスキャンを行う。これを繰り返して印刷を完了させる。 In either printing method, the image data is divided into two and the above-described divided printing is performed.
In the method shown in FIG. 21, after printing is completed based on the first divided image data, printing is completed based on the second divided image data.
In the method shown in FIG. 22, printing based on the first divided image data and printing based on the second divided image data are performed in parallel. Specifically, one scan is performed based on the first divided image data, and then one scan is performed based on the second divided image data. Repeat this to complete printing.
どちらの印刷方法においても、主走査方向及び副走査方向において、周期性を有するため、高精細な直線を形成することができるが、図22で示す方法の方が、隣接するドットの塗膜が形成されるまでの時間をより短くすることができるため、より高精細な直線を形成することができる。
Both of the printing methods have periodicity in the main scanning direction and the sub-scanning direction, so highly precise straight lines can be formed. Since it takes less time to form a straight line, a more precise straight line can be formed.
詳しくは、例えば、左端に形成される直線状のパターン部分において、図21で示す方法では、1スキャン及び5スキャンにより印刷が完了するが、図22で示す方法では、1スキャン及び2スキャンにより印刷が完了する。したがって、図22で示す方法の方が、隣接するドットの塗膜が形成されるまでの時間をより短くすることができる
Specifically, for example, in the linear pattern portion formed at the left end, the method shown in FIG. 21 completes printing by 1 scan and 5 scans, but the method shown in FIG. is completed. Therefore, the method shown in FIG. 22 can shorten the time until the coating film of the adjacent dots is formed.
本発明において、境界部における印刷方式は、ブロック方式であってもインターリーブ方式であってもどちらでもよい。ブロック方式を用いることにより、主走査方向において、極めて高精細な直線を形成することができ、インターリーブ方式を用いることにより、主走査方向及び副走査方向どちらにおいても高精細な直線を形成することができる。
In the present invention, the printing method at the boundary may be either the block method or the interleave method. By using the block method, it is possible to form extremely fine straight lines in the main scanning direction, and by using the interleave method, it is possible to form highly fine straight lines in both the main scanning direction and the sub-scanning direction. can.
比較として、図23は、境界部におけるパターン例(長方形)の印刷方法(前述のランダムマルチパス方式)の一例を示す。言い換えれば、図23では、境界部と、境界部を除くパターン部とで、パターン形成方法を変更せず、全てランダムマルチパス方式で形成することを表す。
For comparison, FIG. 23 shows an example of the printing method (the random multi-pass method described above) of an example pattern (rectangle) at the boundary. In other words, FIG. 23 shows that the boundary portion and the pattern portion excluding the boundary portion are all formed by the random multipass method without changing the pattern forming method.
図23で示す方法においても、実用上問題のない直線を形成することができるが、上記ブロック方式又はインターリーブ方式を用いる方が、高精細な直線を形成することができる。
The method shown in FIG. 23 can also form a straight line that poses no practical problem, but the use of the block method or interleave method allows the formation of a finer straight line.
次に、画像データを構成する各画素が、行及び列の方向に対して平行に配列されていない場合について説明する。ただし、画像データにおける画素の列及び行の方向と、インク吐出装置における主走査方向及び副走査方向は平行であるとする。
Next, a description will be given of the case where the pixels that make up the image data are not arranged parallel to the row and column directions. However, it is assumed that the row and column directions of pixels in the image data are parallel to the main scanning direction and sub-scanning direction in the ink ejection device.
図24は、境界部におけるパターン例(ひし形)の印刷方法(ブロック方式)の一例を示す。なお、画像データを構成する各画素が、行及び列の方向に対して平行に配列されていない場合においても、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する。
FIG. 24 shows an example of a printing method (block method) of a pattern example (rhombus) at the boundary. Even when the pixels constituting the image data are not arranged in parallel with the row and column directions, the positions of the dots on which the liquid droplets are to land can be determined according to the arrangement of the pixels constituting the image data. It is controlled to have continuity or periodicity according to the order in the longitudinal direction.
1スキャンで主走査方向にインクの液滴を着弾させた後、副走査方向に移動し、2スキャンで主走査方向にインクの液滴を着弾させる。このとき、1スキャン目に液滴を着弾させたドットの位置に隣接する位置に、液滴を着弾させる。3スキャン及び4スキャンについても、一つ前のスキャンで液滴を着弾させたドットの位置に隣接する位置に、液滴を着弾させる。
After ink droplets land in the main scanning direction in one scan, it moves in the sub-scanning direction, and ink droplets land in the main scanning direction in two scans. At this time, the droplet is caused to land at a position adjacent to the position of the dot on which the droplet has landed in the first scan. Also for the 3rd scan and the 4th scan, the droplet is caused to land at a position adjacent to the position of the dot where the droplet landed in the previous scan.
図51は、境界部におけるパターン例(ひょうたん形)の印刷方法(ブロック方式)の一例を示す。このように、境界部における画像データを構成する各画素が、行及び列の方向に対して平行に配列されておらず、目視では曲線として認識されるような場合についても、一つ前のスキャンで液滴を着弾させたドットの位置に隣接する位置に、液滴を着弾させることにより、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御することができる。
FIG. 51 shows an example of a printing method (block method) of a pattern example (gourd shape) at the boundary. In this way, even when the pixels constituting the image data in the boundary are not arranged parallel to the row and column directions and visually recognized as a curved line, By landing a droplet at a position adjacent to the position of the dot on which the droplet landed in , the pixels constituting the image data have continuity or periodicity according to the order in the longitudinal direction in which they are arranged. can be controlled as follows.
また、図52は、境界部におけるパターン例(ひょうたん形)の印刷方法(ブロック方式、分割印刷)の一例を示す。このように、境界部における画像データを構成する各画素が、行及び列の方向に対して平行に配列されておらず、目視では曲線として認識されるような場合についても、分割印刷を用いることができる。
Also, FIG. 52 shows an example of a printing method (block method, division printing) of a pattern example (gourd shape) in a boundary portion. In this way, the division printing can be used even when the pixels constituting the image data in the boundary are not arranged parallel to the row and column directions and visually recognized as a curved line. can be done.
このようにして、画像データを構成する各画素が、行及び列の方向に対して平行に配列されていない場合においても、液滴を着弾させたドットの位置に隣接する位置に液滴を着弾させることにより、画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性を有するように制御することができる。
In this manner, even when the pixels constituting the image data are not arranged in parallel with the row and column directions, the droplets are landed at positions adjacent to the dot positions where the droplets are landed. By doing so, it is possible to control so that each pixel constituting the image data has continuity in the order in which the pixels are arranged in the longitudinal direction.
比較として、図25は、境界部におけるパターン例(ひし形)の印刷方法(ランダムマルチパス方式)の一例を示す。なお、液滴を着弾させるドットの位置を、画像データを構成する各画素が配列された長手方向にランダムとする。図25で示す方法においても、実用上問題のない直線を形成することが可能であるが、図24で示す方法を用いることにより、高精細な直線を形成することができる。
For comparison, FIG. 25 shows an example of a printing method (random multi-pass method) of a pattern example (rhombus) at the boundary. Note that the positions of the dots on which the droplets are to land are random in the longitudinal direction in which the pixels forming the image data are arranged. The method shown in FIG. 25 can also form a straight line with no practical problem, but the method shown in FIG. 24 can form a highly precise straight line.
[3 パターン形成方法]
以下、境界部を除くパターン部におけるパターン形成方法、及び境界部におけるパターン形成方法を組み合わせて行うパターン形成方法について説明する。 [3 Pattern formation method]
A pattern forming method in a pattern portion excluding the boundary portion and a pattern forming method performed by combining the pattern forming method in the boundary portion will be described below.
以下、境界部を除くパターン部におけるパターン形成方法、及び境界部におけるパターン形成方法を組み合わせて行うパターン形成方法について説明する。 [3 Pattern formation method]
A pattern forming method in a pattern portion excluding the boundary portion and a pattern forming method performed by combining the pattern forming method in the boundary portion will be described below.
本発明のパターン形成方法は、前記境界部における前記ドットの塗膜の形成を、前記境界部を除く前記パターン部における前記ドットの塗膜の形成よりも先に完了させることが好ましい。
In the pattern forming method of the present invention, it is preferable that the formation of the coating film of the dots on the boundary portion is completed prior to the formation of the coating film of the dots on the pattern portion excluding the boundary portion.
このようなパターン形成方法としては、
先に、境界部におけるパターン形成を完了させ、次いで、境界部を除くパターン部におけるパターン形成を行う方法(パターン形成方法A)
境界部におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に開始し、境界部におけるパターン形成を先に完了させる方法(パターン形成方法B)
の二つの方法が挙げられる。 As such a pattern formation method,
A method of first completing pattern formation in the boundary portion and then pattern formation in the pattern portion excluding the boundary portion (pattern formation method A).
A method of simultaneously starting pattern formation in a boundary portion and pattern formation in a pattern portion excluding the boundary portion, and completing pattern formation in the boundary portion first (pattern formation method B).
There are two methods.
先に、境界部におけるパターン形成を完了させ、次いで、境界部を除くパターン部におけるパターン形成を行う方法(パターン形成方法A)
境界部におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に開始し、境界部におけるパターン形成を先に完了させる方法(パターン形成方法B)
の二つの方法が挙げられる。 As such a pattern formation method,
A method of first completing pattern formation in the boundary portion and then pattern formation in the pattern portion excluding the boundary portion (pattern formation method A).
A method of simultaneously starting pattern formation in a boundary portion and pattern formation in a pattern portion excluding the boundary portion, and completing pattern formation in the boundary portion first (pattern formation method B).
There are two methods.
本発明においては、境界部において高精細な直線を形成することができ、パターン再現性が良好である観点から、先に、境界部におけるパターン形成を完了させ、次いで、境界部を除くパターン部におけるパターン形成を行う方法(パターン形成方法A)であることが好ましい。
In the present invention, from the viewpoint that highly precise straight lines can be formed at the boundary and the pattern reproducibility is good, the pattern formation at the boundary is first completed, and then the pattern at the boundary is completed. A method of forming a pattern (pattern forming method A) is preferred.
以下、図26に示す画像データを用い、分割印刷によるパターン形成方法について説明する。なお、前述のとおり、境界部を除くパターン部については、分割数を多くする(増やす)ことが好ましいが、境界部については、分割数を少なくすることが好ましい。
A pattern forming method by division printing will be described below using the image data shown in FIG. As described above, it is preferable to increase (increase) the number of divisions in the pattern area excluding the boundary area, but it is preferable to reduce the number of divisions in the boundary area.
図26において、分割画像データαは、境界部におけるパターン形成に対応する画像データであり、分割画像データβ及びγは、境界部を除くパターン部におけるパターン形成に対応する画像データを二つに分割した画像データである。
In FIG. 26, divided image data α is image data corresponding to pattern formation in the boundary portion, and divided image data β and γ are image data corresponding to pattern formation in the pattern portion excluding the boundary portion divided into two. This is the image data obtained by
図27A及びBは、先に、境界部におけるパターン形成を完了させ、次いで、境界部を除くパターン部におけるパターン形成を行う方法(パターン形成方法A)を示す。分割画像データNo.1~No.3が、上記分割画像データα~γに相当し、分割画像データNo.1~No.3の順に、印刷を完了させる。
FIGS. 27A and 27B show a method (pattern formation method A) of first completing pattern formation in the boundary portion and then pattern formation in the pattern portion excluding the boundary portion. Divided image data No. 1 to No. 3 corresponds to the divided image data α to γ, and the divided image data No. 1 to No. Complete printing in the order of 3.
図28は、境界部におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に開始し、境界部におけるパターン形成を先に完了させる方法(パターン形成方法B)を示す。上記分割データαとβを一つの分割画像データNo.1、上記分割画像データγを分割画像データNo.2とし、分割画像データNo.1~No.2の順に、印刷を完了させる。
FIG. 28 shows a method (pattern formation method B) in which pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are simultaneously started, and pattern formation in the boundary portion is completed first. The divided data α and β are divided into one divided image data number. 1, the divided image data γ is divided into divided image data No. 2, and divided image data No. 1 to No. 2 to complete printing.
比較として、図43は、境界部を除くパターン部におけるパターン形成を先に開始し、境界部におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に完了させる方法(パターン形成方法C)を示す。上記分割画像データβを分割画像データNo.1、上記分割画像データαとγを一つの分割画像データNo.2とし、分割画像データNo.1~No.2の順に、印刷を完了させる。
For comparison, FIG. 43 shows a method (pattern formation method C) in which pattern formation is first started in a pattern portion excluding the boundary portion, and pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion are completed at the same time. show. The divided image data β is divided into divided image data No. 1, the divided image data α and γ are divided into one divided image data No. 2, and divided image data No. 1 to No. 2 to complete printing.
その他、図44及び図45は、境界部におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に開始し、同時に完了させる方法(パターン形成方法D)を示す。
In addition, FIGS. 44 and 45 show a method (pattern formation method D) of simultaneously starting pattern formation in the boundary portion and pattern formation in the pattern portion excluding the boundary portion.
パターン形成方法A~Dのいずれにおいても、境界部において高精細な直線を形成することができ、パターン再現性が良好であるが、より高い効果が得られる観点から、パターン形成方法A又はBを用いることが好ましく、パターン形成方法Aを用いることがより好ましい。
In any of the pattern formation methods A to D, a highly precise straight line can be formed at the boundary and the pattern reproducibility is good. It is preferable to use pattern formation method A, and it is more preferable to use pattern formation method A.
この他に、先に、境界部を除くパターン部におけるパターン形成を完了させ、次いで、境界部におけるパターン形成を行う方法も考えられる。当該方法においても、高精細な直線を形成することができ、パターン再現性が良好であるが、より高い効果が得られる観点から、パターン形成方法A又はBを用いる方が好ましく、パターン形成方法Aを用いることがより好ましい。
In addition to this, a method of first completing pattern formation in the pattern portion excluding the boundary portion and then performing pattern formation in the boundary portion is also conceivable. Even in this method, high-definition straight lines can be formed and pattern reproducibility is good, but from the viewpoint of obtaining higher effects, it is preferable to use pattern formation method A or B. Pattern formation method A is more preferred.
また、比較として、図46は、境界部と、境界部を除くパターン部とで、パターン形成方法を変更せず、全てランダムマルチパス方式で形成する方法を示す。当該方法においても、境界部において実用上問題のない直線を形成することができるが、本発明のパターン形成方法を用いる方が、より高い効果が得られる。
Also, for comparison, FIG. 46 shows a method in which the boundary portion and the pattern portion excluding the boundary portion are all formed by the random multipass method without changing the pattern forming method. Even with this method, a straight line can be formed at the boundary without practical problems, but using the pattern forming method of the present invention provides a higher effect.
上記で説明したパターン形成方法において、境界部におけるパターン形成に用いられる画像データ(分割画像データα)は、画像データを構成する各画素が、行及び列の方向に対して平行に配列されているが、必ずしもこの限りではない。境界部におけるパターン形成に対応する画像データを構成する各画素が、行及び列の方向に対して平行に配列されていない場合のパターン形成方法について図47に示す。
In the pattern forming method described above, the image data (divided image data α) used for pattern formation at the boundary is such that each pixel constituting the image data is arranged in parallel to the row and column directions. However, this is not necessarily the case. FIG. 47 shows a pattern formation method in which the pixels constituting the image data corresponding to the pattern formation at the boundary are not arranged parallel to the row and column directions.
図47は、境界部(ひし形)におけるパターン形成と、境界部を除くパターン部におけるパターン形成を同時に開始し、境界部におけるパターン形成を先に完了させる方法(パターン形成方法B)を示す。図47で示すとおり、境界部におけるパターン形成に対応する画像データを構成する各画素が、行及び列の方向に対して平行に配列されていない場合においても、上記で説明したパターン形成方法を用いてパターンを形成することができる。
FIG. 47 shows a method (pattern formation method B) in which pattern formation in a boundary portion (rhombus) and pattern formation in a pattern portion excluding the boundary portion are simultaneously started, and pattern formation in the boundary portion is completed first. As shown in FIG. 47, the pattern formation method described above is used even when the pixels constituting the image data corresponding to the pattern formation at the boundary are not arranged in parallel with the row and column directions. can be used to form a pattern.
なお、本発明のパターン形成方法において、着弾させる液滴の液量は同一であっても異なっていてもよく、境界部と境界部を除くパターン部とで、着弾させる液滴の液量を変化させてもよい。
In the pattern forming method of the present invention, the liquid volume of the droplets to be landed may be the same or different, and the liquid volume of the droplets to be landed may be changed between the boundary portion and the pattern portion excluding the boundary portion. You may let
例えば、凹凸のある基板にパターンを形成する場合、凹部又は凹部を含む周辺に着弾させる液滴の液量を増やすことにより、基板上に形成されるパターンを平滑化することができ、導電性や絶縁性等の機能性のばらつきを抑制することができる。
For example, when a pattern is formed on a substrate having unevenness, the pattern formed on the substrate can be smoothed by increasing the amount of liquid droplets that land on the recesses or the periphery including the recesses. Variation in functionality such as insulation can be suppressed.
[4 インク]
本発明に係るインクは、インクの吐出時の温度における粘度η1と着弾時の温度における粘度η2の比率η2/η1が100以上であることが好ましい。
η2/η1を100以上とすることにより、バルジの発生を抑制でき、高精細なパターンを形成することができる。また、η2/η1を200以上、更には500以上とすることにより、異種部材や凹凸のある基板にも高精細なパターンを形成することができる。 [4 Ink]
In the ink according to the present invention, the ratio η2/η1 of the viscosity η1 at the temperature when the ink is ejected to the viscosity η2 at the temperature when the ink is landed is preferably 100 or more.
By setting η2/η1 to 100 or more, it is possible to suppress the occurrence of bulges and form a high-definition pattern. Further, by setting η2/η1 to 200 or more, further 500 or more, it is possible to form a high-definition pattern even on a substrate having unevenness or a different material.
本発明に係るインクは、インクの吐出時の温度における粘度η1と着弾時の温度における粘度η2の比率η2/η1が100以上であることが好ましい。
η2/η1を100以上とすることにより、バルジの発生を抑制でき、高精細なパターンを形成することができる。また、η2/η1を200以上、更には500以上とすることにより、異種部材や凹凸のある基板にも高精細なパターンを形成することができる。 [4 Ink]
In the ink according to the present invention, the ratio η2/η1 of the viscosity η1 at the temperature when the ink is ejected to the viscosity η2 at the temperature when the ink is landed is preferably 100 or more.
By setting η2/η1 to 100 or more, it is possible to suppress the occurrence of bulges and form a high-definition pattern. Further, by setting η2/η1 to 200 or more, further 500 or more, it is possible to form a high-definition pattern even on a substrate having unevenness or a different material.
また、本発明においては、後述するようなホットメルトタイプ、ゲル化タイプ又はチキソトロピータイプのいずれかのタイプのインクを用いることが好ましい。
In addition, in the present invention, it is preferable to use any type of ink such as a hot-melt type, a gelling type, or a thixotropic type, as described later.
<粘度>
インク吐出時及び着弾時の粘度は、上記比率を満たす範囲内であれば、特に限定されないが、例えば、吐出時の温度を75℃とするときの粘度(η1)は、インクジェットヘッドの吐出性の観点から、3~15mPa・sの範囲内であることが好ましい。
一方、着弾時の温度を室温(25℃)とするときの粘度(η2)は、着弾時にインクが基板上で固定化され、バルジなどの発生が抑制できる観点から、1×102~1×104mPa・sの範囲内であることが好ましい。 <Viscosity>
The viscosity at the time of ink ejection and landing is not particularly limited as long as it is within the range satisfying the above ratio. For example, the viscosity (η1) when the temperature at the time of ejection is 75° C. From the point of view, it is preferably in the range of 3 to 15 mPa·s.
On the other hand, the viscosity (η2) when the temperature at the time of impact is room temperature (25° C.) is 1×10 2 to 1×, from the viewpoint that the ink is fixed on the substrate at the time of impact and the occurrence of bulging can be suppressed. It is preferably within the range of 10 4 mPa·s.
インク吐出時及び着弾時の粘度は、上記比率を満たす範囲内であれば、特に限定されないが、例えば、吐出時の温度を75℃とするときの粘度(η1)は、インクジェットヘッドの吐出性の観点から、3~15mPa・sの範囲内であることが好ましい。
一方、着弾時の温度を室温(25℃)とするときの粘度(η2)は、着弾時にインクが基板上で固定化され、バルジなどの発生が抑制できる観点から、1×102~1×104mPa・sの範囲内であることが好ましい。 <Viscosity>
The viscosity at the time of ink ejection and landing is not particularly limited as long as it is within the range satisfying the above ratio. For example, the viscosity (η1) when the temperature at the time of ejection is 75° C. From the point of view, it is preferably in the range of 3 to 15 mPa·s.
On the other hand, the viscosity (η2) when the temperature at the time of impact is room temperature (25° C.) is 1×10 2 to 1×, from the viewpoint that the ink is fixed on the substrate at the time of impact and the occurrence of bulging can be suppressed. It is preferably within the range of 10 4 mPa·s.
「着弾時の温度における粘度η2」とは、基板上におけるインクの濡れ広がりに起因するインクの流動(着弾の衝撃に起因するものではない。)が実質的に生起される前に到達するインクの粘度ということができ、具体的には、インクが基板に着弾してから1秒以内で到達する粘度であるが、本発明では、インクが着弾される際の基板の温度とする。
一方、「吐出時の温度における粘度η1」については、インクがヘッドから吐出された時点のヘッドの温度をとする。 "Viscosity η2 at the temperature at the time of landing" is the ink flow that is caused by the wetting and spreading of the ink on the substrate (not due to the impact of landing). It can be called a viscosity, and more specifically, it is a viscosity that the ink reaches within one second after it lands on the substrate.
On the other hand, the “viscosity η1 at the temperature at the time of ejection” is the temperature of the head when the ink is ejected from the head.
一方、「吐出時の温度における粘度η1」については、インクがヘッドから吐出された時点のヘッドの温度をとする。 "Viscosity η2 at the temperature at the time of landing" is the ink flow that is caused by the wetting and spreading of the ink on the substrate (not due to the impact of landing). It can be called a viscosity, and more specifically, it is a viscosity that the ink reaches within one second after it lands on the substrate.
On the other hand, the “viscosity η1 at the temperature at the time of ejection” is the temperature of the head when the ink is ejected from the head.
粘度測定は、温度制御可能なストレス制御型レオメータ(例えばPhysicaMCR300、AntonPaar社製)に前記インクをセットして100℃に加熱し、降温速度0.1℃/sの条件で、25℃まで冷却し、粘度測定を行う。測定は直径75.033mm、コーン角1.017°のコーンプレート(例えばCP75-1、Anton Paar社製)を用いて行うことができる。
また、温度制御は、温度制御装置を用いて、例えば、PhysicaMCR300に付属のペルチェ素子型温度制御装置(TEK150P/MC1)により行うことができる。 Viscosity was measured by setting the ink in a temperature-controllable stress-controlled rheometer (eg, Physica MCR300, manufactured by AntonPaar), heating to 100°C, and cooling to 25°C at a cooling rate of 0.1°C/s. , to make a viscosity measurement. The measurement can be performed using a cone plate with a diameter of 75.033 mm and a cone angle of 1.017° (eg CP75-1, manufactured by Anton Paar).
Temperature control can be performed using a temperature control device, for example, a Peltier element type temperature control device (TEK150P/MC1) attached to PhysicaMCR300.
また、温度制御は、温度制御装置を用いて、例えば、PhysicaMCR300に付属のペルチェ素子型温度制御装置(TEK150P/MC1)により行うことができる。 Viscosity was measured by setting the ink in a temperature-controllable stress-controlled rheometer (eg, Physica MCR300, manufactured by AntonPaar), heating to 100°C, and cooling to 25°C at a cooling rate of 0.1°C/s. , to make a viscosity measurement. The measurement can be performed using a cone plate with a diameter of 75.033 mm and a cone angle of 1.017° (eg CP75-1, manufactured by Anton Paar).
Temperature control can be performed using a temperature control device, for example, a Peltier element type temperature control device (TEK150P/MC1) attached to PhysicaMCR300.
<粘度比率η2/η1の制御方法>
本発明に係るインクの粘度比率η2/η1の条件は、例えば、インクの組成、インク着弾時における温度や湿度等の物理的条件の設定などにより、適宜満たすことができる。
本発明に係るインクとしては、例えば、ホットメルト、チクソトロピー又はゲル化の何れかの相変化機構により粘度が変化する性能を有することが好ましい。上記性能を有することにより、インクの吐出時から着弾時にかけて、インクが相変化機能を発現することによって、本発明に係る粘度比率η2/η1の条件を満たすことができる。 <Method for controlling the viscosity ratio η2/η1>
The condition of the viscosity ratio η2/η1 of the ink according to the present invention can be appropriately satisfied by, for example, setting physical conditions such as the composition of the ink and the temperature and humidity when the ink lands.
The ink according to the present invention preferably has the ability to change its viscosity by a phase change mechanism such as hot melt, thixotropy, or gelation. By having the above performance, the ink exhibits a phase change function from the time of ejection of the ink to the time of landing, so that the condition of the viscosity ratio η2/η1 according to the present invention can be satisfied.
本発明に係るインクの粘度比率η2/η1の条件は、例えば、インクの組成、インク着弾時における温度や湿度等の物理的条件の設定などにより、適宜満たすことができる。
本発明に係るインクとしては、例えば、ホットメルト、チクソトロピー又はゲル化の何れかの相変化機構により粘度が変化する性能を有することが好ましい。上記性能を有することにより、インクの吐出時から着弾時にかけて、インクが相変化機能を発現することによって、本発明に係る粘度比率η2/η1の条件を満たすことができる。 <Method for controlling the viscosity ratio η2/η1>
The condition of the viscosity ratio η2/η1 of the ink according to the present invention can be appropriately satisfied by, for example, setting physical conditions such as the composition of the ink and the temperature and humidity when the ink lands.
The ink according to the present invention preferably has the ability to change its viscosity by a phase change mechanism such as hot melt, thixotropy, or gelation. By having the above performance, the ink exhibits a phase change function from the time of ejection of the ink to the time of landing, so that the condition of the viscosity ratio η2/η1 according to the present invention can be satisfied.
本発明において、「ホットメルト」とは、熱をかけて融かすことをいい、「ホットメルトによる相変化機構」とは、加熱(溶融)され粘度が低い状態(吐出時)から、冷却されることにより粘度が高い状態(着弾時)へ移行する機構のことをいう。
ホットメルトによる相変化機構を好適に発現させる観点から、吐出時と、着弾時とで、インクの温度を変化させることが好ましい。例えば、吐出時においてはインクを加熱、着弾時においてはインクを冷却する方法が挙げられ、このうちどちらか一方又は両方を行うことが好ましい。 In the present invention, "hot melt" refers to melting by applying heat, and "phase change mechanism by hot melt" refers to a state of being heated (melted) and having a low viscosity (at the time of ejection), and then being cooled. It refers to a mechanism that shifts to a state of high viscosity (at the time of impact).
From the viewpoint of favorably developing the phase change mechanism by hot melt, it is preferable to change the temperature of the ink between when it is ejected and when it lands. For example, there is a method of heating the ink at the time of ejection and cooling the ink at the time of landing, and it is preferable to perform either one or both of these methods.
ホットメルトによる相変化機構を好適に発現させる観点から、吐出時と、着弾時とで、インクの温度を変化させることが好ましい。例えば、吐出時においてはインクを加熱、着弾時においてはインクを冷却する方法が挙げられ、このうちどちらか一方又は両方を行うことが好ましい。 In the present invention, "hot melt" refers to melting by applying heat, and "phase change mechanism by hot melt" refers to a state of being heated (melted) and having a low viscosity (at the time of ejection), and then being cooled. It refers to a mechanism that shifts to a state of high viscosity (at the time of impact).
From the viewpoint of favorably developing the phase change mechanism by hot melt, it is preferable to change the temperature of the ink between when it is ejected and when it lands. For example, there is a method of heating the ink at the time of ejection and cooling the ink at the time of landing, and it is preferable to perform either one or both of these methods.
本発明において、吐出時と、着弾時とで、インクの温度を変化させる場合には、インクジェットヘッドに充填されたインクを加熱するためのヒーター(加熱手段)や、基板を冷却するための冷却手段などのような温度調整手段を適宜用いることが好ましい。
In the present invention, when the temperature of the ink is changed between when it is ejected and when it lands, a heater (heating means) for heating the ink filled in the inkjet head and a cooling means for cooling the substrate are used. It is preferable to appropriately use a temperature adjusting means such as.
本発明において、「チクソトロピー」とは、ゲルのような塑性固体とゾルのような非ニュートン液体との中間的性質であり、粘度が時間経過とともに変化するもののことをいう。
また、「チクソトロピーによる相変化機構」とは、撹拌や振動などによるせん断応力の作用下での粘度が低い状態(吐出時)から、せん断応力の作用が減少される又は静止されることにより粘度が高い状態(着弾後)へ移行する相変化機構のことをいう。
例えば、インクジェットヘッドに充填されたインクに撹拌や振動(微振動)を加えるせん断応力付与手段を適宜用いてチクソトロピーによる相変化機構を発現させることができる。 In the present invention, "thixotropy" refers to a property intermediate between plastic solids such as gels and non-Newtonian liquids such as sols, where the viscosity changes over time.
In addition, the "phase change mechanism due to thixotropy" refers to the state in which the viscosity is low (at the time of ejection) under the action of shear stress due to stirring, vibration, etc., and the viscosity increases when the action of shear stress is reduced or stopped. It refers to the phase change mechanism that shifts to a high state (after impact).
For example, a shear stress imparting means for applying agitation or vibration (microvibration) to the ink filled in the inkjet head can be appropriately used to develop a phase change mechanism by thixotropy.
また、「チクソトロピーによる相変化機構」とは、撹拌や振動などによるせん断応力の作用下での粘度が低い状態(吐出時)から、せん断応力の作用が減少される又は静止されることにより粘度が高い状態(着弾後)へ移行する相変化機構のことをいう。
例えば、インクジェットヘッドに充填されたインクに撹拌や振動(微振動)を加えるせん断応力付与手段を適宜用いてチクソトロピーによる相変化機構を発現させることができる。 In the present invention, "thixotropy" refers to a property intermediate between plastic solids such as gels and non-Newtonian liquids such as sols, where the viscosity changes over time.
In addition, the "phase change mechanism due to thixotropy" refers to the state in which the viscosity is low (at the time of ejection) under the action of shear stress due to stirring, vibration, etc., and the viscosity increases when the action of shear stress is reduced or stopped. It refers to the phase change mechanism that shifts to a high state (after impact).
For example, a shear stress imparting means for applying agitation or vibration (microvibration) to the ink filled in the inkjet head can be appropriately used to develop a phase change mechanism by thixotropy.
本発明において、「ゲル化による相変化機構」とは、溶質の独立した運動性により粘度が低い状態(吐出時)から、化学的又は物理的な凝集によって形成される高分子網目、微粒子の凝集構造などの相互作用により、溶質が独立した運動性を失って集合した構造を形成し、粘度が高い状態(着弾時)へ移行する相変化機構のことをいう。この場合、インク中に、オイルゲル化剤(詳しくは後述する。)などのようなゲル化剤を含むことが好ましい。
In the present invention, the term "phase change mechanism due to gelation" refers to the aggregation of polymer networks and fine particles formed by chemical or physical aggregation from a low viscosity state (at the time of ejection) due to the independent mobility of solutes. It refers to a phase change mechanism in which solutes lose their independent mobility and form aggregated structures due to interactions with structures, etc., and transition to a highly viscous state (at the time of impact). In this case, the ink preferably contains a gelling agent such as an oil gelling agent (details will be described later).
ゲル化による相変化機構を好適に発現させる観点から、吐出時と、着弾時とで、インクの温度を変化させることが好ましい。例えば、吐出時にインクをゾル-ゲル相転移温度(ゲル化温度)以上に加熱してゾル化させておき、着弾時にインクがゾル-ゲル相転移温度(ゲル化温度)以下に冷却されることでゲル化させる方法が好ましい。
From the viewpoint of favorably expressing the phase change mechanism due to gelation, it is preferable to change the temperature of the ink between when it is ejected and when it lands. For example, when the ink is heated to a temperature above the sol-gel phase transition temperature (gelation temperature) during ejection to form a sol, the ink is cooled below the sol-gel phase transition temperature (gelation temperature) upon impact. A gelling method is preferred.
[4.1 熱硬化性インクジェットインク]
本発明に用いられるインクは、熱硬化性官能基を有する化合物とゲル化剤を含有し、温度によるゾル・ゲル相転移する熱硬化性インクジェットインクであることが好ましい。また、熱硬化性インクジェットインクは、光重合性官能基を有する化合物と光重合開始剤を含有することが更に好ましい。 [4.1 Thermosetting inkjet ink]
The ink used in the present invention is preferably a thermosetting inkjet ink that contains a compound having a thermosetting functional group and a gelling agent and undergoes a sol-gel phase transition due to temperature. Further, the thermosetting inkjet ink more preferably contains a compound having a photopolymerizable functional group and a photopolymerization initiator.
本発明に用いられるインクは、熱硬化性官能基を有する化合物とゲル化剤を含有し、温度によるゾル・ゲル相転移する熱硬化性インクジェットインクであることが好ましい。また、熱硬化性インクジェットインクは、光重合性官能基を有する化合物と光重合開始剤を含有することが更に好ましい。 [4.1 Thermosetting inkjet ink]
The ink used in the present invention is preferably a thermosetting inkjet ink that contains a compound having a thermosetting functional group and a gelling agent and undergoes a sol-gel phase transition due to temperature. Further, the thermosetting inkjet ink more preferably contains a compound having a photopolymerizable functional group and a photopolymerization initiator.
<熱硬化性官能基>
熱硬化性官能基としては、例えば、ヒドロキシ基、カルボキシ基、イソシアネート基、エポキシ基、(メタ)アクリル基、マレイミド基、メルカプト基、アルコキシ基等が挙げられる。これらを一種単独で用いても、二種以上併用してもよい。 <Thermosetting functional group>
Thermosetting functional groups include, for example, a hydroxy group, a carboxy group, an isocyanate group, an epoxy group, a (meth)acrylic group, a maleimide group, a mercapto group, and an alkoxy group. These may be used individually by 1 type, or 2 or more types may be used together.
熱硬化性官能基としては、例えば、ヒドロキシ基、カルボキシ基、イソシアネート基、エポキシ基、(メタ)アクリル基、マレイミド基、メルカプト基、アルコキシ基等が挙げられる。これらを一種単独で用いても、二種以上併用してもよい。 <Thermosetting functional group>
Thermosetting functional groups include, for example, a hydroxy group, a carboxy group, an isocyanate group, an epoxy group, a (meth)acrylic group, a maleimide group, a mercapto group, and an alkoxy group. These may be used individually by 1 type, or 2 or more types may be used together.
<ゲル化剤>
ゲル化剤は、光及び熱により硬化した硬化膜中に均一に分散した状態で保持されることが好ましく、これにより硬化膜中への水分の浸透を防ぐことができる。 <Gelling agent>
The gelling agent is preferably maintained in a state of being uniformly dispersed in the cured film cured by light and heat, thereby preventing permeation of moisture into the cured film.
ゲル化剤は、光及び熱により硬化した硬化膜中に均一に分散した状態で保持されることが好ましく、これにより硬化膜中への水分の浸透を防ぐことができる。 <Gelling agent>
The gelling agent is preferably maintained in a state of being uniformly dispersed in the cured film cured by light and heat, thereby preventing permeation of moisture into the cured film.
ゲル化剤としては、下記一般式(G1)又は(G2)で表される化合物うちの少なくとも一種の化合物を含むことが好ましい。これにより、インクの硬化性を阻害せずに、硬化膜中に均一にゲル化剤を分散することができる。また、インクジェット印刷において、ピニング性が良好で、細線と膜厚が両立した描画ができ、細線再現性に優れる。
一般式(G1):R1-CO-R2
一般式(G2):R3-COO-R4
[式中、R1~R4は、それぞれ独立に、炭素数12以上の直鎖部分を持ち、かつ分岐を持ってもよいアルキル鎖を表す。] The gelling agent preferably contains at least one compound represented by the following general formula (G1) or (G2). Thereby, the gelling agent can be uniformly dispersed in the cured film without impairing the curability of the ink. Moreover, in inkjet printing, it has good pinning properties, can be drawn with both fine lines and film thickness, and is excellent in fine line reproducibility.
General formula (G1): R 1 —CO—R 2
General formula (G2): R 3 —COO—R 4
[In the formula, R 1 to R 4 each independently represent an optionally branched alkyl chain having a linear portion of 12 or more carbon atoms. ]
一般式(G1):R1-CO-R2
一般式(G2):R3-COO-R4
[式中、R1~R4は、それぞれ独立に、炭素数12以上の直鎖部分を持ち、かつ分岐を持ってもよいアルキル鎖を表す。] The gelling agent preferably contains at least one compound represented by the following general formula (G1) or (G2). Thereby, the gelling agent can be uniformly dispersed in the cured film without impairing the curability of the ink. Moreover, in inkjet printing, it has good pinning properties, can be drawn with both fine lines and film thickness, and is excellent in fine line reproducibility.
General formula (G1): R 1 —CO—R 2
General formula (G2): R 3 —COO—R 4
[In the formula, R 1 to R 4 each independently represent an optionally branched alkyl chain having a linear portion of 12 or more carbon atoms. ]
一般式(G1)で表されるケトンワックス又は一般式(G2)で表されるエステルワックスは、直鎖状又は分岐鎖状の炭化水素基(アルキル鎖)の炭素数が12以上であるため、ゲル化剤の結晶性がより高まり、耐水性が向上する、かつ、下記カードハウス構造においてより十分な空間が生ずる。そのため、溶媒、光重合性化合物等のインク媒体が上記空間内に十分に内包されやすくなり、インクのピニング性がより高くなる。
Since the ketone wax represented by the general formula (G1) or the ester wax represented by the general formula (G2) has 12 or more carbon atoms in the linear or branched hydrocarbon group (alkyl chain), The crystallinity of the gelling agent is higher, the water resistance is improved, and there is more sufficient space in the following card house structure. Therefore, an ink medium such as a solvent and a photopolymerizable compound can be sufficiently contained in the space, and the pinning property of the ink is further enhanced.
また、直鎖状又は分岐鎖状の炭化水素基(アルキル鎖)の炭素数は26以下であることが好ましく、26以下であると、ゲル化剤の融点が過度に高まらないため、インクを吐出するときにインクを過度に加熱する必要がない。
In addition, the number of carbon atoms in the linear or branched hydrocarbon group (alkyl chain) is preferably 26 or less. There is no need to overheat the ink when printing.
上記観点からは、R1及びR2、又は、R3及びR4は炭素原子数12以上23以下の直鎖状の炭化水素基であることが特に好ましい。また、インクのゲル化温度を高くして、着弾後により急速にインクをゲル化させる観点からは、R1若しくはR2のいずれか、又はR3若しくはR4のいずれかが飽和している炭素原子数12以上23以下の炭化水素基であることが好ましい。
From the above viewpoint, it is particularly preferable that R 1 and R 2 or R 3 and R 4 are straight chain hydrocarbon groups having 12 or more and 23 or less carbon atoms. In addition , from the viewpoint of increasing the gelling temperature of the ink and gelling the ink more rapidly after landing , carbon A hydrocarbon group having from 12 to 23 atoms is preferred.
上記観点からは、R1及びR2の双方、又は、R3及びR4の双方が飽和している炭素原子数11以上23未満の炭化水素基であることがより好ましい。
From the above viewpoint, both R 1 and R 2 or both R 3 and R 4 are more preferably saturated hydrocarbon groups having 11 or more and less than 23 carbon atoms.
ゲル化剤の含有量は、インクの全質量に対して0.5~5.0質量%の範囲内であることが好ましい。ゲル化剤の含有量を上記範囲内とすることで、ゲル化剤の溶媒成分に対する溶解性及びピニング性効果が良好となり、さらに、硬化膜としたときの耐水性が良好になる。また、上記観点からは、インクジェットインク中のゲル化剤の含有量は、0.5~2.5質量%の範囲内であることがより好ましい。
The content of the gelling agent is preferably within the range of 0.5 to 5.0% by mass with respect to the total mass of the ink. By setting the content of the gelling agent within the above range, the solubility of the gelling agent in the solvent component and the pinning effect are improved, and the water resistance of the cured film is improved. Moreover, from the above viewpoint, the content of the gelling agent in the inkjet ink is more preferably in the range of 0.5 to 2.5% by mass.
また、以下の観点から、ゲル化剤は、インクのゲル化温度以下の温度で、インク中で結晶化することが好ましい。ゲル化温度とは、加熱によりゾル化又は液体化したインクを冷却していったときに、ゲル化剤がゾルからゲルに相転移し、インクの粘度が急変する温度をいう。具体的には、ゾル化又は液体化したインクを、粘弾性測定装置(例えば、MCR300、Physica社製)で粘度を測定しながら冷却していき、粘度が急激に上昇した温度を、そのインクのゲル化温度とすることができる。
Also, from the following point of view, it is preferable that the gelling agent crystallize in the ink at a temperature equal to or lower than the gelling temperature of the ink. The gelation temperature is the temperature at which the gelling agent undergoes a phase transition from sol to gel and the viscosity of the ink suddenly changes when the ink that has been solified or liquefied by heating is cooled. Specifically, the solified or liquefied ink is cooled while measuring the viscosity with a viscoelasticity measuring device (for example, MCR300, manufactured by Physica), and the temperature at which the viscosity rises rapidly is measured as the temperature of the ink. It can be the gelation temperature.
<光重合性官能基を有する化合物>
光重合性官能基を有する化合物(光重合性化合物ともいう。)は、活性光線の照射によって反応が生じて重合又は架橋し、インクを硬化させる作用を有する化合物であればよい。光重合性化合物の例には、ラジカル重合性化合物及びカチオン重合性化合物が含まれる。光重合性化合物は、モノマー、重合性オリゴマー、プレポリマー又はこれらの混合物のいずれであってもよい。光重合性化合物は、インクジェットインク中に一種のみが含まれていてもよく、二種以上が含まれていてもよい。 <Compound having a photopolymerizable functional group>
The compound having a photopolymerizable functional group (also referred to as a photopolymerizable compound) may be any compound that reacts with irradiation of actinic rays to polymerize or crosslink to cure the ink. Examples of photopolymerizable compounds include radically polymerizable compounds and cationically polymerizable compounds. A photopolymerizable compound may be a monomer, a polymerizable oligomer, a prepolymer, or a mixture thereof. The inkjet ink may contain only one type of photopolymerizable compound, or two or more types thereof.
光重合性官能基を有する化合物(光重合性化合物ともいう。)は、活性光線の照射によって反応が生じて重合又は架橋し、インクを硬化させる作用を有する化合物であればよい。光重合性化合物の例には、ラジカル重合性化合物及びカチオン重合性化合物が含まれる。光重合性化合物は、モノマー、重合性オリゴマー、プレポリマー又はこれらの混合物のいずれであってもよい。光重合性化合物は、インクジェットインク中に一種のみが含まれていてもよく、二種以上が含まれていてもよい。 <Compound having a photopolymerizable functional group>
The compound having a photopolymerizable functional group (also referred to as a photopolymerizable compound) may be any compound that reacts with irradiation of actinic rays to polymerize or crosslink to cure the ink. Examples of photopolymerizable compounds include radically polymerizable compounds and cationically polymerizable compounds. A photopolymerizable compound may be a monomer, a polymerizable oligomer, a prepolymer, or a mixture thereof. The inkjet ink may contain only one type of photopolymerizable compound, or two or more types thereof.
ラジカル重合性化合物は、不飽和カルボン酸エステル化合物であることが好ましく、(メタ)アクリレートであることがより好ましい。そのような化合物としては、前記の(メタ)アクリル基を有する化合物が挙げられる。
The radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, more preferably a (meth)acrylate. Examples of such compounds include compounds having the aforementioned (meth)acryl groups.
カチオン重合性化合物は、エポキシ化合物、ビニルエーテル化合物、及びオキセタン化合物などでありうる。カチオン重合性化合物は、インクジェットインク中に、一種のみが含まれていてもよく、二種以上が含まれていてもよい。
The cationic polymerizable compound can be an epoxy compound, a vinyl ether compound, an oxetane compound, or the like. The inkjet ink may contain only one kind of cationic polymerizable compound, or may contain two or more kinds thereof.
<光重合開始剤>
光重合開始剤は、光重合性化合物がラジカル重合性化合物であるときは、光ラジカル開始剤を用い、前記光重合性化合物がカチオン重合性化合物であるときは、光酸発生剤を用いることが好ましい。 <Photoinitiator>
The photopolymerization initiator is a photoradical initiator when the photopolymerizable compound is a radically polymerizable compound, and a photoacid generator when the photopolymerizable compound is a cationic polymerizable compound. preferable.
光重合開始剤は、光重合性化合物がラジカル重合性化合物であるときは、光ラジカル開始剤を用い、前記光重合性化合物がカチオン重合性化合物であるときは、光酸発生剤を用いることが好ましい。 <Photoinitiator>
The photopolymerization initiator is a photoradical initiator when the photopolymerizable compound is a radically polymerizable compound, and a photoacid generator when the photopolymerizable compound is a cationic polymerizable compound. preferable.
光重合開始剤は、本発明のインク中に、一種のみが含まれていてもよく、二種以上が含まれていてもよい。光重合開始剤は、光ラジカル開始剤と光酸発生剤の両方の組み合わせであってもよい。光ラジカル開始剤には、開裂型ラジカル開始剤及び水素引き抜き型ラジカル開始剤が含まれる。
The ink of the present invention may contain only one type of photopolymerization initiator, or two or more types thereof. The photoinitiator may be a combination of both a photoradical initiator and a photoacid generator. Photoradical initiators include cleavage radical initiators and hydrogen abstraction radical initiators.
<着色剤>
本発明に用いられるインクは、必要に応じて着色剤を更に含有してもよい。着色剤は、染料又は顔料でありうるが、インクの構成成分に対して良好な分散性を有し、かつ耐候性に優れることから、顔料が好ましい。 <Colorant>
The ink used in the present invention may further contain a colorant as needed. The colorant may be a dye or a pigment, but a pigment is preferred because it has good dispersibility in the constituent components of the ink and has excellent weather resistance.
本発明に用いられるインクは、必要に応じて着色剤を更に含有してもよい。着色剤は、染料又は顔料でありうるが、インクの構成成分に対して良好な分散性を有し、かつ耐候性に優れることから、顔料が好ましい。 <Colorant>
The ink used in the present invention may further contain a colorant as needed. The colorant may be a dye or a pigment, but a pigment is preferred because it has good dispersibility in the constituent components of the ink and has excellent weather resistance.
顔料の分散は、顔料粒子の体積平均粒径が、好ましくは0.08~0.5μmの範囲内、最大粒径が好ましくは0.3~10μmの範囲内、より好ましくは0.3~3μmの範囲内となるように行われることが好ましい。顔料の分散は、顔料、分散剤、及び分散媒体の選定、分散条件、及び濾過条件等によって、調整される。
Dispersion of the pigment is such that the volume average particle size of the pigment particles is preferably in the range of 0.08 to 0.5 μm, the maximum particle size is preferably in the range of 0.3 to 10 μm, more preferably 0.3 to 3 μm. is preferably within the range of Dispersion of the pigment is adjusted by selection of the pigment, dispersant and dispersion medium, dispersion conditions, filtration conditions, and the like.
なお、顔料の分散性を高めるために、分散剤及び分散助剤を更に含んでもよい。分散剤及び分散助剤の合計量は、顔料に対して1~50質量%の範囲内であることが好ましい。
In addition, a dispersant and a dispersing aid may be further included in order to improve the dispersibility of the pigment. The total amount of the dispersant and dispersing aid is preferably within the range of 1 to 50% by mass based on the pigment.
本発明に用いられるインクは、必要に応じて顔料を分散させるための分散媒体を更に含んでもよい。分散媒体として溶剤をインクに含ませてもよいが、形成された印刷物における溶剤の残留を抑制するためには、前述のような光重合性化合物(特に粘度の低いモノマー)を分散媒体として用いることが好ましい。
The ink used in the present invention may further contain a dispersing medium for dispersing the pigment, if necessary. A solvent may be included in the ink as a dispersion medium, but in order to suppress the residual solvent in the formed print, a photopolymerizable compound (especially a monomer with low viscosity) as described above is used as the dispersion medium. is preferred.
染料を用いる場合には、油溶性染料等が挙げられる。
When dyes are used, oil-soluble dyes and the like can be mentioned.
着色剤はインク中に、一種又は二種以上を含み、所望の色に調色してもよい。着色剤の含有量は、インク全量に対して0.1~20質量%の範囲内であることが好ましく、0.4~10質量%の範囲内であることがより好ましい。
The ink may contain one or two or more colorants to obtain a desired color. The content of the colorant is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 0.4 to 10% by mass, based on the total amount of the ink.
<その他の成分>
本発明に用いられるインクは、本発明の効果が得られる範囲において、重合禁止剤、界面活性剤、硬化促進剤、カップリング剤、イオン捕捉剤等のその他の成分を更に含んでいてもよい。これらの成分は、当該インク中に、一種のみが含まれていてもよく、二種以上が含まれていてもよい。また、硬化性の観点から本来は無溶剤が好ましいが、インク粘度の調整のために溶剤を添加することもできる。 <Other ingredients>
The ink used in the present invention may further contain other components such as polymerization inhibitors, surfactants, curing accelerators, coupling agents, ion scavengers, etc., as long as the effects of the present invention can be obtained. Only one kind of these components may be contained in the ink, or two or more kinds thereof may be contained. From the viewpoint of curability, a solvent-free ink is originally preferable, but a solvent may be added to adjust the viscosity of the ink.
本発明に用いられるインクは、本発明の効果が得られる範囲において、重合禁止剤、界面活性剤、硬化促進剤、カップリング剤、イオン捕捉剤等のその他の成分を更に含んでいてもよい。これらの成分は、当該インク中に、一種のみが含まれていてもよく、二種以上が含まれていてもよい。また、硬化性の観点から本来は無溶剤が好ましいが、インク粘度の調整のために溶剤を添加することもできる。 <Other ingredients>
The ink used in the present invention may further contain other components such as polymerization inhibitors, surfactants, curing accelerators, coupling agents, ion scavengers, etc., as long as the effects of the present invention can be obtained. Only one kind of these components may be contained in the ink, or two or more kinds thereof may be contained. From the viewpoint of curability, a solvent-free ink is originally preferable, but a solvent may be added to adjust the viscosity of the ink.
<物性>
本発明に用いられるインクは、40℃以上100℃未満の範囲内に相転移点を有することが好ましい。相転移点が40℃以上であると、印刷媒体に着弾後、インクが速やかにゲル化するため、ピニング性がより高くなる。また、相転移点が100℃未満であると、インク取り扱い性が良好になり吐出安定性が高くなる。より低温でインクを吐出可能にし、画像形成装置への負荷を低減させる観点からは、当該インクの相転移点は、40~60℃の範囲内であることがより好ましい。 <Physical properties>
The ink used in the present invention preferably has a phase transition point within the range of 40°C or higher and lower than 100°C. When the phase transition point is 40° C. or higher, the ink quickly gels after landing on the print medium, resulting in higher pinning properties. In addition, when the phase transition point is less than 100° C., the ink handleability is improved and the ejection stability is enhanced. From the viewpoint of enabling the ink to be ejected at a lower temperature and reducing the load on the image forming apparatus, the phase transition point of the ink is more preferably in the range of 40 to 60°C.
本発明に用いられるインクは、40℃以上100℃未満の範囲内に相転移点を有することが好ましい。相転移点が40℃以上であると、印刷媒体に着弾後、インクが速やかにゲル化するため、ピニング性がより高くなる。また、相転移点が100℃未満であると、インク取り扱い性が良好になり吐出安定性が高くなる。より低温でインクを吐出可能にし、画像形成装置への負荷を低減させる観点からは、当該インクの相転移点は、40~60℃の範囲内であることがより好ましい。 <Physical properties>
The ink used in the present invention preferably has a phase transition point within the range of 40°C or higher and lower than 100°C. When the phase transition point is 40° C. or higher, the ink quickly gels after landing on the print medium, resulting in higher pinning properties. In addition, when the phase transition point is less than 100° C., the ink handleability is improved and the ejection stability is enhanced. From the viewpoint of enabling the ink to be ejected at a lower temperature and reducing the load on the image forming apparatus, the phase transition point of the ink is more preferably in the range of 40 to 60°C.
インクのインクジェットヘッドからの吐出性をより高める観点から、本発明に係る顔料粒子の平均分散粒径は、50~150nmの範囲内であることが好ましく、80~130nmの範囲内であることがより好ましい。また、最大粒径は、300~1000nmの範囲内であることが好ましい。
なお、本発明において、顔料粒子の「平均分散粒径」は、データサイザーナノZSP、Malvern社製を使用して動的光散乱法によって求めた値のことをいう。着色剤を含むインクについては、濃度が高く、当該測定機器では光が透過しないため、インクを200倍で希釈し測定する。測定温度は常温(25℃)とする。 From the viewpoint of further improving the ejection property of the ink from the inkjet head, the average dispersed particle size of the pigment particles according to the present invention is preferably within the range of 50 to 150 nm, more preferably within the range of 80 to 130 nm. preferable. Also, the maximum particle size is preferably in the range of 300 to 1000 nm.
In the present invention, the "average dispersed particle diameter" of pigment particles refers to a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Since ink containing a coloring agent has a high density and does not transmit light with the measuring instrument, the ink is diluted 200 times for measurement. The measurement temperature is normal temperature (25°C).
なお、本発明において、顔料粒子の「平均分散粒径」は、データサイザーナノZSP、Malvern社製を使用して動的光散乱法によって求めた値のことをいう。着色剤を含むインクについては、濃度が高く、当該測定機器では光が透過しないため、インクを200倍で希釈し測定する。測定温度は常温(25℃)とする。 From the viewpoint of further improving the ejection property of the ink from the inkjet head, the average dispersed particle size of the pigment particles according to the present invention is preferably within the range of 50 to 150 nm, more preferably within the range of 80 to 130 nm. preferable. Also, the maximum particle size is preferably in the range of 300 to 1000 nm.
In the present invention, the "average dispersed particle diameter" of pigment particles refers to a value determined by a dynamic light scattering method using Datasizer Nano ZSP, manufactured by Malvern. Since ink containing a coloring agent has a high density and does not transmit light with the measuring instrument, the ink is diluted 200 times for measurement. The measurement temperature is normal temperature (25°C).
[5 ソルダーレジストパターンの形成方法]
本発明に用いられるインクは、プリント回路基板に用いられるソルダーレジストパターンを形成するためのソルダーレジストインクであることが好ましい。当該インクを用いて、ソルダーレジストパターンを形成することにより、ソルダーレジストパターンへの水分の浸透を防ぐことができ、その結果、プリント回路基板における銅箔とソルダーレジストパターン界面の密着性が良好となる。また、銅のマイグレーションを防止し、絶縁性の低下を抑制できる。 [5 Method for forming solder resist pattern]
The ink used in the present invention is preferably a solder resist ink for forming a solder resist pattern used for printed circuit boards. By forming a solder resist pattern using the ink, it is possible to prevent the penetration of moisture into the solder resist pattern, and as a result, the adhesion between the copper foil and the solder resist pattern interface on the printed circuit board is improved. . Moreover, migration of copper can be prevented, and deterioration of insulation can be suppressed.
本発明に用いられるインクは、プリント回路基板に用いられるソルダーレジストパターンを形成するためのソルダーレジストインクであることが好ましい。当該インクを用いて、ソルダーレジストパターンを形成することにより、ソルダーレジストパターンへの水分の浸透を防ぐことができ、その結果、プリント回路基板における銅箔とソルダーレジストパターン界面の密着性が良好となる。また、銅のマイグレーションを防止し、絶縁性の低下を抑制できる。 [5 Method for forming solder resist pattern]
The ink used in the present invention is preferably a solder resist ink for forming a solder resist pattern used for printed circuit boards. By forming a solder resist pattern using the ink, it is possible to prevent the penetration of moisture into the solder resist pattern, and as a result, the adhesion between the copper foil and the solder resist pattern interface on the printed circuit board is improved. . Moreover, migration of copper can be prevented, and deterioration of insulation can be suppressed.
本発明に用いられるインクを用いたソルダーレジストパターンの形成方法は、下記(1)インクをインクジェットヘッドのノズルから吐出して、回路形成されたプリント回路基板上に着弾させる工程と、下記(3)インクを加熱して本硬化する工程とを含むことが好ましい。
本発明に用いられるインクが、光重合性官能基を有する化合物及び光重合開始剤を含有する場合は、上記(1)と(3)の工程の間に、着弾したインクに活性光線を照射してインクを仮硬化させる工程((2)の工程)を含むことが好ましい。 The method for forming a solder resist pattern using the ink used in the present invention includes the following (1) step of ejecting the ink from the nozzle of the inkjet head and making it land on the printed circuit board on which the circuit is formed, and (3) below. and a step of heating the ink for final curing.
When the ink used in the present invention contains a compound having a photopolymerizable functional group and a photopolymerization initiator, the deposited ink is irradiated with an actinic ray between steps (1) and (3). It is preferable that a step (step (2)) of temporarily curing the ink is included.
本発明に用いられるインクが、光重合性官能基を有する化合物及び光重合開始剤を含有する場合は、上記(1)と(3)の工程の間に、着弾したインクに活性光線を照射してインクを仮硬化させる工程((2)の工程)を含むことが好ましい。 The method for forming a solder resist pattern using the ink used in the present invention includes the following (1) step of ejecting the ink from the nozzle of the inkjet head and making it land on the printed circuit board on which the circuit is formed, and (3) below. and a step of heating the ink for final curing.
When the ink used in the present invention contains a compound having a photopolymerizable functional group and a photopolymerization initiator, the deposited ink is irradiated with an actinic ray between steps (1) and (3). It is preferable that a step (step (2)) of temporarily curing the ink is included.
(1)の工程:
(1)の工程では、本発明のインクの液滴をインクジェットヘッドから吐出して、印刷媒体であるプリント回路基板上の、形成すべきソルダーレジストパターンに応じた位置に着弾させて、パターニングする。インクジェットヘッドからの吐出方式は、オンデマンド方式又はコンティニュアス方式のどちらでもよい。 Step (1):
In step (1), droplets of the ink of the present invention are ejected from an inkjet head and landed on a printed circuit board, which is a printing medium, at a position corresponding to the solder resist pattern to be formed, and patterned. Either an on-demand method or a continuous method may be used as the ejection method from the inkjet head.
(1)の工程では、本発明のインクの液滴をインクジェットヘッドから吐出して、印刷媒体であるプリント回路基板上の、形成すべきソルダーレジストパターンに応じた位置に着弾させて、パターニングする。インクジェットヘッドからの吐出方式は、オンデマンド方式又はコンティニュアス方式のどちらでもよい。 Step (1):
In step (1), droplets of the ink of the present invention are ejected from an inkjet head and landed on a printed circuit board, which is a printing medium, at a position corresponding to the solder resist pattern to be formed, and patterned. Either an on-demand method or a continuous method may be used as the ejection method from the inkjet head.
インクの液滴を加熱した状態で、インクジェットヘッドから吐出することにより、吐出安定性を高めることができる。吐出時のインクの温度は、40~100℃の範囲内であることが好ましく、吐出安定性をより高めるためには、40~90℃の範囲内であることがより好ましい。特に、インクの粘度が7~15mPa・sの範囲内、より好ましくは8~13mPa・sの範囲内となるようなインク温度において吐出を行うことが好ましい。
Ejection stability can be improved by ejecting heated ink droplets from the inkjet head. The ink temperature during ejection is preferably in the range of 40 to 100° C., and more preferably in the range of 40 to 90° C. in order to further improve the ejection stability. In particular, it is preferable to perform ejection at an ink temperature such that the viscosity of the ink is within the range of 7 to 15 mPa·s, more preferably within the range of 8 to 13 mPa·s.
ゾル・ゲル相転移型のインクは、インクジェットヘッドからのインクの吐出性を高めるために、インクジェットヘッドに充填されたときのインクの温度が、当該インクの(ゲル化温度+10)℃~(ゲル化温度+30)℃に設定されることが好ましい。インクジェットヘッド内のインクの温度が、(ゲル化温度+10)℃未満であると、インクジェットヘッド内又はノズル表面でインクがゲル化して、インクの吐出性が低下しやすい。一方、インクジェットヘッド内のインクの温度が(ゲル化温度+30)℃を超えると、インクが高温になりすぎるため、インク成分が劣化することがある。
In the sol-gel phase transition type ink, in order to improve the ejection property of the ink from the inkjet head, the temperature of the ink when the inkjet head is filled is (gelling temperature + 10) ° C. ~ (gelling The temperature is preferably set at +30°C. If the temperature of the ink in the inkjet head is lower than (gelling temperature + 10)°C, the ink gels in the inkjet head or on the surface of the nozzle, and the ink dischargeability tends to decrease. On the other hand, if the temperature of the ink in the inkjet head exceeds (gelling temperature + 30)°C, the ink becomes too hot, and the ink components may deteriorate.
インクの加熱方法は、特に制限されない。例えば、ヘッドキャリッジを構成するインクタンク、供給パイプ及びヘッド直前の前室インクタンク等のインク供給系、フィルター付き配管並びにピエゾヘッド等の少なくともいずれかをパネルヒーター、リボンヒーター又は保温水等によって加熱することができる。吐出される際のインクの液滴量は、印刷速度及び画質の面から、2~20pLの範囲内であることが好ましい。
The method of heating the ink is not particularly limited. For example, at least one of an ink tank constituting the head carriage, an ink supply system such as a supply pipe and an ink tank in the front chamber immediately before the head, a pipe with a filter, a piezo head, etc. is heated by a panel heater, a ribbon heater, or thermal water. be able to. The amount of ink droplets to be ejected is preferably in the range of 2 to 20 pL in terms of printing speed and image quality.
プリント回路基板は、特に限定されないが、例えば、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素・ポリエチレン・PPO・シアネートエステル等を用いた高周波回路用銅張積層版等の材質を用いたもので全てのグレード(FR-4等)の銅張積層版、その他ポリイミドフィルム、PETフィルム、ガラス基板、セラミック基板、ウエハ板、ステンレス鋼板等であることが好ましい。
The printed circuit board is not particularly limited, but for example, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy, synthetic fiber epoxy, fluorine/polyethylene/PPO/cyanate ester All grades (FR-4, etc.) copper clad laminates, polyimide films, PET films, glass substrates, ceramic substrates, wafer plates, etc. A stainless steel plate or the like is preferable.
(2)の工程:
(2)の工程では、(1)の工程で着弾させたインクに活性光線を照射して、該インクを仮硬化する。活性光線は、例えば電子線、紫外線、α線、γ線、及びエックス線等から選択することができるが、好ましくは紫外線である。紫外線の照射は、例えばPhoseon Technology社製の水冷LEDを用いて、波長395nmの条件下で行うことができる。LEDを光源とすることで、光源の輻射熱によってインクが溶けることによるインクの硬化不良を抑制することができる。 Step (2):
In the step (2), the ink landed in the step (1) is irradiated with actinic rays to temporarily cure the ink. Actinic rays can be selected from, for example, electron beams, ultraviolet rays, α rays, γ rays, and X rays, and preferably ultraviolet rays. Irradiation of ultraviolet rays can be performed under the condition of a wavelength of 395 nm using, for example, a water-cooled LED manufactured by Phoseon Technology. By using an LED as a light source, it is possible to suppress poor curing of the ink due to melting of the ink by the radiant heat of the light source.
(2)の工程では、(1)の工程で着弾させたインクに活性光線を照射して、該インクを仮硬化する。活性光線は、例えば電子線、紫外線、α線、γ線、及びエックス線等から選択することができるが、好ましくは紫外線である。紫外線の照射は、例えばPhoseon Technology社製の水冷LEDを用いて、波長395nmの条件下で行うことができる。LEDを光源とすることで、光源の輻射熱によってインクが溶けることによるインクの硬化不良を抑制することができる。 Step (2):
In the step (2), the ink landed in the step (1) is irradiated with actinic rays to temporarily cure the ink. Actinic rays can be selected from, for example, electron beams, ultraviolet rays, α rays, γ rays, and X rays, and preferably ultraviolet rays. Irradiation of ultraviolet rays can be performed under the condition of a wavelength of 395 nm using, for example, a water-cooled LED manufactured by Phoseon Technology. By using an LED as a light source, it is possible to suppress poor curing of the ink due to melting of the ink by the radiant heat of the light source.
紫外線の照射は、370~410nmの範囲内の波長を有する紫外線のソルダーレジストパターン表面におけるピーク照度が、好ましくは0.5~10W/cm2の範囲内、より好ましくは1~5W/cm2の範囲内となるように行う。輻射熱がインクに照射されることを抑制する観点からは、ソルダーレジストパターンに照射される光量は500mJ/cm2未満であることが好ましい。活性光線の照射は、インク着弾後0.001~300秒の間に行うことが好ましく、高精細なソルダーレジストパターンを形成するためには、0.001~60秒の間に行うことがより好ましい。
Irradiation of ultraviolet rays has a wavelength in the range of 370 to 410 nm, and the peak illuminance on the surface of the solder resist pattern is preferably in the range of 0.5 to 10 W/cm 2 , more preferably 1 to 5 W/cm 2 . Keep it within the range. From the viewpoint of suppressing the ink from being irradiated with radiant heat, the amount of light irradiated to the solder resist pattern is preferably less than 500 mJ/cm 2 . Irradiation with actinic rays is preferably performed within 0.001 to 300 seconds after the ink has landed, and is more preferably performed within 0.001 to 60 seconds in order to form a high-definition solder resist pattern. .
(3)の工程:
(3)の工程では、(2)の仮硬化後、更にインクを加熱して本硬化する。加熱方法は、例えば、110~180℃の範囲内で設定したオーブンに10~60分の範囲内で投入することが好ましい。 Step (3):
In the step (3), after the temporary curing in (2), the ink is further heated to be fully cured. As for the heating method, for example, it is preferable to put in an oven set within the range of 110 to 180° C. for 10 to 60 minutes.
(3)の工程では、(2)の仮硬化後、更にインクを加熱して本硬化する。加熱方法は、例えば、110~180℃の範囲内で設定したオーブンに10~60分の範囲内で投入することが好ましい。 Step (3):
In the step (3), after the temporary curing in (2), the ink is further heated to be fully cured. As for the heating method, for example, it is preferable to put in an oven set within the range of 110 to 180° C. for 10 to 60 minutes.
なお、本発明に用いられるインクは、前記したソルダーレジストパターン形成用のインクとして用いる他、電子部品用の接着剤や封止剤、回路保護剤などとして用いることもできる。
The ink used in the present invention can be used not only as the ink for forming the solder resist pattern described above, but also as an adhesive, a sealant, a circuit protective agent, and the like for electronic parts.
本発明において、ソルダーレジストパターンが設けられる部位は、格別限定されるものではないが、上述したように、異なる部材に跨って形成される場合や、凹凸のある部材に跨って形成される場合は、本発明の効果が特に有意となる。
In the present invention, the part where the solder resist pattern is provided is not particularly limited, but as described above, when it is formed across different members or when it is formed across uneven members , the effect of the present invention is particularly significant.
≪インクジェット印刷装置≫
以下において、本発明において用いることができるマルチパス方式のインクジェット印刷装置(「インクジェットプリント装置」又は「インクジェット記録装置」ともいう。)が備える基本的構成部品の機能について説明する。 ≪Inkjet printer≫
The functions of the basic components of a multi-pass inkjet printing apparatus (also referred to as "inkjet printing apparatus" or "inkjet recording apparatus") that can be used in the present invention will be described below.
以下において、本発明において用いることができるマルチパス方式のインクジェット印刷装置(「インクジェットプリント装置」又は「インクジェット記録装置」ともいう。)が備える基本的構成部品の機能について説明する。 ≪Inkjet printer≫
The functions of the basic components of a multi-pass inkjet printing apparatus (also referred to as "inkjet printing apparatus" or "inkjet recording apparatus") that can be used in the present invention will be described below.
図8に示す図は、マルチパス方式によるインクジェット印刷装置1を示す模式図であり、A正面図、B上面図である。
このインクジェット印刷装置1は、基本的には、ヘッド3が往復して重ね印刷を行うマルチパス方式でインクの吐出を行う印刷装置であり、ヘッドを取り付けたキャリッジ2、前記キャリッジ2を移動させるX方向リニアステージ4、基板を設置するテーブル5、前記テーブル5を移動させるY方向リニアステージ6などを備える。 The diagrams shown in FIG. 8 are schematic diagrams showing a multi-pass typeinkjet printing apparatus 1, and are A front view and B top view.
Thisinkjet printing apparatus 1 is basically a printing apparatus that ejects ink by a multi-pass method in which a head 3 reciprocates to perform overlapping printing. A directional linear stage 4, a table 5 on which a substrate is placed, a Y-directional linear stage 6 for moving the table 5, and the like are provided.
このインクジェット印刷装置1は、基本的には、ヘッド3が往復して重ね印刷を行うマルチパス方式でインクの吐出を行う印刷装置であり、ヘッドを取り付けたキャリッジ2、前記キャリッジ2を移動させるX方向リニアステージ4、基板を設置するテーブル5、前記テーブル5を移動させるY方向リニアステージ6などを備える。 The diagrams shown in FIG. 8 are schematic diagrams showing a multi-pass type
This
インクジェット印刷装置1は、X方向にはヘッド3が移動し、Y方向には基板を設置するテーブル5が移動することによって印刷を行う。
また、図示しないが、インクジェット印刷装置1は、ヘッド3からのインクの吐出を制御する装置、及び、XYステージを制御するコンピュータを備える。XYステージを制御するコンピュータは画像データに基づき、XYステージの動作を制御する。
なお、上記コンピュータは、CPU(Central Processing Unit:中央処理装置)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備えている。 Theinkjet printer 1 performs printing by moving the head 3 in the X direction and moving the table 5 on which the substrate is placed in the Y direction.
In addition, although not shown, theinkjet printing apparatus 1 includes a device for controlling ejection of ink from the head 3 and a computer for controlling the XY stage. A computer that controls the XY stage controls the operation of the XY stage based on the image data.
The computer includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
また、図示しないが、インクジェット印刷装置1は、ヘッド3からのインクの吐出を制御する装置、及び、XYステージを制御するコンピュータを備える。XYステージを制御するコンピュータは画像データに基づき、XYステージの動作を制御する。
なお、上記コンピュータは、CPU(Central Processing Unit:中央処理装置)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備えている。 The
In addition, although not shown, the
The computer includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
X方向の印刷方法としては、ヘッド3を取り付けたキャリッジ2がX方向のリニアステージ4に搭載され、XYステージを制御するコンピュータにより所望の位置に移動されることにより行われる。
また、Y方向の印刷方法としては、基板を設置したテーブル5がY方向に移動し、基板がヘッドの下を通過する際にヘッドからインクが吐出されることにより行われる。Y方向のリニアステージ6に設置されたエンコーダーと、ヘッド3からのインクの吐出を制御する装置とが連動し、エンコーダー信号に応じて、画像データの解像度でインクを吐出する。 As for the printing method in the X direction, thecarriage 2 with the head 3 mounted thereon is mounted on the linear stage 4 in the X direction, and is moved to a desired position by the computer controlling the XY stage.
As for the printing method in the Y direction, the table 5 on which the substrate is placed moves in the Y direction, and ink is ejected from the head when the substrate passes under the head. An encoder installed on thelinear stage 6 in the Y direction and a device for controlling the ejection of ink from the head 3 are interlocked, and ink is ejected at the resolution of the image data according to the encoder signal.
また、Y方向の印刷方法としては、基板を設置したテーブル5がY方向に移動し、基板がヘッドの下を通過する際にヘッドからインクが吐出されることにより行われる。Y方向のリニアステージ6に設置されたエンコーダーと、ヘッド3からのインクの吐出を制御する装置とが連動し、エンコーダー信号に応じて、画像データの解像度でインクを吐出する。 As for the printing method in the X direction, the
As for the printing method in the Y direction, the table 5 on which the substrate is placed moves in the Y direction, and ink is ejected from the head when the substrate passes under the head. An encoder installed on the
X方向についてヘッドの解像度より高い解像度で印刷する場合は、X方向に複数回ヘッドを移動して印刷する。
例えば、解像度600dpiのインクジェットヘッド1個で2400dpiを印刷する場合は、ヘッドがY方向に1スキャン目の印刷をした後、X方向に10.6μm(2400dpiの1画素相当)移動し、Y方向に2スキャン目の印刷をする。さらに、ヘッドがX方向に10.6μm移動して、Y方向に3スキャン目の印刷をした後、X方向に10.6μm移動し、Y方向に4スキャン目の印刷をし、完了する。 When printing at a resolution higher than that of the head in the X direction, the head is moved a plurality of times in the X direction for printing.
For example, when printing 2400 dpi with one inkjet head with a resolution of 600 dpi, after printing the first scan in the Y direction, the head moves 10.6 μm in the X direction (equivalent to one pixel of 2400 dpi) and moves in the Y direction. Print the second scan. Further, the head moves 10.6 μm in the X direction, prints the third scan in the Y direction, moves 10.6 μm in the X direction, prints the fourth scan in the Y direction, and completes printing.
例えば、解像度600dpiのインクジェットヘッド1個で2400dpiを印刷する場合は、ヘッドがY方向に1スキャン目の印刷をした後、X方向に10.6μm(2400dpiの1画素相当)移動し、Y方向に2スキャン目の印刷をする。さらに、ヘッドがX方向に10.6μm移動して、Y方向に3スキャン目の印刷をした後、X方向に10.6μm移動し、Y方向に4スキャン目の印刷をし、完了する。 When printing at a resolution higher than that of the head in the X direction, the head is moved a plurality of times in the X direction for printing.
For example, when printing 2400 dpi with one inkjet head with a resolution of 600 dpi, after printing the first scan in the Y direction, the head moves 10.6 μm in the X direction (equivalent to one pixel of 2400 dpi) and moves in the Y direction. Print the second scan. Further, the head moves 10.6 μm in the X direction, prints the third scan in the Y direction, moves 10.6 μm in the X direction, prints the fourth scan in the Y direction, and completes printing.
上記では、搬送方向を一方向のみで印刷する場合であるが、往復で印刷する場合(「双方向印刷」ともいう。)もある。
また、印刷領域がヘッド幅より大きい場合は、ヘッド幅分X方向に移動して印刷を行う。 In the above description, printing is performed in only one transport direction, but printing may be performed in both directions (also referred to as “bidirectional printing”).
Further, when the print area is larger than the head width, printing is performed by moving in the X direction by the width of the head.
また、印刷領域がヘッド幅より大きい場合は、ヘッド幅分X方向に移動して印刷を行う。 In the above description, printing is performed in only one transport direction, but printing may be performed in both directions (also referred to as “bidirectional printing”).
Further, when the print area is larger than the head width, printing is performed by moving in the X direction by the width of the head.
また、インク吐出装置の主走査方向及び副走査方向は、ノズル列と垂直又は平行でなくてもよく、インク吐出装置及び印刷媒体としての基板は、どちらか一方のみが移動してパターンを形成しても、両方が移動してパターンを形成してもスジやムラが発生しづらい。
Further, the main scanning direction and the sub-scanning direction of the ink ejection device may not be perpendicular or parallel to the nozzle rows, and only one of the ink ejection device and the substrate as the printing medium moves to form a pattern. Even if both move and form a pattern, streaks and unevenness are less likely to occur.
以下、本発明において使用できる上記以外のマルチパス方式インクジェット印刷装置について、説明する。
インク吐出装置(上記「ヘッド」と同義である。)は、インクを吐出するための複数のノズル孔を有する。このノズル孔は、一列に並んでいることが好ましいが、ノズル列と、ヘッドの主走査方向(上記「Y方向」と同義である。)及び副走査方向(上記「X方向」と同義である。)は、垂直又は平行でなくてもよく、特に限定されない。 Multi-pass ink jet printers other than those described above that can be used in the present invention will be described below.
An ink ejection device (synonymous with the above-mentioned "head") has a plurality of nozzle holes for ejecting ink. The nozzle holes are preferably arranged in a row. ) may not be perpendicular or parallel, and is not particularly limited.
インク吐出装置(上記「ヘッド」と同義である。)は、インクを吐出するための複数のノズル孔を有する。このノズル孔は、一列に並んでいることが好ましいが、ノズル列と、ヘッドの主走査方向(上記「Y方向」と同義である。)及び副走査方向(上記「X方向」と同義である。)は、垂直又は平行でなくてもよく、特に限定されない。 Multi-pass ink jet printers other than those described above that can be used in the present invention will be described below.
An ink ejection device (synonymous with the above-mentioned "head") has a plurality of nozzle holes for ejecting ink. The nozzle holes are preferably arranged in a row. ) may not be perpendicular or parallel, and is not particularly limited.
図41は、ノズル列の方向が、X方向及びY方向どちらとも垂直又は平行でなく、斜めである場合の印刷方法を示している。ノズル列が斜めであるインクジェット印刷装置についても、本発明のパターン形成方法に用いることができる。
FIG. 41 shows a printing method in which the direction of the nozzle row is neither perpendicular nor parallel to either the X direction or the Y direction, but oblique. An inkjet printing apparatus having slanted nozzle rows can also be used in the pattern forming method of the present invention.
図42は、インク吐出装置自体の方向が、X方向及びY方向どちらとも垂直又は平行でなく、斜めである場合の印刷方法を示している。インク吐出装置と主走査方向の角度を適宜変更することにより、形成するドットの間隔を変更することができるため、インク吐出装置を増設することなくノズル解像度を上げることができる。このようなインクジェット印刷装置についても、本発明のパターン形成方法に用いることができる。
FIG. 42 shows a printing method in which the direction of the ink ejection device itself is not perpendicular or parallel to either the X direction or the Y direction, but is oblique. By appropriately changing the angle between the ink ejection device and the main scanning direction, the interval between dots to be formed can be changed, so the nozzle resolution can be increased without increasing the number of ink ejection devices. Such an inkjet printing apparatus can also be used in the pattern forming method of the present invention.
また、上記インクジェット印刷装置1では、ヘッドがX方向に移動し、基板がY方向に移動することにより印刷を行っているが、ヘッドがY方向に移動し、基板がX方向に移動するインクジェット印刷装置、基板がX方向にもY方向にも移動するインクジェット印刷装置、及び、ヘッドがX方向にもY方向にも移動するインクジェット印刷装置についても、本発明のパターン形成方法に用いることができる。
In the inkjet printing apparatus 1, printing is performed by moving the head in the X direction and the substrate in the Y direction. An apparatus, an inkjet printing apparatus in which the substrate moves in both the X direction and the Y direction, and an inkjet printing apparatus in which the head moves in both the X direction and the Y direction can also be used in the pattern forming method of the present invention.
図34は、上記インクジェット印刷装置1で印刷を行う方法を示す。1スキャンでは、ヘッドが固定されており、基板が矢印方向に移動してヘッドの下を通過する際に、ヘッドからインクの液滴が吐出されることにより、基板とヘッドの位置関係において、相対的にヘッドが主走査方向に移動する。ヘッドの解像度より高い解像度で印刷する場合には、2スキャンにおいて、ヘッドが矢印方向に移動し、再度基板が矢印方向に移動してインクの液滴を吐出する。これを繰り返し、印刷が完了する。
FIG. 34 shows a method of printing with the inkjet printing device 1 described above. In one scan, the head is fixed, and when the substrate moves in the direction of the arrow and passes under the head, ink droplets are ejected from the head. The head actually moves in the main scanning direction. When printing at a resolution higher than that of the head, in two scans, the head moves in the direction of the arrow, and the substrate moves in the direction of the arrow again to eject ink droplets. This is repeated to complete printing.
図33に示すインクジェット印刷装置100では、ヘッド3を取り付けたキャリッジ2がY方向のリニアステージ6に搭載され、XYステージを制御するコンピュータにより所望の位置に移動されることにより行われる。
また、X方向の印刷方法としては、Y方向の主走査方向の印刷を行った後、基板を設置したテーブル5が、X方向に移動し、次のY方向の主走査方向の印刷を行う。
インクジェット印刷装置1と同様に、X方向のリニアステージ4に設置されたエンコーダーと、ヘッド3からのインクの吐出を制御する装置とが連動し、エンコーダー信号に応じて、画像データの解像度でインクを吐出する。 In theinkjet printing apparatus 100 shown in FIG. 33, the carriage 2 with the head 3 mounted thereon is mounted on the linear stage 6 in the Y direction, and is moved to a desired position by the computer controlling the XY stage.
As for the printing method in the X direction, after performing printing in the main scanning direction of the Y direction, the table 5 on which the substrate is placed moves in the X direction, and printing in the next main scanning direction of the Y direction is performed.
As in theinkjet printer 1, the encoder installed on the linear stage 4 in the X direction and the device that controls the ejection of ink from the head 3 are interlocked, and the ink is printed at the resolution of the image data according to the encoder signal. Dispense.
また、X方向の印刷方法としては、Y方向の主走査方向の印刷を行った後、基板を設置したテーブル5が、X方向に移動し、次のY方向の主走査方向の印刷を行う。
インクジェット印刷装置1と同様に、X方向のリニアステージ4に設置されたエンコーダーと、ヘッド3からのインクの吐出を制御する装置とが連動し、エンコーダー信号に応じて、画像データの解像度でインクを吐出する。 In the
As for the printing method in the X direction, after performing printing in the main scanning direction of the Y direction, the table 5 on which the substrate is placed moves in the X direction, and printing in the next main scanning direction of the Y direction is performed.
As in the
図35は、インクジェット印刷装置100で印刷を行う方法を示す。1スキャンでは、固定された基板上をヘッドが主走査方向に移動してインクの液滴を吐出する。次に、2スキャンでは、基板が矢印方向に移動することにより、基板とヘッドの位置関係において、相対的にヘッドが副走査方向に移動する。そして、再度固定された基板上をインク吐出装置が主走査方向に移動してインクの液滴を吐出する。これを繰り返し、印刷が完了する。
FIG. 35 shows a method of printing with the inkjet printing device 100. FIG. In one scan, the head moves in the main scanning direction on the fixed substrate and ejects ink droplets. Next, in the second scan, the substrate moves in the direction of the arrow, so that the head relatively moves in the sub-scanning direction in terms of the positional relationship between the substrate and the head. Then, the ink ejection device moves in the main scanning direction on the fixed substrate again and ejects ink droplets. This is repeated to complete printing.
図36は、基板がX方向にもY方向にも移動するインクジェット印刷装置で印刷を行う方法を示す。1スキャンでは、ヘッドが固定されており、基板が矢印方向に移動してヘッドの下を通過する際に、ヘッドからインクの液滴が吐出されることにより、基板とヘッドの位置関係において、相対的にヘッドが主走査方向に移動する。次に、2スキャンでは、基板が矢印方向に移動することにより、基板とヘッドの位置関係において、相対的にヘッドが副走査方向に移動する。そして、再度固定された基板上をインク吐出装置が主走査方向に移動してインクの液滴を吐出する。これを繰り返し、印刷が完了する。
FIG. 36 shows a method of printing with an inkjet printing device in which the substrate moves in both the X and Y directions. In one scan, the head is fixed, and when the substrate moves in the direction of the arrow and passes under the head, ink droplets are ejected from the head. The head actually moves in the main scanning direction. Next, in the second scan, the substrate moves in the direction of the arrow, so that the head relatively moves in the sub-scanning direction in terms of the positional relationship between the substrate and the head. Then, the ink ejection device moves in the main scanning direction on the fixed substrate again and ejects ink droplets. This is repeated to complete printing.
図37は、ヘッドがX方向にもY方向にも移動するインクジェット印刷装置で印刷を行う方法を示す。1スキャンでは、固定された基板上をヘッドが主走査方向に移動してインクの液滴を吐出する。次に、2スキャンにおいて、ヘッドが矢印方向に移動し、再度基板を矢印方向に移動してインクの液滴を吐出する。これを繰り返し、印刷が完了する。
FIG. 37 shows a method of printing with an inkjet printing device in which the head moves in both the X and Y directions. In one scan, the head moves in the main scanning direction on the fixed substrate and ejects ink droplets. Next, in two scans, the head moves in the direction of the arrow, and the substrate moves in the direction of the arrow again to eject ink droplets. This is repeated to complete printing.
また、ヘッドを複数並べてキャリッジに取り付けることにより、スキャン回数を減らし、印刷時間を短縮できる。
In addition, by arranging multiple heads and attaching them to the carriage, the number of scans can be reduced and the printing time can be shortened.
図40は、ノズル解像度600dpiのインクジェットヘッドを4個用いて、解像度2400dpiの印刷を分割印刷で行う方法を示す。4個のインクジェットヘッドは、解像度2400dpiのピッチになるように、ずらしてキャリッジに取り付ける。
FIG. 40 shows a method of printing with a resolution of 2400 dpi by dividing printing using four inkjet heads with a nozzle resolution of 600 dpi. The four inkjet heads are staggered and attached to the carriage at a pitch of 2400 dpi resolution.
図30A及びBで示すように、ノズル解像度600dpiのインクジェットヘッドを1個用いて、解像度2400dpiの印刷を、四つの分割画像データを用いて行う場合には、16回のスキャンを行う必要がある。しかし、図40で示すように、インクジェットヘッドをずらして4個取り付けた場合には、図30Aにおける1スキャン~4スキャンの工程を、1回のスキャンで行うことができるため、合計4回のスキャンで印刷を完了することができ、印刷時間を短縮できる。
As shown in FIGS. 30A and 30B, when one inkjet head with a nozzle resolution of 600 dpi is used to print at a resolution of 2400 dpi using four divided image data, it is necessary to perform 16 scans. However, as shown in FIG. 40, when four ink jet heads are attached by shifting, the steps of 1 scan to 4 scans in FIG. printing can be completed in a short period of time, shortening the printing time.
本発明においては、前述のとおり、多階調のランダムなグレー画像を用い、各画素の階調又は濃度に対応させて液量を制御してもよい。例えば、凹凸のある基板にパターンを形成する場合、凹部又は凹部を含む周辺に着弾させる液滴の液量を増やすことにより、基板上に形成されるパターンを平滑化することができ、導電性や絶縁性等の機能性のばらつきを抑制することができる。
In the present invention, as described above, a multi-gradation random gray image may be used, and the liquid volume may be controlled corresponding to the gradation or density of each pixel. For example, when a pattern is formed on a substrate having unevenness, the pattern formed on the substrate can be smoothed by increasing the amount of liquid droplets that land on the recesses or the periphery including the recesses. Variation in functionality such as insulation can be suppressed.
例えば、256階調の30%グレー画像をアドビ社のPhotoshopでノイズフィルターをかけることで図16のようなランダムの多階調グレーの画像データを作製できる。この画像データをもとに、例えば、0~86階調の黒部分は7pL、87~172階調のグレー部分は3.5pL、173~255階調の白部分は0pLのようにインクの液量を配分する。
For example, by applying a noise filter to a 256-gradation 30% gray image using Adobe Photoshop, random multi-gradation gray image data such as that shown in FIG. 16 can be created. Based on this image data, for example, the black portion of 0 to 86 gradations is 7 pL, the gray portion of 87 to 172 gradations is 3.5 pL, and the white portion of 173 to 255 gradations is 0 pL. Allocate quantity.
各画素に対応する異なる液量によるドットの形成は、ノズルからインクが吐出する際の吐出波形を変える、若しくは、同一の画素に対して複数のドットを形成することによって可能である。
The formation of dots with different liquid volumes corresponding to each pixel is possible by changing the ejection waveform when ink is ejected from the nozzles, or by forming multiple dots for the same pixel.
例えば、上記の液量配分の場合、3.5pLの液量のインクジェットヘッドを用いて、0~86階調の黒部分は2滴打ち、87~172階調のグレー部分は1滴打ち、173~255階調の白部分は吐出なしと規定することにより、異なる液量によるドットの形成が可能である。
For example, in the above liquid volume distribution, using an inkjet head with a liquid volume of 3.5 pL, two droplets are ejected for black areas of 0 to 86 gradations, one droplet is ejected for gray areas of 87 to 172 gradations, and 173 It is possible to form dots with different amounts of liquid by stipulating that white portions of gradation to 255 are not ejected.
本発明におけるランダムマルチパス方式で印刷する方法としては、元画像をランダムな複数の重なり合わない画像に分割して印刷する方法や、着弾を乱数のような関数を用いてインクジェット吐出制御システムでランダムにする方法などがある。
As a method of printing by the random multi-pass method in the present invention, there is a method of printing by dividing the original image into a plurality of random non-overlapping images, and a method of randomly determining the impact by an inkjet ejection control system using a function such as a random number. There are methods to
分割画像データは、以下の方法で作製できる。アドビ社の画像処理ソフトPhotoshop 2020などの画像処理ソフトで作製することができ、例えば、グレー画像を、Photoshopを用いて誤差拡散法などでモノクロ2階調化し、白と黒のランダムな画像を作製する。次にその画像を色調反転させて白と黒の反転した画像を作製する。
Divided image data can be created by the following method. It can be created with image processing software such as Adobe's image processing software Photoshop 2020. For example, a gray image can be converted to monochrome 2-tone using the error diffusion method using Photoshop to create a random black and white image. do. The image is then color-inverted to produce an image in which black and white are reversed.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
また、下記実施例において、特記しない限り操作は室温(25℃)で行われた。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
Also, in the following examples, the operations were carried out at room temperature (25° C.) unless otherwise specified.
また、下記実施例において、特記しない限り操作は室温(25℃)で行われた。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
Also, in the following examples, the operations were carried out at room temperature (25° C.) unless otherwise specified.
≪実施例1≫
[インク1の調製]
<顔料分散液の調製>
下記に示す分散剤と分散媒をステンレスビーカーに入れ、65℃のホットプレート上で加熱しながら1時間加熱撹拌溶解し、室温まで冷却した後、これに顔料を加えて、直径0.5mmのジルコニアビーズ200gと共にガラス瓶に入れ密栓した。これをペイントシェーカーにて、所望の粒径になるまで分散処理した後、ジルコニアビーズを除去した。 <<Example 1>>
[Preparation of Ink 1]
<Preparation of pigment dispersion>
Put the following dispersant and dispersion medium in a stainless steel beaker, heat and dissolve with stirring for 1 hour while heating on a hot plate at 65 ° C., cool to room temperature, add a pigment, and add a zirconia with a diameter of 0.5 mm. It was placed in a glass bottle together with 200 g of beads and sealed. The zirconia beads were removed after dispersion treatment was carried out with a paint shaker until a desired particle size was obtained.
[インク1の調製]
<顔料分散液の調製>
下記に示す分散剤と分散媒をステンレスビーカーに入れ、65℃のホットプレート上で加熱しながら1時間加熱撹拌溶解し、室温まで冷却した後、これに顔料を加えて、直径0.5mmのジルコニアビーズ200gと共にガラス瓶に入れ密栓した。これをペイントシェーカーにて、所望の粒径になるまで分散処理した後、ジルコニアビーズを除去した。 <<Example 1>>
[Preparation of Ink 1]
<Preparation of pigment dispersion>
Put the following dispersant and dispersion medium in a stainless steel beaker, heat and dissolve with stirring for 1 hour while heating on a hot plate at 65 ° C., cool to room temperature, add a pigment, and add a zirconia with a diameter of 0.5 mm. It was placed in a glass bottle together with 200 g of beads and sealed. The zirconia beads were removed after dispersion treatment was carried out with a paint shaker until a desired particle size was obtained.
(イエロー顔料分散体)
分散剤1:EFKA7701(BASF社製) 5.6質量部
分散剤2:Solsperse22000(日本ルーブリゾール社製)
0.4質量部
分散媒:ジプロピレングリコールジアクリレート(0.2%UV-10含有)
80.6質量部
顔料:PY185(BASF社製、パリオトールイエローD1155)
13.4質量部 (Yellow pigment dispersion)
Dispersant 1: EFKA7701 (manufactured by BASF) 5.6 parts by mass Dispersant 2: Solsperse 22000 (manufactured by Lubrizol Japan)
0.4 parts by mass dispersion medium: dipropylene glycol diacrylate (containing 0.2% UV-10)
80.6 parts by mass Pigment: PY185 (manufactured by BASF, Paliotol Yellow D1155)
13.4 parts by mass
分散剤1:EFKA7701(BASF社製) 5.6質量部
分散剤2:Solsperse22000(日本ルーブリゾール社製)
0.4質量部
分散媒:ジプロピレングリコールジアクリレート(0.2%UV-10含有)
80.6質量部
顔料:PY185(BASF社製、パリオトールイエローD1155)
13.4質量部 (Yellow pigment dispersion)
Dispersant 1: EFKA7701 (manufactured by BASF) 5.6 parts by mass Dispersant 2: Solsperse 22000 (manufactured by Lubrizol Japan)
0.4 parts by mass dispersion medium: dipropylene glycol diacrylate (containing 0.2% UV-10)
80.6 parts by mass Pigment: PY185 (manufactured by BASF, Paliotol Yellow D1155)
13.4 parts by mass
(シアン顔料分散体)
分散剤:EFKA7701(BASF社製) 7.0質量部
分散媒:ジプロピレングリコールジアクリレート(0.2%UV-10含有)
70.0質量部
顔料:PB15:4(大日精化製、クロモファインブルー6332JC)
23.0質量部 (Cyan pigment dispersion)
Dispersant: EFKA7701 (manufactured by BASF) 7.0 parts by mass Dispersion medium: dipropylene glycol diacrylate (containing 0.2% UV-10)
70.0 parts by mass Pigment: PB15:4 (manufactured by Dainichiseika, Chromo Fine Blue 6332JC)
23.0 parts by mass
分散剤:EFKA7701(BASF社製) 7.0質量部
分散媒:ジプロピレングリコールジアクリレート(0.2%UV-10含有)
70.0質量部
顔料:PB15:4(大日精化製、クロモファインブルー6332JC)
23.0質量部 (Cyan pigment dispersion)
Dispersant: EFKA7701 (manufactured by BASF) 7.0 parts by mass Dispersion medium: dipropylene glycol diacrylate (containing 0.2% UV-10)
70.0 parts by mass Pigment: PB15:4 (manufactured by Dainichiseika, Chromo Fine Blue 6332JC)
23.0 parts by mass
調製した分散体を下記の配合で混合した後、ADVATEC社製テフロン(登録商標)3μmメンブランフィルターで濾過をし、インク1を調製した。なお、インク吐出時の温度が75℃での粘度(η1)は8.5mPa・sであり、着弾時温度である室温(25℃)での粘度(η2)は9.2mPa・sであった。
After mixing the prepared dispersion with the following composition, the mixture was filtered through a Teflon (registered trademark) 3 μm membrane filter manufactured by ADVATEC to prepare Ink 1. The viscosity (η1) at a temperature of 75°C during ink discharge was 8.5 mPa s, and the viscosity (η2) at room temperature (25°C), which is the temperature at the time of landing, was 9.2 mPa s. .
イエロー顔料分散体 3.0質量部
シアン顔料分散体 1.0質量部
エポキシエステル(M-600A:共栄化学社製) 30.0質量部
TrixeneBI7961(LANXESS社製) 10.0質量部
ウレタンアクリレート(AH-600:共栄化学社製)10.0質量部
M222(Miwon社製) 27.7質量部
EM2382(長興化学社製) 10.0質量部
光開始剤:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(TPO)
3.0質量部
光開始助剤:2-イソプロピルチオキサントン(ITX)3.0質量部 Yellow pigment dispersion 3.0 parts by mass Cyan pigment dispersion 1.0 parts by mass Epoxy ester (M-600A: manufactured by Kyoei Chemical Co., Ltd.) 30.0 parts by mass Trixene BI7961 (manufactured by LANXESS) 10.0 parts by mass Urethane acrylate (AH -600: manufactured by Kyoei Chemical Co., Ltd.) 10.0 parts by mass M222 (manufactured by Miwon) 27.7 parts by mass EM2382 (manufactured by Choko Chemical Co., Ltd.) 10.0 parts by mass Photoinitiator: diphenyl (2,4,6-trimethylbenzoyl ) phosphine oxide (TPO)
3.0 parts by mass Photoinitiation aid: 2-isopropylthioxanthone (ITX) 3.0 parts by mass
シアン顔料分散体 1.0質量部
エポキシエステル(M-600A:共栄化学社製) 30.0質量部
TrixeneBI7961(LANXESS社製) 10.0質量部
ウレタンアクリレート(AH-600:共栄化学社製)10.0質量部
M222(Miwon社製) 27.7質量部
EM2382(長興化学社製) 10.0質量部
光開始剤:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(TPO)
3.0質量部
光開始助剤:2-イソプロピルチオキサントン(ITX)3.0質量部 Yellow pigment dispersion 3.0 parts by mass Cyan pigment dispersion 1.0 parts by mass Epoxy ester (M-600A: manufactured by Kyoei Chemical Co., Ltd.) 30.0 parts by mass Trixene BI7961 (manufactured by LANXESS) 10.0 parts by mass Urethane acrylate (AH -600: manufactured by Kyoei Chemical Co., Ltd.) 10.0 parts by mass M222 (manufactured by Miwon) 27.7 parts by mass EM2382 (manufactured by Choko Chemical Co., Ltd.) 10.0 parts by mass Photoinitiator: diphenyl (2,4,6-trimethylbenzoyl ) phosphine oxide (TPO)
3.0 parts by mass Photoinitiation aid: 2-isopropylthioxanthone (ITX) 3.0 parts by mass
[パターンの印刷]
インクジェットヘッド(KM1800iSHC-C:コニカミノルタ社製:解像度600dpi)1個を取り付けたリニアXYステージとコントロールシステム(IJCS-1:コニカミノルタ社製)を用いて、基板である光学用PETフィルムに下記条件で印刷パターンを印刷し、波長395nmのUV-LED光源にて500mJ/cm2の照射エネルギーで露光・硬化して印刷物1を作製した。 [Pattern Print]
Using a linear XY stage equipped with one inkjet head (KM1800iSHC-C: manufactured by Konica Minolta, resolution 600 dpi) and a control system (IJCS-1: manufactured by Konica Minolta), the following conditions were applied to the optical PET film that is the substrate. A printedmatter 1 was produced by printing a print pattern with a UV-LED light source having a wavelength of 395 nm and exposing and curing with irradiation energy of 500 mJ/cm 2 .
インクジェットヘッド(KM1800iSHC-C:コニカミノルタ社製:解像度600dpi)1個を取り付けたリニアXYステージとコントロールシステム(IJCS-1:コニカミノルタ社製)を用いて、基板である光学用PETフィルムに下記条件で印刷パターンを印刷し、波長395nmのUV-LED光源にて500mJ/cm2の照射エネルギーで露光・硬化して印刷物1を作製した。 [Pattern Print]
Using a linear XY stage equipped with one inkjet head (KM1800iSHC-C: manufactured by Konica Minolta, resolution 600 dpi) and a control system (IJCS-1: manufactured by Konica Minolta), the following conditions were applied to the optical PET film that is the substrate. A printed
[分割印刷(画像分割数2)]
画像データについて、図28に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 28, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図28に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 28, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図28、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図28参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):室温(25℃)
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see FIG. 28, divided image data Resolution: 2400 dpi×2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 28 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): room temperature (25°C)
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図28、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図28参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):室温(25℃)
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see FIG. 28, divided image data Resolution: 2400 dpi×2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 28 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): room temperature (25°C)
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例2≫
インク1をインク2にし、ヘッド温度(インク吐出時)を75℃に変更した以外は実施例1と同様にして実施例2の印刷物2を作製した。 <<Example 2>>
A printedmatter 2 of Example 2 was produced in the same manner as in Example 1, except that ink 1 was changed to ink 2 and the head temperature (at the time of ink ejection) was changed to 75°C.
インク1をインク2にし、ヘッド温度(インク吐出時)を75℃に変更した以外は実施例1と同様にして実施例2の印刷物2を作製した。 <<Example 2>>
A printed
[インク2の調製]
インク1で調製した分散体を下記の配合で混合した後、ADVATEC社製テフロン(登録商標)3μmメンブランフィルターで濾過をし、インクを調製した。なお、インク吐出時の温度が75℃での粘度(η1)は10mPa・sであり、着弾時温度である室温(25℃)での粘度(η2)は1×104mPa・sであった。すなわち粘度比率η2/η1が1000であった。 [Preparation of Ink 2]
After mixing the dispersion prepared inInk 1 according to the following formulation, the mixture was filtered through a Teflon (registered trademark) 3 μm membrane filter manufactured by ADVATEC to prepare an ink. The viscosity (η1) at a temperature of 75° C. during ink ejection was 10 mPa·s, and the viscosity (η2) at room temperature (25° C.), which is the temperature at which the ink was landed, was 1×10 4 mPa·s. . That is, the viscosity ratio η2/η1 was 1,000.
インク1で調製した分散体を下記の配合で混合した後、ADVATEC社製テフロン(登録商標)3μmメンブランフィルターで濾過をし、インクを調製した。なお、インク吐出時の温度が75℃での粘度(η1)は10mPa・sであり、着弾時温度である室温(25℃)での粘度(η2)は1×104mPa・sであった。すなわち粘度比率η2/η1が1000であった。 [Preparation of Ink 2]
After mixing the dispersion prepared in
イエロー顔料分散体 3.0質量部
シアン顔料分散体 1.0質量部
ジステアリルケトン 1.1質量部
ベヘニン酸ベヘニル 1.2質量部
エポキシエステル(M-600A:共栄化学社製) 30.0質量部
TrixeneBI7961(LANXESS社製) 10.0質量部
ウレタンアクリレート(AH-600:共栄化学社製)10.0質量部
M222(Miwon社製) 27.7質量部
EM2382(長興化学社製) 10.0質量部
光開始剤:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(TPO)
3.0質量部
光開始助剤:2-イソプロピルチオキサントン(ITX)3.0質量部 Yellow pigment dispersion 3.0 parts by mass Cyan pigment dispersion 1.0 parts by mass Distearyl ketone 1.1 parts by mass Behenyl behenate 1.2 parts by mass Epoxy ester (M-600A: manufactured by Kyoei Chemical Co., Ltd.) 30.0 parts by mass Part Trixene BI7961 (manufactured by LANXESS) 10.0 parts by mass Urethane acrylate (AH-600: manufactured by Kyoei Chemical Co., Ltd.) 10.0 parts by mass M222 (manufactured by Miwon) 27.7 parts by mass EM2382 (manufactured by Eternal Chemical Co., Ltd.) 10.0 Parts by mass Photoinitiator: diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO)
3.0 parts by mass Photoinitiation aid: 2-isopropylthioxanthone (ITX) 3.0 parts by mass
シアン顔料分散体 1.0質量部
ジステアリルケトン 1.1質量部
ベヘニン酸ベヘニル 1.2質量部
エポキシエステル(M-600A:共栄化学社製) 30.0質量部
TrixeneBI7961(LANXESS社製) 10.0質量部
ウレタンアクリレート(AH-600:共栄化学社製)10.0質量部
M222(Miwon社製) 27.7質量部
EM2382(長興化学社製) 10.0質量部
光開始剤:ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(TPO)
3.0質量部
光開始助剤:2-イソプロピルチオキサントン(ITX)3.0質量部 Yellow pigment dispersion 3.0 parts by mass Cyan pigment dispersion 1.0 parts by mass Distearyl ketone 1.1 parts by mass Behenyl behenate 1.2 parts by mass Epoxy ester (M-600A: manufactured by Kyoei Chemical Co., Ltd.) 30.0 parts by mass Part Trixene BI7961 (manufactured by LANXESS) 10.0 parts by mass Urethane acrylate (AH-600: manufactured by Kyoei Chemical Co., Ltd.) 10.0 parts by mass M222 (manufactured by Miwon) 27.7 parts by mass EM2382 (manufactured by Eternal Chemical Co., Ltd.) 10.0 Parts by mass Photoinitiator: diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO)
3.0 parts by mass Photoinitiation aid: 2-isopropylthioxanthone (ITX) 3.0 parts by mass
≪実施例3≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物3を作製した。 <<Example 3>>
A printedmatter 3 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物3を作製した。 <<Example 3>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図44に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、インターリーブ方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 44, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the interleave method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図44に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、インターリーブ方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 44, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the interleave method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図44、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図44参照
境界部印刷方式:インターリーブ方式、図21参照
境界部幅ドット数:1
印刷順:パターン形成方法D
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 44, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 44 Boundary part printing method: Interleave method, see Fig. 21 Boundary part width dot number: 1
Print order: Pattern formation method D
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図44、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図44参照
境界部印刷方式:インターリーブ方式、図21参照
境界部幅ドット数:1
印刷順:パターン形成方法D
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 44, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 44 Boundary part printing method: Interleave method, see Fig. 21 Boundary part width dot number: 1
Print order: Pattern formation method D
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例4≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物4を作製した。 <<Example 4>>
A printedmatter 4 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物4を作製した。 <<Example 4>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図45に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、インターリーブ方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 45, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the interleave method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図45に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、インターリーブ方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 45, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the interleave method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な2mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図45、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図45参照
境界部印刷方式:インターリーブ方式、図22参照
境界部幅ドット数:1
印刷順:パターン形成方法D
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: 2 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 2
Divided image data: see Fig. 45, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 45 Boundary part printing method: Interleave method, see Fig. 22 Boundary part width dot number: 1
Print order: Pattern formation method D
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図45、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図45参照
境界部印刷方式:インターリーブ方式、図22参照
境界部幅ドット数:1
印刷順:パターン形成方法D
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: 2 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 2
Divided image data: see Fig. 45, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 45 Boundary part printing method: Interleave method, see Fig. 22 Boundary part width dot number: 1
Print order: Pattern formation method D
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例5≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物5を作製した。 <<Example 5>>
A printedmatter 5 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物5を作製した。 <<Example 5>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図43に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 43, in the image data of the pattern portion excluding the boundary portion, when the pixels are overlapped and printed, the pixels are arranged in the order of rows and columns. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図43に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 43, in the image data of the pattern portion excluding the boundary portion, when the pixels are overlapped and printed, the pixels are arranged in the order of rows and columns. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図43、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図43参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法C
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 43, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 43 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method C
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図43、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図43参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法C
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 43, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 43 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method C
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例6≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物6を作製した。 <<Example 6>>
A printedmatter 6 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物6を作製した。 <<Example 6>>
A printed
[分割印刷(画像分割数3)]
画像データについて、図27A及びBに示すとおり、境界部と境界部を除くパターン部とで画像データを分割した。そして、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1~No.3を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Division printing (image division number 3)]
As for the image data, as shown in FIGS. 27A and 27B, the image data was divided into the boundary portion and the pattern portion excluding the boundary portion. In the image data of the pattern area excluding the boundary area, the pixels should not be overlapped when printed, and should have a certain periodicity, not in the order of the rows and columns in which the pixels are arranged. In the image data of the boundary portion, divided image data No. is assigned so as to correspond to the block method. 1 to No. 3 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図27A及びBに示すとおり、境界部と境界部を除くパターン部とで画像データを分割した。そして、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1~No.3を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Division printing (image division number 3)]
As for the image data, as shown in FIGS. 27A and 27B, the image data was divided into the boundary portion and the pattern portion excluding the boundary portion. In the image data of the pattern area excluding the boundary area, the pixels should not be overlapped when printed, and should have a certain periodicity, not in the order of the rows and columns in which the pixels are arranged. In the image data of the boundary portion, divided image data No. is assigned so as to correspond to the block method. 1 to No. 3 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:3
分割画像データ:図27A及びB、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:12回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図27参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法A
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: 3 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 3
Divided image data: see FIGS. 27A and B, divided image data Resolution: 2400 dpi×2400 dpi (conveyance direction)
Number of passes: 12 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 27 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method A
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:3
分割画像データ:図27A及びB、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:12回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図27参照
境界部印刷方式:ブロック方式、図18参照
境界部幅ドット数:1
印刷順:パターン形成方法A
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: 3 mm x 2 mm open squares parallel to the main scanning direction and sub-scanning direction are arranged in a 70 mm x 70 mm square Number of image divisions: 3
Divided image data: see FIGS. 27A and B, divided image data Resolution: 2400 dpi×2400 dpi (conveyance direction)
Number of passes: 12 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 27 Boundary part printing method: Block method, see Fig. 18 Boundary part width dot number: 1
Print order: Pattern formation method A
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例7≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物7を作製した。 <<Example 7>>
A printedmatter 7 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物7を作製した。 <<Example 7>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図47に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 47, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図47に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 47, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に非平行な2mm×2mmの抜き四角(ひし形)を配置
画像分割数:2
分割画像データ:図47、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図47参照
境界部印刷方式:ブロック方式、図24参照
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: Place 2mm x 2mm open squares (rhombuses) non-parallel to the main scanning direction and sub-scanning direction in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 47, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 47 Boundary part printing method: Block method, see Fig. 24 Boundary part width dot number: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図47、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図47参照
境界部印刷方式:ブロック方式、図24参照
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: Place 2mm x 2mm open squares (rhombuses) non-parallel to the main scanning direction and sub-scanning direction in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 47, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method excluding border part: Random multi-pass method, see Fig. 47 Boundary part printing method: Block method, see Fig. 24 Boundary part width dot number: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例8≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物8を作製した。 <<Example 8>>
A printedmatter 8 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物8を作製した。 <<Example 8>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図48に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。ただし、境界部における幅ドット数を二つ分とした。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 48, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed. However, the number of width dots in the boundary portion is two.
画像データについて、図48に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。ただし、境界部における幅ドット数を二つ分とした。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 48, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed. However, the number of width dots in the boundary portion is two.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図48、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図48参照
境界部印刷方式:ブロック方式
境界部幅ドット数:2
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 48, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern area printing method excluding border area: Random multi-pass method, see Fig. 48 Boundary area printing method: Block method Boundary area width dot count: 2
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図48、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図48参照
境界部印刷方式:ブロック方式
境界部幅ドット数:2
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 48, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern area printing method excluding border area: Random multi-pass method, see Fig. 48 Boundary area printing method: Block method Boundary area width dot count: 2
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪実施例9≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物9を作製した。 <<Example 9>>
A printedmatter 9 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物9を作製した。 <<Example 9>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図49に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。ただし、印刷方向を双方向とした。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 49, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns in which the pixels are arranged so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed. However, the printing direction was bidirectional.
画像データについて、図49に示すとおり、境界部を除くパターン部の画像データにおいては、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、境界部の画像データにおいては、ブロック方式に対応するよう、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。ただし、印刷方向を双方向とした。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 49, in the image data of the pattern portion excluding the boundary portion, the pixels are arranged in the order of the rows and columns in which the pixels are arranged so that the pixels do not overlap when printed. In addition, the image data is divided by image processing software so as not to have a certain periodicity, and the image data of the boundary portion is divided into divided image data No. 1 so as to correspond to the block method. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed. However, the printing direction was bidirectional.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図49、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):双方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図49参照
境界部印刷方式:ブロック方式
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 49, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): Bi-directional printing Printing direction (sub-scanning direction): Forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern area printing method excluding the boundary area: Random multi-pass method, see Fig. 49 Boundary area printing method: Block method Boundary area width dot count: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図49、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):双方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
境界部を除くパターン部印刷方式:ランダムマルチパス方式、図49参照
境界部印刷方式:ブロック方式
境界部幅ドット数:1
印刷順:パターン形成方法B
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 49, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): Bi-directional printing Printing direction (sub-scanning direction): Forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern area printing method excluding the boundary area: Random multi-pass method, see Fig. 49 Boundary area printing method: Block method Boundary area width dot count: 1
Print order: Pattern formation method B
Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪比較例1≫
印刷条件を下記条件に変更した以外は、実施例1と同様にして印刷物10を作製した。 <<Comparative Example 1>>
A printedmatter 10 was produced in the same manner as in Example 1, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例1と同様にして印刷物10を作製した。 <<Comparative Example 1>>
A printed
画像データについて、図50に示すとおり、パターン部を、境界部と境界部を除くパターン部とで区別をせず、用いる画像データを一つの画像データとし(分割印刷を行わず)、全てブロック方式により印刷した。
Regarding the image data, as shown in FIG. 50, the pattern portion is not distinguished between the boundary portion and the pattern portion excluding the boundary portion, and the image data to be used is one image data (no division printing), and all block method printed by
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
解像度:2400dpi×2400dpi(搬送方向)
パス回数:4回(600dpi×4)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
パターン部印刷方式:ブロック方式、図50参照
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):室温(25℃)
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and subscanning direction is placed in a 70mm x 70mm square Resolution: 2400dpi x 2400dpi (conveyance direction)
Number of passes: 4 times (600dpi x 4)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method: Block method, see Fig. 50 Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): room temperature (25°C)
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
解像度:2400dpi×2400dpi(搬送方向)
パス回数:4回(600dpi×4)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
パターン部印刷方式:ブロック方式、図50参照
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):室温(25℃)
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and subscanning direction is placed in a 70mm x 70mm square Resolution: 2400dpi x 2400dpi (conveyance direction)
Number of passes: 4 times (600dpi x 4)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method: Block method, see Fig. 50 Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): room temperature (25°C)
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
≪比較例2≫
インク1をインク2にし、ヘッド温度(インク吐出時)を75℃に、変更した以外は、比較例1と同様にして印刷物11を作製した。 <<Comparative Example 2>>
A printedmatter 11 was produced in the same manner as in Comparative Example 1, except that the ink 1 was changed to the ink 2 and the head temperature (at the time of ink ejection) was changed to 75°C.
インク1をインク2にし、ヘッド温度(インク吐出時)を75℃に、変更した以外は、比較例1と同様にして印刷物11を作製した。 <<Comparative Example 2>>
A printed
≪参考例1≫
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物12を作製した。 <<Reference example 1>>
A printedmatter 12 was produced in the same manner as in Example 2, except that the printing conditions were changed to the following conditions.
印刷条件を下記条件に変更した以外は、実施例2と同様にして印刷物12を作製した。 <<Reference example 1>>
A printed
[分割印刷(画像分割数2)]
画像データについて、図46に示すとおり、パターン部を、境界部と境界部を除くパターン部とで区別をせず、パターン部全体において、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 46, the pattern area is not distinguished between the boundary area and the pattern area excluding the boundary area, and the pixels are not overlapped when the entire pattern area is overlaid and printed, and Divided image data No. 1 is divided by image processing software so as not to follow the order of rows and columns in which each pixel is arranged and not to have a certain periodicity. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
画像データについて、図46に示すとおり、パターン部を、境界部と境界部を除くパターン部とで区別をせず、パターン部全体において、重ねて印刷した場合に各画素が重ならないよう、かつ、各画素が配列された行及び列の順番のとおりでなく、一定の周期性を有さないように、画像処理ソフトによって分割し、分割画像データNo.1及びNo.2を作製した。そして、下記条件で、分割画像データごとに順次重ねて印刷した。 [Divided printing (number of image divisions: 2)]
As for the image data, as shown in FIG. 46, the pattern area is not distinguished between the boundary area and the pattern area excluding the boundary area, and the pixels are not overlapped when the entire pattern area is overlaid and printed, and Divided image data No. 1 is divided by image processing software so as not to follow the order of rows and columns in which each pixel is arranged and not to have a certain periodicity. 1 and no. 2 was produced. Then, under the following conditions, each piece of divided image data was sequentially superimposed and printed.
印刷パターン:70mm×70mmの四角の中に主走査方向と副走査方向に平行な3mm×2mmの抜き四角を配置
画像分割数:2
分割画像データ:図46、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
パターン部印刷方式:ランダムマルチパス方式、図46参照
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 46, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method: random multi-pass method, see FIG. 46 Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
画像分割数:2
分割画像データ:図46、分割画像データ参照
解像度:2400dpi×2400dpi(搬送方向)
パス回数:8回(600dpi×8)
印刷方向(主走査方向):片方向印刷
印刷方向(副走査方向):正方向印刷
パス間ヘッドノズル列方向移動距離:10.6μm
パターン部印刷方式:ランダムマルチパス方式、図46参照
液量配分:全面3.5pL
ヘッド温度(インク吐出時温度):75℃
基板温度(インク着弾時温度):室温(25℃) Print pattern: A 3mm x 2mm open square parallel to the main scanning direction and sub-scanning direction is placed in a 70mm x 70mm square Number of image divisions: 2
Divided image data: see Fig. 46, divided image data Resolution: 2400 dpi x 2400 dpi (conveyance direction)
Number of passes: 8 times (600dpi x 8)
Printing direction (main scanning direction): unidirectional printing Printing direction (sub-scanning direction): forward printing Distance between passes in head nozzle row direction: 10.6 μm
Pattern part printing method: random multi-pass method, see FIG. 46 Liquid volume distribution: 3.5 pL on the entire surface
Head temperature (temperature during ink ejection): 75°C
Substrate temperature (temperature at the time of ink landing): Room temperature (25°C)
[評価]
<スジの評価>
得られた印刷物におけるパターンを目視で確認し、スジの発生を評価した。
◎:スジの発生が見られない。
〇:スジ感がわずかに感じられるが、気にならないレベルである。
×:スジ感が感じられるため、実用は好ましくない。
××:スジが目立って感じられ、実用は難しい。
なお、〇以上は、実用上問題がないとした。 [evaluation]
<Evaluation of streaks>
The pattern in the resulting printed matter was visually confirmed to evaluate the occurrence of streaks.
(double-circle): Generation|occurrence|production of a streak is not seen.
◯: Slight streaks are felt, but the level is not noticeable.
x: Unfavorable for practical use because streaks are felt.
XX: Streaks are conspicuous, and practical use is difficult.
It should be noted that 0 or more was regarded as having no practical problem.
<スジの評価>
得られた印刷物におけるパターンを目視で確認し、スジの発生を評価した。
◎:スジの発生が見られない。
〇:スジ感がわずかに感じられるが、気にならないレベルである。
×:スジ感が感じられるため、実用は好ましくない。
××:スジが目立って感じられ、実用は難しい。
なお、〇以上は、実用上問題がないとした。 [evaluation]
<Evaluation of streaks>
The pattern in the resulting printed matter was visually confirmed to evaluate the occurrence of streaks.
(double-circle): Generation|occurrence|production of a streak is not seen.
◯: Slight streaks are felt, but the level is not noticeable.
x: Unfavorable for practical use because streaks are felt.
XX: Streaks are conspicuous, and practical use is difficult.
It should be noted that 0 or more was regarded as having no practical problem.
<境界部直線性(パターン再現性)>
得られた印刷物におけるパターンの抜き四角(非パターン部)の対向する各辺間の距離を20点測定し、その算術平均値からのずれに基づいて、直線性を評価した。
◎◎:最大ずれ量が、2μm以下である。
◎:最大ずれ量が、2μm超、3μm以下である。
〇:最大ずれ量が、3μm超、5μm以下である。
△:最大ずれ量が、5μm超、10μm以下である。
×:最大ずれ量が、10μm超である。
なお、△以上は、実用上問題がないとした。 <Border Linearity (Pattern Reproducibility)>
Twenty distances between opposite sides of the cut squares (non-pattern portions) of the pattern in the obtained printed matter were measured, and the linearity was evaluated based on the deviation from the arithmetic mean value.
⊙⊚: The maximum deviation amount is 2 μm or less.
⊚: The maximum deviation amount is more than 2 µm and 3 µm or less.
◯: The maximum deviation amount is more than 3 μm and 5 μm or less.
Δ: The maximum deviation amount is more than 5 μm and 10 μm or less.
x: The maximum amount of deviation is more than 10 μm.
It should be noted that Δ and above was regarded as having no problem in practical use.
得られた印刷物におけるパターンの抜き四角(非パターン部)の対向する各辺間の距離を20点測定し、その算術平均値からのずれに基づいて、直線性を評価した。
◎◎:最大ずれ量が、2μm以下である。
◎:最大ずれ量が、2μm超、3μm以下である。
〇:最大ずれ量が、3μm超、5μm以下である。
△:最大ずれ量が、5μm超、10μm以下である。
×:最大ずれ量が、10μm超である。
なお、△以上は、実用上問題がないとした。 <Border Linearity (Pattern Reproducibility)>
Twenty distances between opposite sides of the cut squares (non-pattern portions) of the pattern in the obtained printed matter were measured, and the linearity was evaluated based on the deviation from the arithmetic mean value.
⊙⊚: The maximum deviation amount is 2 μm or less.
⊚: The maximum deviation amount is more than 2 µm and 3 µm or less.
◯: The maximum deviation amount is more than 3 μm and 5 μm or less.
Δ: The maximum deviation amount is more than 5 μm and 10 μm or less.
x: The maximum amount of deviation is more than 10 μm.
It should be noted that Δ and above was regarded as having no problem in practical use.
評価結果を表Iに示す。表中、「-」は該当するデータがないことを示す。
また、図53に、印刷物2及び12とそれぞれ同様の印刷条件で作製した主走査方向と副走査方向に平行な抜き四角を配置した印刷物A及びBの100倍での光学顕微鏡観察写真を示す。なお、100倍での光学顕微鏡観察写真では、印刷物A(印刷物2と同様の印刷条件)及びB(印刷物12と同様の印刷条件)どちらにおいても、境界部を除くパターン部にスジが多少見受けられるが、目視では、スジは見受けられなかった。 The evaluation results are shown in Table I. In the table, "-" indicates that there is no applicable data.
FIG. 53 shows 100-fold optical micrographs of printed matter A and B, which are produced under the same printing conditions as printed matter 2 and 12, respectively, and in which open squares are arranged parallel to the main scanning direction and the sub-scanning direction. In addition, in the optical microscope observation photograph at 100 times, in both printed material A (printing conditions similar to printed material 2) and B (printing conditions similar to printed material 12), some streaks can be seen in the pattern part except for the boundary part. However, no streaks were observed visually.
また、図53に、印刷物2及び12とそれぞれ同様の印刷条件で作製した主走査方向と副走査方向に平行な抜き四角を配置した印刷物A及びBの100倍での光学顕微鏡観察写真を示す。なお、100倍での光学顕微鏡観察写真では、印刷物A(印刷物2と同様の印刷条件)及びB(印刷物12と同様の印刷条件)どちらにおいても、境界部を除くパターン部にスジが多少見受けられるが、目視では、スジは見受けられなかった。 The evaluation results are shown in Table I. In the table, "-" indicates that there is no applicable data.
FIG. 53 shows 100-fold optical micrographs of printed matter A and B, which are produced under the same printing conditions as printed
実施例1及び比較例1の比較、また、実施例2及び比較例2の比較から、境界部を除くパターン部においては、ランダムマルチパス方式を用いる((I)前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御する、(II)前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御する)ことにより、スジの発生を抑制することができることがわかる。
From the comparison between Example 1 and Comparative Example 1 and between Example 2 and Comparative Example 2, the random multi-pass method is used in the pattern portion excluding the boundary portion ((I) each pixel constituting the image data (II) not having a constant periodicity in the order of the rows and columns in which the ink ejection device is arranged, and (II) not having continuity or periodicity in the main scanning direction of the ink ejection device ) can suppress the occurrence of streaks.
また、実施例2及び参考例1の比較及び図53から、境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御することにより、境界部における直線性が向上することがわかる。
Further, from the comparison of Example 2 and Reference Example 1 and from FIG. 53, it is found that the boundary portion has continuity or periodicity according to the order in the longitudinal direction in which the pixels constituting the image data are arranged. It can be seen that the control improves the linearity at the boundary.
実施例2~6の比較から、パターン形成方法A又はBを用いる(境界部におけるドットの塗膜の形成を、境界部を除くパターン部における前記ドットの塗膜の形成よりも先に完了させる)ことにより、境界部における直線性が更に向上することがわかる。
From the comparison of Examples 2 to 6, the pattern forming method A or B is used (the formation of the dot coating film in the boundary portion is completed prior to the formation of the dot coating film in the pattern portion excluding the boundary portion). Therefore, it can be seen that the linearity at the boundary is further improved.
実施例2と9の比較から、双方向印刷を用いる(インク吐出装置が、相対的に主走査方向に往復移動し、往路及び復路どちらにおいてもインクの液滴を吐出する)ことにより、境界部における直線性はやや低下することがわかるが、実用上問題はなく、主走査方向の移動動作を減らして印刷時間を短縮でき、生産性が向上する利点がある。
From the comparison of Examples 2 and 9, it can be seen that the use of bidirectional printing (the ink ejection device relatively reciprocates in the main scanning direction and ejects ink droplets in both the forward and backward passes) makes it possible to Although it can be seen that the linearity at 1 is slightly lowered, there is no problem in practical use, and there is an advantage that the printing time can be shortened by reducing the moving operation in the main scanning direction, and the productivity is improved.
インク1は、25℃(室温)における粘度が、インクの吐出時の好適な粘度の範囲内であるため、実施例1及び比較例1では、インクを加熱せず室温のままで吐出した。また、前述のとおり、インク1の、25℃(室温)における粘度と75℃における粘度とは大差がないため、ヘッド温度を75℃に変更し、実施例1と同様にして作製した印刷物においても、実施例1(印刷物1)と同様の結果が得られた。これと実施例2の比較から、吐出時の温度における粘度η1と着弾時の温度における粘度η2との比率η2/η1が、100以上であるインクを用いることにより、境界部における直線性が更に向上することがわかる。
Ink 1 has a viscosity at 25°C (room temperature) within the range of a suitable viscosity for ink ejection, so in Example 1 and Comparative Example 1, the ink was ejected at room temperature without heating. In addition, as described above, since the viscosity of ink 1 at 25° C. (room temperature) is not much different from that at 75° C., the head temperature was changed to 75° C., and the printed material produced in the same manner as in Example 1 , a result similar to that of Example 1 (printed matter 1) was obtained. From a comparison between this and Example 2, the linearity at the boundary is further improved by using an ink in which the ratio η2/η1 between the viscosity η1 at the ejection temperature and the viscosity η2 at the landing temperature is 100 or more. I know you do.
本発明のパターン形成方法を用いることにより、スジがなく、再現性が良好であるパターンを形成することができる。そのため、絶縁体や導電体といった機能性材料を含むインクを用いた場合において、絶縁特性や導電特性が均一であるパターンを形成することができ、電子デバイスのプリント回路基板等のパターン形成に、本発明のパターン形成方法を好適に用いることができる。
By using the pattern forming method of the present invention, a pattern with no streaks and good reproducibility can be formed. Therefore, when ink containing functional materials such as insulators and conductors is used, it is possible to form patterns with uniform insulating and conductive properties. The pattern forming method of the invention can be preferably used.
1 インクジェット印刷装置
2 キャリッジ
3 ヘッド
4 X方向リニアステージ
5 テーブル
6 Y方向リニアステージ
9 インク吐出装置
11 非パターン部
12 境界形成部
13 境界形成部を除く境界部
14 境界部を除くパターン部
15 パターン部と非パターン部の境界
16 境界部
17 パターン部
21~28 ノズル21~28
100 インクジェット印刷装置 1 Inkjet printing device 2 Carriage 3 Head 4 X-direction linear stage 5 Table 6 Y-direction linear stage 9 Ink ejection device 11 Non-pattern part 12 Boundary forming part 13 Boundary part 14 excluding the boundary forming part Pattern part excluding the boundary part 15 Pattern part and non-pattern portion boundary 16 boundary portion 17 pattern portions 21 to 28 nozzles 21 to 28
100 inkjet printer
2 キャリッジ
3 ヘッド
4 X方向リニアステージ
5 テーブル
6 Y方向リニアステージ
9 インク吐出装置
11 非パターン部
12 境界形成部
13 境界形成部を除く境界部
14 境界部を除くパターン部
15 パターン部と非パターン部の境界
16 境界部
17 パターン部
21~28 ノズル21~28
100 インクジェット印刷装置 1 Ink
100 inkjet printer
Claims (10)
- パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記画像データを構成する各画素が配列された行及び列の順番のとおりでなく、かつ一定の周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
The positions of the dots on which the droplets are to land are not in the order of the rows and columns in which the pixels constituting the image data are arranged and have a certain periodicity in the pattern portion excluding the boundary portion. control not to
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged. - パターンの画像データに基づくインクジェット印刷方式によるパターン形成方法であって、
複数のノズル孔を有するインク吐出装置又は印刷媒体としての基板が複数回移動し、前記インク吐出装置のノズルから前記印刷媒体としての基板にインクの液滴を吐出して前記パターンを形成する方式において、
前記基板上に形成する前記パターンを構成するドットの塗膜の形成に用いる前記インクの液滴の着弾が複数回にわたり、かつ、
前記液滴を着弾させる前記ドットの位置を、境界部を除くパターン部においては、前記インク吐出装置の主走査方向において連続性又は周期性を有さないように制御し、
前記境界部においては、前記画像データを構成する各画素が配列された長手方向の順番のとおりに、連続性又は周期性を有するように制御する
ことを特徴とするパターン形成方法。 A pattern forming method by an inkjet printing method based on pattern image data,
In a method in which an ink ejection device having a plurality of nozzle holes or a substrate as a print medium is moved a plurality of times, and ink droplets are ejected from the nozzles of the ink ejection device onto the substrate as the print medium to form the pattern. ,
The droplets of the ink used for forming the coating film of the dots forming the pattern to be formed on the substrate land a plurality of times, and
controlling the positions of the dots on which the liquid droplets land so as not to have continuity or periodicity in the main scanning direction of the ink ejection device in the pattern portion excluding the boundary portion;
The pattern forming method, wherein the boundary portion is controlled so as to have continuity or periodicity in accordance with the order in the longitudinal direction in which the pixels constituting the image data are arranged. - 前記液滴を着弾させる前記ドットの位置を、前記境界部を除く前記パターン部においては、更に前記インク吐出装置の副走査方向においても連続性又は周期性を有さないように制御する
ことを特徴とする請求項2に記載のパターン形成方法。 The positions of the dots on which the droplets are landed are controlled so as not to have continuity or periodicity in the pattern portion excluding the boundary portion and also in the sub-scanning direction of the ink ejection device. 3. The pattern forming method according to claim 2. - 前記境界部における前記ドットの塗膜の形成を、前記境界部を除く前記パターン部における前記ドットの塗膜の形成よりも先に完了させる
ことを特徴とする請求項1から請求項3までのいずれか一項に記載のパターン形成方法。 4. The method according to any one of claims 1 to 3, wherein the formation of the coating film of the dots on the boundary portion is completed prior to the formation of the coating film of the dots on the pattern portion excluding the boundary portion. 1. The pattern forming method according to 1. - 前記パターンの前記画像データを、重ねて印刷した場合に各画素が重ならないよう、かつ、前記液滴を着弾させる前記ドットの位置が、前記インク吐出装置の前記主走査方向において連続性又は周期性を有さないように、複数に分割し、
前記分割した前記画像データを順次重ねて印刷する
ことを特徴とする請求項2から請求項4までのいずれか一項に記載のパターン形成方法。 When the image data of the pattern is printed in an overlapping manner, the pixels are not overlapped, and the positions of the dots on which the droplets are landed are continuous or periodic in the main scanning direction of the ink ejection device. divided into multiple parts so as not to have
5. The pattern forming method according to any one of claims 2 to 4, wherein the divided image data are sequentially overlapped and printed. - 前記インク吐出装置が、相対的に前記主走査方向に往復移動し、
往路及び復路どちらにおいてもインクの液滴を吐出する
ことを特徴とする請求項2から請求項5までのいずれか一項に記載のパターン形成方法。 The ink ejection device relatively reciprocates in the main scanning direction,
6. The pattern forming method according to any one of claims 2 to 5, wherein ink droplets are ejected in both the outward pass and the return pass. - 前記インクとして、吐出時の温度における粘度η1と着弾時の温度における粘度η2との比率η2/η1が、100以上であるインクを用いる
ことを特徴とする請求項1から請求項6までのいずれか一項に記載のパターン形成方法。 7. The ink according to any one of claims 1 to 6, wherein the ratio η2/η1 between the viscosity η1 at the ejection temperature and the viscosity η2 at the landing temperature is 100 or more. 1. The pattern forming method according to item 1. - 前記インクとして、ホットメルトタイプ、ゲル化タイプ又はチキソトロピータイプのいずれかのタイプのインクを用いる
ことを特徴とする請求項1から請求項7までのいずれか一項に記載のパターン形成方法。 8. The pattern forming method according to any one of claims 1 to 7, wherein any one of hot-melt type, gelling type and thixotropic type ink is used as the ink. - 前記インクとして、ソルダーレジストインクを用いる
ことを特徴とする請求項1から請求項8までのいずれか一項に記載のパターン形成方法。 The pattern forming method according to any one of claims 1 to 8, wherein a solder resist ink is used as the ink. - パターンの画像データに基づきパターンを形成するインクジェット印刷装置であって、
請求項1から請求項9までのいずれか一項に記載のパターン形成方法によりパターンを形成する
ことを特徴とするインクジェット印刷装置。 An inkjet printing device that forms a pattern based on image data of the pattern,
An inkjet printing apparatus, wherein a pattern is formed by the pattern forming method according to any one of claims 1 to 9.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/008726 WO2023166577A1 (en) | 2022-03-02 | 2022-03-02 | Pattern forming method and inkjet printing device |
TW111150075A TWI848485B (en) | 2022-03-02 | 2022-12-27 | Pattern forming method and inkjet printing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/008726 WO2023166577A1 (en) | 2022-03-02 | 2022-03-02 | Pattern forming method and inkjet printing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166577A1 true WO2023166577A1 (en) | 2023-09-07 |
Family
ID=87883192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008726 WO2023166577A1 (en) | 2022-03-02 | 2022-03-02 | Pattern forming method and inkjet printing device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI848485B (en) |
WO (1) | WO2023166577A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08336961A (en) * | 1995-06-12 | 1996-12-24 | Olympus Optical Co Ltd | Ink-jet printing method |
US6829064B1 (en) * | 2000-05-01 | 2004-12-07 | Eastman Kodak Company | Ink reduction using diffused bitmap masks |
JP2005088275A (en) * | 2003-09-16 | 2005-04-07 | Sony Corp | Liquid ejector and liquid ejection method |
WO2006018987A1 (en) * | 2004-08-18 | 2006-02-23 | Konica Minolta Medical & Graphic, Inc. | Image recording method and image recording device |
JP2008149566A (en) * | 2006-12-18 | 2008-07-03 | Canon Inc | Recording device, recording method, and image processor |
WO2022049994A1 (en) * | 2020-09-03 | 2022-03-10 | コニカミノルタ株式会社 | Method of pattern formation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4311084B2 (en) * | 2003-06-02 | 2009-08-12 | セイコーエプソン株式会社 | Thin film pattern manufacturing method, organic electroluminescent device manufacturing method, color filter manufacturing method, plasma display panel manufacturing method, liquid crystal display panel manufacturing method |
JP4738319B2 (en) * | 2006-11-15 | 2011-08-03 | 大日本スクリーン製造株式会社 | Pattern forming device |
US8210638B2 (en) * | 2007-02-14 | 2012-07-03 | Canon Kabushiki Kaisha | Ink jet printing apparatus and ink jet priting method |
KR102003625B1 (en) * | 2015-03-02 | 2019-07-24 | 코니카 미놀타 가부시키가이샤 | A pattern forming method, a substrate provided with a transparent conductive film, a device and an electronic device |
KR102326371B1 (en) * | 2020-04-08 | 2021-11-15 | 이봉우 | Fabricating method and device for pattern using inject |
-
2022
- 2022-03-02 WO PCT/JP2022/008726 patent/WO2023166577A1/en unknown
- 2022-12-27 TW TW111150075A patent/TWI848485B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08336961A (en) * | 1995-06-12 | 1996-12-24 | Olympus Optical Co Ltd | Ink-jet printing method |
US6829064B1 (en) * | 2000-05-01 | 2004-12-07 | Eastman Kodak Company | Ink reduction using diffused bitmap masks |
JP2005088275A (en) * | 2003-09-16 | 2005-04-07 | Sony Corp | Liquid ejector and liquid ejection method |
WO2006018987A1 (en) * | 2004-08-18 | 2006-02-23 | Konica Minolta Medical & Graphic, Inc. | Image recording method and image recording device |
JP2008149566A (en) * | 2006-12-18 | 2008-07-03 | Canon Inc | Recording device, recording method, and image processor |
WO2022049994A1 (en) * | 2020-09-03 | 2022-03-10 | コニカミノルタ株式会社 | Method of pattern formation |
Also Published As
Publication number | Publication date |
---|---|
TWI848485B (en) | 2024-07-11 |
TW202349765A (en) | 2023-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101421110B (en) | Method for producing record product, and intermediate transfer body and image recording apparatus used therefor | |
CN105848901B (en) | Printing equipment and printing process | |
JP2007210169A (en) | Printing method | |
JP5891603B2 (en) | Liquid ejecting apparatus and liquid ejecting method | |
WO2016117550A1 (en) | Printer, printing method and ink | |
JP2022117510A (en) | Pattern forming method | |
WO2023166577A1 (en) | Pattern forming method and inkjet printing device | |
JP2018183949A (en) | Printer and printing method | |
US20210206163A1 (en) | Decorative member manufacturing apparatus and method for manufacturing decorative member | |
JP6233302B2 (en) | Color filter manufacturing method and color reflection display | |
GB2390332A (en) | Multiple pass inkjet printing using UV radiation curable inks with a partial and full ink curing process. | |
JP2008105268A (en) | Inkjet image formation device with photocurable ink and inkjet image forming method | |
JP2014138989A (en) | Ink jet printer and printing method | |
JP2019217669A (en) | Printing method and printer | |
JP2022117510A5 (en) | Pattern forming method and inkjet printing apparatus | |
KR101302425B1 (en) | Method and apparatus using pixel spot size control for reducing intercolor bleed | |
US9044970B2 (en) | Recording method | |
JP4054468B2 (en) | Inkjet printing method and color filter manufacturing method | |
WO2004098896A1 (en) | Ink-jet printing method and ink-jet printing apparatus | |
EP4442434A1 (en) | Inkjet printing of three dimensional structures | |
KR20150130836A (en) | Ink-jet marking method and ink-jet marking system | |
EP4382305A1 (en) | Inkjet printing of haptic structures | |
JP6221242B2 (en) | Manufacturing method of color filter | |
JP2011194611A (en) | Printing device and printing method | |
JP6137359B2 (en) | Liquid ejecting apparatus and liquid ejecting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929725 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024504059 Country of ref document: JP Kind code of ref document: A |