WO2023166558A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2023166558A1
WO2023166558A1 PCT/JP2022/008598 JP2022008598W WO2023166558A1 WO 2023166558 A1 WO2023166558 A1 WO 2023166558A1 JP 2022008598 W JP2022008598 W JP 2022008598W WO 2023166558 A1 WO2023166558 A1 WO 2023166558A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
refrigerant
heat exchanger
heat
source side
Prior art date
Application number
PCT/JP2022/008598
Other languages
French (fr)
Japanese (ja)
Inventor
和也 本田
直史 竹中
誠司 羽下
健史 森山
麻子 田村
優広 玉木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/008598 priority Critical patent/WO2023166558A1/en
Publication of WO2023166558A1 publication Critical patent/WO2023166558A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present disclosure relates to an air conditioner that achieves both cooling operation and heating operation.
  • Patent Document 1 In the technology described in Patent Document 1, the control unit adjusts the amount of air blown by controlling the on/off of the fan. However, since the control unit is a component that generates heat, Patent Document 1 does not consider cooling of the control unit. Therefore, there is a demand for a technology that can simultaneously perform the cooling operation and the heating operation while suppressing the temperature rise of the control unit.
  • the present disclosure has been made in view of the above circumstances, and provides an air conditioner that can perform cooling operation and heating operation at the same time while suppressing the temperature rise of the control unit.
  • An air conditioner includes a heat source side unit provided with a heat source side heat exchanger, a plurality of load side units provided with a load side heat exchanger, and the heat source side unit and the heat source side unit are connected by piping, a relay unit that distributes the heat of the refrigerant supplied from the heat source side unit to the load side unit, and the heat source side unit includes a control section that controls the operation of the heat source side unit; and the heat source side heat exchanger.
  • the control unit operates the first fan and operates or stops the second fan at a rotational speed lower than that of the first fan.
  • the first fan is arranged at a position where it can blow air to the control unit with priority over the second fan.
  • the control unit operates the first fan and operates the second fan as the first fan. Operate or stop at a speed lower than that of the fan. Therefore, the first fan preferentially blows air to the controller of the heat source side unit, so that the air conditioner can be maintained in the cooling main operation mode while suppressing the temperature rise of the controller.
  • FIG. 1 is a circuit diagram showing an air conditioner according to Embodiment 1.
  • FIG. 4 is a diagram showing the heat source side heat exchanger, the first outdoor fan, and the second outdoor fan according to Embodiment 1, when the heat source side heat exchanger operates as a condenser;
  • FIG. 1 is a diagram showing the appearance of a compressor according to Embodiment 1.
  • FIG. 4(a) is a plan view showing the internal structure of the compressor according to Embodiment 1.
  • FIG. FIG. 4(b) is a diagram showing the arrangement configuration of the control unit of the compressor, the heat source side heat exchanger, the first outdoor fan, and the second outdoor fan according to the first embodiment.
  • FIG. 4 is a diagram showing the heat source side heat exchanger, the first outdoor fan, and the second outdoor fan according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a flow of refrigerant in a cooling-main operation mode of the air conditioner illustrated in FIG. 1;
  • FIG. 7 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner according to Embodiment 2;
  • FIG. 7 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner illustrated in FIG. 6;
  • FIG. 11 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner according to Embodiment 3;
  • FIG. 9 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner shown in FIG. 8;
  • FIG. 8 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner shown in FIG. 8;
  • FIG. 8 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner shown in
  • FIG. 10 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner 100 according to Embodiment 4;
  • FIG. 11 is a diagram illustrating an example of a refrigerant flow during a cooling main operation mode of the air conditioner illustrated in FIG. 10;
  • FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 includes a heat source device 10 as a heat source side unit, a load side unit 80a and a load side unit 80b, and a repeater 50 as a relay unit.
  • the relay unit includes both distribution of the refrigerant itself and distribution of heat transferred from the refrigerant to the heat transfer medium.
  • two load-side units 80a and 80b are connected to one heat source device 10, but the number of heat source devices 10 may be two or more. Also, the number of load side units 80 may be three or more.
  • the air conditioner 100 is configured by connecting a heat source device 10, a load side unit 80a and a load side unit 80b, and a repeater 50.
  • the heat source device 10 has a function of supplying heat or cold to the two load-side units 80a and 80b.
  • the two load-side units 80 a and 80 b have the function of cooling or heating the load-side space with the heat or cold heat supplied from the heat source device 10 .
  • the relay device 50 switches the flow of the refrigerant supplied from the heat source device 10 between the heat source device 10 and the load side unit 80a and the load side unit 80b in accordance with requests from the load side unit 80a and the load side unit 80b. have a function.
  • the heat source device 10 and the relay device 50 are connected by a high-pressure pipe 42 through which a high-pressure refrigerant flows and a low-pressure pipe 41 through which a low-pressure refrigerant flows.
  • the heat source device 10 is arranged, for example, outside the room, and exhausts or supplies heat from air conditioning.
  • the heat source device 10 includes, for example, a compressor 1, a four-way valve 2a, a heat source side heat exchanger 3, an expansion device 5, and an accumulator 6, which are connected by pipes.
  • the heat source device 10 is also equipped with a first outdoor fan 4a and a second outdoor fan 4b, which are blowers for blowing air to the heat source side heat exchanger 3 .
  • the case where two first outdoor fans 4a and second outdoor fans 4b are mounted is illustrated, but the number of first outdoor fans 4a and second outdoor fans 4b can be three or more. good.
  • the compressor 1 takes in and compresses the refrigerant to bring it into a high temperature and high pressure state, and is composed of, for example, an inverter compressor whose capacity can be controlled.
  • the compressor 1 may have, for example, a low-pressure shell structure that has a compression chamber in a closed container, the inside of the closed container becomes a low-pressure refrigerant pressure atmosphere, and the low-pressure refrigerant in the closed container is sucked and compressed.
  • the compressor 1 may have a high-pressure shell structure in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere, and the low-pressure refrigerant in a pipe connected to the suction portion of the compressor is sucked and compressed.
  • the four-way valve 2a switches between the refrigerant flow path in cooling operation and the refrigerant flow path in heating operation, and switches the heat source side heat exchanger 3 acting as a condenser or gas cooler.
  • the discharge side of the compressor 1, the heat source side heat exchanger 3, the first check valve 7, the third check valve 9 and the accumulator 6 are connected via the four-way valve 2a.
  • the four-way valve 2a switches the refrigerant circuit so that the discharge side of the compressor 1 communicates with the heat source side heat exchanger 3, the first check valve 7, and the accumulator 6, so that the heat source side heat is
  • the exchanger 3 operates to act as a condenser or gas cooler.
  • the four-way valve 2a switches the refrigerant circuit so that the discharge side of the compressor 1 communicates with the third check valve 9, the fourth check valve 11, the heat source side heat exchanger 3, and the accumulator 6, respectively.
  • the heat source side heat exchanger 3 operates as an evaporator.
  • the four-way valve 2a is a four-way valve or the like, and may be a two-way valve or the like.
  • the accumulator 6 is provided at the suction part on the suction side of the compressor 1, and the surplus refrigerant generated due to the difference between the heating operation mode and the cooling operation mode, or the surplus refrigerant generated due to a transitional change in operation. is stored.
  • a receiver for storing high-pressure liquid refrigerant may be used.
  • the heat source equipment 10 has a first check valve 7 , a second check valve 8 , a third check valve 9 and a fourth check valve 11 .
  • the first check valve 7 is arranged in a pipe connecting the low-pressure pipe 41 and the four-way valve 2a so that the refrigerant flows from the low-pressure pipe 41 to the four-way valve 2a.
  • the second check valve 8 is arranged in a pipe connecting the high-pressure pipe 42 and the expansion device 5 so that the refrigerant flows from the expansion device 5 to the high-pressure pipe 42 .
  • the third check valve 9 is connected between the pipe connecting the four-way valve 2 a and the high pressure pipe 42 , and arranged so that the refrigerant flows from the heat source device 10 to the high pressure pipe 42 .
  • the fourth check valve 11 is arranged in a pipe connecting the low-pressure pipe 41 and the expansion device 5 so that the refrigerant flows from the low-pressure pipe 41 to the heat source device 10 .
  • the compressor 1 detects the liquid side temperature of the heat source side heat exchanger 3 with a high pressure detection sensor 31, a discharge temperature sensor 21, an intake temperature sensor 22, a low pressure detection sensor 32, an outside temperature sensor 23, and a heat source side heat exchanger 3. and a temperature sensor 24 .
  • the high pressure detection sensor 31 detects the high pressure on the discharge side of the compressor 1 .
  • the discharge temperature sensor 21 detects the temperature of the high-temperature and high-pressure refrigerant discharged from the compressor 1 .
  • the intake temperature sensor 22 detects the temperature of the low-temperature and low-pressure refrigerant sucked into the compressor 1 .
  • the low pressure detection sensor 32 detects the low pressure of refrigerant on the suction side of the compressor 1 .
  • the outside air temperature sensor 23 is provided at the air intake portion of the heat source side heat exchanger 3 and detects the ambient temperature of the compressor 1 .
  • the volume of the heat source side heat exchanger 3 is the volume of the pipe or container through which the refrigerant flows among the compressor 1, the load side units 80a and 80b, and the relay 50, and the volume of the compressor 1 and the relay. It occupies 15% to 30% of the total of the volume of the pipe connecting the repeater 50 and the volume of the pipe connecting the repeater 50 and the load-side unit 80a and the load-side unit 80b.
  • the control unit 60 controls, for example, the entire air conditioner 100, and includes, for example, an analog circuit, a digital circuit, a CPU, or a combination of two or more of these.
  • the control unit 60 controls the driving frequency of the compressor 1 and the rotation of the first outdoor fan 4a and the second outdoor fan 4b based on detection information detected by the various sensors described above and instructions from an input device such as a remote controller. number (including ON/OFF switching), switching of the four-way valve 2a, opening degree of the expansion device 5, drive frequency of the pump (not shown), opening degree of the indoor expansion device 53a and the indoor expansion device 53b, Each operation mode, which will be described later, is executed.
  • the temperature of the control unit 60 rises due to the heat generated by the control unit 60 and the heat radiation from the heat source device 10 .
  • the temperature range within which CPUs and microprocessors operate normally is determined.
  • the control unit 60 is arranged at a position where it can be cooled by air blowing from the first outdoor fan 4a.
  • the heat source device 10 also has a temperature sensor 26 that detects the temperature of the control section 60 .
  • the processing circuit of the control unit 60 is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. is applicable.
  • Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • the processing circuit of the control unit 60 is a CPU
  • each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit.
  • the CPU implements each function of the processing circuit by reading and executing a program stored in the storage unit.
  • a part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • the load-side unit 80a is, for example, arranged inside a room and supplies conditioned air to the room.
  • the load side unit 80a has a load side heat exchanger 51a that operates as an evaporator or condenser.
  • the load-side unit 80b is, for example, arranged inside a room and supplies conditioned air to the room.
  • the load side unit 80b has a load side heat exchanger 51b that operates as an evaporator or condenser.
  • the load-side heat exchanger 51a and the load-side heat exchanger 51b are connected to the repeater 50 via piping.
  • the load-side heat exchanger 51a and the load-side heat exchanger 51b exchange heat between air and refrigerant to generate heating air or cooling air to be supplied to the indoor space.
  • Indoor air is blown to the load-side heat exchanger 51a by an indoor fan 52a.
  • Indoor air is blown to the load-side heat exchanger 51b by an indoor fan 52b.
  • the indoor expansion device 53a and the indoor expansion device 53b are composed of a two-way valve or the like that can control the opening area.
  • the indoor expansion device 53a adjusts the flow rate of the heat medium flowing through the load side heat exchanger 51a.
  • the indoor throttle device 53b adjusts the flow rate of the heat medium flowing through the load-side heat exchanger 51b.
  • One side of the indoor expansion device 53a is connected to the load side heat exchanger 51a, and the other side is connected to the pipe connecting to the repeater 50.
  • the indoor expansion device 53a is provided on the liquid refrigerant side of the heat medium flow path of the load side heat exchanger 51a.
  • One side of the indoor expansion device 53b is connected to the load side heat exchanger 51b, and the other side is connected to the pipe connecting to the repeater 50.
  • the indoor expansion device 53b is provided on the liquid refrigerant side of the heat medium flow path of the load side heat exchanger 51b.
  • the load side unit 80a also has an indoor heat exchange gas temperature sensor 54a and an indoor heat exchange liquid temperature sensor 56a.
  • the load side unit 80b has an indoor heat exchange gas temperature sensor 54b and an indoor heat exchange liquid temperature sensor 56b.
  • the indoor heat exchanger gas temperature sensor 54a and the indoor heat exchanger gas temperature sensor 54b are composed of, for example, thermistors.
  • the indoor heat exchanger gas temperature sensor 54a detects the gas temperature of the refrigerant flowing into or out of the load side heat exchanger 51a.
  • the indoor heat exchanger gas temperature sensor 54b detects the gas temperature of the refrigerant flowing into or out of the load side heat exchanger 51b.
  • the indoor heat exchanger gas temperature sensor 54a is provided in the gas pipe of the load side heat exchanger 51a.
  • the indoor heat exchanger gas temperature sensor 54b is provided in the gas pipe of the load side heat exchanger 51b.
  • the indoor heat exchange fluid temperature sensor 56a and the indoor heat exchange fluid temperature sensor 56b are composed of, for example, thermistors.
  • the indoor heat exchange liquid temperature sensor 56a detects the temperature of the liquid refrigerant flowing into or out of the load side heat exchanger 51a.
  • the indoor heat exchange liquid temperature sensor 56b detects the temperature of the liquid refrigerant flowing into or out of the load side heat exchanger 51b.
  • the indoor heat exchange fluid temperature sensor 56a is provided on the heat medium outlet side of the load side heat exchanger 51a.
  • the indoor heat exchange fluid temperature sensor 56b is provided on the heat medium outlet side of the load side heat exchanger 51b.
  • the repeater 50 is arranged, for example, in a non-air-conditioned space in a building separate from the load-side unit 80a and the load-side unit 80b.
  • the relay 50 includes a gas-liquid separation mechanism 12, a first heat exchanger between refrigerants 13, a second heat exchanger between refrigerants 14, a first relay throttle device 15, a second relay throttle device 16, have
  • the repeater 50 has a first on-off valve 19a and a second on-off valve 20a that are connected to the gas-side pipe of the load-side heat exchanger 51a.
  • the repeater 50 has a first on-off valve 19b and a second on-off valve 20b that are connected to the gas-side pipe of the load-side heat exchanger 51b.
  • the first on-off valve 19a and the first on-off valve 19b are connected to the gas side outlet of the gas-liquid separation mechanism 12, and the second on-off valve 20a and the second on-off valve 20b are pipes connecting the repeater 50 and the high-pressure pipe 42. connected to
  • the first on-off valve 19a and the first on-off valve 19b, and the second on-off valve 20a and the second on-off valve 20b are, for example, two-way valves.
  • the repeater 50 has a first repeater check valve 17a and a first repeater check valve 17b, and a second repeater check valve 18a and a second repeater check valve 18b.
  • the first relay check valve 17a is arranged in the pipe connecting the relay 50 and the load side unit 80a, and arranged so that the refrigerant flows from the relay 50 to the indoor expansion device 53a.
  • the first relay check valve 17b is arranged in a pipe connecting the relay 50 and the load side unit 80b, and arranged so that the refrigerant flows from the relay 50 to the indoor expansion device 53b.
  • the second relay check valve 18a is arranged in the pipe connecting the relay 50 and the load side unit 80a, and arranged so that the refrigerant flows from the indoor expansion device 53a to the relay 50.
  • the second relay check valve 18b is arranged in the pipe that connects the relay 50 and the load side unit 80b, and is arranged so that the refrigerant flows from the indoor expansion device 53b to the relay 50.
  • the repeater 50 is provided with a high pressure side liquid pressure sensor 33 , a liquid outflow pressure sensor 34 and a repeater temperature sensor 25 .
  • the high pressure side liquid pressure sensor 33 is provided between the first heat exchanger between refrigerants 13 and the first relay throttle device 15 .
  • the liquid outflow pressure sensor 34 is provided between the first relay throttle device 15 and the second refrigerant heat exchanger 14 .
  • the repeater temperature sensor 25 is arranged in a pipe connecting the low-pressure side outlet of the first heat exchanger between refrigerants 13 and the high-pressure pipe 42 .
  • FIG. 2 shows the heat source side heat exchanger 3, the first outdoor fan 4a and the second outdoor fan 4b according to Embodiment 1, and is a diagram when the heat source side heat exchanger 3 operates as a condenser.
  • the heat source side heat exchanger 3 is composed of multiple pipes through which refrigerant flows and fins for enlarging the heat transfer area.
  • black arrows indicate the flow of refrigerant
  • white arrows indicate the flow of air.
  • the refrigerant flows into the heat source side heat exchanger 3 from the left side of the page, flows in the depth direction of the page, turns back to the front of the page, and then flows out to the right side of the page.
  • the heat source side heat exchanger 3 operates as a condenser
  • the first outdoor fan 4a and the second outdoor fan 4a and the second outdoor fan 4a are arranged so that the air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the refrigerant flow countercurrently.
  • a fan 4b is arranged.
  • FIG. 3 is a diagram showing the appearance of the heat source equipment 10 according to the first embodiment.
  • the heat source machine 10 is configured as a so-called trunk-type heat source machine, and has a front wall 10a, a rear wall 10b, a left wall 10c, a right wall 10d, a ceiling wall 10e, and a bottom plate 10f. It has a rectangular parallelepiped shape.
  • An air outlet 103a of the first outdoor fan 4a is formed above the left portion of the front wall 10a.
  • An outlet 103b of the second outdoor fan 4b is formed below the left portion of the front wall 10a.
  • the right side wall 10d is formed with a suction port 10g through which outside air can be sucked into the heat source device 10. As shown in FIG.
  • FIG. 4(a) is a plan view showing the internal structure of the heat source equipment 10 according to Embodiment 1.
  • FIG. 4A shows the heat source side heat exchanger 3, the first outdoor fan 4a, the controller 60, and the radiator plate 61 of the controller 60 in the configuration of the heat source device 10.
  • FIG. 4(b) is a diagram showing the arrangement configuration of the control unit 60, the heat source side heat exchanger 3, the first outdoor fan 4a, and the second outdoor fan 4b of the heat source device 10 according to the first embodiment.
  • the heat source device 10 is partitioned by a partition plate 10h.
  • the heat source side heat exchanger 3, the first outdoor fan 4a and the second outdoor fan 4b are arranged on the left side of the partition plate 10h in FIG. 4(a), and other components are arranged on the right side of the partition plate 10h. ing.
  • the control unit 60 is housed in, for example, a rectangular parallelepiped electrical component box, and is arranged on the upper right side wall 10d inside the heat source device 10. As shown in FIG. The controller 60 housed in the electrical component box is simply called the controller 60 . Further, the control unit 60 is arranged between the first outdoor fan 4a and the heat source side heat exchanger 3 and at approximately the same height as the first outdoor fan 4a. Since the distance between the first outdoor fan 4a and the control unit 60 is shorter than the distance between the second outdoor fan 4b and the control unit 60, the control unit 60 operates not the second outdoor fan 4b, but mainly It is cooled by wind from the first outdoor fan 4a.
  • the radiator plate 61 is a cooling device that is arranged so as to be in contact with the controller 60 and dissipates heat generated from the controller 60 .
  • the radiator plate 61 is composed of, for example, fins like a heat sink.
  • the heat source device 10 has an air outlet 10i for supplying air from the air inlet 10g (see FIG. 3) to the radiator plate 61 by the first outdoor fan 4a.
  • the control unit 60 is cooled by supplying the air sucked from the suction port 10g (see FIG. 3) to the radiator plate 61, and the air heated by the radiator plate 61 flows through the heat source side heat exchanger 3 from the blowout port 10i. It is discharged with the passing air.
  • the air conditioner 100 performs cooling-only operation, heating-only operation, cooling-main operation, and heating-main operation based on instructions from the load-side unit 80a and the load-side unit 80b.
  • the cooling only operation is a mode in which both the load-side unit 80a and the load-side unit 80b perform the cooling operation mode.
  • the heating only operation is a mode in which both the load side unit 80a and the load side unit 80b perform the heating operation mode.
  • the cooling-dominant operation is an operation mode in which the load-side unit 80a and the load-side unit 80b are in a simultaneous cooling/heating operation mode in which the cooling operation and the heating operation are mixed, and the cooling load is larger.
  • the heating-dominant operation is an operation mode in which the heating load is larger among the simultaneous cooling and heating operation modes.
  • the compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the four-way valve 2a.
  • the heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant.
  • the medium-temperature and high-pressure refrigerant cooled in the heat source side heat exchanger 3 flows through the expansion device 5 and the second check valve 8 into the high-pressure pipe 42 .
  • the medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure pipe 42, and passes through the gas-liquid separation mechanism 12, the first refrigerant heat exchanger 13, the first repeater throttle device 15, and the second refrigerant heat exchanger. 14, it flows into the first relay check valve 17a and the first relay check valve 17b.
  • the low-temperature and low-pressure refrigerant decompressed by the second relay throttle device 16 flows into the second heat exchanger between refrigerants 14 and the first heat exchanger between refrigerants 13, and exchanges heat with medium-temperature and high-pressure liquid refrigerant. , gasifies and flows out.
  • the medium-temperature and high-pressure liquid refrigerant cooled by the first heat exchanger between refrigerants 13 and the second heat exchanger between refrigerants 14 passes through the first relay check valve 17a and the first relay check valve 17b. It flows into the load side unit 80a and the load side unit 80b.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53b flows into the load-side heat exchanger 51b.
  • the load-side heat exchanger 51a heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
  • the medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a.
  • the load-side heat exchanger 51b heat is exchanged between the indoor air supplied from the indoor fan 52b and the low-temperature refrigerant.
  • the medium-temperature refrigerant heated by the load-side heat exchanger 51b passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20b.
  • the low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again via the first check valve 7, the four-way valve 2a, and the accumulator 6.
  • the first outdoor fan 4a and the second outdoor fan 4b control the number of rotations so that the pressure detected by the high pressure detection sensor 31 is kept above a certain value. Further, when the temperature detected by the temperature sensor 26 exceeds a certain value, the controller 60 may increase the speed of the first outdoor fan 4a to cool the controller 60 preferentially.
  • Heating operation mode A heating operation mode in which the load-side unit 80a and the load-side unit 80b perform heating will be described.
  • the compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the high-pressure pipe 42 via the four-way valve 2 a and the third check valve 9 .
  • the high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51a via the gas-liquid separation mechanism 12 and the first on-off valve 19a.
  • the high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51b via the gas-liquid separation mechanism 12 and the first on-off valve 19b.
  • the load side unit 80a and the load side unit 80b are performing heating operation.
  • the load-side heat exchanger 51a heat is exchanged between the indoor air supplied from the indoor fan 52a and the high-temperature, high-pressure refrigerant.
  • the load-side heat exchanger 51b heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
  • the medium-temperature refrigerant cooled by the load-side heat exchanger 51a flows into the repeater 50 from the second repeater check valve 18a via the indoor expansion device 53a.
  • the medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows into the repeater 50 from the second repeater check valve 18b via the indoor expansion device 53b.
  • the medium-temperature refrigerant flows into the low-pressure pipe 41 via the second relay throttle device 16, the second heat exchanger between refrigerants 14, and the first heat exchanger between refrigerants 13.
  • the low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 flows into the heat source side heat exchanger 3 via the fourth check valve 11 and the expansion device 5 .
  • heat is exchanged between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the low-temperature, low-pressure refrigerant.
  • the low-temperature refrigerant heated by the heat source side heat exchanger 3 is sucked again into the compressor 1 via the four-way valve 2 a and the accumulator 6 .
  • Heating main operation mode A heating-dominant operation mode in which the load-side heat exchanger 51a and the load-side heat exchanger 51b generate a cooling load and a heating load will be described.
  • the load-side unit 80a performs cooling operation
  • the load-side unit 80b performs heating operation
  • the compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the high-pressure pipe 42 via the four-way valve 2 a and the third check valve 9 .
  • the high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51b via the gas-liquid separation mechanism 12 and the first on-off valve 19b.
  • the load-side heat exchanger 51b heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
  • the medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows from the second relay check valve 18b into the first relay check valve 17a via the indoor expansion device 53b.
  • the refrigerant flows into the load side unit 80a via the first relay check valve 17a.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
  • the load-side heat exchanger 51a heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
  • the medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a.
  • heat is exchanged between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the low-temperature, low-pressure refrigerant.
  • the low-temperature refrigerant heated by the heat source side heat exchanger 3 is sucked again into the compressor 1 via the four-way valve 2 a and the accumulator 6 .
  • FIG. 5 is a diagram illustrating an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG.
  • the cooling-dominant operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the load-side unit 80a performs cooling operation and the load-side unit 80b performs heating operation will be described.
  • the compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the four-way valve 2a.
  • the heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant.
  • the medium-temperature and high-pressure refrigerant cooled in the heat source side heat exchanger 3 flows through the expansion device 5 and the second check valve 8 into the high-pressure pipe 42 .
  • Medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure pipe 42, and into the load-side heat exchanger 51b through the gas-liquid separation mechanism 12 and the first on-off valve 19b.
  • the load-side heat exchanger 51b heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
  • the medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows from the second relay check valve 18b into the first relay check valve 17a via the indoor expansion device 53b. It flows into the load side unit 80a via the first relay check valve 17a.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
  • the load-side heat exchanger 51a heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
  • the medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the repeater 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a.
  • the low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again through the first check valve 7 , the four-way valve 2 a and the accumulator 6 .
  • the amount of heat absorbed from the compressor 1 and the load-side unit 80a must be balanced with the amount of heat released from the load-side unit 80b and the heat source-side heat exchanger 3.
  • the heat radiation amount of the heat source side heat exchanger 3 is adjusted according to the heating load.
  • the first outdoor fan 4a that can preferentially blow air to the control unit 60 does not stop, and the second outdoor fan 4b is stopped or the first outdoor fan 4b is stopped.
  • the amount of heat dissipation is adjusted by controlling the rotation speed to be lower than that of the outdoor fan 4a.
  • the rotation speed of the second outdoor fan 4b is reduced to about 10% of the rotation speed of the first outdoor fan 4a. Furthermore, when suppressing the heat radiation amount of the heat source side heat exchanger 3, the second outdoor fan 4b is stopped.
  • the first outdoor fan 4a is arranged at a position where it can blow air to the control unit 60 with priority over the second outdoor fan 4b.
  • the control unit 60 operates the first outdoor fan 4a and operates or stops the second outdoor fan 4b at a rotation speed lower than that of the first fan.
  • the heat source side heat exchanger 3 operates as a condenser, and the load side unit 80a and the load side unit 80b perform both cooling operation and heating operation. Therefore, the first outdoor fan 4 a preferentially blows air to the control unit of the heat source device 10 , thereby suppressing the temperature rise of the control unit 60 and maintaining the operation of the air conditioner 100 .
  • FIG. 6 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 2. As shown in FIG. In addition, in Embodiment 2, it demonstrates centering around difference with Embodiment 1, and the same code
  • a second expansion device 71 and a heat source side gas-liquid separation mechanism 72 are provided in parallel with the heat source side heat exchanger 3 and the expansion device 5 .
  • the second expansion device 71 functions as a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant and expands it.
  • the second throttle device 71 may be composed of, for example, an electronic expansion valve whose opening degree can be variably controlled.
  • One side of the second expansion device 71 is connected to the pipe connecting the four-way valve 2 a and the heat source side heat exchanger 3 , and the other side is connected to the gas side of the heat source side gas-liquid separation mechanism 72 .
  • the heat source side gas-liquid separation mechanism 72 separates the liquid state refrigerant and the gas state refrigerant.
  • the heat source side gas-liquid separation mechanism 72 is connected to the expansion device 5 on the liquid outflow side through which the liquid state refrigerant flows out, and the second expansion device 71 is connected to the gas passage side through which the gas state refrigerant passes.
  • the heat source side gas-liquid separation mechanism 72 has a pipe connected to the second check valve 8 on the mixing side through which liquid state refrigerant and gas state refrigerant pass.
  • the refrigerant cooled by the heat source side heat exchanger 3 flows through the expansion device 5 into the heat source side gas-liquid separation mechanism 72 .
  • the second expansion device 71 is open, the gas refrigerant flowing out of the four-way valve 2a flows into the heat source side gas-liquid separation mechanism 72 via the second expansion device 71, and the two mixed in the heat source side gas-liquid separation mechanism 72 Phase refrigerant flows into the second check valve 8 .
  • the low-pressure two-phase refrigerant flowing out of the fourth check valve 11 flows into the heat source side gas-liquid separation mechanism 72 .
  • the second expansion device 71 is open, the gas refrigerant separated by the heat source side gas-liquid separation mechanism 72 flows into the second expansion device 71, and the liquid refrigerant separated by the heat source side gas-liquid separation mechanism 72 is separated by the expansion device. Flow into 5.
  • the bypass route b is a pipe that connects a refrigerant-side inlet pipe and a refrigerant-side outlet pipe of the heat source side heat exchanger 3 .
  • the bypass route b has an expansion device 71, which is a bypass control valve that adjusts the flow rate of the refrigerant.
  • the air conditioner 100 has an operation mode in which the first outdoor fans 4a and 2 of the second outdoor fan 4b do not stop when the expansion device 71 is closed in the cooling main operation mode.
  • the air conditioner 100 has an operation mode in which the first outdoor fan 4a operates and the second outdoor fan 4b stops or slows down when the expansion device 71 is not closed in the cooling main operation mode.
  • FIG. 7 is a diagram illustrating an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG.
  • a cooling-dominant operation mode in which the load-side heat exchanger 51a generates a cooling load and the load-side heat exchanger 51b generates a heating load will be described.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 and the second throttle device 71 via the four-way valve 2a.
  • the heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant.
  • the second expansion device 71 controls the opening so that the dryness at the outlet of the heat source side gas-liquid separation mechanism 72 is above a certain level.
  • both the first outdoor fan 4a and the second outdoor fan 4b operate.
  • the second throttle device 71 is open, the second outdoor fan 4b is stopped or controlled to have a rotational speed lower than that of the first outdoor fan 4a, thereby adjusting the amount of heat dissipation.
  • the rotation speed of the second outdoor fan 4b is lowered to about 10% of the rotation speed of the first outdoor fan 4a.
  • FIG. 8 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 3.
  • the air conditioner 100 of Embodiment 3 has the heat source device 10, the repeater 50, and the load side unit 80a and the load side unit 80b as separate units.
  • the repeater 50 relays heat transfer by exchanging heat with a medium that conveys heat different from the refrigerant (hereinafter referred to as a heat medium).
  • the repeater 50 includes an intermediate heat exchanger 73a and an intermediate heat exchanger 73b, a pump 48a and a pump 48b, a first heat medium flow switching device 46a and a first heat medium flow switching device 46b, and a second heat medium It has a channel switching device 47a and a second heat medium channel switching device 47b.
  • the intermediate heat exchanger 73a and the intermediate heat exchanger 73b have a heat transfer section through which the refrigerant passes and a heat transfer section through which the heat medium passes, and perform heat exchange between the mediums by the refrigerant and the heat medium.
  • the intermediate heat exchanger 73a and the intermediate heat exchanger 73b function as condensers in the heating operation, causing the refrigerant to radiate heat to heat the heat medium.
  • the intermediate heat exchanger 73a and the intermediate heat exchanger 73b function as evaporators in the cooling operation, causing the refrigerant to absorb heat to cool the heat medium.
  • the pumps 48a and 48b which are heat medium delivery devices, pressurize the heat medium to circulate.
  • the flow rate (discharge flow rate) of the heat medium can be changed by changing the rotational speed of the built-in motor (not shown) within a certain range.
  • the pump 48a which is a heat medium delivery device, is arranged in a pipe connecting the intermediate heat exchanger 73a and the second heat medium flow switching device 47a.
  • the heat medium pumped out by the pump 48a is arranged to flow into the intermediate heat exchanger 73a.
  • a pump 48b which is a heat medium delivery device, is arranged in a pipe connecting the intermediate heat exchanger 73b and the second heat medium flow switching device 47b.
  • the heat medium pumped out by the pump 48b is arranged to flow into the intermediate heat exchanger 73b.
  • the pump 48a is connected to the upstream side of the intermediate heat exchanger 73a and circulates the heat medium that has undergone heat exchange with the refrigerant.
  • the pump 48b is connected to the upstream side of the intermediate heat exchanger 73b and circulates the heat medium heat-exchanged with the refrigerant.
  • the repeater 50 has a refrigerant flow switching device 30a(1) and a refrigerant flow switching device 30a(2) that switch the refrigerant flow path flowing into the intermediate heat exchanger 73a.
  • the repeater 50 has a refrigerant flow switching device 30b(1) and a refrigerant flow switching device 30b(2) that switch the refrigerant flow path flowing into the intermediate heat exchanger 73b.
  • the repeater 50 has a first heat medium flow switching device 46a and a first heat medium flow switching device 46b that switch the heat medium flow path to the intermediate heat exchanger 73a and the intermediate heat exchanger 73b.
  • the repeater 50 has a second heat medium flow switching device 47a and a second heat medium flow switching device 47b for switching the heat medium flow path to the intermediate heat exchanger 73a and the intermediate heat exchanger 73b.
  • the first heat medium flow switching device 46a, the first heat medium flow switching device 46b, the second heat medium flow switching device 47a, and the second heat medium flow switching device 47b are the intermediate heat exchanger 73a and the intermediate heat exchanger 73a.
  • the heat medium is distributed from the heat exchanger 73b to the load side heat exchanger 51a and the load side heat exchanger 51b.
  • the repeater 50 also has a temperature sensor 28a, a temperature sensor 29a, a temperature sensor 28b, and a temperature sensor 29b.
  • the temperature sensor 28a detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 73a.
  • the temperature sensor 29a detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 73a.
  • the temperature sensor 28b detects the temperature of the heat medium on the inlet side of the intermediate heat exchanger 73a.
  • the temperature sensor 29b detects the temperature of the heat medium on the outlet side of the intermediate heat exchanger 73a.
  • the repeater 50 has a temperature sensor 26a, a temperature sensor 27a, a temperature sensor 26b, and a temperature sensor 27b.
  • the temperature sensor 26a detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 73b.
  • the temperature sensor 27a detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 73b.
  • the temperature sensor 26b detects the temperature of the heat medium on the inlet side of the intermediate heat exchanger 73b.
  • the temperature sensor 27b detects the temperature of the heat medium on the outlet side of the intermediate heat exchanger 73b.
  • FIG. 9 is a diagram explaining an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG.
  • the flow of the heat medium in the cooling main operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
  • the heat medium discharged by the pump 48a flows into the intermediate heat exchanger 73a.
  • the intermediate heat exchanger 73a cold heat on the refrigerant side is transferred to the heat medium, and the cooled heat medium flows into the load side heat exchanger 51a via the first heat medium flow switching device 46a.
  • the load-side unit 80a is performing cooling operation, and the load-side heat exchanger 51a exchanges heat between the indoor air supplied from the indoor fan 52a and the low-temperature heat medium.
  • the medium-temperature heat medium cooled by the load-side heat exchanger 51a is again sucked into the pump 22a via the first heat medium flow switching device 46a.
  • the heat medium discharged by the pump 48b flows into the intermediate heat exchanger 73b.
  • the heat on the refrigerant side is transferred to the heat medium, and the superheated heat medium flows into the load side heat exchanger 51b via the first heat medium flow switching device 46b.
  • the load-side unit 80b is performing heating operation, and the load-side heat exchanger 51b exchanges heat between the indoor air supplied from the indoor fan 52b and the high-temperature heat medium.
  • the medium-temperature heat medium cooled by the load-side heat exchanger 51b is again sucked into the pump 22b via the second heat medium flow switching device 47b.
  • Embodiment 3 the same effect as Embodiment 1 can be obtained.
  • FIG. 10 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 4.
  • the compressor 1 and the repeater 50 include a low-pressure gas pipe 43 (third refrigerant pipe), a high-pressure gas pipe 44 (first refrigerant pipe), and a liquid pipe 45 (second refrigerant pipe). ) and are connected with
  • the heat source device 10 has a four-way valve 2a and a four-way valve 2b.
  • the four-way valve 2a switches between a refrigerant flow path in cooling operation and a refrigerant flow path in heating operation, and switches a heat exchanger acting as a condenser or a gas cooler.
  • the discharge side of the compressor 1, the heat source side heat exchanger 3, the accumulator 6, and the low-pressure gas pipe 43 are connected via the four-way valve 2a.
  • the refrigerant circuit is switched so that the discharge side of the compressor 1 and the heat source side heat exchanger 3 communicate with each other.
  • the heat source side heat exchanger 3 operates as a condenser or a gas cooler.
  • the refrigerant circuit is switched so that the heat source side heat exchanger 3 and the accumulator 6 are communicated with each other.
  • the heat source side heat exchanger 3 operates as an evaporator.
  • the four-way valve 2a and the four-way valve 2b are configured such that high-pressure gas refrigerant flows through the high-pressure gas pipe 44, liquid refrigerant flows through the liquid pipe 45, and low-pressure refrigerant flows through the low-pressure gas pipe 43. switch.
  • the four-way valve 2 b supplies part of the high-temperature, high-pressure refrigerant discharged from the compressor 1 to the high-pressure gas pipe 44 by switching the refrigerant flow path during simultaneous cooling and heating operation.
  • the discharge side of the compressor 1, the heat source side heat exchanger 3, the high pressure gas pipe 44, and the accumulator 6 are connected via the four-way valve 2b.
  • the four-way valve 2a and the four-way valve 2b are composed of a four-way valve or the like, and may be composed of a two-way valve, a three-way valve or the like.
  • the repeater 50 has a first on-off valve 19a and a first on-off valve 19b, and a second on-off valve 20a and a second on-off valve 20b.
  • the first on-off valve 19a and the first on-off valve 19b, and the second on-off valve 20a and the second on-off valve 20b are configured by two-way valves or the like.
  • FIG. 11 is a diagram illustrating an example of refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG.
  • the refrigerant flow in the cooling main operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
  • the compressor 1 sucks in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way valve 2a and into the high-pressure pipe 42 through the four-way valve 2b.
  • the heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant.
  • the medium-temperature and high-pressure refrigerant cooled by the heat source side heat exchanger 3 flows through the expansion device 5 into the low-pressure gas pipe 43 .
  • Medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure gas pipe 44, and into the load-side heat exchanger 51b through the second on-off valve 20b.
  • load-side heat exchanger 51b heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
  • the medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows into the load-side unit 80a via the indoor expansion device 53b.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
  • the low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
  • the load-side heat exchanger 51a heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
  • the medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the repeater 50 and flows into the low-pressure pipe 41 via the first on-off valve 19a.
  • the low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again via the first check valve 7 , the four-way valve 2 and the accumulator 6 .
  • Embodiment 4 the same effect as Embodiment 1 can be obtained.

Abstract

This air conditioning device comprises a heat source side unit in which a heat source side heat exchanger is provided, a plurality of load side units in which load side heat exchangers are provided, and a relay unit which is connected to the heat source side unit by piping, and which distributes heat of a refrigerant supplied from the heat source side unit to the load side units, wherein: the heat source side unit comprises a control portion for controlling the operation of the heat source side unit, a first fan for blowing outdoor air over the heat source side heat exchanger, and a second fan for blowing outdoor air over the heat source side heat exchanger; the first fan is disposed in a position capable of blowing air onto the control portion more preferentially than the second fan; and in a space cooling main body operating mode in which the heat source side heat exchanger operates as a condenser and there is a mixture of load side units that perform a space cooling operation and load side units that perform a space heating operation, the control portion operates the first fan, and either operates the second fan at a lower rotational speed than the rotational speed of the first fan, or stops the second fan.

Description

空気調和装置air conditioner
 本開示は、冷房運転と暖房運転とを両立する空気調和装置に関する。 The present disclosure relates to an air conditioner that achieves both cooling operation and heating operation.
 複数の室内機の冷房運転と暖房運転とを個別に制御できる空気調和装置がある。冷房運転を行う室内機と暖房運転を行う室内機とが混在する冷房主体運転において、暖房運転する室内機の台数が多い場合、すべての室内機が冷房運転を行う全冷房運転よりも室外熱交換器で処理する熱量を小さくする必要がある。室外熱交換器の放熱量を調整する手段としては、室外熱交換器に送風するファンによる送風量の調整の技術が知られている(例えば、特許文献1参照)。 There are air conditioners that can individually control the cooling operation and heating operation of multiple indoor units. In cooling-dominant operation, in which some indoor units perform cooling operation and some indoor units perform heating operation, if there are a large number of indoor units performing heating operation, outdoor heat exchange is more efficient than cooling-only operation, in which all indoor units perform cooling operation. It is necessary to reduce the amount of heat to be processed by the vessel. As means for adjusting the amount of heat released by an outdoor heat exchanger, a technique of adjusting the amount of air blown by a fan that blows air to the outdoor heat exchanger is known (see, for example, Patent Document 1).
特開2012-77962号公報JP 2012-77962 A
 特許文献1に記載された技術では、制御部が、ファンのオンオフ制御を行うことで、送風量を調整している。ところが、制御部は発熱する部品であるところ、特許文献1では制御部の冷却について考慮されていない。このため、制御部の温度上昇を抑制しながら冷房運転と暖房運転とを同時に行うことのできる技術が望まれていた。 In the technology described in Patent Document 1, the control unit adjusts the amount of air blown by controlling the on/off of the fan. However, since the control unit is a component that generates heat, Patent Document 1 does not consider cooling of the control unit. Therefore, there is a demand for a technology that can simultaneously perform the cooling operation and the heating operation while suppressing the temperature rise of the control unit.
 本開示は、上記実情に鑑みてなされたものであり、制御部の温度上昇を抑制しながら冷房運転と暖房運転とを同時に行うことのできる空気調和装置を提供するものである。 The present disclosure has been made in view of the above circumstances, and provides an air conditioner that can perform cooling operation and heating operation at the same time while suppressing the temperature rise of the control unit.
 本開示に係る空気調和装置は、熱源側熱交換器が設けられた熱源側ユニットと、負荷側熱交換器が設けられた複数の負荷側ユニットと、前記熱源側ユニットと配管で接続され、前記熱源側ユニットから供給される冷媒の熱を前記負荷側ユニットに分配する中継ユニットとを有し、前記熱源側ユニットは、前記熱源側ユニットの動作を制御する制御部と、前記熱源側熱交換器に室外空気を送風する第1ファンと、前記熱源側熱交換器に室外空気を送風する第2ファンとを有し、前記第1ファンは前記制御部に前記第2ファンよりも優先的に送風可能な位置に配置され、前記熱源側熱交換器が凝縮器として動作し、冷房運転を行う前記負荷側ユニットと暖房運転を行う前記負荷側ユニットとが混在する冷房主体運転モードにおいて、前記制御部は、前記第1ファンを運転し、前記第2ファンを前記第1ファンの回転数よりも低い回転数で運転、又は停止する。 An air conditioner according to the present disclosure includes a heat source side unit provided with a heat source side heat exchanger, a plurality of load side units provided with a load side heat exchanger, and the heat source side unit and the heat source side unit are connected by piping, a relay unit that distributes the heat of the refrigerant supplied from the heat source side unit to the load side unit, and the heat source side unit includes a control section that controls the operation of the heat source side unit; and the heat source side heat exchanger. and a second fan for blowing outdoor air to the heat source side heat exchanger, wherein the first fan blows air to the control unit with priority over the second fan in a cooling main operation mode in which the heat source side heat exchanger operates as a condenser and the load side unit performing cooling operation and the load side unit performing heating operation coexist, the control unit operates the first fan and operates or stops the second fan at a rotational speed lower than that of the first fan.
 本開示によれば、第1ファンは、制御部に第2ファンよりも優先的に送風可能な位置に配置される。そして、熱源側熱交換器が凝縮器として動作し、負荷側ユニットが冷房運転と暖房運転とが混在する冷房主体運転モードにおいて、制御部は、第1ファンを運転し、第2ファンを第1ファンの回転数よりも低い回転数で運転、又は停止する。従って、第1ファンが熱源側ユニットの制御部に優先的に送風することで、制御部の温度上昇を抑制しながら空気調和装置の冷房主体運転モードによる運転を維持できる。 According to the present disclosure, the first fan is arranged at a position where it can blow air to the control unit with priority over the second fan. In a cooling main operation mode in which the heat source side heat exchanger operates as a condenser and the load side unit performs both cooling operation and heating operation, the control unit operates the first fan and operates the second fan as the first fan. Operate or stop at a speed lower than that of the fan. Therefore, the first fan preferentially blows air to the controller of the heat source side unit, so that the air conditioner can be maintained in the cooling main operation mode while suppressing the temperature rise of the controller.
実施形態1に係る空気調和装置を示す回路図である。1 is a circuit diagram showing an air conditioner according to Embodiment 1. FIG. 実施形態1に係る熱源側熱交換器と、第1室外ファン及び第2室外ファンとを示し、熱源側熱交換器が凝縮器として動作する際の図である。4 is a diagram showing the heat source side heat exchanger, the first outdoor fan, and the second outdoor fan according to Embodiment 1, when the heat source side heat exchanger operates as a condenser; FIG. 実施形態1に係る圧縮機の外観を示す図である。1 is a diagram showing the appearance of a compressor according to Embodiment 1. FIG. 図4(a)は、実施形態1に係る圧縮機の内部の構造を示す平面図である。図4(b)は、実施形態1に係る圧縮機の制御部、熱源側熱交換器、第1室外ファン及び第2室外ファンの配置構成を示す図である。FIG. 4(a) is a plan view showing the internal structure of the compressor according to Embodiment 1. FIG. FIG. 4(b) is a diagram showing the arrangement configuration of the control unit of the compressor, the heat source side heat exchanger, the first outdoor fan, and the second outdoor fan according to the first embodiment. 図1に記載の空気調和装置の冷房主体運転モード時における冷媒の流れの一例を説明する図である。FIG. 2 is a diagram illustrating an example of a flow of refrigerant in a cooling-main operation mode of the air conditioner illustrated in FIG. 1; 実施形態2に係る空気調和装置の回路構成の一例を模式的に記載した図である。FIG. 7 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner according to Embodiment 2; 図6に記載の空気調和装置の冷房主体運転モード時における冷媒の流れの一例を説明する図である。FIG. 7 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner illustrated in FIG. 6; 実施形態3に係る空気調和装置の回路構成の一例を模式的に記載した図である。FIG. 11 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner according to Embodiment 3; 図8に記載の空気調和装置の冷房主体運転モード時における冷媒の流れの一例を説明する図である。FIG. 9 is a diagram illustrating an example of a flow of refrigerant in a cooling main operation mode of the air conditioner shown in FIG. 8; 実施形態4に係る空気調和装置100の回路構成の一例を模式的に記載した図である。FIG. 10 is a diagram schematically illustrating an example of a circuit configuration of an air conditioner 100 according to Embodiment 4; 図10に記載の空気調和装置の冷房主体運転モード時における冷媒の流れの一例を説明する図である。FIG. 11 is a diagram illustrating an example of a refrigerant flow during a cooling main operation mode of the air conditioner illustrated in FIG. 10;
 以下、図面を参照して、実施形態に係る空気調和装置について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合に行なう。本開示は、以下の各実施形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施形態における組み合わせのみに限定するものではなく、他の実施形態に記載した構成要素を別の実施形態に適用することができる。 An air conditioner according to an embodiment will be described below with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description will be given when necessary. The present disclosure may include any combination of combinable configurations among the configurations described in the following embodiments. Also, in the drawings, the size relationship of each component may differ from the actual size. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited only to the combinations in each embodiment, and the components described in other embodiments can be applied to other embodiments.
実施形態1.
[空気調和装置100]
 図1は、実施形態1に係る空気調和装置100を示す回路図である。図1に示すように、空気調和装置100は、熱源側ユニットである熱源機10と、負荷側ユニット80a及び負荷側ユニット80bと、中継ユニットである中継機50と、を備えている。中継ユニットは、冷媒そのものを分配することと、冷媒から熱媒体へ移動される熱を分配することと、の両方を含む。なお、本実施形態1では、1台の熱源機10に2台の負荷側ユニット80a及び負荷側ユニット80bが接続された場合について例示するが、熱源機10の台数は、2台以上でも良い。また、負荷側ユニット80の台数は、3台以上でも良い。
Embodiment 1.
[Air conditioner 100]
FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 1, the air conditioner 100 includes a heat source device 10 as a heat source side unit, a load side unit 80a and a load side unit 80b, and a repeater 50 as a relay unit. The relay unit includes both distribution of the refrigerant itself and distribution of heat transferred from the refrigerant to the heat transfer medium. In the first embodiment, two load- side units 80a and 80b are connected to one heat source device 10, but the number of heat source devices 10 may be two or more. Also, the number of load side units 80 may be three or more.
 図1に示すように、空気調和装置100は、熱源機10と、負荷側ユニット80a及び負荷側ユニット80bと、中継機50とが接続されて構成されている。熱源機10は、2台の負荷側ユニット80a及び負荷側ユニット80bに温熱又は冷熱を供給する機能を有している。2台の負荷側ユニット80a及び負荷側ユニット80bは、熱源機10から供給される温熱又は冷熱によって、負荷側空間を冷房又は暖房する機能を有している。中継機50は、熱源機10と負荷側ユニット80a及び負荷側ユニット80bとの間で、負荷側ユニット80a及び負荷側ユニット80bからの要求に応じて熱源機10から供給される冷媒の流れを切り替える機能を有している。熱源機10と中継機50とは、高圧冷媒が流れる高圧管42と、低圧冷媒が流れる低圧管41と、で接続される。 As shown in FIG. 1, the air conditioner 100 is configured by connecting a heat source device 10, a load side unit 80a and a load side unit 80b, and a repeater 50. The heat source device 10 has a function of supplying heat or cold to the two load- side units 80a and 80b. The two load- side units 80 a and 80 b have the function of cooling or heating the load-side space with the heat or cold heat supplied from the heat source device 10 . The relay device 50 switches the flow of the refrigerant supplied from the heat source device 10 between the heat source device 10 and the load side unit 80a and the load side unit 80b in accordance with requests from the load side unit 80a and the load side unit 80b. have a function. The heat source device 10 and the relay device 50 are connected by a high-pressure pipe 42 through which a high-pressure refrigerant flows and a low-pressure pipe 41 through which a low-pressure refrigerant flows.
[熱源機10]
 熱源機10は、例えば部屋の外部に配置され、空調の熱を排熱又は供給するものである。熱源機10には、例えば、圧縮機1と、四方弁2aと、熱源側熱交換器3と、絞り装置5と、アキュムレータ6と、が搭載されており、これらが配管で接続されている。また、熱源機10には、熱源側熱交換器3に送風を行う送風機である第1室外ファン4a及び第2室外ファン4bが搭載されている。なお、本実施形態1では、2台の第1室外ファン4a及び第2室外ファン4bが搭載された場合について例示するが、第1室外ファン4a及び第2室外ファン4bの台数は3台以上でも良い。
[Heat source machine 10]
The heat source device 10 is arranged, for example, outside the room, and exhausts or supplies heat from air conditioning. The heat source device 10 includes, for example, a compressor 1, a four-way valve 2a, a heat source side heat exchanger 3, an expansion device 5, and an accumulator 6, which are connected by pipes. The heat source device 10 is also equipped with a first outdoor fan 4a and a second outdoor fan 4b, which are blowers for blowing air to the heat source side heat exchanger 3 . In the first embodiment, the case where two first outdoor fans 4a and second outdoor fans 4b are mounted is illustrated, but the number of first outdoor fans 4a and second outdoor fans 4b can be three or more. good.
 圧縮機1は、冷媒を吸入し圧縮して高温及び高圧の状態にするものであり、例えば、容量制御可能なインバータ圧縮機等で構成されている。圧縮機1は、例えば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気になり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものでも良い。圧縮機1は、密閉容器内が高圧の冷媒圧雰囲気になり、圧縮機吸入部に接続された配管内の低圧冷媒を吸入して圧縮する高圧シェル構造のものでも良い。 The compressor 1 takes in and compresses the refrigerant to bring it into a high temperature and high pressure state, and is composed of, for example, an inverter compressor whose capacity can be controlled. The compressor 1 may have, for example, a low-pressure shell structure that has a compression chamber in a closed container, the inside of the closed container becomes a low-pressure refrigerant pressure atmosphere, and the low-pressure refrigerant in the closed container is sucked and compressed. The compressor 1 may have a high-pressure shell structure in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere, and the low-pressure refrigerant in a pipe connected to the suction portion of the compressor is sucked and compressed.
 四方弁2aは、冷房運転における冷媒流路と暖房運転における冷媒流路を切り替えて、凝縮器又はガスクーラとして作用する熱源側熱交換器3を切り替えるものである。圧縮機1の吐出側、熱源側熱交換器3、第1逆止弁7、第3逆止弁9及びアキュムレータ6が四方弁2aを介して接続されている。なお、冷房運転時には、四方弁2aが圧縮機1の吐出側と熱源側熱交換器3、第1逆止弁7及びアキュムレータ6とがそれぞれ連通するように冷媒回路を切り替えることで、熱源側熱交換器3が凝縮器又はガスクーラとして作用するよう動作する。暖房運転時には、四方弁2aが圧縮機1の吐出側と第3逆止弁9、第4逆止弁11、熱源側熱交換器3及びアキュムレータ6とがそれぞれ連通するように冷媒回路を切り替えることで、熱源側熱交換器3が蒸発器として作用するように動作する。四方弁2aは、四方弁等からなっており、二方弁等で構成されたものであっても良い。 The four-way valve 2a switches between the refrigerant flow path in cooling operation and the refrigerant flow path in heating operation, and switches the heat source side heat exchanger 3 acting as a condenser or gas cooler. The discharge side of the compressor 1, the heat source side heat exchanger 3, the first check valve 7, the third check valve 9 and the accumulator 6 are connected via the four-way valve 2a. During cooling operation, the four-way valve 2a switches the refrigerant circuit so that the discharge side of the compressor 1 communicates with the heat source side heat exchanger 3, the first check valve 7, and the accumulator 6, so that the heat source side heat is The exchanger 3 operates to act as a condenser or gas cooler. During heating operation, the four-way valve 2a switches the refrigerant circuit so that the discharge side of the compressor 1 communicates with the third check valve 9, the fourth check valve 11, the heat source side heat exchanger 3, and the accumulator 6, respectively. , the heat source side heat exchanger 3 operates as an evaporator. The four-way valve 2a is a four-way valve or the like, and may be a two-way valve or the like.
 アキュムレータ6は、圧縮機1の吸入側である吸入部に設けられており、暖房運転モード時と冷房運転モード時との違いで発生する余剰冷媒、又は過渡的な運転の変化で発生する余剰冷媒を蓄えるものである。なお、余剰冷媒を蓄えるものとしてアキュムレータ6を使用している例を示しているが、高圧液冷媒を蓄えるレシーバーであっても良い。 The accumulator 6 is provided at the suction part on the suction side of the compressor 1, and the surplus refrigerant generated due to the difference between the heating operation mode and the cooling operation mode, or the surplus refrigerant generated due to a transitional change in operation. is stored. Although an example of using the accumulator 6 as a device for storing surplus refrigerant is shown, a receiver for storing high-pressure liquid refrigerant may be used.
 熱源機10は、第1逆止弁7、第2逆止弁8、第3逆止弁9、第4逆止弁11を有している。第1逆止弁7は、低圧管41と四方弁2aをつなぐ配管に配置され、低圧管41から四方弁2aに冷媒が流れるように配置される。第2逆止弁8は、高圧管42と絞り装置5とをつなぐ配管に配置され、絞り装置5から高圧管42に冷媒が流れるように配置される。第3逆止弁9は、四方弁2aと高圧管42とにつながる配管の間に接続され、熱源機10から高圧管42に冷媒が流れるように配置される。第4逆止弁11は、低圧管41と絞り装置5とをつなぐ配管に配置され、低圧管41から熱源機10に冷媒が流れるように配置される。 The heat source equipment 10 has a first check valve 7 , a second check valve 8 , a third check valve 9 and a fourth check valve 11 . The first check valve 7 is arranged in a pipe connecting the low-pressure pipe 41 and the four-way valve 2a so that the refrigerant flows from the low-pressure pipe 41 to the four-way valve 2a. The second check valve 8 is arranged in a pipe connecting the high-pressure pipe 42 and the expansion device 5 so that the refrigerant flows from the expansion device 5 to the high-pressure pipe 42 . The third check valve 9 is connected between the pipe connecting the four-way valve 2 a and the high pressure pipe 42 , and arranged so that the refrigerant flows from the heat source device 10 to the high pressure pipe 42 . The fourth check valve 11 is arranged in a pipe connecting the low-pressure pipe 41 and the expansion device 5 so that the refrigerant flows from the low-pressure pipe 41 to the heat source device 10 .
 また、圧縮機1は、高圧検出センサ31と、吐出温度センサ21と、吸入温度センサ22と、低圧検出センサ32と、外気温度センサ23と、熱源側熱交換器3の液側温度を検出する温度センサ24とを有する。 Further, the compressor 1 detects the liquid side temperature of the heat source side heat exchanger 3 with a high pressure detection sensor 31, a discharge temperature sensor 21, an intake temperature sensor 22, a low pressure detection sensor 32, an outside temperature sensor 23, and a heat source side heat exchanger 3. and a temperature sensor 24 .
 高圧検出センサ31は、圧縮機1の吐出側の高圧圧力を検出するものである。吐出温度センサ21は、圧縮機1から吐出される高温及び高圧の冷媒の温度を検出するものである。吸入温度センサ22は、圧縮機1に吸入される低温及び低圧の冷媒の温度を検出するものである。低圧検出センサ32は、圧縮機1の吸入側の冷媒の低圧圧力を検出するものである。外気温度センサ23は、熱源側熱交換器3の空気吸込み部に設けられ、圧縮機1の周囲の温度を検出するものである。 The high pressure detection sensor 31 detects the high pressure on the discharge side of the compressor 1 . The discharge temperature sensor 21 detects the temperature of the high-temperature and high-pressure refrigerant discharged from the compressor 1 . The intake temperature sensor 22 detects the temperature of the low-temperature and low-pressure refrigerant sucked into the compressor 1 . The low pressure detection sensor 32 detects the low pressure of refrigerant on the suction side of the compressor 1 . The outside air temperature sensor 23 is provided at the air intake portion of the heat source side heat exchanger 3 and detects the ambient temperature of the compressor 1 .
 熱源側熱交換器3の容積は、圧縮機1と、負荷側ユニット80a及び負荷側ユニット80bと、中継機50とのうち、冷媒が流動する配管又は容器の容積と、圧縮機1と中継機50とを接続する配管の容積と、中継機50と負荷側ユニット80a及び負荷側ユニット80bとを接続する配管の容積と、の合計に対して、15%から30%を占める。 The volume of the heat source side heat exchanger 3 is the volume of the pipe or container through which the refrigerant flows among the compressor 1, the load side units 80a and 80b, and the relay 50, and the volume of the compressor 1 and the relay. It occupies 15% to 30% of the total of the volume of the pipe connecting the repeater 50 and the volume of the pipe connecting the repeater 50 and the load-side unit 80a and the load-side unit 80b.
 制御部60は、例えば空気調和装置100の全体の制御を行うものであり、例えば、アナログ回路、デジタル回路、CPU、又はこれらのうちの2つ以上の組み合わせを含んで構成されている。制御部60は、例えば、上記した各種センサにおいて検出された検出情報とリモコン等の入力装置からの指示に基づいて、圧縮機1の駆動周波数、第1室外ファン4a及び第2室外ファン4bの回転数(ON/OFF切り替えを含む)、四方弁2aの切り替え、絞り装置5の開度、ポンプ(図示せず)の駆動周波数、室内絞り装置53a及び室内絞り装置53bの開度を制御して、後述する各運転モードを実行するようになっている。空気調和装置100の運転中は、制御部60の発熱及び熱源機10の放熱により制御部60の温度が上昇する。一般的に、CPU及びマイクロプロセッサが正常に動作する温度範囲は決められている。この温度範囲を逸脱しないために、制御部60は第1室外ファン4aからの送風によって冷却可能な位置に配置される。また、熱源機10は制御部60の温度を検出する温度センサ26を有する。 The control unit 60 controls, for example, the entire air conditioner 100, and includes, for example, an analog circuit, a digital circuit, a CPU, or a combination of two or more of these. For example, the control unit 60 controls the driving frequency of the compressor 1 and the rotation of the first outdoor fan 4a and the second outdoor fan 4b based on detection information detected by the various sensors described above and instructions from an input device such as a remote controller. number (including ON/OFF switching), switching of the four-way valve 2a, opening degree of the expansion device 5, drive frequency of the pump (not shown), opening degree of the indoor expansion device 53a and the indoor expansion device 53b, Each operation mode, which will be described later, is executed. During operation of the air conditioner 100 , the temperature of the control unit 60 rises due to the heat generated by the control unit 60 and the heat radiation from the heat source device 10 . Generally, the temperature range within which CPUs and microprocessors operate normally is determined. In order not to deviate from this temperature range, the control unit 60 is arranged at a position where it can be cooled by air blowing from the first outdoor fan 4a. The heat source device 10 also has a temperature sensor 26 that detects the temperature of the control section 60 .
 制御部60の処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。処理回路が実現する各機能部のそれぞれを、個別のハードウェアで実現しても良いし、各機能部が一つのハードウェアで実現されても良い。制御部60の処理回路がCPUの場合、処理回路が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、処理回路の各機能を実現する。なお、処理回路の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしても良い。 When the processing circuit of the control unit 60 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. is applicable. Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware. When the processing circuit of the control unit 60 is a CPU, each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit. The CPU implements each function of the processing circuit by reading and executing a program stored in the storage unit. A part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
[室内機]
 負荷側ユニット80aは、例えば、部屋の内部に配置され、室内に空調空気を供給するものである。負荷側ユニット80aは、蒸発器又は凝縮器として動作する負荷側熱交換器51aを有している。負荷側ユニット80bは、例えば、部屋の内部に配置され、室内に空調空気を供給するものである。負荷側ユニット80bは、蒸発器又は凝縮器として動作する負荷側熱交換器51bを有している。
[Indoor unit]
The load-side unit 80a is, for example, arranged inside a room and supplies conditioned air to the room. The load side unit 80a has a load side heat exchanger 51a that operates as an evaporator or condenser. The load-side unit 80b is, for example, arranged inside a room and supplies conditioned air to the room. The load side unit 80b has a load side heat exchanger 51b that operates as an evaporator or condenser.
 負荷側熱交換器51a及び負荷側熱交換器51bは、配管を介して、中継機50と接続されている。負荷側熱交換器51a及び負荷側熱交換器51bは、空気と冷媒とを熱交換させることで、室内空間に供給する暖房用空気あるいは冷房用空気を生成するものである。負荷側熱交換器51aには、室内ファン52aによって室内空気が送風されるようになっている。負荷側熱交換器51bには、室内ファン52bによって室内空気が送風されるようになっている。 The load-side heat exchanger 51a and the load-side heat exchanger 51b are connected to the repeater 50 via piping. The load-side heat exchanger 51a and the load-side heat exchanger 51b exchange heat between air and refrigerant to generate heating air or cooling air to be supplied to the indoor space. Indoor air is blown to the load-side heat exchanger 51a by an indoor fan 52a. Indoor air is blown to the load-side heat exchanger 51b by an indoor fan 52b.
 室内絞り装置53a及び室内絞り装置53bは、開口面積を制御できる二方弁等で構成されている。室内絞り装置53aは、負荷側熱交換器51aに流れる熱媒体の流量を調整するものである。室内絞り装置53bは、負荷側熱交換器51bに流れる熱媒体の流量を調整するものである。 The indoor expansion device 53a and the indoor expansion device 53b are composed of a two-way valve or the like that can control the opening area. The indoor expansion device 53a adjusts the flow rate of the heat medium flowing through the load side heat exchanger 51a. The indoor throttle device 53b adjusts the flow rate of the heat medium flowing through the load-side heat exchanger 51b.
 室内絞り装置53aは、一方が負荷側熱交換器51aに、他方が中継機50と接続する配管に接続され、負荷側熱交換器51aの熱媒体流路の液冷媒側に設けられている。室内絞り装置53bは、一方が負荷側熱交換器51bに、他方が中継機50と接続する配管に接続され、負荷側熱交換器51bの熱媒体流路の液冷媒側に設けられている。 One side of the indoor expansion device 53a is connected to the load side heat exchanger 51a, and the other side is connected to the pipe connecting to the repeater 50. The indoor expansion device 53a is provided on the liquid refrigerant side of the heat medium flow path of the load side heat exchanger 51a. One side of the indoor expansion device 53b is connected to the load side heat exchanger 51b, and the other side is connected to the pipe connecting to the repeater 50. The indoor expansion device 53b is provided on the liquid refrigerant side of the heat medium flow path of the load side heat exchanger 51b.
 また、負荷側ユニット80aは、室内熱交ガス温度センサ54aと室内熱交液温度センサ56aとを有している。負荷側ユニット80bは、室内熱交ガス温度センサ54bと室内熱交液温度センサ56bとを有している。 The load side unit 80a also has an indoor heat exchange gas temperature sensor 54a and an indoor heat exchange liquid temperature sensor 56a. The load side unit 80b has an indoor heat exchange gas temperature sensor 54b and an indoor heat exchange liquid temperature sensor 56b.
 室内熱交ガス温度センサ54a及び室内熱交ガス温度センサ54bは、例えばサーミスター等で構成されている。室内熱交ガス温度センサ54aは、負荷側熱交換器51aに流入又は流出する冷媒のガス温度を検出するものである。室内熱交ガス温度センサ54bは、負荷側熱交換器51bに流入又は流出する冷媒のガス温度を検出するものである。室内熱交ガス温度センサ54aは、負荷側熱交換器51aのガス配管に設けられている。室内熱交ガス温度センサ54bは、負荷側熱交換器51bのガス配管に設けられている。 The indoor heat exchanger gas temperature sensor 54a and the indoor heat exchanger gas temperature sensor 54b are composed of, for example, thermistors. The indoor heat exchanger gas temperature sensor 54a detects the gas temperature of the refrigerant flowing into or out of the load side heat exchanger 51a. The indoor heat exchanger gas temperature sensor 54b detects the gas temperature of the refrigerant flowing into or out of the load side heat exchanger 51b. The indoor heat exchanger gas temperature sensor 54a is provided in the gas pipe of the load side heat exchanger 51a. The indoor heat exchanger gas temperature sensor 54b is provided in the gas pipe of the load side heat exchanger 51b.
 室内熱交液温度センサ56a及び室内熱交液温度センサ56bは、例えばサーミスター等で構成されている。室内熱交液温度センサ56aは、負荷側熱交換器51aに流入又は流出する液冷媒の温度を検出するものである。室内熱交液温度センサ56bは、負荷側熱交換器51bに流入又は流出する液冷媒の温度を検出するものである。 The indoor heat exchange fluid temperature sensor 56a and the indoor heat exchange fluid temperature sensor 56b are composed of, for example, thermistors. The indoor heat exchange liquid temperature sensor 56a detects the temperature of the liquid refrigerant flowing into or out of the load side heat exchanger 51a. The indoor heat exchange liquid temperature sensor 56b detects the temperature of the liquid refrigerant flowing into or out of the load side heat exchanger 51b.
 室内熱交液温度センサ56aは、負荷側熱交換器51aの熱媒体の出口側に設けられている。室内熱交液温度センサ56bは、負荷側熱交換器51bの熱媒体の出口側に設けられている。 The indoor heat exchange fluid temperature sensor 56a is provided on the heat medium outlet side of the load side heat exchanger 51a. The indoor heat exchange fluid temperature sensor 56b is provided on the heat medium outlet side of the load side heat exchanger 51b.
[中継機50]
 中継機50は、例えば負荷側ユニット80a及び負荷側ユニット80bとは別の建物内の非空調空間に配置される。中継機50は、気液分離機構12と、第1冷媒間熱交換器13と、第2冷媒間熱交換器14と、第1中継機絞り装置15と、第2中継機絞り装置16と、を有する。
[Relay machine 50]
The repeater 50 is arranged, for example, in a non-air-conditioned space in a building separate from the load-side unit 80a and the load-side unit 80b. The relay 50 includes a gas-liquid separation mechanism 12, a first heat exchanger between refrigerants 13, a second heat exchanger between refrigerants 14, a first relay throttle device 15, a second relay throttle device 16, have
 中継機50は、負荷側熱交換器51aのガス側配管と接続される、第1開閉弁19a及び第2開閉弁20aを有する。中継機50は、負荷側熱交換器51bのガス側配管と接続される、第1開閉弁19b及び第2開閉弁20bとを有する。 The repeater 50 has a first on-off valve 19a and a second on-off valve 20a that are connected to the gas-side pipe of the load-side heat exchanger 51a. The repeater 50 has a first on-off valve 19b and a second on-off valve 20b that are connected to the gas-side pipe of the load-side heat exchanger 51b.
 第1開閉弁19a及び第1開閉弁19bは、気液分離機構12のガス側出口に接続され、第2開閉弁20a及び第2開閉弁20bは、中継機50と高圧管42とをつなぐ配管に接続される。 The first on-off valve 19a and the first on-off valve 19b are connected to the gas side outlet of the gas-liquid separation mechanism 12, and the second on-off valve 20a and the second on-off valve 20b are pipes connecting the repeater 50 and the high-pressure pipe 42. connected to
 第1開閉弁19a及び第1開閉弁19bと、第2開閉弁20a及び第2開閉弁20bとは、例えば、二方弁等で構成されている。 The first on-off valve 19a and the first on-off valve 19b, and the second on-off valve 20a and the second on-off valve 20b are, for example, two-way valves.
 中継機50は、第1中継機逆止弁17a及び第1中継機逆止弁17bと、第2中継機逆止弁18a及び第2中継機逆止弁18bと、を有する。 The repeater 50 has a first repeater check valve 17a and a first repeater check valve 17b, and a second repeater check valve 18a and a second repeater check valve 18b.
 第1中継機逆止弁17aは、中継機50と負荷側ユニット80aとを接続する配管に配置され、中継機50から室内絞り装置53aに冷媒が流れるように配置される。第1中継機逆止弁17bは、中継機50と負荷側ユニット80bとを接続する配管に配置され、中継機50から室内絞り装置53bに冷媒が流れるように配置される。 The first relay check valve 17a is arranged in the pipe connecting the relay 50 and the load side unit 80a, and arranged so that the refrigerant flows from the relay 50 to the indoor expansion device 53a. The first relay check valve 17b is arranged in a pipe connecting the relay 50 and the load side unit 80b, and arranged so that the refrigerant flows from the relay 50 to the indoor expansion device 53b.
 第2中継機逆止弁18aは、中継機50と負荷側ユニット80aとを接続する配管に配置され、室内絞り装置53aから中継機50に冷媒が流れるように配置される。第2中継機逆止弁18bは、中継機50と負荷側ユニット80bとを接続する配管に配置され、室内絞り装置53bから中継機50に冷媒が流れるように配置される。 The second relay check valve 18a is arranged in the pipe connecting the relay 50 and the load side unit 80a, and arranged so that the refrigerant flows from the indoor expansion device 53a to the relay 50. The second relay check valve 18b is arranged in the pipe that connects the relay 50 and the load side unit 80b, and is arranged so that the refrigerant flows from the indoor expansion device 53b to the relay 50.
 また、中継機50は、高圧側液圧力センサ33、液流出圧力センサ34及び中継機温度センサ25が設けられている。高圧側液圧力センサ33は、第1冷媒間熱交換器13と第1中継機絞り装置15の間に設けられている。液流出圧力センサ34は、第1中継機絞り装置15と第2冷媒間熱交換器14との間に設けられている。中継機温度センサ25は、第1冷媒間熱交換器13の低圧側出口と高圧管42とを接続する配管に配置されている。 In addition, the repeater 50 is provided with a high pressure side liquid pressure sensor 33 , a liquid outflow pressure sensor 34 and a repeater temperature sensor 25 . The high pressure side liquid pressure sensor 33 is provided between the first heat exchanger between refrigerants 13 and the first relay throttle device 15 . The liquid outflow pressure sensor 34 is provided between the first relay throttle device 15 and the second refrigerant heat exchanger 14 . The repeater temperature sensor 25 is arranged in a pipe connecting the low-pressure side outlet of the first heat exchanger between refrigerants 13 and the high-pressure pipe 42 .
[熱源側熱交換器3と第1室外ファン4a及び第2室外ファン4bとの関係]
 図2は、実施形態1に係る熱源側熱交換器3と、第1室外ファン4a及び第2室外ファン4bとを示し、熱源側熱交換器3が凝縮器として動作する際の図である。
[Relationship between heat source side heat exchanger 3 and first outdoor fan 4a and second outdoor fan 4b]
FIG. 2 shows the heat source side heat exchanger 3, the first outdoor fan 4a and the second outdoor fan 4b according to Embodiment 1, and is a diagram when the heat source side heat exchanger 3 operates as a condenser.
 熱源側熱交換器3は、冷媒が流れる複数の配管と、伝熱面積を拡大するためのフィンで構成される。図2において、黒矢印は、冷媒の流れを示し、白矢印は空気流れを示している。図2において、冷媒は紙面左から熱源側熱交換器3に流入し、紙面奥行き方向に流れ、紙面手前に折り返したのち紙面右方向へ流出する。熱源側熱交換器3が凝縮器として動作する場合、第1室外ファン4a及び第2室外ファン4bから供給される空気と冷媒の流れが対向流となるように第1室外ファン4a及び第2室外ファン4bは配置される。 The heat source side heat exchanger 3 is composed of multiple pipes through which refrigerant flows and fins for enlarging the heat transfer area. In FIG. 2, black arrows indicate the flow of refrigerant, and white arrows indicate the flow of air. In FIG. 2, the refrigerant flows into the heat source side heat exchanger 3 from the left side of the page, flows in the depth direction of the page, turns back to the front of the page, and then flows out to the right side of the page. When the heat source side heat exchanger 3 operates as a condenser, the first outdoor fan 4a and the second outdoor fan 4a and the second outdoor fan 4a are arranged so that the air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the refrigerant flow countercurrently. A fan 4b is arranged.
[制御部と室外ファンの関係]
 図3は、実施形態1に係る熱源機10の外観を示す図である。図3に示されるように、熱源機10は、いわゆるトランク型の熱源機として構成されており、前壁10a、後壁10b、左側壁10c、右側壁10d、天井壁10e、及び底板10fを有する直方体形状をしている。前壁10aにおける左側の部位の上側には第1室外ファン4aの吹出口103aが形成されている。前壁10aにおける左側の部位の下側には第2室外ファン4bの吹出口103bが形成されている。右側壁10dには、外気を熱源機10に吸い込み可能な吸込口10gが形成されている。
[Relationship between controller and outdoor fan]
FIG. 3 is a diagram showing the appearance of the heat source equipment 10 according to the first embodiment. As shown in FIG. 3, the heat source machine 10 is configured as a so-called trunk-type heat source machine, and has a front wall 10a, a rear wall 10b, a left wall 10c, a right wall 10d, a ceiling wall 10e, and a bottom plate 10f. It has a rectangular parallelepiped shape. An air outlet 103a of the first outdoor fan 4a is formed above the left portion of the front wall 10a. An outlet 103b of the second outdoor fan 4b is formed below the left portion of the front wall 10a. The right side wall 10d is formed with a suction port 10g through which outside air can be sucked into the heat source device 10. As shown in FIG.
 図4(a)は、実施形態1に係る熱源機10の内部の構造を示す平面図である。図4(a)においては、熱源機10の構成のうち熱源側熱交換器3、第1室外ファン4a、制御部60及び制御部60の放熱板61が示されている。図4(b)は、実施形態1に係る熱源機10の制御部60、熱源側熱交換器3、第1室外ファン4a及び第2室外ファン4bの配置構成を示す図である。 FIG. 4(a) is a plan view showing the internal structure of the heat source equipment 10 according to Embodiment 1. FIG. 4A shows the heat source side heat exchanger 3, the first outdoor fan 4a, the controller 60, and the radiator plate 61 of the controller 60 in the configuration of the heat source device 10. FIG. FIG. 4(b) is a diagram showing the arrangement configuration of the control unit 60, the heat source side heat exchanger 3, the first outdoor fan 4a, and the second outdoor fan 4b of the heat source device 10 according to the first embodiment.
 図4(a)に示すように、熱源機10は、仕切り板10hによって仕切られている。図4(a)の仕切り板10hより左側には、熱源側熱交換器3及び第1室外ファン4a及び第2室外ファン4bが配置され、仕切り板10hより右側にはその他の構成要素が配置されている。 As shown in FIG. 4(a), the heat source device 10 is partitioned by a partition plate 10h. The heat source side heat exchanger 3, the first outdoor fan 4a and the second outdoor fan 4b are arranged on the left side of the partition plate 10h in FIG. 4(a), and other components are arranged on the right side of the partition plate 10h. ing.
 図4(b)に示すように、制御部60は、例えば、直方体の電気品箱に収容されており、熱源機10の内部の上部の右側壁10dに配置されている。電気品箱に収容された制御部60のことを、単に制御部60と称する。また、制御部60は、第1室外ファン4aと、熱源側熱交換器3との間であり、第1室外ファン4aと同程度の高さに配置されている。第2室外ファン4bと制御部60との距離よりも、第1室外ファン4aと制御部60との距離の方が短いことにより、制御部60は、第2室外ファン4bではなく、主に、第1室外ファン4aによる風により冷却される。 As shown in FIG. 4(b), the control unit 60 is housed in, for example, a rectangular parallelepiped electrical component box, and is arranged on the upper right side wall 10d inside the heat source device 10. As shown in FIG. The controller 60 housed in the electrical component box is simply called the controller 60 . Further, the control unit 60 is arranged between the first outdoor fan 4a and the heat source side heat exchanger 3 and at approximately the same height as the first outdoor fan 4a. Since the distance between the first outdoor fan 4a and the control unit 60 is shorter than the distance between the second outdoor fan 4b and the control unit 60, the control unit 60 operates not the second outdoor fan 4b, but mainly It is cooled by wind from the first outdoor fan 4a.
 図4(a)に示すように、放熱板61は、制御部60と接触するように配置され、制御部60からの発熱を放熱する冷却装置である。放熱板61は、例えば、ヒートシンクのようなフィンで構成されている。熱源機10は、第1室外ファン4aにより吸込口10g(図3参照)から放熱板61へ空気を供給するための吹出し口10iを有している。制御部60は、吸込口10g(図3参照)から吸入した空気を放熱板61へ供給することで冷却され、放熱板61で加熱された空気は吹出し口10iから、熱源側熱交換器3を通過した空気とともに排出される。 As shown in FIG. 4( a ), the radiator plate 61 is a cooling device that is arranged so as to be in contact with the controller 60 and dissipates heat generated from the controller 60 . The radiator plate 61 is composed of, for example, fins like a heat sink. The heat source device 10 has an air outlet 10i for supplying air from the air inlet 10g (see FIG. 3) to the radiator plate 61 by the first outdoor fan 4a. The control unit 60 is cooled by supplying the air sucked from the suction port 10g (see FIG. 3) to the radiator plate 61, and the air heated by the radiator plate 61 flows through the heat source side heat exchanger 3 from the blowout port 10i. It is discharged with the passing air.
[空気調和装置100の運転モード]
 次に、空気調和装置100が実行する運転モードについて説明する。空気調和装置100は、負荷側ユニット80a及び負荷側ユニット80bからの指示に基づいて、全冷房運転、全暖房運転、冷房主体運転及び暖房主体運転を実行するようになっている。全冷房運転は、負荷側ユニット80a及び負荷側ユニット80bの全てが冷房運転モードを行うモードである。全暖房運転は、負荷側ユニット80a及び負荷側ユニット80bの全てが暖房運転モードを行うモードである。冷房主体運転は、負荷側ユニット80a及び負荷側ユニット80bの運転モードが冷房運転と暖房運転が混在する冷暖同時運転モードのうち、冷房負荷の方が大きい運転モードである。暖房主体運転は、冷暖同時運転モードのうち暖房負荷の方が大きい運転モードである。
[Operating Mode of Air Conditioner 100]
Next, operation modes executed by the air conditioner 100 will be described. The air conditioner 100 performs cooling-only operation, heating-only operation, cooling-main operation, and heating-main operation based on instructions from the load-side unit 80a and the load-side unit 80b. The cooling only operation is a mode in which both the load-side unit 80a and the load-side unit 80b perform the cooling operation mode. The heating only operation is a mode in which both the load side unit 80a and the load side unit 80b perform the heating operation mode. The cooling-dominant operation is an operation mode in which the load-side unit 80a and the load-side unit 80b are in a simultaneous cooling/heating operation mode in which the cooling operation and the heating operation are mixed, and the cooling load is larger. The heating-dominant operation is an operation mode in which the heating load is larger among the simultaneous cooling and heating operation modes.
 以下に、各運転モードについて、冷媒の流れ及び冷媒の状態とともに説明する。
[冷房運転モード]
 負荷側熱交換器3a及び負荷側熱交換器3bで冷熱負荷が発生している冷房運転モードについて説明する。
Each operation mode will be described below together with the flow of the refrigerant and the state of the refrigerant.
[Cooling operation mode]
A cooling operation mode in which a cooling load is generated in the load-side heat exchanger 3a and the load-side heat exchanger 3b will be described.
 まず、冷媒の流れについて説明する。圧縮機1は、低温及び低圧のガス冷媒を吸入し、圧縮して、高温及び高圧のガス冷媒を吐出する。圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2aを介して、熱源側熱交換器3に流入する。 First, the flow of the refrigerant will be explained. The compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the four-way valve 2a.
 熱源側熱交換器3は、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と高温及び高圧のガス冷媒とを熱交換する。熱源側熱交換器3で冷却された中温及び高圧の冷媒は、絞り装置5、第2逆止弁8を介して高圧管42に流入する。 The heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant. The medium-temperature and high-pressure refrigerant cooled in the heat source side heat exchanger 3 flows through the expansion device 5 and the second check valve 8 into the high-pressure pipe 42 .
 中温及び高圧の冷媒は、高圧管42を介して中継機50に流入し、気液分離機構12、第1冷媒間熱交換器13、第1中継機絞り装置15、第2冷媒間熱交換器14を介して、第1中継機逆止弁17a及び第1中継機逆止弁17bに流入する。また、第2中継機絞り装置16で減圧された低温及び低圧の冷媒は、第2冷媒間熱交換器14及び第1冷媒間熱交換器13に流入し、中温高圧の液冷媒と熱交換し、ガス化して流出する。第1冷媒間熱交換器13と第2冷媒間熱交換器14とで冷却された中温及び高圧の液冷媒は、第1中継機逆止弁17a及び第1中継機逆止弁17bを介して負荷側ユニット80a及び負荷側ユニット80bに流入する。 The medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure pipe 42, and passes through the gas-liquid separation mechanism 12, the first refrigerant heat exchanger 13, the first repeater throttle device 15, and the second refrigerant heat exchanger. 14, it flows into the first relay check valve 17a and the first relay check valve 17b. In addition, the low-temperature and low-pressure refrigerant decompressed by the second relay throttle device 16 flows into the second heat exchanger between refrigerants 14 and the first heat exchanger between refrigerants 13, and exchanges heat with medium-temperature and high-pressure liquid refrigerant. , gasifies and flows out. The medium-temperature and high-pressure liquid refrigerant cooled by the first heat exchanger between refrigerants 13 and the second heat exchanger between refrigerants 14 passes through the first relay check valve 17a and the first relay check valve 17b. It flows into the load side unit 80a and the load side unit 80b.
 室内絞り装置53aで減圧された低温低圧の二相冷媒は、負荷側熱交換器51aに流入する。室内絞り装置53bで減圧された低温低圧の二相冷媒は、負荷側熱交換器51bに流入する。 The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a. The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53b flows into the load-side heat exchanger 51b.
 負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と低温冷媒とが熱交換される。負荷側熱交換器51aで加熱された中温の冷媒は、第2開閉弁20aを介して、中継機50を通過し、低圧管41に流入する。負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と低温冷媒とが熱交換される。負荷側熱交換器51bで加熱された中温の冷媒は、第2開閉弁20bを介して、中継機50を通過し、低圧管41に流入する。 In the load-side heat exchanger 51a, heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant. The medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a. In the load-side heat exchanger 51b, heat is exchanged between the indoor air supplied from the indoor fan 52b and the low-temperature refrigerant. The medium-temperature refrigerant heated by the load-side heat exchanger 51b passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20b.
 低圧管41から熱源機10に流入した低圧ガス冷媒は、第1逆止弁7、四方弁2a、アキュムレータ6を介して圧縮機1へ再度吸入される。 The low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again via the first check valve 7, the four-way valve 2a, and the accumulator 6.
 第1室外ファン4a及び第2室外ファン4bは、高圧検出センサ31で検出される圧力を一定値以上に保つように回転数を制御する。また、制御部60は、温度センサ26で検出された温度が一定値以上になった場合、第1室外ファン4aの回転数を増速させ、制御部60を優先的に冷却しても良い。 The first outdoor fan 4a and the second outdoor fan 4b control the number of rotations so that the pressure detected by the high pressure detection sensor 31 is kept above a certain value. Further, when the temperature detected by the temperature sensor 26 exceeds a certain value, the controller 60 may increase the speed of the first outdoor fan 4a to cool the controller 60 preferentially.
[暖房運転モード]
 負荷側ユニット80a及び負荷側ユニット80bが暖房を行っている暖房運転モードについて説明する。
[Heating operation mode]
A heating operation mode in which the load-side unit 80a and the load-side unit 80b perform heating will be described.
 まず、冷媒の流れについて説明する。圧縮機1は、低温及び低圧のガス冷媒を吸入し、圧縮して、高温及び高圧のガス冷媒を吐出する。圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2a、第3逆止弁9を介して高圧管42に流入する。 First, the flow of the refrigerant will be explained. The compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the high-pressure pipe 42 via the four-way valve 2 a and the third check valve 9 .
 高圧管42から中継機50に流入した高圧ガス冷媒は、気液分離機構12、第1開閉弁19aを介して負荷側熱交換器51aに流入する。高圧管42から中継機50に流入した高圧ガス冷媒は、気液分離機構12、第1開閉弁19bを介して負荷側熱交換器51bに流入する。 The high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51a via the gas-liquid separation mechanism 12 and the first on-off valve 19a. The high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51b via the gas-liquid separation mechanism 12 and the first on-off valve 19b.
 このとき、負荷側ユニット80a及び負荷側ユニット80bは暖房運転を行っている。負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と高温高圧冷媒とが熱交換される。負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と高温高圧冷媒とが熱交換される。 At this time, the load side unit 80a and the load side unit 80b are performing heating operation. In the load-side heat exchanger 51a, heat is exchanged between the indoor air supplied from the indoor fan 52a and the high-temperature, high-pressure refrigerant. In the load-side heat exchanger 51b, heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
 負荷側熱交換器51aで冷却された中温の冷媒は、室内絞り装置53aを介し、第2中継機逆止弁18aから中継機50へ流入する。負荷側熱交換器51bで冷却された中温の冷媒は、室内絞り装置53bを介し、第2中継機逆止弁18bから中継機50へ流入する。 The medium-temperature refrigerant cooled by the load-side heat exchanger 51a flows into the repeater 50 from the second repeater check valve 18a via the indoor expansion device 53a. The medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows into the repeater 50 from the second repeater check valve 18b via the indoor expansion device 53b.
 中温の冷媒は、第2中継機絞り装置16、第2冷媒間熱交換器14、第1冷媒間熱交換器13を介して、低圧管41へ流入する。低圧管41から熱源機10に流入した低圧ガス冷媒は、第4逆止弁11、絞り装置5を介して、熱源側熱交換器3へ流入する。熱源側熱交換器3では、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と低温低圧冷媒とが熱交換される。熱源側熱交換器3で加熱された低温の冷媒は、四方弁2a、アキュムレータ6を介して圧縮機1へ再度吸入される。 The medium-temperature refrigerant flows into the low-pressure pipe 41 via the second relay throttle device 16, the second heat exchanger between refrigerants 14, and the first heat exchanger between refrigerants 13. The low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 flows into the heat source side heat exchanger 3 via the fourth check valve 11 and the expansion device 5 . In the heat source side heat exchanger 3, heat is exchanged between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the low-temperature, low-pressure refrigerant. The low-temperature refrigerant heated by the heat source side heat exchanger 3 is sucked again into the compressor 1 via the four-way valve 2 a and the accumulator 6 .
 [暖房主体運転モード]
 負荷側熱交換器51a及び負荷側熱交換器51bで冷房負荷と暖房負荷とが発生している暖房主体運転モードについて説明する。ここでは、負荷側ユニット80aが冷房運転、負荷側ユニット80bが暖房運転を行っている例を説明する。
[Heating main operation mode]
A heating-dominant operation mode in which the load-side heat exchanger 51a and the load-side heat exchanger 51b generate a cooling load and a heating load will be described. Here, an example in which the load-side unit 80a performs cooling operation and the load-side unit 80b performs heating operation will be described.
 まず、冷媒の流れについて説明する。圧縮機1は、低温及び低圧のガス冷媒を吸入し、圧縮して、高温及び高圧のガス冷媒を吐出する。圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2a、第3逆止弁9を介して高圧管42に流入する。 First, the flow of the refrigerant will be explained. The compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the high-pressure pipe 42 via the four-way valve 2 a and the third check valve 9 .
 高圧管42から中継機50に流入した高圧ガス冷媒は、気液分離機構12、第1開閉弁19bを介して負荷側熱交換器51bに流入する。負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と高温高圧冷媒とが熱交換される。 The high-pressure gas refrigerant that has flowed into the repeater 50 from the high-pressure pipe 42 flows into the load-side heat exchanger 51b via the gas-liquid separation mechanism 12 and the first on-off valve 19b. In the load-side heat exchanger 51b, heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
 負荷側熱交換器51bで冷却された中温の冷媒は、室内絞り装置53bを介し、第2中継機逆止弁18bから第1中継機逆止弁17aに流入する。冷媒は、第1中継機逆止弁17aを介して負荷側ユニット80aに流入する。 The medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows from the second relay check valve 18b into the first relay check valve 17a via the indoor expansion device 53b. The refrigerant flows into the load side unit 80a via the first relay check valve 17a.
 室内絞り装置53aで減圧された低温低圧の二相冷媒は、負荷側熱交換器51aに流入する。負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と低温冷媒とが熱交換される。負荷側熱交換器51aで加熱された中温の冷媒は、第2開閉弁20aを介して、中継機50を通過し、低圧管41に流入する。 The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a. In the load-side heat exchanger 51a, heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant. The medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the relay device 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a.
 低圧管41から熱源機10に流入した低圧ガス冷媒は、第4逆止弁11、絞り装置5を介して、熱源側熱交換器3へ流入する。熱源側熱交換器3では、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と低温低圧冷媒とが熱交換される。熱源側熱交換器3で加熱された低温の冷媒は、四方弁2a、アキュムレータ6を介して圧縮機1へ再度吸入される。 The low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 flows into the heat source side heat exchanger 3 via the fourth check valve 11 and the throttle device 5 . In the heat source side heat exchanger 3, heat is exchanged between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the low-temperature, low-pressure refrigerant. The low-temperature refrigerant heated by the heat source side heat exchanger 3 is sucked again into the compressor 1 via the four-way valve 2 a and the accumulator 6 .
[冷房主体運転モード]
 図5は、図1に記載の空気調和装置100の冷房主体運転モード時における冷媒の流れの一例を説明する図である。図5に示す例では、負荷側熱交換器3a及び負荷側熱交換器3bで冷房負荷と暖房負荷とが発生している冷房主体運転モードについて説明する。
[Cooling main operation mode]
FIG. 5 is a diagram illustrating an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG. In the example shown in FIG. 5, the cooling-dominant operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
 図5では、この実施形態1の理解を容易にするために、冷媒の流れ方向を実線の矢印で示してある。なお、図5に示す例では、負荷側ユニット80aが冷房運転、負荷側ユニット80bが暖房運転を行っている例を説明する。 In FIG. 5, in order to facilitate understanding of the first embodiment, the flow direction of the refrigerant is indicated by solid arrows. In the example shown in FIG. 5, an example in which the load-side unit 80a performs cooling operation and the load-side unit 80b performs heating operation will be described.
 まず、冷媒の流れについて説明する。圧縮機1は、低温及び低圧のガス冷媒を吸入し、圧縮して、高温及び高圧のガス冷媒を吐出する。圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2aを介して、熱源側熱交換器3に流入する。 First, the flow of the refrigerant will be explained. The compressor 1 takes in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the four-way valve 2a.
 熱源側熱交換器3は、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と高温及び高圧のガス冷媒とを熱交換する。熱源側熱交換器3で冷却された中温及び高圧の冷媒は、絞り装置5、第2逆止弁8を介して高圧管42に流入する。 The heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant. The medium-temperature and high-pressure refrigerant cooled in the heat source side heat exchanger 3 flows through the expansion device 5 and the second check valve 8 into the high-pressure pipe 42 .
 中温高圧の冷媒は高圧管42を介して中継機50に流入し、気液分離機構12、第1開閉弁19bを介して負荷側熱交換器51bに流入する。負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と高温高圧冷媒とが熱交換される。 Medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure pipe 42, and into the load-side heat exchanger 51b through the gas-liquid separation mechanism 12 and the first on-off valve 19b. In the load-side heat exchanger 51b, heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
 負荷側熱交換器51bで冷却された中温の冷媒は、室内絞り装置53bを介し、第2中継機逆止弁18bから第1中継機逆止弁17aに流入する。第1中継機逆止弁17aを介して負荷側ユニット80aに流入する。 The medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows from the second relay check valve 18b into the first relay check valve 17a via the indoor expansion device 53b. It flows into the load side unit 80a via the first relay check valve 17a.
 室内絞り装置53aで減圧された低温低圧の二相冷媒は、負荷側熱交換器51aに流入する。負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と低温冷媒とが熱交換される。 The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a. In the load-side heat exchanger 51a, heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
 負荷側熱交換器51aで加熱された中温の冷媒は、第2開閉弁20aを介して、中継機50を通過し、低圧管41に流入する。低圧管41から熱源機10に流入した低圧ガス冷媒は、第1逆止弁7、四方弁2a、アキュムレータ6を介して圧縮機1へ再度吸入される。 The medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the repeater 50 and flows into the low-pressure pipe 41 via the second on-off valve 20a. The low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again through the first check valve 7 , the four-way valve 2 a and the accumulator 6 .
 冷房主体運転では、圧縮機1と負荷側ユニット80aからの吸熱量と、負荷側ユニット80bと熱源側熱交換器3からの放熱量が釣り合う必要がある。冷房主体運転において暖房能力を発揮するには、暖房負荷に応じて熱源側熱交換器3の放熱量を調整する。 In cooling-dominant operation, the amount of heat absorbed from the compressor 1 and the load-side unit 80a must be balanced with the amount of heat released from the load-side unit 80b and the heat source-side heat exchanger 3. In order to exhibit the heating capacity in the cooling-dominant operation, the heat radiation amount of the heat source side heat exchanger 3 is adjusted according to the heating load.
 空気調和装置100では、第1室外ファン4a及び第2室外ファン4bのうち、制御部60に優先的に送風可能な第1室外ファン4aは停止せず、第2室外ファン4bを停止又は第1室外ファン4aよりも低い回転数に制御することで放熱量を調整する。第2室外ファン4bは、第1室外ファン4aの回転数に対して10%程度の回転数まで減速する。さらに熱源側熱交換器3の放熱量を抑制する場合、第2室外ファン4bを停止させる。 In the air conditioner 100, of the first outdoor fan 4a and the second outdoor fan 4b, the first outdoor fan 4a that can preferentially blow air to the control unit 60 does not stop, and the second outdoor fan 4b is stopped or the first outdoor fan 4b is stopped. The amount of heat dissipation is adjusted by controlling the rotation speed to be lower than that of the outdoor fan 4a. The rotation speed of the second outdoor fan 4b is reduced to about 10% of the rotation speed of the first outdoor fan 4a. Furthermore, when suppressing the heat radiation amount of the heat source side heat exchanger 3, the second outdoor fan 4b is stopped.
[冷房運転モード時の効果]
 従って、実施形態1の空気調和装置100によれば、第1室外ファン4aは、制御部60に第2室外ファン4bよりも優先的に送風可能な位置に配置される。そして、冷房主体運転モードにおいて、制御部60は、第1室外ファン4aを運転し、第2室外ファン4bを第1ファンの回転数よりも低い回転数で運転、又は停止する。冷媒主体運転モードでは熱源側熱交換器3が凝縮器として動作し、負荷側ユニット80a及び負荷側ユニット80bとが冷房運転と暖房運転とが混在する。従って、第1室外ファン4aが熱源機10の制御部に優先的に送風することで、制御部60の温度上昇を抑制しながら空気調和装置100の運転を維持することができる。
[Effect in cooling operation mode]
Therefore, according to the air conditioner 100 of Embodiment 1, the first outdoor fan 4a is arranged at a position where it can blow air to the control unit 60 with priority over the second outdoor fan 4b. In the cooling main operation mode, the control unit 60 operates the first outdoor fan 4a and operates or stops the second outdoor fan 4b at a rotation speed lower than that of the first fan. In the refrigerant-dominant operation mode, the heat source side heat exchanger 3 operates as a condenser, and the load side unit 80a and the load side unit 80b perform both cooling operation and heating operation. Therefore, the first outdoor fan 4 a preferentially blows air to the control unit of the heat source device 10 , thereby suppressing the temperature rise of the control unit 60 and maintaining the operation of the air conditioner 100 .
 また、熱源側熱交換器3に送風する風量を制御することで、熱源側熱交換器3での凝縮能力を低下させ、冷媒寝こみを防止することができる。通常、ファンには最低回転数による最低風量の制約があるが、複数台あるファンの何台かを停止させることで、従来よりも下限風量を落とすことができる。また、第1室外ファン4aを停止させないことで、制御部60への送風量を維持し、冷却量を確保することができる。 Also, by controlling the amount of air blown to the heat source side heat exchanger 3, it is possible to reduce the condensation capacity of the heat source side heat exchanger 3 and prevent refrigerant stagnation. Normally, fans have a minimum airflow limit due to the minimum number of revolutions, but by stopping some of the multiple fans, the lower limit airflow can be lowered more than before. In addition, by not stopping the first outdoor fan 4a, it is possible to maintain the amount of air blown to the control unit 60 and secure the amount of cooling.
実施形態2.
 図6は、実施形態2に係る空気調和装置100の回路構成の一例を模式的に記載した図である。なお、実施形態2では実施形態1との相違点を中心に説明し、実施形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2.
FIG. 6 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 2. As shown in FIG. In addition, in Embodiment 2, it demonstrates centering around difference with Embodiment 1, and the same code|symbol shall be attached|subjected to the same part as Embodiment 1, and description shall be abbreviate|omitted.
 実施形態2では、熱源側熱交換器3と絞り装置5と並列するように第2絞り装置71と、熱源側気液分離機構72と、を有する。 In Embodiment 2, a second expansion device 71 and a heat source side gas-liquid separation mechanism 72 are provided in parallel with the heat source side heat exchanger 3 and the expansion device 5 .
 第2絞り装置71は、冷媒を減圧し膨張させる減圧弁又は膨張弁としての機能を有するものである。第2絞り装置71は、例えば、電子式膨張弁等の開度が可変に制御可能なもので構成されると良い。第2絞り装置71の片側は、四方弁2aと熱源側熱交換器3とを接続する配管に接続され、もう片側は熱源側気液分離機構72のガス側と接続される。 The second expansion device 71 functions as a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant and expands it. The second throttle device 71 may be composed of, for example, an electronic expansion valve whose opening degree can be variably controlled. One side of the second expansion device 71 is connected to the pipe connecting the four-way valve 2 a and the heat source side heat exchanger 3 , and the other side is connected to the gas side of the heat source side gas-liquid separation mechanism 72 .
 熱源側気液分離機構72は、液状態の冷媒とガス状態の冷媒とを分離するものである。熱源側気液分離機構72は、液状態の冷媒が流出する液流出側に絞り装置5と接続され、ガス状態の冷媒が通過するガス通過側に第2絞り装置71が接続される。熱源側気液分離機構72は、液状態の冷媒及びガス状態の冷媒が通過する混合側に第2逆止弁8と接続する配管が接続されている。 The heat source side gas-liquid separation mechanism 72 separates the liquid state refrigerant and the gas state refrigerant. The heat source side gas-liquid separation mechanism 72 is connected to the expansion device 5 on the liquid outflow side through which the liquid state refrigerant flows out, and the second expansion device 71 is connected to the gas passage side through which the gas state refrigerant passes. The heat source side gas-liquid separation mechanism 72 has a pipe connected to the second check valve 8 on the mixing side through which liquid state refrigerant and gas state refrigerant pass.
 全冷房運転モード及び冷房主体運転モードでは、熱源側熱交換器3で冷却された冷媒が絞り装置5を介して熱源側気液分離機構72に流入する。第2絞り装置71が開いている場合、四方弁2aから流出したガス冷媒が第2絞り装置71を介して熱源側気液分離機構72に流入し、熱源側気液分離機構72で混合した二相冷媒が第2逆止弁8に流入する。 In the cooling only operation mode and the cooling main operation mode, the refrigerant cooled by the heat source side heat exchanger 3 flows through the expansion device 5 into the heat source side gas-liquid separation mechanism 72 . When the second expansion device 71 is open, the gas refrigerant flowing out of the four-way valve 2a flows into the heat source side gas-liquid separation mechanism 72 via the second expansion device 71, and the two mixed in the heat source side gas-liquid separation mechanism 72 Phase refrigerant flows into the second check valve 8 .
 全暖房運転モード及び暖房主体運転モードでは、第4逆止弁11から流出した低圧二相冷媒が熱源側気液分離機構72へ流入する。第2絞り装置71が開いている場合、熱源側気液分離機構72で分離されたガス冷媒が第2絞り装置71へ流入し、熱源側気液分離機構72で分離された液冷媒が絞り装置5に流入する。 In the heating only operation mode and the heating main operation mode, the low-pressure two-phase refrigerant flowing out of the fourth check valve 11 flows into the heat source side gas-liquid separation mechanism 72 . When the second expansion device 71 is open, the gas refrigerant separated by the heat source side gas-liquid separation mechanism 72 flows into the second expansion device 71, and the liquid refrigerant separated by the heat source side gas-liquid separation mechanism 72 is separated by the expansion device. Flow into 5.
 図6に示すように、熱源側熱交換器3の冷媒側入口と冷媒側出口とを接続するバイパス経路bを有する。バイパス経路bは、熱源側熱交換器3の冷媒側入口の配管と冷媒側出口の配管とを接続する配管である。バイパス経路bは、冷媒の流量を調節するバイパス制御弁である絞り装置71を有する。空気調和装置100は、冷房主体運転モードにおいて、絞り装置71が閉止しているとき、第1室外ファン4aと2の第2室外ファン4bとは停止しない運転モードを有する。空気調和装置100は、冷房主体運転モードにおいて、絞り装置71が閉止していないとき、第1室外ファン4aは運転し、第2室外ファン4bが停止又は減速する運転モードを有する。 As shown in FIG. 6, it has a bypass path b that connects the refrigerant side inlet and the refrigerant side outlet of the heat source side heat exchanger 3 . The bypass route b is a pipe that connects a refrigerant-side inlet pipe and a refrigerant-side outlet pipe of the heat source side heat exchanger 3 . The bypass route b has an expansion device 71, which is a bypass control valve that adjusts the flow rate of the refrigerant. The air conditioner 100 has an operation mode in which the first outdoor fans 4a and 2 of the second outdoor fan 4b do not stop when the expansion device 71 is closed in the cooling main operation mode. The air conditioner 100 has an operation mode in which the first outdoor fan 4a operates and the second outdoor fan 4b stops or slows down when the expansion device 71 is not closed in the cooling main operation mode.
[冷房主体運転モード]
 図7は、図6に記載の空気調和装置100の冷房主体運転モード時における冷媒の流れの一例を説明する図である。図7に示す例では、負荷側熱交換器51aで冷房負荷と負荷側熱交換器51bで暖房負荷が発生している冷房主体運転モードについて説明する。
[Cooling main operation mode]
FIG. 7 is a diagram illustrating an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG. In the example shown in FIG. 7, a cooling-dominant operation mode in which the load-side heat exchanger 51a generates a cooling load and the load-side heat exchanger 51b generates a heating load will be described.
 圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2aを介して、熱源側熱交換器3と第2絞り装置71に流入する。熱源側熱交換器3は、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と高温及び高圧のガス冷媒とを熱交換する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 and the second throttle device 71 via the four-way valve 2a. The heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant.
 熱源側熱交換器3で冷却された中温及び高圧の冷媒は、絞り装置5、第2逆止弁8を介して高圧管42に流入する。第1室外ファン4a及び第2室外ファン4bは、高圧検出センサ31で検出される圧力を一定値以上に保つように回転数を制御する。第2絞り装置71は、熱源側気液分離機構72の出口乾き度が一定以上になる開度に制御する。 The medium-temperature and high-pressure refrigerant cooled by the heat source side heat exchanger 3 flows into the high-pressure pipe 42 via the expansion device 5 and the second check valve 8 . The first outdoor fan 4a and the second outdoor fan 4b control the number of revolutions so as to keep the pressure detected by the high pressure detection sensor 31 above a certain value. The second expansion device 71 controls the opening so that the dryness at the outlet of the heat source side gas-liquid separation mechanism 72 is above a certain level.
 第2絞り装置71が閉止している場合、第1室外ファン4a及び第2室外ファン4bは共に運転する。第2絞り装置71が開いている場合、第2室外ファン4bは停止又は第1室外ファン4aよりも低い回転数に制御することで放熱量を調整する。第2室外ファン4bは、第1室外ファン4aの回転数に対して10%程度の回転数まで回転数が下げられる。 When the second expansion device 71 is closed, both the first outdoor fan 4a and the second outdoor fan 4b operate. When the second throttle device 71 is open, the second outdoor fan 4b is stopped or controlled to have a rotational speed lower than that of the first outdoor fan 4a, thereby adjusting the amount of heat dissipation. The rotation speed of the second outdoor fan 4b is lowered to about 10% of the rotation speed of the first outdoor fan 4a.
 実施形態2によれば、実施形態1と同様の効果が得られる。 According to the second embodiment, effects similar to those of the first embodiment can be obtained.
実施形態3.
 図8は、実施形態3に係る空気調和装置100の回路構成の一例を模式的に記載した図である。実施形態3の空気調和装置100は、熱源機10と、中継機50と、負荷側ユニット80a及び負荷側ユニット80bと、をそれぞれ別体のユニットとして有している。中継機50は、冷媒とは異なる熱を搬送する媒体(以下、熱媒体という)との熱交換を行って、熱伝達の中継を行う。
Embodiment 3.
FIG. 8 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 3. As shown in FIG. The air conditioner 100 of Embodiment 3 has the heat source device 10, the repeater 50, and the load side unit 80a and the load side unit 80b as separate units. The repeater 50 relays heat transfer by exchanging heat with a medium that conveys heat different from the refrigerant (hereinafter referred to as a heat medium).
[中継機50]
 中継機50は、中間熱交換器73a及び中間熱交換器73bと、ポンプ48a及びポンプ48bと、第1熱媒体流路切り替え装置46a及び第1熱媒体流路切り替え装置46bと、第2熱媒体流路切り替え装置47a及び第2熱媒体流路切り替え装置47bとを有している。
[Relay machine 50]
The repeater 50 includes an intermediate heat exchanger 73a and an intermediate heat exchanger 73b, a pump 48a and a pump 48b, a first heat medium flow switching device 46a and a first heat medium flow switching device 46b, and a second heat medium It has a channel switching device 47a and a second heat medium channel switching device 47b.
 中間熱交換器73a及び中間熱交換器73bは、冷媒を通過させる伝熱部と熱媒体を通過させる伝熱部とを有し、冷媒と熱媒体とによる媒体間の熱交換を行わせる。実施形態3は、中間熱交換器73a及び中間熱交換器73bは、暖房運転において凝縮器として機能し、冷媒に放熱させて熱媒体を加熱する。一方で、中間熱交換器73a及び中間熱交換器73bは、冷房運転において蒸発器として機能し、冷媒に吸熱させて熱媒体を冷却する。 The intermediate heat exchanger 73a and the intermediate heat exchanger 73b have a heat transfer section through which the refrigerant passes and a heat transfer section through which the heat medium passes, and perform heat exchange between the mediums by the refrigerant and the heat medium. In the third embodiment, the intermediate heat exchanger 73a and the intermediate heat exchanger 73b function as condensers in the heating operation, causing the refrigerant to radiate heat to heat the heat medium. On the other hand, the intermediate heat exchanger 73a and the intermediate heat exchanger 73b function as evaporators in the cooling operation, causing the refrigerant to absorb heat to cool the heat medium.
 熱媒体送出装置であるポンプ48a及びポンプ48bは、熱媒体を循環させるために加圧する。ポンプ48a及びポンプ48bについては、内蔵するモータ(図示せず)の回転数を一定の範囲内で変化させることで、熱媒体を送り出す流量(吐出流量)を変化させることができる。 The pumps 48a and 48b, which are heat medium delivery devices, pressurize the heat medium to circulate. As for the pumps 48a and 48b, the flow rate (discharge flow rate) of the heat medium can be changed by changing the rotational speed of the built-in motor (not shown) within a certain range.
 熱媒体送出装置であるポンプ48aは、中間熱交換器73aと第2熱媒体流路切り替え装置47aとを接続する配管に配置される。ポンプ48aによって送り出された熱媒体は中間熱交換器73aに流入するように配置されている。熱媒体送出装置であるポンプ48bは、中間熱交換器73bと第2熱媒体流路切り替え装置47bとを接続する配管に配置される。ポンプ48bによって送り出された熱媒体は中間熱交換器73bに流入するように配置されている。 The pump 48a, which is a heat medium delivery device, is arranged in a pipe connecting the intermediate heat exchanger 73a and the second heat medium flow switching device 47a. The heat medium pumped out by the pump 48a is arranged to flow into the intermediate heat exchanger 73a. A pump 48b, which is a heat medium delivery device, is arranged in a pipe connecting the intermediate heat exchanger 73b and the second heat medium flow switching device 47b. The heat medium pumped out by the pump 48b is arranged to flow into the intermediate heat exchanger 73b.
 ポンプ48aは、中間熱交換器73aの上流側に接続され、冷媒と熱交換された熱媒体を循環させる。ポンプ48bは、中間熱交換器73bの上流側に接続され、冷媒と熱交換された熱媒体を循環させる。 The pump 48a is connected to the upstream side of the intermediate heat exchanger 73a and circulates the heat medium that has undergone heat exchange with the refrigerant. The pump 48b is connected to the upstream side of the intermediate heat exchanger 73b and circulates the heat medium heat-exchanged with the refrigerant.
 中継機50は、中間熱交換器73aに流入する冷媒流路を切り替える冷媒流路切替装置30a(1)及び冷媒流路切替装置30a(2)を有する。中継機50は、中間熱交換器73bに流入する冷媒流路を切り替える冷媒流路切替装置30b(1)及び冷媒流路切替装置30b(2)を有する。 The repeater 50 has a refrigerant flow switching device 30a(1) and a refrigerant flow switching device 30a(2) that switch the refrigerant flow path flowing into the intermediate heat exchanger 73a. The repeater 50 has a refrigerant flow switching device 30b(1) and a refrigerant flow switching device 30b(2) that switch the refrigerant flow path flowing into the intermediate heat exchanger 73b.
 中継機50は、中間熱交換器73a及び中間熱交換器73bへの熱媒体の流路を切り替える第1熱媒体流路切り替え装置46a及び第1熱媒体流路切り替え装置46bを有する。中継機50は、中間熱交換器73a及び中間熱交換器73bへの熱媒体の流路を切り替える第2熱媒体流路切り替え装置47a及び第2熱媒体流路切り替え装置47bを有する。 The repeater 50 has a first heat medium flow switching device 46a and a first heat medium flow switching device 46b that switch the heat medium flow path to the intermediate heat exchanger 73a and the intermediate heat exchanger 73b. The repeater 50 has a second heat medium flow switching device 47a and a second heat medium flow switching device 47b for switching the heat medium flow path to the intermediate heat exchanger 73a and the intermediate heat exchanger 73b.
 また、第1熱媒体流路切り替え装置46a、第1熱媒体流路切り替え装置46b、第2熱媒体流路切り替え装置47a及び第2熱媒体流路切り替え装置47bは、中間熱交換器73a及び中間熱交換器73bから負荷側熱交換器51a及び負荷側熱交換器51bに熱媒体を分配する。 The first heat medium flow switching device 46a, the first heat medium flow switching device 46b, the second heat medium flow switching device 47a, and the second heat medium flow switching device 47b are the intermediate heat exchanger 73a and the intermediate heat exchanger 73a. The heat medium is distributed from the heat exchanger 73b to the load side heat exchanger 51a and the load side heat exchanger 51b.
 また、中継機50は、温度センサ28a、温度センサ29a、温度センサ28b及び温度センサ29bを有する。温度センサ28aは、中間熱交換器73aの入口側における冷媒の温度を検出する。温度センサ29aは、中間熱交換器73aの出口側における冷媒の温度を検出する。温度センサ28bは、中間熱交換器73aの入口側における熱媒体の温度を検出する。温度センサ29bは、中間熱交換器73aの出口側における熱媒体の温度を検出する。 The repeater 50 also has a temperature sensor 28a, a temperature sensor 29a, a temperature sensor 28b, and a temperature sensor 29b. The temperature sensor 28a detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 73a. The temperature sensor 29a detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 73a. The temperature sensor 28b detects the temperature of the heat medium on the inlet side of the intermediate heat exchanger 73a. The temperature sensor 29b detects the temperature of the heat medium on the outlet side of the intermediate heat exchanger 73a.
 中継機50は、温度センサ26a、温度センサ27a、温度センサ26b及び温度センサ27bを有する。温度センサ26aは、中間熱交換器73bの入口側における冷媒の温度を検出する。温度センサ27aは、中間熱交換器73bの出口側における冷媒の温度を検出する。温度センサ26bは、中間熱交換器73bの入口側における熱媒体の温度を検出する。温度センサ27bは、中間熱交換器73bの出口側における熱媒体の温度を検出する。 The repeater 50 has a temperature sensor 26a, a temperature sensor 27a, a temperature sensor 26b, and a temperature sensor 27b. The temperature sensor 26a detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 73b. The temperature sensor 27a detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 73b. The temperature sensor 26b detects the temperature of the heat medium on the inlet side of the intermediate heat exchanger 73b. The temperature sensor 27b detects the temperature of the heat medium on the outlet side of the intermediate heat exchanger 73b.
 図9は、図8に記載の空気調和装置100の冷房主体運転モード時における冷媒の流れの一例を説明する図である。図9に示す例では、負荷側熱交換器3a及び負荷側熱交換器3bで冷房負荷と暖房負荷が発生している冷房主体運転モード時の熱媒体の流れについて説明する。 FIG. 9 is a diagram explaining an example of the refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG. In the example shown in FIG. 9, the flow of the heat medium in the cooling main operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
 ポンプ48aによって吐出された熱媒体は中間熱交換器73aに流入する。中間熱交換器73aでは、冷媒側の冷熱が熱媒体に伝えられ、冷却された熱媒体は第1熱媒体流路切り替え装置46aを介して、負荷側熱交換器51aに流入する。このとき、負荷側ユニット80aは冷房運転を行っており、負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と低温熱媒体とが熱交換される。負荷側熱交換器51aで冷却された中温の熱媒体は、第1熱媒体流路切り替え装置46aを介して、再度ポンプ22aに吸入される。 The heat medium discharged by the pump 48a flows into the intermediate heat exchanger 73a. In the intermediate heat exchanger 73a, cold heat on the refrigerant side is transferred to the heat medium, and the cooled heat medium flows into the load side heat exchanger 51a via the first heat medium flow switching device 46a. At this time, the load-side unit 80a is performing cooling operation, and the load-side heat exchanger 51a exchanges heat between the indoor air supplied from the indoor fan 52a and the low-temperature heat medium. The medium-temperature heat medium cooled by the load-side heat exchanger 51a is again sucked into the pump 22a via the first heat medium flow switching device 46a.
 ポンプ48bによって吐出された熱媒体は中間熱交換器73bに流入する。中間熱交換器73bでは、冷媒側の温熱が熱媒体に伝えられ、過熱された熱媒体は第1熱媒体流路切り替え装置46bを介して、負荷側熱交換器51bに流入する。このとき、負荷側ユニット80bは暖房運転を行っており、負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と高温熱媒体とが熱交換される。負荷側熱交換器51bで冷却された中温の熱媒体は、第2熱媒体流路切り替え装置47bを介して再度ポンプ22bに吸入される。 The heat medium discharged by the pump 48b flows into the intermediate heat exchanger 73b. In the intermediate heat exchanger 73b, the heat on the refrigerant side is transferred to the heat medium, and the superheated heat medium flows into the load side heat exchanger 51b via the first heat medium flow switching device 46b. At this time, the load-side unit 80b is performing heating operation, and the load-side heat exchanger 51b exchanges heat between the indoor air supplied from the indoor fan 52b and the high-temperature heat medium. The medium-temperature heat medium cooled by the load-side heat exchanger 51b is again sucked into the pump 22b via the second heat medium flow switching device 47b.
 実施形態3によれば、実施形態1と同様の効果を得られる。 According to Embodiment 3, the same effect as Embodiment 1 can be obtained.
実施形態4.
 図10は、実施形態4に係る空気調和装置100の回路構成の一例を模式的に記載した図である。図10に示したように、圧縮機1と中継機50とは、低圧ガス管43(第3冷媒配管)と、高圧ガス管44(第1冷媒配管)と、液管45(第2冷媒配管)と、で接続される。
Embodiment 4.
FIG. 10 is a diagram schematically showing an example of the circuit configuration of the air conditioner 100 according to Embodiment 4. As shown in FIG. As shown in FIG. 10, the compressor 1 and the repeater 50 include a low-pressure gas pipe 43 (third refrigerant pipe), a high-pressure gas pipe 44 (first refrigerant pipe), and a liquid pipe 45 (second refrigerant pipe). ) and are connected with
 熱源機10は、四方弁2a及び四方弁2bを有する。四方弁2aは、冷房運転における冷媒流路と暖房運転における冷媒流路とを切り替えて、凝縮器又はガスクーラとして作用する熱交換器を切り替えるものである。 The heat source device 10 has a four-way valve 2a and a four-way valve 2b. The four-way valve 2a switches between a refrigerant flow path in cooling operation and a refrigerant flow path in heating operation, and switches a heat exchanger acting as a condenser or a gas cooler.
 圧縮機1の吐出側、熱源側熱交換器3、アキュムレータ6、低圧ガス管43が四方弁2aを介して接続されている。なお、冷房運転時には、圧縮機1の吐出側と熱源側熱交換器3とが連通するように冷媒回路を切り替える。これにより、熱源側熱交換器3が凝縮器もしくはガスクーラとして作用するよう動作する。暖房運転時には、熱源側熱交換器3とアキュムレータ6とがそれぞれ連通するように冷媒回路を切り替える。これにより、熱源側熱交換器3が蒸発器として作用するように動作する。 The discharge side of the compressor 1, the heat source side heat exchanger 3, the accumulator 6, and the low-pressure gas pipe 43 are connected via the four-way valve 2a. During cooling operation, the refrigerant circuit is switched so that the discharge side of the compressor 1 and the heat source side heat exchanger 3 communicate with each other. As a result, the heat source side heat exchanger 3 operates as a condenser or a gas cooler. During heating operation, the refrigerant circuit is switched so that the heat source side heat exchanger 3 and the accumulator 6 are communicated with each other. As a result, the heat source side heat exchanger 3 operates as an evaporator.
 四方弁2a及び四方弁2bは、冷房主体運転モードにおいて、高圧ガス管44に高圧ガス冷媒が流れ、液管45に液冷媒が流れ、低圧ガス管43は低圧冷媒が流れるように冷媒の流れ方向を切り替える。 In the cooling main operation mode, the four-way valve 2a and the four-way valve 2b are configured such that high-pressure gas refrigerant flows through the high-pressure gas pipe 44, liquid refrigerant flows through the liquid pipe 45, and low-pressure refrigerant flows through the low-pressure gas pipe 43. switch.
 四方弁2bは冷暖同時運転において、冷媒流路を切り替えることで、圧縮機1から吐出された高温高圧冷媒の一部を高圧ガス管44に供給する。圧縮機1の吐出側、熱源側熱交換器3、高圧ガス管44、アキュムレータ6が四方弁2bを介して接続されている。四方弁2a及び四方弁2bは、四方弁等からなっており、二方弁及び三方弁等で構成されたものであっても良い。 The four-way valve 2 b supplies part of the high-temperature, high-pressure refrigerant discharged from the compressor 1 to the high-pressure gas pipe 44 by switching the refrigerant flow path during simultaneous cooling and heating operation. The discharge side of the compressor 1, the heat source side heat exchanger 3, the high pressure gas pipe 44, and the accumulator 6 are connected via the four-way valve 2b. The four-way valve 2a and the four-way valve 2b are composed of a four-way valve or the like, and may be composed of a two-way valve, a three-way valve or the like.
 中継機50は、第1開閉弁19a及び第1開閉弁19bと、第2開閉弁20a及び、第2開閉弁20bと、を有する。第1開閉弁19a及び第1開閉弁19bと、第2開閉弁20a及び第2開閉弁20bとは、二方弁等で構成されている。 The repeater 50 has a first on-off valve 19a and a first on-off valve 19b, and a second on-off valve 20a and a second on-off valve 20b. The first on-off valve 19a and the first on-off valve 19b, and the second on-off valve 20a and the second on-off valve 20b are configured by two-way valves or the like.
 図11は、図10に記載の空気調和装置100の冷房主体運転モード時における冷媒の流れの一例を説明する図である。図11に示す例では、負荷側熱交換器3a及び負荷側熱交換器3bで冷房負荷と暖房負荷とが発生している冷房主体運転モード時の冷媒の流れについて説明する。 FIG. 11 is a diagram illustrating an example of refrigerant flow in the cooling main operation mode of the air conditioner 100 shown in FIG. In the example shown in FIG. 11, the refrigerant flow in the cooling main operation mode in which the load-side heat exchanger 3a and the load-side heat exchanger 3b generate a cooling load and a heating load will be described.
 圧縮機1は、低温及び低圧のガス冷媒を吸入し、圧縮して、高温及び高圧のガス冷媒を吐出する。圧縮機1から吐出された高温及び高圧のガス冷媒は、四方弁2aを介して、熱源側熱交換器3に、四方弁2bを介して高圧管42に流入する。 The compressor 1 sucks in low-temperature and low-pressure gas refrigerant, compresses it, and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way valve 2a and into the high-pressure pipe 42 through the four-way valve 2b.
 熱源側熱交換器3は、第1室外ファン4a及び第2室外ファン4bから供給される室外空気と高温及び高圧のガス冷媒とを熱交換する。熱源側熱交換器3で冷却された中温及び高圧の冷媒は、絞り装置5を介して低圧ガス管43に流入する。 The heat source side heat exchanger 3 exchanges heat between the outdoor air supplied from the first outdoor fan 4a and the second outdoor fan 4b and the high-temperature and high-pressure gas refrigerant. The medium-temperature and high-pressure refrigerant cooled by the heat source side heat exchanger 3 flows through the expansion device 5 into the low-pressure gas pipe 43 .
 中温高圧の冷媒は高圧ガス管44を介して中継機50に流入し、第2開閉弁20bを介して負荷側熱交換器51bに流入する。負荷側熱交換器51bでは、室内ファン52bから供給される室内空気と高温高圧冷媒とが熱交換される。 Medium-temperature and high-pressure refrigerant flows into the repeater 50 through the high-pressure gas pipe 44, and into the load-side heat exchanger 51b through the second on-off valve 20b. In the load-side heat exchanger 51b, heat is exchanged between the indoor air supplied from the indoor fan 52b and the high-temperature, high-pressure refrigerant.
 負荷側熱交換器51bで冷却された中温の冷媒は、室内絞り装置53bを介し、負荷側ユニット80aに流入する。室内絞り装置53aで減圧された低温低圧の二相冷媒は、負荷側熱交換器51aに流入する。 The medium-temperature refrigerant cooled by the load-side heat exchanger 51b flows into the load-side unit 80a via the indoor expansion device 53b. The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a.
 室内絞り装置53aで減圧された低温低圧の二相冷媒は、負荷側熱交換器51aに流入する。負荷側熱交換器51aでは、室内ファン52aから供給される室内空気と低温冷媒とが熱交換される。 The low-temperature, low-pressure two-phase refrigerant decompressed by the indoor expansion device 53a flows into the load-side heat exchanger 51a. In the load-side heat exchanger 51a, heat is exchanged between the indoor air supplied from the indoor fan 52a and the low-temperature refrigerant.
 負荷側熱交換器51aで加熱された中温の冷媒は、第1開閉弁19aを介して、中継機50を通過し、低圧管41に流入する。低圧管41から熱源機10に流入した低圧ガス冷媒は、第1逆止弁7、四方弁2、アキュムレータ6を介して圧縮機1へ再度吸入される。 The medium-temperature refrigerant heated by the load-side heat exchanger 51a passes through the repeater 50 and flows into the low-pressure pipe 41 via the first on-off valve 19a. The low-pressure gas refrigerant that has flowed into the heat source device 10 from the low-pressure pipe 41 is sucked into the compressor 1 again via the first check valve 7 , the four-way valve 2 and the accumulator 6 .
 実施形態4によれば、実施形態1と同様の効果を得られる。 According to Embodiment 4, the same effect as Embodiment 1 can be obtained.
 実施形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、実施形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態及びその変形は、実施形態の範囲及び要旨に含まれる。 The embodiments are presented as examples and are not intended to limit the scope of claims. Embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the gist of the embodiments. These embodiments and variations thereof are included within the scope and spirit of the embodiments.
 1 圧縮機、2a、2b 四方弁、3 熱源側熱交換器、4a 第1室外ファン、4b 第2室外ファン、5 絞り装置、6 液だめ機構、7 第1逆止弁、8 第2逆止弁、9 第3逆止弁、10 熱源機、10a 前壁、10b 後壁、10c 左側壁、10d 右側壁、10e 天井壁、10f 底板、10g 吸込口、10h 仕切り板、10i 吹出し口、11 第4逆止弁、12 気液分離機構、13 第1冷媒間熱交換器、14 第2冷媒間熱交換器、15 第1中継機絞り装置、16 第2中継機絞り装置、17 中継機絞り装置、17a、17b 第1中継機逆止弁、18a、18b 第2中継機逆止弁、19 中継機電磁弁、19a、19b 第1開閉弁、20a、20b 第2開閉弁、21 吐出温度センサ、22 吸入温度センサ、23 外気温度センサ、24 温度センサ、25 中継機温度センサ、26、26a、26b、27a、27b、28a、28b、29a、29b 温度センサ、30a(1)、30a(2)、30b(1)、30b(2) 冷媒流路切り替え装置、31 高圧検出センサ、32 低圧検出センサ、33 高圧側液圧力センサ、34 液流出圧力センサ、41 低圧管、42 高圧管、43 低圧ガス管、44 高圧ガス管、45 液管、46a、46b 第1熱媒体流路切り替え装置、47a、47b 第2熱媒体流路切り替え装置、48a、48b ポンプ、50 中継機、51a、51b 負荷側熱交換器、52a、52b 室内ファン、53a、53b 室内絞り装置、54a、54b 室内熱交ガス温度センサ、55a、55b 室内空気温度センサ、56a、56b 室内熱交液温度センサ、60 制御部、61 放熱板、71 第2絞り装置、72 熱源側気液分離機構、73a、73b 中間熱交換器、80、80a、80b 負荷側ユニット、100 空気調和装置、103a、103b 吹出口、b バイパス経路。 1 compressor, 2a, 2b four-way valve, 3 heat source side heat exchanger, 4a first outdoor fan, 4b second outdoor fan, 5 expansion device, 6 liquid reservoir mechanism, 7 first check valve, 8 second check valve valve, 9 third check valve, 10 heat source unit, 10a front wall, 10b rear wall, 10c left side wall, 10d right side wall, 10e ceiling wall, 10f bottom plate, 10g suction port, 10h partition plate, 10i outlet, 11th 4 check valve, 12 gas-liquid separation mechanism, 13 first heat exchanger between refrigerants, 14 second heat exchanger between refrigerants, 15 first relay throttle device, 16 second relay throttle device, 17 relay throttle device , 17a, 17b first repeater check valve, 18a, 18b second repeater check valve, 19 repeater solenoid valve, 19a, 19b first on-off valve, 20a, 20b second on-off valve, 21 discharge temperature sensor, 22 intake temperature sensor, 23 outside air temperature sensor, 24 temperature sensor, 25 repeater temperature sensor, 26, 26a, 26b, 27a, 27b, 28a, 28b, 29a, 29b temperature sensor, 30a (1), 30a (2), 30b(1), 30b(2) refrigerant channel switching device, 31 high pressure detection sensor, 32 low pressure detection sensor, 33 high pressure side liquid pressure sensor, 34 liquid outflow pressure sensor, 41 low pressure pipe, 42 high pressure pipe, 43 low pressure gas pipe , 44 high-pressure gas pipe, 45 liquid pipe, 46a, 46b first heat medium flow switching device, 47a, 47b second heat medium flow switching device, 48a, 48b pump, 50 repeater, 51a, 51b load side heat exchange 52a, 52b Indoor fan 53a, 53b Indoor throttle device 54a, 54b Indoor heat exchange gas temperature sensor 55a, 55b Indoor air temperature sensor 56a, 56b Indoor heat exchange liquid temperature sensor 60 Control unit 61 Heat sink , 71 second expansion device, 72 heat source side gas-liquid separation mechanism, 73a, 73b intermediate heat exchanger, 80, 80a, 80b load side unit, 100 air conditioner, 103a, 103b outlet, b bypass route.

Claims (8)

  1.  熱源側熱交換器が設けられた熱源側ユニットと、
     負荷側熱交換器が設けられた複数の負荷側ユニットと、
     前記熱源側ユニットと配管で接続され、前記熱源側ユニットから供給される冷媒の熱を前記負荷側ユニットに分配する中継ユニットと
    を有し、
     前記熱源側ユニットは、
     前記熱源側ユニットの動作を制御する制御部と、
     前記熱源側熱交換器に室外空気を送風する第1ファンと、
     前記熱源側熱交換器に室外空気を送風する第2ファンと
    を有し、
     前記第1ファンは前記制御部に前記第2ファンよりも優先的に送風可能な位置に配置され、
     前記熱源側熱交換器が凝縮器として動作し、冷房運転を行う前記負荷側ユニットと暖房運転を行う前記負荷側ユニットとが混在する冷房主体運転モードにおいて、前記制御部は、前記第1ファンを運転し、前記第2ファンを前記第1ファンの回転数よりも低い回転数で運転、又は停止する、
    空気調和装置。
    a heat source side unit provided with a heat source side heat exchanger;
    a plurality of load-side units provided with load-side heat exchangers;
    a relay unit connected to the heat source side unit by a pipe and distributing the heat of the refrigerant supplied from the heat source side unit to the load side unit;
    The heat source side unit
    a control unit that controls the operation of the heat source side unit;
    a first fan that blows outdoor air to the heat source side heat exchanger;
    a second fan for blowing outdoor air to the heat source side heat exchanger;
    The first fan is arranged in the control unit at a position where air can be blown more preferentially than the second fan,
    In a cooling main operation mode in which the heat source side heat exchanger operates as a condenser and the load side unit that performs cooling operation and the load side unit that performs heating operation coexist, the control unit causes the first fan to operate. and operate or stop the second fan at a rotation speed lower than the rotation speed of the first fan;
    Air conditioner.
  2.  前記熱源側ユニットは、前記冷房主体運転モードにおいて、
     前記第1ファンを運転し、前記第2ファンを停止する、
    請求項1に記載の空気調和装置。
    The heat source side unit, in the cooling main operation mode,
    operating the first fan and stopping the second fan;
    The air conditioner according to claim 1.
  3.  前記熱源側熱交換器の容積は、
     前記熱源側ユニットと、前記負荷側ユニットと、前記中継ユニットとに設けられた前記冷媒が流動する配管又は容器の容積と、前記熱源側ユニットと前記中継ユニットとを接続する配管の容積と、前記中継ユニットと前記負荷側ユニットとを接続する配管の容積と、の合計に対して、15%から30%を占める、
    請求項1又は2に記載の空気調和装置。
    The volume of the heat source side heat exchanger is
    the capacity of a pipe or container through which the refrigerant flows provided in the heat source side unit, the load side unit, and the relay unit; the capacity of the pipe connecting the heat source side unit and the relay unit; occupies 15% to 30% of the total volume of the piping connecting the relay unit and the load side unit,
    The air conditioner according to claim 1 or 2.
  4.  前記熱源側ユニットは、
     前記制御部に接触して配置され、前記制御部から放熱させる冷却装置を有する、
    請求項1~3のいずれか1項に記載の空気調和装置。
    The heat source side unit
    Having a cooling device arranged in contact with the control unit and dissipating heat from the control unit,
    The air conditioner according to any one of claims 1 to 3.
  5.  前記熱源側ユニットは、
     前記制御部の温度を検出する温度センサを有し、
     前記制御部は、前記温度センサの検出温度に基づいて、前記第1ファンの回転数を制御する、
    請求項1~4のいずれか1項に記載の空気調和装置。
    The heat source side unit
    Having a temperature sensor that detects the temperature of the control unit,
    The control unit controls the rotation speed of the first fan based on the temperature detected by the temperature sensor.
    The air conditioner according to any one of claims 1 to 4.
  6.  前記熱源側ユニットは、
     前記熱源側熱交換器の冷媒側入口と冷媒側出口とを接続するバイパス経路を有し、
     前記バイパス経路は、
     前記冷媒の流量を調節するバイパス制御弁を有し、
     前記冷房主体運転モードにおいて、
     前記バイパス制御弁が閉止しているとき、前記第1ファンと前記第2ファンとは停止しない運転モードと、
     前記バイパス制御弁が閉止していないとき、前記第1ファンは運転し、前記第2ファンが前記第1ファンの回転数よりも低い回転数で運転、又は停止する運転モードと
    を有する、
    請求項1~5のいずれか1項に記載の空気調和装置。
    The heat source side unit
    Having a bypass path connecting a refrigerant side inlet and a refrigerant side outlet of the heat source side heat exchanger,
    The bypass route is
    Having a bypass control valve that adjusts the flow rate of the refrigerant,
    In the cooling main operation mode,
    an operation mode in which the first fan and the second fan are not stopped when the bypass control valve is closed;
    and an operation mode in which the first fan operates when the bypass control valve is not closed, and the second fan operates or stops at a rotation speed lower than that of the first fan.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記熱源側ユニットは、前記熱源側熱交換器が設けられた熱源側冷媒回路を有し、
     前記負荷側ユニットは、前記負荷側熱交換器が設けられた負荷側熱媒体回路を有し、
     前記中継ユニットは、前記熱源側冷媒回路を流れる冷媒と前記負荷側熱媒体回路を流れる熱媒体との間で熱交換する複数の中間熱交換器を有し、
     前記負荷側熱媒体回路において前記中間熱交換器の上流側に接続され、前記冷媒と熱交換された熱媒体を循環させるポンプと、
     前記中間熱交換器から前記負荷側熱交換器に熱媒体を分配する流路切り替え装置とを有する、
    請求項1~6のいずれか1項に記載の空気調和装置。
    The heat source side unit has a heat source side refrigerant circuit provided with the heat source side heat exchanger,
    The load-side unit has a load-side heat medium circuit provided with the load-side heat exchanger,
    The relay unit has a plurality of intermediate heat exchangers that exchange heat between the refrigerant flowing through the heat source side refrigerant circuit and the heat medium flowing through the load side heat medium circuit,
    a pump connected to the upstream side of the intermediate heat exchanger in the load-side heat medium circuit for circulating the heat medium heat-exchanged with the refrigerant;
    a flow path switching device that distributes the heat medium from the intermediate heat exchanger to the load side heat exchanger;
    The air conditioner according to any one of claims 1 to 6.
  8.  前記熱源側ユニットと前記中継ユニットとを接続する第1冷媒配管と、
     前記熱源側ユニットと前記中継ユニットとを接続する第2冷媒配管と、
     前記熱源側ユニットと前記中継ユニットとを接続する第3冷媒配管と
    を有し、
     前記熱源側ユニットは、
     前記冷房主体運転モードにおいて、前記第1冷媒配管は高圧ガス冷媒が流れ、前記第2冷媒配管に液冷媒が流れ、前記第3冷媒配管は低圧冷媒が流れるように前記冷媒の流れ方向を切り替える流路切り替え装置を有する、
    請求項1~7のいずれか1項に記載の空気調和装置。
    a first refrigerant pipe that connects the heat source side unit and the relay unit;
    a second refrigerant pipe that connects the heat source side unit and the relay unit;
    a third refrigerant pipe connecting the heat source side unit and the relay unit;
    The heat source side unit
    In the cooling main operation mode, the flow direction of the refrigerant is switched so that high-pressure gas refrigerant flows in the first refrigerant pipe, liquid refrigerant flows in the second refrigerant pipe, and low-pressure refrigerant flows in the third refrigerant pipe. having a path switching device,
    The air conditioner according to any one of claims 1 to 7.
PCT/JP2022/008598 2022-03-01 2022-03-01 Air conditioning device WO2023166558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008598 WO2023166558A1 (en) 2022-03-01 2022-03-01 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008598 WO2023166558A1 (en) 2022-03-01 2022-03-01 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2023166558A1 true WO2023166558A1 (en) 2023-09-07

Family

ID=87883144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008598 WO2023166558A1 (en) 2022-03-01 2022-03-01 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2023166558A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599525A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2004020190A (en) * 2002-06-12 2004-01-22 Lg Electronics Inc Multi-air conditioner and its operation control method
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
JP2013024537A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599525A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2004020190A (en) * 2002-06-12 2004-01-22 Lg Electronics Inc Multi-air conditioner and its operation control method
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
JP2013024537A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Air conditioner

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
US7461517B2 (en) Refrigerant cycle unit
JP6644154B2 (en) Air conditioner
JP5747968B2 (en) Heat recovery type refrigeration system
WO2016009748A1 (en) Air conditioner
US9279591B2 (en) Air-conditioning apparatus
JP2013121763A (en) Air conditioning device for vehicle
WO2015030173A1 (en) Heat recovery-type refrigeration device
JP2008064435A (en) Refrigerating device
KR20080020818A (en) Air conditioning system for communication equipment and controlling method thereof
US7624587B2 (en) Multi-stage operation type air conditioner
JP2006322617A (en) Multiple type air conditioner
WO2010098071A1 (en) Heat pump system
JP2003172523A (en) Heat-pump floor heater air conditioner
US10480837B2 (en) Refrigeration apparatus
JP6576603B1 (en) Air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
JP2006242403A (en) Refrigerant cycle device
JP2013189179A (en) Vehicle air conditioner
JP7311755B2 (en) air conditioning system
WO2023166558A1 (en) Air conditioning device
WO2019225237A1 (en) Refrigeration device for transportation
JP5985037B2 (en) Air conditioner
KR20180135882A (en) A heat pump having refrigerant storage means
CN210951943U (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929706

Country of ref document: EP

Kind code of ref document: A1