WO2023165351A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023165351A1
WO2023165351A1 PCT/CN2023/077108 CN2023077108W WO2023165351A1 WO 2023165351 A1 WO2023165351 A1 WO 2023165351A1 CN 2023077108 W CN2023077108 W CN 2023077108W WO 2023165351 A1 WO2023165351 A1 WO 2023165351A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frequency point
terminal device
ncd
ssb frequency
Prior art date
Application number
PCT/CN2023/077108
Other languages
English (en)
French (fr)
Inventor
李晨琬
陈磊
李秉肇
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023165351A1 publication Critical patent/WO2023165351A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • a terminal device in an idle state can perform cell reselection based on a synchronization signal block (SSB).
  • SSB synchronization signal block
  • the terminal device performs cell reselection based on the SSB, it is based on the synchronization signal/physical broadcast channel block (cell defining synchronization signal block, CD-SSB) defined by the cell.
  • CD-SSB synchronization signal/physical broadcast channel block
  • BWP initial bandwidth part
  • the present application provides a communication method and device, which are used to improve the communication performance of terminal equipment.
  • the present application provides a communication method, and the execution body of the method may be a terminal device, or may be a chip or a circuit in the terminal device.
  • the terminal device resides in the first cell in an idle state or an inactive state.
  • the method includes: the terminal device measures the first cell based on the first NCD-SSB frequency point, and based on the first NCD-SSB The SSB frequency and/or the CD-SSB frequency measure the second cell.
  • the terminal device performs cell reselection according to the measurement result of the first cell and the measurement result of the second cell.
  • the embodiment of the present application provides a method for measuring based on NCD-SSB frequency points, so that terminal equipment can use NCD-SSB frequency points to perform cell reselection based on NCD-SSB frequency points.
  • Cell reselection at the SSB frequency point can avoid the problem of poor communication performance of the terminal device due to the inability to perform cell reselection. Therefore, the method provided by the embodiment of the present application can improve the flexibility of cell reselection, and can also improve the terminal communication performance of the device.
  • the terminal device measures the second cell based on the first NCD-SSB frequency point, including: the terminal device measures the second cell based on the first NCD-SSB frequency point according to the first information from the network device For measurement, the first information is used to indicate that the first NCD-SSB frequency point can be used for neighboring cell measurement.
  • the terminal device can perform neighbor cell measurement under the instruction of the network device, thereby improving the flexibility of cell reselection.
  • the terminal device measures the second cell based on the first NCD-SSB frequency point and the CD-SSB frequency point, including: the terminal device measures the second cell based on the first NCD-SSB frequency point; the terminal The device determines that the second cell cannot be used as a target cell for reselection according to the measurement result of the second cell; the terminal device measures the second cell based on the CD-SSB frequency point.
  • the method further includes: the terminal device receives second information from the network device, and the second information is used to indicate that according to the CD-SSB
  • the SSB frequency points are used to measure neighboring cells.
  • the terminal device can perform neighbor cell measurement under the instruction of the network device, thereby improving the flexibility of cell reselection.
  • the terminal device measures the second cell based on the CD-SSB frequency point, including: the terminal device measures the second cell based on the CD-SSB frequency point according to the third information from the network device, and the third The information is used to indicate that neighbor cell measurements can only be performed based on CD-SSB frequency points.
  • the terminal device can perform neighbor cell measurement under the instruction of the network device, thereby improving the flexibility of cell reselection.
  • the method before the terminal device measures the second cell based on the first NCD-SSB frequency point and/or CD-SSB frequency point, the method further includes: the terminal device determines that the measurement result of the first cell meets the first The threshold corresponding to the NCD-SSB frequency point, wherein the threshold corresponding to the first NCD-SSB frequency point is configured by the network device, or the threshold corresponding to the first NCD-SSB frequency point is based on the threshold value corresponding to the CD-SSB frequency point and The power compensation value of the first cell is determined.
  • the impact of different transmit power on cell reselection can be reduced through the power compensation value.
  • the transmit power of the reference signal of the first cell on the first NCD-SSB frequency point is higher than that of the reference signal on the CD-SSB frequency point.
  • the transmission power of the reference signal is different, so the measurement results of the first cell determined by the terminal device based on the first NCD-SSB frequency point and the CD-SSB frequency point are different, so the obtained cell reselection results may be different.
  • the above method uses the power compensation value Measurement results based on different frequency points can be aligned, thereby improving the accuracy of cell reselection.
  • the method further includes: the terminal device receives fourth information from the network device, where the fourth information is used to indicate the power compensation value of the first cell.
  • the terminal device can align measurement results based on different frequency points, thereby improving the accuracy of cell reselection.
  • the terminal device performs cell reselection according to the measurement results of the first cell and the measurement results of the second cell, including: the terminal device determines the R value of the first cell according to the measurement result of the first cell; the terminal device determines the R value of the first cell according to The measurement result of the second cell determines the R value of the second cell; the terminal device performs cell reselection according to the R value of the first cell and the R value of the second cell.
  • the terminal device determines the R value of the first cell according to the measurement result of the first cell, including: the terminal device determines the R value of the first cell according to the measurement result of the first cell and the power compensation value of the first cell .
  • the above design and the above method can align the measurement results based on different frequency points through the power compensation value, thereby reducing the impact of different transmission power on cell reselection and improving the accuracy of cell reselection.
  • the terminal device determines the R value of the second cell according to the measurement result of the second cell, including: the terminal device determines the R value of the second cell according to the measurement result of the second cell and the power compensation value of the second cell .
  • the measurement results based on different frequency points can be aligned through the power compensation value, thereby reducing the impact of different transmission powers on cell reselection and improving the accuracy of cell reselection.
  • the method further includes: the terminal device receives fifth information from the network device, where the fifth information is used to indicate the power compensation value of the second cell.
  • the terminal device receives fifth information from the network device, where the fifth information is used to indicate the power compensation value of the second cell.
  • the present application provides a communication method, and the execution body of the method may be a network device, or may be a chip or a circuit in the network device.
  • the method includes: the network device determines indication information according to the configuration of the NCD-SSB frequency point of the second cell, and the indication information is used to instruct the terminal device to use the first At the NCD-SSB frequency point and/or the CD-SSB frequency point, the terminal device resides in the first cell in an idle state or an inactive state; the network device sends the indication information to the terminal device.
  • the embodiment of the present application provides a method for performing measurement based on NCD-SSB frequency points, so that terminal devices can use the network device when no CD-SSB frequency points are configured or cell reselection based on CD-SSB frequency points cannot be performed.
  • Cell reselection is performed under the instruction of the cell, so that the flexibility of cell reselection can be improved, and the communication performance of the terminal device can also be improved.
  • the indication information instructs the terminal device to use the first NCD-SSB frequency when measuring the second cell, specifically including: the indication information indicates that the first NCD-SSB frequency can be used for neighboring cell measurement.
  • the terminal device can measure neighboring cells based on the first NCD-SSB frequency point, and the terminal device does not need to switch BWP for measurement, so the power consumption of the terminal device can be saved.
  • the terminal device can directly receive paging and initiate a random access channel (RACH) on the BWP containing the first NCD-SSB frequency point, instead of performing synchronization and measurement based on the CD-SSB frequency point, and then transfer Go to the BWP containing the first NCD-SSB frequency point to receive paging and RACH, so as to achieve faster access and reduce frequent switching on different BWPs in idle state.
  • RACH random access channel
  • the indication information instructs the terminal device to use the first NCD-SSB frequency point and the CD-SSB frequency point when measuring the second cell, specifically including: the indication information indicates that the adjacent cell is measured according to the CD-SSB frequency point Measurement.
  • the instruction information instructs the terminal device to use the CD-SSB frequency point when measuring the second cell, specifically including: the instruction information indicates that the adjacent cell measurement can only be performed based on the CD-SSB frequency point.
  • This method can improve the accuracy of the measurement results of neighboring cells by performing measurements based on the first NCD-SSB frequency point and CD-SSB frequency point neighboring cells, so that terminal devices can be reselected to neighboring cells with better signal quality.
  • Communication improve the communication performance of terminal equipment.
  • the method further includes: the network device sends fourth information and/or fifth information to the terminal device, the fourth information is used to indicate the power compensation value of the first cell, and the fifth information is used to indicate the power compensation value of the second cell power compensation value.
  • the terminal device can align measurement results based on different frequency points, thereby improving the accuracy of cell reselection.
  • the present application further provides a communication device, where the communication device has a function of implementing any one of the methods provided in the first aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the network device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device has the function of implementing the method provided in the first aspect above, and the processor is configured to measure the first cell based on the first NCD-SSB frequency point; and, based on the first NCD-SSB frequency point and/or Or measure the second cell at the CD-SSB frequency point; and perform cell reselection according to the measurement results of the first cell and the measurement results of the second cell.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method step.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit (or a processing module) and a communication unit (or a communication module), these units can perform the corresponding functions in the above method example, specifically refer to the first aspect or the third aspect or The description in the method provided by the fourth aspect or the fifth aspect will not be repeated here.
  • the communication device has the function of implementing the method provided in the first aspect above, and the processing unit is configured to measure the first cell based on the first NCD-SSB frequency point; and, based on the first NCD-SSB frequency point and/or Or measure the second cell at the CD-SSB frequency point; and perform cell reselection according to the measurement result of the first cell and the measurement result of the second cell.
  • the present application further provides a communication device, where the communication device has a function of implementing any method provided in the second aspect above.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the network device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and devices such as terminal equipment.
  • the communication device has the function of implementing the method provided in the second aspect above, and the processor is configured to determine indication information according to the configuration of the NCD-SSB frequency point of the second cell, and the indication information is used to instruct the terminal device to perform The first NCD-SSB frequency point and/or CD-SSB frequency point is used for measurement, and the terminal equipment resides in the first cell in an idle state or an inactive state; a transceiver is configured to send The instructions.
  • the structure of the communication device includes a processing unit (or processing module) and a communication unit (or communication module), and these units can perform the corresponding functions in the above method examples.
  • a processing unit or processing module
  • a communication unit or communication module
  • the communication device has the function of implementing the method provided in the second aspect above, and the processing unit is configured to indicate information according to the configuration indication information of the NCD-SSB frequency point of the second cell, and the indication information is used to instruct the terminal device to configure the second cell
  • the first NCD-SSB frequency point and/or CD-SSB frequency point is used for measurement, and the terminal device resides in the first cell in an idle state or an inactive state; a communication unit is configured to send the terminal device the Instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements any method provided in the first aspect above through a logic circuit or by executing code instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in the aforementioned second aspect and any possible design through a logic circuit or executing code instructions.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed by a processor, the foregoing first aspect to the second aspect are implemented. method in any aspect and in any possible design.
  • a computer program product storing instructions, and when the instructions are executed by a processor, the method in any one of the aforementioned first to second aspects and any possible design is implemented.
  • a chip system in a ninth aspect, includes a processor, and may further include a memory, for implementing the method in the aforementioned first aspect and any possible design.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a chip system includes a processor and may further include a memory, for implementing the method in the aforementioned second aspect and any possible design.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system in an eleventh aspect, includes the device described in the first aspect and the device described in the second aspect.
  • FIG. 1 is a schematic diagram of a co-frequency neighboring cell provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an inter-frequency neighboring cell provided by an embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of a cell reselection provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a cell-specific bandwidth provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic flow diagram of a method for intra-frequency cell reselection provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an intra-frequency cell reselection process provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for inter-frequency cell reselection provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an inter-frequency cell reselection process provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Terminal equipment which can be a device with a wireless transceiver function or a chip that can be installed in any device, and can also be called user equipment (user equipment, UE), access terminal, subscriber unit, user station, mobile station, Mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, an XR device (such as a VR device, an AR device, an MR device, etc.), an industrial control (industrial control) Wireless terminals in self driving, wireless terminals in video surveillance, and wearable terminal devices.
  • the terminal device may also be eMBB UE, URLLC UE, unmanned aerial vehicle, other Internet of things (internet of things, IoT) device, positioning device, terminal device with reduced capability as described in the terminology introduction 1) above, etc.
  • a network device may be a device used to realize the functions of an access network device, and an access network device may refer to a device in an access network that communicates with wireless terminal devices through one or more cells through an air interface, for example, it may be a device in an NR system
  • the next generation base station (next Generation node B, gNB) can be an evolved base station (evolutional node B, eNB) in a long term evolution (long term evolution, LTE) system, etc.
  • the network device may also be a device capable of supporting the network device to realize the function of the access network device, such as a chip system, and the device may be installed in the network device.
  • REDCAP UE Reduced capability terminal equipment
  • 3GPP Rel-17 And REDCAP UE defined by 3GPP Rel-18 specifically, can have at least one of the following characteristics:
  • FR 1 frequency range 1
  • FR 2 maximum bandwidth during and/or after the initial access of FR 2
  • REDCAP terminal equipment defined in 3GPP Rel-18 is 5MHz.
  • the minimum number of supported receive antenna (Rx) branches is 1.
  • the protocol version is NR Rel-17 or above.
  • DL downlink
  • MIMO multiple-in multiple-out
  • a terminal device with reduced capabilities can be understood as a terminal device with reduced capabilities relative to a traditional terminal device (legacy UE), and the capabilities include but are not limited to the characteristics of the above five aspects, where the legacy terminal device can be, for example, an enhanced mobile broadband (enhanced Mobile Broadband, eMBB) terminal equipment or ultra-reliable low-latency communication (ultra-reliable low-latency communication, URLLC) terminal equipment.
  • eMBB enhanced Mobile Broadband
  • URLLC ultra-reliable low-latency communication
  • the S criterion means that the reference signal received power (reference signal received power, RSRP) related measurement value (hereinafter referred to as the Srxlev value) of the cell where the terminal device chooses to camp should be greater than 0, and the reference signal received quality (reference signal received quality, RSRQ) related measurement value (hereinafter referred to as Squal value) should be greater than 0, that is, the terminal device selects a cell with a Srxlev value greater than 0 and a Squal value greater than 0 to camp on.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • Qrxlevmeas is the receiving level value measured in the cell
  • Qrxlevmin is the minimum receiving level value
  • Qrxlevminoffset is the minimum receiving level value offset
  • Pcompensation is equal to MAX(PEMAX-PUMAX, 0)
  • PEMAX is the terminal equipment configuration
  • the maximum available uplink transmission power, PUMAX is the maximum transmission power of the terminal equipment, which is determined by the capability level of the terminal equipment itself.
  • Qoffsettemp is the temporary power offset.
  • Qqualmeas is the cell signal quality value measured in the cell.
  • Qqualmin is the minimum signal quality value.
  • Qqualminoffset is the minimum signal quality value offset.
  • Qoffsettemp is the temporary power offset.
  • Cell reselection refers to the process in which a terminal device selects the best cell to provide service signals by monitoring the signal quality of neighboring cells and the cell it is currently camping on (hereinafter referred to as the serving cell) when it is in an idle state.
  • the adjacent cells may include same-frequency adjacent cells, different-frequency adjacent cells, and of course other types of adjacent cells, which will not be listed here.
  • the same-frequency neighboring cell is a neighboring cell with the same frequency as the center of the serving cell, as shown in Figure 1
  • the inter-frequency neighboring cell is a neighboring cell with a different frequency than the center of the serving cell, as shown in Figure 2.
  • the process of performing cell reselection in same-frequency adjacent cells may be referred to as same-frequency cell reselection, and the process of performing cell reselection in inter-frequency adjacent cells may be referred to as inter-frequency cell reselection.
  • the terminal device can reselect and sort the neighboring cells according to the R criterion.
  • the R criterion is used to determine the target cell in the process of cell reselection.
  • the R criterion is: if the R value of the neighboring cell exceeds the R value of the serving cell within the detection time, the neighboring cell can be used as a candidate cell for cell reselection.
  • the process of cell reselection may include:
  • the terminal device performs signal measurement on neighboring cells according to the measurement start standard.
  • the measurement start standard can be: when the signal of the serving cell satisfies Srxlev>SIntraSearchP and Squal>SIntraSearchQ, the terminal device does not need to perform signal measurement on the same-frequency adjacent cell, otherwise perform the same-frequency adjacent cell signal measurement.
  • SIntraSearchP and SIntraSearchQ are the threshold values for starting the signal measurement of the same frequency cell, which may be broadcast by the network device through the system message.
  • the network device can set priorities for each frequency point. For neighboring cells with high-priority frequency points, where the frequency priority of the high-priority frequency point neighboring cells is higher than that of the serving cell, the terminal device can always perform signal measurement on these neighboring cells.
  • the frequency priority of the frequency point adjacent cells with the same priority frequency point is equal to the priority of the frequency point of the serving cell, and the frequency point priority of the low priority frequency point adjacent cell
  • the priority of the frequency point is lower than that of the frequency point of the serving cell
  • the measurement start standard can be: when the signal of the serving cell satisfies Srxlev>SnonIntraSearchP and Squal>SnonIntraSearchQ, the terminal device does not need to perform signal measurement on these inter-frequency neighboring cells, Otherwise, signal measurement on inter-frequency adjacent cells can be performed.
  • SnonIntraSearchP and SnonIntraSearchQ are threshold values for starting inter-frequency neighboring cell signal measurement, and may be broadcast by network devices through system messages.
  • the Srxlev and Squal of the serving cell can refer to the relevant description in the above-mentioned terminology introduction 3), which will not be repeated here.
  • the terminal device determines the target cell according to the measurement result of the neighboring cell.
  • the terminal device can sort the R values of the candidate neighboring cells satisfying the R criterion, and the terminal device can select the cell with the highest R value as the target cell.
  • the terminal device can use the neighbor cell with the highest frequency priority among the candidate neighbor cells meeting the following conditions as the target cell: the Srxlev and Squal of the neighbor cells both satisfy The corresponding threshold value, and the duration is greater than the preset duration, the threshold value is the threshold value used for reselection of high-priority frequency point neighbor cell of the neighboring cell.
  • the terminal device can select the target cell among the same priority frequency point neighbor cells, and the terminal device can sort the R values of the candidate neighbor cells that meet the R criterion, and the terminal The device can select the cell with the highest R value as the target cell.
  • the terminal device can select the target cell from the low-priority frequency neighbor cell.
  • the threshold value is the threshold value of the serving cell for low-priority frequency neighbor cell reselection
  • the neighbor The Srxlev and Squal of the cell are both larger than the corresponding threshold value, which is the threshold value of the neighboring cell used for reselection of the low-priority frequency point neighboring cell, and the duration is longer than the preset duration.
  • a CD-SSB refers to an SSB associated with a system information block (SIB) 1 .
  • the CD-SSB is an SSB capable of configuring necessary information of a cell (such as control-resource set (CORESET) #0 and/or SIB1).
  • CORESET#0 can be used for terminal equipment to parse SIB1
  • SIB1 is an SIB for providing cell characteristic information, for example, SIB1 includes system information of non-access (non-access, NAS) layer.
  • the frequency point of CD-SSB mentioned in this application refers to the frequency point of CD-SSB, that is, the frequency position corresponding to CD-SSB.
  • NCD-SSB refers to SSB not associated with SIB1, for example, NCD-SSB lacks complete information for configuring cells information, e.g. NCD-SSB only includes SSB, or the required fields of SIB1 are missing.
  • NCD-SSB frequency point mentioned in this application refers to the frequency point of NCD-SSB, that is, the frequency position corresponding to NCD-SSB.
  • system and “network” in the embodiments of the present application may be used interchangeably, and "frequency point” and “frequency” may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first information and the second information are only for distinguishing different information, but do not indicate the difference in content, priority or importance of the two information.
  • a terminal device in idle state can perform cell reselection based on SSB.
  • the terminal device when it performs cell reselection based on the SSB, it is based on the CD-SSB frequency point.
  • the CD-SSB may not exist on the initial BWP of the terminal device, which causes the terminal device to fail to perform cell reselection normally, resulting in communication interruption or poor communication quality.
  • it is supported to set a part of the bandwidth (bandwidth part, BWP) dedicated to RedCap UE at the edge of the carrier.
  • BWP bandwidth part
  • the BWP dedicated to RedCap UE includes but not limited to the initial (initial) BWP dedicated to RedCap UE.
  • the dedicated BWP of the RedCap UE may include an initial uplink (UL) BWP and an initial downlink (DL) BWP, wherein the center frequency of the initial uplink BWP is the same as that of the initial downlink BWP, and considering the current The time division duplexing (time division duplexing, TDD) UE has only one phase-locked loop, therefore, the dedicated BWP of the current RedCap UE may not be configured with a CD-SSB frequency point.
  • TDD time division duplexing
  • cell 1 includes BWP#0, BWP#2 and BWP#3, where BWP#0 contains CD-SSB, and BWP#2 contains neither CD-SSB nor NCD-SSB , BWP#3 contains NCD-SSB and does not contain CD-SSB.
  • BWP#0 contains CD-SSB
  • BWP#2 contains neither CD-SSB nor NCD-SSB
  • BWP#3 contains NCD-SSB and does not contain CD-SSB.
  • embodiments of the present application provide a communication method and device, which are used to improve communication performance of a terminal device.
  • the method and the device are based on the same idea, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the communication method provided by this application can be applied to various communication systems, for example, it can be Internet of Things (Internet of Things, IoT), Narrow Band Internet of Things (NB-IoT), LTE, or it can be the first
  • the fifth-generation (5G) communication system can also be a hybrid architecture of LTE and 5G, or a 5G new radio (new radio, NR) system, 6G or new communication systems emerging in future communication development.
  • Fig. 5 shows the architecture of a communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the architecture can include network equipment and terminal equipment.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the method provided in this application can be applied to a terminal device, and the terminal device resides in the first cell in an idle state or an inactive state.
  • the same-frequency cell reselection method and the different-frequency cell reselection method of the terminal device will be described respectively.
  • FIG. 6 it is a schematic flowchart of a method for intra-frequency cell reselection provided by the present application.
  • the method includes:
  • the terminal device measures the first cell based on the first NCD-SSB frequency point.
  • the terminal device measures the first cell
  • the first cell may be measured in other ways.
  • the terminal device may also measure the first cell based on the CD-SSB frequency point to obtain the second measurement result.
  • the terminal device may measure the first cell based on the first NCD-SSB frequency point and based on the CD-SSB frequency point. The terminal device determines the measurement result of the first cell according to the first measurement result and the second measurement result.
  • the implementation method of measuring the first cell based on the first NCD-SSB frequency point can be called method 1.1, and the implementation method of measuring the first cell based on the CD-SSB frequency point can be called method 1.1.
  • the implementation mode of measuring the first cell based on the first NCD-SSB frequency point and the CD-SSB frequency point is called mode 1.3.
  • a possible implementation of mode 1.3 is that the terminal device can combine the first measurement result obtained by measuring the first cell based on the first NCD-SSB frequency point and the first measurement result obtained by measuring the first cell based on the CD-SSB frequency point The average value of the second measurement results is used as the measurement result of the first cell.
  • mode 1.3 Another possible implementation of mode 1.3 is that the terminal device can combine the first measurement result obtained by measuring the first cell based on the first NCD-SSB frequency point and the first measurement result obtained by measuring the first cell based on the CD-SSB frequency point The weighted sum of the second measurement results of is used as the measurement result of the first cell.
  • the terminal device may determine that the measurement result of the first cell satisfies the threshold corresponding to the first NCD-SSB frequency, where the threshold corresponding to the first NCD-SSB frequency is the network device configured, or, the threshold value corresponding to the first NCD-SSB frequency point is determined according to the threshold value corresponding to the CD-SSB frequency point and the power compensation value of the first cell.
  • the terminal device may perform the following step S602 when determining that the measurement result of the first cell satisfies the following formula:
  • SIntraSearchP NCD-SSB and SIntraSearchQ NCD-SSB are configured by network devices. For example, network devices can broadcast the first The threshold values SIntraSearchP NCD-SSB and SIntraSearchQ NCD-SSB corresponding to the NCD-SSB for starting the same-frequency cell signal measurement.
  • the terminal device may perform the following step S602 when determining that the measurement result of the first cell satisfies the following formula:
  • SIntraSearchP CD-SSB and SIntraSearchQ CD-SSB are threshold values corresponding to CD-SSB for starting co-frequency cell signal measurement, wherein, SIntraSearchP CD -SSB and SIntraSearchQ CD-SSB are configured for network devices.
  • network devices can broadcast CD-SSB corresponding threshold values SIntraSearchP CD-SSB and SIntraSearchQ CD-SSB for starting same-frequency cell signal measurement through SIB1 and other system messages.
  • offset is the power compensation value of the first cell.
  • offset may include a power compensation value corresponding to RSRP and/or a power compensation value corresponding to RSRQ.
  • the power offset value corresponding to RSRP and the power offset value corresponding to RSRQ may be The same power offset value may also be different power offset values, which are not specifically limited here.
  • the terminal device measures the second cell.
  • the terminal device can measure one or more neighboring cells, and the second cell is any cell in the one or more neighboring cells.
  • This embodiment of the application uses the second cell as an example to introduce how the terminal device measures The measurement method of the cell, and the measurement method of other adjacent cells can refer to the measurement method of the second cell.
  • the terminal device may measure the second cell in any of the following three ways:
  • the terminal device may measure the second cell based on the first NCD-SSB frequency point. In this manner, the terminal device can measure neighboring cells based on the first NCD-SSB frequency point, and the terminal device does not need to switch BWP for measurement, so the power consumption of the terminal device can be saved. For example, the terminal device can receive paging and initiate RACH directly on the BWP containing the first NCD-SSB frequency, instead of performing synchronization and measurement based on the CD-SSB frequency, and then transfer to the BWP containing the first NCD-SSB frequency The BWP receives paging and RACH, so as to achieve faster access and reduce frequent switching between different BWPs in the idle state.
  • the terminal device may also measure the second cell based on the CD-SSB frequency point. In this way, it is possible to measure the neighboring cells that are not configured with the first NCD-SSB frequency point, so that the accuracy of the measurement results of the neighboring cells can be improved, so that the terminal device can reselect to a neighboring cell with better signal quality for communication. Improve the communication performance of terminal equipment.
  • the terminal device may measure the second cell based on the first NCD-SSB frequency point and the CD-SSB frequency point.
  • This method can improve the accuracy of the measurement results of neighboring cells by performing measurements based on the first NCD-SSB frequency point and CD-SSB frequency point neighboring cells, so that terminal devices can be reselected to neighboring cells with better signal quality.
  • Communication improve the communication performance of terminal equipment.
  • the terminal device may measure the second cell based on the first NCD-SSB frequency to obtain a third measurement result, and perform measurement on the second cell based on the CD-SSB frequency to obtain a fourth measurement result.
  • the terminal device determines the measurement result of the second cell according to the third measurement result and the fourth measurement result.
  • the average value of the third measurement result and the fourth measurement result may be used as the measurement result of the second cell.
  • the weighted sum of the third measurement result and the fourth measurement result may be used as the measurement result of the first cell.
  • the terminal device may measure multiple neighboring cells including the second cell based on the first NCD-SSB frequency point. According to the measurement results of the multiple neighboring cells, the terminal device determines that the multiple neighboring cells cannot be used as the target cell for reselection, or the frequency point does not detect the adjacent cell, then the multiple neighboring cells are measured based on the CD-SSB frequency point .
  • the terminal device may measure at least one first neighboring cell based on the first NCD-SSB frequency, and measure at least one second neighboring cell based on the CD-SSB frequency.
  • the second cell may belong to the above-mentioned first neighboring cell, or may belong to the above-mentioned second neighboring cell.
  • the terminal device may also determine, under the instruction of the network device, to measure the second cell by using the above-mentioned method 2.1 or the above-mentioned method 2.2 or the above-mentioned method 2.3.
  • the network device may measure the second cell according to the The configuration of the NCD-SSB frequency point determines the frequency point used by the terminal device to measure the second cell.
  • the network device sends the first information to the terminal device.
  • the first information is used to indicate that the first NCD-SSB frequency point can be used for neighbor cell measurement, or, the first information indicates that neighbor cell measurement is performed based on the first NCD-SSB frequency point, or, the first information indicates that the first NCD-SSB frequency point is used for neighbor cell measurement. Neighboring cells on the SSB frequency are sufficient for cell reselection, or the first information indicates that neighbor cell measurement can be performed only based on the first NCD-SSB frequency.
  • the terminal device may measure the second cell in the manner 2.1 above according to the first information.
  • the network device sends second information to the terminal device, and the second information indicates that the adjacent cell is measured according to the CD-SSB frequency point, or the second information indicates that the adjacent cell is measured in combination with the CD-SSB frequency point, or, the first The second information indicates that the first NCD-SSB and CD-SSB frequency points are used when performing adjacent cell measurement, or the second information indicates that CD-SSB can be used for adjacent cell measurement, or that only CD-SSB is used for adjacent cell measurement.
  • the terminal device may measure the second cell in the manner 2.3 above according to the second information.
  • the network device sends third information to the terminal device, where the third information is used to indicate that neighbor cell measurement can only be performed based on the CD-SSB frequency point.
  • the terminal device may measure the second cell in the manner 2.2 above according to the third information.
  • "neighboring cell measurement can only be performed based on the CD-SSB frequency point" can be understood as that the neighboring cell can only be measured based on the CD-SSB frequency point when measuring the neighboring cell.
  • the terminal device may also autonomously determine the manner of neighboring cell measurement. For example, the terminal device can measure multiple neighboring cells including the second cell based on the first NCD-SSB frequency point. The point measures the multiple neighbors.
  • the terminal device performs cell reselection according to the measurement result of the first cell and the measurement result of the second cell.
  • the terminal device may determine the R value of the first cell according to the measurement result of the first cell, and determine the R value of the second cell according to the measurement result of the second cell.
  • the terminal device performs cell reselection according to the R value of the first cell and the R value of the second cell.
  • the power compensation value of the first cell may be broadcast by the network device, for example, the network device may compare the power of the reference signal at the first NCD-SSB frequency point in the first cell with the power at the CD-SSB frequency point When the powers of the reference signals above are inconsistent, the power compensation value of the first cell is broadcast.
  • the above method can reduce the impact of different transmit power on cell reselection through the power compensation value. For example, suppose the transmit power of the reference signal of the first cell at the first NCD-SSB frequency point is higher than that of the reference signal at the CD-SSB frequency point. The transmission power of the reference signal is different, so the measurement results of the first cell determined by the terminal device based on the first NCD-SSB frequency point and the CD-SSB frequency point are different, so the obtained cell reselection results may be different.
  • the above method uses the power compensation value Measurement results based on different frequency points can be aligned, thereby improving the accuracy of cell reselection.
  • the terminal device determines the R value of the second cell, it may be determined according to the measurement result of the second cell and the power compensation value of the second cell.
  • Rn Qmeas,n-Qoffset ⁇ Qoffsettemp+offset2, wherein, the meanings of Rn, Qmeas,n, Qoffset, and Qoffsettemp can refer to the relevant descriptions in the previous terminology introduction 4), and offset2 is the corresponding power offset value of the second cell.
  • the power compensation value of the second cell may be broadcast by the network device.
  • the network device may use the second cell in the first When the power of the reference signal on the NCD-SSB frequency point is inconsistent with the power of the reference signal on the CD-SSB frequency point, broadcast the power compensation value of the second cell.
  • the measurement results based on different frequency points can be aligned through the power compensation value, thereby reducing the impact of different transmission powers on cell reselection and improving the accuracy of cell reselection.
  • the terminal device may reside on other frequency points of the second cell, such as the CD-SSB frequency point.
  • the above design can align the measurement results based on different frequency points through the power compensation value. The accuracy of cell reselection can be improved.
  • the network device may configure at least one NCD-SSB frequency point in the system message.
  • the network device may indicate the cell corresponding to the NCD-SSB frequency in a display or implicit manner.
  • the network device may indicate the cell corresponding to the NCD-SSB frequency through the CD-SSB frequency associated with the NCD-SSB frequency.
  • the network device may indicate the association relationship between the NCD-SSB frequency point and the CD-SSB frequency point in a display or implicit manner.
  • the network device can indicate the CD-SSB frequency point associated with the NCD-SSB frequency point through the sequence number of the frequency point.
  • the second NCD-SSB frequency point is the sequence number in the NCD-SSB frequency point list.
  • Two NCD-SSB frequency points are associated with the CD-SSB frequency point with the sequence number 3 in the CD-SSB frequency point list.
  • the network device may broadcast an NCD-SSB frequency point list, where the NCD-SSB frequency point list includes at least one NCD-SSB frequency point, and a physical cell identity ( physical cell identifier, PCI).
  • the NCD-SSB frequency points associated with the same PCI belong to the same cell.
  • the network device may broadcast a neighbor list, where the neighbor list includes at least one neighbor, and optionally includes the NCD-SSB frequency point and/or CD-SSB frequency point corresponding to each neighbor cell , that is, the configuration of each neighboring cell includes the corresponding NCD-SSB frequency point and/or CD-SSB frequency point.
  • the network device may not indicate the CD-SSB frequency point of the neighboring cell.
  • the terminal device measures the first cell.
  • the terminal device determines to start intra-frequency cell reselection according to the signal quality of the first cell.
  • the terminal device can determine to start the same-frequency cell reselection when the signal quality of the first cell satisfies the following formula : Srxlev CD-SSB ⁇ SIntraSearchP CD-SSB and Squal CD-SSB ⁇ SIntraSearchQ CD-SSB .
  • the Srxlev CD-SSB and Squal CD-SSB are determined according to the measurement results of the first cell based on the CD-SSB frequency point.
  • SIntraSearchP CD-SSB and SIntraSearchQ CD-SSB are the threshold values corresponding to the CD-SSB frequency points for starting the same-frequency cell signal measurement, which may be broadcast by network devices through system messages.
  • the terminal device can determine to start the same frequency when the signal quality of the first cell satisfies the following formula Cell reselection: Srxlev NCD-SSB ⁇ SIntraSearchP NCD-SSB , and Squal NCD-SSB ⁇ SIntraSearchQ NCD-SSB .
  • SIntraSearchP NCD-SSB and SIntraSearchQ NCD-SSB are the threshold values corresponding to the first NCD-SSB frequency point for starting the same-frequency cell signal measurement, which may be broadcast by the network device through the system message.
  • the terminal device may determine to start same-frequency cell reselection when the signal quality of the first cell satisfies the following formula: Srxlev NCD-SSB +offset1 ⁇ SIntraSearchP CD-SSB , and, Squal NCD-SSB +offset1 ⁇ SIntraSearchQ CD-SSB , Alternatively, Srxlev NCD-SSB ⁇ SIntraSearchP CD-SSB -offset1, and Squal NCD-SSB ⁇ SIntraSearchQ CD-SSB -offset1.
  • the Srxlev NCD-SSB and Squal NCD-SSB are determined based on the measurement results of the first NCD-SSB frequency point in the first cell. For details, please refer to the determination method of Srxlev and Squal in the terminology introduction 3) above, and will not be repeated here.
  • the signal quality of the terminal device in the first cell can satisfy the following The same-frequency cell reselection is determined by the formula: (Srxlev CD-SSB +Srxlev NCD-SSB +offset1)/2 ⁇ SIntraSearchP CD-SSB , and, (Squal CD-SSB +Squal NCD-SSB +offset1)/2 ⁇ SIntraSearchQ CD-SSB .
  • the network device may send the power compensation of the first cell when the transmission power of the reference signal of the first cell at the first NCD-SSB frequency is inconsistent with the transmission power of the reference signal at the CD-SSB frequency. value.
  • the terminal device measures one or more neighboring cells.
  • the one or more neighboring cells include the aforementioned second cell.
  • the terminal device determines the R value of the one or more neighboring cells and the R value of the first cell.
  • the terminal device can measure the second cell based on the first NCD-SSB - The measurement result of the SSB frequency point and the power compensation value of the second cell determine the R value of the second cell.
  • the terminal device may use the measurement result of the second cell based on the first NCD-SSB frequency point and the power compensation value of the first cell Determine the R value for the first cell.
  • the terminal device sorts the R values of the neighboring cells satisfying the R criterion.
  • the terminal device performs cell reselection according to the ranking result.
  • the embodiment of the present application provides a measurement method based on NCD-SSB frequency points, so that when the terminal device performs cell reselection in the same-frequency adjacent cell, it can be configured without CD-SSB frequency points or based on CD-SSB frequency points.
  • cell reselection based on the NCD-SSB frequency point can avoid the problem of poor communication performance of the terminal device due to the inability to perform cell reselection. Therefore, the method provided by the embodiment of the present application can improve the cell The flexibility of reselection can also improve the communication performance of terminal equipment.
  • the terminal device can measure the same-frequency neighboring cells based on the NCD-SSB frequency point, and the terminal device does not need to switch BWP for measurement, so the power consumption of the terminal device can be saved.
  • the terminal device can directly receive paging and initiate RACH on the BWP containing the NCD-SSB frequency, instead of performing synchronization and measurement based on the CD-SSB frequency, and then transfer to the BWP containing the first NCD-SSB frequency.
  • BWP receives paging and RACH, so as to achieve faster access, and reduce frequent switching between different BWPs in idle state.
  • the impact of different transmit power on cell reselection can be reduced by using the power compensation value.
  • the cell reselection method for adjacent cells with the same priority frequency point, the cell reselection method is similar to the same-frequency cell reselection method described in Figure 6 and Figure 7 above, the difference is that the same-frequency cell reselection method starts the same-frequency
  • the terminal device uses the threshold value for starting the signal measurement of the same frequency cell, while in the method of inter-frequency cell reselection, the terminal device adopts the threshold value for starting the signal measurement of the inter-frequency cell value.
  • the method of cell reselection can refer to the previous term introduction 4) in S302, in the process of inter-frequency cell reselection, for high-priority frequency point neighbor cells
  • the method of cell reselection in the district for the method of cell reselection for low-priority frequency point neighboring cells, refer to the method for cell reselection for low-priority frequency point neighboring cells in the process of inter-frequency cell reselection in S302 of Terminology Introduction 4).
  • the inter-frequency cell reselection method includes:
  • the terminal device measures the first cell based on the first NCD-SSB frequency point.
  • the terminal device may determine that the measurement result of the first cell satisfies the threshold corresponding to the first NCD-SSB frequency, where the threshold corresponding to the first NCD-SSB frequency is the network device configured, or, the threshold value corresponding to the first NCD-SSB frequency point is determined according to the threshold value corresponding to the CD-SSB frequency point and the power compensation value of the first cell.
  • the threshold corresponding to the first NCD-SSB frequency in S801 may be different from the threshold corresponding to the first NCD-SSB frequency in S601 above.
  • the threshold corresponding to the first NCD-SSB frequency in S601 above is The threshold for reselection, the threshold corresponding to the first NCD-SSB frequency point in S801 is the threshold for starting inter-frequency cell reselection.
  • the terminal device determines that the measurement result of the first cell satisfies the threshold corresponding to the first NCD-SSB frequency point.
  • the terminal device measures the third cell.
  • the terminal device can measure one or more neighboring cells, and the third cell is any cell in the one or more neighboring cells.
  • This embodiment of the application uses the third cell as an example to introduce how the terminal device measures The measurement method of the cell, and the measurement method of other adjacent cells can refer to the measurement method of the third cell.
  • S802 is similar to the above S602, the difference is that the terminal device in the above S602 uses the first NCD-SSB frequency point when measuring the second cell based on the NCD-SSB frequency point, while the terminal device in S802 uses the first NCD-SSB frequency point based on the NCD-SSB frequency point.
  • the second NCD-SSB frequency point is used.
  • S802 please refer to the relevant description of S602, and repeated descriptions will not be repeated.
  • S802 may also be implemented in the following manner: the terminal device may use the CD-SSB frequency point by default to measure the third cell.
  • the terminal device performs cell reselection according to the measurement result of the first cell and the measurement result of the third cell.
  • S803 is similar to the above S603, for details, please refer to the relevant description of S603, which will not be repeated here.
  • the terminal device may fall back to camping on the CD-SSB frequency point, and perform cell reselection based on the CD-SSB frequency point.
  • the first threshold may be a threshold for starting inter-frequency cell reselection, or the first threshold is different from the threshold for starting inter-frequency cell reselection.
  • the power compensation value of the first cell may be broadcast by the network device, for example, the network device may compare the power of the reference signal at the first NCD-SSB frequency point in the first cell with the power at the CD-SSB frequency point reference signal on When the power of the cell is inconsistent, the power compensation value of the first cell is broadcast.
  • the power compensation value of the third cell may be broadcast by the network device, for example, the network device may compare the power of the reference signal at the first NCD-SSB frequency point in the third cell with that at the CD-SSB frequency point When the powers of the reference signals above are inconsistent, the power compensation value of the third cell is broadcast.
  • the network device may configure at least one NCD-SSB frequency point in the system message.
  • the network device may indicate the cell corresponding to the NCD-SSB frequency in a display or implicit manner.
  • indication methods please refer to the related description of configuring at least one NCD-SSB frequency point in the same-frequency cell reselection above, and the description will not be repeated here.
  • the terminal device measures the first cell.
  • the terminal device determines to start inter-frequency cell reselection.
  • the terminal device can always perform signal measurement on these neighboring cells.
  • the determination to start inter-frequency cell reselection can refer to the relevant description of S702 above.
  • S702 uses the threshold for determining the start of same-frequency cell reselection. What is adopted in is the threshold value for starting inter-frequency cell signal measurement.
  • the network device may send the power compensation of the first cell when the transmission power of the reference signal of the first cell at the first NCD-SSB frequency is inconsistent with the transmission power of the reference signal at the CD-SSB frequency. value.
  • the terminal device measures one or more neighboring cells.
  • the one or more neighboring cells include the aforementioned third cell.
  • the terminal device performs cell reselection based on the measurement results of the one or more neighboring cells.
  • the terminal device can select the neighbor cell with the highest frequency priority among the candidate neighbor cells that meets the following conditions as the target cell: the Srxlev and Squal of the neighbor cells both meet the corresponding thresholds, and the duration greater than the preset duration, the threshold value is the threshold value used for reselection of high-priority frequency point neighbor cells of neighboring cells.
  • the Srxlev and Squal of the neighboring cell may be determined based on the measurement result of the neighboring cell and the power compensation value of the neighboring cell.
  • the meanings of Qrxlevmeas, Qrxlevmin, Qrxlevminoffset, Pcompensation, and Qoffsettemp can refer to the relevant descriptions in the preceding terminology introduction 3)
  • offset3 is the power compensation value corresponding to the neighboring cell.
  • the meanings of Qqualmeas, Qqualmin, Qqualminoffset, and Qoffsettemp can refer to the relevant descriptions in the previous terminology introduction 3).
  • the terminal device can select the target cell among the same priority frequency point neighbor cells. Repeat the instructions again.
  • the terminal device can select the target cell from the low-priority frequency neighbor cell.
  • the threshold value is the threshold value for the low-priority frequency point neighboring cell reselection of the first cell
  • the Srxlev and Squal of the neighboring cell are both greater than the corresponding threshold value, which is the threshold value of the neighboring cell for reselection of the low-priority frequency point neighbor cell, and the duration is longer than the preset duration.
  • the determination method of the Srxlev and Squal of the first cell and the Srxlev and Squal of the neighboring cell please refer to the determination method of the Srxlev and Squal of the high-priority frequency point neighboring cell above.
  • the embodiment of the present application provides a measurement method based on NCD-SSB frequency points, so that when terminal equipment performs cell reselection in different-frequency adjacent cells, it can be configured without CD-SSB frequency points or based on CD-SSB frequency points.
  • cell reselection based on the NCD-SSB frequency point can avoid the problem of poor communication performance of the terminal device due to the inability to perform cell reselection. Therefore, the method provided by the embodiment of the present application can improve the cell The flexibility of reselection can also improve the communication performance of terminal equipment.
  • the terminal device can measure inter-frequency neighboring cells based on the NCD-SSB frequency point, and the terminal device does not need to switch BWP for measurement, so the power consumption of the terminal device can be saved.
  • the terminal device can directly receive paging and initiate RACH on the BWP containing the NCD-SSB frequency, instead of performing synchronization and measurement based on the CD-SSB frequency, and then transfer to the BWP containing the first NCD-SSB frequency.
  • BWP receives paging and RACH, so as to achieve faster access, and reduce frequent switching between different BWPs in idle state.
  • the impact of different transmit power on cell reselection can be reduced by using the power compensation value.
  • this embodiment of the present application provides a communication device.
  • the structure of the communication device may be as shown in FIG. 10 , including a processing module 1002 and a communication module 1001 .
  • the communication device can be specifically used to implement the method performed by the terminal device in the embodiments shown in Figures 6-9, and the device can be the terminal device itself, or a chip or chipset or chip in the terminal device Part of the method used to perform the function of the associated method.
  • the processing module 1002 is configured to measure the first cell based on the first NCD-SSB frequency; and measure the second cell based on the first NCD-SSB frequency and/or CD-SSB frequency; and, Cell reselection is performed according to the measurement results of the first cell and the measurement results of the second cell.
  • the optional communication module 1001 is configured to receive first information from a network device, where the first information is used to indicate that the first NCD-SSB frequency point can be used for neighbor cell measurement.
  • the processing module 1002, when measuring the first cell based on the first NCD-SSB frequency, is specifically configured to: measure the second cell based on the first NCD-SSB frequency according to the first information from the network device.
  • the processing module 1002 when measuring the second cell based on the first NCD-SSB frequency and/or the CD-SSB frequency, is specifically configured to: measure the second cell based on the first NCD-SSB frequency Measurement: according to the measurement result of the second cell, it is determined that the second cell cannot be used as a target cell for reselection; and the second cell is measured based on the CD-SSB frequency point.
  • the communication module 1001 is further configured to: receive second information from the network device, where the second information is used to indicate to measure neighboring cells according to CD-SSB frequency points.
  • the communication module 1001 is configured to receive third information from a network device, where the third information is used to indicate that neighbor cell measurement can only be performed based on the CD-SSB frequency point.
  • the processing module 1002, when measuring the second cell based on the CD-SSB frequency, is specifically configured to: measure the second cell based on the CD-SSB frequency according to the third information from the network device.
  • the processing module 1002 is further configured to: before measuring the second cell based on the first NCD-SSB frequency point and/or CD-SSB frequency point, determine that the measurement result of the first cell satisfies the first NCD-SSB frequency point
  • the threshold corresponding to the frequency point its Among them, the threshold corresponding to the first NCD-SSB frequency is configured by the network device, or the threshold corresponding to the first NCD-SSB frequency is determined according to the threshold corresponding to the CD-SSB frequency and the power compensation value of the first cell .
  • the processing module 1002 when performing cell reselection according to the measurement results of the first cell and the measurement results of the second cell, is specifically configured to: determine the R value of the first cell according to the measurement results of the first cell; The measurement results of the second cell determine the R value of the second cell; perform cell reselection according to the R value of the first cell and the R value of the second cell.
  • the processing module 1002 when determining the R value of the first cell according to the measurement result of the first cell, is specifically configured to: determine the R value of the first cell according to the measurement result of the first cell and the power compensation value of the first cell value.
  • the processing module 1002 when determining the R value of the second cell according to the measurement result of the second cell, is specifically configured to: determine the R value of the second cell according to the measurement result of the second cell and the power compensation value of the second cell value.
  • the communication device can be specifically used to implement the method performed by the network device in the embodiments shown in Fig. 6-Fig. Part of the method used to perform the function of the associated method.
  • the processing module 1002 is configured to determine indication information according to the configuration of the NCD-SSB frequency point of the second cell of the terminal device, and the indication information is used to instruct the terminal device to use the first NCD-SSB frequency when measuring the second cell. point and/or CD-SSB frequency point, the terminal device resides in the first cell in an idle state or an inactive state; the communication module 1001 is configured to send the indication information to the terminal device.
  • the communication module 1001 is further configured to: send fourth information and/or fifth information to the terminal device, the fourth information is used to indicate the power compensation value of the first cell, and the fifth information is used to indicate the power compensation value of the second cell. Power compensation value.
  • each functional module in each embodiment of the present application can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It can be understood that, for the function or implementation of each module in the embodiment of the present application, further reference may be made to the relevant description of the method embodiment.
  • the communication device may be as shown in Figure 11, the device may be a communication device or a chip in a communication device, where the communication device may be the terminal device in the above embodiment or the terminal device in the above embodiment Internet equipment.
  • the device includes a processor 1101 and a communication interface 1102 , and may also include a memory 1103 .
  • the processing module 1002 may be the processor 1101 .
  • the communication module 1001 may be a communication interface 1102 .
  • the processor 1101 may be a CPU, or a digital processing unit or the like.
  • the communication interface 1102 may be a transceiver, or an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the device also includes: a memory 1103 for storing programs executed by the processor 1101 .
  • the memory 1103 can be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., or a volatile memory (volatile memory), such as a random access memory (random -access memory, RAM).
  • the memory 1103 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the processor 1101 is configured to execute the program codes stored in the memory 1103 , and is specifically configured to execute the actions of the processing module 1002 described above, which will not be repeated in this application.
  • the communication interface 1102 is specifically used to execute the actions of the above-mentioned communication module 1001, which will not be repeated in this application.
  • a specific connection medium among the communication interface 1102, the processor 1101, and the memory 1103 is not limited.
  • the memory 1103, the processor 1101, and the communication interface 1102 are connected through the bus 1104.
  • the bus is represented by a thick line in FIG. 11, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For convenience, Only one bold line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which includes a program required to execute the above-mentioned processor.
  • An embodiment of the present application further provides a communication system, including a communication device for realizing the function of the terminal device in the embodiment of FIG. 6 and a communication device for realizing the function of the network device in the embodiment of FIG. 6 .
  • the embodiment of the present application further provides a communication system, including a communication device for realizing the function of the terminal device in the embodiment of FIG. 8 and a communication device for realizing the function of the network device in the embodiment of FIG. 8 .
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用于提高终端设备的通信性能。该方法包括:终端设备在空闲态或者非激活态驻留在第一小区中,终端设备基于第一NCD-SSB频点对第一小区进行测量,以及基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量。终端设备根据第一小区的测量结果以及第二小区的测量结果进行小区重选。通过该方式使得终端设备在没有配置CD-SSB频点或者基于CD-SSB频点无法进行小区重选的情况下,可以基于NCD-SSB频点进行小区重选。该方式可以提升小区重选的灵活性,还可以提升终端设备的通信性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年03月04日提交中国专利局、申请号为202210211027.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,在新无线系统中,空闲状态的终端设备可以基于同步信号块(synchronization signal block,SSB)进行小区重选。终端设备基于SSB进行小区重选时是基于小区定义的同步信号/物理广播信道块(cell defining synchronization signal block,CD-SSB)的。但是终端设备的初始带宽部分(bandwidth part,BWP)上可能不存在CD-SSB,导致终端设备无法正常进行小区重选,进而导致通信中断,或者通信质量差等问题。
因此,如何提升终端设备的通信性能成为亟待解决的技术问题。
发明内容
本申请提供一种通信方法及装置,用于提高终端设备的通信性能。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是终端设备中的芯片或电路。以终端设备为例,该终端设备在空闲态或者非激活态驻留在第一小区中,方法包括:终端设备基于第一NCD-SSB频点对第一小区进行测量,以及基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量。终端设备根据第一小区的测量结果以及第二小区的测量结果进行小区重选。
本申请实施例提供一种基于NCD-SSB频点进行测量的方式,使得终端设备可以在没有配置CD-SSB频点或者基于CD-SSB频点无法进行小区重选的情况下,可以基于NCD-SSB频点进行小区重选,可以避免由于无法进行小区重选导致终端设备的通信性能较差的问题,因此,通过本申请实施例提供的方法可以提升小区重选的灵活性,还可以提升终端设备的通信性能。
一种可能的设计中,终端设备基于第一NCD-SSB频点对第二小区进行测量,包括:终端设备根据来自网络设备的第一信息,基于第一NCD-SSB频点对第二小区进行测量,第一信息用于指示第一NCD-SSB频点可用于邻区测量。上述方式中,终端设备可以在网络设备的指示下进行邻区测量,从而可以提升小区重选的灵活性。
一种可能的设计中,终端设备基于第一NCD-SSB频点和CD-SSB频点对第二小区进行测量,包括:终端设备基于第一NCD-SSB频点对第二小区进行测量;终端设备根据第二小区的测量结果确定第二小区不能作为重选的目标小区;终端设备基于CD-SSB频点对第二小区进行测量。通过上述设计,可以在第一NCD-SSB频点无法进行小区重选的情况 下,可以基于CD-SSB频点进行小区重选,从而可以避免由于无法进行小区重选导致终端设备的通信性能较差的问题。
一种可能的设计中,在终端设备基于第一NCD-SSB频点对第二小区进行测量之前,方法还包括:终端设备接收来自网络设备的第二信息,第二信息用于指示根据CD-SSB频点对邻区进行测量。上述方式中,终端设备可以在网络设备的指示下进行邻区测量,从而可以提升小区重选的灵活性。
一种可能的设计中,终端设备基于CD-SSB频点对第二小区进行测量,包括:终端设备根据来自网络设备的第三信息,基于CD-SSB频点对第二小区进行测量,第三信息用于指示只可基于CD-SSB频点进行邻区测量。上述方式中,终端设备可以在网络设备的指示下进行邻区测量,从而可以提升小区重选的灵活性。
一种可能的设计中,在终端设备基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量之前,方法还包括:终端设备确定第一小区的测量结果满足第一NCD-SSB频点对应的阈值,其中,第一NCD-SSB频点对应的阈值为网络设备配置的,或者,第一NCD-SSB频点对应的阈值为根据CD-SSB频点对应的阈值以及第一小区的功率补偿值确定的。上述设计,通过功率补偿值可以降低发射功率不同对小区重选带来的影响,例如,假设第一小区在第一NCD-SSB频点上的参考信号的发送功率比CD-SSB频点上的参考信号的发送功率不同,因此终端设备基于第一NCD-SSB频点和CD-SSB频点确定的第一小区的测量结果不同,从而得到的小区重选结果可能不同,上述方式通过功率补偿值可以将基于不同频点的测量结果进行拉齐,从而可以提升小区重选的准确性。
一种可能的设计中,方法还包括:终端设备接收来自网络设备的第四信息,第四信息用于指示第一小区的功率补偿值。通过该设计,使得终端设备可以将基于不同频点的测量结果进行拉齐,从而可以提升小区重选的准确性。
一种可能的设计中,终端设备根据第一小区的测量结果以及第二小区的测量结果进行小区重选,包括:终端设备根据第一小区的测量结果确定第一小区的R值;终端设备根据第二小区的测量结果确定第二小区的R值;终端设备根据第一小区的R值以及第二小区的R值进行小区重选。
一种可能的设计中,终端设备根据第一小区的测量结果确定第一小区的R值,包括:终端设备根据第一小区的测量结果以及第一小区的功率补偿值确定第一小区的R值。上述设计,上述方式通过功率补偿值可以将基于不同频点的测量结果进行拉齐,从而可以降低发射功率不同对小区重选带来的影响,提升小区重选的准确性。
一种可能的设计中,终端设备根据第二小区的测量结果确定第二小区的R值,包括:终端设备根据第二小区的测量结果以及第二小区的功率补偿值确定第二小区的R值。上述方式通过功率补偿值可以将基于不同频点的测量结果进行拉齐,从而可以降低发射功率不同对小区重选带来的影响,提升小区重选的准确性。
一种可能的设计中,方法还包括:终端设备接收来自网络设备的第五信息,第五信息用于指示第二小区的功率补偿值。上述设计,使得终端设备可以基于功率补偿值将不同频点的测量结果进行拉齐。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的芯片或电路。以网络设备为例,方法包括:网络设备根据第二小区的NCD-SSB频点的配置确定指示信息,指示信息用于指示终端设备对第二小区进行测量时采用第一 NCD-SSB频点和/或CD-SSB频点,终端设备在空闲态或者非激活态驻留在第一小区中;网络设备向终端设备发送该指示信息。
本申请实施例提供一种基于NCD-SSB频点进行测量的方式,使得终端设备可以在没有配置CD-SSB频点或者基于CD-SSB频点无法进行小区重选的情况下,可以在网络设备的指示下进行小区重选,从而可以提升小区重选的灵活性,还可以提升终端设备的通信性能。
一种可能的设计中,指示信息指示终端设备对第二小区进行测量时采用第一NCD-SSB频点,具体包括:指示信息指示第一NCD-SSB频点可用于邻区测量。
通过该方式,使得终端设备可以基于第一NCD-SSB频点对邻区进行测量,不需要终端设备因为测量而切换BWP,因此可节省终端设备的功耗。例如,终端设备可以直接在包含第一NCD-SSB频点的BWP上接收寻呼以及发起随机接入(random access channel,RACH),而不是基于CD-SSB频点进行同步以及测量后,再转移到包含第一NCD-SSB频点的BWP进行接收寻呼以及RACH,从而可以实现更加快速的接入,以及,减少空闲态频繁在不同BWP上切换。
一种可能的设计中,指示信息指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和CD-SSB频点,具体包括:指示信息指示根据CD-SSB频点对邻区进行测量。
通过该方式可以测量未配置第一NCD-SSB频点的邻区进行测量,从而可以提升邻区的测量结果的准确性,使得终端设备可以重选到信号质量更好的邻区中进行通信,提升终端设备的通信性能。
一种可能的设计中,指示信息指示终端设备对第二小区进行测量时采用CD-SSB频点,具体包括:指示信息指示只可基于CD-SSB频点进行邻区测量。
该方式通过基于第一NCD-SSB频点和CD-SSB频点邻区的进行测量,可以提升邻区的测量结果的准确性,使得终端设备可以重选到信号质量更好的邻区中进行通信,提升终端设备的通信性能。
一种可能的设计中,方法还包括:网络设备向终端设备发送第四信息和/或第五信息,第四信息用于指示第一小区的功率补偿值,第五信息用于指示第二小区的功率补偿值。通过该设计,使得终端设备可以将基于不同频点的测量结果进行拉齐,从而可以提升小区重选的准确性。
第三方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
例如,通信装置具有实现上述第一方面提供的方法的功能,处理器,用于基于第一NCD-SSB频点对所述第一小区进行测量;以及,基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量;以及,根据第一小区的测量结果以及第二小区的测量结果进行小区重选。
一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步 骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的设计中,通信装置的结构中包括处理单元(或处理模块)和通信单元(或通信模块),这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第三方面或第四方面或第五方面提供的方法中的描述,此处不做赘述。
例如,通信装置具有实现上述第一方面提供的方法的功能,处理单元,用于基于第一NCD-SSB频点对所述第一小区进行测量;以及,基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量;以及,根据所述第一小区的测量结果以及所述第二小区的测量结果进行小区重选。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信。
例如,通信装置具有实现上述第二方面提供的方法的功能,处理器,用于根据第二小区的NCD-SSB频点的配置确定指示信息,所述指示信息用于指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和/或CD-SSB频点,所述终端设备在空闲态或者非激活态驻留在第一小区中;收发器,用于向所述终端设备发送该指示信息。
一种可能的设计中,通信装置的结构中包括处理单元(或处理模块)和通信单元(或通信模块),这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法中的描述,此处不做赘述。
例如,通信装置具有实现上述第二方面提供的方法的功能,处理单元,用于根据第二小区的NCD-SSB频点的配置指示信息,所述指示信息用于指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和/或CD-SSB频点,所述终端设备在空闲态或者非激活态驻留在第一小区中;通信单元,用于向所述终端设备发送该指示信息。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现上述第一方面提供的任一方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面以及任意可能的设计中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第二方面中任一方面以及任意可能的设计中的方法。
第八方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面至第二方面中任一方面以及任意可能的设计中的方法。
第九方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第二方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供一种通信系统,所述系统包括第一方面所述的装置以及第二方面所述的装置。
附图说明
图1为本申请实施例提供的一种同频邻区的示意图;
图2为本申请实施例提供的一种异频邻区的示意图;
图3为本申请实施例提供的一种小区重选的流程示意图;
图4为本申请实施例提供的一种小区专用带宽示意图;
图5为本申请实施例提供的一种通信系统的示意图;
图6为本申请实施例提供的一种同频小区重选方法的流程示意图;
图7为本申请实施例提供的一种同频小区重选流程的示意图;
图8为本申请实施例提供的一种异频小区重选方法的流程示意图;
图9为本申请实施例提供的一种异频小区重选流程的示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、XR设备(如VR设备、AR设备、MR设备等)、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、视频监控中的无线终端以及可穿戴终端设备等。终端设备还可以是eMBB UE、URLLC UE、无人机、其他物联网(internet of things,IoT)设备、定位设备、上文术语介绍1)中所述的能力降低的终端设备等。
网络设备,可以为用于实现接入网设备的功能的装置,接入网设备可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,例如可以是NR系统中的下一代基站(next Generation node B,gNB),可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB)等。网络设备,也可以为能够支持网络设备实现该接入网设备功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
2)能力降低(reduced capability,REDCAP)的终端设备(REDCAP UE)包括3GPP Rel-17 和3GPP Rel-18定义的REDCAP UE,具体的,可以具有如下至少一项特征:
1.在频段(frequency range,FR)1初始接入时和/或初始接入后的最大带宽不超过20MHz。在FR 2初始接入时和/或初始接入后的最大带宽不超过100MHz,在3GPP Rel-18中定义的REDCAP终端设备所支持的最大带宽为5MHz。
2.支持的接收天线(Rx)分支的最小数量为1。
3.协议版本为NR Rel-17或以上。
4.仅支持半双工频分双工(frequency division duplex,FDD)。
5.若具有1Rx分支,支持1个下行(downlink,DL)最大多入多出(multiple-in multiple-out,MIMO)层。若具有2个Rx分支,支持2个DL MIMO层。
能力降低的终端设备可以理解为是相对于传统终端设备(legacy UE)降低了能力的终端设备,所述能力包括但不限于上述五个方面的特征,其中,传统终端设备可以例如为增强移动宽带(enhanced Mobile Broadband,eMBB)终端设备或超高可靠低时延通信(ultra-reliable low-latency communication,URLLC)终端设备。
3)S准则
S准则指终端设备选择驻留的小区的参考信号接收功率(reference signal received power,RSRP)相关的测量值(下面称为Srxlev值)应大于0,且,参考信号接收质量(reference signal received quality,RSRQ)相关的测量值(下面称为Squal值)应大于0,也就是,终端设备选择Srxlev值大于0且Squal值大于0的小区进行驻留。
其中,Srxlev值满足如下公式:Srxlev=Qrxlevmeas–(Qrxlevmin+Qrxlevminoffset)–Pcompensation–Qoffsettemp。其中,Qrxlevmeas为在该小区测量得到的接收电平值,Qrxlevmin为最小接收电平值,Qrxlevminoffset为最小接收电平值偏置,Pcompensation等于MAX(PEMAX-PUMAX,0),PEMAX为终端设备配置的最大上行可用的发射功率,PUMAX为终端设备的最大发射功率,由终端设备自身的能力等级来决定。Qoffsettemp为临时功率补偿。
Squal值满足如下公式:Squal=Qqualmeas–(Qqualmin+Qqualminoffset)–Qoffsettemp。其中,Qqualmeas为在该小区测量得到的小区信号质量值。Qqualmin为最小信号质量值。Qqualminoffset为最小信号质量值偏置。Qoffsettemp为临时功率补偿。
4)R准则
小区重选指终端设备在处于空闲态时通过监测邻区和当前驻留的小区(下面称为服务小区)的信号质量以选择一个最好的小区提供服务信号的过程。其中,邻区可以包括同频邻区、异频邻区,当然也可以包括其他类型的邻区,这里不再一一列举。同频邻区为与服务小区中心频点相同的邻区,如图1所示,异频邻区为与服务小区的中心频点不同的邻区,如图2所示。在同频邻区中进行小区重选的过程可以称为同频小区重选,在异频邻区中进行小区重选的过程可以称为异频小区重选。对于同频邻区或者异频但具有同等优先级的邻区,终端设备可以根据R准则对邻区进行重选排序。
R准则用于小区重选过程中确定目标小区。R准则为:若在检测时间内邻区的R值均超过服务小区的R值,则该邻区可以作为小区重选的候选小区。其中,邻区的R值满足如下公式:Rn=Qmeas,n-Qoffset–Qoffsettemp,Rn为邻区的R值,Qmeas,n为邻区的信号的测量量,Qoffset为小区偏置,Qoffsettemp为邻区的临时补偿值。且服务小区的R值满足如下公式:Rs=Qmeas,s+Qhyst–Qoffsettemp,Rs值为服务小区的R值,Qmeas,s为服 务小区的信号的测量量,Qhyst为小区重选迟滞值,Qoffsettemp为服务小区的临时补偿值。
如图3所示,小区重选的过程可以包括:
S301,终端设备根据测量启动标准,对邻区进行信号测量。
在同频小区重选过程中,测量启动标准可以为:当服务小区的信号满足Srxlev>SIntraSearchP且Squal>SIntraSearchQ时,终端设备可以不对同频邻区进行信号测量,否则执行对同频邻区的信号测量。SIntraSearchP和SIntraSearchQ为启动同频小区信号测量的门限值,可以是网络设备通过系统消息广播的。
在异频或异系统小区重选过程中,网络设备可以对各频点设置优先级。对于高优先级频点邻区,其中,高优先级频点邻区的频点的优先级高于服务小区的频点的优先级,终端设备可以总是执行对这些邻区的信号测量。对于同优先级频点邻区和低优先级频点邻区,其中,同优先级频点邻区的频点的优先级等于服务小区的频点的优先级,低优先级频点邻区的频点的优先级低于服务小区的频点的优先级,测量启动标准可以为:当服务小区的信号满足Srxlev>SnonIntraSearchP且Squal>SnonIntraSearchQ时,终端设备可以不对这些异频邻区进行信号测量,否则可以执行对异频邻区的信号测量。SnonIntraSearchP和SnonIntraSearchQ为启动异频邻区信号测量的门限值,可以是网络设备通过系统消息广播的。
其中,服务小区的Srxlev和Squal可以参阅上述术语介绍3)的相关描述,这里不再赘述。
S302,终端设备根据对邻区的测量结果确定目标小区。
在同频小区重选过程中,终端设备可以将满足R准则的候选邻区的R值进行排序,终端设备可以选择R值最高的小区作为目标小区。
在异频小区重选过程中,对于高优先级频点邻区,终端设备可以将满足如下条件的候选邻区中频点的优先级最高的邻区作为目标小区:邻区的Srxlev和Squal均满足对应的门限值,且持续时间大于预设时长,该门限值为邻区的用于高优先级频点邻区重选的门限值。
若没有高优先级频点邻区符合小区重选的条件,终端设备可以在同优先级频点邻区中选择目标小区,终端设备可以将满足R准则的候选邻区的R值进行排序,终端设备可以选择R值最高的小区作为目标小区。
若没有高优先级频点邻区和同优先级频点邻区符合小区重选的条件,终端设备可以在低优先级频点邻区中选择目标小区。对于低优先级频点邻区,若服务小区的Srxlev和Squal均小于对应的门限值,该门限值为服务小区的用于低优先级频点邻区重选的门限值,且邻区的Srxlev和Squal均大于对应的门限值,该门限值为邻区的用于低优先级频点邻区重选的门限值,且持续时间大于预设时长。
5)CD-SSB
CD-SSB是指关联于系统信息块(system information block,SIB)1的SSB。例如,CD-SSB是能够配置小区的必要信息(如控制资源集(control-resource set,CORESET)#0和/或SIB1)的SSB。其中,CORESET#0可用于终端设备解析SIB1,SIB1是用于提供小区特性信息的SIB,比如,SIB1包括非接入(non-access,NAS)层的系统信息。另外,本申请中所述的CD-SSB频点是指CD-SSB的频点,也就是CD-SSB对应的频率位置。
6)NCD-SSB
NCD-SSB是指不与SIB1关联的SSB,例如,NCD-SSB缺少用于配置小区的完整信 息,例如,NCD-SSB仅包括SSB,或者缺少SIB1的必要字段。另外,本申请中所述的NCD-SSB频点是指NCD-SSB的频点,也就是NCD-SSB对应的频率位置。
本申请实施例中的术语“系统”和“网络”可被互换使用,“频点”和“频率”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两个信息的内容、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
5G标准目前同意基于SSB进行测量。空闲状态的终端设备可以基于SSB进行小区重选。目前,终端设备基于SSB进行小区重选时是基于CD-SSB频点的。但是终端设备的初始BWP上可能不存在CD-SSB,导致终端设备无法正常进行小区重选,进而导致通信中断,或者通信质量差等问题。例如,目前在针对RedCap UE的讨论中,支持将RedCap UE专用的部分带宽(bandwidth part,BWP)设置在载波边缘。其中,RedCap UE专用的BWP包括但不限于RedCap UE专用的初始(initial)BWP。例如,RedCap UE的专用BWP可包括初始上行(uplink,UL)BWP和初始下行(downlink,DL)BWP,其中,初始上行BWP的中心频点和初始下行BWP的中心频点相同,又考虑到目前的时分双工(time division duplexing,TDD)UE只有一个锁相环,因此,目前的RedCap UE的专用BWP可能未配置CD-SSB频点。例如,如图4所示,小区1包括BWP#0,BWP#2和BWP#3,其中,BWP#0上包含CD-SSB,BWP#2上即不包含CD-SSB也不包含NCD-SSB,BWP#3上包含NCD-SSB,不包含CD-SSB,若终端设备的初始BWP被配置为BWP#2或BWP#3,则终端设备的初始BWP上不存在CD-SSB。这种场景中,终端设备无法基于CD-SSB频点进行小区重选,导致终端设备的通信质量较差甚至会产生中断。
因此,如何提升终端设备的通信性能成为亟待解决的技术问题。
基于此,本申请实施例提供一种通信方法及装置,用于提高终端设备的通信性能。其中,方法和装置是基于同一构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请提供的通信方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、LTE,也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统以及6G或者未来通信发展中出现的新的通信系统等。
图5示出了本申请实施例提供的通信方法可适用的通信系统的架构,所述通信系统的 架构中可以包括网络设备和终端设备。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请提供的方法可以应用于终端设备,该终端设备在空闲态或者非激活态驻留在第一小区中。下面对该终端设备的同频小区重选方法和异频小区重选方法分别进行说明。
参见图6,为本申请提供的一种同频小区重选方法的流程示意图。该方法包括:
S601,终端设备基于第一NCD-SSB频点对第一小区进行测量。
应理解,S601仅为“终端设备对第一小区进行测量”的一种可能的实现方式,在具体实施中,可以通过其他方式对第一小区进行测量。如终端设备也可以基于CD-SSB频点对第一小区进行测量,得到第二测量结果。又如,终端设备可以基于第一NCD-SSB频点和基于CD-SSB频点对第一小区进行测量。终端设备根据第一测量结果和第二测量结果确定第一小区的测量结果。
为了将上述实现方式进行区分,可以将基于第一NCD-SSB频点对第一小区进行测量的实现方式称为方式1.1,将基于CD-SSB频点对第一小区进行测量的实现方式称为方式1.2,将基于第一NCD-SSB频点和基于CD-SSB频点对第一小区进行测量的实现方式称为方式1.3。
方式1.3的一种可能的实施方案为,终端设备可以将基于第一NCD-SSB频点对第一小区进行测量得到的第一测量结果和基于CD-SSB频点对第一小区进行测量得到的第二测量结果的平均值作为第一小区的测量结果。
方式1.3的另一种可能的实施方案为,终端设备可以将基于第一NCD-SSB频点对第一小区进行测量得到的第一测量结果和基于CD-SSB频点对第一小区进行测量得到的第二测量结果的加权和作为第一小区的测量结果。
一种可能的实施方式中,在步骤S602之前,终端设备可以确定第一小区的测量结果满足第一NCD-SSB频点对应的阈值,其中,第一NCD-SSB频点对应的阈值为网络设备配置的,或者,第一NCD-SSB频点对应的阈值为根据CD-SSB频点对应的阈值以及第一小区的功率补偿值确定的。
例如,终端设备可以确定第一小区的测量结果满足如下公式时,执行如下步骤S602:
SrxlevNCD-SSB≤SIntraSearchPNCD-SSB,且,SqualNCD-SSB≤SIntraSearchQNCD-SSB,其中,SrxlevNCD-SSB和SqualNCD-SSB根据第一小区的测量结果确定,SIntraSearchPNCD-SSB和SIntraSearchQNCD-SSB为第一NCD-SSB对应的启动同频小区信号测量的门限值,其中,SIntraSearchPNCD-SSB和SIntraSearchQNCD-SSB为网络设备配置的,例如,网络设备可以通过SIB1等系统消息广播第一NCD-SSB对应的启动同频小区信号测量的门限值SIntraSearchPNCD-SSB和SIntraSearchQNCD-SSB
又例如,终端设备可以确定第一小区的测量结果满足如下公式时,执行如下步骤S602:
SrxlevNCD-SSB+offset1≤SIntraSearchPCD-SSB,且,SqualNCD-SSB+offset1≤SIntraSearchQCD-SSB,或者,SrxlevNCD-SSB≤SIntraSearchPCD-SSB-offset1,且,SqualNCD-SSB≤SIntraSearchQCD-SSB-offset1。
其中,SrxlevNCD-SSB和SqualNCD-SSB根据第一小区的测量结果确定,SIntraSearchPCD-SSB和SIntraSearchQCD-SSB为CD-SSB对应的启动同频小区信号测量的门限值,其中,SIntraSearchPCD-SSB和SIntraSearchQCD-SSB为网络设备配置的,例如,网络设备可以通过SIB1等系统消息广播CD-SSB对应的启动同频小区信号测量的门限值SIntraSearchPCD-SSB和SIntraSearchQCD-SSB。offset为第一小区的功率补偿值,可选的,offset可以包括RSRP对应的功率补偿值和/或RSRQ对应的功率补偿值,RSRP对应的功率偏移值和RSRQ对应的功率偏移值可以是同一个功率偏移值,也可以是不同的功率偏移值,这里不做具体限定。
上述SrxlevNCD-SSB和SqualNCD-SSB的确定方式可以参阅前文术语介绍3)中Srxlev和Squal的确定方式,这里不再重复赘述。
S602,终端设备对第二小区进行测量。
一种实现方式,终端设备可以对一个或多个邻区进行测量,第二小区为该一个或多个邻区中的任一小区,本申请实施例以第二小区为例介绍终端设备对邻区进行测量的方式,其他邻区的测量方式可以参阅第二小区的测量方式。
具体的,终端设备可以通过如下三种方式中任一方式对第二小区进行测量:
方式2.1,终端设备可以基于第一NCD-SSB频点对第二小区进行测量。通过该方式,使得终端设备可以基于第一NCD-SSB频点对邻区进行测量,不需要终端设备因为测量而切换BWP,因此可节省终端设备的功耗。例如,终端设备可以直接在包含第一NCD-SSB频点的BWP上接收寻呼以及发起RACH,而不是基于CD-SSB频点进行同步以及测量后,再转移到包含第一NCD-SSB频点的BWP进行接收寻呼以及RACH,从而可以实现更加快速的接入,以及,减少空闲态频繁在不同BWP上切换。
方式2.2,终端设备也可以基于CD-SSB频点对第二小区进行测量。通过该方式可以测量未配置第一NCD-SSB频点的邻区进行测量,从而可以提升邻区的测量结果的准确性,使得终端设备可以重选到信号质量更好的邻区中进行通信,提升终端设备的通信性能。
方式2.3,终端设备可以基于第一NCD-SSB频点和CD-SSB频点对第二小区进行测量。该方式通过基于第一NCD-SSB频点和CD-SSB频点邻区的进行测量,可以提升邻区的测量结果的准确性,使得终端设备可以重选到信号质量更好的邻区中进行通信,提升终端设备的通信性能。
例如,终端设备可以基于第一NCD-SSB频点对第二小区进行测量,得到第三测量结果,基于CD-SSB频点对第二小区进行测量,得到第四测量结果。终端设备根据第三测量结果和第四测量结果确定第二小区的测量结果。举例说明,可以将第三测量结果和第四测量结果的平均值作为第二小区的测量结果。或者,可以将第三测量结果和第四测量结果的加权和作为第一小区的测量结果。
又例如,终端设备可以基于第一NCD-SSB频点对包括第二小区在内的多个邻区进行测量。终端设备根据该多个邻区的测量结果确定该多个邻区不能作为重选的目标小区,或者该频点没有检测到邻区,则基于CD-SSB频点对该多个邻区进行测量。
再例如,终端设备可以基于第一NCD-SSB频点对至少一个第一邻区进行测量,基于CD-SSB频点对至少一个第二邻区进行测量。其中,第二小区可以属于上述第一邻区,也可以属于上述第二邻区。
一种实现方式中,终端设备也可以在网络设备的指示下确定采用上述方式2.1或者上述方式2.2或者上述方式2.3对第二小区进行测量,例如,网络设备可以根据第二小区的 NCD-SSB频点的配置确定终端设备对第二小区进行测量采用的频点。
例如,网络设备向终端设备发送第一信息。其中,第一信息用于指示第一NCD-SSB频点可用于邻区测量,或者,第一信息指示基于第一NCD-SSB频点进行邻区测量,或者,第一信息指示第一NCD-SSB频点上的邻区足够进行小区重选,或者,第一信息指示可以只基于第一NCD-SSB频点进行邻区测量。相应的,终端设备可以根据第一信息采用上述方式2.1对第二小区进行测量。
又例如,网络设备向终端设备发送第二信息,第二信息指示根据CD-SSB频点对邻区进行测量,或者,第二信息指示结合CD-SSB频点对邻区进行测量,或者,第二信息指示在进行邻区测量时采用第一NCD-SSB和CD-SSB频点,或者,第二信息指示CD-SSB可用于邻区测量,或者只基于CD-SSB进行邻区测量。相应的,终端设备可以根据第二信息采用上述方式2.3对第二小区进行测量。
再例如,网络设备向终端设备发送第三信息,第三信息用于指示只可基于CD-SSB频点进行邻区测量。相应的,终端设备可以根据第三信息采用上述方式2.2对第二小区进行测量。一种示例性说明中,“只可基于CD-SSB频点进行邻区测量”可以理解为在对邻区进行测量时只可基于CD-SSB频点对邻区进行测量。
另一种实现方式中,终端设备也可以自主确定邻区测量的方式。例如,终端设备可以基于第一NCD-SSB频点对包括第二小区在内的多个邻区进行测量,若该多个邻区不能作为重选的目标小区,则终端设备基于CD-SSB频点对该多个邻区进行测量。
S603,终端设备根据第一小区的测量结果以及第二小区的测量结果进行小区重选。
一种实现方式中,终端设备可以根据第一小区的测量结果确定第一小区的R值,根据第二小区的测量结果确定第二小区的R值。终端设备根据第一小区的R值以及第二小区的R值进行小区重选。
可选的,终端设备在确定第一小区的R值时,可以根据第一小区的测量结果以及第一小区的功率补偿值确定。例如,Rs=Qmeas,s+Qhyst–Qoffsettemp+offset1,其中,Rs、Qmeas,s、Qhyst、Qoffsettemp的含义可以参阅前文术语介绍4)的相关描述,offset1为第一小区对应的功率偏移值。
一种实施方式中,第一小区的功率补偿值可以是网络设备广播的,例如,网络设备可以在第一小区在第一NCD-SSB频点上的参考信号的功率与在CD-SSB频点上的参考信号的功率不一致时,广播第一小区的功率补偿值。
上述方式可以通过功率补偿值可以降低发射功率不同对小区重选带来的影响,例如,假设第一小区在第一NCD-SSB频点上的参考信号的发送功率比CD-SSB频点上的参考信号的发送功率不同,因此终端设备基于第一NCD-SSB频点和CD-SSB频点确定的第一小区的测量结果不同,从而得到的小区重选结果可能不同,上述方式通过功率补偿值可以将基于不同频点的测量结果进行拉齐,从而可以提升小区重选的准确性。
可选的,终端设备在确定第二小区的R值时,可以根据第二小区的测量结果以及第二小区的功率补偿值确定。例如,Rn=Qmeas,n-Qoffset–Qoffsettemp+offset2,其中,Rn、Qmeas,n、Qoffset、Qoffsettemp的含义可以参阅前文术语介绍4)的相关描述,offset2为第二小区对应的功率偏移值。
一种实施方式中,第二小区的功率补偿值可以是网络设备广播的,例如,若终端设备基于上述方式a或上述方式c对第二小区进行测量,网络设备可以在第二小区在第一 NCD-SSB频点上的参考信号的功率与在CD-SSB频点上的参考信号的功率不一致时,广播第二小区的功率补偿值。
上述方式通过功率补偿值可以将基于不同频点的测量结果进行拉齐,从而可以降低发射功率不同对小区重选带来的影响,提升小区重选的准确性。例如,终端设备重选到第二小区后,可能驻留在第二小区的其他频点上例如CD-SSB频点,上述设计通过功率补偿值可以将基于不同频点的测量结果进行拉齐,可以提升小区重选的准确性。
可选的,网络设备可以在系统消息中配置至少一个NCD-SSB频点。具体实现中,网络设备可以通过显示或者隐示的方式指示NCD-SSB频点对应的小区。
一种实现方式中,网络设备可以通过NCD-SSB频点关联的CD-SSB频点指示该NCD-SSB频点对应的小区。具体的,网络设备可以通过显示或者隐示的方式指示NCD-SSB频点与CD-SSB频点之间的关联关系。例如,网络设备可以通过频点的排序序号指示NCD-SSB频点关联的CD-SSB频点,举例说明,第二NCD-SSB频点为NCD-SSB频点列表中排序序号为3,则第二NCD-SSB频点与CD-SSB频点列表中排序序号为3的CD-SSB频点具有关联关系。
另一种实现方式中,网络设备可以广播NCD-SSB频点列表,其中,该NCD-SSB频点列表包括至少一个NCD-SSB频点,以及每个NCD-SSB频点对应的物理小区标识(physical cell identifier,PCI)。其中,同一个PCI关联的NCD-SSB频点属于同一个小区。
另一种实现方式中,网络设备可以广播邻区列表,其中,该邻区列表包括至少一个邻区,可选的包含每个邻区对应的NCD-SSB频点和/或CD-SSB频点,即每个邻区的配置中包含对应的NCD-SSB频点和/或CD-SSB频点。一种可能的实施方式中,对于同频邻区,网络设备可以不指示该邻区的CD-SSB频点。
为了便于对方案的理解,下面对终端设备的同频小区重选过程进行说明,如图7所示。
S701,终端设备对第一小区进行测量。
具体的,终端设备对第一小区进行测量的方式可以参阅上述方式1.1~方式1.3,这里不再赘述。
S702,终端设备根据第一小区的信号质量确定启动同频小区重选。
一种实现方式中,若终端设备基于CD-SSB频点对第一小区进行信号测量,即采用上述方式1.1,终端设备可以在第一小区的信号质量满足如下公式时确定启动同频小区重选:SrxlevCD-SSB≤SIntraSearchPCD-SSB且SqualCD-SSB≤SIntraSearchQCD-SSB
其中,SrxlevCD-SSB和SqualCD-SSB为根据第一小区基于CD-SSB频点的测量结果确定的,具体可以参阅前文术语介绍3)中Srxlev和Squal的确定方式,这里不再重复赘述。SIntraSearchPCD-SSB和SIntraSearchQCD-SSB为CD-SSB频点对应的启动同频小区信号测量的门限值,可以是网络设备通过系统消息广播的。
另一种实现方式中,若终端设备基于第一NCD-SSB频点对第一小区进行信号测量,即采用上述方式1.2,终端设备可以在第一小区的信号质量满足如下公式时确定启动同频小区重选:SrxlevNCD-SSB≤SIntraSearchPNCD-SSB,且,SqualNCD-SSB≤SIntraSearchQNCD-SSB。其中,SIntraSearchPNCD-SSB和SIntraSearchQNCD-SSB为第一NCD-SSB频点对应的启动同频小区信号测量的门限值,可以是网络设备通过系统消息广播的。
或者,终端设备可以在第一小区的信号质量满足如下公式时确定启动同频小区重选:SrxlevNCD-SSB+offset1≤SIntraSearchPCD-SSB,且,SqualNCD-SSB+offset1≤SIntraSearchQCD-SSB, 或者,SrxlevNCD-SSB≤SIntraSearchPCD-SSB-offset1,且,SqualNCD-SSB≤SIntraSearchQCD-SSB-offset1。
SrxlevNCD-SSB和SqualNCD-SSB为根据第一小区基于第一NCD-SSB频点的测量结果确定的,具体可以参阅前文术语介绍3)中Srxlev和Squal的确定方式,这里不再重复赘述。
再一种实现方式中,若终端设备基于第一NCD-SSB频点和CD-SSB频点对第一小区进行信号测量,即采用上述方式1.2,终端设备可以在第一小区的信号质量满足如下公式时确定启动同频小区重选:(SrxlevCD-SSB+SrxlevNCD-SSB+offset1)/2≤SIntraSearchPCD-SSB,且,(SqualCD-SSB+SqualNCD-SSB+offset1)/2≤SIntraSearchQCD-SSB
可选的,网络设备可以在第一小区在第一NCD-SSB频点上的参考信号的发送功率与在CD-SSB频点上的参考信号的发送功率不一致时,发送第一小区的功率补偿值。
S703,终端设备对一个或多个邻区进行测量。
其中,该一个或多个邻区包括前文所述的第二小区。
具体的,终端设备对该一个或多个邻区的测量方式可以参阅S602的相关描述,这里不再重复赘述。
S704,终端设备确定该一个或多个邻区的R值以及第一小区的R值。
一种实现方式中,以该一个或多个邻区中的第二小区为例,若终端设备基于第一NCD-SSB频点测量第二小区,则终端设备可以根据第二小区基于第一NCD-SSB频点的测量结果以及第二小区的功率补偿值确定第二小区的R值。例如,以上述方式2.1测量第二小区为例,第二小区的R值可以满足如下条件:Rn=Qmeas,n-Qoffset–Qoffsettemp+offset2,其中,Rn、Qmeas,n、Qoffset、Qoffsettemp的含义可以参阅前文术语介绍4)的相关描述,offset2为第二小区对应的功率偏移值。
可选的,若步骤S701中终端设备基于第一NCD-SSB频点测量第一小区,则终端设备可以根据第以小区基于第一NCD-SSB频点的测量结果以及第一小区的功率补偿值确定第一小区的R值。例如,以上述方式1.1测量第一小区为例,第一小区的R值可以满足如下条件:Rs=Qmeas,s+Qhyst–Qoffsettemp+offset1,其中,Rs、Qmeas,s、Qhyst、Qoffsettemp的含义可以参阅前文术语介绍4)的相关描述,offset1为第一小区对应的功率偏移值。
S705,终端设备将满足R准则的邻区的R值进行排序。
S706,终端设备根据排序结果进行小区重选。
本申请实施例提供一种基于NCD-SSB频点进行测量的方式,使得终端设备在同频邻区中进行小区重选时,可以在没有配置CD-SSB频点或者基于CD-SSB频点无法进行小区重选的情况下基于NCD-SSB频点进行小区重选,可以避免由于无法进行小区重选导致终端设备的通信性能较差的问题,因此,通过本申请实施例提供的方法可以提升小区重选的灵活性,还可以提升终端设备的通信性能。
并且,终端设备可以基于NCD-SSB频点对同频邻区进行测量,不需要终端设备因为测量而切换BWP,因此可节省终端设备的功耗。例如,终端设备可以直接在包含该NCD-SSB频点的BWP上接收寻呼以及发起RACH,而不是基于CD-SSB频点进行同步以及测量后,再转移到包含第一NCD-SSB频点的BWP进行接收寻呼以及RACH,从而可以实现更加快速的接入,以及,减少空闲态频繁在不同BWP上切换。
并且,本申请实施例中通过功率补偿值可以降低发射功率不同对小区重选带来的影响。
上面介绍了同频小区重选的方法,下面介绍异频小区重选的方法。其中,异频小区重 选的方法中,对于同优先级频点邻区,小区重选的方法与上述图6和图7所述的同频小区重选方法类似,区别在于,同频小区重选方法中启动同频小区重选时终端设备采用的是启动同频小区信号测量的门限值,而异频小区重选的方法中启动异频小区重选时终端设备采用的是启动异频小区信号测量的门限值。具体可以参阅上述图6和图7所述的同频小区重选方法,重复之处不再赘述。
异频小区重选的方法中,对于高优先级频点邻区,小区重选的方法可以参阅前文术语介绍4)的S302中,在异频小区重选过程中,对于高优先级频点邻区的小区重选的方法。对于低优先级频点邻区,小区重选的方法可以参阅前文术语介绍4)的S302中,在异频小区重选过程中,对于低优先级频点邻区的小区重选的方法。
下面对异频小区重选方法进行说明。如图8所示,异频小区重选方法包括:
S801,终端设备基于第一NCD-SSB频点对第一小区进行测量。
S801可以参阅上述S601的相关描述,这里不再重复说明。
一种可能的实施方式中,在步骤S801之前,终端设备可以确定第一小区的测量结果满足第一NCD-SSB频点对应的阈值,其中,第一NCD-SSB频点对应的阈值为网络设备配置的,或者,第一NCD-SSB频点对应的阈值为根据CD-SSB频点对应的阈值以及第一小区的功率补偿值确定的。应注意,S801中第一NCD-SSB频点对应的阈值可以与上述S601中第一NCD-SSB频点对应的阈值不同,上述S601中第一NCD-SSB频点对应的阈值为启动同频小区重选的阈值,S801中第一NCD-SSB频点对应的阈值为启动异频小区重选的阈值。
具体的,终端设备确定第一小区的测量结果满足第一NCD-SSB频点对应的阈值的方式,可以参阅前文描述,重复之处不再赘述。
S802,终端设备对第三小区进行测量。
一种实现方式,终端设备可以对一个或多个邻区进行测量,第三小区为该一个或多个邻区中的任一小区,本申请实施例以第三小区为例介绍终端设备对邻区进行测量的方式,其他邻区的测量方式可以参阅第三小区的测量方式。
其中,S802与上述S602类似,区别在于,上述S602中终端设备基于NCD-SSB频点对第二小区进行测量时采用的是第一NCD-SSB频点,而S802中终端设备基于NCD-SSB频点对第三小区进行测量时采用的是第二NCD-SSB频点,S802可以参阅S602的相关描述,重复之处不再赘述。
可选的,S802还可以通过如下方式实现:终端设备可以默认采用CD-SSB频点对第三小区进行测量。
S803,终端设备根据第一小区的测量结果以及第三小区的测量结果进行小区重选。
S803与上述S603类似,具体可以参阅S603的相关描述,这里不再重复赘述。
一种可能的实施方式中,若终端设备在第一小区基于第一NCD-SSB频点的测量结果低于第一阈值或者根据第一NCD-SSB频点的测量结果以及第一小区的功率补偿值确定的结果低于第一阈值,则终端设备可以回退到驻留到CD-SSB频点,并基于CD-SSB频点进行小区重选。该第一阈值可以为启动异频小区重选的阈值,或者,第一阈值与启动异频小区重选的阈值不同。
一种实施方式中,第一小区的功率补偿值可以是网络设备广播的,例如,网络设备可以在第一小区在第一NCD-SSB频点上的参考信号的功率与在CD-SSB频点上的参考信号 的功率不一致时,广播第一小区的功率补偿值。
一种实施方式中,第三小区的功率补偿值可以是网络设备广播的,例如,网络设备可以在第三小区在第一NCD-SSB频点上的参考信号的功率与在CD-SSB频点上的参考信号的功率不一致时,广播第三小区的功率补偿值。
可选的,网络设备可以在系统消息中配置至少一个NCD-SSB频点。具体实现中,网络设备可以通过显示或者隐示的方式指示NCD-SSB频点对应的小区。具体指示方式可以参阅上述同频小区重选中配置至少一个NCD-SSB频点的相关描述,这里不再重复描述。
为了便于对方案的理解,下面对终端设备的异频小区重选过程进行说明,如图9所示。
S901,终端设备对第一小区进行测量。
具体的,终端设备对第一小区进行测量的方式可以参阅S801的相关描述,这里不再重复赘述。
S902,终端设备确定启动异频小区重选。
对于高优先级频点邻区,终端设备可以总是执行对这些邻区的信号测量。
对于同优先级频点邻区和低优先级频点邻区,确定启动异频小区重选可以参阅前文S702的相关描述,区别在于S702中采用的是确定启动同频小区重选的阈值,S902中采用的是启动异频小区信号测量的门限值。
可选的,网络设备可以在第一小区在第一NCD-SSB频点上的参考信号的发送功率与在CD-SSB频点上的参考信号的发送功率不一致时,发送第一小区的功率补偿值。
S903,终端设备对一个或多个邻区进行测量。
其中,该一个或多个邻区包括前文所述的第三小区。
具体的,终端设备对该一个或多个邻区的测量方式可以参阅S802的相关描述,这里不再重复赘述。
S904,终端设备基于对该一个或多个邻区的测量结果进行小区重选。
对于高优先级频点邻区,终端设备可以将满足如下条件的候选邻区中频点的优先级最高的邻区作为目标小区:邻区的Srxlev和Squal均满足对应的门限值,且持续时间大于预设时长,该门限值为邻区的用于高优先级频点邻区重选的门限值。
其中,若基于第二NCD-SSB频点对邻区进行测量,则该邻区的Srxlev和Squal可以基于该邻区的测量结果以及该邻区的功率补偿值确定的。
例如,该邻区的Srxlev可以满足如下公式:Srxlev=Qrxlevmeas–(Qrxlevmin+Qrxlevminoffset)–Pcompensation–Qoffsettemp+offset3,或者,Srxlev=Qrxlevmeas–(Qrxlevmin+Qrxlevminoffset)–Pcompensation–Qoffsettemp-offset3。其中,Qrxlevmeas、Qrxlevmin、Qrxlevminoffset、Pcompensation、Qoffsettemp的含义可以参阅前文术语介绍3)的相关描述,offset3为该邻区对应的功率补偿值。
该邻区的Squal可以满足如下公式:Squal=Qqualmeas–(Qqualmin+Qqualminoffset)–Qoffsettemp+offset3,或者,Squal=Qqualmeas–(Qqualmin+Qqualminoffset)–Qoffsettemp-offset3。其中,Qqualmeas、Qqualmin、Qqualminoffset、Qoffsettemp的含义可以参阅前文术语介绍3)的相关描述。
若没有高优先级频点邻区符合小区重选的条件,终端设备可以在同优先级频点邻区中选择目标小区,具体实现方式与上述S704类似,可以参阅上述S704的相关描述,这里不再重复说明。
若没有高优先级频点邻区和同优先级频点邻区符合小区重选的条件,终端设备可以在低优先级频点邻区中选择目标小区。对于低优先级频点邻区,若第一小区的Srxlev和Squal均小于对应的门限值,该门限值为第一小区的用于低优先级频点邻区重选的门限值,且邻区的Srxlev和Squal均大于对应的门限值,该门限值为邻区的用于低优先级频点邻区重选的门限值,且持续时间大于预设时长。
其中,第一小区的Srxlev和Squal、邻区的Srxlev和Squal的确定方式可以参阅前文高优先级频点邻区的Srxlev和Squal的确定方式。
本申请实施例提供一种基于NCD-SSB频点进行测量的方式,使得终端设备在异频邻区中进行小区重选时,可以在没有配置CD-SSB频点或者基于CD-SSB频点无法进行小区重选的情况下基于NCD-SSB频点进行小区重选,可以避免由于无法进行小区重选导致终端设备的通信性能较差的问题,因此,通过本申请实施例提供的方法可以提升小区重选的灵活性,还可以提升终端设备的通信性能。
并且,终端设备可以基于NCD-SSB频点对异频邻区进行测量,不需要终端设备因为测量而切换BWP,因此可节省终端设备的功耗。例如,终端设备可以直接在包含该NCD-SSB频点的BWP上接收寻呼以及发起RACH,而不是基于CD-SSB频点进行同步以及测量后,再转移到包含第一NCD-SSB频点的BWP进行接收寻呼以及RACH,从而可以实现更加快速的接入,以及,减少空闲态频繁在不同BWP上切换。
并且,本申请实施例中通过功率补偿值可以降低发射功率不同对小区重选带来的影响。
基于与方法实施例的同一构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图10所示,包括处理模块1002,还可以包括通信模块1001。
在一种实施方式中,通信装置具体可以用于实现图6-图9的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理模块1002,用于基于第一NCD-SSB频点对第一小区进行测量;以及,基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量;以及,根据第一小区的测量结果以及第二小区的测量结果进行小区重选。
可选的通信模块1001,用于接收来自网络设备的第一信息,第一信息用于指示所述第一NCD-SSB频点可用于邻区测量。处理模块1002,在基于第一NCD-SSB频点对第一小区进行测量时,具体用于:根据来自网络设备的第一信息,基于第一NCD-SSB频点对第二小区进行测量。
可选的,处理模块1002,在基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量时,具体用于:基于第一NCD-SSB频点对第二小区进行测量;根据第二小区的测量结果确定第二小区不能作为重选的目标小区;基于CD-SSB频点对第二小区进行测量。
可选的,通信模块1001,还用于:接收来自网络设备的第二信息,第二信息用于指示根据CD-SSB频点对邻区进行测量。
示例性的,通信模块1001,用于接收来自网络设备的第三信息,所述第三信息用于指示只可基于所述CD-SSB频点进行邻区测量。处理模块1002,在基于CD-SSB频点对第二小区进行测量时,具体用于:根据来自网络设备的第三信息,基于CD-SSB频点对第二小区进行测量。
可选的,处理模块1002,还用于:在基于第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量之前,确定第一小区的测量结果满足第一NCD-SSB频点对应的阈值,其 中,第一NCD-SSB频点对应的阈值为网络设备配置的,或者,第一NCD-SSB频点对应的阈值为根据CD-SSB频点对应的阈值以及第一小区的功率补偿值确定的。
可选的,处理模块1002,在根据第一小区的测量结果以及第二小区的测量结果进行小区重选时,具体用于:根据第一小区的测量结果确定第一小区的R值;根据第二小区的测量结果确定第二小区的R值;根据第一小区的R值以及第二小区的R值进行小区重选。
可选的,处理模块1002,在根据第一小区的测量结果确定第一小区的R值时,具体用于:根据第一小区的测量结果以及第一小区的功率补偿值确定第一小区的R值。
可选的,处理模块1002,在根据第二小区的测量结果确定第二小区的R值时,具体用于:根据第二小区的测量结果以及第二小区的功率补偿值确定第二小区的R值。
在一种实施方式中,通信装置具体可以用于实现图6-图9的实施例中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理模块1002,用于根据终端设备的第二小区的NCD-SSB频点的配置确定指示信息,所述指示信息用于指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和/或CD-SSB频点,终端设备在空闲态或者非激活态驻留在第一小区中;通信模块1001,用于向终端设备发送该指示信息。
可选的,通信模块1001,还用于:向终端设备发送第四信息和/或第五信息,第四信息用于指示第一小区的功率补偿值,第五信息用于指示第二小区的功率补偿值。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图11所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的终端设备也可以是上述实施例中的网络设备。该装置包括处理器1101和通信接口1102,还可以包括存储器1103。其中,处理模块1002可以为处理器1101。通信模块1001可以为通信接口1102。
处理器1101,可以是一个CPU,或者为数字处理单元等等。通信接口1102可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器1103,用于存储处理器1101执行的程序。存储器1103可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1103是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器1101用于执行存储器1103存储的程序代码,具体用于执行上述处理模块1002的动作,本申请在此不再赘述。通信接口1102具体用于执行上述通信模块1001的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1102、处理器1101以及存储器1103之间的具体连接介质。本申请实施例在图11中以存储器1103、处理器1101以及通信接口1102之间通过总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示, 图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例还提供一种通信系统,包括用于实现图6的实施例中终端设备功能的通信装置和用于实现图6的实施例中网络设备功能的通信装置。
本申请实施例还提供一种通信系统,包括用于实现图8的实施例中终端设备功能的通信装置和用于实现图8的实施例中网络设备功能的通信装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (25)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备,所述终端设备在空闲态或者非激活态驻留在第一小区中,包括:
    所述终端设备基于第一非小区定义的同步信号/物理广播信道块NCD-SSB频点对所述第一小区进行测量;
    所述终端设备基于所述第一NCD-SSB频点和/或小区定义的同步信号/物理广播信道块CD-SSB频点对第二小区进行测量;
    所述终端设备根据所述第一小区的测量结果以及所述第二小区的测量结果进行小区重选。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备基于所述第一NCD-SSB频点对第二小区进行测量,包括:
    所述终端设备根据来自网络设备的第一信息,基于所述第一NCD-SSB频点对所述第二小区进行测量,所述第一信息用于指示所述第一NCD-SSB频点可用于邻区测量。
  3. 如权利要求1所述的方法,其特征在于,所述终端设备基于所述第一NCD-SSB频点和所述CD-SSB频点对第二小区进行测量,包括:
    所述终端设备基于所述第一NCD-SSB频点对所述第二小区进行测量;
    所述终端设备根据所述第二小区的测量结果确定所述第二小区不能作为重选的目标小区;
    所述终端设备基于所述CD-SSB频点对所述第二小区进行测量。
  4. 如权利要求3所述的方法,其特征在于,在所述终端设备基于所述第一NCD-SSB频点对所述第二小区进行测量之前,所述方法还包括:
    所述终端设备接收来自网络设备的第二信息,所述第二信息用于指示根据所述CD-SSB频点对邻区进行测量。
  5. 如权利要求1所述的方法,其特征在于,所述终端设备基于所述CD-SSB频点对第二小区进行测量,包括:
    所述终端设备根据来自网络设备的第三信息,基于所述CD-SSB频点对所述第二小区进行测量,所述第三信息用于指示只可基于所述CD-SSB频点进行邻区测量。
  6. 如权利要求1-5任一项所述的方法,其特征在于,在所述终端设备基于所述第一NCD-SSB频点和/或小区定义的同步信号/物理广播信道块CD-SSB频点对第二小区进行测量之前,所述方法还包括:
    所述终端设备确定所述第一小区的测量结果满足所述第一NCD-SSB频点对应的阈值,其中,所述第一NCD-SSB频点对应的阈值为网络设备配置的,或者,所述第一NCD-SSB频点对应的阈值为根据所述CD-SSB频点对应的阈值以及所述第一小区的功率补偿值确定的。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述终端设备根据所述第一小区的测量结果以及所述第二小区的测量结果进行小区重选,包括:
    所述终端设备根据所述第一小区的测量结果确定所述第一小区的R值;
    所述终端设备根据所述第二小区的测量结果确定所述第二小区的R值;
    所述终端设备根据所述第一小区的R值以及所述第二小区的R值进行小区重选。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备根据所述第一小区的测量结果确定所述第一小区的R值,包括:
    所述终端设备根据所述第一小区的测量结果以及所述第一小区的功率补偿值确定所述第一小区的R值。
  9. 如权利要求7或8所述的方法,其特征在于,所述终端设备根据所述第二小区的测量结果确定所述第二小区的R值,包括:
    所述终端设备根据所述第二小区的测量结果以及所述第二小区的功率补偿值确定所述第二小区的R值。
  10. 一种通信方法,其特征在于,包括:
    网络设备根据第二小区的非小区定义的同步信号/物理广播信道块NCD-SSB频点的配置确定指示信息,所述指示信息用于指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和/或小区定义的同步信号/物理广播信道块CD-SSB频点,所述终端设备在空闲态或者非激活态驻留在第一小区中;
    所述网络设备向所述终端设备发送所述指示信息。
  11. 如权利要求10所述的方法,其特征在于,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述第一NCD-SSB频点,具体包括:所述指示信息指示第一NCD-SSB频点可用于邻区测量;
    或者,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述第一NCD-SSB频点和所述CD-SSB频点,具体包括:所述指示信息指示根据所述CD-SSB频点对邻区进行测量;
    或者,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述CD-SSB频点,具体包括:所述指示信息指示只可基于CD-SSB频点进行邻区测量。
  12. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第四信息和/或第五信息,所述第四信息用于指示所述第一小区的功率补偿值,所述第五信息用于指示所述第二小区的功率补偿值。
  13. 一种通信装置,其特征在于,所述装置应用于终端设备,所述终端设备在空闲态或者非激活态驻留在第一小区中,包括:
    处理模块,用于基于第一非小区定义的同步信号/物理广播信道块NCD-SSB频点对所述第一小区进行测量;
    以及,基于所述第一NCD-SSB频点和/或小区定义的同步信号/物理广播信道块CD-SSB频点对第二小区进行测量;
    以及,根据所述第一小区的测量结果以及所述第二小区的测量结果进行小区重选。
  14. 如权利要求13所述的装置,其特征在于,所述装置还包括通信模块;
    所述通信模块,用于接收来自网络设备的第一信息,所述第一信息用于指示所述第一NCD-SSB频点可用于邻区测量;
    所述处理模块,在基于第一NCD-SSB频点对所述第一小区进行测量时,具体用于:
    根据来自所述第一信息,基于所述第一NCD-SSB频点对所述第二小区进行测量。
  15. 如权利要求13所述的装置,其特征在于,所述处理模块,在基于所述第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量时,具体用于:
    基于所述第一NCD-SSB频点对所述第二小区进行测量;
    根据所述第二小区的测量结果确定所述第二小区不能作为重选的目标小区;
    基于所述CD-SSB频点对所述第二小区进行测量。
  16. 如权利要求15所述的装置,其特征在于,所述装置还包括通信模块;
    所述通信模块,用于:接收来自网络设备的第二信息,所述第二信息用于指示根据所述CD-SSB频点对邻区进行测量。
  17. 如权利要求13所述的装置,其特征在于,所述装置还包括通信模块;
    所述通信模块,用于接收来自网络设备的第三信息,所述第三信息用于指示只可基于所述CD-SSB频点进行邻区测量;
    所述处理模块,在基于所述CD-SSB频点对第二小区进行测量时,具体用于:
    根据所述第三信息,基于所述通信模块在所述CD-SSB频点接收的信号对所述第二小区进行测量。
  18. 如权利要求13-17任一项所述的装置,其特征在于,所述处理模块,还用于:
    在基于所述第一NCD-SSB频点和/或CD-SSB频点对第二小区进行测量之前,确定所述第一小区的测量结果满足所述第一NCD-SSB频点对应的阈值,其中,所述第一NCD-SSB频点对应的阈值为网络设备配置的,或者,所述第一NCD-SSB频点对应的阈值为根据所述CD-SSB频点对应的阈值以及所述第一小区的功率补偿值确定的。
  19. 如权利要求13-18任一项所述的装置,其特征在于,所述处理模块,在根据所述第一小区的测量结果以及所述第二小区的测量结果进行小区重选时,具体用于:
    根据所述第一小区的测量结果确定所述第一小区的R值;
    根据所述第二小区的测量结果确定所述第二小区的R值;
    根据所述第一小区的R值以及所述第二小区的R值进行小区重选。
  20. 如权利要求19所述的装置,其特征在于,所述处理模块,在根据所述第一小区的测量结果确定所述第一小区的R值时,具体用于:
    根据所述第一小区的测量结果以及所述第一小区的功率补偿值确定所述第一小区的R值。
  21. 如权利要求19或20所述的装置,其特征在于,所述处理模块,在根据所述第二小区的测量结果确定所述第二小区的R值时,具体用于:
    根据所述第二小区的测量结果以及所述第二小区的功率补偿值确定所述第二小区的R值。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于根据第二小区的非小区定义的同步信号/物理广播信道块NCD-SSB频点的配置确定指示信息,所述指示信息用于指示终端设备对第二小区进行测量时采用第一NCD-SSB频点和/或小区定义的同步信号/物理广播信道块CD-SSB频点,所述终端设备在空闲态或者非激活态驻留在第一小区中;
    通信模块,用于向所述终端设备发送所述指示信息。
  23. 如权利要求22所述的装置,其特征在于,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述第一NCD-SSB频点,具体包括:所述指示信息指示第一NCD-SSB频点可用于邻区测量;
    或者,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述第一NCD-SSB频点和所述CD-SSB频点,具体包括:所述指示信息指示根据所述CD-SSB频点对邻区进行测量;
    或者,所述指示信息指示所述终端设备对所述第二小区进行测量时采用所述CD-SSB频点,具体包括:所述指示信息指示只可基于CD-SSB频点进行邻区测量。
  24. 如权利要求22或23所述的装置,其特征在于,所述通信模块,还用于:
    向所述终端设备发送第四信息和/或第五信息,所述第四信息用于指示所述第一小区的功率补偿值,所述第五信息用于指示所述第二小区的功率补偿值。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1~9中任意一项所述的方法,或者,使得所述计算机执行如权利要求10~12中任意一项所述的方法。
PCT/CN2023/077108 2022-03-04 2023-02-20 一种通信方法及装置 WO2023165351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210211027.XA CN116744379A (zh) 2022-03-04 2022-03-04 一种通信方法及装置
CN202210211027.X 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023165351A1 true WO2023165351A1 (zh) 2023-09-07

Family

ID=87882875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077108 WO2023165351A1 (zh) 2022-03-04 2023-02-20 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116744379A (zh)
WO (1) WO2023165351A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475335A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 通信方法和装置
CN111818564A (zh) * 2019-08-02 2020-10-23 维沃移动通信有限公司 测量的方法、测量指示的方法和设备
US20210175985A1 (en) * 2017-11-29 2021-06-10 Lg Electronics Inc. Method and apparatus for measuring signal quality in wireless communication system
CN114599057A (zh) * 2020-12-04 2022-06-07 北京紫光展锐通信技术有限公司 驻留在dl bwp的方法、设备、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210175985A1 (en) * 2017-11-29 2021-06-10 Lg Electronics Inc. Method and apparatus for measuring signal quality in wireless communication system
CN110475335A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 通信方法和装置
CN111818564A (zh) * 2019-08-02 2020-10-23 维沃移动通信有限公司 测量的方法、测量指示的方法和设备
CN114599057A (zh) * 2020-12-04 2022-06-07 北京紫光展锐通信技术有限公司 驻留在dl bwp的方法、设备、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Handling of SSB information in MeasurementTimingConfiguration", 3GPP TSG-RAN WG2 # 103BIS R2-1814145, 28 September 2018 (2018-09-28), XP051523604 *
INTEL: "AdHoc Minutes for NR measurement gap and measurement capability", 3GPP TSG-RAN4 MEETING #88 R4-1811398, 29 August 2018 (2018-08-29), XP051580287 *

Also Published As

Publication number Publication date
CN116744379A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN112584425B (zh) 一种测量能力上报的网络系统、电子设备及芯片系统
WO2020135400A1 (zh) 通信方法和通信装置
WO2020140830A1 (en) Method and apparatus for plmn selection and cell (re) selection
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
JP2020504573A (ja) セル切り替え方法および装置
WO2021197241A1 (zh) 一种放松测量方法和通信装置
WO2020135383A1 (zh) 通信方法和通信装置
WO2021213217A1 (zh) 一种放松测量方法和通信装置
US11582661B2 (en) Terminal measurement method and apparatus, and terminal
EP3664501A1 (en) Measuring method, device and system
EP3911047A2 (en) Service area for time synchronization
WO2021104039A1 (zh) 一种测量配置方法及装置
WO2022028455A1 (zh) 小区切换方法和终端
WO2022068797A1 (zh) 网络接入方法、网络接入装置、终端和网络侧设备
WO2022002016A1 (zh) 一种邻区测量方法及其装置
WO2018028336A1 (zh) 一种随机接入方法和设备
WO2023125234A1 (zh) 小区选择或重选方法、装置、终端及可读存储介质
WO2023125236A1 (zh) Bwp切换方法及装置、终端
WO2020048515A1 (en) Network reporting in a cellular network
CN115606253A (zh) 功率节省模式下的无线电资源管理
WO2023165351A1 (zh) 一种通信方法及装置
WO2022022635A1 (zh) 接入控制方法、装置、终端及网络设备
WO2021063198A1 (zh) 一种系统帧号和帧定时偏差sftd测量方法
WO2021249299A1 (zh) 数据的处理方法及装置、终端及网络侧设备
US20220377651A1 (en) Mechanisms of searcher number exchange for cell detection and measurement in new radio (nr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762752

Country of ref document: EP

Kind code of ref document: A1