WO2023165243A1 - 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用 - Google Patents

一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用 Download PDF

Info

Publication number
WO2023165243A1
WO2023165243A1 PCT/CN2022/142908 CN2022142908W WO2023165243A1 WO 2023165243 A1 WO2023165243 A1 WO 2023165243A1 CN 2022142908 W CN2022142908 W CN 2022142908W WO 2023165243 A1 WO2023165243 A1 WO 2023165243A1
Authority
WO
WIPO (PCT)
Prior art keywords
pea
dimensional
pbx
nanosheet
nanosheets
Prior art date
Application number
PCT/CN2022/142908
Other languages
English (en)
French (fr)
Inventor
李佳
周妮
孟令强
喻学锋
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023165243A1 publication Critical patent/WO2023165243A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains

Definitions

  • the invention belongs to the technical field of photodetectors, and in particular relates to a preparation method of two-dimensional (PEA) 2 PbX 4 nanosheets and its application in ultraviolet light detectors.
  • Photodetectors are a class of devices that capture incident light and convert the light signal into an electrical signal. According to the range of spectral response, it can be divided into ultraviolet photodetectors, visible light photodetectors and near-infrared photodetectors. In order to meet people's needs, it is particularly important to develop high-performance, high-stability, and high-reliability ultraviolet detectors, especially those that can work under extreme and harsh conditions. As the core component of the ultraviolet detection system, the ultraviolet photodetector has a crucial impact on the reliability and accuracy of the ultraviolet detection system.
  • Perovskite materials are new semiconductor optoelectronic materials that stand out in recent years, benefiting from unique electrical and optical properties, such as extremely high quantum efficiency, excellent material plasticity, excellent liquid phase process compatibility, and flexible interface tunability And other unique advantages, perovskite has become an outstanding candidate material for various optoelectronic devices including next-generation photodetectors.
  • organic-inorganic hybrid perovskites have attracted extensive attention from researchers in the field of optoelectronic devices due to their high light absorption coefficient, high carrier mobility, and absorption wavelengths covering ultraviolet to near-infrared bands.
  • this type of hybrid material has better environmental stability and excellent carrier transport performance due to the introduction of organic molecules into the structure.
  • the bandgap width determines the absorption of light by semiconductors.
  • Wide bandgap semiconductor materials have a large bandgap, and are only sensitive to ultraviolet light, and do not respond to infrared and visible light.
  • the band width is 3.1 eV, and the corresponding cut-off wavelength is about 400 nm, which makes organic-inorganic hybrid perovskite materials have great prospects in the field of ultraviolet detection, and is an ideal material for making ultraviolet detection devices.
  • perovskite materials in the construction process of ultraviolet photodetectors usually grows single crystals or polycrystals by solution processing.
  • the introduction of organic macromolecular functional group benzene ring hinders the effective extraction and transportation of carriers, which seriously hinders the diffusion of carriers. Attempts are still needed to improve the optoelectronic performance of UV detectors through continuous improvement of methods and structures.
  • Zhang et al. and Ge et al. prepared photoconductive ultraviolet photodetectors by synthesizing (PEA) 2 PbBr 4 single crystals. The detectors prepared by Zhang showed extremely low dark current and detectability as well as excellent Environmental and radiation stability.
  • the object of the present invention is to design and provide a two-dimensional (PEA) 2 PbX 4 nanosheet, a preparation method and its application in an ultraviolet light detector.
  • the perovskite nanosheet thin film provided by the present invention has a narrow-band absorption with half maximum width less than 50nm in the ultraviolet band, and has almost no absorption in the visible light and near-infrared regions, thereby obtaining an ultraviolet photodetector with ultraviolet light response.
  • a kind of preparation method of two-dimensional (PEA) 2 PbX 4 nanosheets it is characterized in that comprising the following steps:
  • the method for preparing two-dimensional (PEA) 2 PbX 4 nanosheets is characterized in that the molar ratio of PEAX and PbX 2 in the step (1) is 2:1, and the N,N-di The ratio of the volume mL of methylformamide to the sum of the molar weight of PEAX and PbX 2 in mmol is 3:5, and the X is at least one of Cl - , Br - , and I - .
  • the method for preparing two-dimensional (PEA) 2 PbX 4 nanosheets is characterized in that the control temperature in the step (2) is normal temperature, and the stirring intensity is 1000-2000 rpm.
  • the method for preparing two-dimensional (PEA) 2 PbX 4 nanosheets is characterized in that the volume ratio of the precursor solution to toluene in the step (2) is 2-4:1000-3000.
  • the method for preparing two-dimensional (PEA) 2 PbX 4 nanosheets is characterized in that the ultraviolet light treatment time in the step (3) is 10-30 min.
  • the method for preparing two-dimensional (PEA) 2 PbX 4 nanosheets is characterized in that the strength of the applied voltage in the step (3) is 50-70 V, and the time for applying the voltage is 5-20 min.
  • a two-dimensional (PEA) 2 PbX 4 nanosheet characterized in that the two-dimensional (PEA) 2 PbX 4 nanosheet has a bright, narrow-band absorption with a half-maximum width less than 50nm, and no absorption in the visible and near-infrared regions, It has absorption in the ultraviolet band 360-410nm.
  • the two-dimensional (PEA) 2 PbX 4 nanosheet is characterized in that the two-dimensional (PEA) 2 PbBr 4 nanosheet is obtained by any one of the above preparation methods.
  • An ultraviolet photodetector is characterized in that it includes an electrode, and the electrode is obtained by vapor-depositing the two-dimensional (PEA) 2 PbX 4 nanosheet as claimed in claim 7 or 8 under vacuum conditions.
  • the present invention is realized based on the following principles:
  • ultrathin (PEA) 2 PbX 4 nanosheets (NPs) are firstly synthesized as a light-absorbing layer, and the nanosheets are rapidly formed in an antisolvent.
  • the lateral dimensions of the ultrathin 2D perovskite nanostructures can be tuned.
  • an electric field deposition (EFD) method was employed to prepare dense and smooth single-crystalline NP-based thin films for high-performance photodetection applications.
  • the charged nanoparticles in the solution interact in the electric field to produce directional movement, and the particles gradually approach the surface of the substrate to be deposited, and gradually accumulate to form a thin film.
  • the substrate to be deposited and the film on it do not form a closed loop with the circuit forming the deposition electric field, so the influence of the electrode reaction on the deposition process and the film is avoided.
  • the present invention uses the silicon substrate coated with silicon dioxide on the surface as the substrate for depositing thin films. Because Si has conductivity, SiO2 does not have conductivity, so we take a section of silicon wafer with SiO2 scraped off as an electrode, and the rest as an electrode.
  • the substrate for depositing the thin film is immersed in the prepared two-dimensional perovskite solution, and the distribution and thickness of the nanosheets on the substrate can be adjusted by changing the magnitude and time of the applied voltage. Therefore, a two-dimensional (PEA) 2 PbX 4 nanoparticle film is formed on the positive electrode, which means that the (PEA) 2 PbX 4 nanoparticles are negatively charged.
  • the present invention has the following beneficial effects:
  • the flake perovskite-two-dimensional (PEA) 2 PbX 4 nanosheet film not only has a lower defect state density, but also has a naturally formed structural boundary, It is possible to control the incident light at the nanometer scale.
  • the band gap determines the absorption of light by the semiconductor.
  • the wide band gap semiconductor material has a large band gap, and is only sensitive to ultraviolet light, and does not respond to infrared and visible light.
  • the two-dimensional (PEA) 2 PbX 4 nanosheet material of the present invention has a large band gap and is very suitable for the field of ultraviolet detection.
  • As an organic-inorganic perovskite it has the advantages of high carrier mobility, long carrier diffusion distance, and high light absorption rate.
  • the invention utilizes multiple solution processes for assembly, does not require a high-vacuum environment, and the solution process has the characteristics of simple operation and low cost.
  • Fig. 1 is the schematic diagram of preparing perovskite nanosheet film by electric field deposition
  • Figure 2 is the photocurrent and dark current curves of the photoconductive device based on PEA 2 PbBr 4 material under 405nm laser;
  • Figure 3 shows the UV absorption curves of two-dimensional organic-inorganic hybrid perovskites prepared according to different proportions of precursors
  • Figure 4 is a monolithic SEM spectrum of two-dimensional PEA 2 PbBr 4 ;
  • Figure 5 is the SEM spectrum of two-dimensional PEA 2 PbBr 4 ;
  • 1-power supply 2-conductive wire, 3-silicon chip, 4-substrate, 5-deposited film, 6-perovskite nanosheet dispersion.
  • the present invention prepares single-crystal NP-based films by means of electric field deposition, replacing traditional methods such as spin coating or drop coating, and the specific steps are as follows:
  • the anti-solvent is vigorously stirred at 1500rpm, and the previously prepared precursor solution is added dropwise. Since the solubility of the precursor in the anti-solvent decreases rapidly, perovskite nanosheets can be formed immediately after the dropwise addition.
  • the obtained nanosheets are ultrathin and exhibit bright, narrow spectra and tunable photoluminescence.
  • organic reagents are the first choice for commonly used anti-solvents. For example, toluene, chlorobenzene, dichloromethane, chloroform, etc.
  • anti-solvent precipitation method PEA 2 PbBr 4 NPs were obtained to prepare for the next step of electrodeposition.
  • Step 1 Cleaning of silicon wafer substrate
  • the surface oxidized silicon wafer is treated for one time, and then treated with a UV light cleaning machine for 20 minutes.
  • Step 2 Substrate processing and deposition device
  • Figure 2 shows the photocurrent and dark current curves of the photoconductive device made of PEA 2 PbBr 4 at 405 nm.
  • the present invention obtains different two-dimensional PEA by controlling different proportions of precursors 2 wxya 4
  • the UV absorption curve of nanosheets, the specific steps are as follows -
  • the PEA 2 PbX 4 NPs nanosheets dispersed in toluene were obtained by anti-solvent precipitation method as a dispersion liquid; the dispersion liquid was tested by UV-visible light absorption spectrum, as shown in Figure 3, the nanosheets have a bright narrow band with a half-maximum width less than 50nm Absorption, (PEA) 2 PbCl 4 , (PEA) 2 PbCl 3 Br and (PEA) 2 PbBr 4 have no absorption in the visible and near-infrared regions, but have strong absorption in the ultraviolet bands of 340nm, 355nm and 405nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种二维(PEA) 2PbX 4纳米片、制备方法及其在紫外光探测器中的应用,属于光电探测器技术领域。二维(PEA) 2PbX 4纳米片的制备方法包括:(1)取PEAX和PbX 2混合,溶解于N,N-二甲基甲酰胺中,在搅拌条件下加热再过滤,得到前驱体溶液;(2)控制温度,在强烈搅拌的条件下滴加前驱体溶液至甲苯中,反溶剂沉淀法获得分散液;(3)取两块硅片衬底清洗,再用紫外光处理吹干,刮开一端表面上的二氧化硅作为电极并连接导电线,其余部分浸没于分散液中,施加电压,获得二维的(PEA) 2PbX 4纳米片。所述片状结构具有较低的缺陷态密度,还具有天然形成的结构边界,能在纳米尺度实现对入射光的调控。

Description

一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用 技术领域
本发明属于光电探测器技术领域,具体涉及一种二维(PEA) 2PbX 4纳米片的制备方法及其在紫外光探测器中的应用。
背景技术
光电探测器是一类可捕获入射光,并将光信号转变为电信号的一类器件。按照光谱响应的范围,可将其分为紫外光电探测器、可见光光电探测器及近红外光电探测器。为了满足人们的需求,高性能、高稳定性、高可靠性的紫外探测器,尤其是能在极端和恶劣条件下工作的探测器的研发显得尤为重要。紫外光电探测器作为紫外探测系统的核心部件,其性能指标对紫外探测系统的可靠性和准确性有着至关重要的影响。现有紫外探测器主要基于GaN/AlGaN等掺杂型无机半导体材料,囿于有限的材料可选范围和低效的器件结构,现有器件的探测灵敏度较低,且体积和重量较大,很难满足各民用和军用领域不断发展的应用需求,迫切需要探索具有简单生长方法和优良的UV响应性能的新型半导体材料。钙钛矿材料是近年来脱颖而出的新型半导体光电材料,得益于独特的电学及光学特性,例如极高的量子效率、卓越的材料可塑性、优异的液相工艺兼容性、灵活的界面可调性等独特优势,钙钛矿已成为包括下一代光探测器在内的各类光电器件的杰出候选材料。其中,有机-无机杂化钙钛矿由于光吸收系数高及载流子迁移率大,吸收波长覆盖从紫外到近红外波段等优点,在光电子器件领域得到研究者们的广泛关注。这类杂化材料相比于全无机钙钛矿,由于在结构中引入了有机分子,因而具有更好的环境稳定性和更具优异的载流子传输性能。而在光电探测应用领域,禁带宽度决定了半导体对光的吸收,宽禁带半导体材料禁带宽度大,而且只对紫外光敏感,对红外与可见光不响应,有机-无机钙钛矿的禁带宽度为3.1 eV,对应的截止波长约为400 nm,这使得有机-无机杂化钙钛矿材料在紫外探测领域有非常大的前景,是制作紫外探测器件的理想材料。
将钙钛矿材料应用到紫外光电探测的构筑过程中,常常通过溶液加工的方法,生长单晶或多晶。在二维有机-无机杂化钙钛矿体系中,有机大分子官能团苯环的引入阻碍了载体的有效提取和运输,严重阻碍载流子扩散造成的。仍然需要尝试通过不断改进方法和结构来改善紫外探测器的光电性能。Zhang等人和Ge等人都通过合成(PEA) 2PbBr 4单晶,制备了光电导型的紫外光电探测器,Zhang研究制备的探测器表现出了极低的暗电流和探测率以及出色的环境和辐射稳定性。但是现所研究的宽禁带钙钛矿半导体材料对于制备条件十分敏感,通过目前许多文献报道的常用的溶液便捷制造工艺制备出来的薄膜容易出现不连续的现象,重复性差,另一方面,材料受空气影响较大,在环境下极不稳定,受湿度影响也很大,一周前后探测器的性能就会在空气中快速退化。这些因素都进而导致基于不同种类的钙钛矿探测器的性能大不相同。针对这些问题,我们将从材料的制备工艺角度出发,为实现高性能紫外探测器打下基础。并致力于研究提高基于钙钛矿的探测器的稳定性,系统优化器件稳定性。开发出新型的深紫外吸收半导体材料,研究出具有高响应性高性能的紫外探测器件。
技术问题
针对上述现有技术中存在的技术问题,本发明的目的在于设计提供一种二维(PEA) 2PbX 4纳米片、制备方法及其在紫外光探测器中的应用。本发明提供的钙钛矿纳米片薄膜在紫外波段具有一个半高宽小于50nm的窄带吸收,而在可见光和近红外区域几乎没有吸收,由此可获得具有紫外光响应的紫外光探测器。
技术解决方案
为了实现上述目的,本发明采用以下技术方案:
一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于包括以下步骤:
(1)称取PEAX和PbX 2混合,溶解于N,N-二甲基甲酰胺中,在搅拌条件下加热,再过滤,得到前驱体溶液;
(2)控制温度,在强烈搅拌的条件下滴加上述步骤(1)得到的前驱体溶液至甲苯中,通过反溶剂沉淀法获得分散在甲苯中的PEA 2PbX 4NPs纳米片,作为分散液;
(3)取两块硅片衬底,分别依次采用乙醇、丙酮、乙醇清洗,再用紫外光处理,吹干,用刀刮开一端表面上的二氧化硅作为电极并连接导电线,其余部分浸没于上述步骤(2)获得的分散液中,施加电压,获得二维的(PEA) 2PbX 4纳米片。
所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(1)中PEAX和PbX 2的加入量摩尔比为2:1,所述N,N-二甲基甲酰胺的体积mL与PEAX和PbX 2的之和摩尔量mmol的比值为3:5,所述X为Cl -、Br -、I -中的至少一种。
所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(2)中控制温度为常温,搅拌的强度为1000-2000rpm。
所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(2)中前驱体溶液与甲苯的体积比为2-4:1000-3000。
所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(3)中紫外光处理的时间为10-30 min。
所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(3)中施加电压的强度为50-70 V,施加电压的时间为5-20 min。
一种二维(PEA) 2PbX 4纳米片,其特征在于所述二维(PEA) 2PbX 4纳米片具有一个明亮,半高宽小于50nm的窄带吸收,在可见光和近红外区域无吸收,在紫外波段360-410nm有吸收。
所述的一种二维(PEA) 2PbX 4纳米片,其特征在于所述二维(PEA) 2PbBr 4纳米片是通过任一所述的制备方法得到的。
所述的二维(PEA) 2PbX 4纳米片在作为吸光层材料和在光电导器件中的应用。
一种紫外光探测器,其特征在于包括电极,所述电极为将如权利要求7或8所述的二维(PEA) 2PbX 4纳米片在真空条件下蒸镀后得到的。
本发明是基于以下原理实现的:
本发明首先合成超薄(PEA) 2PbX 4纳米片(NPs)作为吸光层,纳米片在反溶剂中快速形成。通过改变溶剂,超薄二维钙钛矿纳米结构的横向尺寸可以调整。然后再采用电场沉积(EFD)方法制备用于高性能光电探测应用的致密光滑的单晶NP基薄膜。溶液中带电的纳米粒子,在电场中发生相互作用会产生定向移动,粒子逐渐靠近待沉积薄膜的基材表面,逐步堆积成为薄膜。此外,待沉积薄膜的基材与其上的薄膜不与形成沉积电场的电路形成闭合回路,所以避免了由电极反应对沉积过程和薄膜的影响。本发明以表面镀有二氧化硅的硅衬底作为沉积薄膜的基材,因Si具有导电性,SiO 2不具导电性,所以我们取一段刮去SiO 2的硅片当作电极,其余部分作为沉积薄膜的基材,浸入已经制备好的二维钙钛矿溶液中,通过改变施加电压的大小和时间,来调节纳米片在基材上的分布和厚度。因此,在正的电极上形成了二维(PEA) 2PbX 4纳米粒子膜,这意味着(PEA) 2PbX 4纳米粒子带负电。
以此制备的吸光层材料为基础,探索和优化柔性器件的制备工艺,研究器件结构、尺寸以及电路走线设计对柔性紫外光探测灵敏度、响应度等性能指标的影响。将测试器件在不同温度、湿度环境下的探测性能,系统优化器件稳定性。
有益效果
与现有技术相比,本发明具有以下有益效果:
(1)相比于块体单晶钙钛矿,片状的钙钛矿-二维(PEA) 2PbX 4纳米片薄膜既具有较低的缺陷态密度,同时还具有天然形成的结构边界,能够在纳米尺度实现对入射光的调控。
(2)制备出的纳米片具有优异的吸收和光致发光特性,并通过改变无机物的卤族元素(X=Cl -、Br -、I -),按照有机阳离子PEAX:PbX 2=2:1的比例,能得到在紫外波段360-410nm的一系列的紫外吸收材料和基于紫外光探测效应的光探测器。
(3)本发明开发出的一系列深紫外有光电响应的二维有机-无机杂化钙钛矿吸收材料,在紫外光吸收系数、迁移率、响应速度、辐照稳定性等方面进行了全面和系统的优化,基于这些二维(PEA) 2PbX 4纳米片的光探测器具有很好的波长选择性,可以实现其探测范围在紫外波段内可调,在特定的波长范围内具有高响应,实现较低的暗电流特性。
禁带宽度决定了半导体对光的吸收,宽禁带半导体材料禁带宽度大,而且只对紫外光敏感,对红外与可见光不响应。本发明二维(PEA) 2PbX 4纳米片材料的禁带宽度大,十分适用于紫外探测领域。而其作为有机-无机钙钛矿,具有高的载流子迁移率,长的载流子扩散距离以及高的光吸收率等优点。本发明利用多种溶液工艺进行组装,无需高真空的环境,且溶液工艺具有操作简易、成本低的特性。
附图说明
图1为电场沉积制备钙钛矿纳米片薄膜示意图;
图2为基于PEA 2PbBr 4材料的光电导器件在405nm激光下的光电流与暗电流曲线;
图3为按照不同比例前驱体制备的二维有机-无机杂化钙钛矿的UV吸收曲线;
图4为二维PEA 2PbBr 4的单片SEM图谱;
图5为二维PEA 2PbBr 4的SEM图谱;
其中,1-电源,2-导电线,3-硅片,4-基材,5-沉积膜,6-钙钛矿纳米片分散液。
本发明的实施方式
以下将结合附图和实施例对本发明作进一步说明。
实施例1:
本发明通过电场沉积的方式制备单晶NP基薄膜,取代传统的旋涂或滴涂等方式,具体步骤如下:
1)PEA 2PbBr 4前驱体溶液的准备
将PEABr0.4mmol,PbBr 20.2mmol混合后,溶解于5 mLN,N-二甲基甲酰胺(DMF)中,60℃搅拌下加热后(加热目的是为了有利于前驱体的充分溶解),得到无色透明的前驱体溶液后用0.22微米的滤器过滤。
2)选择合适的反溶剂
反溶剂在强度为1500rpm条件下强烈搅拌,滴加先前制备好的前驱体溶液,由于前驱体在反溶剂中的溶解度迅速降低,滴加的瞬间便能形成钙钛矿的纳米片。
所获得的纳米片有超薄的性状,并显示出明亮,较窄的光谱和可调的光致发光。在制备钙钛矿薄膜的研究中,有机试剂是常用反溶剂的首选。例如,甲苯,氯苯,二氯甲烷,三氯甲烷等。通过对比实验,并考虑到成本等因素,我们最终采用甲苯作为反溶剂的首选。通过反溶剂沉淀法,获得PEA 2PbBr 4NPs,为下一步电致沉积做准备。
3)(PEA) 2PbBr 4的析出
通过反溶剂结晶法,我们获得了分散在甲苯中的2D PEA 2PbBr 4纳米片,通过控制前驱体溶液滴加的量,可以调控纳米片分散在甲苯中的浓度,为了沉积时纳米片能更好的沉积在衬底上,注意不能使用太高的浓度。
4)电场沉积得到单晶NP基薄膜
此处分以下几个步骤:
步骤一:硅片衬底的清洗
根据溶剂乙醇—丙酮—乙醇的顺序,对表面氧化的硅片进行一个处理后,再用 UV 光清洗机处理 20min。
步骤二:衬底的处理与沉积装置
将清洗过的衬底吹干后,取一段硅片,用硅片刀刮开表面的二氧化硅,露出来的硅作为待沉积薄膜的衬底的电极,其余部分作为待沉积薄膜的衬底浸于分散液中,我们将导电线接到两端的电极上,通过施加电压,改变施加电压的大小和时间,来调节纳米片在基材上的分布和厚度。因此,在正的电极上形成了二维 (PEA) 2PbBr 4纳米粒子膜,这意味着(PEA) 2PbBr 4纳米粒子带负电。沉积装置见图1。
5)真空蒸镀电极
在真空条件下,蒸镀40-50 nm的金,作为光电导器件的电极。如图2为PEA 2PbBr 4材料的光电导器件在405nm下的光电流与暗电流曲线。
实施例2:
本发明通过控制不同比例的前驱体,得到不同二维PEA 2PbX 4纳米片的紫外吸收曲线,具体步骤如下 -
(1)称取PEABr与PbBr 2以摩尔比为2:1混合,溶解于N,N-二甲基甲酰胺中,N,N-二甲基甲酰胺的体积mL与PEABr和PbBr 2的之和摩尔量mmol的比值为3:5,在搅拌条件下加热,再过滤,得到(PEA) 2PbBr 4的前驱体溶液;取PEACl 0.4mmol, PbCl 2 0.2mmol,摩尔比为2:1混合。以相同的步骤,得到(PEA) 2PbCl 4的前驱体溶液; 取PEABr 0.2mmol ,PEACl, 0.2mmol PbCl 2 0.2mmol,摩尔比为1:1:1混合。以相同的步骤,得到(PEA) 2PbCl 3Br的前驱体溶液。
(2)控制温度为室温,在1000-2000rpm强烈搅拌的条件下滴加上述步骤(1)得到的前驱体溶液至甲苯中,前驱体溶液与甲苯的体积比为2-4:1000-3000,通过反溶剂沉淀法获得分散在甲苯中的PEA 2PbX 4NPs 纳米片,作为分散液;分散液做紫外-可见光吸收光谱测试,如图3,纳米片具有一个明亮,半高宽小于50nm的窄带吸收,(PEA) 2PbCl 4、(PEA) 2PbCl 3Br和(PEA) 2PbBr 4在可见光和近红外区域无吸收,在紫外波段340nm、355nm、405nm有强吸收。
(3)取两块硅片衬底,分别依次采用乙醇、丙酮、乙醇清洗,再用紫外光处理10-30 min,吹干,用刀刮开一端表面上的二氧化硅作为电极并连接导电线,其余部分浸没于上述步骤(2)获得的分散液中,施加电压60V,5min,获得二维的PEA 2PbBr 4纳米片。如图4为二维PEA 2PbBr 4的单片SEM图谱,如图5为二维PEA 2PbBr 4的SEM图谱。

Claims (10)

  1. 一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于包括以下步骤:
    (1)称取PEAX和PbX 2混合,溶解于N,N-二甲基甲酰胺中,在搅拌条件下加热,再过滤,得到前驱体溶液;
    (2)控制温度,在强烈搅拌的条件下滴加上述步骤(1)得到的前驱体溶液至甲苯中,通过反溶剂沉淀法获得分散在甲苯中的PEA 2PbX 4NPs纳米片,作为分散液;
    (3)取两块硅片衬底,分别依次采用乙醇、丙酮、乙醇清洗,再用紫外光处理,吹干,用刀刮开一端表面上的二氧化硅作为电极并连接导电线,其余部分浸没于上述步骤(2)获得的分散液中,施加电压,获得二维的(PEA) 2PbX 4纳米片。
  2. 如权利要求1所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(1)中PEAX和PbX 2的加入量摩尔比为2:1,所述N,N-二甲基甲酰胺的体积mL与PEAX和PbX 2的之和摩尔量mmol的比值为3:5,所述X为Cl -、Br -、I -中的至少一种。
  3. 如权利要求1所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(2)中控制温度为常温,搅拌的强度为1000-2000rpm。
  4. 如权利要求1所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(2)中前驱体溶液与甲苯的体积比为2-4:1000-3000。
  5. 如权利要求1所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(3)中紫外光处理的时间为10-30 min。
  6. 如权利要求1所述的一种二维(PEA) 2PbX 4纳米片的制备方法,其特征在于所述步骤(3)中施加电压的强度为50-70 V,施加电压的时间为5-20 min。
  7. 一种二维(PEA) 2PbX 4纳米片,其特征在于所述二维(PEA) 2PbX 4纳米片具有一个明亮,半高宽小于50nm的窄带吸收,在可见光和近红外区域无吸收,在紫外波段360-410nm有吸收。
  8. 如权利要求7所述的一种二维(PEA) 2PbX 4纳米片,其特征在于所述二维(PEA) 2PbBr 4纳米片是通过如权利要求1-4任一所述的制备方法得到的。
  9. 如权利要求7或8所述的二维(PEA) 2PbX 4纳米片在作为吸光层材料和在光电导器件中的应用。
  10. 一种紫外光探测器,其特征在于包括电极,所述电极为将如权利要求7或8所述的二维(PEA) 2PbX 4纳米片在真空条件下蒸镀后得到的。
PCT/CN2022/142908 2022-03-04 2022-12-28 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用 WO2023165243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210211541.3 2022-03-04
CN202210211541.3A CN114685555B (zh) 2022-03-04 2022-03-04 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用

Publications (1)

Publication Number Publication Date
WO2023165243A1 true WO2023165243A1 (zh) 2023-09-07

Family

ID=82136563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142908 WO2023165243A1 (zh) 2022-03-04 2022-12-28 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用

Country Status (2)

Country Link
CN (1) CN114685555B (zh)
WO (1) WO2023165243A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685555B (zh) * 2022-03-04 2024-01-05 中国科学院深圳先进技术研究院 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931642A (zh) * 2019-11-29 2020-03-27 南昌大学 一种二维钙钛矿单晶的紫外光探测器及其制备方法
CN111192960A (zh) * 2018-11-14 2020-05-22 苏州大学 一种紫外-可见光双波段光电探测器件及其制备方法
CN113257932A (zh) * 2021-05-12 2021-08-13 常熟理工学院 一种高性能的光电探测器及其制备方法
US20210340021A1 (en) * 2018-09-06 2021-11-04 King Abdullah University Of Science And Technology Method for making inorganic perovskite nanocrystals film and applications
CN114685555A (zh) * 2022-03-04 2022-07-01 中国科学院深圳先进技术研究院 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340021A1 (en) * 2018-09-06 2021-11-04 King Abdullah University Of Science And Technology Method for making inorganic perovskite nanocrystals film and applications
CN111192960A (zh) * 2018-11-14 2020-05-22 苏州大学 一种紫外-可见光双波段光电探测器件及其制备方法
CN110931642A (zh) * 2019-11-29 2020-03-27 南昌大学 一种二维钙钛矿单晶的紫外光探测器及其制备方法
CN113257932A (zh) * 2021-05-12 2021-08-13 常熟理工学院 一种高性能的光电探测器及其制备方法
CN114685555A (zh) * 2022-03-04 2022-07-01 中国科学院深圳先进技术研究院 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI DENG; XIANGCHENG JIN; YOU LV; XIUJUAN ZHANG; XIAOHONG ZHANG; JIANSHENG JIE: "2D Ruddlesden–Popper Perovskite Nanoplate Based Deep‐Blue Light‐Emitting Diodes for Light Communication", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 29, no. 40, 5 August 2019 (2019-08-05), DE , pages n/a - n/a, XP072410718, ISSN: 1616-301X, DOI: 10.1002/adfm.201903861 *

Also Published As

Publication number Publication date
CN114685555B (zh) 2024-01-05
CN114685555A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
Dutta et al. Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique
CN109638091B (zh) 一种高性能混合型光电探测器的构筑方法及其调控策略
Dai et al. Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors
Zhu et al. Antisolvent‐induced fastly grown all‐inorganic perovskite CsPbCl3 microcrystal films for high‐sensitive UV photodetectors
CN108258117B (zh) 一种稳定的高性能钙钛矿光电探测器及其制备方法
Wang et al. Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution
Li et al. Titania: Graphdiyne nanocomposites for high-performance deep ultraviolet photodetectors based on mixed-phase MgZnO
WO2023165243A1 (zh) 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用
Ramelan et al. ZnO wide bandgap semiconductors preparation for optoelectronic devices
Zhang et al. Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles
Gu et al. Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors
Hajimazdarani et al. Enhanced optical properties of ZnS–rGO nanocomposites for ultraviolet detection applications
CN113782681A (zh) 一种混杂MXene纳米材料的ZnO量子点紫外光电探测器及其制备方法
Pandi et al. C-axis oriented ZnO nanorods based quantum dot solar cells
CN111864080A (zh) 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
CN112029500A (zh) 溶剂介导纳米晶自组装制备溴碘掺杂钙钛矿纳米线的方法
Zhu et al. An enhanced solar-blind ultraviolet photodetector based on polyvinyl alcohol/carbon nanodots film
Ganesh et al. Photo sensing properties of yttrium doped In2S3 thin film fabricated by low prize nebulizer spray pyrolysis technique
Shariffudin et al. Influence of drying temperature on the structural, optical, and electrical properties of layer-by-layer ZnO nanoparticles seeded catalyst
Chun et al. Loosening effect of perovskite intermolecular exchanger with strong steric hindrance for highly sensitive photodetector
Guo et al. Durable and stable UV–Vis perovskite photodetectors based on CH 3 NH 3 PbI 3 crystals synthesized via a solvothermal method
Peng et al. UV–Vis photodetector based on ionic liquid-modified perovskite–ZnO composite
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
Shan et al. Oil–water interfacial self-assembly of PS/ZnS nanospheres and photoconducting property of corresponding nanofilm
TWI732704B (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929667

Country of ref document: EP

Kind code of ref document: A1