WO2023165236A1 - 基于可重构全息超表面的功率控制方法及装置 - Google Patents

基于可重构全息超表面的功率控制方法及装置 Download PDF

Info

Publication number
WO2023165236A1
WO2023165236A1 PCT/CN2022/142221 CN2022142221W WO2023165236A1 WO 2023165236 A1 WO2023165236 A1 WO 2023165236A1 CN 2022142221 W CN2022142221 W CN 2022142221W WO 2023165236 A1 WO2023165236 A1 WO 2023165236A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimized
reconfigurable holographic
power control
holographic metasurface
communication system
Prior art date
Application number
PCT/CN2022/142221
Other languages
English (en)
French (fr)
Inventor
张浩波
邓若琪
张雨童
Original Assignee
杭州腓腓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州腓腓科技有限公司 filed Critical 杭州腓腓科技有限公司
Publication of WO2023165236A1 publication Critical patent/WO2023165236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the field of wireless communication, in particular to a communication system power control method and device based on a reconfigurable holographic metasurface.
  • D2D technology is considered to be a promising solution.
  • users can communicate directly without forwarding through a base station (BS). Due to the short transmission distance between users, D2D communication can reduce energy consumption, provide early warning in emergency situations, and improve users' QoS (quality of service) requirements.
  • BS base station
  • QoS quality of service
  • allowing D2D links and cellular links to share uplink spectrum can alleviate the problem of spectrum shortage.
  • sharing the frequency spectrum will cause the D2D link to cause inevitable interference to the cellular network, which will seriously affect the communication quality of the cellular network.
  • RHS is an ultra-thin planar antenna with many metamaterial radiating elements embedded on the surface of the antenna.
  • the reference wave generated by the antenna feed excites the RHS in the form of surface waves, making it possible to manufacture the RHS with a compact structure based on printed circuit board (PCB) technology.
  • the holographic antenna uses metal patches to construct a holographic pattern on the surface, and records the interference between the reference wave and the target wave according to the interference principle. Then, according to the holographic pattern, each radiation unit can generate the desired radiation direction by electrically controlling the radiation amplitude of the reference wave. Therefore, compared with traditional dish antennas and phased array antennas, RHS can realize dynamic beamforming without heavy mechanical movement devices and complex phase shifting circuits, which can greatly save antenna manufacturing costs and power loss, and its thin and light structure It is also very easy to install.
  • the present invention provides a power control method and device based on the reconfigurable holographic metasurface, by modeling the communication system and using an optimization method to solve the problem Power control problem.
  • variable to be optimized includes variables related to power control, and the target to be optimized includes maximizing system performance
  • the reconfigurable holographic metasurface includes: N radiation units and K feeds, wherein each feed is connected to a radio frequency link of the base station.
  • variables related to power control include: the beamforming matrix ⁇ of the reconfigurable holographic metasurface and the digital beamforming matrix B of the base station.
  • the system performance includes: total transmission rate R or energy efficiency ⁇ .
  • constraints include: transmit power constraints and amplitude constraints of the reconfigurable holographic metasurface.
  • the transmission power constraint includes: the transmission power of the base station cannot exceed a set upper limit.
  • the amplitude constraint of the reconfigurable holographic metasurface includes: the amplitude of the reconfigurable holographic metasurface takes a value between [0,1].
  • the method for solving the optimization problem includes: an iterative optimization method.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the above method when running.
  • An electronic device includes a memory and a processor, wherein the memory stores a program for executing the method described above.
  • the present invention improves the overall communication rate, energy efficiency and other communication performances by optimizing the transmit power of the base station in the reconfigurable holographic metasurface communication system.
  • Fig. 1 is a schematic diagram of the reconfigurable holographic metasurface of the present invention.
  • Fig. 2 is a schematic diagram of a downlink multi-user wireless communication system.
  • Fig. 3 is a flow chart of the method of the present invention.
  • the reconfigurable holographic metasurface is composed of a feed source, a parallel plate waveguide, and an array of metamaterial radiation elements, as shown in Figure 1, where the feed source emits electromagnetic waves, and the electromagnetic waves propagate in the parallel plate waveguide.
  • the material radiation unit is controlled by a plurality of PIN diodes, by adjusting the switching state of the PIN diodes corresponding to the metamaterial radiation unit, the limited discrete radiation amplitude adjustment of electromagnetic waves propagating to the metamaterial radiation unit can be realized, if there is one PIN diode control A metamaterial radiation unit, then the unit has 21 discrete amplitude adjustable values, therefore, the PIN diode switch state in the metasurface unit is adjusted to the target switch value, the electromagnetic wave amplitude radiated on the metamaterial radiation unit The value is the target discretization magnitude value.
  • the system includes a base station equipped with RHS, and multiple mobile users communicating with the base station of the cell.
  • the RHS has a total of N radiation units and K feed sources. Each feed is connected to a radio frequency link of the base station.
  • the communication system power control method of the present invention first models the power control optimization problem as
  • the variables to be optimized (including the RHS beamforming matrix ⁇ ), Refers to the target to be optimized (eg overall communication rate, energy efficiency).
  • P M is the upper limit of the total power of the cell base station and RHS.
  • ⁇ n is the amplitude value of the nth metamaterial radiation unit of the RHS;
  • the RHS beamforming matrix ⁇ is an N*N matrix, the element of the nth row and the nth column is ⁇ n , and the elements outside the diagonal are all 0.2
  • I is the number of adjustable discrete amplitude values.
  • the variables and functions in the above optimization problems have different forms.
  • the variables to be optimized are the RHS beamforming matrix ⁇ and the base station digital beamforming matrix B.
  • the objective function is the total transmission rate , its expression can be written as
  • H m represents the channel from RHS to user m.
  • Q is the propagation matrix of the RHS from the feed to the metamaterial radiating element.
  • b m is the mth column of the matrix B, representing the digital beamforming vector of the mth user signal.
  • ⁇ 2 is the noise power.
  • R represents the total transfer rate.
  • the total power of the cell base station and RHS can be written as
  • P on refers to the fixed power consumption of the base station.
  • optimization problems can be solved using a variety of optimization algorithms, such as iterative optimization, etc., which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于可重构全息超表面的通信系统功率控制方法及装置,包括:构建一个待优化变量与待优化目标之间的最优化问题;基于约束条件求解最优化问题,获取待优化变量的值;利用待优化变量的值,生成通信系统功率控制方案。本发明通过优化可重构全息超表面通信系统中的基站发射功率来提升总通信速率,能量效率等通信性能。

Description

基于可重构全息超表面的功率控制方法及装置 技术领域
本发明涉及无线通信领域,具体为一种基于可重构全息超表面的通信系统功率控制方法及装置。
背景技术
目前,随着移动设备和智能终端的不断发展,未来无线网络对数据流量的需求急剧增长。为了满足快速增长的数据流量需求,实现无缝通信,D2D技术被认为是一种很有前景的解决方案。在D2D通信中,用户之间可以直接通信,而无需通过基站(BS)转发。由于用户之间传输距离短,D2D通信可以降低能耗,在紧急情况下提供预警,提升用户的QoS(quality of service)需求。一般情况下,允许D2D链路与蜂窝链路共享上行频谱,可以缓解频谱不足的问题。然而,共享频谱会使得D2D链路对蜂窝网络造成不可避免的干扰,对蜂窝网络的通信质量造成严重影响。
一种创新的、革命性的技术,即可重构全息超表面RHS,它可以有效地消除D2D干扰,满足高数据速率的要求。RHS是一种超轻薄的平面天线,天线表面嵌有许多超材料辐射单元。具体而言,由天线馈源产生的参考波以表面波的形式激励RHS,使得基于印刷电路板(PCB)技术制造的拥有紧凑结构的RHS成为可能。具体地说,全息天线利用金属贴片在表面构建全息图案,根据干涉原理记录参考波和目标波之间的干涉。然后,根据全息图案,每个辐射单元可以通过电控制参考波的辐射幅度来产生所需的辐射方向。因此,相比于传统的碟形天线和相控阵天线,RHS无需重型机械运动装置和复杂的移相电路就可以实现动态波束成形,可以大大节省天线制造成本以及功率损耗,同时其轻薄的结构也十分便于安装。
发明内容
为了解决基于可重构全息超表面通信系统缺少功率控制方法的问题,本发明提供一种基于可重构全息超表面的功率控制方法及装置,通过对通信系统进行建模,并利用优化方法解决功率控制问题。
本发明的技术内容包括:
一种基于可重构全息超表面的通信系统功率控制方法,适用于配备可重构全息超表面的基站构成的通信系统,其步骤包括:
1)构建一个待优化变量与待优化目标之间的最优化问题,其中待优化变量包括与功率控 制相关的变量,待优化目标包括最大化系统性能;
2)基于约束条件求解最优化问题,获取待优化变量的值;
3)利用待优化变量的值,生成通信系统功率控制方案。
进一步地,所述可重构全息超表面包括:N个辐射单元和K个馈源,其中每个馈源与基站的一个射频链路相连。
进一步地,与功率控制相关的变量包括:可重构全息超表面的波束成形矩阵Ψ和基站的数字波束成形矩阵B。
进一步地,系统性能包括:总传输速率R或能量效率π。
进一步地,所述约束条件包括:发射功率约束和可重构全息超表面幅度约束。
进一步地,发射功率约束包括:基站的发射功率不能超过设定的上限。
进一步地,可重构全息超表面幅度约束包括:可重构全息超表面的幅度在[0,1]之间取值。
进一步地,求解最优化问题的方法包括:迭代优化方法。
一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行以上所述方法。
一种电子装置,包括存储器和处理器,其中存储器存储执行以上所述方法的程序。
与现有技术相比,本发明通过优化可重构全息超表面通信系统中的基站发射功率来提升总通信速率,能量效率等通信性能。
附图说明
图1是本发明的可重构全息超表面示意图。
图2是下行的多用户无线通信系统示意图。
图3是本发明的方法流程图。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明特定实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
可重构全息超表面(RHS)由馈源,平行板波导,超材料辐射单元阵列构成,如图1所示,其中馈源发出电磁波,电磁波在平行板波导内进行传播,传播过程中,超材料辐射单元由多个PIN二极管进行控制,通过调节超材料辐射单元对应的PIN二极管的开关状态,可实现对 传播至超材料辐射单元上电磁波的有限离散辐射振幅调节,若有I个PIN二极管控制一个超材料辐射单元,则该单元具有2 I个离散幅度可调节值,因此,将超表面单元中的PIN二极管开关状态调节为目标开关值,在所述超材料辐射单元上辐射出的电磁波幅度值为目标离散化幅度值。
我们考虑一个下行的多用户无线通信系统,如图2所示。该系统包括一个配备RHS的基站,和多个与本小区基站通信的移动用户。设本小区的总用户数量是M。RHS一共有N个辐射单元,K个馈源。每个馈源与基站的一个射频链路相连。
本发明的通信系统功率控制方法,如图3所示,先将功率控制优化问题建模为
Figure PCTCN2022142221-appb-000001
Figure PCTCN2022142221-appb-000002
Figure PCTCN2022142221-appb-000003
其中
Figure PCTCN2022142221-appb-000004
指待优化的变量(包含RHS波束形成矩阵Ψ),
Figure PCTCN2022142221-appb-000005
指待优化的目标(例如总通信速率,能量效率)。
Figure PCTCN2022142221-appb-000006
是基站的总功率。P M是小区基站和RHS总功率的上限。ψ n是RHS的第n个超材料辐射单元的幅度值;RHS波束形成矩阵Ψ是一个N*N的矩阵,其第n行第n列的元素为ψ n,对角线以外的元素都为0。2 I是可调的离散幅度值的个数。通过求解该问题,可以得到一个功率控制方案。
根据不同的应用,上述优化问题中的变量和函数都有不同的形式。例如,假设待优化的变量为RHS波束成形矩阵Ψ和基站数字波束成形矩阵B。当目标函数为总传输速率
Figure PCTCN2022142221-appb-000007
Figure PCTCN2022142221-appb-000008
时,其表达式可以写作
Figure PCTCN2022142221-appb-000009
其中H m表示RHS到用户m的信道。Q是RHS从馈源到超材料辐射单元的传播矩阵。b m是矩阵B的第m列,表示第m个用户信号的数字波束成形向量。σ 2是噪声功率。当目标函数为能量效率时,其表达式可以写作
Figure PCTCN2022142221-appb-000010
其中R表示总传输速率。本小区基站和RHS的总功率可以写作
P(Ψ,B)=P on+tr(|ΨQB| 2)
其中P on指基站的固定功耗。
这些优化问题可以利用多种优化算法进行求解,例如迭代优化等,这里不再赘述。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于可重构全息超表面的通信系统功率控制方法,适用于配备可重构全息超表面的基站构成的通信系统,其步骤包括:
    1)构建一个待优化变量与待优化目标之间的最优化问题,其中待优化变量包括与功率控制相关的变量,待优化目标包括最大化系统性能;
    2)基于约束条件求解最优化问题,获取待优化变量的值;
    3)利用待优化变量的值,生成通信系统功率控制方案。
  2. 如权利要求1所述的方法,其特征在于,所述可重构全息超表面包括:N个辐射单元和K个馈源,其中每个馈源与基站的一个射频链路相连。
  3. 如权利要求1所述的方法,其特征在于,与功率控制相关的变量包括:可重构全息超表面的波束成形矩阵和基站的数字波束成形矩阵。
  4. 如权利要求1所述的方法,其特征在于,系统性能包括:总传输速率或能量效率。
  5. 如权利要求1所述的方法,所述约束条件包括:发射功率约束和可重构全息超表面幅度约束。
  6. 如权利要求5所述的方法,其特征在于,发射功率约束包括:基站的发射功率不能超过设定的上限。
  7. 如权利要求5所述的方法,其特征在于,可重构全息超表面幅度约束包括:可重构全息超表面的幅度在[0,1]之间取值。
  8. 如权利要求1所述的方法,其特征在于,求解最优化问题的方法包括:迭代优化方法。
  9. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行权利要求1-8中任一所述方法。
  10. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行如权利要求1-8中任一所述方法。
PCT/CN2022/142221 2022-03-01 2022-12-27 基于可重构全息超表面的功率控制方法及装置 WO2023165236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210197670.1A CN114726416A (zh) 2022-03-01 2022-03-01 基于可重构全息超表面的功率控制方法及装置
CN202210197670.1 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023165236A1 true WO2023165236A1 (zh) 2023-09-07

Family

ID=82236455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142221 WO2023165236A1 (zh) 2022-03-01 2022-12-27 基于可重构全息超表面的功率控制方法及装置

Country Status (2)

Country Link
CN (1) CN114726416A (zh)
WO (1) WO2023165236A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726416A (zh) * 2022-03-01 2022-07-08 杭州腓腓科技有限公司 基于可重构全息超表面的功率控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804695A (zh) * 2020-12-28 2021-05-14 北京邮电大学 可重构智能表面辅助的无线通信方法及装置
CN113726399A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 基于可重构全息超表面的无线通信中继装置、方法及系统
CN113726378A (zh) * 2021-08-31 2021-11-30 杭州腓腓科技有限公司 一种基于可重构全息超表面的d2d通信方法及系统
CN113726385A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 一种基于可重构全息超表面的无线通信装置及方法
CN113747453A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全息超表面天线的多小区无线通信系统及方法
CN113746519A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全息超表面天线的多点协作传输系统及方法
CN114726416A (zh) * 2022-03-01 2022-07-08 杭州腓腓科技有限公司 基于可重构全息超表面的功率控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804695A (zh) * 2020-12-28 2021-05-14 北京邮电大学 可重构智能表面辅助的无线通信方法及装置
CN113726399A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 基于可重构全息超表面的无线通信中继装置、方法及系统
CN113726385A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 一种基于可重构全息超表面的无线通信装置及方法
CN113726378A (zh) * 2021-08-31 2021-11-30 杭州腓腓科技有限公司 一种基于可重构全息超表面的d2d通信方法及系统
CN113747453A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全息超表面天线的多小区无线通信系统及方法
CN113746519A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全息超表面天线的多点协作传输系统及方法
CN114726416A (zh) * 2022-03-01 2022-07-08 杭州腓腓科技有限公司 基于可重构全息超表面的功率控制方法及装置

Also Published As

Publication number Publication date
CN114726416A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Ala-Laurinaho et al. 2-D beam-steerable integrated lens antenna system for 5G $ E $-band access and backhaul
Basharat et al. Exploring reconfigurable intelligent surfaces for 6G: State‐of‐the‐art and the road ahead
WO2023165236A1 (zh) 基于可重构全息超表面的功率控制方法及装置
KR20190118794A (ko) 무선 통신 시스템에서 렌즈를 이용하여 빔을 조절하기 위한 장치 및 방법
CN113747453A (zh) 基于可重构全息超表面天线的多小区无线通信系统及方法
WO2019137015A1 (zh) 一种二维辐射方向图可重构的天线系统
CN113765565A (zh) 基于可重构全息超表面的非正交多址接入通信方法和系统
CN113726378A (zh) 一种基于可重构全息超表面的d2d通信方法及系统
CN109888508B (zh) 相控阵天线
CN113726384A (zh) 基于全息超表面的非授权频谱接入和波束赋形方法及装置
Ye et al. Cache-enabled millimeter wave cellular networks with clusters
WO2023165237A1 (zh) 一种基于全息多址接入的信道估计方法及装置
WO2023165238A1 (zh) 一种基于全息多址接入的最优码字计算方法及装置
CN113726387A (zh) 基于可重构全息超表面辅助的移动边缘计算系统及方法
CN113745807A (zh) 基于全息超表面天线的多小区通信干扰消除系统及方法
Nair et al. Exploiting low complexity beam allocation in multi-user switched beam millimeter wave systems
CN113746519A (zh) 基于可重构全息超表面天线的多点协作传输系统及方法
Yang et al. RIS-aided constant-envelope beamforming for multiuser wireless power transfer: A max-min approach
CN114727398A (zh) 基于可重构全息超表面的用户调度方法及装置
CN113595607A (zh) 一种基于可重构全息超表面的混合预编码方法及系统
CN114845397A (zh) 基于可重构全息超表面的频率资源管理方法及装置
CN113472414A (zh) 基于可重构全息超表面的串行天线波束成形方法及系统
CN113726399A (zh) 基于可重构全息超表面的无线通信中继装置、方法及系统
CN113765561A (zh) 基于信道互易性的全息波束成形方法、系统及存储介质
CN111262023B (zh) 一种基于近场空馈机制的低剖面新型相控阵天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929660

Country of ref document: EP

Kind code of ref document: A1