WO2023165176A1 - 数据传输方法、电力线通信装置和系统 - Google Patents

数据传输方法、电力线通信装置和系统 Download PDF

Info

Publication number
WO2023165176A1
WO2023165176A1 PCT/CN2022/133940 CN2022133940W WO2023165176A1 WO 2023165176 A1 WO2023165176 A1 WO 2023165176A1 CN 2022133940 W CN2022133940 W CN 2022133940W WO 2023165176 A1 WO2023165176 A1 WO 2023165176A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
field
power line
line communication
identification information
Prior art date
Application number
PCT/CN2022/133940
Other languages
English (en)
French (fr)
Inventor
孔雪鹏
潘稻
林泽锋
徐力
李倩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023165176A1 publication Critical patent/WO2023165176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the embodiments of the present application relate to the technical field of power line communication, and in particular, to a data transmission method, a power line communication device, and a system.
  • PLC Power Line Communication
  • the source device needs to send information indicating the establishment of a multicast group to multiple target devices that become members of the multicast group, and wait for feedback information from each of the multiple target devices.
  • the source device will repeatedly send the information indicating the establishment of the multicast group multiple times. As a result, the creation of the multicast group takes a long time and occupies a large amount of bandwidth.
  • the multicast group is not transmitted and data is not transmitted during the creation of the multicast group, this causes a serious waste of bandwidth. Therefore, in a scenario where the source device transmits data to multiple target devices, how the source device efficiently transmits data to multiple target devices to save bandwidth becomes a problem to be solved.
  • a power line node can efficiently transmit data to multiple destination nodes to save bandwidth.
  • the present application adopts the following technical solutions.
  • the embodiment of the present application provides a data transmission method applied to power line communication
  • the data transmission method includes: a power line node generates a data frame, and the data frame includes: a first field, a second field and a third field , wherein the first field is used to carry modulation parameters, and the second field is used to carry identification information of at least one destination node of this multicast configured by the power line node in a bit-mapped manner, the The third field is used to carry service data; the power line node sends the data frame to a node in the power line communication network.
  • the first field is, for example, the physical frame header field shown in FIG. 2
  • the second field is, for example, the bitmap field shown in FIG. 2
  • the third field may be, for example, the payload field shown in FIG. 2
  • the identification information of the destination node may be, for example, the registration ID of the destination node.
  • the foregoing modulation parameters may include, but not limited to, modulation order and the like, for example.
  • the embodiments of the present application can designate any node in the power line communication system to receive data frames, which improves the flexibility of data transmission.
  • the configuration of the identification information of at least one destination node of this multicast by the power line node is triggered based on the indication information received from the high-level instruction, and the indication information is used for Indicates identification information of the at least one destination node.
  • the data transmission method described in the embodiment of the present application may be applied to physical layer communication, for example, and the power line node may be a communication device in the physical layer.
  • the above-mentioned high-level instructions may be instructions issued by any layer above the physical layer, for example, instructions issued by the application layer or data link layer.
  • the application layer can transmit the identification information of the destination node and the data to be sent to the power line node in the physical layer through the transport layer, the network layer and the data link layer.
  • hardware modules for performing functions of various protocol layers may also be integrated together, for example, the above-mentioned power line nodes may also be used for performing functions of other protocol layers, which is not specifically limited in this embodiment of the present application.
  • the second field includes a plurality of bits, and the plurality of bits have a mapping relationship with the identification information of nodes in the power line communication network;
  • the configuration of the identification information of at least one destination node includes: the power line node setting the target bit corresponding to the identification information of each destination node in the at least one destination node in the second field as the second One piece of information, the first information indicates to read the service data; set any bit in the second field except the target bit as second information, and the second information indicates to discard The data frame.
  • the identification information of the node in the power line communication network is pre-allocated by the power line node to the node in the power line communication network.
  • the first information may be, for example, a signal "1" and the second information may be, for example, a signal "0"; in addition, the first information may be, for example, a signal "0", and the second information may be, for example, a signal "1".
  • the power line node can set the corresponding bit of the destination node in the second field to "1", and set the remaining bits to "0". , simplifying the design of the second field.
  • multiple ways may be used to modulate the signal carried by the data frame.
  • the power line node sending the data frame to the at least one destination node includes: the signal carried by the first field, the signal carried by the second field, and the The signals carried by the third field are independently modulated to generate multiple modulated signals; and the multiple modulated signals are sent to nodes in the power line communication network.
  • the first field, the second field and the third field are independent fields.
  • the signal carried by the first field, the signal carried by the second field, and the signal carried by the third field may be independently modulated.
  • the sending the data frame by the power line node to the at least one destination node includes: sending at least one of the signal carried by the first field and the signal carried by the third field One item, modulating together with the signal carried by the second field to generate at least one modulated signal; sending the at least one modulated signal to a node in the power line communication network.
  • the first field and the second field may be the same field, and the third field is an independent field.
  • the signal carried by the first field and the signal carried by the second field can be modulated together, and the signal carried by the third field can be independently modulated; or, the second field and the third field can be the same field, and the A field is an independent field.
  • the signal carried by the second field and the signal carried by the third field can be modulated together, and the signal carried by the first field can be independently modulated; or, the first field, the second field and the third field can be carried signals are modulated together.
  • the data transmission method further includes: when the length of the second field changes, mapping the length of the second field and each bit in the second field to The identification of is sent to the nodes in the power line communication network.
  • an embodiment of the present application provides a data transmission method applied to power line communication, the method includes: a first node in a power line communication network receives a data frame from a power line node, and the data frame includes: a first field, a Two fields and a third field, wherein the first field is used to carry modulation parameters, and the second field is used to carry at least one destination node of this multicast configured by the power line node in a bit-mapped manner
  • the identification information of the third field is used to carry service data; when the second field indicates that the first node is the destination node, based on the modulation parameter, read from the third field The business data.
  • the first field is, for example, the physical frame header field shown in FIG. 2
  • the second field is, for example, the bitmap field shown in FIG. 2
  • the third field may be, for example, the payload field shown in FIG. 2 .
  • the identification information of the destination node may be, for example, the registration ID of the destination node.
  • the power line node (such as node n1 shown in FIG. 1 ) can Based on the pre-established network topology, data frames are broadcast to nodes in the network.
  • the power line node transmits the data frame to the destination node in the network, it does not need to establish a multicast group, that is, it does not need to interact with multiple nodes before the service data is sent, and the data can be directly
  • the frame is broadcast to the nodes in the network, which improves the bandwidth utilization rate in the network compared with the multicasting method used in the traditional technology to create a multicast group.
  • the embodiments of the present application can designate any node in the power line communication system to receive data frames, which improves the flexibility of data transmission.
  • the data transmission method further includes: discarding the data frame when the second field indicates that the first node is not the destination node.
  • the second field includes a plurality of bits, and the plurality of bits have a mapping relationship with identification information of nodes in the power line communication network; when the second field and When the bit corresponding to the identification information of the first node is the first information, it indicates that the first node is the destination node; when the bit corresponding to the identification information of the first node in the second field When the bit is the second information, it indicates that the first node is not the destination node.
  • the first node is a relay node in the power line communication network; the method further includes: the first node reads the second field based on the mapping relationship In the second field, the bit information corresponding to the identification information of the subsequent node coupled to the relay node; when the bit information corresponding to the identification information of the subsequent node in the second field is the When the first information is received, the data frame is forwarded to the subsequent node.
  • an embodiment of the present application provides a power line communication device, the power line communication device is a power line node, and the power line communication device includes a processor and an interface; the processor is configured to generate a data frame, and the data frame Including a first field, a second field and a third field, wherein the first field is used to carry modulation parameters, and the second field is used to carry the current group configuration configured by the power line node in a bit-mapped manner.
  • the identification information of at least one destination node broadcasted, the third field is used to carry service data; the interface sends the data frame to a node in the power line communication network.
  • the configuration of the identification information of at least one destination node of this multicast by the power line node is triggered based on the indication information received from the high-level instruction, and the indication information is used for Indicates identification information of the at least one destination node.
  • the second field includes a plurality of bits, and the plurality of bits have a mapping relationship with identification information of nodes in the power line communication network; the processor is specifically configured to: In the second field, the target bit corresponding to the identification information of each destination node in the at least one destination node is set as first information, and the first information indicates to read the service data; set the Any bit in the second field except the target bit is set as second information, and the second information indicates discarding the data frame.
  • the identification information of the node in the power line communication network is pre-allocated by the power line node to the node in the power line communication network.
  • the processor is further configured to: independently modulate the signal carried by the first field, the signal carried by the second field, and the signal carried by the third field, so as to Generate multiple modulated signals;
  • the interface is specifically configured to: send the multiple modulated signals to nodes in the power line communication network.
  • the processor is further configured to: combine at least one of the signal carried by the first field and the signal carried by the third field with the signal carried by the second field modulated together to generate at least one modulated signal; the interface is specifically configured to: send the at least one modulated signal to a node in the power line communication network.
  • the processor is further configured to: when the length of the second field changes, map the length of the second field and each bit in the second field to The identifier of is sent to the nodes in the power line communication network through the interface.
  • an embodiment of the present application provides a power line communication device, the power line communication device is a first node in a power line communication network, and the power line communication device includes a processor and an interface; the interface is used to receive a data frame , the data frame includes: a first field, a second field and a third field, wherein the first field is used to carry modulation parameters, and the second field is used to carry the The identification information of at least one destination node of the current multicast configured by the node, the third field is used to carry service data; the processor is configured to when the second field indicates that the first node is the When referring to the destination node, the service data is demodulated from the third field based on the modulation parameter.
  • the processor is further configured to: discard the data frame when the second field indicates that the first node is not the destination node.
  • the second field includes a plurality of bits, and the plurality of bits have a mapping relationship with identification information of nodes in the power line communication network; when the second field and When the bit corresponding to the identification information of the first node is the first information, it indicates that the first node is the destination node; when the bit corresponding to the identification information of the first node in the second field When the bit is the second information, it indicates that the first node is not the destination node.
  • an embodiment of the present application provides a power line communication system, where the power line communication system includes the power line communication device as described in the third aspect and the power line communication device as described in the fourth aspect.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program.
  • the computer program is run by a processor, the data transmission method as described in the first aspect above or the data transmission method as described in the second aspect above is implemented.
  • the data transmission method described in the aspect is implemented.
  • the embodiment of the present application provides a computer program product.
  • the computer program product runs on a processor, it can realize the data transmission method as described in the first aspect above or the data transmission method as described in the second aspect above. transfer method.
  • FIG. 1 is a schematic structural diagram of a power line communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a frame structure applied in a power line communication system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application scenario applied to a power line communication system provided by an embodiment of the present application
  • Fig. 4 is a flow chart of the data transmission method provided by the embodiment of the present application.
  • Fig. 5 is another flow chart of the data transmission method provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of each node shown in FIG. 1 provided in the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a power line communication device provided by an embodiment of the present application.
  • Fig. 8 is another schematic structural diagram of the power line communication device provided by the embodiment of the present application.
  • first, or “second” and similar words mentioned herein do not indicate any order, quantity or importance, but are only used to distinguish different components. Likewise, words like “a” or “one” do not denote a limitation in number, but indicate that there is at least one. "Coupling” and similar words are not limited to physical or mechanical direct connection, but may include electrical connection, whether direct or indirect, which is equivalent to communication in a broad sense.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • “plurality” means two or more. For example, a plurality of nodes refers to two or more nodes.
  • the power line communication system provided in the embodiment of the present application can be applied in various communication scenarios.
  • the power line communication system provided in the embodiment of the present application may be physical layer communication.
  • the power line communication system described in the embodiments of the present application may include multiple nodes, and the multiple nodes may be divided into multiple levels, such as a first-level node, a second-level node, a third-level node, and a fourth-level node.
  • a first-level node may also be called a source node, a power line node, or a master control node, and the first-level node may be, for example, a gateway device, a server in a local area network, or a master control device.
  • the second-level node When the second-level node is connected to more level nodes (such as third-level nodes, fourth-level nodes, etc.), the second-level node can be, for example, a switch or a router; when the second-level node is the last level node, the second-level node A stage can be, for example, a terminal device.
  • the third-level node when a third-level node is connected to more level nodes, the third-level node can be a switch or a router, for example; when the third-level node is the last level node, the third-level node can be a terminal device, for example.
  • the aforementioned terminal devices may include, but are not limited to, various types of portable devices such as mobile phones, PCs, tablet computers, notebook computers, or wearable devices (such as smart watches, AR devices, and VR devices).
  • a first-level node can be connected to multiple second-level nodes.
  • some second-level nodes may be the last level nodes, and some second-level nodes may be connected to third-level nodes later;
  • a second-level node can be connected to multiple third-level nodes, and each third-level node can be connected to multiple fourth-level nodes. Therefore, the above-mentioned multiple nodes are connected through electric power lines.
  • the source node described in the embodiment of the present application may be a node in a power line communication system that encapsulates upper-layer data based on a preset frame structure (such as the frame structure shown in FIG. 2 ) and sends the encapsulated data frame , such as a first-level node, the source node is also configured to configure the identification information of at least one destination node of this multicast in a bitmap manner, and carry the bitmap in the bitmap field shown in Figure 2;
  • the destination node described in the embodiment of the present application may be at least some nodes in the power line communication system except the source node.
  • multicast when a source node transmits data to multiple destination nodes in the network, multicast is usually used for transmission.
  • multicast is used for data transmission, it is first necessary to create a multicast group, and then transmit data to nodes in the multicast group.
  • the source node needs to send information indicating the establishment of a multicast group to multiple nodes that become members of the multicast group, and wait for feedback information from each of the multiple nodes.
  • the source node will repeatedly send the information indicating the establishment of the multicast group multiple times.
  • the creation of the multicast group takes a long time and occupies a large amount of bandwidth.
  • the multicast group Since the multicast group is not transmitted and data is not transmitted during the creation of the multicast group, this causes a serious waste of bandwidth.
  • the nodes in the multicast group usually cannot be flexibly changed.
  • the source node needs to transmit data to multiple nodes other than the multicast group, a new multicast group needs to be created.
  • the number of multicast groups cannot be increased without limit.
  • the number of multicast groups reaches the upper limit and a new multicast group needs to be added, one of the multicast groups needs to be released.
  • the source node In the process of releasing one of the multicast groups, the source node also needs to perform multiple interactions with the nodes in the multicast group (for example, the source node sends information indicating to remove the node, the node periodically replies, the source node sends Indicates that the information to be removed, etc.), also occupies bandwidth, resulting in a large amount of bandwidth waste.
  • the node that reads the service data in the data frame is indicated in the bitmap field, so that the source node (also called the master control node or The sending end, such as the node n1) in FIG. 1 can broadcast the data frame to the nodes in the network based on the pre-established network topology.
  • the source node transmits data frames to multiple nodes in the network, it does not need to establish a multicast group, that is, it does not need to interact with multiple nodes before sending service data, and can directly send
  • the data frame is broadcast to the nodes in the network, which improves the bandwidth utilization rate in the network compared with the multicasting method used in the traditional technology to create a multicast group.
  • the embodiments of the present application can designate any node in the power line communication system to receive data frames, which improves the flexibility of data transmission.
  • the source node may not need to change the frame structure, it only needs to register ID-based
  • the use case assigns a registration ID to the newly added node, that is, a small amount of interaction between the source node node and the newly added node can complete the mapping between the bits in the bitmap field and the new node, and the newly added node is based on The mapping relationship between the bits in the bitmap field and the registration ID can read the data frame.
  • it can greatly simplify the node interaction process and reduce bandwidth waste.
  • FIG. 1 is a schematic structural diagram of a power line communication system 100 provided by an embodiment of the present application.
  • the power line communication system 100 schematically shows four-level nodes.
  • the first-level nodes include node n1
  • the second-level nodes include node n21 and node n22
  • the third-level nodes include node n31, node n32, node n33, and node n34
  • the fourth-level nodes include node n41 and node n42.
  • the node n31 and the node n32 are connected to the node n22
  • the node n33 and the node n34 are connected to the node n23
  • the node n41 and the node n42 are connected to the node n31.
  • Nodes at all levels in the power line communication system 100 are connected through a power line network, so as to perform data exchange through the power line. It can be understood that the power line communication system 100 may include more levels of nodes, and each level may include more nodes, which is not specifically limited in this embodiment of the present application.
  • the node n1 may also be called a source node or a master control node, and is used to manage other nodes to access or exit the power line network. Specifically, when other nodes need to access the power line network, they need to apply for registration to node n1. Node n1 assigns a registration ID to each node applying for registration, and then broadcasts the registration ID of each node to any node in the power line network. Therefore, each node in the power line network has a corresponding registration ID, and the registration IDs of each node are different. In addition, when a certain node withdraws from the power line network, the node n1 is notified, and the node n1 broadcasts the signal that the node withdraws from the power line network to any node in the power line network.
  • each node in the power line communication system 100 by the node n1 will be described below in combination with specific scenarios.
  • the node n21 and the node n22 respectively apply for a registration ID to the node n1 based on the PLC communication protocol.
  • Node n1 assigns registration ID number 001 to node n21, and assigns registration ID number 002 to node n22.
  • Both node n31 and node n32 communicate with node n1 through node n22 to apply for a registration ID from node n1.
  • the node n1 assigns the registration number 003 and the registration number 004 to the node n31 and the node n32, respectively.
  • node n23 sends a message to node n1 Apply for a registration ID.
  • the node n1 assigns the registration ID number 005 to the node n21.
  • Both the node n33 and the node n34 communicate with the node n1 through the node n23 to apply for a registration ID from the node n1.
  • the node n1 assigns the registration number 006 and the registration number 007 to the node n33 and the node n34, respectively. Both node n41 and node n42 communicate with node n1 through node n31 and node n21 to apply for a registration ID from node n1. Node n1 assigns registration number 006 and registration number 007 to node n41 and node n42, respectively. At this time, the registration ID of each node is shown in FIG. 1 .
  • node n1 when node n1 needs to transmit data to some nodes, node n1 can encapsulate the data based on the preset frame structure, and generate a data frame to transmit to each node through the power line. secondary node.
  • FIG. 2 schematically shows a frame structure provided by an embodiment of the present application.
  • the frame structure includes a preamble field, a physical layer frame header field and a payload field.
  • the preamble field is used to instruct the receiving end to perform frame delimitation and frame synchronization on the received data frame.
  • the physical layer header field is used to carry modulation parameters, such as the modulation order; in addition, the information carried by the physical layer header field may also include the length of the data frame and the identifier of the source node used to send the data frame , address or port number and other information.
  • the payload field is used to carry business data.
  • the service data here can be, for example, data such as audio data and video data input by the user through an application program, which is generated after encapsulation and encoding at the application layer, transport layer, data link layer, and physical layer.
  • the frame structure shown in the embodiment of the present application includes not only the above-mentioned signals, but also a bit map (bit map) field.
  • the bit map field is used to bear the identification information of at least one destination node of this multicast configured by the source node, that is, the registration ID number.
  • the bit map field is described in detail below.
  • the bit map field can include multiple bits, and the bits in the bit map field have a mapping relationship with the registration ID number. Therefore, one bit corresponds to one registered node.
  • each bit includes two signals, a signal "1" and a signal "0".
  • the source node can set the bit corresponding to the node that needs to receive the data frame in the bit map field to "1", and set the remaining bits to "0".
  • the destination node can also set the bit corresponding to the node that needs to receive the data frame in the bit map field to "0", and set the remaining bits to "1",
  • the bit map field may include 9 bits. According to the sending order of the bit signals, the first bit corresponds to the registration ID number 001, the second bit corresponds to the registration ID number 002, the third bit corresponds to the registration ID number 003..., and the ninth bit corresponds to the registration ID No. 009. It can be seen from the power line communication system 100 shown in FIG.
  • the registration ID number 001 corresponds to the node n21
  • the registration ID number 002 corresponds to the node n22 . . .
  • the registration ID number 009 corresponds to the node n42. That is, the mapping relationship between each bit in the bit map field and the registration node is shown in FIG. 2 . Assuming that the nodes that need to receive data frames are node n21, node n31 and node n23, then node n1 can set the first bit, the third bit and the fifth bit to "1", and set the remaining bits to "0 ".
  • the preamble field can be transmitted by one or more independent symbols through independent modulation, for example, and the physical layer frame header field can be transmitted by one or more independent symbols through independent modulation.
  • the bit map field can be transmitted by one or more independent symbols through independent modulation, and the payload field can be transmitted by multiple independent symbols.
  • Figure 2 is only an example of the frame structure, and is not used to limit the solution.
  • the bit map field used to indicate the mapping relationship between bits and registration IDs can be
  • the payload field used to carry business data is coded together in the same field, that is, the signal carried by the bit map field and the signal carried by the payload field are modulated together and sent by multiple common symbols;
  • another example is the bit map field It can be coded together with the physical frame header field in the same field, that is, the signal carried by the bit map field and the signal carried by the physical frame header field are modulated together and sent by common multiple symbols.
  • the mapping relationship between each bit in the bitmap field and the registration ID is established, so that the source node can , set the bit corresponding to the destination node in the bitmap field to "1", set the remaining bits to "0", and broadcast the data frame to the nodes in the network based on the pre-established network topology.
  • the source node transmits data frames to multiple nodes in the network, it does not need to establish a multicast group, that is, it does not need to interact with multiple nodes before sending service data, and can directly send
  • the data frame is broadcast to the nodes in the network, which improves the bandwidth utilization rate in the network compared with the multicasting method used in the traditional technology to create a multicast group.
  • the embodiments of the present application can designate any node in the power line communication system to receive data frames, which improves the flexibility of data transmission.
  • the length of bits in the bitmap field can be It is a fixed value, and the length of bits in the bitmap field is the same as the number of registration IDs, that is, the maximum number of nodes that can be connected in the power line communication system is the same. For example, a maximum of 250 nodes can be connected to the power line communication system 100, and 250 registration IDs can be preset in the power line communication system 100, that is, the number of bits in the corresponding bitmap field is 250.
  • the number of nodes connected to the power line communication system 100 is not necessarily the maximum value, for example, 20 registered nodes, 30 registered nodes, etc. may be connected to the power line communication system 100 .
  • the source node can detect whether there is an unused registration ID, and if so, assign the unused registration ID number to the new node Node; if it does not exist, the registration ID number of the device that is powered off or exits the network can be recovered to be assigned to a newly joined node. The following describes the scenario shown in FIG. 3 .
  • the node n1 can detect that the node n34 exits the power line network.
  • the node n35 sends a signal s1 to the node n1 based on the PLC communication protocol, and the signal s1 indicates an application registration ID.
  • the node can perform the following steps:
  • Step 301 in response to the signal s1 sent by the node n35, detect whether there is an unused registration ID. When it is detected that there is an unused registration ID number 010, execute step 302; when it is detected that there is no unused registration ID number, execute step 303.
  • Step 302 assign the registration ID number 010 to the node n35.
  • Step 303 detecting whether there is a node in the PLC network whose exit time exceeds a preset threshold and still retains a registration ID number.
  • Step 304 cancel the registration ID of the node n34, and assign the registration ID number 007 to the node n35.
  • Step 305 sending the node n35 and the registration ID number corresponding to the node n35 to the node n23, so that the node n23 stores the node n35 and the registration ID number corresponding to the node n35 in the relay table. Since node n35 is connected to node n23 and serves as a third-level node of node n23, when node n23 relays and forwards data frames, it can determine whether node n35 is Need to receive data, forward when node n35 needs to receive data.
  • the source node When a node transmits data, the source node does not need to change the frame structure, it only needs to assign a registration ID to the newly added node based on the usage of the registration ID, that is, a small amount of interaction between the source node and the newly added node is
  • the mapping between the bitmap field and the new node can be completed, and the newly added node can read the data frame based on the mapping relationship between the bitmap field and the registration ID.
  • it can greatly simplify the node interaction process and reduce bandwidth waste.
  • the length of bits in the bitmap field is also It can be changed, and the length of the bit can be dynamically adjusted based on the number of registered nodes in the power line communication system. That is, the bitmap field can be a variable-length field. For example, 20 nodes are currently connected to the power line communication system 100, if the bitmap field is set to 250 bits, there are 230 bits that are not mapped to nodes, and if these 230 bits are included in the data frame, it will cause It is a serious waste of bandwidth, and the transmission of 230 useless bits also takes up the transmission time.
  • the number of bits in the bitmap field can be reduced, for example, the number of bits can be set to 25, and a redundancy of 5 bits can be set for use by subsequent newly accessed nodes.
  • the number of bits in the bitmap field can be increased to indicate whether more nodes need Receive data frame.
  • node n1 may broadcast the length of the bitmap field and the registration ID corresponding to each bit to the power line communication system 100 Each registration node in . Therefore, when transmitting data in the next cycle, the node n1 may transmit data using a frame structure in which the bitmap field is changed to indicate whether each node needs to read service data in the data frame.
  • FIG. 4 is a process 400 of the data transmission method provided by the embodiment of the present application.
  • the data transmission method is applied to the power line communication system 100 shown in FIG. 1, and the data transmission method includes:
  • step 401 node n1 generates data frame 1 based on the frame structure shown in FIG. 2 .
  • Data frame 1 includes a bitmap field, and the bitmap field is used to instruct node n21 and node n22 to receive data frame 1 . That is to say, in this step, the node n1 sets the bits corresponding to the nodes n21 and n22 in the bitmap field to "1", and sets the bits corresponding to the other nodes to "0", that is to say , according to the order of signal transmission, the signal in the bitmap field is "1100000"; node n1 sets the service in the payload field in the frame structure, and then adds the preamble field and the physical layer frame header field to generate data frame 1.
  • the node n1 transmits the data frame 1 to the node n21, the node n22 and the node n23 through the power line.
  • node n1 since node n21, node n22, and node n23 are connected to node n1 by the same power line, node n1 sends data frame 1 once through the power line, and node n21, node n22, and node n23 can all receive data frame 1, that is Node n1 broadcasts data frame 1 through the power line.
  • node n21 demodulates service data from the payload field in data frame 1 based on the bits corresponding to the registration ID of node n21 in the bitmap field and the modulation parameters carried in the physical layer header of data frame 1.
  • the node n21 may query the signal of the bit corresponding to the registration ID of the node n21 based on the order of the bits received in the bitmap field. It can be seen from FIG. 1 and FIG. 2 that the registration ID of node n21 is 001, and the bit corresponding to node n21 in the bitmap field is the first bit.
  • the signal of the first bit is "1"
  • the node n21 needs to read the service data in the data frame 1, so as to transmit the service data to the upper layer of the node n21 (such as the data link layer). Therefore, the node n21 demodulates the service data from the payload field in the data frame 1 based on the modulation parameter carried by the physical layer frame header of the data frame 1 .
  • step 404 the node n22 demodulates the service data from the payload field in the data frame 1 based on the bits corresponding to the registration ID of the node n22 in the bitmap field and based on the modulation parameters carried in the physical layer header of the data frame 1.
  • the node n22 checks the signal of the second bit to be "1" based on the order of the bits received in the bitmap field, that is, the node n22 needs to read the service data in the data frame 1. Therefore, the node n22 demodulates the service data from the payload field in the data frame 1 based on the modulation parameters carried in the header of the physical layer of the data frame 1 .
  • Step 405 the node n23 discards the data frame 1 based on the bits corresponding to the registration ID of the node n23 in the bitmap field.
  • the node n23 checks that the signal of the fifth bit is "0" based on the order of the bits received in the bitmap field, that is, the node n23 does not need to read the service data in the data frame 1. Therefore, the node n23 discards the data frame 1 .
  • step 403, step 404 and step 405 may be performed simultaneously.
  • the data transmission method 300 may further include more or fewer steps.
  • the node n21 can also detect whether the data frame 1 is complete based on the length of the data frame 1 indicated in the physical frame header field, and when the length of the data frame 1 indicated in the physical frame header field is detected and When the received data frame 1 has the same length, read the service data from the payload field in the data frame 1.
  • the node n21 transmits feedback information f1 to the node n1, and the feedback information f1 is used to indicate that the node n21 successfully reads the data.
  • the above step 403 can also be replaced with the following step: the node n21 detects the length of the data frame 1 indicated in the physical frame header field and the received data frame 1 based on the length of the data frame 1 indicated in the physical frame header field.
  • the node n21 transmits feedback information f2 to the node n1, and the feedback information f2 Used to instruct node n1 to retransmit data frame 1. After the replaced step, the following step is further included, the node n1 retransmits the data frame 1 to the node n21 based on the feedback information f2.
  • node n21 can transmit feedback information to node n1 in a preset frame format, for example, the preset frame format can include the preamble field and the physical layer frame header field shown in Figure 2, node n21 may set the feedback information indicating whether the data frame 1 is successfully received in the header field of the physical layer.
  • the preset frame format can include the preamble field and the physical layer frame header field shown in Figure 2, node n21 may set the feedback information indicating whether the data frame 1 is successfully received in the header field of the physical layer.
  • the node n1 schematically shows that some secondary nodes directly connected to the node n1 are destination nodes.
  • the destination node may include a fourth-level node. Taking the destination nodes as node n22 , node n31 , node n33 and node n41 shown in FIG. 1 as an example, the implementation will be described in conjunction with FIG. 1 , FIG. 2 and FIG. 5 . Please refer to FIG. 5.
  • FIG. 5 is a flowchart of a data transmission method 500 provided in an embodiment of the present application. The data transmission method 500 is applied to the power line communication system 100 shown in FIG. 1.
  • the data transmission method 500 includes the following steps:
  • node n1 In step 501, node n1 generates data frame 2 based on the frame structure shown in FIG. 2 .
  • Data frame 2 includes a bitmap field, which is used to instruct n22, node n32, and node n33 to read data in data frame 2.
  • node n1 sets the bits corresponding to n22, node n31 and node n33 in the bitmap field to "1", and sets the bits corresponding to other nodes to "0", that is to say, according to the signal
  • the order of transmission the signal in the bitmap field is "0110010"; node n1 carries the service data in the payload field in the frame structure, and then adds the preamble field and the physical layer frame header field to generate data frame 2.
  • Step 502 the node n1 transmits the data frame 2 to the node n21, the node n22 and the node n23 through the power line.
  • node n1 since node n21, node n22, and node n23 are connected to node n1 by the same power line, node n1 sends data frame 2 once through the power line, and node n21, node n22, and node n23 can all receive the data frame, that is, node n1 broadcasts data frame 2 over the power line.
  • step 503 the node n21 discards the data frame 2 based on the bits corresponding to the registration ID of the node n21 in the bitmap field.
  • the node n21 checks that the signal of the first bit is "0" based on the order of the bits received in the bitmap field. Thus, node n21 discards data frame 2 .
  • Step 504 node n22 demodulates the service data from the payload field in data frame 2 based on the bits corresponding to the registration ID of node n21 in the bitmap field and the modulation parameters carried in the physical layer header of data frame 2.
  • the node n22 checks that the signal of the second bit is "1" based on the order of the bits received in the bitmap field. Therefore, the node n21 demodulates the service data from the payload field in the data frame 2 based on the modulation parameters carried in the header of the physical layer of the data frame 2 .
  • Step 505 node n22 forwards the data frame 2 to node n31 and node n32 based on the bit corresponding to the registration ID of node n32 and the bit corresponding to registration ID of node n41 in the bitmap field.
  • a relay table may be stored in the node n22, and the relay table records the multi-level nodes connected to the node n22 and the registration ID corresponding to each node.
  • the relay table may be pre-stored in the node n22 based on the network topology in the power line communication system 100 .
  • the relay table stored by node n22 records node n31, the registration ID corresponding to node n31, node n32, the registration ID corresponding to node n32, node n41, and the registration ID corresponding to node n41 The registration ID of , the node n42, and the registration ID corresponding to the node n42.
  • the node n22 continues to inquire about the bits corresponding to the registration ID of the node n31, the registration ID of the node n32, the registration ID of the node n41 and the registration ID of the node n42 in the bitmap field.
  • the bit corresponding to the registration ID of node n31 is the third bit
  • the bit corresponding to the registration ID of node n32 is the fourth bit
  • the bit corresponding to the registration ID of node n41 is the eighth bit
  • the bit corresponding to the registration ID of the node n42 is the ninth bit.
  • step 504 and step 505 can be performed simultaneously.
  • Step 506 the node n23 forwards the data frame 2 to the node n33 based on the bits corresponding to the registration ID of the node n33 in the bitmap field.
  • the node n22 first determines that the node n23 does not need to read the service data in the data frame 2 based on the bit corresponding to the registration ID of the node n23 in the bitmap field.
  • a relay table may be stored in the node n23, and the relay table records the multi-level nodes connected to the node n23 and the registration ID corresponding to each node. It can be seen from FIG. 1 and FIG.
  • the relay table stored by node n23 records node n33, the registration ID corresponding to node n33, node n34, and the registration ID corresponding to node n34.
  • the node n22 continues to query the bits corresponding to the registration ID of the node n33 and the registration ID of the node n34 in the bitmap field.
  • the bit corresponding to the registration ID of node n33 is the sixth bit
  • the bit corresponding to the registration ID of node n32 is the seventh bit.
  • node n23 Based on the order of the bits received in the bitmap field, node n23 inquires that the signal of the sixth bit is “1” and the signal of the seventh bit is “0”, that is, node n33 needs to receive data frame 2 . Thus, node n23 forwards data frame 2 to node 31. It should be noted that, since the node n33 and the node n34 are connected to the node n23 through the same power line, the node n34 can also receive the data frame 2 . The node n34 directly discards the data frame 2 based on the information indicated by the bitmap field in the data frame 2 .
  • the node n31 forwards the data frame 2 to the node n41 based on the bits corresponding to the registration ID of the node n41 in the bitmap field.
  • the node n31 first determines that the node n31 does not need to read the data frame 2 based on the bits corresponding to the registration ID of the node n31 in the bitmap field.
  • a relay table may be stored in the node n31, and the relay table records multi-level nodes connected to the node n31 and a registration ID corresponding to each node. It can be seen from FIG. 1 and FIG.
  • the relay table stored by node n31 records node n41, the registration ID corresponding to node n41, node n42, and the registration ID corresponding to node n42.
  • the node n31 continues to query the bits corresponding to the registration ID of the node n41 and the registration ID of the node n42 in the bitmap field.
  • the bit corresponding to the registration ID of node n41 is the eighth bit
  • the bit corresponding to the registration ID of node n42 is the ninth bit.
  • the node n31 inquires that the signal of the eighth bit is “1” and the signal of the ninth bit is “0”, that is, the node n41 needs to receive the data frame 2 . Thus, node n31 forwards data frame 2 to node 41.
  • Step 508 node n32 demodulates service data from the payload field in data frame 2 based on the bits corresponding to the registration ID of node n32 in the bitmap field, using the modulation parameters carried in the physical layer header of data frame 2 .
  • Step 509 node n33 demodulates service data from the payload field in data frame 2 based on the bits corresponding to the registration ID of node n33 in the bitmap field, using the modulation parameters carried in the physical layer header of data frame 2 .
  • node n41 demodulates service data from the payload field in data frame 2 based on the bits in the bitmap field corresponding to the registration ID of node n33, using the modulation parameters carried in the physical layer header of data frame 2.
  • a node includes a processor, memory, and a number of interfaces.
  • the processor executes various functions of the node by running or executing software programs stored in the memory, and calling instructions and data stored in the memory.
  • the processor may include one or more modules, for example, including a central processing unit (central processing unit, CPU) and a network processor (network processor, NP), and the network processor may be composed of an application-specific integrated circuit (ASP, ASIC) or field-programmable gate array (field-Programmable Gate array, FPGA) chip implementation.
  • ASP central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-Programmable Gate array
  • the memory can be used to store software programs, instructions, and data, and can be implemented by any type of volatile or nonvolatile memory or a combination thereof, including, for example, static random access memory (SRAM), dynamic random access memory (SDRAM) ), double-rate synchronous dynamic random access memory (DDR), erasable programmable read-only memory (EPROM) and one or more of read-only memory (ROM).
  • SRAM static random access memory
  • SDRAM dynamic random access memory
  • DDR double-rate synchronous dynamic random access memory
  • EPROM erasable programmable read-only memory
  • ROM read-only memory
  • a node may include multiple interfaces, and n are schematically shown in the figure. Among the multiple interfaces, a part of Ethernet interfaces is configured as an input port of the node to receive data from other nodes, and another part is configured as an output port of the node to send data to other nodes.
  • the interface controller includes corresponding hardware and/or software modules for performing various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions in combination with the embodiments for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • FIG. 7 shows a possible schematic diagram of a power line communication device 700 . As shown in FIG.
  • the power line communication device 700 may include: a processing unit 701, configured to generate a data frame, the data frame includes a first field, a second field and a third field, wherein the first field is used to carry modulation parameters, The second field is used to carry the identification information of at least one destination node of this multicast configured by the processing unit in a bit-mapped manner, and the third field is used to carry service data; the sending unit 702 sends to the nodes in the power line communication network Send data frame.
  • a processing unit 701 configured to generate a data frame, the data frame includes a first field, a second field and a third field, wherein the first field is used to carry modulation parameters, The second field is used to carry the identification information of at least one destination node of this multicast configured by the processing unit in a bit-mapped manner, and the third field is used to carry service data; the sending unit 702 sends to the nodes in the power line communication network Send data frame.
  • the configuration of the identification information of at least one destination node by the power line node for this multicast is triggered based on the indication information received from the high-level instruction, and the indication information is used to indicate at least one destination node Identification information of the node.
  • the second field includes multiple bits, and the multiple bits have a mapping relationship with the identification information of nodes in the power line communication network.
  • the identification information of nodes in the power line communication network is the Assigned by nodes in the communication network; the processing unit 701 is specifically configured to: set the target bit corresponding to the identification information of each destination node in the at least one destination node in the second field as the first information, the first information Instructing to read service data; setting any bit in the second field except the target bit as second information, and the second information indicates discarding the data frame.
  • the processing unit 701 is further configured to: independently modulate the signal carried by the first field, the signal carried by the second field, and the signal carried by the third field to generate multiple modulated signals;
  • the unit 702 is specifically configured to: send multiple modulated signals to nodes in the power line communication network.
  • the processing unit 701 is further configured to: modulate at least one of the signal carried by the first field and the signal carried by the third field together with the signal carried by the second field to generate at least one Modulated signal; the sending unit 702 is specifically configured to: send at least one modulated signal to a node in the power line communication network.
  • the processing unit 701 is further configured to: when the length of the second field changes, send the length of the second field and the identifier mapped to each bit in the second field to the sending unit 702 Sent to nodes in a power line communication network.
  • the power line communication device 700 provided in this embodiment is used in a data transmission method performed by a node (for example, the node n1 shown in FIG. 1 ), and can achieve the same effect as the above implementation method or device.
  • the above modules corresponding to FIG. 7 may be implemented by software, hardware or a combination of the two.
  • each module can be implemented in the form of software, corresponding to the processor and interface corresponding to the module in FIG. 6 , and used to drive the corresponding component to work.
  • each module may include corresponding components and corresponding driver software, that is, implemented in combination of software or hardware. Therefore, the power line communication device 700 can be considered to logically include the interface n1 shown in FIG. 1 and the interface shown in FIG. 6 , and each module includes at least a driver software program with a corresponding function, which is not done in this embodiment. Expand.
  • Each component is divided into functional modules.
  • different components may be divided corresponding to each function, or two or more functional components may be integrated into one processor module.
  • the above-mentioned integrated processor module may be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the case of using an integrated module, FIG.
  • the power line communication device 800 may include: a receiving unit 801 and a processing unit 802 , which may further expand the aforementioned device.
  • the receiving unit 801 is configured to receive a data frame from a power line node, the data frame includes: a first field, a second field and a third field, wherein the first field is used to carry modulation parameters, and the second field It is used to carry the identification information of at least one destination node of this multicast configured by the power line node in a bit-mapped manner, and the third field is used to carry service data; the processing unit 802 is used for when the The second field indicates that when the first node is the destination node, the service data is read from the third field based on the modulation parameter.
  • the processing unit 802 is further configured to: discard the data frame when the second field indicates that the first node is not the destination node.
  • the second field includes a plurality of bits, and the plurality of bits have a mapping relationship with identification information of nodes in the power line communication network; when the second field and When the bit corresponding to the identification information of the first node is the first information, it indicates that the first node is the destination node; when the bit corresponding to the identification information of the first node in the second field When the bit is the second information, it indicates that the first node is not the destination node.
  • the power line communication device 800 provided in this embodiment is used for data transmission performed by any one of node n21, node n22, node n23, node n24, node n31, node n32, node n33, node n34, node n41 and node n42
  • the method can achieve the same effect as the above-mentioned realization method or device.
  • the above modules corresponding to FIG. 8 may be implemented by software, hardware or a combination of the two.
  • each module can be implemented in the form of software, corresponding to the interface and processor corresponding to the module in Figure 6, and used to drive the corresponding component to work.
  • each module may include corresponding components and corresponding driver software, that is, implemented in combination of software or hardware. Therefore, the power line communication device 800 can be considered to logically include any node n21, node n22, node n23, node n24, node n31, node n32, node n33, node n34, node n41 and node n42 shown in FIG.
  • Each module of a node or the node shown in FIG. 6 includes at least a driver software program for a corresponding function, which is not expanded in this embodiment.
  • the disclosed system and device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium or memory includes various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请实施例提供了一种应用于电力线通信的数据传输方法、电力线通信装置和系统,该数据传输方法包括:电力线节点生成数据帧,数据帧包括:第一字段,第二字段和第三字段,其中,第一字段用于承载调制参数,第二字段用于以比特映射的方式,承载由电力线节点配置的本次组播的至少一个目的节点的标识信息,第三字段用于承载业务数据;电力线节点向电力线通信网络中的节点发送数据帧。该数据传输方法可以高效的向多个目的节点传输数据以节约带宽。

Description

数据传输方法、电力线通信装置和系统
本申请要求于2022年03月01日提交中国专利局、申请号为202210197232.5、申请名称为“数据传输方法、电力线通信装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电力线通信技术领域,尤其涉及一种数据传输方法、电力线通信装置和系统。
背景技术
传统电力线通信(Power Line Communication,PLC)技术中,为了实现同一数据由源设备向多个目标设备的传输,源设备通常采用组播的方式,向多个目标设备传输数据。
然而,采用组播传输数据的过程中,通常需要进行组播组的创建,当采用组播方式进行数据传输时,首先需要创建组播组,然后向组播组内的节点传输数据。通常,在组播组建立的过程中,源设备需要向成为组播组成员的多个目标设备发送指示建立组播组的信息,并且等待多个目标设备中的每一个设备的反馈信息,当存在一个设备没有发送反馈信息时,源设备会多次重复发送指示建立组播组的信息。这就导致组播组的创建消耗时长、且占据大量带宽,由于组播组创建过程中并不传输也无数据,这就造成严重的带宽浪费。由此,在源设备向多个目标设备传输数据的场景中,源设备如何高效的多个目标设备传输数据以节约带宽,成为需要解决的问题。
发明内容
本申请提供的数据传输方法、电力线通信装置和系统,电力线节点可以高效的向多个目的节点传输数据以节约带宽。为达到上述目的,本申请采用如下技术方案。
第一方面,本申请实施例提供一种应用于电力线通信的数据传输方法,所述数据传输方法包括:电力线节点生成数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;所述电力线节点向电力线通信网络中的节点发送所述数据帧。
第一字段例如为图2所示的物理帧头字段,第二字段例如为图2所示的位图字段,第三字段例如可以为图2所示的载荷字段。目的节点的标识信息例如可以为目的节点的注册ID。上述调制参数,例如可以包括但不限于:调制阶数等。本申请实施例提供的数据传输方法,通过在帧结构中增加第二字段,在第二字段中承载本次组播的目的节点的标识信息,电力线节点(例如图1所示的节点n1)可以基于预先建立的网络拓扑结构,将数据帧广播给网络中的节点。从而,电力线节点将数据帧传输给网络中的目的节点时,可以不需要进行组播组的建立,也即不需要在业务数据发送之前与多个节点之间进行多次交互,可以直接将数据帧广播给网络中的节点,与传统技术中采用组播的方式创建组播组相比,提高了 网络中的带宽利用率。此外,与传统技术中组播组内的节点无法灵活改变相比,本申请实施例可以指定电力线通信系统中的任意节点接收数据帧,提高了数据传输的灵活性。
在一种可能的实现方式中,所述电力线节点对本次组播的至少一个目的节点的标识信息的配置,是基于所接收到的高层指令的指示信息而触发的,所述指示信息用于指示所述至少一个目的节点的标识信息。
本申请实施例所述的数据传输方法,例如可以应用于物理层通信中,电力线节点可以为物理层中的通信装置。上述高层指令可以为物理层之上的任意一层下发的指令,例如可以为应用层或者数据链路层下发的指令等。在一种应用场景中,应用层可以将目的节点的标识信息以及待发送的数据通过传输层、网络层和数据链路层传输至物理层中的电力线节点。在其他可能的实现方式中,用于执行各协议层功能的硬件模块也可以集成在一起,例如上述电力线节点也可以用于执行其他协议层的功能,本申请实施例不做具体限定。
在一种可能的实现方式中,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;所述电力线节点对本次组播的至少一个目的节点的标识信息的配置,包括:所述电力线节将所述第二字段中、与所述至少一个目的节点中的每一个目的节点的标识信息对应的目标比特位,设置为第一信息,所述第一信息指示读取所述业务数据;将所述第二字段中、除了所述目标比特位之外的任意比特位,设置为第二信息,所述第二信息指示丢弃所述数据帧。
在一种可能的实现方式中,所述电力线通信网络中节点的标识信息,是所述电力线节点预先为所述电力线通信网络中的节点分配的。
第一信息例如可以为信号“1”,第二信息例如可以为信号“0”;此外,第一信息例如可以为信号“0”,第二信息例如可以为信号“1”。通过建立第二字段中的各比特位与各节点之间的映射关系,从而电力线节点可以将第二字段中、目的节点相应的比特位设置成“1”,将其余比特位设置成“0”,简化第二字段的设计。
本申请实施例中,对数据帧承载的信号的调制,可以采用多种方式。
在第一种可能的实现方式中,所述电力线节点向所述至少一个目的节点发送所述数据帧,包括:将所述第一字段承载的信号、所述第二字段承载的信号和所述第三字段承载的信号,分别独立调制,以生成多个调制信号;向所述电力线通信网络中的节点发送所述多个调制信号。
该实现方式中,第一字段、第二字段和第三字段分别为独立的字段。在进行信号调制时,可以将第一字段承载的信号、第二字段承载的信号和第三字段承载的信号分别进行独立调制。
在第二种可能的实现方式中,所述电力线节点向所述至少一个目的节点发送所述数据帧,包括:将所述第一字段承载的信号和所述第三字段承载的信号中的至少一项,与所述第二字段承载的信号一起调制,以生成至少一个调制信号;向所述电力线通信网络中的节点发送所述至少一个调制信号。
该实现方式中,第一字段和第二字段可以为相同的字段,第三字段为独立的字段。在进行信号调制时,可以将第一字段承载的信号和第二字段承载的信号一起调制,将第三字段承载的信号独立调制;或者,第二字段和第三字段可以为相同的字段,第一字段为独立的字段。在进行信号调制时,可以将第二字段承载的信号和第三字段承载的信号一起调制, 将第一字段承载的信号独立调制;或者,可以将第一字段、第二字段和第三字段承载的信号均一起调制。
在一种可能的实现方式中,所述数据传输方法还包括:在所述第二字段的长度改变时,将所述第二字段的长度、以及所述第二字段中每一个比特位所映射的标识发送至所述电力线通信网络中的节点。
第二方面,本申请实施例提供一种应用于电力线通信的数据传输方法,该方法包括:电力线通信网络中的第一节点从电力线节点接收数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;当所述第二字段指示所述所述第一节点为所述目的节点时,基于所述调制参数,从所述第三字段读取所述业务数据。
第一字段例如为图2所示的物理帧头字段,第二字段例如为图2所示的位图字段,第三字段例如可以为图2所示的载荷字段。目的节点的标识信息例如可以为目的节点的注册ID。本申请实施例提供的数据传输方法,通过在帧结构中增加第二字段,在第二字段中承载本次组播的目的节点的标识信息,电力线节点(例如图1所示的节点n1)可以基于预先建立的网络拓扑结构,将数据帧广播给网络中的节点。从而,电力线节点将数据帧传输给网络中的目的节点时,可以不需要进行组播组的建立,也即不需要在业务数据发送之前与多个节点之间进行多次交互,可以直接将数据帧广播给网络中的节点,与传统技术中采用组播的方式创建组播组相比,提高了网络中的带宽利用率。此外,与传统技术中组播组内的节点无法灵活改变相比,本申请实施例可以指定电力线通信系统中的任意节点接收数据帧,提高了数据传输的灵活性。
在一种可能的实现方式中,所述数据传输方法还包括:当所述第二字段指示所述第一节点不是所述目的节点时,丢弃所述数据帧。
在一种可能的实现方式中,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第一信息时,指示所述第一节点为所述目的节点;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第二信息时,指示所述第一节点不是所述目的节点。
在一种可能的实现方式中,所述第一节点为所述电力线通信网络中的中继节点;所述方法还包括:所述第一节点基于所述映射关系,读取所述第二字段中、与所述中继节点耦合的后级节点的标识信息相对应的比特位的信息;当所述第二字段中、与所述后级节点的标识信息相对应的比特位的信息为所述第一信息时,将所述数据帧转发至所述后级节点。
第三方面,本申请实施例提供一种电力线通信装置,所述电力线通信装置为电力线节点,所述电力线通信装置包括处理器和接口;所述处理器,用于生成数据帧,所述数据帧包括第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;所述接口,向电力线通信网络中的节点发送所述数据帧。
在一种可能的实现方式中,所述电力线节点对本次组播的至少一个目的节点的标识信 息的配置,是基于所接收到的高层指令的指示信息而触发的,所述指示信息用于指示所述至少一个目的节点的标识信息。
在一种可能的实现方式中,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;所述处理器具体用于:将所述第二字段中、与所述至少一个目的节点中的每一个目的节点的标识信息对应的目标比特位,设置为第一信息,所述第一信息指示读取所述业务数据;将所述第二字段中、除了所述目标比特位之外的任意比特位,设置为第二信息,所述第二信息指示丢弃所述数据帧。
在一种可能的实现方式中,所述电力线通信网络中节点的标识信息,是所述电力线节点预先为所述电力线通信网络中的节点分配的。
在一种可能的实现方式中,所述处理器还用于:将所述第一字段承载的信号、所述第二字段承载的信号和所述第三字段承载的信号,分别独立调制,以生成多个调制信号;所述接口具体用于:向所述电力线通信网络中的节点发送所述多个调制信号。
在一种可能的实现方式中,所述处理器还用于:将所述第一字段承载的信号和所述第三字段承载的信号中的至少一项,与所述第二字段承载的信号一起调制,以生成至少一个调制信号;所述接口具体用于:向所述电力线通信网络中的节点发送所述至少一个调制信号。
在一种可能的实现方式中,所述处理器还用于:在所述第二字段的长度改变时,将所述第二字段的长度、以及所述第二字段中每一个比特位所映射的标识,通过所述接口发送至所述电力线通信网络中的节点。
第四方面,本申请实施例提供一种电力线通信装置,所述电力线通信装置为电力线通信网络中的第一节点,所述电力线通信装置包括处理器和接口;所述接口,用于接收数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;所述处理器,用于当所述第二字段指示所述所述第一节点为所述目的节点时,基于所述调制参数,从所述第三字段解调出所述业务数据。
在一种可能的实现方式中,所述处理器还用于:当所述第二字段指示所述第一节点不是所述目的节点时,丢弃所述数据帧。
在一种可能的实现方式中,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第一信息时,指示所述第一节点为所述目的节点;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第二信息时,指示所述第一节点不是所述目的节点。
第五方面,本申请实施例提供一种电力线通信系统,该电力线通信系统包括如第三方面所述的电力线通信装置以及如第四方面所述的电力线通信装置。
第六方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被处理器运行时,实现如上述第一方面所述的数据传输方法或如上述第二方面所述的数据传输方法。
第七方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在处理器 上运行时,实现如上述第一方面所述的数据传输方法或如上述第二方面所述的数据传输方法。
应当理解的是,本申请的第二方面~第七方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电力线通信系统的一个架构示意图;
图2是本申请实施例提供的应用于电力线通信系统中的帧结构的一个示意图;
图3是本申请实施例提供的应用于电力线通信系统中的一个应用场景示意图;
图4是本申请实施例提供的数据传输方法的一个流程图;
图5是本申请实施例提供的数据传输方法的又一个流程图;
图6是本申请实施例提供的如图1所示的各节点的一个硬件结构示意图;
图7是本申请实施例提供的电力线通信装置的一个结构示意图;
图8是本申请实施例提供的电力线通信装置的又一个结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文所提及的"第一"、或"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。"耦合"等类似的词语并非限定于物理的或者机械的直接连接,而是可以包括电性的连接,不管是直接的还是间接的,等同于广义上的联通。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个节点是指两个或两个以上的节点。
本申请实施例提供的电力线通信系统,可以应用多种通信场景中。本申请实施例提供的电力线通信系统,可以为物理层通信。本申请实施例中所述的电力线通信系统,可以包括多个节点,该多个节点可以划分为多级,例如一级节点、二级节点、三级节点、四级节点等。一级节点也可以称为源节点、电力线节点或者总控节点,一级节点例如可以为网关设备、局域网中的服务器或者总控设备等。当二级节点之后又接入更多级节点(例如三级节点、四级节点等)时,该二级节点例如可以为交换器、路由器;当二级节点为最后一级 节点时,该二级节例如可以为终端设备。同样,当三级节点之后又接入更多级节点时,该三级节点例如可以为交换器、路由器;当三级节点为最后一级节点时,该三级节点例如可以为终端设备。上述终端设备例如可以包括但不限于手机、PC端电脑、平板电脑、笔记本电脑、或可穿戴设备(如智能手表、AR设备、VR设备)等各种类型的便携式设备。需要说明的是,一级节点之后可以接入多个二级节点,该多个二级节点中,一些二级节点可能为最后一级节点,一些二级节点之后可能又接入三级节点;同样,一个二级节点之后可以接入多个三级节点,每一个三级节点之后又可以接入多个四级节点等。从而,上述多个节点之间通过电力线连接。
此外,本申请实施例中所述的源节点,可以为电力线通信系统中、基于预设帧结构(例如图2所示的帧结构)对上层数据进行封装、以及将封装的数据帧发送的节点,例如为一级节点,该源节点还用于以比特映射的方式,配置本次组播的至少一个目的节点的标识信息,并且将该比特映射承载于图2所示的位图字段中;本申请实施例中所述的目的节点,可以为电力线通信系统中、除了源节点之外的至少部分节点。
传统技术中,当源节点向网络中的多个目的节点传输数据时,通常采用组播的方式进行传输。当采用组播方式进行数据传输时,首先需要创建组播组,然后向组播组内的节点传输数据。通常,在组播组建立的过程中,源节点需要向成为组播组成员的多个节点发送指示建立组播组的信息,并且等待多个节点中的每一个节点的反馈信息,当存在一个节点没有发送反馈信息时,源节点会多次重复发送指示建立组播组的信息。这就导致组播组的创建消耗时长、且占据大量带宽,由于组播组创建过程中并不传输也无数据,这就造成严重的带宽浪费。此外,当组播组创建之后,组播组内的节点通常无法灵活改变,当源节点需要向除了组播组之外的多个节点传输数据时,还需要创建新的组播组。然而,受限于资源能力,组播组的数目不能无限制增加,当组播组的数目达到上限、需要增加新的组播组时,需要解除其中一个组播组。在解除其中一个组播组的过程中,源节点同样需要与组播组内的节点之间进行多次交互(例如源节点发送指示移除节点的信息、节点周期性的回复反馈、源节点发送指示确定移除的信息等),同样占用带宽,造成大量的带宽浪费。
本申请实施例提供的电力线通信系统,通过在帧结构中添加位图字段,在位图字段中指示出读取数据帧中的业务数据的节点,从而源节点(也可以称为总控节点或者发送端,例如图1中的节点n1)可以基于预先建立的网络拓扑结构,将数据帧广播给网络中的节点。从而,源节点将数据帧传输给网络中的多个节点时,可以不需要进行组播组的建立,也即不需要在业务数据发送之前与多个节点之间进行多次交互,可以直接将数据帧广播给网络中的节点,与传统技术中采用组播的方式创建组播组相比,提高了网络中的带宽利用率。此外,与传统技术中组播组内的节点无法灵活改变相比,本申请实施例可以指定电力线通信系统中的任意节点接收数据帧,提高了数据传输的灵活性。
另外,当电力线通信系统中有新的节点加入、且源节点需要向包括该新加入的节点在内的多个节点传输数据时,源节点可以不需要改变帧结构,其仅需要基于注册ID的使用情况向新加入的节点分配注册ID,也即源节点节点与新加入的节点之间进行少量的交互即可完成位图字段中的比特位与新节点之间的映射,新加入的节点基于位图字段中的比特位与注册ID之间的映射关系,即可读取数据帧。与现有技术中当有新的节点加入时、需要创建新的组播组相比,可以极大的简化节点交互流程,降低带宽浪费。
下面结合图1,对本申请实施例提供的电力线通信系统进行详细描述。请参考图1,图1是本申请实施例提供的电力线通信系统100的结构示意图。在图1中,电力线通信系统100示意性的示出了四级节点。一级节点包括节点n1,二级节点包括节点n21和节点n22,三级节点包括节点n31、节点n32、节点n33和节点n34,四级节点包括节点n41和节点n42。其中,节点n31和节点n32接入节点n22中,节点n33和节点n34接入节点n23中,节点n41和节点n42接入节点n31中。电力线通信系统100中的各级节点之间均通过电力线网络连接,以通过电力线进行数据交换。可以理解的是,电力线通信系统100可以包括更多级节点,每一级可以包括更多个节点,本申请实施例对此不做具体限定。本申请实施例中,节点n1也可以称为源节点或总控节点,用于管理其余节点接入或退出电力线网络。具体的,当其余各节点需要接入电力线网络中时,需要向节点n1申请注册。节点n1向申请注册的每一个节点分配一个注册ID,然后将各节点的注册ID广播给电力线网络中的任意节点。从而,电力线网络中的每一个节点均有一个对应的注册ID,各节点的注册ID均不相同。此外,当某一节点从电力线网络中退出时,通知节点n1,节点n1将该节点退出电力线网络的信号广播给电力线网络中的任意节点。
下面结合具体场景,对节点n1对电力线通信系统100中各节点的管理进行描述。节点n21、节点n22、节点n31和节点n32接入电力线网络后,节点n21和节点n22分别基于PLC通信协议,向节点n1申请注册ID。节点n1将注册ID号001分配给节点n21、将注册ID号002分配给节点n22。节点n31和节点n32均通过节点n22与节点n1通信,以向节点n1申请注册ID。节点n1将注册号003和注册号004分别分配给节点n31和节点n32。
在节点n21、节点n22、节点n31和节点n32均已注册的基础上,当节点n23、节点n33、节点n34、节点n41和节点n42接入电力线网络中时,节点n23基于PLC通信协议,向节点n1申请注册ID。节点n1将注册ID号005分配给节点n21。节点n33和节点n34均通过节点n23与节点n1通信,以向节点n1申请注册ID。节点n1将注册号006和注册号007分别分配给节点n33和节点n34。节点n41和节点n42均通过节点n31、节点n21与节点n1通信,以向节点n1申请注册ID。节点n1将注册号006和注册号007分别分配给节点n41和节点n42。此时,各节点的注册ID情况如图1所示。
基于图1所示的电力线通信系统100,本申请实施例中,当节点n1需要向部分节点传输数据时,节点n1可以基于预先设置的帧结构对数据进行封装,生成数据帧通过电力线传输至各二级节点。请参考图2,图2示意性的示出了本申请实施例提供的帧结构。如图2所示,帧结构包括前导(preamble)字段、物理层帧头(physical layer frame header)字段和载荷(payload)字段。其中,preamble字段用于指示接收端对所接收的数据帧进行帧定界以及帧同步。物理层帧头字段用于承载调制参数,该调制参数例如可以为调制阶数;此外,物理层帧头字段所承载的信息还可以包括数据帧的长度、用于发送数据帧的源节点的标识、地址或端口号等信息。payload字段用于承载业务数据。这里的业务数据例如可以是用户通过应用程序输入的音频数据和视频数据等数据,经过应用层、传输层、数据链路层以及物理层进行封装和编码后所生成的数据。
本申请实施例中所示的帧结构,除了包括上述信号之外,还包括位图(bit map)字段。其中,bit map字段用于承载由源节点配置的本次组播的至少一个目的节点的标识信息,也 即注册ID号。下面对bit map字段进行详细描述。bit map字段可以包括多个比特位,bit map字段中的比特位与注册ID号具有映射关系。从而,一个比特位对应一个注册节点。此外,每一个比特位包括两种信号,信号“1”和信号“0”。源节点可以将bit map字段中,需要接收数据帧的节点所对应的比特位设置为“1”,将其余比特位设置为“0”。可以理解的是,在其他可能的实现方式中,目的节点也可以将bit map字段中,需要接收数据帧的节点所对应的比特位设置为“0”,将其余比特位设置为“1”,本申请实施例对此不做具体限定。举例来说,图1所示的电力线通信系统100中包括9个注册节点,则bit map字段可以包括9个比特位。按照比特位信号的发送顺序,第一位比特位对应注册ID号001,第二位比特位对应注册ID号002,第三位比特位对应注册ID号003…,第九位比特位对应注册ID号009。从图1所示的电力线通信系统100中可以看出,注册ID号001对应节点n21、注册ID号002对应节点n22…,注册ID号009对应节点n42。也即bit map字段中的各比特位与注册节点之间的映射关系如图2所示。假设需要收取数据帧的节点为节点n21、节点n31和节点n23,则节点n1可以将第一比特位、第三比特位和第五比特位设置为“1”,将其余比特位设置为“0”。
如图2所示的帧结构,在比特流发送时,preamble字段例如可以通过独立调制,由一个或多个独立的符号发送,物理层帧头字段例如可以通过独立调制,由一个或多个独立的符号发送,bit map字段例如可以通过独立调制,由一个或多个独立的符号发送,payload字段可以通过多个独立的符号。需要说明的是,图2只是帧结构的一种示例,不用于对方案的限定,例如,在其他可能的实现方式中,用于指示比特位与注册ID之间的映射关系的bit map字段可以与用于承载业务数据的payload字段被一起编码于相同的字段中,也即bit map字段承载的信号和payload字段承载的信号被一起调制,由共同的多个符号发送;再例如,bit map字段可以与物理帧头字段被一起编码于相同的字段中,也即bit map字段承载的信号和物理帧头字段承载的信号被一起调制,由共同的多个符号发送。
本申请实施例提供的电力线通信系统100中,通过在帧结构中添加位图字段,建立位图字段中的各比特位与注册ID之间的映射关系,从而源节点可以基于目的节点的注册ID,将位图字段中、与目的节点相应的比特位设置成“1”,将其余比特位设置成“0”,基于预先建立的网络拓扑结构,将数据帧广播给网络中的节点。从而,源节点将数据帧传输给网络中的多个节点时,可以不需要进行组播组的建立,也即不需要在业务数据发送之前与多个节点之间进行多次交互,可以直接将数据帧广播给网络中的节点,与传统技术中采用组播的方式创建组播组相比,提高了网络中的带宽利用率。此外,与传统技术中组播组内的节点无法灵活改变相比,本申请实施例可以指定电力线通信系统中的任意节点接收数据帧,提高了数据传输的灵活性。
基于图1所示的电力线通信系统100和图2所示的帧结构,本申请实施例一种可选的实现方式中,如图2所以的帧结构中,位图字段中比特位的长度可以为固定值,位图字段中比特位的长度与注册ID的数目相同,也即电力线通信系统中最多所能接入的节点的数目相同。例如,电力线通信系统100中最多能接入250个节点,则电力线通信系统100中可以预先设置250个注册ID,也即对应位图字段中比特位的数目为250。可以理解的是,电力线通信系统100中所接入的节点的数目不一定是最大值,例如,电力线通信系统100中可以接入20个注册节点、30个注册节点等。在该种可选的实现方式中,如果有新的节 点接入电力线通信系统中,则源节点可以检测是否还存在未使用的注册ID,如果存在,将未使用的注册ID号分配给新的节点;如果不存在,则可以将掉电或退出网络的设备的注册ID号收回,以分配给新加入的节点。下面通过图3所示的场景进行描述。
在如图1所示的电力线通信系统100的基础上,当节点n34退出电力线网络(例如掉电或断网)后,节点n1可以检测出节点n34退出电力线网络中。当节点n35接入电力线网络中时,节点n35基于PLC通信协议,向节点n1发送信号s1,该信号s1指示申请注册ID。此时节点可以执行如下步骤:
步骤301,响应于节点n35发送的信号s1,检测是否存在未使用的注册ID。当检测出存在注册ID号010未使用时,执行步骤302;当检测出不存在未使用的注册ID号时,执行步骤303。
步骤302,将注册ID号010分配给节点n35。
步骤303,检测PLC网络中是否存在退出时间超过预设阈值、且仍保留有注册ID号的节点。当检测出不存在退出时间超过预设阈值、且仍保留有注册ID号的节点时,拒绝向节点n35分配注册ID号;当检测出节点n34退出时间超过预设阈值、且仍保留有注册ID号时,执行步骤304。
步骤304,注销节点n34的注册ID,且将注册ID号007分配给节点n35。
步骤305,将节点n35和节点n35对应的注册ID号发送给节点n23,以使节点n23将节点n35以及节点n35对应的注册ID号存储至中继表中。由于节点n35与节点n23连接,且作为节点n23的三级节点,从而,节点n23在进行数据帧的中继转发时,可以基于位图字段中相应的注册ID对应的比特位,确定节点n35是否需要接收数据,在节点n35需要接收数据时进行转发。
从图3所示的分配注册ID给新加入节点的场景示例中可以看出,当电力线通信系统100中有新的节点加入、且源节点节点需要向包括该新加入的节点在内的多个节点传输数据时,源节点节点可以不需要改变帧结构,其仅需要基于注册ID的使用情况向新加入的节点分配注册ID,也即源节点节点与新加入的节点之间进行少量的交互即可完成位图字段与新节点之间的映射,新加入的节点基于位图字段与注册ID之间的映射关系,即可读取数据帧。与现有技术中当有新的节点加入时、需要创建新的组播组相比,可以极大的简化节点交互流程,降低带宽浪费。
基于图1所示的电力线通信系统100和图2所示的帧结构,本申请实施例一种可选的实现方式中,如图2所以的帧结构中,位图字段中比特位的长度也可以变化,比特位的长度可以基于电力线通信系统中注册节点的数目进行动态调整。也即位图字段可以为变长字段。例如,电力线通信系统100中当前接入了20个节点,如果位图字段设置250个比特位,则有230个比特位是没有映射节点的,数据帧中如果包括这230个比特位,则造成严重的带宽浪费,传输230个无用的比特位还占用了传输时长。基于此,可以减少位图字段中比特位的数目,例如可以将比特位的数目设置为25个,设置5个比特位的冗余以供后续新接入的节点使用。另外,当电力线通信系统100中接入的节点的数目增多时,例如由20个节点增加为50个节点,此时,可以增加位图字段中比特位的数目,以指示更多的节点是否需要接收数据帧。在该种可选的实现方式中,如果当位图字段中的比特位的数目改变了之后,节点n1可以将位图字段的长度以及与每一个比特位对应的注册ID广播给电力 线通信系统100中的各注册节点。从而,在下一周期传输数据时,节点n1可以采用位图字段改变的帧结构传输数据,以指示各节点是否需要读取数据帧中的业务数据。
基于图1所示的电力线通信系统100以及图2所示的帧结构,下面以节点n1向节点n21和节点n22传输数据帧1为例,结合图4,对本申请实施例提供的数据传输方法进行描述。如图4所示,图4是本申请实施例提供的数据传输方法的一个流程400,该数据传输方法应用于如图1所示的电力线通信系统100中,该数据传输方法包括:
步骤401,节点n1基于如图2所示的帧结构,生成数据帧1。数据帧1中包括位图字段,该位图字段用于指示节点n21和节点n22接收数据帧1。也即是说,该步骤中,节点n1将位图字段中,与节点n21和节点n22对应的比特位设置为“1”,将其余节点对应的比特位设置为“0”,也即是说,按照信号发送的先后顺序,位图字段的信号为“1100000”;节点n1将业务设置于帧结构中的payload字段,然后添加preamble字段和物理层帧头字段,生成数据帧1。步骤402,节点n1将数据帧1通过电力线传输至节点n21、节点n22和节点n23。该步骤中,由于节点n21、节点n22和节点n23由同一条电力线与节点n1连接,节点n1通过电力线发送一次数据帧1,节点n21、节点n22和节点n23均可以接收到数据帧1,也即节点n1将数据帧1通过电力线广播出去。
步骤403,节点n21基于位图字段中、与节点n21的注册ID对应的比特位,基于数据帧1的物理层帧头承载的调制参数,从数据帧1中的payload字段解调出业务数据。该步骤中节点n21可以基于位图字段所接收到的比特位的先后顺序,查询与节点n21的注册ID相对应的比特位的信号。由图1和图2可以看出,节点n21的注册ID为001,位图字段中与节点n21对应的比特位为第一比特位。第一比特位的信号为“1”,也即节点n21需要读取该数据帧1中的业务数据,以将该业务数据传输给节点n21的上层(例如数据链路层)。从而,节点n21基于数据帧1的物理层帧头承载的调制参数,从数据帧1中的payload字段解调出业务数据。
步骤404,节点n22基于位图字段中、与节点n22的注册ID对应的比特位,基于数据帧1的物理层帧头承载的调制参数,从数据帧1中的payload字段解调出业务数据。该步骤中节点n22基于位图字段所接收到的比特位的先后顺序,查询第二比特位的信号为“1”,也即节点n22需要读取该数据帧1中的业务数据。从而,节点n22基于数据帧1的物理层帧头承载的调制参数,从数据帧1中的payload字段解调出业务数据。
步骤405,节点n23基于位图字段中、与节点n23的注册ID对应的比特位,丢弃数据帧1。该步骤中节点n23基于位图字段所接收到的比特位的先后顺序,查询第五比特位的信号为“0”,也即节点n23不需要读取数据帧1中的业务数据。从而,节点n23将该数据帧1丢弃。
基于图3所示的数据传输方法,需要说明的是,本申请实施例不用于限定上述各步骤的先后顺序。例如,步骤403、步骤404和步骤405可以同时执行。另外,在图3所示的数据传输方法300所包括的各步骤的基础上,数据传输方法300还可以包括更多或更少的步骤。例如,在步骤403中,节点n21还可以基于物理帧头字段中所指示的数据帧1的长度,检测数据帧1是否完整,在检测到物理帧头字段中所指示的数据帧1的长度与所接收到的数据帧1的长度相同时,从数据帧1中的payload字段读取业务数据。另外,在上述步骤403之后,还可以包括如下步骤:节点n21向节点n1传输反馈信息f1,该反馈信息 f1用于指示节点n21成功读取数据。再例如,上述步骤403还可以替换为如下步骤:节点n21基于物理帧头字段中所指示的数据帧1的长度,检测物理帧头字段中所指示的数据帧1的长度与所接收到的数据帧1的长度是否相同;在检测到理帧头信号中所指示的数据帧1的长度与所接收到的数据帧1的长度不同时,节点n21向节点n1传输反馈信息f2,该反馈信息f2用于指示节点n1重新传输数据帧1。在该被替换的步骤之后,还包括如下步骤,节点n1基于反馈信息f2,向节点n21重新传输数据帧1。还需要说明的是,本申请实施例中,节点n21可以预设的帧格式向节点n1传输反馈信息,该预设帧格式例如可以包括图2所示的preamble字段和物理层帧头字段,节点n21可以将指示是否成功接收数据帧1的反馈信息设置于物理层帧头字段中。
如图4所示的数据传输方法400中,节点n1示意性的示出了与节点n1直接相连的部分二级节点为目的节点。在其他可能的实现方式中,目的节点可能包括四级节点。下面以目的节点为图1中所示的节点n22、节点n31、节点n33和节点n41为例,结合图1、图2和图5,对该实现方式进行描述。请参考图5,图5为本申请实施例提供的数据传输方法500的一个流程图,该数据传输方法500应用于图1所示的电力线通信系统100中,该数据传输方法500包括如下步骤:
步骤501,节点n1基于如图2所示的帧结构,生成数据帧2。数据帧2中包括位图字段,该位图字段用于指示n22、节点n32和节点n33读取数据帧2中的数据。该步骤中,节点n1将位图字段中,与n22、节点n31和节点n33对应的比特位设置为“1”,将其余节点对应的比特位设置为“0”,也即是说,按照信号发送的先后顺序,位图字段的信号为“0110010”;节点n1将业务数据承载于帧结构中的payload字段,然后添加preamble字段和物理层帧头字段,生成数据帧2。步骤502,节点n1将数据帧2通过电力线传输至节点n21、节点n22和节点n23。该步骤中,由于节点n21、节点n22和节点n23由同一条电力线与节点n1连接,节点n1通过电力线发送一次数据帧2,节点n21、节点n22和节点n23均可以接收到数据帧,也即节点n1将数据帧2通过电力线广播出去。
步骤503,节点n21基于位图字段中、与节点n21的注册ID对应的比特位,丢弃数据帧2。该步骤中,节点n21基于位图字段所接收到的比特位的先后顺序,查询第一比特位的信号为“0”。从而,节点n21丢弃数据帧2。
步骤504,节点n22基于位图字段中、与节点n21的注册ID对应的比特位,基于数据帧2的物理层帧头承载的调制参数,从数据帧2中的payload字段解调出业务数据。该步骤中,节点n22基于位图字段所接收到的比特位的先后顺序,查询第二比特位的信号为“1”。从而,节点n21基于数据帧2的物理层帧头承载的调制参数,从数据帧2中的payload字段解调出业务数据。步骤505,节点n22基于位图字段中、与节点n32的注册ID对应的比特位以及与节点n41的注册ID对应的比特位,分别将数据帧2转发给节点n31和节点n32。节点n22中可以存储有中继表,该中继表记录有与节点n22连接的多级节点以及每一个节点所对应的注册ID。该中继表可以是基于电力线通信系统100中的网络拓扑结构,预先存储在节点n22中的。从图1和图2中可以看出,节点n22存储的中继表中记录有节点n31、与节点n31对应的注册ID、节点n32、与节点n32对应的注册ID、节点n41、与节点n41对应的注册ID、节点n42、与节点n42对应的注册ID。节点n22基于中继表,继续查询位图字段中、节点n31的注册ID、节点n32的注册ID、节点n41的 注册ID以及节点n42的注册ID所对应的比特位。图2中与节点n31的注册ID对应的比特位为第三比特位、与节点n32的注册ID对应的比特位为第四比特位、与节点n41的注册ID对应的比特位为第八比特位、与节点n42的注册ID对应的比特位为第九比特位。节点n22基于位图字段所接收到的比特位的先后顺序,查询第三比特位的信号为“0”、第四比特位的信号为“1”、第八比特位的信号为“1”、第九比特位的信号为“0”,也即节点n31和节点n41需要接收数据帧2。由于节点n41属于节点n31的下一级节点,虽然节点n31不需要接收数据帧2,但节点n31需要向节点n41转发该数据帧。从而,节点n22将数据帧2转发至节点31和节点n32。需要说明的是,由于节点n31和节点n32通过同一条电力线与节点n22连接,节点n31和节点n32也可以收到数据帧2。还需要说明的是,步骤504和步骤505可以同时进行。
步骤506,节点n23基于位图字段中、与节点n33的注册ID对应的比特位,将数据帧2转发给节点n33。该步骤中,节点n22首先基于位图字段中、与节点n23的注册ID对应的比特位,确定出节点n23不需要读取数据帧2中的业务数据。节点n23中可以存储有中继表,该中继表记录有与节点n23连接的多级节点以及每一个节点所对应的注册ID。该从图1和图2中可以看出,节点n23存储的中继表中记录有节点n33、与节点n33对应的注册ID、节点n34、与节点n34对应的注册ID。节点n22基于中继表,继续查询位图字段中、与节点n33的注册ID和节点n34的注册ID对应的比特位。图2中与节点n33的注册ID对应的比特位为第六比特位、与节点n32的注册ID对应的比特位为第七比特位。节点n23基于位图字段所接收到的比特位的先后顺序,查询第六比特位的信号为“1”、第七比特位的信号为“0”,也即节点n33需要接收数据帧2。从而,节点n23将数据帧2转发至节点31。需要说明的是,由于节点n33和节点n34通过同一条电力线与节点n23连接,节点n34也可以收到数据帧2。节点n34基于数据帧2中的位图字段所指示的信息,直接将数据帧2丢弃。
步骤507,节点n31基于位图字段中、与节点n41的注册ID对应的比特位,将数据帧2转发给节点n41。该步骤中,节点n31首先基于位图字段中、与节点n31的注册ID对应的比特位,确定出节点n31不需要读取数据帧2。节点n31中可以存储有中继表,该中继表记录有与节点n31连接的多级节点以及每一个节点所对应的注册ID。从图1和图2中可以看出,节点n31存储的中继表中记录有节点n41、与节点n41对应的注册ID、节点n42、与节点n42对应的注册ID。节点n31基于中继表,继续查询位图字段中、与节点n41的注册ID和节点n42的注册ID对应的比特位。图2中与节点n41的注册ID对应的比特位为第八比特位、与节点n42的注册ID对应的比特位为第九比特位。节点n31基于位图字段所接收到的比特位的先后顺序,查询第八比特位的信号为“1”、第九比特位的信号为“0”,也即节点n41需要接收数据帧2。从而,节点n31将数据帧2转发至节点41。
步骤508,节点n32基于位图字段中、与节点n32的注册ID对应的比特位,利用数据帧2的物理层帧头承载的调制参数,从数据帧2中的payload字段解调出业务数据。
步骤509,节点n33基于位图字段中、与节点n33的注册ID对应的比特位,利用数据帧2的物理层帧头承载的调制参数,从数据帧2中的payload字段解调出业务数据。
步骤510,节点n41基于位图字段中、与节点n33的注册ID对应的比特位,利用数据帧2的物理层帧头承载的调制参数,从数据帧2中的payload字段解调出业务数据。
基于图1所示的电力线通信系统100、图2所示的帧结构、图4和图5所示的数据传输方法,本申请实施例中,如图1所示的电力线通信系统100中,每一个节点的结构可以如图6所示。在图6中,节点包括处理器、存储器和多个接口。其中,处理器通过运行或执行存储在存储器内的软件程序,以及调用存储在存储器内的指令和数据,执行该节点的各种功能。处理器可以包括一个或者多个模块,比如,包括中央处理单元(central processing unit,CPU)和网络处理器(network processor,NP),该网络处理器可以由专用集成电路(application-specific integrated circuit,ASIC)或现场可编程门阵列(field-Programmable Gate array,FPGA)芯片实现。存储器可用于存储软件程序、指令以及数据,可以由任何类型的易失性或非易失性存储器或者它们的组合实现,例如包括静态随机存取存储器(SRAM)、动态随机随机存取存储器(SDRAM)、双倍速率同步动态随机存取存储器(DDR)、可擦除可编程只读存储器(EPROM)和只读存储器(ROM)中的一项或多项。一个节点可以包括多个接口,图中示意性的示出了n个。该多个接口中,一部分以太网接口被配置为该节点的输入端口,以从其他节点接收数据,另外一部分被配置为该节点的输出端口,以向其他节点发送数据。
可以理解的是,接口控制器为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对图1所示的节点n1中所包括的各部件进行功能模块的划分,例如,可以对应各个功能划分各个不同部件,也可以将两个或两个以上的功能的部件集成在一个模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在采用集成模块的情况下,图7示出了电力线通信装置700的一种可能的示意图。如图7所示,该电力线通信装置700可以包括:处理单元701,用于生成数据帧,数据帧包括第一字段,第二字段和第三字段,其中,第一字段用于承载调制参数,第二字段用于以比特映射的方式,承载由处理单元配置的本次组播的至少一个目的节点的标识信息,第三字段用于承载业务数据;发送单元702,向电力线通信网络中的节点发送数据帧。
在一种可能的实现方式中,电力线节点对本次组播的至少一个目的节点的标识信息的配置,是基于所接收到的高层指令的指示信息而触发的,指示信息用于指示至少一个目的节点的标识信息。
在一种可能的实现方式中,第二字段包括多个比特位,多个比特位与电力线通信网络中节点的标识信息具有映射关系,电力线通信网络中节点的标识信息,是电力线节点预先为电力线通信网络中的节点分配的;处理单元701具体用于:将第二字段中、与至少一个目的节点中的每一个目的节点的标识信息对应的目标比特位,设置为第一信息,第一信息指示读取业务数据;将第二字段中、除了目标比特位之外的任意比特位,设置为第二信息,第二信息指示丢弃数据帧。
在一种可能的实现方式中,处理单元701还用于:将第一字段承载的信号、第二字段 承载的信号和第三字段承载的信号,分别独立调制,以生成多个调制信号;发送单元702具体用于:向电力线通信网络中的节点发送多个调制信号。
在一种可能的实现方式中,处理单元701还用于:将第一字段承载的信号和第三字段承载的信号中的至少一项,与第二字段承载的信号一起调制,以生成至少一个调制信号;发送单元702具体用于:向电力线通信网络中的节点发送至少一个调制信号。
在一种可能的实现方式中,处理单元701还用于:在第二字段的长度改变时,将第二字段的长度、以及第二字段中每一个比特位所映射的标识,通过发送单元702发送至电力线通信网络中的节点。
本实施例提供的电力线通信装置700,用于节点(例如图1所示的节点n1)所执行的数据传输方法,可以达到与上述实现方法或装置相同的效果。具体地,以上图7对应的各个模块可以软件、硬件或二者结合实现。例如,每个模块可以以软件形式实现,对应于图6中与该模块对应的处理器和接口,用于驱动该相应部件工作。或者,每个模块可包括对应的部件和相应的驱动软件两部分,即以软件或硬件结合实现。因此,电力线通信装置700可以认为在逻辑上包含了图1所示的接口n1以及图6所示的接口,每个模块中均至少包含了对应功能的驱动软件程序,本实施例对此不做展开。
本实施例可以根据上述方法示例对图1所示的节点n21、节点n22、节点n23、节点n24、节点n31、节点n32、节点n33、节点n34、节点n41和节点n42中的任一个所包括的各部件进行功能模块的划分,例如,可以对应各个功能划分各个不同部件,也可以将两个或两个以上的功能的部件集成在一个处理器模块中。上述集成的处理器模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在采用集成模块的情况下,图8示出了电力线通信装置800的一种可能的示意图。如图8所示,该电力线通信装置800可以包括:接收单元801和处理单元802,可以对之前提到的装置进行进一步扩展。该接收单元801,用于从电力线节点接收数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;该处理单元802,用于当所述第二字段指示所述所述第一节点为所述目的节点时,基于所述调制参数,从所述第三字段读取所述业务数据。
在一种可能的实现方式中,所述处理单元802还用于:当所述第二字段指示所述第一节点不是所述目的节点时,丢弃所述数据帧。
在一种可能的实现方式中,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第一信息时,指示所述第一节点为所述目的节点;当所述第二字段中、与所述第一节点的标识信息对应的比特位为第二信息时,指示所述第一节点不是所述目的节点。
本实施例提供的电力线通信装置800,用于节点n21、节点n22、节点n23、节点n24、节点n31、节点n32、节点n33、节点n34、节点n41和节点n42中的任一个所执行的数据传输方法,可以达到与上述实现方法或装置相同的效果。具体地,以上图8对应的各个模块可以软件、硬件或二者结合实现。例如,每个模块可以以软件形式实现,对应于图6中 与该模块对应的接口和处理器,用于驱动该相应部件工作。或者,每个模块可包括对应的部件和相应的驱动软件两部分,即以软件或硬件结合实现。因此,电力线通信装置800可以认为在逻辑上包含了图1所示的节点n21、节点n22、节点n23、节点n24、节点n31、节点n32、节点n33、节点n34、节点n41和节点n42中的任一个节点或者图6所示的节点,每个模块中均至少包含了对应功能的驱动软件程序,本实施例对此不做展开。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质或者存储器包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种应用于电力线通信的数据传输方法,其特征在于,包括:
    电力线节点生成数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;
    所述电力线节点向电力线通信网络中的节点发送所述数据帧。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述电力线节点对本次组播的至少一个目的节点的标识信息的配置,是基于所接收到的高层指令的指示信息而触发的,所述指示信息用于指示所述至少一个目的节点的标识信息。
  3. 根据权利要求1或2所述的数据传输方法,其特征在于,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;
    所述电力线节点对本次组播的至少一个目的节点的标识信息的配置,包括:
    将所述第二字段中、与所述至少一个目的节点中的每一个目的节点的标识信息对应的目标比特位,设置为第一信息;
    将所述第二字段中、除了所述目标比特位之外的任意比特位,设置为第二信息。
  4. 根据权利要求1-3任一项所述的数据传输方法,其特征在于,所述电力线节点向电力线通信网络中的节点发送所述数据帧,包括:
    将所述第一字段承载的信号、所述第二字段承载的信号和所述第三字段承载的信号,分别独立调制,以生成多个调制信号;
    向所述电力线通信网络中的节点发送所述多个调制信号。
  5. 根据权利要求1-3任一项所述的数据传输方法,其特征在于,所述电力线节点向电力线通信网络中的节点发送所述数据帧,包括:
    将所述第一字段承载的信号和所述第三字段承载的信号中的至少一项,与所述第二字段承载的信号一起调制,以生成至少一个调制信号;
    向所述电力线通信网络中的节点发送所述至少一个调制信号。
  6. 根据权利要求1-5任一项所述的数据传输方法,其特征在于,所述方法还包括:
    所述电力线节点在所述第二字段的长度改变时,将所述第二字段的长度、以及所述第二字段中每一个比特位所映射的标识信息发送至所述电力线通信网络中的节点。
  7. 一种应用于电力线通信的数据传输方法,其特征在于,包括:
    电力线通信网络中的第一节点从电力线节点接收数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;
    当所述第二字段指示所述第一节点为所述目的节点时,所述第一节点基于所述调制参数,从所述第三字段解调出所述业务数据。
  8. 根据权利要求7所述的数据传输方法,其特征在于,所述数据传输方法还包括:
    当所述第二字段指示所述第一节点不是所述目的节点时,所述第一节点丢弃所述数据帧。
  9. 根据权利要求7或8所述的数据传输方法,其特征在于,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;
    当所述第二字段中、与所述第一节点的标识信息对应的比特位为第一信息时,指示所述第一节点为所述目的节点;
    当所述第二字段中、与所述第一节点的标识信息对应的比特位为第二信息时,指示所述第一节点不是所述目的节点。
  10. 根据权利要求9所述的数据传输方法,其特征在于,所述第一节点为所述电力线通信网络中的中继节点;所述方法还包括:
    所述第一节点基于所述映射关系,读取所述第二字段中、与所述中继节点耦合的后级节点的标识信息相对应的比特位的信息;
    当所述第二字段中、与所述后级节点的标识信息相对应的比特位的信息为所述第一信息时,将所述数据帧转发至所述后级节点。
  11. 一种电力线通信装置,所述电力线通信装置为电力线节点,其特征在于,所述电力线通信装置包括处理器和接口;
    所述处理器,用于生成数据帧,所述数据帧包括第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;
    所述接口,向电力线通信网络中的节点发送所述数据帧。
  12. 根据权利要求12所述的电力线通信装置,其特征在于,所述电力线节点对本次组播的至少一个目的节点的标识信息的配置,是基于所接收到的高层指令的指示信息而触发的,所述指示信息用于指示所述至少一个目的节点的标识信息。
  13. 根据权利要求11或12所述的电力线通信装置,其特征在于,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;
    所述处理器具体用于:
    将所述第二字段中、与所述至少一个目的节点中的每一个目的节点的标识信息对应的目标比特位,设置为第一信息,所述第一信息指示读取所述业务数据;
    将所述第二字段中、除了所述目标比特位之外的任意比特位,设置为第二信息,所述第二信息指示丢弃所述数据帧。
  14. 根据权利要求11-13任一项所述的电力线通信装置,其特征在于,
    所述处理器还用于:将所述第一字段承载的信号、所述第二字段承载的信号和所述第三字段承载的信号,分别独立调制,以生成多个调制信号;
    所述接口具体用于:向所述电力线通信网络中的节点发送所述多个调制信号。
  15. 根据权利要求11-13任一项所述的电力线通信装置,其特征在于,
    所述处理器还用于:将所述第一字段承载的信号和所述第三字段承载的信号中的至少一项,与所述第二字段承载的信号一起调制,以生成至少一个调制信号;
    所述接口具体用于:向所述电力线通信网络中的节点发送所述至少一个调制信号。
  16. 根据权利要求11-15任一项所述的电力线通信装置,其特征在于,所述处理器还用于:
    在所述第二字段的长度改变时,将所述第二字段的长度、以及所述第二字段中每一个比特位所映射的标识信息,通过所述接口发送至所述电力线通信网络中的节点。
  17. 一种电力线通信装置,所述电力线通信装置为电力线通信网络中的第一节点,其特征在于,所述电力线通信装置包括处理器和接口;
    所述接口,用于从电力线节点接收数据帧,所述数据帧包括:第一字段,第二字段和第三字段,其中,所述第一字段用于承载调制参数,所述第二字段用于以比特映射的方式,承载由所述电力线节点配置的本次组播的至少一个目的节点的标识信息,所述第三字段用于承载业务数据;
    所述处理器,用于当所述第二字段指示所述第一节点为所述目的节点时,基于所述调制参数,从所述第三字段解调出所述业务数据。
  18. 根据权利要求17所述的电力线通信装置,其特征在于,所述处理器还用于:
    当所述第二字段指示所述第一节点不是所述目的节点时,丢弃所述数据帧。
  19. 根据权利要求17或18所述的电力线通信装置,其特征在于,所述第二字段包括多个比特位,所述多个比特位与所述电力线通信网络中节点的标识信息具有映射关系;
    当所述第二字段中、与所述第一节点的标识信息对应的比特位为第一信息时,指示所述第一节点为所述目的节点;
    当所述第二字段中、与所述第一节点的标识信息对应的比特位为第二信息时,指示所述第一节点不是所述目的节点。
  20. 一种电力线通信系统,其特征在于,所述电力线通信系统包括如权利要求11-16任一项所述的电力线通信装置以及如权利要求17-19任一项所述的电力线通信装置。
  21. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序被处理器运行时,实现如上述权利要求1-6中任一项所述的方法或如上述权利要求7-10中任一项所述的数据传输方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,实现如上述权利要求1-6中任一项所述的方法或如上述权利要求7-10中任一项所述的数据传输方法。
PCT/CN2022/133940 2022-03-01 2022-11-24 数据传输方法、电力线通信装置和系统 WO2023165176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210197232.5 2022-03-01
CN202210197232.5A CN116743306A (zh) 2022-03-01 2022-03-01 数据传输方法、电力线通信装置和系统

Publications (1)

Publication Number Publication Date
WO2023165176A1 true WO2023165176A1 (zh) 2023-09-07

Family

ID=87882879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133940 WO2023165176A1 (zh) 2022-03-01 2022-11-24 数据传输方法、电力线通信装置和系统

Country Status (2)

Country Link
CN (1) CN116743306A (zh)
WO (1) WO2023165176A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582989A (zh) * 2017-05-12 2019-12-17 谷歌有限责任公司 增强的多播网络通信
CN111148231A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 一种信息传输方法及节点设备
CN112219356A (zh) * 2018-05-25 2021-01-12 华为技术有限公司 一种基于电力线信道的数据帧传输方法及装置
US20220006488A1 (en) * 2020-07-01 2022-01-06 Sagemcom Energy & Telecom Sas Method and device for transmitting a message
CN114095059A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 一种电力线通信方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582989A (zh) * 2017-05-12 2019-12-17 谷歌有限责任公司 增强的多播网络通信
CN112219356A (zh) * 2018-05-25 2021-01-12 华为技术有限公司 一种基于电力线信道的数据帧传输方法及装置
CN111148231A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 一种信息传输方法及节点设备
US20220006488A1 (en) * 2020-07-01 2022-01-06 Sagemcom Energy & Telecom Sas Method and device for transmitting a message
CN114095059A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 一种电力线通信方法、装置和系统

Also Published As

Publication number Publication date
CN116743306A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US10499313B2 (en) Efficient hybrid resource and schedule management in time slotted channel hopping networks
US10231163B2 (en) Efficient centralized resource and schedule management in time slotted channel hopping networks
JP2007506300A (ja) イーサネット(登録商標)受動光ネットワーク内でパケットを転送する方法および装置
US9331939B2 (en) Message forwarding method, system, and relay agent device
CN110198345B (zh) 一种数据请求方法、系统及装置和存储介质
WO2015106680A1 (zh) 堆叠实现方法及可堆叠设备
CN110035005B (zh) 数据处理方法和装置
WO2014121468A1 (zh) 在网络虚拟化系统中组播数据通道建立的方法及设备
CN111787349B (zh) 一种数据缓存方法、装置、设备及介质
EP2652919B1 (en) Method for group-based multicast with non-uniform receivers
WO2024000937A1 (zh) 一种支持终端移动接入的多模态网络控制系统和方法
CN103200283A (zh) 多中继无线通信系统及该系统空中接口ip化的实现方法
WO2012089107A1 (zh) 在IPv4网络中传递信息的方法和装置
WO2007054006A1 (fr) Station de base de système d’accès sans fil large bande et système pour réaliser un service de diffusion de groupe
US20060209774A1 (en) Wireless base station, wireless mobile device, and wireless access network
EP2685665B1 (en) Multicast transmission using a unicast protocol
CN104754521A (zh) 一种报文转发方法、无线接入点、无线控制器和系统
WO2017041534A1 (zh) 一种电力线网络通信的方法及装置、计算机存储介质
CN101009669B (zh) 一种传输组播消息的方法和系统以及路由设备
WO2023165176A1 (zh) 数据传输方法、电力线通信装置和系统
KR20040094561A (ko) 모바일 애드 혹 네트워크에서 데이터 패킷 전송 효율의개선을 위한 네트워크 장치 및 패킷 송수신 방법
WO2022262579A1 (zh) 报文传输方法以及装置
CN110380963B (zh) 一种高效快收敛的邻居发现方法
CN110784683B (zh) 一种监控资源的管理方法、装置及存储介质
CN110099307B (zh) 一种节点连接方法、视联网及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929604

Country of ref document: EP

Kind code of ref document: A1