WO2023165157A1 - 医疗导航装置、导航处理装置及方法、以及医疗导航系统 - Google Patents

医疗导航装置、导航处理装置及方法、以及医疗导航系统 Download PDF

Info

Publication number
WO2023165157A1
WO2023165157A1 PCT/CN2022/130942 CN2022130942W WO2023165157A1 WO 2023165157 A1 WO2023165157 A1 WO 2023165157A1 CN 2022130942 W CN2022130942 W CN 2022130942W WO 2023165157 A1 WO2023165157 A1 WO 2023165157A1
Authority
WO
WIPO (PCT)
Prior art keywords
position information
sensor
navigation
real
relative
Prior art date
Application number
PCT/CN2022/130942
Other languages
English (en)
French (fr)
Inventor
徐晓龙
郭楚
何智圣
陈德方
张柳云
刘梦星
Original Assignee
武汉迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉迈瑞科技有限公司 filed Critical 武汉迈瑞科技有限公司
Priority to CN202280007392.7A priority Critical patent/CN116887776A/zh
Publication of WO2023165157A1 publication Critical patent/WO2023165157A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/392Radioactive markers

Definitions

  • orthopedic surgical tools or instruments In clinical orthopedic surgery, some operations require the insertion of orthopedic surgical tools or instruments. Take the occurrence of proximal femoral fractures (such as intertrochanteric fractures) or fractures of long bones such as the tibia or humerus as examples. Orthopedic surgery requires insertion of Intramedullary nailing is performed by means of intramedullary nailing to facilitate fracture healing. When inserting orthopedic surgical tools or instruments, the specific insertion position and insertion direction of these orthopedic surgical tools or instruments will affect the postoperative effect and the recovery effect after the operation.
  • the present application provides one or more of a medical navigation device, a navigation processing device, a navigation method for a medical navigation device, an electronic device, a computer-readable storage medium, a computer program product, or a medical navigation system.
  • the present application provides a medical navigation device for intramedullary nail insertion point navigation, including a navigation component and a development positioning component, and the navigation component is provided with a sensor;
  • the present application provides a navigation processing device for guiding orthopedic surgical tools, the navigation processing device is communicatively connected with the navigation component of the medical navigation device, and the medical navigation device includes the navigation component and the development and positioning component , the navigation component is provided with a sensor;
  • Prompting the first relative position information and/or the second relative position information, wherein the first relative position information is combined with the target offset position information, and/or the second relative position information can be used It assists in guiding the orthopedic surgical tool to move to the ideal nail entry point of the intramedullary nail.
  • the first relative position information combined with the target offset position information, and/or, the second relative position information may be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • first relative position information and/or second relative position information based on the real-time position information, where the first relative position information is the relative position between the real-time position of the sensor and the reference position where the sensor is located in advance information, the real-time position is determined by the real-time position information, the reference position is determined by pre-recorded reference position information, the reference position information includes first reference position information and/or second reference position information, and the second A reference position information is the position information measured by the sensor obtained by the navigation component in response to the trigger instruction and sent to the navigation processing device, and the second reference position information is obtained by the navigation processing device in response to the trigger instruction
  • the preset position information; the second relative position information is the relative position information between the real-time position and the target position, and the second relative position information is determined by the real-time position information and target offset position information,
  • the target location is determined by the intended insertion location and/or intended insertion direction of the orthopedic surgical tool in the human body;
  • the sensor when the sensor is at the reference position, the sensor has a predetermined relative positional relationship with the position mark of the developing positioning assembly; the position mark is used to determine the target offset position information, the target offset position information is used to indicate the relative positional relationship between the reference position and the target position;
  • the present application provides a computer program product, including a computer program, wherein, when the computer program is executed by a processor, the steps of the method in any one of the foregoing embodiments are implemented.
  • FIG. 1 is a schematic structural diagram of a medical navigation device according to some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a medical navigation device combined with an external processing device according to some embodiments of the present application;
  • Fig. 5 is a schematic structural appearance diagram (first viewing angle) of a medical navigation device according to some embodiments of the present application.
  • Fig. 11 is a schematic diagram of the principle of determining the height difference in some embodiments of the present application.
  • Fig. 12 is a schematic diagram of the principle of determining the outer deflection angle in some embodiments of the present application.
  • Fig. 13 is a schematic diagram of the principle of determining the pitch angle in some embodiments of the present application.
  • Fig. 14 is a schematic diagram of the ideal nailing position of the ideal nailing point of the intramedullary nail at the proximal end of the femur;
  • Fig. 16 is a schematic diagram of placing the medical navigation device on the body surface of the proximal femur on the affected side in some embodiments;
  • Fig. 18 is an example diagram of an application scenario in which a medical navigation device is placed on the body surface of the affected proximal femur to determine a reference position in other embodiments;
  • Fig. 19 is a schematic diagram of determining target offset position information based on medical images in some embodiments.
  • Fig. 20 is a schematic diagram of determining target offset position information based on medical images in other embodiments.
  • Fig. 22 is a schematic diagram of fixing the navigation component and the electric drill in some embodiments.
  • Fig. 25 is a schematic flowchart of a medical navigation method in some embodiments.
  • Fig. 26 is a schematic flowchart of a medical navigation method in some embodiments.
  • Fig. 29 is a schematic structural block diagram of an electronic device in some embodiments.
  • a medical navigation device 10 in some embodiments includes a developing positioning component 100 and a navigation component 200 , wherein the navigation component 200 is provided with a sensor 201 .
  • the medical navigation device 10 can be applied in orthopedic surgery to guide orthopedic surgical tools.
  • the development and positioning assembly 100 is provided with a position mark, which can be visualized in the medical image;
  • the sensor 201 when the sensor 201 is at the reference position, the sensor 201 has a predetermined relative position relationship with the position mark of the developing positioning assembly; the position mark is used to determine the above-mentioned target offset position information in combination with the predetermined relative position relationship, and the target offset position information Used to indicate the relative positional relationship between the reference position and the target position;
  • the development positioning assembly 100 is provided with a position mark, and the position mark can be visualized in the medical image;
  • the navigation component 200 is configured to send the real-time position information measured by the sensor 201 to the external processing device 20 when the sensor 201 is fixed to the orthopedic surgical tool, and receive the first relative position information fed back by the external processing device 20 and/or The second relative position information, and prompt the first relative position information and/or the second relative position information; wherein, the first relative position information is the relative position information between the real-time position of the sensor 201 and the reference position where the sensor 201 is in advance , the real-time position is determined by the real-time position information, the reference position is determined by the pre-recorded reference position information, the reference position information includes the first reference position information and/or the second reference position information, the first reference position information is that the navigation component 200 responds to the trigger Instructions are obtained and sent to the position information measured by the sensor 201 of the external processing device 20, the second reference position information is the preset position information obtained by the external processing device in response to the trigger instruction; the second relative position information is the real-time position of the sensor 201 The relative position information between the target position
  • the sensor 201 when the sensor 201 is at the reference position, the sensor 201 has a predetermined relative position relationship with the position mark of the developing positioning assembly 100;
  • the position information is used to indicate the relative positional relationship between the reference position and the target position;
  • the first relative position information combined with the target offset position information, and/or the second relative position information, can be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • the medical navigation device 10 in some embodiments includes a developing positioning component 100 and a navigation component 200 , wherein the navigation component 200 is provided with a sensor 201 .
  • the medical navigation device 10 can be applied in orthopedic surgery to guide orthopedic surgical tools. When the medical navigation device 10 is applied in orthopedic surgery, it can guide orthopedic surgical tools by cooperating with the external prompting device 30 .
  • the development positioning assembly 100 is provided with a position mark, and the position mark can be visualized in the medical image;
  • the navigation component 200 is configured to record the reference position information measured by the sensor 201 when the sensor 201 is in the reference position in response to the trigger instruction, and acquire the real-time position information of the sensor 201 when the sensor 201 is fixed to the orthopedic surgical tool, based on The real-time position information acquires the first relative position information and/or the second relative position information, and transmits the first relative position information and/or the second relative position information to the external prompting device 30, and the external prompting device 30 will check the first relative position information and/or the second relative position information; wherein, the first relative position information is the relative position information between the real-time position of the sensor 201 and the reference position, and the real-time position is determined by the real-time position information; the second relative position information is real-time relative position information between the position and the target position, the second relative position information is determined by real-time position information and target offset position information, and the target position is determined by the expected insertion position and/or expected insertion direction of the orthopedic surgical tool in the human body;
  • the sensor 201 when the sensor 201 is at the reference position, the sensor 201 has a predetermined relative position relationship with the position mark of the developing positioning assembly; Indicates the relative positional relationship between the reference position and the target position;
  • the external prompting device 30 may be any device capable of information prompting.
  • the external prompting device 30 may be a smart wearable device.
  • the external prompting device can be a user terminal (such as a personal computer, a tablet computer), in some embodiments, the external prompting device can be a display screen device, in some embodiments, the external prompting device can also be Can be a voice output device.
  • the medical navigation device 10 in some embodiments includes a developing and positioning component 100 and a navigation component 200 , wherein the navigation component 200 is provided with a sensor 201 .
  • the medical navigation device 10 can be applied in orthopedic surgery to guide orthopedic surgical tools. When the medical navigation device 10 is applied in orthopedic surgery, it can guide orthopedic surgical tools by cooperating with the navigation processing device 40 .
  • the navigation processing device 40 is in communication connection with the navigation component 200 of the medical navigation device 10 .
  • the development positioning assembly 100 is provided with a position mark, and the position mark can be visualized in the medical image;
  • the navigation processing device 40 is configured to obtain the real-time position information sent by the navigation component 200 and measured by the sensor 201 under the condition that the sensor 201 is fixed to the orthopedic surgical tool, and obtain the first relative position information and/or the second relative position information based on the real-time position information.
  • the first relative position information is the relative position information between the real-time position of the sensor 201 and the reference position where the sensor 201 is in advance, and the real-time position is determined by The real-time location information is determined, the reference location is determined by pre-recorded reference location information, the reference location information includes first reference location information and/or second reference location information, the first reference location information is obtained by the navigation component 200 in response to a trigger instruction, and The position information measured by the sensor 201 sent to the navigation processing device 40, the second reference position information is the preset position information obtained by the navigation processing device 40 in response to the trigger instruction; the second relative position information is the distance between the real-time position and the target position Relative position information, the second relative position information is determined by real-time position information and target offset position information, and the target position is determined by the expected insertion position and/or expected insertion direction of the orthopedic surgical tool in the human body;
  • the positional mark is used to determine the target offset position information in combination with the predetermined relative positional relationship, and the target offset position information Used to indicate the relative positional relationship between the reference position and the target position;
  • the first relative position information combined with the target offset position information, and/or the second relative position information, can be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • the sensor 201 can be an inertial sensor, and an inertial sensor is a type of sensor that can detect and measure acceleration, tilt, impact, vibration, rotation, and multi-degree-of-freedom motion.
  • the inertial sensor can Measure and output position information.
  • the number of the sensor 201 is specifically one, so that medical navigation can be realized based on the same sensor.
  • the navigation component 200 and the development positioning component 100 can be fixedly connected or detachably connected, for example, the navigation component 200 and the development positioning component 100 can be magnetically attracted
  • the navigation component 200 and the developing positioning component 100 can be connected by clamping or bonding, so as to facilitate the installation and disassembly of the navigation component 200 and the developing positioning component 100 .
  • the navigation assembly 200 may also be detachably connected to the developing positioning assembly 100 by means other than clamping, bonding, and magnetic attraction, which is not specifically limited here.
  • the navigation assembly 200 and the development positioning assembly 100 when the navigation assembly 200 and the development positioning assembly 100 are fixedly connected, or when the navigation assembly 20 and the development positioning assembly 100 are detachably connected together, the navigation assembly 200 and the development positioning assembly 100 have a predetermined relative positional relationship.
  • the navigation component 200 and the development positioning component 100 do not need to have a specific fixed or detachable connection relationship, as long as the medical navigation device 10 is at the reference position, the navigation component 200 and the development positioning component 100 It only needs to have a predetermined relative positional relationship between them.
  • FIG. 5 when the medical navigation device 10 is at the reference position, schematic diagrams of the predetermined relative positional relationship between the development and positioning component 100 and the navigation component 200 are shown in FIG. 5 , FIG. 6 and FIG. 7 .
  • the developing positioning assembly 100 includes a body 110 .
  • at least one position marker 120 is disposed on the main body 110, and the position marker 120 can be visualized in medical images.
  • the main body 110 is also provided with an installation part 111 for installing the navigation component 200 , and at least one position indicator 120 is distributed around the installation part 111 .
  • the position marker 120 includes angle scales, and at least one angle scale is distributed around the installation part 111 .
  • the development and positioning assembly 100 can be set on the target to be operated, and medical images (such as X-ray fluoroscopy images) can be used to view information such as the specific position and angle of the site to be operated, and the angle scale can be used as a reference. It is easy to assist in determining the expected insertion direction of the target position, such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail, so as to assist in guiding the orthopedic surgical tool to move to the target position such as the ideal entry point of the intramedullary nail.
  • the body 110 is provided with multiple angle scales, and the multiple angle scales include a reference angle scale (such as the scale corresponding to 0 in FIG. 7 ), and non-reference angle scales arranged on at least one side of the reference angle scale, the non-reference angle scales include positive angle scales and/or negative angle scales.
  • a reference angle scale such as the scale corresponding to 0 in FIG. 7
  • non-reference angle scales arranged on at least one side of the reference angle scale
  • the non-reference angle scales include positive angle scales and/or negative angle scales.
  • the reference angle scale as a reference to find out the expected insertion direction of the target position among multiple angle scales, such as the ideal insertion point of the intramedullary nail.
  • Nail entry direction, the corresponding positive angle scale or negative angle scale it is more convenient to read the corresponding angle scale, and it is also more convenient to assist in determining the expected insertion direction of the target position, such as the ideal nail entry point for the ideal intramedullary nail entry point direction.
  • the reference angle scale of the developing positioning assembly 100 when the navigation assembly 200 is at the reference position, the reference angle scale of the developing positioning assembly 100 is located in the axis direction of the navigation assembly 200 . That is, when the navigation component 200 is at the reference position, the position mark of the navigation component 200 and the development and positioning component 100 has a predetermined relative positional relationship, which may mean that when the navigation component 200 is at the reference position, the reference angle scale of the development and positioning component 100 is located at the navigation position. In the axial direction of the assembly 200. Therefore, while it is more convenient to read the corresponding angle scale, it is also possible to conveniently and conveniently verify and determine whether the position marks of the navigation component 200 and the developing positioning component 100 satisfy a predetermined relative positional relationship.
  • the non-reference angle scale includes positive angle scales that are symmetrically arranged on both sides of the reference angle scale with the reference angle scale as a reference (for example, the angle values shown in FIG. 7 are 10, 20, 30, 40 corresponding to angle scale) and negative angle scales (for example, the angle scales corresponding to the angle values of -10, -20, -30, -40 shown in Figure 7).
  • positive angle scales that are symmetrically arranged on both sides of the reference angle scale with the reference angle scale as a reference
  • the angle values shown in FIG. 7 are 10, 20, 30, 40 corresponding to angle scale
  • negative angle scales for example, the angle scales corresponding to the angle values of -10, -20, -30, -40 shown in Figure 7.
  • the positive angle scale and/or the negative angle scale may also include angle scales that do not display angle values.
  • the distribution of the multiple angle scales may also be arranged in other manners that are convenient for reading the readings of the angle scales, which is not specifically limited here.
  • the installation part 111 and a plurality of angle scales are arranged on the first surface 1101 of the body 110, so that the navigation component 200 set on the installation part 111 can use the angle scale as Refer to for navigation.
  • the direction of the reference angle scale is used as the reference direction
  • the reference angle scale is used as the reference direction to assist in determining the expected insertion direction of the target position, such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the navigation component 200 Under the guidance of navigation, it is more convenient to navigate orthopedic surgical tools to the expected insertion direction of the target position such as the ideal nail entry point and the ideal nail entry direction of the intramedullary nail.
  • the installation portion 111 includes an installation groove, and the navigation component 200 is at least partially accommodated in the installation groove.
  • the navigation assembly 200 can be placed in the installation groove to facilitate the use of the navigation assembly 200 and the development positioning assembly 100. It can be understood that a plurality of angle scales surround the installation groove so that the navigation assembly 200 takes the direction where the reference angle scale is located as a reference direction, and more It is a good aid to determine the expected insertion direction of the target position, such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the installation groove includes a bottom wall parallel to the first surface 1101 and a side wall connected to the bottom wall, and the navigation assembly 200 is detachably connected to the bottom of the installation groove. wall.
  • the navigation assembly 200 can be installed in the installation groove, so that the navigation assembly 200 can be used in conjunction with the developing positioning assembly 100 .
  • the projection of the sidewall in a plane parallel to the first surface 1101 is configured as a closed curve.
  • the navigation assembly 200 is snapped into the installation groove, so that the snap connection between the navigation assembly 200 and the development positioning assembly 100 can be realized.
  • This structure is relatively simple, and the installation and disassembly of the navigation assembly 200 and the development positioning assembly 100 are easier convenient.
  • a plurality of angle scales are arranged around the installation groove, and when the navigation assembly 200 is installed in the installation groove, it is also convenient for the navigation assembly 200 to correspond to one of the multiple angle scales, and this is used as a reference, which is more convenient to use .
  • the figure formed by the projection of the mounting groove on a plane parallel to the first surface 1101 is an axisymmetric figure.
  • the symmetry axis of the axisymmetric figure is set collinearly with the extension line of the projection of the reference angle scale in a plane parallel to the first surface 1101 .
  • the navigation assembly 200 installed in the installation groove can be centered with the reference angle scale as the object.
  • the navigation assembly 200 can more conveniently use the direction where the reference angle scale is located as the reference direction, and can also use the development positioning assembly 100
  • the reference angle scale is the reference direction, which assists in determining the expected insertion direction of the target position, such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail, so that subsequent orthopedic surgical tools can be adjusted relative to the reference direction under the navigation of the navigation component 200, To guide the orthopedic surgery tool to move to the expected insertion direction of the target position, such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the outer periphery of the body 110 is provided with an arc edge 1102 connected to the first surface 1101 , and a plurality of angle scales are arranged at intervals along the extending direction of the arc edge 1102 .
  • the distribution of the multiple angle scales is arranged in a fan shape, which is similar to the distribution of the angle scales of a protractor.
  • the arc edge 1102 is configured in an arc shape, so that a plurality of angle scales are distributed in a circular array around the center of the arc edge 1102 .
  • the body 110 includes a second surface 1103 opposite to the first surface 1101, wherein the first surface 1101 and the second surface 1103 are configured as a plane and parallel to each other. In this way, the body 110 can be placed above the to-be-operated part of the to-be-operated target by means of the second surface 1103 .
  • the second surface 1103 can be used to make the development and positioning assembly 100 be placed more stably, for example, placed on the surface of the proximal femur on the affected side, so as to better ensure that the development and positioning assembly 100 remains relatively horizontal, and the position of the development and positioning assembly 100 can also be used
  • the mark 120 and the medical image can more accurately obtain target offset position information between the reference position and the target position, such as the difference between the reference position and the expected insertion direction of the target position (for example, the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail).
  • the second surface 1103 may be a continuous plane, or may be composed of multiple independent planes, which is not specifically limited here.
  • the developing positioning component 100 is provided with a first contact
  • the navigation component 200 is provided with a second contact
  • the navigation component 200 is activated when the first contact contacts the second contact. Therefore, when the medical navigation device 10 is not needed, the navigation component 200 and the development and positioning component 100 can be placed separately (as shown in FIG. 7 ).
  • the navigation component 200 is assembled and connected with the development and positioning component 100, so that the first contact is in contact with the second contact, thereby activating the navigation component 200, so that the navigation component 200 is in the On state. Therefore, while starting the navigation component 200 conveniently, the resources consumed by the navigation component 200 can also be reduced, and the service life of the navigation component 200 can be prolonged.
  • first contacts arranged on the developing positioning assembly 100 there can be two first contacts arranged on the developing positioning assembly 100, such as the first contact 130 in Fig. 7, and the second contacts (not shown) arranged on the navigation assembly 200 can also have two indivual.
  • the navigation assembly 200 can be activated again when the two contacts are in corresponding contact.
  • the navigation component 200 is activated, the development and positioning component 100 and the navigation component 200 are in a relatively stable state, which helps to improve the accuracy of the medical navigation process.
  • the navigation component 200 after the navigation component 200 is activated, it may be after the navigation component 200 is activated for a certain period of time, or after the navigation component 200 is activated, and after a certain period of time is detected that the first contact and the second contact are not in contact, the navigation component 200 automatically switches To the inactive state, that is, to switch to the inactive state, so as to reduce the resources consumed by the navigation component 200 .
  • the certain duration can be set in combination with the operation duration, or set in other ways, such as manual input by the user.
  • the navigation component 200 after the navigation component 200 is activated, the navigation component 200 is switched to inactive only when an instruction to close the navigation component 200 is received, no matter whether the subsequent first contact and the second contact are in contact. state.
  • the trigger instruction may include an activation signal generated when the first contact contacts the second contact. That is, when the first contact is in contact with the second contact and the activation signal generated by the contact between the first contact and the second contact is received, it is considered that the trigger instruction has been received, so that the reference position of the reference position can be automatically triggered.
  • a record of location information may be included.
  • the reference position of the navigation component 200 may also be recorded when a trigger instruction is received after the navigation component 200 is activated. That is, when the first contact is in contact with the second contact and the activation signal generated by the contact between the first contact and the second contact is received, the recording of the reference position information of the reference position cannot be triggered yet, but at the first After the contact point is in contact with the second contact point, after the navigation component 200 is activated, when a trigger instruction is further received, the reference position information of the reference position of the navigation component 200 is recorded. Therefore, the accuracy of the reference position information of the reference position recorded in some scenarios can be improved accordingly. For example, after the first contact point is brought into contact with the second contact point, the medical navigation device 10 is placed on the patient's waiting area. parts of the scene.
  • the navigation component 200 and the developing positioning component 100 can also be magnetically connected by means of the first contact and the second contact, so that the connection reliability between the navigation component 200 and the developing positioning component 100 can be improved.
  • the first contact point can be arranged in the installation groove, so that the navigation assembly 200 can be firmly positioned in the installation groove.
  • the navigation assembly 200 can be detachably fixed with the orthopedic surgical tool.
  • the navigation assembly 200 can be detachably fixed to the orthopedic surgical tool by means of magnetic attraction and/or clamping.
  • the orthopedic surgical tool can be a guide wire, a gripper or an electric drill.
  • the navigation component 200 can be provided with a touch screen, so that the navigation component 200 can receive a trigger instruction through the touch screen, and the trigger command can be used to instruct recording The reference position information of the above-mentioned reference position.
  • the navigation component 200 by operating the corresponding buttons or controls displayed on the touch screen, or clicking or double-clicking on a designated area or any position on the touch screen, or sliding a specified track on the touch screen, or through other touch methods, Issue a trigger command. If the navigation component 200 receives an operation action of operating a corresponding button or control through the touch screen, or recognizes a specified touch action, such as single click, double click, or a specified sliding track, etc., it determines that a trigger instruction is received.
  • a specified touch action such as single click, double click, or a specified sliding track, etc.
  • the navigation component 200 may also be provided with a physical key and/or a voice collection component, so as to receive a trigger instruction through the physical key and/or the voice collection component,
  • the trigger instruction may be used to instruct to record the reference position information of the above reference position.
  • a trigger command can be issued by directly pressing the physical button.
  • the navigation component 200 receives a press operation through the physical key, it determines that a trigger instruction is received.
  • the navigation component 200 is provided with a voice collection component
  • the medical staff such as a doctor
  • the voice collection component collects voice information and recognizes the voice information. If it is recognized that the voice information contains “recording reference position", “recording position” or other predefined reference position information used to indicate the recording reference position, the navigation component 200 determines that a trigger instruction is received.
  • the medical navigation device 10 involved in the above-mentioned embodiments it is also possible to set a touch screen, physical buttons, and voice collection components on the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40 components that can receive a trigger instruction, so as to receive the trigger instruction through the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40 .
  • the trigger instruction received by the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40 may be forwarded to the navigation component 200 .
  • the manner in which the navigation component 200 and/or the external prompting device 30 and/or the navigation processing device 40 prompts the first relative position information and/or the second relative position information may be that the first relative position information and/or the second relative position information
  • the real-time display may also be to output the voice information of the first relative position information and/or the second relative position information, that is, perform voice prompts for the voice information of the first relative position information and/or the second relative position information.
  • the manner of displaying the first relative position information and/or the second relative position information in real time is not limited, for example, only the first relative position information and/or the second relative position information may be displayed, or the first relative position information and/or the second relative position information may be displayed or the second relative position information, simultaneously display corresponding descriptive information, the descriptive information is used to explain the specific meaning of the displayed first relative position information and/or the second relative position information.
  • the information of the suggested moving direction based on the first relative position information and/or the second relative position information may also be displayed at the same time, where different moving directions may be marked with different marks, for example, different different colors and/or different arrow directions etc.
  • Real-time voice prompts for the first relative position information and/or the second relative position information are not limited.
  • voice prompts corresponding descriptive information the descriptive information is used to explain the specific meaning of the first relative position information and/or the second relative position information of the voice prompt, some implementations
  • the information of the suggested moving direction based on the first relative position information and/or the second relative position information may also be voiced at the same time.
  • the above-mentioned reference position information is position information obtained by real-time measurement by the sensor 201 in response to the trigger command when the trigger command is received.
  • the navigation component 200 can directly obtain the location information obtained by the real-time measurement of the sensor 201 .
  • the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 can use the trigger command Forward to the navigation component 200, or send an instruction to the navigation component 200 based on the trigger instruction to instruct the navigation component 200 to provide position information, to instruct the navigation component 200 to obtain the position information obtained by the real-time measurement of the sensor 201, and feed back to the external processing device 20 and/or or the external prompting device 30 and/or the navigation processing device 40, so that the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 obtain the reference position information, the reference position information obtained in this way, this In the application embodiments, it may be referred to as the first reference position information.
  • the above-mentioned reference position information is the position information obtained by the sensor 201 after the sensor 201 is initialized in response to the trigger command when the trigger command is received, that is, the reference position information may be the initial position information of the sensor 201, the present application In the embodiment, it may be referred to as the second reference position information.
  • the initial position information can be set based on actual technical needs.
  • the initial position information can be zero position information.
  • the zero position information may refer to that the values of position-related information are all set to 0, for example, the height value is 0.
  • the navigation component 200 may directly initialize the sensor 201, so as to obtain the position information measured and obtained after the sensor 201 is initialized.
  • the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 When the trigger instruction is received by the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40, in some embodiments, the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 , the position information preset in the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 can be used as the reference position information, and the preset position information is the initial position information after the sensor 201 is initialized.
  • the reference location information obtained in this manner may be referred to as second reference location information in this embodiment of the present application.
  • the trigger instruction may be forwarded to the navigation component 200, or based on the trigger instruction, the navigation component may 200 sends an instruction, through which the navigation component 200 is instructed to initialize the sensor 201 and provide the position information measured by the sensor 201 after the initialization of the sensor 201 .
  • the navigation component 200 receives the instruction, after initializing the sensor 201, obtains the position information measured by the sensor 201, and feeds it back to the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40, so that the external processing device 20 And/or the external prompting device 30 and/or the navigation processing device 40 obtains the reference position information.
  • the first relative position information includes a first displacement deviation and/or a first angular deviation between the real-time position and the reference position.
  • the first displacement deviation may include: the distance between the real-time position of the sensor 201 and the reference position in a direction perpendicular to the horizontal plane. Wherein, in some embodiments, the first displacement deviation may also be referred to as a height difference, as shown in FIG. 11 .
  • the first angular deviation may include: after projecting the designated direction of the sensor 201 fixed to the orthopedic surgical tool and the designated direction of the sensor 201 at the reference position onto the same plane, the difference between the two projections on the plane angle.
  • the first angular deviation may also be referred to as an outer deflection angle.
  • the designated direction of the sensor 201 may specifically be the axis direction of the navigation component 200, and the same plane may specifically be a horizontal plane, as shown in FIG. 12 .
  • the coordinate system established by the sensor 201 itself can be used for projection.
  • An example of the coordinate system established by the sensor 201 itself is shown in FIG. 9 .
  • the X-axis of the coordinate system established by the sensor 201 itself is the axis direction of the navigation component 200 , that is, the designated direction of the sensor 201 .
  • the second relative position information includes a second displacement deviation and/or a second angular deviation between the real-time position and the target position, wherein the target position is determined by the expected insertion position and/or the expected insertion position of the orthopedic surgical tool in the human body.
  • the insertion direction is determined.
  • the target position may be the ideal insertion point of the intramedullary nail, etc., where the surgical tool is expected to be inserted.
  • the second relative position information includes the real-time position and the intramedullary The second displacement deviation and/or the second angle deviation between the ideal nail entry points.
  • the expected insertion position is the ideal nail entry position of the ideal nail entry point of the intramedullary nail
  • the expected insertion direction is the ideal nail entry position of the intramedullary nail.
  • the second angle deviation includes: after projecting the designated direction of the sensor 201 at the real-time position and the expected insertion direction of the target position, such as the ideal nailing direction of the ideal nailing point of the intramedullary nail, to the same plane, the The angle between the two projections.
  • the specified direction of the sensor 201 may specifically be the axis direction of the navigation component 200, and the same plane may specifically be a horizontal plane.
  • the expected insertion direction for example, the ideal nail entry direction of the ideal nail entry point of the intramedullary nail, can be determined in various possible ways.
  • the expected insertion direction such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail
  • the medical image is obtained by shooting.
  • the position mark of the development and positioning assembly 100 is visualized in the medical image.
  • the medical personnel can determine the expected insertion direction such as the ideal nail entry point and the ideal nail entry direction of the intramedullary nail.
  • the expected insertion direction for example, the ideal nail entry direction of the ideal nail entry point of the intramedullary nail
  • the insertion direction provided by the user is the insertion direction provided by the user.
  • the navigation component 200 is at the reference position
  • a medical image is obtained by shooting, and the position mark of the developing and positioning component 100 is visualized in the medical image.
  • the medical personnel can determine the expected insertion direction such as the ideal nail entry point of the intramedullary nail, and combined with the displayed position mark, observe and determine the ideal nail entry point and the ideal nail entry point of the intramedullary nail.
  • Direction and other position marks parallel to the expected insertion direction or, by using a measuring tool such as a ruler that can determine the parallelism of the lines, measure the position parallel to the expected insertion direction such as the ideal nail entry point of the marked intramedullary nail entry point. Then, select the location identifier by clicking or inputting the information of the location identifier, etc., and determine the direction corresponding to the location identifier selected by the operation to determine the expected insertion direction provided for the user, for example, determine the intramedullary nail provided for the user Ideal entry direction for ideal entry point.
  • the expected insertion direction such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail
  • intramedullary nailing point navigation it can also identify the axial direction of the femoral shaft through image processing of medical images, and combine the axial direction of the femoral shaft with the ideal nailing direction of the ideal nailing point of the intramedullary nail. The angle between them (for example 5°) determines the ideal nail entry direction for the ideal nail entry point of the intramedullary nail.
  • the above-mentioned target offset position information may be determined in combination with the position identifier and the above-mentioned predetermined relative positional relationship, so as to indicate the relative positional relationship between the reference position and the target position (for example, the ideal nail entry point of the intramedullary nail).
  • the target offset position information may be the difference between the specified direction of the sensor 201 at the reference position and the expected insertion direction (such as the ideal nail entry direction) of the target position (such as the ideal nail entry point of the intramedullary nail). angle between.
  • the angle between the specified direction of the sensor 201 at the reference position and the expected insertion direction (such as the ideal nail entry direction) of the target position (such as the ideal nail entry point of the intramedullary nail) it can be Determined in every possible way.
  • the sensor 201 and the position mark of the developing positioning assembly 100 have a predetermined relative positional relationship, which can be when the sensor 201 is at the reference position , the reference angle scale of the developing positioning assembly 100 is located in the axis direction of the navigation assembly 200 .
  • the reference angle scale of the development positioning assembly 100 is located in the axis direction of the navigation assembly 200 as an example, the designation of the sensor 201 at the reference position is determined in combination with several of them below
  • the angle between the direction and the expected insertion direction of the target position (for example, the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) is used as an example for illustration.
  • the medical personnel determine the expected insertion direction (for example, the ideal nail insertion direction of the ideal nail entry point of the intramedullary nail) by viewing the medical images, they can combine the displayed position identification to observe and determine the direction corresponding to the expected insertion direction.
  • Parallel position marks, and the angle between the position marks and the reference angle scale is used as the specified direction of the sensor 201 at the reference position, and the expected insertion direction of the target position (such as the ideal progress of the ideal nail entry point of the intramedullary nail). Nail direction) between the angle.
  • the reference angle scale is 0°
  • the angle scale corresponding to the determined position mark may be directly used as the included angle.
  • the medical staff can record the included angle by themselves to facilitate subsequent use.
  • the medical staff can also input the determined included angle into the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 by inputting or otherwise, so as to facilitate subsequent use.
  • the medical staff determines the expected insertion direction (for example, the ideal nail insertion direction of the ideal nail entry point of the intramedullary nail) by viewing the medical images, and combines the displayed position identification, it is determined by observation that it is parallel to the expected insertion direction.
  • the expected insertion direction for example, the ideal nail insertion direction of the ideal nail entry point of the intramedullary nail
  • the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 can directly use the location identifier in response to the operation.
  • the included angle between the mark and the reference angle scale is used as the included angle between the designated direction of the sensor 201 at the reference position and the expected insertion direction of the target position (for example, the ideal nail entry direction of the ideal intramedullary nail entry point).
  • the reference angle scale is 0°
  • the angle scale corresponding to the determined position mark may be directly used as the included angle.
  • the image analysis device can analyze and determine from the displayed position marks A position mark parallel to the identified expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail), and determine the direction corresponding to the position mark as the expected insertion direction (such as the ideal nail entry point of the intramedullary nail ideal direction of nail entry).
  • the included angle between the position mark and the reference angle scale is taken as the difference between the specified direction of the sensor 201 at the reference position and the expected insertion direction of the target position (for example, the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail). angle between.
  • the reference angle scale is 0°, the angle scale corresponding to the determined position mark may be directly used as the included angle.
  • the image processing device can also be the angle ⁇ by It can be transmitted to the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 in a wired or wireless manner. input into the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 .
  • the second displacement deviation may include: in a direction perpendicular to the horizontal plane, the distance between the real-time position of the sensor 201 and the expected insertion position (for example, the ideal nail insertion position of the ideal nail insertion point of the intramedullary nail).
  • the expected insertion position may be determined based on a predetermined insertion area
  • the predetermined insertion area may refer to an area used to determine the expected insertion position. Taking the ideal insertion point of the intramedullary nail whose target position is the proximal end of the femur as an example, the predetermined insertion area may be the ridge-like outline of the apex of the greater trochanter.
  • the specific location information of the expected insertion location can be determined during the movement of the orthopedic surgical tool fixed to the sensor 201 .
  • the height value of the expected insertion position (such as the ideal nail entry position of the ideal nail entry point of the intramedullary nail) in the direction perpendicular to the horizontal plane is determined by the first reference height value and the second reference height value, wherein,
  • the first reference height value is the height value of the sensor 201 in the direction perpendicular to the horizontal plane when the insertion end of the orthopedic surgery tool is located at the apex of the first side of the predetermined insertion area, and the second reference height value is when the insertion end of the orthopedic surgery tool is located at the predetermined insertion area.
  • the vertex on the first side may refer to the apex of the ridge profile of the apex of the greater trochanter that is closest to the ventral side
  • the apex on the second side may refer to the apex of the greater trochanter
  • the ridged profile is closest to the dorsal apex.
  • the senor 201 can also be used to measure the pitch angle, wherein the pitch angle is the angle between the bottom surface of the navigation assembly 200 and the horizontal plane, as shown in FIG. 13 .
  • the navigation component 200 is also used to prompt the pitch angle measured by the sensor 201 . In some embodiments, the navigation component 200 may also transmit the pitch angle measured by the sensor 201 to the external prompting device 30 and/or the navigation processing device 40 for prompting.
  • the error prompt information is information generated when the accumulated duration is longer than the preset duration.
  • the accumulative duration is the duration counted from when the reference position information is recorded or when the sensor 201 is calibrated last time. During the use of the sensor 201, when the use time is too long, it may cause errors. Therefore, it is also possible to count the accumulated time from the time when the reference position information is recorded or when the sensor 201 was calibrated last time. When the accumulated time is greater than the preset time , it is considered that there is an error in the sensor 201, and error prompt information can be provided.
  • the error prompt information is information generated when the calculated error is greater than the error threshold.
  • the navigation component 200 can monitor and calculate the error of the sensor 201 at the same time, and generate an error prompt message when the calculated error is greater than the error threshold.
  • the error threshold may be set according to the accuracy of the sensor 201, etc., which is not specifically limited in this embodiment of the present application.
  • the error prompt information provided by the navigation component 200 can be prompted by the navigation component 200, and the navigation component 200 can also send the error prompt information to the external prompt device 30 and/or the navigation processing device 40, and the external prompt device 30 and/or the navigation The processing device 40 makes a prompt.
  • the medical staff can also directly select the navigation component 200 including other sensors 201 to cooperate with the development and positioning component 100 to perform medical navigation, so as to improve the accuracy of medical navigation.
  • the following will illustrate the process of medical navigation based on the medical navigation device 10 and/or the navigation processing device 40 in a specific surgical process. It should be understood that the descriptions of these embodiments are not intended to limit the type of orthopedic surgery applicable to the medical navigation device 10 and/or navigation processing device 40 provided in this application.
  • the medical navigation device 10 and/or navigation processing device 40 provided in this application The processing device 40 is equally applicable to other orthopedic surgeries. During other orthopedic surgeries, similar processing can be performed based on the way the medical navigation device 10 and/or the navigation processing device 40 performs medical navigation.
  • Fractures of the proximal femur such as intertrochanteric fractures
  • fractures of the long bone such as the tibia and humerus
  • intramedullary nailing to facilitate fracture healing.
  • the selection of the position of the intramedullary nail and the direction of the nail is very important. This is because the position and direction of the nail entry will affect the establishment of the reamed channel and the position and direction of the main intramedullary nail. Improper selection will make it difficult for the main nail to enter the medullary cavity, even if it can be forcibly driven into the medullary cavity. , it will also lead to uneven force and large deformation of the main nail in the medullary cavity. At this time, it is easy to damage the fracture reduction effect. It can lead to delayed union or even nonunion or malunion at the fracture site.
  • the ideal nail entry position is at the apex of the greater trochanter and close to the mid-axis of the femoral neck, as shown in Figure 14, and the ideal nail entry direction is the axis of the femoral shaft
  • the outer deflection is 5° to adapt to the outer deflection angle of the main nail, as shown in Figure 15.
  • the position and direction of the nail entry point are usually determined by inserting the guide pin.
  • the entry direction of the main nail in the later stage.
  • the inventors found that in the existing methods of inserting the guide pin, in order to ensure that the inserted guide pin is in a satisfactory nail entry position and direction, it is necessary to insert the guide pin throughout the entire X-ray fluoroscopy is continuously carried out during the process to observe the position and direction of the needle tip in real time, but this method will undoubtedly increase the amount of radiation received by patients and doctors.
  • the fluoroscopic image estimates the position and angle that need to be adjusted, inserts the second guide pin without pulling out the first guide pin, checks the position and direction of the second guide pin through fluoroscopy again, and repeats this process , until after fluoroscopy, it is determined that the inserted guide pin has reached the satisfactory position and direction of the nail.
  • the guide wire inserted for the first time is usually difficult to reach the expected ideal insertion point of the intramedullary nail.
  • the later adjustment process based on the fluoroscopy results also greatly prolongs the operation time, and the adjustment of the position and angle cannot be accurate. Controlling, but also increased the number of fluoroscopy and radiation dose of patients and doctors.
  • the embodiment of the present application provides a light, convenient and easy-to-implement medical navigation device 10 that does not increase the number of fluoroscopy times and radiation doses for patients and doctors.
  • the medical navigation device 10 can be used to guide the movement of the orthopedic surgical tool, for example, it can be used to guide the orthopedic surgical tool to move to an ideal insertion point of the intramedullary nail.
  • the medical navigation device 10 includes a navigation component 200 and a development positioning component 100, the navigation component 200 and the development positioning component 100 are designed separately, and can be detachably connected, the navigation component 200 is provided with sensor.
  • the schematic structural diagrams of the medical navigation device 10 in which the navigation component 200 and the development and positioning component 100 are connected are shown in FIG. 5 and FIG. 6 .
  • a schematic diagram of when the navigation component 200 is separate from the developing and positioning component 100 is shown in FIG. 7 .
  • a schematic diagram of the appearance of the navigation component 200 in some embodiments is shown in FIG. 8 .
  • the navigation component 200 and the development positioning component 100 are assembled into the state shown in Figure 5 and Figure 6, the navigation component 200 is at the reference position, and when the reference position is zero position information, it can also be considered that when the navigation When the component 200 is assembled with the development positioning component 100 in the state shown in FIG. 5 and FIG. 6 , the sensor of the navigation component 200 is in a zero state.
  • the navigation component 200 is integrated with a sensor 201, which can be a six-degree-of-freedom inertial sensor, and the sensor 201 is used to measure the positional deviation (x, y, z) and angular deviation ( ⁇ , ⁇ , ⁇ ).
  • a sensor 201 which can be a six-degree-of-freedom inertial sensor
  • the sensor 201 is used to measure the positional deviation (x, y, z) and angular deviation ( ⁇ , ⁇ , ⁇ ).
  • the definition of the self-coordinate system of the sensor 201 is shown in Figure 9.
  • the sensor 201 can measure the relative position information of the real-time position of the sensor 201 relative to the reference position, that is, along the The displacement of the three coordinate axes (x, y, z) and the angular deviation ( ⁇ , ⁇ , ⁇ ) between the current direction of each coordinate axis and the direction of the reference coordinate axis.
  • the sensor 201 is integrated inside the navigation component 200, so the reference position information of the sensor 201 can be used as the reference position information of the navigation component 200, and the real-time position information of the sensor 201 is used as the real-time position information of the navigation component 200, and the reference position information determines the position of the sensor.
  • the real-time position information determines the real-time position of the sensor 201 and/or the navigation component 200.
  • the sensor 201 can also measure the pitch angle of the bottom surface of the navigation component 200 relative to the absolute horizontal plane.
  • the navigation component 200 may also be integrated with a spirit level, and the pitch angle of the bottom surface of the navigation component 200 relative to the absolute horizontal plane is measured by the level gauge.
  • the navigation component 200 is provided with a digital display screen (hereinafter referred to as the screen), on which 3 numbers are displayed, and the symbol “ ⁇ ” represents the displacement deviation symbol, which is used to indicate
  • the adjacent numerical values are displacement deviations (such as the first displacement deviation or the second displacement deviation as described above), and the symbol “°” indicates that the corresponding numerical values are angles, which are used to indicate that the adjacent numerical values are angular deviations (such as first angular deviation or second angular deviation) or pitch angle as described above.
  • ⁇ 3 means that the first displacement deviation of the real-time position of the sensor 201 and/or the navigation component 200 relative to the reference position is 3, or the real-time position of the sensor 201 and/or the navigation component 200 is relative to
  • the second displacement deviation of the expected insertion position (for example, the ideal nail entry position of the ideal nail entry point of the intramedullary nail) is 3.
  • 18° indicates that the first angular deviation of the real-time position of the sensor 201 and/or the navigation assembly 200 relative to the reference position is 18°, or that the real-time position of the sensor 201 and/or the navigation assembly 200 is relative to the expected insertion direction (such as intramedullary
  • the second angle deviation of the ideal nail entry direction of the ideal nail entry point) is 18°
  • "4°” means that the pitch angle is 4°.
  • the determination of the first displacement deviation, the second displacement deviation, the first angular deviation, and the second angular deviation can be combined with the coordinate system of the sensor 201 when the sensor 201 and/or the navigation component 200 are located at the reference position and the real-time position Sure.
  • the coordinate system of the sensor 201 at the reference position is ⁇ (hereinafter referred to as the reference coordinate system)
  • the coordinate system of the sensor 201 at the real-time position is ⁇ ' (hereinafter referred to as the current coordinate system)
  • the current coordinate system ⁇ ' can be calculated relative to The positional offset and angular offset of the reference coordinate system ⁇ to obtain the above-mentioned first displacement offset, second displacement offset, first angular offset, and second angular offset.
  • the projection of the displacement of the origin of the current coordinate system ⁇ ' relative to the origin of the reference coordinate system ⁇ on the Z axis of the reference coordinate system ⁇ is used as the height difference ⁇ h, as shown in Figure 11
  • the height difference ⁇ h is the above-mentioned first displacement deviation
  • the projection of the X-axis of the current coordinate system ⁇ ' that is, the coordinate axis where the axis direction of the navigation component 200 is located, on the XOY plane of the reference coordinate system ⁇
  • the included angle with the X-axis of the reference coordinate system is used as an outer deflection angle, as shown in FIG.
  • the outer deflection angle is the above-mentioned first angular deviation.
  • the pitch angle of the plane where the bottom surface of the navigation component 200 is located relative to the absolute horizontal plane is used as the pitch angle, wherein, when the tail (narrow end) is tilted, the deviation is a positive value, and when the head (wide end) is tilted This deviation is negative, as shown in Figure 13.
  • the intramedullary nails in different parts such as the femoral, tibial, and humeral intramedullary nails, have similar nail entry points, the following uses the proximal femoral intramedullary nail surgery as an example to describe in detail.
  • the common position of the patient in the intramedullary nail operation of the proximal femur is the supine position. After the skin incision, before inserting the guide wire, it is necessary to use the sensor 201 and/or the position mark of the navigation component 200 and the development and positioning component 100 to be determined in advance.
  • the medical navigation device 10 is placed at a reference position, for example, on the body surface of the patient's proximal femur on the affected side.
  • the development and positioning assembly 100 can be assembled and connected with the navigation assembly 200 first, wherein the position marks of the navigation assembly 200 and the development and positioning assembly 100 after assembly and connection have a predetermined relative positional relationship, in order to achieve the medical treatment as described above.
  • An example of the navigation device 10 may be that the reference angle scale of the development and positioning assembly 100 is located in the axis direction of the navigation assembly 200, and then the medical navigation device 10 obtained after assembly and connection is placed at the reference position, for example, placed near the affected femur of the patient. As shown in FIG. 16 and FIG. 18 , the navigation component 200 is kept relatively horizontal, and the developing positioning component 100 is kept relatively horizontal.
  • the developing and positioning assembly 100 may be firstly placed at a position corresponding to the reference position, for example, placed on the surface of the patient's proximal femur, and then the developing and positioning assembly 100 is kept at a fixed position, and then navigated Assembling and connecting the navigation component 200 with the development positioning component 100, or placing the navigation component 200 in a position that can correspond to the predetermined relative position relationship
  • the location of the positional relationship is as long as there is a predetermined relative positional relationship between the navigational component 200 and the position mark of the development and positioning component 100 when the navigational component 200 is placed at the position.
  • the navigation component 200 may be first placed at a position corresponding to the reference position, for example, placed on the patient's proximal femoral body surface on the affected side, and then the position of the navigation component 200 is kept unchanged, and then the navigation component 200
  • the development positioning assembly 100 is assembled and connected with the navigation assembly 200 in a predetermined relative position relationship with the position mark of the development positioning assembly 100, or the development positioning assembly 100 is placed in a position that can correspond to the predetermined relative position.
  • the location of the relationship as long as there is a predetermined relative positional relationship between the navigation component 200 and the position mark of the development and positioning assembly 100 when the development and positioning assembly 100 is placed at this position.
  • the developing and positioning assembly 100 is provided with a first contact, and the first contact can be arranged in the mounting groove of the developing and positioning assembly 100, and the navigation assembly 200 is provided with a second contact, and the second contact is provided in the navigation assembly.
  • the position on 200 corresponds to the first contact point of the developing positioning assembly 100, when the first contact point contacts the second contact point, the navigation assembly 200 is activated.
  • the reference position of the reference position can be recorded information.
  • the navigation component 200/development positioning component 100 is placed first, and then the development positioning component 100/navigation component 200 is placed, so that there is a predetermined relative position between the navigation component 200 and the position mark of the development positioning component 100
  • the relationship may be that when the navigation component 200 is activated, it is determined that the navigation component 200 is at a reference position, and the position information measured by the sensor 201 at this time is recorded as the reference position information.
  • the reference position information may be the initial position information of the sensor 201, For example zero position information.
  • the reference location information may be recorded by responding to the trigger command by issuing the trigger command from the user.
  • medical personnel such as doctors
  • the medical staff (such as a doctor) can issue a trigger command by operating the navigation component 200, and the navigation component 200 receives the trigger command, and when the trigger command is received,
  • the position information measured by the sensor 201 is recorded as reference position information.
  • the navigation component 200 may first initialize the sensor 201, and record the position information measured by the initialized sensor 201 (ie, the initial position information of the sensor 201) as the reference position information.
  • the medical personnel can issue a trigger command by operating the navigation component 200 , and can also issue a trigger command by operating the external processing device 20 /navigation processing device 40 .
  • the trigger instruction is issued by operating the navigation component 200
  • the method of recording the reference position information by the navigation component 200 is the same as the above method.
  • the navigation component 200 After the navigation component 200 records the reference position information, it can send the reference position information to the external processing device 20 /navigation processing device 40 .
  • the external processing device 20/navigation processing device 40 sends the trigger command to the navigation component 200 to instruct the navigation component 200 to obtain and return the sensor 201.
  • the position information measured at the time, and record the position information as the reference position information; in other embodiments, if the reference position information is the preset position information (such as the zero position information of the sensor 201 after the sensor 201 is initialized), Then the external processing device 20/navigation processing device 40 can directly use the preset position information as the reference position information, and at the same time, can send an instruction to the navigation component 200 to instruct the navigation component 200 to initialize the sensor 201 .
  • the recorded reference position information may include a reference height of the sensor 201 relative to the horizontal plane, and a specified direction of the sensor 201 (such as the axis direction of the navigation component 200 ). Taking the reference position information as the zero position information as an example, at this time, the height output by the sensor 201 is 0 value. If the navigation component 200 prompts the first relative position information in real time, the height difference ⁇ h on the screen of the navigation component 200 is displayed as 0, the yaw angle is displayed as 0°, and the pitch angle is close to 0°.
  • the medical navigation device 10 When the medical navigation device 10 is placed at the reference position in the manner of the predetermined relative positional relationship between the navigation component 200 and the position mark of the development and positioning component 100, the medical personnel use the C-arm equipment or other transmission equipment to take pictures.
  • An anteroposterior view of the proximal femur is used to obtain a medical image, wherein the site to be operated, such as the proximal femur, and the position identification of the developing and positioning assembly 100 can all be visualized in the medical image.
  • a position identification parallel to the expected insertion direction (such as the ideal nail insertion direction of the ideal nail entry point of the intramedullary nail) can be selected from the various position identifications of the development and positioning assembly 100 displayed in the medical image.
  • the angle value X corresponding to the position mark, the angle value X is also the angle ⁇ between the axis direction of the navigation component 200 and the expected insertion direction (such as the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail), the clip
  • the angle ⁇ is the target offset position information between the target position (such as the ideal nail entry point of the intramedullary nail) and the reference position of the sensor 201 .
  • the expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) and the determination of the included angle ⁇ can be obtained by medical personnel observing medical images, for example, medical personnel (such as doctors)
  • the expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) can be determined, and combined with the displayed position mark, the observation and determination of the expected insertion direction (such as the ideal nail entry direction of the intramedullary nail
  • the ideal nail entry direction of the point is parallel to the position mark, and the angle corresponding to the position mark is determined as the above-mentioned included angle ⁇ .
  • the expected insertion direction such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail
  • the angle corresponding to the position mark is determined as the above-mentioned included angle ⁇ .
  • the included angle ⁇ can be defined as The value of is determined as 10° on the angular scale corresponding to the position mark 140 .
  • the doctor When the doctor performs orthopedic surgery, the doctor clearly knows the expected location of the orthopedic surgery.
  • the ideal nail entry point of the intramedullary nail is located at the apex of the greater trochanter and close to the central axis of the femoral neck, as shown in Figure 14.
  • the ideal direction of screw insertion is 5° outward deviation of the axis of the femoral shaft to adapt to the external deviation angle of the main nail.
  • the doctor can quickly determine the ideal screw insertion direction in the medical image by viewing the medical image, and then find the The position mark that is parallel to the ideal nail entry direction, and the angle value X corresponding to the position mark is also the angle ⁇ between the axis direction when the navigation component 200 is at the reference position and the ideal nail entry direction of the ideal nail entry point of the intramedullary nail, Therefore, the included angle ⁇ can be obtained quickly and conveniently.
  • the doctor can quickly determine the axis of the femoral shaft in the medical image by looking at the medical image, and then can find the position mark parallel to the axis of the femoral shaft, and the angle value X corresponding to the position mark, plus the femoral shaft
  • the included angle ⁇ can be obtained when the angle between the axis and the ideal nail entry direction of the ideal intramedullary nail entry point is 5°. Therefore, through direct observation by the doctor, the relationship between the expected insertion direction (such as the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail) and the axis direction when the navigation assembly 200 is located at the reference position can be determined without complicated image processing.
  • the included angle ⁇ to obtain the target offset position information.
  • the determination of the expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) and the included angle ⁇ may also be determined by medical personnel through marker measurement on the medical image.
  • medical personnel can manually mark the expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) on the medical image, and use a ruler Or other measurement tools that can determine the parallelism between the lines, measure the position mark parallel to the ideal nail entry direction of the ideal nail entry point of the marked intramedullary nail, and determine the angle X corresponding to the position mark as the navigation The included angle ⁇ between the axis direction when the assembly 200 is at the reference position and the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the expected insertion direction such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail
  • medical personnel can manually mark the axis of the femoral shaft in the medical image by means of mechanical drawing, and use a ruler or other measuring tools that can determine the parallelism between the lines, The position mark parallel to the marked axis of the femoral shaft is obtained by measurement.
  • the included angle obtained by adding 5° to the angle X of the position mark is the included angle ⁇ between the axis direction when the navigation assembly 200 is at the reference position and the ideal nail entry direction of the ideal intramedullary nail entry point.
  • the obtained medical image is imported into the image workstation, and the image processing method is used in the image workstation to automatically identify the ideal nail entry point and the ideal nail entry direction of the intramedullary nail in the medical image, and identify each position from the medical image. , analyze and determine the position mark parallel to the ideal nail entry direction of the identified ideal nail entry point, and determine the angle X corresponding to the position mark as the axis direction when the navigation assembly 200 is at the reference position and the marrow The angle ⁇ between the ideal nail entry directions of the ideal entry point of the inner nail.
  • the obtained medical images are imported into the image workstation, and the image processing method is used in the image workstation to automatically identify the axis of the femoral shaft in the medical images, and the determined and identified femoral shaft axes are analyzed and identified from the position marks in the medical images.
  • the position mark parallel to the shaft axis combined with the angle X corresponding to the position mark, and the angle (such as 5°) between the axis of the femoral shaft and the ideal nailing direction of the ideal nailing point of the intramedullary nail, determine the navigation component 200
  • the angle ⁇ between the axis direction at the reference position and the ideal nail entry direction of the ideal nail entry point of the intramedullary nail is the axis when the navigation assembly 200 is at the reference position
  • the angle ⁇ between the ideal nail entry direction and the ideal nail entry point of the intramedullary nail is the axis when the navigation assembly 200 is at the reference position.
  • the image processing method for identifying the ideal nailing direction and/or femoral shaft axis of the ideal intramedullary nailing point in the medical image can be implemented using a pattern recognition algorithm or a deep learning intelligent algorithm, and the embodiments of the present application do not make specific limited.
  • the medical staff Take determining the included angle ⁇ as an example. If the first relative position information is displayed during medical navigation, the medical staff (such as a doctor) can record the included angle ⁇ by themselves, or input the included angle ⁇ to the navigation component. 200 and/or the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40. If the second relative position information is prompted during medical navigation, the medical personnel need to input the included angle ⁇ into the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 middle.
  • the image processing device may be the navigation component 200 and/or the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40 itself , may also be a device different from the navigation component 200 and/or the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40 .
  • the image processing device may present the included angle ⁇ so that medical personnel (such as doctors) can know the included angle ⁇ . If the image processing device is different from the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40, then the image processing device can also be the angle ⁇ by It can be transmitted to the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 in a wired or wireless manner. input into the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 .
  • the image processing device needs to provide the included angle ⁇ to the navigation component 200 and/or the external processing device 20 and/or the external prompt device 30 and/or the navigation processing device 40, for example, the image processing device will provide the included angle ⁇ It is transmitted to the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 in a wired or wireless manner, and it can also be an image processing device that provides the included angle ⁇ to the medical staff to know Then, the included angle ⁇ is input into the navigation component 200 and/or the external processing device 20 and/or the external prompting device 30 and/or the navigation processing device 40 by the medical personnel.
  • the navigation assembly 200 Take the detachable connection between the navigation assembly 200 and the development and positioning assembly 100 as an example, then separate the navigation assembly 200 from the development and positioning assembly 100, remove the development and positioning assembly 100 from the patient's proximal femoral body surface on the affected side, and place the navigation assembly 200 It is fixed with an orthopedic surgical tool (such as a guide wire or a gripper or an electric drill, and the guide wire is used as an example in the following embodiments for illustration).
  • an orthopedic surgical tool such as a guide wire or a gripper or an electric drill, and the guide wire is used as an example in the following embodiments for illustration).
  • the schematic diagram of fixing the navigation component 200 and the guide pin is shown in FIG.
  • the navigation component 200 may also be fixed to the guide pin in other ways. If you choose to use a gripper or an electric drill when inserting the guide pin, the navigation assembly 200 can be directly mounted on the gripper or the electric drill through magnetic attraction, so as to fix the navigation assembly 200 with the gripper or the electric drill, and the navigation assembly 200 is connected with the gripper or the electric drill.
  • the fixed schematic is shown in Figure 22.
  • the ridge-like outline of the apex of the greater trochanter on the affected side is generally along the vertical direction and can be manually touched by the doctor from the incision, as shown by the dotted line in the enlarged part in Figure 23.
  • the doctor holds the guide needle fixed with the navigation assembly 200 and makes its axis direction approximately on the horizontal plane, the pitch angle value on the screen of the navigation assembly 200 or the pitch angle value provided by the navigation assembly 20 to the external prompting device 30 and/or the navigation processing device 40 , which can assist the doctor to check whether the guide pin is kept approximately horizontal.
  • the doctor moves the orthopedic surgical tool fixed with the navigation assembly 200 , and combines the guidance of the navigation assembly 200 and/or the external prompting device 30 and/or the navigation processing device 40 to move the orthopedic surgical tool to the ideal nail insertion point of the intramedullary nail.
  • the sensor 201 of the navigation component 200 measures and obtains real-time position information in real time.
  • the navigation component 200 determines the height difference ⁇ H between the real-time position of the sensor 201 and the reference position based on the real-time position information measured by the sensor 201 .
  • the navigation component 200 determines the height difference ⁇ H between the real-time position of the sensor 201 and the reference position. ⁇ h1 (if the navigation component 200 resets the sensor 201 to zero, the altitude difference ⁇ h1 can actually be the first reference altitude value h1).
  • the navigation component 200 is based on the real-time position information measured by the sensor 201.
  • the height difference ⁇ H between the real-time position of the sensor 201 and the reference position is determined as follows: Altitude difference ⁇ h2 (if the navigation component 200 resets the sensor 201 to zero, the altitude difference ⁇ h2 can actually be the second reference altitude value h2).
  • the doctor holds the guide needle approximately horizontally so that the tip moves on the ridge-shaped contour of the apex of the greater trochanter, and the height difference ⁇ H displayed by the navigation component 200 in real time will vary from the height difference ⁇ h1 to the height difference ⁇ h2.
  • the navigation component 200 resets the sensor 201 to zero, the altitude H displayed in real time will actually vary between the altitude values h1 to h2.
  • the navigation component 200 will transmit the real-time position information measured by the sensor 201 to the external processing device 20 .
  • the external processing device 20 determines the height difference ⁇ H between the real-time position of the sensor 201 and the reference position based on the real-time position information measured by the sensor 201 .
  • the external processing device 20 determines the height difference between the real-time position of the sensor 201 and the reference position based on the real-time position information measured by the sensor 201 ⁇ H is the height difference ⁇ h1 (if the sensor 201 is reset to zero, the height difference ⁇ h1 can actually be the first reference height value h1).
  • the external processing device 20 determines the height difference ⁇ H between the real-time position of the sensor 201 and the reference position based on the real-time position information measured by the sensor 201. is the height difference ⁇ h2 (if the sensor 201 has been reset to zero, the height difference ⁇ h2 can actually be the second reference height value h2).
  • the height difference ⁇ H determined by the external processing device 20 is transmitted to the navigation component 200 for prompting.
  • the doctor holds the guide needle approximately horizontally so that the tip moves on the ridge-shaped contour of the apex of the greater trochanter, and the height difference ⁇ H prompted by the navigation component 200 in real time will change between the height difference ⁇ h1 and the height difference ⁇ h2.
  • the navigation component 200 resets the sensor 201 to zero, the altitude H displayed in real time will actually vary between the altitude values h1 to h2.
  • the navigation component 200 determines the height difference ⁇ H, and transmits the determined height difference ⁇ H to the external prompting device 30 for prompting.
  • the height difference ⁇ H prompted by the external prompting device 30 in real time will vary from the height difference ⁇ h1 to the height difference ⁇ h2.
  • the sensor 201 is reset to zero, the height value H actually displayed in real time will vary between the height values h1 to h2.
  • the method of determining the height difference ⁇ H is the same as that of the medical navigation device 10 shown in FIG. 1 , and will not be repeated here.
  • the navigation component 200 transmits the real-time position information measured by the sensor 201 to the navigation processing device 40 .
  • the navigation processing device 40 determines the altitude difference ⁇ H in real time based on the same method as the external processing device 20 , and presents the determined altitude difference ⁇ H.
  • the navigation processing device 40 can prompt the height difference ⁇ H by itself, or it can be transmitted to a prompt device different from the navigation processing device 40 for prompting, for example, combined with the embodiment shown in FIG.
  • the external prompting device 30 in the illustrated embodiment is used for prompting.
  • the doctor holds the guide needle approximately horizontally so that the tip moves on the ridge-shaped contour of the apex of the greater trochanter, and the height difference ⁇ H prompted in real time will vary between the height difference ⁇ h1 and the height difference ⁇ h2. If the navigation component 200 resets the sensor 201 to zero processing, the height value H of the real-time prompt will change between the height values h1 to h2.
  • the doctor selects the midpoint of the ridge-like contour of the apex of the greater trochanter as the surgical site, then when the suggested height difference ⁇ H is ( ⁇ h1+ ⁇ h2)/2, or when the sensor 201 has been reset to zero, the suggested height When the value H is (h1+h2)/2, it is the midpoint position of the ridge-like contour of the apex of the greater trochanter, that is, the ideal nailing position of the ideal nailing point of the intramedullary nail.
  • the height difference ⁇ H prompted is ( ⁇ h2- ⁇ h1)/3+ ⁇ h1 (if the height difference is displayed as an integer value, you can or rounded down, the same in the following embodiments), or when the sensor 201 has been reset to zero, when the height value H prompted is (h2-h1)/3+h1, it is an intramedullary nail Ideal entry position for ideal entry point.
  • the ideal nail entry position of the ideal nail entry point for the intramedullary nail can be judged and selected by the doctor in combination with the actual position needs, so it can be applied to different specific requirements for different intramedullary nail products.
  • the angle can be adjusted so that the needle entry direction of the guide wire reaches the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the doctor keeps the tip of the guide wire at the ideal nail entry point of the intramedullary nail unchanged, and adjusts the deflection angle of the guide wire:
  • the navigation component 200 determines the declination angle of the real-time position of the sensor 201 relative to the reference position, and gives a prompt.
  • the external processing device 20 determines the declination angle of the real-time position of the sensor 201 relative to the reference position, and sends the declination angle to the navigation component 200 for prompting.
  • the navigation component 200 determines the declination angle of the real-time position of the sensor 201 relative to the reference position, and sends the declination angle to the external prompting device 30 for prompting.
  • the navigation processing device 40 determines the declination angle of the real-time position of the sensor 201 relative to the reference position, and prompts the declination angle, or sends the declination angle to a different navigation processing device.
  • the prompting device 40 for prompting for example, combined with the embodiment shown in FIG. 3 , and sending to the external prompting device 30 in the embodiment shown in FIG. 3 for prompting.
  • the external deflection angle of the prompt is the angle ⁇ between the axis direction of the navigation assembly 200 determined above and the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the ideal nail entry direction of the entry point is shown in Figure 24.
  • the doctor can refer to the suggested pitch angle, adjust the anteversion angle of the guide wire properly, and then insert the guide wire.
  • the navigation component 200 will prompt the height value in the real-time position information measured by the sensor 201 in real time. Put the tip of the guide needle on the apex of the ridge-like contour of the apex of the greater trochanter that is closest to the ventral side.
  • the doctor issues a recording instruction by operating the navigation component 200 or voice input, and the navigation component 200 records the current value measured by the sensor 11.
  • the first reference altitude value h1 in some other embodiments, the navigation component 200 will prompt the altitude value, and medical personnel (such as doctors) can record the first reference altitude value h1 measured by the sensor 11 at this time.
  • the doctor issues a recording instruction by operating the navigation component 200 or voice input, and the navigation component 200 records the value measured by the sensor 11 at this time.
  • the navigation component 200 will prompt the height value, and medical personnel (such as doctors) can record the second reference height value h2 measured by the sensor 11 at this time.
  • the navigation component 200 determines the ideal nail entry point of the intramedullary nail based on the first reference height value h1 and the second reference height value h2
  • the height value H of the ideal nail entry position in the direction perpendicular to the horizontal plane and record the height value H.
  • medical personnel such as doctors
  • the medical personnel record the first reference height value h1 and the second reference height value based on their own. h2.
  • the determined height H is input into the navigation component 200 and recorded by the navigation component 200 .
  • the height H of the ideal nail entry position of the ideal entry point of the intramedullary nail is (h1+h2)/2.
  • the height H of the ideal nail entry position for the ideal entry point of the intramedullary nail is (h2-h1)/3+h1.
  • the navigation component 200 will transmit the real-time position information measured by the sensor 201 to the external processing device 20 .
  • the external processing device 20 records the value measured by the sensor 11 at this time based on the recording instructions issued by the medical staff through the operation of the external processing device 20 or voice input.
  • the first reference altitude value h1 in some other embodiments, the navigation component 200 and/or the external processing device 20 can prompt the altitude value, and the medical staff (such as a doctor) can record the first value measured by the sensor 11 at this time by themselves. Refer to the height value h1.
  • the external processing device 20 records the sensor 11 at this time based on the recording instructions issued by the medical staff through the operation of the external processing device 20 or voice input.
  • the measured second reference height value h2 in some other embodiments, the navigation component 200 and/or the external processing device 20 can prompt the height value, and the medical staff (such as a doctor) can record the value measured by the sensor 11 at this time.
  • the external processing device 20 determines the ideal progress of the intramedullary nail based on the first reference height value h1 and the second reference height value h2.
  • the height value H of the ideal nail entry position of the nail point in the direction perpendicular to the horizontal plane and record the height value H.
  • medical personnel such as doctors
  • the medical personnel write down the first reference height value h1 and the second reference height value h2 by themselves
  • the medical personnel record the first reference height value h1 and the second reference height value based on their own. h2.
  • the determined height H is input to the external processing device 20 and recorded by the external processing device 20 .
  • the height H of the ideal nail entry position of the ideal entry point of the intramedullary nail is (h1+h2)/2.
  • the height H of the ideal nail entry position for the ideal entry point of the intramedullary nail is (h2-h1)/3+h1.
  • the doctor holds the guide needle approximately horizontally so that its tip moves on the ridge-shaped contour of the apex of the greater trochanter.
  • the navigation component 200 combines the real-time position information of the sensor 201 and the recorded height value H to determine the second displacement deviation, and The second displacement deviation is prompted.
  • the navigation component 200 determines the second displacement deviation, and transmits the determined second displacement deviation to the external prompting device 30 for prompting.
  • the manner in which the navigation component 200 determines the second displacement deviation is the same as the manner in which the navigation component 200 of the medical navigation device 10 shown in FIG. 1 determines the second displacement deviation, and will not be repeated here.
  • the navigation component 200 transmits the real-time position information measured by the sensor 201 to the navigation processing device 40 .
  • the navigation processing device 40 determines and prompts the second displacement deviation in real time based on the same method as the external processing device 20, wherein the navigation processing device 40 can prompt the second displacement deviation by itself, or send the second displacement deviation to A prompting device other than the navigation processing device 40 provides prompting, for example, it is combined with the embodiment shown in FIG. 3 and sent to the external prompting device 30 in the embodiment shown in FIG. 3 for prompting.
  • the ideal nail entry position to determine the ideal nail entry point of the intramedullary nail, in the process of moving the orthopedic surgery tool, when the second displacement deviation prompted in real time is 0, it can be determined that the intramedullary nail has reached the intramedullary nail.
  • the ideal nail entry position of the ideal entry point of the inner nail is intuitive and convenient.
  • the angle can be adjusted so that the needle entry direction of the guide wire reaches the ideal nail entry direction of the ideal nail entry point of the intramedullary nail.
  • the doctor keeps the tip of the guide wire at the ideal nail entry point of the intramedullary nail unchanged, and adjusts the deflection angle of the guide wire:
  • the navigation component 200 determines in real time the second angular deviation of the real-time position of the sensor 201 relative to the target position, that is, the specified direction (such as the axis direction of the navigation component 200) when the sensor 201 is at the real-time position is in line with the target position.
  • the specified direction such as the axis direction of the navigation component 200
  • the external processing device 20 determines in real time the second angular deviation of the real-time position of the sensor 201 relative to the target position, that is, the specified direction (such as the axis direction of the navigation component 200) of the sensor 201 at the real-time position is in line with the target position.
  • the included angle between the ideal nail entry point and the ideal nail entry direction of the inner nail, and the second angle deviation is sent to the navigation component 200 for prompting.
  • the navigation component 200 determines in real time the second angular deviation of the real-time position of the sensor 201 relative to the target position, that is, the specified direction (such as the axis direction of the navigation component 200) where the sensor 201 is in the real-time position and the intramedullary nail the angle between the ideal nail entry point and the ideal nail entry direction, and send the second angle deviation to the external prompting device 30 for prompting.
  • the specified direction such as the axis direction of the navigation component 200
  • the navigation processing device 40 determines in real time the second angular deviation of the real-time position of the sensor 201 relative to the target position based on the real-time position information measured by the sensor 201, that is, the specified direction (such as the axis direction of the navigation assembly 200) where the sensor 201 is in the real-time position is in line with the target position.
  • the angle between the ideal nail entry directions of the ideal nail entry point of the inner nail, and the second angle deviation is prompted, or the second angle deviation is sent to a prompt device different from the navigation processing device 40 for prompts, for example, as shown in Fig.
  • the embodiment shown in FIG. 3 is combined and sent to the external prompting device 30 in the embodiment shown in FIG. 3 for prompting.
  • the doctor keeps the tip of the guide wire at the ideal nail entry point of the intramedullary nail unchanged, and adjusts the outward deflection angle of the guide wire, when the navigation assembly 200 and/or the external prompting device 30 and/or the navigation processing device 40 When the second angle deviation indicated is 0, the needle insertion direction of the guide wire reaches the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail, as shown in FIG. 24 .
  • the doctor can refer to the suggested pitch angle, adjust the anteversion angle of the guide wire properly, and then insert the guide wire.
  • the medical navigation device 10 and/or the navigation processing device 40 Based on the medical navigation device 10 and/or the navigation processing device 40 provided by the various embodiments of the present application as described above, based on the sensor, by following up and prompting the first height deviation and/or the first angle deviation of the real-time position relative to the reference position, And/or, the second height deviation and/or the second angle deviation realize the selection of the ideal nail entry position and the ideal nail entry direction of the ideal intramedullary nail entry point, and fundamentally realize the ideal intramedullary nail entry during surgery.
  • the precise positioning of the ideal nail entry position and the ideal nail entry direction provides doctors with real-time position information and angle information to ensure that the guide needle can be inserted successfully at one time, without the need to insert the guide needle multiple times for adjustment.
  • the medical navigation device 10 provided by each embodiment of the present application is small and easy to use, can greatly shorten the operation time, reduce the X-ray radiation dose of the doctor and the patient, and improve the operation quality and operation efficiency.
  • the navigation component 200 prompts the first relative position information and/or the second relative position information
  • the external prompt device 30/navigation processing device 40 prompts the first relative position information.
  • the relative position information and/or the second relative position information are described as an example. In the actual technical implementation process, based on actual technical selection and needs, it can also be provided by two of the navigation component 200, the external prompt device 30 and the navigation processing device 40. One or three simultaneously prompt the first relative position information and/or the second relative position information.
  • the navigation processing device 40 when two or three of the navigation component 200, the external prompting device 30 and the navigation processing device 40 simultaneously prompt the first relative position information and/or the second relative position information, the navigation component 200, the external prompting device 30
  • the content prompted by the navigation processing device 40 may or may not be completely the same, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application also provides a navigation method for a medical navigation device for guiding orthopedic surgical tools, wherein the medical navigation device includes a navigation component and a development and positioning component, and the navigation component is provided with sensor.
  • the developing positioning component is provided with a position mark, and the position mark can be visualized in the medical image.
  • the navigation method of a medical navigation device for guiding orthopedic surgical tools in some embodiments includes:
  • Step S101 when a trigger instruction is received, record reference position information measured by a sensor of the navigation component when the sensor is at a reference position in response to the trigger instruction.
  • the sensor when the sensor is at the reference position, the sensor has a predetermined relative positional relationship with the position mark of the development positioning assembly, and the position mark is used to determine the target deviation in combination with the predetermined relative positional relation.
  • the target offset position information is used to indicate the relative positional relationship between the reference position and the target position; wherein, the target position can be determined in combination with the type of orthopedic surgery, such as an ideal nail entry point for an intramedullary nail.
  • Step S102 In a state where the sensor is fixed to the orthopedic surgical tool, acquire real-time position information of the sensor, and acquire first relative position information and/or second relative position information based on the real-time position information.
  • the first relative position information is relative position information between the real-time position of the sensor and the reference position, and the real-time position is determined by the real-time position information;
  • the second relative position information is the real-time position
  • the second relative position information is determined by the real-time position information and target offset position information.
  • Step S103 prompting the first relative position information and/or the second relative position information.
  • the first relative position information combined with the target offset position information, and/or, the second relative position information can be used to assist in guiding the orthopedic surgery tool to move to the target position (for example, the intramedullary nail ideally nail point).
  • the navigation method of a medical navigation device for guiding orthopedic surgical tools in some embodiments includes:
  • Step S201 Obtain real-time position information measured by a sensor of the navigation component fixed to the orthopedic surgery tool.
  • Step S202 Send the real-time location information to an external processing device.
  • Step S203 Receive the first relative position information and/or the second relative position information fed back by the external processing device, and prompt the first relative position information and/or the second relative position information.
  • the first relative position information is the relative position information between the real-time position of the sensor and the reference position where the sensor is located in advance, the real-time position is determined by the real-time position information, and the reference position is determined by the pre-recorded position
  • the reference position information is determined, the reference position information includes first reference position information and/or second reference position information, and the first reference position information is obtained by the navigation component in response to a trigger instruction and sent to the external
  • the position information measured by the sensor of the processing device, the second reference position information is the preset position information obtained by the external processing device in response to the trigger instruction;
  • the second relative position information is the real-time position of the sensor Relative position information between the target position, the second relative position information is determined by the real-time position information and target offset position information, the target position is determined by the expected insertion position of the orthopedic surgical tool in the human body and/or Or the intended insertion direction is determined.
  • the sensor when the sensor is at the reference position, the sensor has a predetermined relative positional relationship with the position mark of the developing positioning assembly, and the position mark is used to determine the target offset position information, the target offset position information is used to indicate the relative positional relationship between the reference position and the target position;
  • the first relative position information combined with the target offset position information, and/or, the second relative position information may be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • the navigation method of a medical navigation device for guiding orthopedic surgical tools in some embodiments includes:
  • Step S301 When a trigger instruction is received, record reference position information measured by a sensor of the navigation component when the sensor is at a reference position in response to the trigger instruction.
  • Step S302 In a state where the sensor is fixed to the orthopedic surgical tool, acquire real-time position information of the sensor, and acquire first relative position information and/or second relative position information based on the real-time position information.
  • the first relative position information is the relative position information between the real-time position of the sensor and the reference position, and the real-time position is determined by the real-time position information;
  • the second relative position information is the relative position information between a real-time position and a target position, the second relative position information is determined by the real-time position information and target offset position information, and the target position is determined by the expected insertion position of the orthopedic surgical tool in the human body and/or intended insertion direction determination.
  • Step S303 Transmitting the first relative position information and/or the second relative position information to an external prompting device, and the external prompting device checks the first relative position information and/or the second relative position information information to prompt.
  • the sensor when the sensor is at the reference position, the sensor has a predetermined relative positional relationship with the position mark of the development positioning assembly, and the position mark is used to determine the target deviation in combination with the predetermined relative positional relation.
  • offset position information the target offset position information is used to indicate the relative positional relationship between the reference position and the target position; the first relative position information is combined with the target offset position information, and/or,
  • the second relative position information can be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • the navigation method of the medical navigation device used to guide orthopedic surgical tools in some embodiments can be executed by the navigation processing device 40, wherein the navigation component 200 of the medical navigation device 10 is communicatively connected with the navigation processing device 40 , the method includes:
  • Step S401 Obtain real-time position information sent by the navigation component and measured by the sensor when the sensor is fixed to the orthopedic surgical tool.
  • Step S402 Obtain first relative position information and/or second relative position information based on the real-time position information.
  • the first relative position information is the relative position information between the real-time position of the sensor and the reference position where the sensor is located in advance, the real-time position is determined by the real-time position information, and the reference position is determined by the pre-recorded position
  • the reference position information is determined, the reference position information includes first reference position information and/or second reference position information, and the first reference position information is obtained by the navigation component in response to a trigger instruction and sent to the navigation
  • the position information measured by the sensor of the processing device, the second reference position information is the preset position information obtained by the navigation processing device in response to the trigger instruction;
  • the second relative position information is the real-time position and the target Relative position information between positions, the second relative position information is determined by the real-time position information and target offset position information, the target position is determined by the expected insertion position and/or the expected insertion position of the orthopedic surgical tool in the human body
  • the insertion direction is determined.
  • Step S403 Prompting the first relative position information and/or the second relative position information.
  • the sensor when the sensor is at the reference position, the sensor has a predetermined relative positional relationship with the position mark of the developing positioning assembly; the position mark is used to determine the target offset position information, the target offset position information is used to indicate the relative positional relationship between the reference position and the target position;
  • the first relative position information combined with the target offset position information, and/or, the second relative position information may be used to assist in guiding the orthopedic surgery tool to move to the target position.
  • the navigation method of the medical navigation device in each of the above-mentioned embodiments can be applied to orthopedic operations that require insertion of intramedullary nails, such as during orthopedic operations for proximal femur fractures.
  • the above medical The navigation device may be a medical navigation device used for navigation of the intramedullary nail entry point
  • the above-mentioned target position may be an ideal nail entry point of the intramedullary nail
  • the above-mentioned expected insertion position may be an ideal nail entry position of an ideal intramedullary nail entry point
  • the aforementioned expected insertion direction may be an ideal nail insertion direction of an ideal nail insertion point of the intramedullary nail.
  • the navigation component is activated when the first contact on the navigation component contacts the second contact on the development positioning component.
  • the trigger instruction includes an activation signal generated when the first contact contacts with the second contact.
  • the reference position of the navigation component is recorded when a trigger instruction is received after the contact point on the navigation component is in contact with the contact point on the developing positioning component and the navigation component is activated.
  • the aforementioned reference position information is position information measured by the sensor obtained in response to the trigger instruction.
  • the above reference position information is position information measured by the sensor after the sensor is initialized in response to the trigger instruction.
  • the initial position information may be zero position information.
  • the zero position information may refer to that the values of position-related information are all set to 0, for example, the height value is 0, and the like.
  • the first relative position information includes a first displacement deviation and/or a first angular deviation between the real-time position and the reference position.
  • the first displacement deviation may include: the distance between the real-time position of the sensor and the reference position in a direction perpendicular to the horizontal plane.
  • the first displacement deviation may also be referred to as a height difference, as shown in FIG. 11 .
  • the first angular deviation may include: after projecting both the designated direction of the sensor fixed to the orthopedic surgical tool and the designated direction of the sensor at the reference position onto the same plane, after The included angle between the two projections on the plane is shown in FIG. 12 .
  • the first angular deviation may also be referred to as a deflection angle.
  • the designated direction of the sensor may be the axis direction of the navigation component, and the same plane may specifically be a horizontal plane, which is the same in the following embodiments.
  • the second relative position information includes a second displacement deviation and/or a second angle deviation between the real-time position and the target position (for example, an ideal nail entry point of the intramedullary nail), wherein the target position (for example, the intramedullary nail The ideal nail entry point) is determined by the expected insertion position of the orthopedic surgical tool in the human body (such as the ideal nail entry position of the ideal nail entry point of the intramedullary nail) and/or the expected insertion direction (such as the ideal nail entry position of the ideal nail entry point of the intramedullary nail direction) is confirmed.
  • the target position for example, the intramedullary nail
  • the expected insertion direction such as the ideal nail entry position of the ideal nail entry point of the intramedullary nail direction
  • the second angle deviation includes: after projecting the specified direction of the sensor at the real-time position and the ideal nail entry direction of the ideal nail entry point of the intramedullary nail onto the same plane, the two angles on the plane The angle between the two projections.
  • the same plane may specifically be a horizontal plane.
  • the expected insertion direction (such as the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail) can be determined in various possible ways.
  • the expected insertion direction (eg, the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail) is the insertion direction input by the user.
  • the medical navigation device 10 is at the reference position, a medical image is obtained by shooting, and the medical staff manually marks the expected insertion direction (such as the ideal nail insertion direction of the ideal nail insertion point of the intramedullary nail) on the medical image, and The direction manually marked by the medical staff is used as the expected insertion direction (such as the ideal nail insertion direction of the ideal nail entry point of the intramedullary nail).
  • the expected insertion direction (such as the ideal nail entry direction of the ideal nail entry point of the intramedullary nail) is obtained by analyzing medical images, and the medical images are obtained when the medical navigation device is at the reference position.
  • the second displacement deviation includes: in a direction perpendicular to the horizontal plane, the distance between the real-time position of the sensor and the target position (for example, the ideal nail insertion position of the ideal nail insertion point of the intramedullary nail).
  • the expected insertion position can be determined based on the predetermined insertion area
  • the predetermined insertion area can refer to the area used to determine the target position.
  • the predetermined insertion area can be Ridgeline at the apex of the greater trochanter. Specific location information of the intended insertion location may be determined during movement of the orthopedic surgical tool fixed to the navigation assembly.
  • the height value of the expected insertion position (such as the ideal nail entry position of the ideal nail entry point of the intramedullary nail) in the direction perpendicular to the horizontal plane is determined by the first reference height value and the second reference height value, wherein,
  • the first reference height value is the height value of the sensor in the direction perpendicular to the horizontal plane when the insertion end of the orthopedic surgery tool is located at the apex of the first side of the predetermined insertion area, and the second reference height value is the insertion end of the orthopedic surgery tool located in the predetermined insertion area
  • the first side vertex may specifically refer to the apex of the ridge-like contour of the apex of the greater trochanter that is closest to the ventral side
  • the apex of the second side may specifically refer to the ridge of the apex of the greater trochanter.
  • it may also include:
  • it may also include:
  • the pitch angle is transmitted to an external prompting device for prompting.
  • it may also include:
  • the error prompt information is information generated when the cumulative duration is greater than the preset duration, and/or, the error prompt information is information generated when the calculated error is greater than the error threshold, and the cumulative duration is from The duration of time counting when the reference position information is recorded or when the sensor is calibrated last time.
  • an electronic device in one embodiment, is provided, and its internal structure diagram may be as shown in FIG. 29 .
  • the electronic device includes a processor, a memory, a communication interface, a display screen and an input device connected through a system bus.
  • the processor is used to provide calculation and control capabilities.
  • the memory of the electronic device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the electronic device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be realized through WIFI, an operator network, NFC (Near Field Communication) or other technologies.
  • the display screen of the electronic device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the electronic device may be a touch layer covered on the display screen, or a button, a trackball or a touch pad provided on the housing of the electronic device , and can also be an external keyboard, touchpad, or mouse.
  • an electronic device including a memory and a processor, and a computer program is stored in the memory, and when the processor executes the computer program, the steps of the navigation method of the medical navigation device in any of the above-mentioned embodiments are realized .
  • a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the steps of the navigation method of the medical navigation device in any of the above-mentioned embodiments are implemented.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the steps of the navigation method of the medical navigation device in any of the above embodiments.
  • any references to memory, storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile memory and volatile memory.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
  • a medical navigation system includes: an orthopedic surgical tool, and the medical navigation device and/or the navigation processing device in any one of the above-mentioned embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Primary Health Care (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Surgical Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请公开一种医疗导航装置及其导航方法,医疗导航装置包括导航组件和显影定位组件;导航组件设置有传感器;显影定位组件上设置有能够在医学影像中可视化显现的位置标识,导航组件,用于响应于触发指令,记录传感器测量的传感器处于基准位置时的基准位置信息,并在传感器与骨科手术工具相固定的状态下,获取传感器的实时位置信息,基于实时位置信息获取第一和/或第二相对位置信息并提示;第一相对位置信息为传感器的实时位置与基准位置之间的相对位置信息;第二相对位置信息为实时位置与髓内钉理想进钉点之间的相对位置信息;第一相对位置信息结合目标偏移位置信息,和/或,第二相对位置信息,可用于引导骨科手术工具移动至髓内钉理想进钉点。

Description

医疗导航装置、导航处理装置及方法、以及医疗导航系统 技术领域
本申请涉及医疗技术领域,特别是涉及一种医疗导航装置、导航处理装置、医疗导航装置的导航方法、电子设备、计算机可读存储介质、计算机程序产品以及医疗导航系统。
背景技术
在临床医疗骨科手术中,一些手术会存在需要插入骨科手术工具或器械的需求,以发生股骨近端骨折(如转子间骨折)或者胫骨或肱骨等长骨骨干骨折为例,进行骨科手术时需要插入髓内钉,通过采用髓内钉固定的方式进行处理,以方便骨折愈合。在插入骨科手术工具或器械时,这些骨科手术工具或器械的具体插入位置和插入方向,会影响到后期的手术效果以及手术结束后的恢复效果。
基于此,出现了用以辅助确定骨科手术工具或器械的插入位置的技术,然而,发明人发现,传统的用以辅助确定工具或器械的插入位置的技术,存在引起手术过程的辐射量大的问题。
发明内容
鉴于上述问题,本申请提供一种医疗导航装置、导航处理装置、医疗导航装置的导航方法、电子设备、计算机可读存储介质、计算机程序产品或者医疗导航系统中的一种或多种。
第一方面,本申请提供了一种用于髓内钉进钉点导航的医疗导航装置,包括导航组件和显影定位组件,所述导航组件设置有传感器;
所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第 一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与髓内钉理想进钉点之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述髓内钉理想进钉点之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述髓内钉理想进钉点。
第二方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置,包括导航组件和显影定位组件,所述导航组件设置有传感器;
所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预 先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第三方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置,包括导航组件和显影定位组件,所述导航组件设置有传感器;
所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
所述导航组件,用于在所述传感器与骨科手术工具相固定的状态下,将所述传感器测量的实时位置信息发送给外部处理设备,并接收所述外部处理设备反馈的第一相对位置信息和/或第二相对位置信息,提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述外部处理设备的所述传感器测量的位置信息,所述第二基准位置信息为所述外部处理设备响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述传感器的实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第四方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置,包括导航组件和显影定位组件,所述导航组件设置有传感器;
所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并将所述第一相对位置信息和/或所述第二相对位置信息传输给外部提示设备,由所述外部提示设备对所述第一相对位置信息和/或所述第二相对位置信息进行提示;其中,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第五方面,本申请提供了一种用于引导骨科手术工具的导航处理装置,所述导航处理装置与医疗导航装置的导航组件通信连接,所述医疗导航装置包括所述导航组件和显影定位组件,所述导航组件设置有传感器;
所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
所述导航处理装置,用于获取所述导航组件发送的、在所述传感器与骨科手术工具相固定的状态下、所述传感器测量的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所 述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述导航处理装置的所述传感器测量的位置信息,所述第二基准位置信息为所述导航处理装置响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第六方面,本申请提供了一种用于髓内钉进钉点导航的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息,其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与髓内钉理想进钉点之间的相对位置关系;
在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与髓内钉理想进钉点之间的相对位置信息,所述第二 相对位置信息由所述实时位置信息和目标偏移位置信息确定;
提示所述第一相对位置信息和/或所述第二相对位置信息,其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述髓内钉理想进钉点。
第七方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息,其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与目标位置之间的相对位置关系;
在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
实时提示所述第一相对位置信息和/或所述第二相对位置信息,其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第八方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
获取与骨科手术工具相固定的所述导航组件的传感器测量的实时位置信 息;
将所述实时位置信息发送给外部处理设备;
接收所述外部处理设备反馈的第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述外部处理设备的所述传感器测量的位置信息,所述第二基准位置信息为所述外部处理设备响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述传感器的实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第九方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息;
在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,其中,所述第一相对位置信息为所述传感器的实时位置与所述基准位 置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
将所述第一相对位置信息和/或所述第二相对位置信息传输给外部提示设备,由所述外部提示设备对所述第一相对位置信息和/或所述第二相对位置信息进行提示;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第十方面,本申请提供了一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述医疗导航装置的所述导航组件与导航处理装置通信连接,所述方法由所述导航处理装置执行,所述方法包括:
获取所述导航组件发送的、在所述传感器与骨科手术工具相固定的状态下、所述传感器测量的实时位置信息;
基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述导航处理装置的所述传感器测量的位置信息,所述第二基准位置信息为所述导航处理装置响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置 信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
提示所述第一相对位置信息和/或所述第二相对位置信息;
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
第十一方面,本申请提供了一种电子设备,包括处理器和存储器,所述存储器存储有计算机程序,其中,所述计算机程序在由所述处理器执行时,使得所述处理器实现如上所述任一实施例中的方法的步骤。
第十二方面,本申请提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序在由所述处理器执行时,使得所述处理器实现如上所述任一实施例中的方法的步骤。
第十三方面,本申请提供了一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现如上所述任一实施例中的方法的步骤。
第十四方面,本申请提供了一种医疗导航系统,所述医疗导航系统包括:骨科手术工具,以及如上述任一实施例中的装置。
基于如上所述的本申请的实施例,基于医疗导航装置的显影定位组件可用以辅助确定髓内钉理想进钉点等目标位置,通过提示第一相对位置信息和/或第二相对位置信息,即可辅助引导骨科手术工具移动至髓内钉理想进钉点等目标位置,不会造成手术过程中的辐射量增大,方便便捷,且有利于辅助提高骨科手术的效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的一些具体实施方式。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的医疗导航装置的结构示意图;
图2为本申请一些实施例的医疗导航装置结合外部处理设备的结构示意图;
图3为本申请一些实施例的医疗导航装置结合外部提示设备的结构示意图;
图4为本申请一些实施例的医疗导航装置结合导航处理装置的结构示意图;
图5为本申请一些实施例的医疗导航装置的结构外观示意图(第一视角);
图6为本申请一些实施例的医疗导航装置的结构外观示意图(第二视角);
图7为本申请一些实施例的导航组件与显影定位组件分离状态下的示意图;
图8为本申请一些实施例的导航组件的示意图;
图9为本申请一些实施例的导航组件的传感器的坐标系的示例;
图10为本申请一些实施例中的导航组件显示的第一相对位置信息和/或第二相对位置信息的示意图;
图11为本申请一些实施例中确定高度差的原理示意图;
图12为本申请一些实施例中确定外偏角的原理示意图;
图13为本申请一些实施例中确定俯仰角的原理示意图;
图14为股骨近端的髓内钉理想进钉点的理想进钉位置的示意图;
图15为股骨近端的髓内钉理想进钉点的理想进钉方向的示意图;
图16为一些实施例中将医疗导航装置放置在患侧股骨近端体表的示意 图;
图17为一些实施例中将医疗导航装置放置在患侧股骨近端体表后,结合位置标识确定目标偏移位置信息的示意图;
图18为另一些实施例中将医疗导航装置放置在患侧股骨近端体表确定基准位置的应用场景示例图;
图19为一些实施例中基于医学影像确定目标偏移位置信息的示意图;
图20为另一些实施例中基于医学影像确定目标偏移位置信息的示意图;
图21为一些实施例中将导航组件与导针相固定的示意图;
图22为一些实施例中将导航组件与电钻相固定的示意图;
图23为一些实施例的应用场景中确定髓内钉理想进钉点的理想进钉位置的示意图;
图24为一些实施例的应用场景中确定髓内钉理想进钉点的理想进钉方向的示意图;
图25为一些实施例的医疗导航方法的流程示意图;
图26为一些实施例的医疗导航方法的流程示意图;
图27为一些实施例的医疗导航方法的流程示意图;
图28为一些实施例的医疗导航方法的流程示意图;
图29为一些实施例的电子设备的结构框图示意图。
具体实施方式
以下参考详细的实施例进行举例说明,这些实施方案的示例在附图中示出。下面的详细描述中示出许多具体细节,以便提供对各种所描述的实施例的充分理解。但是,对本领域的普通技术人员应该理解,各种所描述的实施例可以在没有这些具体细节的情况下而实现。在其他实施例中,不详细描述公知的方法、过程、组件、电路和网络,以免不必要地使实施例模糊。
在本文中对各种所述实施方案的描述中所使用的术语只是为了描述特定实施方案的目的,而并非旨在进行限制。如在对各种所述实施例中的描述和所附权利要求书中所使用的那样,单数形式“一个”和“该/所述”旨在也包括复数形式,除非上下文另外明确地指示。还将理解的是,本文中所使用的 术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。还将理解的是,术语“包括”在本说明书中使用时是指存在所陈述的特征、步骤、操作、元件和/或部件,但是并不排除存在或添加一个或多个其他特征、步骤、操作、元件和/或部件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参考图1所示,一些实施例中的医疗导航装置10,包括显影定位组件100和导航组件200,其中导航组件200设置有传感器201。该医疗导航装置10可应用于骨科手术过程中,实现对骨科手术工具的引导。
其中,在该实施例中:
显影定位组件100上设置有位置标识,该位置标识能够在医学影像中可视化地显现;
导航组件200,用于响应于触发指令,记录传感器201测量的传感器201处于基准位置时的基准位置信息,并在传感器201与骨科手术工具相固定的状态下,获取传感器201的实时位置信息,基于实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示第一相对位置信息和/或第二相对位置信息;其中,第一相对位置信息为传感器201的实时位置与基准位置之 间的相对位置信息,实时位置由实时位置信息确定;第二相对位置信息为实时位置与目标位置之间的相对位置信息,第二相对位置信息由实时位置信息和目标偏移位置信息确定,目标位置由骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,传感器201处于基准位置时,传感器201与显影定位组件的位置标识具有预先确定的相对位置关系;位置标识用于结合预先确定的相对位置关系确定上述目标偏移位置信息,目标偏移位置信息用于指示基准位置与目标位置之间的相对位置关系;
第一相对位置信息结合目标偏移位置信息,和/或,第二相对位置信息,可用于辅助引导骨科手术工具移动至上述目标位置。
参考图2所示,一些实施例中的医疗导航装置10,包括显影定位组件100和导航组件200,其中导航组件200设置有传感器201。该医疗导航装置10可应用于骨科手术过程中,实现对骨科手术工具的引导。该医疗导航装置10在应用于骨科手术过程中时,可通过与外部处理设备20相配合,实现对骨科手术工具的引导。
在该实施例中:
显影定位组件100上设置有位置标识,位置标识能够在医学影像中可视化地显现;
导航组件200,用于在传感器201与骨科手术工具相固定的状态下,将传感器201测量的实时位置信息发送给外部处理设备20,并接收外部处理设备20反馈的第一相对位置信息和/或第二相对位置信息,并提示第一相对位置信息和/或第二相对位置信息;其中,第一相对位置信息为传感器201的实时位置与传感器201预先所处的基准位置之间的相对位置信息,实时位置由实时位置信息确定,基准位置由预先记录的基准位置信息确定,基准位置信息包括第一基准位置信息和/或第二基准位置信息,第一基准位置信息为导航组件200响应于触发指令获得、并发送给外部处理设备20的传感器201测量的位置信息,第二基准位置信息为外部处理设备响应于触发指令获得的预先设置的位置信息;第二相对位置信息为传感器201的实时位置与目标位置之间的 相对位置信息,第二相对位置信息由实时位置信息和目标偏移位置信息确定,目标位置由骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,传感器201处于基准位置时,传感器201与显影定位组件100的位置标识具有预先确定的相对位置关系;位置标识用于结合预先确定的相对位置关系确定上述目标偏移位置信息,上述目标偏移位置信息用于指示基准位置与目标位置之间的相对位置关系;
第一相对位置信息结合目标偏移位置信息,和/或,第二相对位置信息,可用于辅助引导骨科手术工具移动至目标位置。
参考图3所示,一些实施例中的医疗导航装置10,包括显影定位组件100和导航组件200,其中导航组件200设置有传感器201。该医疗导航装置10可应用于骨科手术过程中,实现对骨科手术工具的引导。该医疗导航装置10在应用于骨科手术过程中时,可通过与外部提示设备30相配合,实现对骨科手术工具的引导。
在该实施例中:
显影定位组件100上设置有位置标识,位置标识能够在医学影像中可视化地显现;
导航组件200,用于响应于触发指令,记录传感器201测量的传感器201处于基准位置时的基准位置信息,并在传感器201与骨科手术工具相固定的状态下,获取传感器201的实时位置信息,基于实时位置信息获取第一相对位置信息和/或第二相对位置信息,并将第一相对位置信息和/或第二相对位置信息传输给外部提示设备30,由外部提示设备30对第一相对位置信息和/或第二相对位置信息进行提示;其中,第一相对位置信息为传感器201的实时位置与基准位置之间的相对位置信息,实时位置由实时位置信息确定;第二相对位置信息为实时位置与目标位置之间的相对位置信息,第二相对位置信息由实时位置信息和目标偏移位置信息确定,目标位置由骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,传感器201处于基准位置时,传感器201与显影定位组件的位置标识具有预先确定的相对位置关系;位置标识用于结合预先确定的相对位置 关系确定目标偏移位置信息,目标偏移位置信息用于指示基准位置与目标位置之间的相对位置关系;
其中,第一相对位置信息结合目标偏移位置信息,和/或,第二相对位置信息,可用于辅助引导骨科手术工具移动至目标位置。
其中,外部提示设备30可以是任何能够进行信息提示的设备。例如,在一些实施例中,该外部提示设备30可以是智能穿戴设备。在一些实施例中,该外部提示设备可以是用户终端(例如个人计算机、平板电脑),在一些实施例中,该外部提示设备可以为显示屏设备,在一些实施例中,该外部提示设备也可以是语音输出设备。
参考图4所示,一些实施例中的医疗导航装置10,包括显影定位组件100和导航组件200,其中导航组件200设置有传感器201。该医疗导航装置10可应用于骨科手术过程中,实现对骨科手术工具的引导。该医疗导航装置10在应用于骨科手术过程中时,可通过与导航处理装置40相配合,实现对骨科手术工具的引导。导航处理装置40与医疗导航装置10的导航组件200通信连接。
其中,在该实施例中:
显影定位组件100上设置有位置标识,位置标识能够在医学影像中可视化地显现;
导航处理装置40,用于获取导航组件200发送的、在传感器201与骨科手术工具相固定的状态下、传感器201测量的实时位置信息,基于实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示第一相对位置信息和/或第二相对位置信息;第一相对位置信息为传感器201的实时位置与传感器201预先所处的基准位置之间的相对位置信息,实时位置由实时位置信息确定,基准位置由预先记录的基准位置信息确定,基准位置信息包括第一基准位置信息和/或第二基准位置信息,第一基准位置信息为导航组件200响应于触发指令获得、并发送给导航处理装置40的传感器201测量的位置信息,第二基准位置信息为导航处理装置40响应于触发指令获得的预先设置的位置信息;第二相对位置信息为实时位置与目标位置之间的相对位置信息,第二 相对位置信息由实时位置信息和目标偏移位置信息确定,目标位置由骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
其中,传感器201处于基准位置时,传感器201与显影定位组件100的位置标识具有预先确定的相对位置关系;位置标识用于结合预先确定的相对位置关系确定目标偏移位置信息,目标偏移位置信息用于指示基准位置与目标位置之间的相对位置关系;
第一相对位置信息结合目标偏移位置信息,和/或,第二相对位置信息,可用于辅助引导骨科手术工具移动至目标位置。
其中,在上述各实施例的医疗导航装置10中,传感器201可以为惯性传感器,惯性传感器是一类可以检测和测量加速度、倾斜、冲击、振动、旋转和多自由度运动的传感器,惯性传感器可以测量和输出位置信息。其中,传感器201的数量具体为1个,从而基于同一个传感器即可实现医疗导航。
其中,在上述各实施例的医疗导航装置10中,上述的“医学影像”包括但不限于X射线透视图像或者核磁共振成像等。上述的“医学影像”可在X射线、高频RF传播和外部磁场、超声波或伽马射线下成像,也可以采用其他方式进行成像,在此不作具体限制。
一些实施例中,如上所述的各实施例中的医疗导航装置10,可应用于需要插入髓内钉的骨科手术中,例如股骨近端骨折的骨科手术过程中,此时,上述医疗导航装置10可以是用于髓内钉进钉点导航的医疗导航装置,上述目标位置可以是髓内钉理想进钉点,上述预期插入位置可以是髓内钉理想进钉点的理想进钉位置,上述预期插入方向可以是髓内钉理想进钉点的理想进钉方向。
其中,在上述各实施例的医疗导航装置10中,导航组件200和显影定位组件100,可以是固定连接,也可以是可拆卸地连接,例如,导航组件200和显影定位组件100可以通过磁吸的方式装配连接,再例如,导航组件200和显影定位组件100可以采用如卡接或者粘接等方式连接,以便于对导航组件200和显影定位组件100进行安装与拆卸。当然,导航组件200也可采用除卡接、粘接、磁吸以外的其他方式与显影定位组件100可拆卸地连接,在此不作具体限制。其中,导航组件200和显影定位组件100固定连接时,或者导 航组件20和显影定位组件100可拆卸地连接在一起时,导航组件200与显影定位组件100具有预先确定的相对位置关系。
在其他的一些实施例中,导航组件200与显影定位组件100也无需具有特定的固定连接关系或者可拆卸的连接关系,只要在医疗导航装置10处于基准位置时,导航组件200与显影定位组件100之间能够具有预先确定的相对位置关系即可。
一些实施例中,医疗导航装置10处于基准位置时,显影定位组件100和导航组件200之间的预先确定的相对位置关系的示意图如图5、图6以及图7所示。
如图5、图6以及图7所示的实施例中,显影定位组件100包括本体110。其中,至少一个位置标识120设置于本体110上,位置标识120能够在医学影像中可视化地显现。本体110上,还设置有用于安装导航组件200的安装部111,至少一个位置标识120分布于安装部111周围。
其中,安装部111用于可拆卸地连接导航组件200。使用时,可将本体110通过安装部111与导航组件200可拆卸地连接,并将本体110放置于待手术目标的待手术部位的上方,使得在对待手术部位进行透视获得医学影像时,位置标识120和待手术部位均能够在医学影像中可视化地显现。
在一些实施例中,可选地,请参阅图5、图6以及图7,位置标识120包括角度刻度,至少一个角度刻度围绕安装部111分布。在手术前,可将显影定位组件100设置于待手术目标之上,可利用医学影像(如X射线透视图像)来查看待手术部位的具体位置和角度等信息,以角度刻度为参照,可更容易地辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向,以便于能够辅助引导骨科手术工具移动至髓内钉理想进钉点等目标位置。
在一些实施例中,可选地,请参阅图5、图6以及图7,本体110上设有多个角度刻度,多个角度刻度包括基准角度刻度(例如图7中的0位对应的刻度),以及布设于基准角度刻度至少一侧的非基准角度刻度,非基准角度刻度包括正角度刻度和/或负角度刻度。
如此,方便根据需要读取正角度刻度或负角度刻度,可以以基准角度刻度为参照,并找出多个角度刻度中,与目标位置的预期插入方向,例如髓内 钉理想进钉点的理想进钉方向,相对应的正角度刻度或负角度刻度,更方便读取对应的角度刻度,也能更方便地辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向。
一些实施例中,导航组件200处于基准位置时,显影定位组件100的基准角度刻度位于导航组件200的轴线方向上。即,导航组件200处于基准位置时,导航组件200与显影定位组件100的位置标识具有预先确定的相对位置关系,可以是指导航组件200处于基准位置时,显影定位组件100的基准角度刻度位于导航组件200的轴线方向上。从而,在更方便读取对应的角度刻度的同时,也能够方便便捷地核实和确定导航组件200与显影定位组件100的位置标识之间是否满足预先确定的相对位置关系。
在一些实施例中,非基准角度刻度包括以基准角度刻度为参考基准,对称布设于基准角度刻度的两侧的正角度刻度(例如图7所示中角度数值为10、20、30、40对应的角度刻度)和负角度刻度(例如图7所示中角度数值为-10、-20、-30、-40对应的角度刻度)。如此,通过对称分布的方式,能更方便地辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向。应当理解的是,图7所示中,正角度刻度和/或负角度刻度,还可以包含没有显示角度数值的角度刻度。当然,多个角度刻度的分布也可以是以其他方便读取角度刻度的读数的方式进行排布,在此不作具体限制。
在一些实施例中,请参阅图5、图6及图7,安装部111和多个角度刻度均设置于本体110的第一表面1101,方便设置在安装部111的导航组件200以角度刻度为参照进行导航。例如,以基准角度刻度所在方向作为参照方向,并以基准角度刻度为参照方向辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向,如此,可在导航组件200的导航下,更方便地将骨科手术工具导航到髓内钉理想进钉点的理想进钉方向等目标位置的预期插入方向。
在一些实施例中,请参阅图5、图6及图7,安装部111包括安装槽,导航组件200至少部分地容置于安装槽。
可在安装槽内放置导航组件200,便于导航组件200与显影定位组件100配合使用,可以理解,多个角度刻度围绕于安装槽,以便导航组件200以基 准角度刻度所在方向为参照方向,而更好地辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向。
在一些实施例中,请参阅图5、图6及图7,安装槽包括平行于第一表面1101的底壁和连接于底壁的侧壁,导航组件200可拆卸地连接于安装槽的底壁。如此,可将导航组件200安装在安装槽内,以便导航组件200与显影定位组件100配合使用。可选地,侧壁在平行于第一表面1101的平面内的投影构造为封闭的曲线。
在一些实施例中,导航组件200卡接于安装槽,如此,可实现导航组件200与显影定位组件100的卡合连接,此结构相对简单,导航组件200与显影定位组件100的安装、拆卸更方便。此时,多个角度刻度环绕安装槽设置,则当导航组件200安装于安装槽内时,也便于导航组件200与多个角度刻度中的其中一个相对应,并以此为参照,使用更方便。
在一些实施例中,请参阅图5、图6及图7,安装槽在平行于第一表面1101的平面内的投影形成的图形为轴对称图形。轴对称图形的对称轴,与基准角度刻度在平行于第一表面1101的平面内的投影的延长线共线设置。
可以理解,可使安装于安装槽的导航组件200以基准角度刻度为对象对中设置,如此,导航组件200能够更方便地以基准角度刻度所在方向作为参照方向,也能够以显影定位组件100的基准角度刻度为参照方向,辅助确定目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向,以便后续骨科手术工具在导航组件200的导航下相对于该参照方向进行调整,以引导骨科手术工具移动至目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向。
在一些实施例中,请参阅图5,本体110的外周设有与第一表面1101连接的弧形边1102,多个角度刻度沿弧形边1102的延伸方向间隔布设。
如此,方便根据需要读取任一角度刻度。示例性地,多个角度刻度的分布呈扇形排列,类似于量角器的角度刻度的分布。
在一些实施例中,请参阅图5、图6及图7,弧形边1102构造为圆弧状,便于多个角度刻度围绕弧形边1102的圆心呈圆周阵列分布。
在一些实施例中,请参阅图5,本体110包括与第一表面1101相对设置 的第二表面1103,其中,第一表面1101和第二表面1103构造为平面且彼此平行。如此,本体110能够借助于第二表面1103放置于待手术目标的待手术部位的上方。可利用第二表面1103使显影定位组件100更平稳地放置,例如放置在患侧股骨近端体表,以更好地保证显影定位组件100保持相对水平,也能利用该显影定位组件100的位置标识120和医学影像更准确地得出基准位置和目标位置之间的目标偏移位置信息,例如基准位置与目标位置的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)之间的目标偏移位置信息。
第二表面1103可以是一个连续的平面,也可以由多个彼此独立的平面组成,在此不作具体限制。
在一些实施例中,位置标识120的材质包括钽,具体地,位置标识120采用钽丝制作,如此,位置标识120可在医学影像(如X射线透视图像)中可视化地显现。可选地,本体110采用透光材料制作,如此,在X射线照射下,采用透光材料制作的本体110不显影,不影响视线,示例性地,本体110采用碳纤材料制作。
在一些实施例中,显影定位组件100上设置有第一触点,导航组件200上设置有第二触点,导航组件200在第一触点与第二触点相接触时被激活。从而,在不需要使用该医疗导航装置10时,可将导航组件200和显影定位组件100分开放置(如图7所示),此时,导航组件200未被激活,处于未开机工作的状态。在需要使用该医疗导航装置10进行医疗导航时,再将导航组件200与显影定位组件100装配连接,使第一触点与第二触点相接触,从而激活导航组件200,使导航组件200处于开启状态。从而,在便捷地启动导航组件200的同时,还可以减少导航组件200所消耗的资源,延长导航组件200的使用寿命。
其中,显影定位组件100上设置的第一触点可以有两个,如图7中的第一触点130,导航组件200上设置的第二触点(图中未示出)也可以有两个。如此,通过在显影定位组件100和导航组件200上均设置两个触点,可以在两个触点均对应接触时,再激活导航组件200。使得在激活导航组件200时,显影定位组件100和导航组件200之间处于相对平稳的状态,有助于提高医 疗导航过程的准确性。
其中,在导航组件200激活之后,可以是在导航组件200激活一定时长之后,或者导航组件200激活后,监测到第一触点与第二触点未接触之后一定时长之后,导航组件200自动切换至未激活状态,即切换至未开机工作的状态,以减少导航组件200所消耗的资源。其中,该一定时长可以结合手术时长设定,或者通过其他方式设定,例如用户手动输入。在另一些实施例中,在导航组件200激活之后,无论后续第一触点与第二触点是否接触,均可以是在接收到关闭导航组件200的指令时,导航组件200才切换至未激活状态。
一些实施例中,上述触发指令可以包括第一触点与第二触点相接触时产生的激活信号。即,在第一触点与第二触点相接触,接收到第一触点与第二触点相接触产生的激活信号时,即认为接收到了触发指令,从而可自动触发对基准位置的基准位置信息的记录。
一些实施例中,也可以在导航组件200被激活后,接收到触发指令时,记录导航组件200的基准位置。即在第一触点与第二触点相接触,接收到第一触点与第二触点相接触产生的激活信号时,尚不能触发基准位置的基准位置信息的记录,而是在第一触点与第二触点相接触,激活导航组件200之后,进一步接收到触发指令时,再记录导航组件200的基准位置的基准位置信息。从而可以据此提高一些场景下记录的基准位置的基准位置信息的准确性,例如,在将第一触点与第二触点相接触之后,再将该医疗导航装置10放置在患者的待手术部位的场景。
一些实施例中,导航组件200与显影定位组件100,也可以借助于第一触点和第二触点磁吸连接,从而可以提高导航组件200与显影定位组件100的连接可靠性。其中,第一触点可以设置于安装槽,从而可以使导航组件200牢固地定位于安装槽。
其中,导航组件200可以可拆卸地与骨科手术工具相固定。例如,导航组件200可以通过磁吸和/或卡接的方式,可拆卸地与骨科手术工具相固定。该骨科手术工具可以为导针、把持器或者电钻。
一些实施例中,在上述各实施例中涉及的医疗导航装置10中,导航组 件200可以设置有触控屏,从而,导航组件200可以通过触控屏接收触发指令,该触发指令可用于指示记录上述基准位置的基准位置信息。
其中,可以通过操作触控屏上显示的相应按钮或者控件,或者在触控屏的指定区域或者任意位置单击或者双击,或者在触控屏滑动指定的轨迹,或者通过其他的触控方式,发出触发指令。导航组件200若通过触控屏接收到操作相应按钮或控件的操作动作,或者识别到指定的触摸动作,例如单击、双击、或者指定的滑动轨迹等,则确定接收到触发指令。
在一些实施例中,在上述各实施例中涉及的医疗导航装置10中,导航组件200还可以设置有实体按键和/或语音采集组件,以通过实体按键和/或语音采集组件接收触发指令,该触发指令可用于指示记录上述基准位置的基准位置信息。
若导航组件200设置有实体按键,可以通过直接按压该实体按键发出触发指令。导航组件200在通过实体按键接收到按压操作时,则确定接收到触发指令。
若导航组件200设置有语音采集组件,医务人员(如医生)可发出“记录基准位置”、“记录位置”或者其他的语音信息发出该触发指令。语音采集组件采集语音信息,并对语音信息进行识别。若识别出语音信息中包含“记录基准位置”、“记录位置”或者其他预先定义的用以指示记录基准位置的基准位置信息的信息,则导航组件200确定接收到触发指令。
其中,在上述各实施例中涉及的医疗导航装置10中,也可以是在外部处理设备20和/或外部提示设备30和/或导航处理装置40上设置触控屏、实体按键、语音采集组件等可以接收触发指令的组件,以通过外部处理设备20和/或外部提示设备30和/或导航处理装置40接收该触发指令。外部处理设备20和/或外部提示设备30和/或导航处理装置40接收的触发指令,可以转发给导航组件200。
导航组件200和/或外部提示设备30和/或导航处理装置40提示第一相对位置信息和/或第二相对位置信息的方式,可以是将第一相对位置信息和/或第二相对位置信息实时显示,也可以是输出第一相对位置信息和/或第二相对位置信息的语音信息,即对第一相对位置信息和/或第二相对位置信息的语 音信息进行语音提示。
实时显示第一相对位置信息和/或第二相对位置信息的方式不限,例如,可以仅显示第一相对位置信息和/或第二相对位置信息,也可以在显示第一相对位置信息和/或第二相对位置信息的同时,同时显示与之相对应的描述信息,该描述信息用以说明其显示的第一相对位置信息和/或第二相对位置信息的具体含义。一些实施例中,也可以同时显示基于第一相对位置信息和/或第二相对位置信息给出的建议的移动方向的信息,其中,不同的移动方向可以以不同的标记分别进行标记,例如不同的颜色和/或不同的箭头方向等。
实时语音提示第一相对位置信息和/或第二相对位置信息的方式不限,例如仅语音提示第一相对位置信息和/或第二相对位置信息,也可以在语音提示第一相对位置信息和/或第二相对位置信息的同时,同时语音提示与之相对应的描述信息,该描述信息用以说明其语音提示的第一相对位置信息和/或第二相对位置信息的具体含义,一些实施例中,也可以同时语音提示出基于第一相对位置信息和/或第二相对位置信息给出的建议的移动方向的信息。
一些实施例中,上述基准位置信息,为接收到触发指令时,响应于触发指令获得的传感器201实时测量获得的位置信息。其中,当是由导航组件200接收该触发指令时,导航组件200可直接获得传感器201实时测量获得的位置信息。当是由外部处理设备20和/或外部提示设备30和/或导航处理装置40接收该触发指令时,外部处理设备20和/或外部提示设备30和/或导航处理装置40可将该触发指令转发给导航组件200,或者基于该触发指令向导航组件200发送指示导航组件200提供位置信息的指令,以指示导航组件200获得传感器201实时测量获得的位置信息,并反馈给外部处理设备20和/或外部提示设备30和/或导航处理装置40,从而使外部处理设备20和/或外部提示设备30和/或导航处理装置40获得该基准位置信息,采用这种方式获得的基准位置信息,本申请实施例中可称为第一基准位置信息。
一些实施例中,上述基准位置信息,为接收到触发指令时,响应于触发指令初始化传感器201后,传感器201测量获得的位置信息,即该基准位置信息可以是传感器201的初始位置信息,本申请实施例中可称为第二基准位置信息。该初始位置信息可以基于实际技术需要设定,一些实施例中,该初 始位置信息可以为零位位置信息。其中,零位位置信息,可以是指与位置相关的信息的数值均设置为0,例如高度值为0。
其中,当是由导航组件200接收该触发指令时,导航组件200可直接初始化传感器201,以获得传感器201初始化后测量获得的位置信息。
当是由外部处理设备20和/或外部提示设备30和/或导航处理装置40接收该触发指令时,一些实施例中,外部处理设备20和/或外部提示设备30和/或导航处理装置40,可以将预先设置在外部处理设备20和/或外部提示设备30和/或导航处理装置40的位置信息作为该基准位置信息,该预先设置的位置信息为传感器201初始化后的初始位置信息。采用这种方式获得的基准位置信息,本申请实施例中可称为第二基准位置信息。同时,外部处理设备20和/或外部提示设备30和/或导航处理装置40接收该触发指令时,可同时将该触发指令转发给导航组件200,或者基于该触发指令向导航组件200发送初始化指令,以指示导航组件200初始化传感器201。
在另一些实施例中,外部处理设备20和/或外部提示设备30和/或导航处理装置40接收该触发指令时,可将该触发指令转发给导航组件200,或者基于该触发指令向导航组件200发送指令,通过该指令指示导航组件200初始化传感器201,并提供初始化传感器201后传感器201测量获得的位置信息。导航组件200接收到该指令,初始化传感器201后,获得传感器201测量获得的位置信息,并反馈给外部处理设备20和/或外部提示设备30和/或导航处理装置40,从而使外部处理设备20和/或外部提示设备30和/或导航处理装置40获得该基准位置信息。
一些实施例中,第一相对位置信息包括实时位置与基准位置之间的第一位移偏差和/或第一角度偏差。
第一位移偏差可以包括:在垂直于水平面的方向上,传感器201的实时位置与基准位置之间的距离。其中,在一些实施例中,第一位移偏差也可以称之为高度差,如图11所示。
第一角度偏差可以包括:将与骨科手术工具相固定的传感器201的指定方向,以及处于基准位置时的传感器201的指定方向均投影至同一平面后,在该平面上的两个投影之间的夹角。其中,在一些实施例中,第一角度偏差 也可以称之为外偏角。
一些实施例中,该传感器201的指定方向具体可以是导航组件200的轴线方向,该同一平面具体可以是水平面,如图12所示。其中,在将与骨科手术工具相固定的传感器201的指定方向,以及处于基准位置时的传感器201的指定方向进行投影时,可以结合传感器201自身建立的坐标系进行投影。一个示例中传感器201自身建立的坐标系如图9所示,图9所示中,传感器201自身建立的坐标系的X轴,为导航组件200的轴线方向,即为传感器201的指定方向。
一些实施例中,第二相对位置信息包括实时位置与目标位置之间的第二位移偏差和/或第二角度偏差,其中,目标位置由骨科手术工具在人体中的预期插入位置和/或预期插入方向确定。一些实施例中,该目标位置可以是髓内钉理想进钉点等预期插入手术工具的位置,以目标位置是髓内钉理想进钉点为例,第二相对位置信息包括实时位置与髓内钉理想进钉点之间的第二位移偏差和/或第二角度偏差,此时,预期插入位置为髓内钉理想进钉点的理想进钉位置,预期插入方向为髓内钉理想进钉点的理想进钉方向。
第二角度偏差包括:将处于实时位置的传感器201的指定方向以及目标位置的预期插入方向,例如髓内钉理想进钉点的理想进钉方向,均投影至同一平面后,在同一平面上的两个投影之间的夹角。一些实施例中,该传感器201的指定方向具体可以是导航组件200的轴线方向,该同一平面具体可以是水平面。
其中,预期插入方向,例如髓内钉理想进钉点的理想进钉方向,可以通过各种可能的方式确定。
一些实施例中,预期插入方向,例如髓内钉理想进钉点的理想进钉方向,可以是由医务人员对医学影像进行观察得到,例如,在导航组件200位于基准位置时,进行拍摄获得医学影像,该医学影像中可视化的显现有显影定位组件100的位置标识。医务人员通过查看该医学影像,可以确定出髓内钉理想进钉点的理想进钉方向等预期插入方向。
一些实施例中,预期插入方向,例如髓内钉理想进钉点的理想进钉方向,为用户提供的插入方向。例如,在导航组件200位于基准位置时,进行拍摄 获得医学影像,该医学影像中可视化的显现有显影定位组件100的位置标识。医务人员通过查看该医学影像,可以确定出髓内钉理想进钉点的理想进钉方向等预期插入方向,并结合显示的位置标识,观察确定出与髓内钉理想进钉点的理想进钉方向等预期插入方向相平行的位置标识,或者,通过尺子等能够确定线条平行性的测量工具,测量获得与标记的髓内钉理想进钉点的理想进钉方向等预期插入方向相平行的位置标识,然后,通过点击或者输入该位置标识的信息等操作选择该位置标识,并将该操作选择的位置标识对应的方向,确定为用户提供的预期插入方向,例如确定为用户提供的髓内钉理想进钉点的理想进钉方向。
一些实施例中,预期插入方向,例如髓内钉理想进钉点的理想进钉方向,也可以是对医学影像进行分析获得的,医学影像为导航组件200处于基准位置时拍摄获得的。例如,通过对医学影像进行图像处理,识别出预期插入方向,例如髓内钉理想进钉点的理想进钉方向。以应用于髓内钉进钉点导航为例,也可以是通过对医学影像进行图像处理,识别出股骨干轴线方向,并结合股骨干轴线方向与髓内钉理想进钉点的理想进钉方向之间的角度(例如5°),确定出髓内钉理想进钉点的理想进钉方向。
上述目标偏移位置信息,可以结合位置标识以及上述预先确定的相对位置关系确定,以指示基准位置与目标位置(例如髓内钉理想进钉点)之间的相对位置关系。一些实施例中,该目标偏移位置信息,可以是处于基准位置时的传感器201的指定方向,与目标位置(例如髓内钉理想进钉点)的预期插入方向(例如理想进钉方向)之间的夹角。
一些实施例中,在确定处于基准位置时的传感器201的指定方向,与目标位置(例如髓内钉理想进钉点)的预期插入方向(例如理想进钉方向)之间的夹角时,可以通过各种可能的方式确定。
以传感器201的指定方向为导航组件200的轴线方向为例,上述传感器201处于基准位置时,传感器201与显影定位组件100的位置标识具有预先确定的相对位置关系,可以是传感器201处于基准位置时,显影定位组件100的基准角度刻度位于导航组件200的轴线方向上。
以预先确定的相对位置关系,是传感器201处于基准位置时,显影定位组件100的基准角度刻度位于导航组件200的轴线方向上为例,以下结合其中几种确定处于基准位置时的传感器201的指定方向,与目标位置的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)之间的夹角的方式进行举例说明。
一些实施例中,若医务人员通过查看医学影像,确定出预期插入方向(例如髓内钉理想进钉点的理想进钉方向),则可结合显示的位置标识,观察确定出与预期插入方向相平行的位置标识,并将该位置标识与基准角度刻度之间的夹角,作为基准位置时的传感器201的指定方向,与目标位置的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)之间的夹角。其中,若基准角度刻度为0°,则可以直接将该确定的位置标识对应的角度刻度作为该夹角。确定该夹角后,医护人员可自行记录该夹角,以方便后续使用。一些实施例中,医护人员也可通过输入或者其他方式将确定的该夹角输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40,以方便后续使用。
一些实施例中,若医务人员通过查看医学影像,确定出预期插入方向(例如髓内钉理想进钉点的理想进钉方向),并结合显示的位置标识,观察确定出与预期插入方向相平行的位置标识,或者,通过尺子等能够确定线条平行性的测量工具,测量获得与确定的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)相平行的位置标识,并且通过点击或者输入该位置标识的信息等操作选择了该位置标识,则导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40响应于该操作,可以直接将该位置标识与基准角度刻度之间的夹角,作为基准位置时的传感器201的指定方向,与目标位置的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)之间的夹角。其中,若基准角度刻度为0°,则可以直接将该确定的位置标识对应的角度刻度作为该夹角。
一些实施例中,若是通过对医学影像进行分析获得预期插入方向(例如髓内钉理想进钉点的理想进钉方向),则进行图像分析的设备可以从显示的各位置标识中,分析确定出与识别出的预期插入方向(例如髓内钉理想进钉点 的理想进钉方向)相平行的位置标识,并将该位置标识对应的方向确定为预期插入方向(例如髓内钉理想进钉点的理想进钉方向)。并将该位置标识与基准角度刻度之间的夹角,作为处于基准位置时的传感器201的指定方向,与目标位置的预期插入方向(例如髓内钉理想进钉点的理想进钉方向)之间的夹角。其中,若基准角度刻度为0°,则可以直接将该确定的位置标识对应的角度刻度作为该夹角。若进行图像处理的设备是不同于导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40的设备,则进行图像处理的设备也可以是将夹角θ通过有线或无线的方式传输给导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40,也可以是提供给医护人员知晓后,由医护人员将该夹角θ输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40中。
其中,第二位移偏差可以包括:在垂直于水平面的方向上,传感器201所处的实时位置与预期插入位置(例如髓内钉理想进钉点的理想进钉位置)之间的距离。
其中,预期插入位置可以基于预定插入区域确定,预定插入区域可以是指用以确定预期插入位置的区域。以目标位置为股骨近端的髓内钉理想进钉点为例,该预定插入区域可以是大转子顶点脊状轮廓线。预期插入位置的具体的位置信息,可以在与传感器201相固定的骨科手术工具的移动过程中确定。
一些实施例中,预期插入位置(例如髓内钉理想进钉点的理想进钉位置)在垂直于水平面的方向上的高度值,由第一参考高度值和第二参考高度值确定,其中,第一参考高度值为骨科手术工具的插入端位于预定插入区域的第一侧顶点时,传感器201在垂直于水平面方向上的高度值,第二参考高度值为骨科手术工具的插入端位于预定插入区域的第二侧顶点时,传感器201在垂直于水平面方向上的高度值。其中,以目标位置为股骨近端的髓内钉理想进钉点为例,第一侧顶点可以是指大转子顶点脊状轮廓最靠近腹侧的顶点,第二侧顶点可以是指大转子顶点脊状轮廓最靠近背侧的顶点。
在一些实施例中,传感器201还可以用于测量俯仰角,其中,俯仰角为 导航组件200的底面与水平面之间的夹角,如图13所示。
在一些实施例中,导航组件200还用于提示传感器201测量的俯仰角。在一些实施例中,导航组件200也可以将传感器201测量的俯仰角传输给外部提示设备30和/或导航处理装置40进行提示。
一些实施例中,导航组件200,还用于提供误差提示信息。
一些实施例中,误差提示信息为累计时长大于预设时长时生成的信息。其中,累计时长为从记录基准位置信息时或者上一次校准传感器201时开始计时的时长。传感器201在使用过程中,当使用时间过长时,可能会带来误差,因此,还可以自记录基准位置信息时或者上一次校准传感器201时开始计时累计时长,当累计时长大于预设时长时,则认为传感器201存在误差,可以提供误差提示信息。
一些实施例中,误差提示信息为计算获得的误差大于误差阈值时生成的信息。在传感器201的使用过程中,导航组件200可同时监测并计算传感器201的误差,当计算获得的误差大于误差阈值时,生成误差提示信息。其中,误差阈值可以根据传感器201的精度等进行设置,本申请实施例不做具体限定。
其中,导航组件200提供的误差提示信息,可以由导航组件200提示,导航组件200也可以将误差提示信息发送给外部提示设备30和/或导航处理装置40,由外部提示设备30和/或导航处理装置40进行提示。
医务人员在获知提示的误差提示信息时,确定传感器201的误差较大,因此可以对传感器201进行初始化处理或者重新校准,并重新确定基准位置信息,以提高医疗导航的准确性。一些实施例中,医务人员也可以直接选用包含其他传感器201的导航组件200,与显影定位组件100进行配合,以进行医疗导航,来提高医疗导航的准确性。
基于如上所述的示例,以髓内钉手术为例,以下结合具体的手术过程中,基于医疗导航装置10和/或导航处理装置40进行医疗导航的过程,进行举例说明。应当理解的是,这些实施例的说明并不用以对本申请提供的医疗导航装置10和/或导航处理装置40的可应用的骨科手术类型进行限定,本申请提 供的医疗导航装置10和/或导航处理装置40,可同样适用于其他的骨科手术,在其他骨科手术过程中,基于医疗导航装置10和/或导航处理装置40进行医疗导航的方式,可以做类似的处理。
股骨近端骨折(如转子间骨折)或者胫骨肱骨等长骨骨干骨折,经常采用髓内钉内固定的方式进行处理,以方便骨折愈合。在进行髓内钉内固定的整个手术的实施过程中,髓内钉的进钉位置以及进钉方向的选取至关重要。这是因为,进钉位置与进钉方向会影响后期扩髓通道的建立以及髓内钉主钉放入的位置和方向,选择不当会导致主钉难以进入髓腔,即使能强行敲入髓腔,也会导致主钉在髓腔内受力不均且变形较大,此时容易破坏骨折复位效果,主钉为长主钉时更容易发生远端锁钉锁不准的情况,严重时还会导致骨折处延迟愈合甚至不愈合或畸形愈合。
以股骨近端髓内钉的进钉点为例,在临床中,理想进钉位置位于大转子顶点并靠近股骨颈中轴线的位置,如图14所示,而理想进钉方向是股骨干轴线外偏5°,以适应主钉的外偏角,如图15所示。
在手术过程中,通常通过打入导针的方式确认进钉点的进钉位置和进钉方向,导针的进针位置便是后期主钉的进钉位置,导针的进针方向便是后期主钉的进钉方向。为了更好地选择进钉点,发明人发现,已有的打入导针的方式,为了确保打入的导针是处于满意的进钉位置和进钉方向,要么需要在整个打入导针的过程中持续地进行射线透视,以实时观察导针针尖的位置和方向,但这种方法无疑会增加患者和医生受到的辐射量。要么医生通过触摸大转子顶点预估进钉点后先打入一根导针,然后进行透视,根据透视图像确认进钉位置和进钉方向,若进钉位置和进钉方向不理想,医生通过透视图像预估需要调整的位置和角度,在不拔出第一根导针的情况下打入第二根导针,再次透视查看第二根导针的进钉位置和进钉方向,如此反复,直到经过透视查看,确定打入的导针达到了满意的进钉位置和进钉方向。但依据主观经验第一次打入的导针通常难以到达预期的髓内钉理想进钉点,后期根据透视结果进行的调整过程也大大延长了手术时间,且位置与角度的调整量也无法精确把控,同时还增加了患者与医生的透视次数和辐射量。
据此,本申请实施例提供一种能够不增加患者与医生的透视次数和辐射 量,且轻巧便捷,易于实现的医疗导航装置10。该医疗导航装置10可用于引导骨科手术工具的移动,例如可用于引导骨科手术工具移动至髓内钉理想进钉点。其中,如图1至图4所示,该医疗导航装置10包括导航组件200和显影定位组件100,导航组件200和显影定位组件100分体设计,且可以可拆卸地连接,导航组件200设置有传感器。一些实施例中导航组件200与显影定位组件100处于连接状态下的医疗导航装置10的结构示意图如图5、图6所示。一些实施例中导航组件200与显影定位组件100分体时的示意图如图7所示。一些实施例中的导航组件200的外观示意图如图8所示。一些实施例中,当导航组件200与显影定位组件100装配成如图5、图6所示的状态时,导航组件200处于基准位置,当基准位置为零位位置信息时,也可以认为当导航组件200与显影定位组件100装配成如图5、图6所示的状态时,导航组件200的传感器处于零位状态。
其中,导航组件200内部集成有传感器201,该传感器201可以是一个六自由度惯性传感器,传感器201用于测量导航组件200相对于基准位置的位置偏差(x,y,z)和角度偏差(α,β,γ)。传感器201的自身坐标系的定义如图9所示,在设定传感器201的基准位置信息之后,再移动传感器201,传感器201可测量传感器201的实时位置相对于基准位置的相对位置信息,即沿着3个坐标轴的位移量(x,y,z)以及各个坐标轴当前方向与基准坐标轴方向的角度偏差(α,β,γ)。其中,传感器201集成在导航组件200内部,因此可将传感器201的基准位置信息作为导航组件200的基准位置信息,传感器201的实时位置信息作为导航组件200的实时位置信息,基准位置信息决定了传感器201和/或导航组件200的基准位置,实时位置信息决定了传感器201和/或导航组件200的实时位置。其中,在一些实施例中,传感器201还可以测量导航组件200的底面相对于绝对水平面的俯仰角。在另一些实施例中,导航组件200也可以通过集成有一个水平仪,通过水平仪测量导航组件200底面相对于绝对水平面的俯仰角。
在图8、图10所示的导航组件200中,该导航组件200设置有数字显示屏幕(以下简称屏幕),其上显示3个数字,符号“△”表示位移偏差符号,用以指示与之相邻的数值为位移偏差(例如如上所述的第一位移偏差或第二 位移偏差),符号“°”表示其对应的数值为角度,用以指示与之相邻的数值为角度偏差(例如如上所述的第一角度偏差或第二角度偏差)或者俯仰角。
例如,图10所示中,“△3”表示传感器201和/或导航组件200的实时位置相对于基准位置的第一位移偏差为3,或者传感器201和/或导航组件200的实时位置相对于预期插入位置(例如髓内钉理想进钉点的理想进钉位置)的第二位移偏差为3。“18°”表示传感器201和/或导航组件200的实时位置相对于基准位置的第一角度偏差为18°,或者传感器201和/或导航组件200的实时位置相对于预期插入方向(例如髓内钉理想进钉点的理想进钉方向)的第二角度偏差为18°,“4°”表示俯仰角为4°。
其中,上述第一位移偏差、第二位移偏差、第一角度偏差、以及第二角度偏差的确定,可以结合传感器201和/或导航组件200在位于基准位置以及实时位置时,传感器201的坐标系确定。记传感器201在基准位置的坐标系为Ψ(以下简称基准坐标系),传感器201在实时位置时的坐标系为Ψ’(以下简称当前坐标系),则可以通过计算当前坐标系Ψ’相对于基准坐标系Ψ的位置偏移和角度偏移,以获得上述第一位移偏差、第二位移偏差、第一角度偏差、第二角度偏差。
例如,以确定第一位移偏差为例,将当前坐标系Ψ’的原点相对于基准坐标系Ψ的原点的位移在基准坐标系Ψ的Z轴上的投影,作为高度差△h,如图11所示,该高度差△h即为上述第一位移偏差;将当前坐标系Ψ’的X轴,即导航组件200的轴线方向所在的坐标轴,在基准坐标系Ψ的XOY平面上的投影,与基准坐标系的X轴的夹角,作为外偏角,如图12所示,该外偏角即为上述第一角度偏差。再例如,将导航组件200的底面所在平面相对于绝对水平面的俯仰角度,作为俯仰角,其中,当尾部(窄端)翘起时该偏差为正值,当头部(宽端)翘起时该偏差为负值,如图13所示。
由于不同部位的髓内钉,如股骨、胫骨、肱骨髓内钉等位置的进钉点的场景类似,以下以股骨近端髓内钉手术为例进行详细阐述。
股骨近端髓内钉手术中患者常用体位为仰卧位,在皮肤切口之后打入导针之前,需要先以传感器201和/或导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系的方式,将医疗导航装置10放置 在基准位置,例如放置在患者的患侧股骨近端体表。
一些实施例中,可以是先将显影定位组件100与导航组件200装配连接,其中装配连接后的导航组件200与显影定位组件100的位置标识具有预先确定的相对位置关系,以如上所述的医疗导航装置10的示例,可以是显影定位组件100的基准角度刻度位于导航组件200的轴线方向上,然后将装配连接后得到的医疗导航装置10放置在基准位置,例如放置在患者的患侧股骨近端体表,如图16、图18所示,此时导航组件200保持相对水平,显影定位组件100保持相对水平。应当理解的是,由于是将显影定位组件100与导航组件200装配连接后一同放置在基准位置,因此,装配连接后,导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系会维持不变。
一些实施例中,可以是先将显影定位组件100放置在与基准位置相对应的位置,例如放置在患者的患侧股骨近端体表,然后维持显影定位组件100的位置不动,再以导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系的方式,将导航组件200与显影定位组件100装配连接,或者将导航组件200放置在能够对应到该预先确定的相对位置关系的位置,只要将导航组件200放置到该位置时,导航组件200与显影定位组件100的位置标识之间,能够具有预先确定的相对位置关系即可。
一些实施例中,可以是先将导航组件200放置在与基准位置相对应的位置,例如放置在患者的患侧股骨近端体表,然后维持导航组件200的位置不变,再以导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系的方式,将显影定位组件100与导航组件200装配连接,或者将显影定位组件100放置在能够对应到该预先确定的相对位置关系的位置,只要在将显影定位组件100放置到该位置时,导航组件200与显影定位组件100的位置标识之间,能够具有预先确定的相对位置关系即可。
其中,显影定位组件100上设置有第一触点,该第一触点可以设置于显影定位组件100的安装槽,导航组件200上设置有第二触点,该第二触点设置在导航组件200上与显影定位组件100的第一触点相对应的位置,当第一触点与第二触点相接触后,导航组件200被激活。
在以传感器201和/或导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系的方式,将医疗导航装置10放置在基准位置之后,可记录该基准位置的基准位置信息。
一些实施例中,若是先放置导航组件200/显影定位组件100,然后再放置显影定位组件100/导航组件200,使得导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系,可以是在导航组件200被激活时,确定导航组件200处于基准位置,并记录此时传感器201测量获得的位置信息,作为基准位置信息,该基准位置信息可以是传感器201的初始位置信息,例如零位位置信息。
一些实施例中,可以通过用户发出触发指令的方式,通过响应该触发指令来记录基准位置信息。例如,医务人员(如医生)通过导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40输入触发指令。
其中,在图1、图3所示实施例的医疗导航装置10中,医务人员(如医生)可通过操作导航组件200发出触发指令,导航组件200接收到该触发指令,将接收到触发指令时传感器201测量的位置信息,作为基准位置信息进行记录。其中,导航组件200接收到该触发指令后,也可以是先初始化传感器201,将初始化后的传感器201测量的位置信息(即传感器201的初始位置信息),作为基准位置信息进行记录。
在图2、图4所示实施例的医疗导航装置10中,医务人员(如医生)可通过操作导航组件200发出触发指令,也可以通过操作外部处理设备20/导航处理装置40发出触发指令。若是通过操作导航组件200发出触发指令,导航组件200记录基准位置信息的方式与上述方式相同。导航组件200记录基准位置信息后,可将该基准位置信息发送给外部处理设备20/导航处理装置40。若是通过操作外部处理设备20/导航处理装置40发出触发指令,一些实施例中,外部处理设备20/导航处理装置40将触发指令发送给导航组件200,以指示导航组件200获得并返回传感器201此时测量的位置信息,并将该位置信息作为基准位置信息进行记录;另一些实施例中,若基准位置信息是预先设置的位置信息(如初始化传感器201后的传感器201 的零位位置信息),则外部处理设备20/导航处理装置40可直接将该预先设置的位置信息作为基准位置信息,同时可向导航组件200发送指令,该指令用以指示导航组件200初始化传感器201。
其中,记录的基准位置信息,可以包括传感器201相对于水平面的基准高度,以及传感器201的指定方向(如导航组件200的轴线方向)。以基准位置信息为零位位置信息为例,此时,传感器201输出的高度为0值。若由导航组件200实时提示第一相对位置信息,则导航组件200的屏幕上的高度差Δh显示为0,外偏角显示为0°,俯仰角接近于0°。
在医疗导航装置10以导航组件200与显影定位组件100的位置标识之间具有的预先确定的相对位置关系的方式,放置在该基准位置的情况下,医护人员利用C臂设备或者其他透射设备拍摄股骨近端的正位片,获得医学影像,其中,待手术部位,如股骨近端,以及显影定位组件100的位置标识,均能够在医学影像中可视化的显现。
获得医学影像后,可基于医学影像,从医学影像中显示的显影定位组件100的各个位置标识中,选择与预期插入方向(如髓内钉理想进钉点的理想进钉方向)平行的位置标识,以及该位置标识对应的角度值X,该角度值X也是导航组件200的轴线方向与预期插入方向(如髓内钉理想进钉点的理想进钉方向)之间的夹角θ,该夹角θ即为目标位置(如髓内钉理想进钉点)与传感器201的基准位置之间的目标偏移位置信息。
一些实施例中,预期插入方向(如髓内钉理想进钉点的理想进钉方向)以及夹角θ的确定,可以是由医务人员对医学影像进行观察得到,例如,医务人员(例如医生)通过观察该医学影像,可以确定出预期插入方向(如髓内钉理想进钉点的理想进钉方向),并结合显示的位置标识,观察确定出与预期插入方向(如髓内钉理想进钉点的理想进钉方向)相平行的位置标识,并将该位置标识对应的角度确定为上述夹角θ。如图17所示中,观察确定出与预期插入方向(如髓内钉理想进钉点的理想进钉方向)相平行的位置标识为角度刻度10对应的位置标识140,则可以将夹角θ的值确定为位置标识140对应的角度刻度10°。
由于医生在进行骨科手术时,医生明确知晓预计进行骨科手术的位置,例如髓内钉理想进钉点的理想进钉位置位于大转子顶点并靠近股骨颈中轴线的位置,如图14所示,而理想进钉方向则是股骨干轴线外偏5°,以适应主钉的外偏角,因此,医生通过查看医学影像,即可以快速确定医学影像中的理想进钉方向,进而可以找到与该理想进钉方向相平行的位置标识,而该位置标识对应的角度值X也是导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ,从而可以快速、便捷地获得夹角θ。一些实施例中,医生通过查看医学影像,即可以快速确定医学影像中的股骨干轴线,进而可以找到与股骨干轴线相平行的位置标识,而该位置标识对应的角度值X,加上股骨干轴线与髓内钉理想进钉点的理想进钉方向之间的夹角5°,即可获得夹角θ。从而,通过医生直接观察的方式,可以无需复杂的图像处理,即可确定预期插入方向(如髓内钉理想进钉点的理想进钉方向)与导航组件200位于基准位置时的轴线方向之间的夹角θ,获得目标偏移位置信息。
一些实施例中,预期插入方向(如髓内钉理想进钉点的理想进钉方向)以及夹角θ的确定,也可以是由医务人员在医学影像上通过标记测量的方式确定。
例如,参考图19所示,一些实施例中,可以由医务人员(如医生)在该医学影像上手动标记预期插入方向(如髓内钉理想进钉点的理想进钉方向),并利用尺子或者其他能够确定线条之间的平行性的测量工具,测量获得与标记的髓内钉理想进钉点的理想进钉方向相平行的位置标识,并将该位置标识对应的角度X,确定为导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ。
再例如,参考图20所示,医护人员(如医生)可以通过机械制图的方式,在医学影像中手动标记出股骨干轴线,并利用尺子或者其他能够确定线条之间的平行性的测量工具,测量获得与标记的股骨干轴线相平行的位置标识,由于股骨近端的髓内钉理想进钉点的理想进钉方向是股骨干轴线外偏5°,以适应主钉的外偏角,因此,将该位置标识的角度X加上5°得到的夹角,即为导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方 向之间的夹角θ。
再例如,将获得的医学影像导入图像工作站,在图像工作站利用图像处理的方法,自动识别医学影像中的髓内钉理想进钉点的理想进钉方向,并从医学影像中的各位置标识中,分析确定出与识别出的髓内钉理想进钉点的理想进钉方向相平行的位置标识,并将该位置标识对应的角度X,确定为导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ。
再例如,将获得的医学影像导入图像工作站,在图像工作站利用图像处理的方法,自动识别医学影像中的股骨干轴线,并从医学影像中的各位置标识中,分析确定出与识别出的股骨干轴线相平行的位置标识,并结合该位置标识对应的角度X,以及股骨干轴线与髓内钉理想进钉点的理想进钉方向之间的角度(如5°),确定出导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的角度θ,例如将角度X加上5°得到的夹角,即为导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ。
其中,识别医学影像中的髓内钉理想进钉点的理想进钉方向和/或股骨干轴线的图像处理方法,可以采用模式识别算法或者深度学习智能算法进行实现,本申请实施例不做具体限定。
在获得目标偏移位置信息,例如导航组件200处于基准位置时的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ以后,以由医护人员(如医生)自行观察确定该夹角θ为例,若在医疗导航的过程中是提示第一相对位置信息,则医护人员(如医生)可以自行记录该夹角θ,也可以是将该夹角θ输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40中。若在医疗导航的过程中是提示第二相对位置信息,则医护人员需要将该夹角θ输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40中。
一些实施例中,以通过图像处理的方式确定夹角θ为例,进行图像处理的设备可以是导航组件200和/或外部处理设备20和/或外部提示设备30和/ 或导航处理装置40本身,也可以是不同于导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40的设备。
若在医疗导航的过程中是提示第一相对位置信息,则进行图像处理的设备可以将该夹角θ提示,以供医护人员(如医生)知晓该夹角θ。若进行图像处理的设备是不同于导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40的设备,则进行图像处理的设备也可以是将夹角θ通过有线或无线的方式传输给导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40,也可以是提供给医护人员知晓后,由医护人员将该夹角θ输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40中。
若在医疗导航的过程中是提示第二相对位置信息,若进行图像处理的设备是不同于导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40的设备,则进行图像处理的设备需要将该夹角θ提供给导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40,例如进行图像处理的设备将夹角θ通过有线或无线的方式传输给导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40,也可以是进行图像处理的设备将夹角θ提供给医护人员知晓后,由医护人员将该夹角θ输入到导航组件200和/或外部处理设备20和/或外部提示设备30和/或导航处理装置40中。
以导航组件200与显影定位组件100可拆卸连接为例,随后将导航组件200与显影定位组件100分离,将显影定位组件100从患者的患侧股骨近端体表拿开,并将导航组件200与骨科手术工具(如导针或把持器或电钻,以下实施例中以导针为例进行说明)相固定。
以徒手插入导针的方式为例,导航组件200与导针相固定的示意图如图21所示,其中,导航组件200的底部可以设置有凹槽,以直接将导航组件200与导针相固定,导航组件200也可以是通过其他的方式与导针相固定。若插入导针时选择使用把持器或者电钻,可将导航组件200通过磁吸直接安装于把持器或者电钻,以将导航组件200与把持器或电钻相固定,导航组件200与把持器或者电钻相固定的示意图如图22所示。
患者仰卧时,患侧大转子顶点脊状轮廓线大体沿着竖直方向,可被医生从切口中手动触摸到,如图23中放大部分的虚线所示。医生手持固定有导航组件200的导针并使其轴线方向近似位于水平面,导航组件200的屏幕上的俯仰角数值或者导航组件20提供给外部提示设备30和/或导航处理装置40的俯仰角数值,可辅助医生查看导针是否近似保持水平。
随后医生移动固定有导航组件200的骨科手术工具,并结合导航组件200和/或外部提示设备30和/或导航处理装置40的提示,将骨科手术工具移动至髓内钉理想进钉点。
在移动骨科手术工具的过程中,导航组件200的传感器201实时测量获得实时位置信息。
以通过提示第一相对位置信息将骨科手术工具导航至髓内钉理想进钉点为例,以下结合如上所述的各医疗导航装置10的导航过程进行举例说明。
以图1所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的高度差ΔH。
将导针尖端放于大转子顶点脊状轮廓最靠近腹侧的顶点上,导航组件200基于传感器201测量的实时位置信息,确定的传感器201的实时位置相对于基准位置的高度差ΔH为高度差Δh1(若导航组件200对传感器201进行了归零处理,则高度差Δh1实际上可为第一参考高度值h1)。
将导针尖端放于大转子顶点脊状轮廓最靠近背侧的顶点上,此时导航组件200基于传感器201测量的实时位置信息,确定的传感器201的实时位置相对于基准位置的高度差ΔH为高度差Δh2(若导航组件200对传感器201进行了归零处理,则高度差Δh2实际上可为第二参考高度值h2)。
医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,导航组件200实时显示的高度差ΔH将在高度差Δh1至高度差Δh2之间变化。其中,若导航组件200对传感器201进行了归零处理,则实际上实时提示的高度值H将在高度值h1至h2之间变化。
以图2所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200会将传感器201实时测量的实时位置信息,传输给外部处理设备20。外部处理设备20基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的高度差ΔH。
其中,将导针尖端放于大转子顶点脊状轮廓最靠近腹侧的顶点上时,外部处理设备20基于传感器201测量的实时位置信息,确定的传感器201的实时位置相对于基准位置的高度差ΔH为高度差Δh1(若对传感器201进行了归零处理,则高度差Δh1实际上可为第一参考高度值h1)。
将导针尖端放于大转子顶点脊状轮廓最靠近背侧的顶点上,此时外部处理设备20基于传感器201测量的实时位置信息,确定的传感器201的实时位置相对于基准位置的高度差ΔH为高度差Δh2(若对传感器201进行了归零处理,则高度差Δh2实际上可为第二参考高度值h2)。
外部处理设备20确定的高度差ΔH,传输给导航组件200进行提示。医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,导航组件200实时提示的高度差ΔH将在高度差Δh1与高度差Δh2之间变化。其中,若导航组件200对传感器201进行了归零处理,则实际上实时提示的高度值H将在高度值h1至h2之间变化。
以图3所示的医疗导航装置10为例:
医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,导航组件200确定高度差ΔH,并将确定的高度差ΔH传输给外部提示设备30进行提示。外部提示设备30实时提示的高度差ΔH将在高度差Δh1至高度差Δh2之间变化。其中,若对传感器201进行了归零处理,则实际上实时提示的高度值H将在高度值h1至h2之间变化。其确定高度差ΔH的方式与图1所示的医疗导航装置10确定高度差ΔH的方式相同,此处不再赘述。
以图4所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200会将传感器201实时测量的实时位置信息,传输给导航处理装置40。导航处理装置40基于与外部处理设备20相同的方式,实时确定高度差ΔH,并将确定的高度差ΔH进行提示。其中,导航处理装置40可以自行对高度差ΔH进行提示,也可以是 传输给不同于导航处理装置40的提示设备进行提示,例如与图3所示的实施例相结合,传输给如图3所示的实施例中的外部提示设备30进行提示。医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,实时提示的高度差ΔH将在高度差Δh1至高度差Δh2之间变化,若导航组件200对传感器201进行了归零处理,则实时提示的高度值H将在高度值h1至h2之间变化。
其中,在如上所述的各实施例的医疗导航装置10和/或导航处理装置40的导航过程中:
若医生选择大转子顶点脊状轮廓的中点作为手术位置点,则当提示的高度差ΔH为(Δh1+Δh2)/2时,或者对传感器201进行了归零处理的情况下,提示的高度值H为(h1+h2)/2时,便是大转子顶点脊状轮廓的中点位置,即髓内钉理想进钉点的理想进钉位置。同理,若医生选择大转子顶点脊状轮廓前1/3处作为手术位置点,则当提示的高度差ΔH为(Δh2-Δh1)/3+Δh1(若高度差以整数值显示,可向上或向下取整,以下的实施例中相同)时,或者对传感器201进行了归零处理的情况下,提示的高度值H为(h2-h1)/3+h1时,便是髓内钉理想进钉点的理想进钉位置。
在这种方式下,髓内钉理想进钉点的理想进钉位置可以结合实际位置需要,由医生自主判断和选择,因而可适用于不同髓内钉产品进钉位置选择不同的特异化需求。
在确定导针到达了髓内钉理想进钉点的理想进钉位置之后,即可进行角度的调整,以使得导针的进针方向到达髓内钉理想进钉点的理想进钉方向。
调整时,医生保持导针尖端位于髓内钉理想进钉点的理想进钉位置不变,调整导针外偏角度:
以图1所示的医疗导航装置10为例:
导航组件200基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的外偏角,并进行提示。
以图2所示的医疗导航装置10为例:
外部处理设备20基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的外偏角,并将该外偏角发送给导航组件200进行提示。
以图3所示的医疗导航装置10为例:
导航组件200基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的外偏角,并将该外偏角发送给外部提示设备30进行提示。
以图4所示的医疗导航装置10为例:
导航处理装置40基于传感器201测量的实时位置信息,确定传感器201的实时位置相对于基准位置的外偏角,并将该外偏角进行提示,或者将该外偏角发送给不同于导航处理装置40的提示设备进行提示,例如与图3所示的实施例相结合,发送给如图3所示的实施例中的外部提示设备30进行提示。
其中,在如上所述的各实施例的医疗导航装置10和/或导航处理装置40的导航过程中:
在医生保持导针尖端位于髓内钉理想进钉点的理想进钉位置不变,调整导针外偏角度的过程中,当导航组件200和/或外部提示设备30和/或导航处理装置40提示的外偏角,为上述确定的导航组件200的轴线方向与髓内钉理想进钉点的理想进钉方向之间的夹角θ时,此时导针的进针方向到达髓内钉理想进钉点的理想进钉方向,如图24所示。医生可参考提示的俯仰角,将导针的前倾角调整合适后,再插入导针。
以通过提示第二相对位置信息将骨科手术工具导航至髓内钉理想进钉点为例,以下结合如上所述的各医疗导航装置10的导航过程进行举例说明。
以图1所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200会将传感器201实时测量的实时位置信息中的高度值进行提示。将导针尖端放于大转子顶点脊状轮廓最靠近腹侧的顶点上,一些实施例中,医生通过操作导航组件200或者语音输入等方式发出记录指令,导航组件200记录此时传感器11测量的第一参考高度值h1,在另一些实施例中,导航组件200会将该高度值进行提示,医务人员(如医生)可以自行记下此时传感器11测量的第一参考高度值h1。
将导针尖端放于大转子顶点脊状轮廓最靠近背侧的顶点上,一些实施例中,医生通过操作导航组件200或者语音输入等方式发出记录指令,导航组件200记录此时传感器11测量的第二参考高度值h2。在另一些实施例中,导航组件200会将该高度值进行提示,医务人员(如医生)可以自行记下此时传感器11测量的第二参考高度值h2。
随后,在导航组件200记录第一参考高度值h1和第二参考高度值h2的情况下,导航组件200基于第一参考高度值h1和第二参考高度值h2,确定髓内钉理想进钉点的理想进钉位置在垂直于水平面的方向上的高度值H,并记录该高度值H。在医务人员(如医生)自行记下第一参考高度值h1和第二参考高度值h2的情况下,医务人员(如医生)基于自行记下的第一参考高度值h1和第二参考高度值h2,自行确定髓内钉理想进钉点的理想进钉位置在垂直于水平面的方向上的高度值H后,将确定的高度值H输入到导航组件200,由导航组件200记录。
其中,若医生选择大转子顶点脊状轮廓的中点作为手术位置点,则髓内钉理想进钉点的理想进钉位置的高度值H为(h1+h2)/2。同理,若医生选择大转子顶点脊状轮廓前1/3处作为手术位置点,则髓内钉理想进钉点的理想进钉位置的高度值H为(h2-h1)/3+h1。
医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,在移移动过程中,导航组件200结合传感器201的实时位置信息,以及记录的高度值H,确定第二位移偏差,并提示该第二位移偏差。
以图2所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200会将传感器201实时测量的实时位置信息,传输给外部处理设备20。
将导针尖端放于大转子顶点脊状轮廓最靠近腹侧的顶点上,外部处理设备20基于医护人员通过操作外部处理设备20或者语音输入等方式发出的记录指令,记录此时传感器11测量的第一参考高度值h1,在另一些实施例中,导航组件200和/或外部处理设备20可以将该高度值进行提示,医务人员(如医生)可以自行记下此时传感器11测量的第一参考高度值h1。
将导针尖端放于大转子顶点脊状轮廓最靠近背侧的顶点上,此时外部处 理设备20基于医护人员通过操作外部处理设备20或者语音输入等方式发出的记录指令,记录此时传感器11测量的第二参考高度值h2,在另一些实施例中,导航组件200和/或外部处理设备20可以将该高度值进行提示,医务人员(如医生)可以自行记下此时传感器11测量的第二参考高度值h2。
随后,在外部处理设备20记录第一参考高度值h1和第二参考高度值h2的情况下,外部处理设备20基于第一参考高度值h1和第二参考高度值h2,确定髓内钉理想进钉点的理想进钉位置在垂直于水平面的方向上的高度值H,并记录该高度值H。在医务人员(如医生)自行记下第一参考高度值h1和第二参考高度值h2的情况下,医务人员(如医生)基于自行记下的第一参考高度值h1和第二参考高度值h2,自行确定髓内钉理想进钉点的理想进钉位置在垂直于水平面的方向上的高度值H后,将确定的高度值H输入到外部处理设备20,由外部处理设备20记录。
其中,若医生选择大转子顶点脊状轮廓的中点作为手术位置点,则髓内钉理想进钉点的理想进钉位置的高度值H为(h1+h2)/2。同理,若医生选择大转子顶点脊状轮廓前1/3处作为手术位置点,则髓内钉理想进钉点的理想进钉位置的高度值H为(h2-h1)/3+h1。
医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,在移动过程中,导航组件200结合传感器201的实时位置信息,以及记录的高度值H,确定第二位移偏差,并提示该第二位移偏差。
以图3所示的医疗导航装置10为例:
医生近似水平地手持导针使其尖端在大转子顶点脊状轮廓上移动,导航组件200确定第二位移偏差,并将确定的第二位移偏差传输给外部提示设备30进行提示。其中,导航组件200确定第二位移偏差的方式与图1所示的医疗导航装置10的导航组件200确定第二位移偏差的方式相同,此处不再赘述。
以图4所示的医疗导航装置10为例:
在移动骨科手术工具的过程中,导航组件200会将传感器201实时测量的实时位置信息,传输给导航处理装置40。导航处理装置40基于与外部处理设备20相同的方式,实时确定第二位移偏差并进行提示,其中,导 航处理装置40可以自行对第二位移偏差进行提示,也可以是将第二位移偏差发送给不同于导航处理装置40的提示设备进行提示,例如与图3所示的实施例相结合,发送给如图3所示的实施例中的外部提示设备30进行提示。
其中,在如上所述的各实施例的医疗导航装置10和/或导航处理装置40的导航过程中,当实时提示的第二位移偏差为0时,确定到达了髓内钉理想进钉点的理想进钉位置。
在这种方式下,在选择确定髓内钉理想进钉点的理想进钉位置后,在移动骨科手术工具的过程中,当实时提示的第二位移偏差为0时,即可确定到达了髓内钉理想进钉点的理想进钉位置,直观且便捷。
在确定导针到达了髓内钉理想进钉点的理想进钉位置之后,即可进行角度的调整,以使得导针的进针方向到达髓内钉理想进钉点的理想进钉方向。
调整时,医生保持导针尖端位于髓内钉理想进钉点的理想进钉位置不变,调整导针外偏角度:
以图1所示的医疗导航装置10为例:
导航组件200基于传感器201测量的实时位置信息,实时确定传感器201的实时位置相对于目标位置的第二角度偏差,即传感器201处于实时位置时的指定方向(例如导航组件200的轴线方向)与髓内钉理想进钉点的理想进钉方向之间的夹角,并提示该第二角度偏差。
以图2所示的医疗导航装置10为例:
外部处理设备20基于传感器201测量的实时位置信息,实时确定传感器201的实时位置相对于目标位置的第二角度偏差,即传感器201处于实时位置的指定方向(例如导航组件200的轴线方向)与髓内钉理想进钉点的理想进钉方向之间的夹角,并将该第二角度偏差发送给导航组件200进行提示。
以图3所示的医疗导航装置10为例:
导航组件200基于传感器201测量的实时位置信息,实时确定传感器201的实时位置相对于目标位置的第二角度偏差,即传感器201处于实时位置的指定方向(例如导航组件200的轴线方向)与髓内钉理想进钉点的理想进钉方向之间的夹角,并将该第二角度偏差发送给外部提示设备30进行提示。
以图4所示的医疗导航装置10为例:
导航处理装置40基于传感器201测量的实时位置信息,实时确定传感器201的实时位置相对于目标位置的第二角度偏差,即传感器201处于实时位置的指定方向(例如导航组件200的轴线方向)与髓内钉理想进钉点的理想进钉方向之间的夹角,并将该第二角度偏差进行提示,或者将第二角度偏差发送给不同于导航处理装置40的提示设备进行提示,例如与图3所示的实施例相结合,发送给如图3所示的实施例中的外部提示设备30进行提示。
其中,在如上所述的各实施例的医疗导航装置10和/或导航处理装置40的导航过程中:
在医生保持导针尖端位于髓内钉理想进钉点的理想进钉位置不变,调整导针外偏角度的过程中,当导航组件200和/或外部提示设备30和/或导航处理装置40提示的第二角度偏差为0时,此时导针的进针方向到达髓内钉理想进钉点的理想进钉方向,如图24所示。医生可参考提示的俯仰角,将导针的前倾角调整合适后,再插入导针。
基于如上所述的本申请各实施例提供的医疗导航装置10和/或导航处理装置40,基于传感器,通过跟进和提示实时位置对于基准位置的第一高度偏差和/或第一角度偏差,和/或,第二高度偏差和/或第二角度偏差,实现髓内钉理想进钉点的理想进钉位置与理想进钉方向的选取,从根本上实现了手术时的髓内钉理想进钉点的理想进钉位置与理想进钉方向的精准定位,为医生提供实时的位置信息和角度信息,以保证导针能够一次打入成功,无需多次打入导针进行调整。而且,本申请各实施例提供的医疗导航装置10,小巧易用,可大大缩短手术时间,且减少了医生和患者的X射线辐射量,提高了手术质量和手术效率。
应当理解的是,在如上所述的各实施例的说明中,是以导航组件200提示第一相对位置信息和/或第二相对位置信息,或者外部提示设备30/导航处理装置40提示第一相对位置信息和/或第二相对位置信息为例进行说明,在实际技术实现过程中,基于实际技术选择和需要,也可以是由导航组件200、外部提示设备30和导航处理装置40中的两个或三个同时对第一相对位置信息和/或第二相对位置信息进行提示。其中,在导航组件200、外部提示设备30和导航处理装置40中的两个或三个同时对第一相对位置信息和/或第二相 对位置信息进行提示时,导航组件200、外部提示设备30和导航处理装置40提示的内容可以完全相同,也可以不完全相同,本申请实施例不做具体限定。
基于如上所述的各实施例的医疗导航装置,本申请实施例还提供用于引导骨科手术工具的医疗导航装置的导航方法,其中,医疗导航装置包括导航组件和显影定位组件,导航组件设置有传感器。显影定位组件上设置有位置标识,该位置标识能够在医学影像中可视化地显现。
如图25所示,一些实施例中的用于引导骨科手术工具的医疗导航装置的导航方法,包括:
步骤S101:在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息。
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与目标位置之间的相对位置关系;其中,目标位置可以结合骨科手术的类型确定,例如髓内钉理想进钉点。
步骤S102:在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息。
其中,第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置(例如髓内钉理想进钉点)之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定。
步骤S103:提示所述第一相对位置信息和/或所述第二相对位置信息。
其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至目标位置(例如髓内钉理想进钉点)。
如图26所示,一些实施例中的用于引导骨科手术工具的医疗导航装置的 导航方法,包括:
步骤S201:获取与骨科手术工具相固定的所述导航组件的传感器测量的实时位置信息。
步骤S202:将所述实时位置信息发送给外部处理设备。
步骤S203:接收所述外部处理设备反馈的第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息。
其中,第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述外部处理设备的所述传感器测量的位置信息,所述第二基准位置信息为所述外部处理设备响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述传感器的实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定。
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
如图27所示,一些实施例中的用于引导骨科手术工具的医疗导航装置的导航方法,包括:
步骤S301:在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息。
步骤S302:在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息。
其中,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定。
步骤S303:将所述第一相对位置信息和/或所述第二相对位置信息传输给外部提示设备,由所述外部提示设备对所述第一相对位置信息和/或所述第二相对位置信息进行提示。
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
如图28所示,一些实施例中的用于引导骨科手术工具的医疗导航装置的导航方法,可以由导航处理装置40执行,其中,医疗导航装置10的导航组件200与导航处理装置40通信连接,该方法包括:
步骤S401:获取所述导航组件发送的、在所述传感器与骨科手术工具相固定的状态下、所述传感器测量的实时位置信息。
步骤S402:基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息。
其中,第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述导航处理装置的所述传感器测量的位置信息,所述第二基准位置信息为所述导航处理装置响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移 位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定。
步骤S403:提示所述第一相对位置信息和/或所述第二相对位置信息。
其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
一些实施例中,如上所述的各实施例中的医疗导航装置的导航方法,可应用于需要插入髓内钉的骨科手术中,例如股骨近端骨折的骨科手术过程中,此时,上述医疗导航装置可以是用于髓内钉进钉点导航的医疗导航装置,上述目标位置可以是髓内钉理想进钉点,上述预期插入位置可以是髓内钉理想进钉点的理想进钉位置,上述预期插入方向可以是髓内钉理想进钉点的理想进钉方向。
一些实施例中,导航组件,在导航组件上的第一触点与显影定位组件上的第二触点接触时被激活。
一些实施例中,触发指令包括第一触点与第二触点相接触时产生的激活信号。
一些实施例中,在导航组件上的触点与显影定位组件上的触点接触,且导航组件被激活后,接收到触发指令时,记录导航组件的基准位置。
一些实施例中,上述基准位置信息,为响应于所述触发指令获得的所述传感器测量的位置信息。
一些实施例中,上述基准位置信息,为响应于所述触发指令初始化所述传感器后,所述传感器测量的位置信息。一些实施例中,该初始位置信息可以为零位位置信息。其中,零位位置信息,可以是指与位置相关的信息的数值均设置为0,例如高度值为0等。
一些实施例中,第一相对位置信息包括实时位置与基准位置之间的第一位移偏差和/或第一角度偏差。
第一位移偏差可以包括:在垂直于水平面的方向上,传感器的实时位置与基准位置之间的距离。在一些实施例中,第一位移偏差也可以称之为高度差,如图11所示。
一些实施例中,第一角度偏差可以包括:将与所述骨科手术工具相固定的所述传感器的指定方向以及处于所述基准位置时的所述传感器的指定方向均投影至同一平面后,在所述平面上的两个投影之间的夹角,如图12所示。在一些实施例中,第一角度偏差也可以称之为外偏角。一些实施例中,传感器的指定方向为可以是导航组件的轴线方向,该同一平面具体可以是水平面,下面的实施例中相同。
一些实施例中,第二相对位置信息包括实时位置与目标位置(例如髓内钉理想进钉点)之间的第二位移偏差和/或第二角度偏差,其中,目标位置(例如髓内钉理想进钉点)由骨科手术工具在人体中的预期插入位置(例如髓内钉理想进钉点的理想进钉位置)和/或预期插入方向(例如髓内钉理想进钉点的理想进钉方向)确定。
所述第二角度偏差包括:将处于所述实时位置的所述传感器的指定方向以及所述髓内钉理想进钉点的理想进钉方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。一些实施例中,该同一平面具体可以是水平面。
其中,预期插入方向(如髓内钉理想进钉点的理想进钉方向)可以通过各种可能的方式确定。
一些实施例中,预期插入方向(如髓内钉理想进钉点的理想进钉方向),为用户输入的插入方向。例如,在医疗导航装置10位于基准位置时,进行拍摄获得医学影像,由医务人员在该医学影像上手动标记出预期插入方向(如髓内钉理想进钉点的理想进钉方向),并将医务人员手动标记的方向作为预期插入方向(如髓内钉理想进钉点的理想进钉方向)。
一些实施例中,预期插入方向(如髓内钉理想进钉点的理想进钉方向),为对医学影像进行分析获得的,所述医学影像为医疗导航装置处于基准位置时拍摄获得的。
第二位移偏差包括:在垂直于水平面的方向上,所述传感器所处的实时位置与目标位置(例如髓内钉理想进钉点的理想进钉位置)之间的距离。
其中,预期插入位置可以基于预定插入区域确定,预定插入区域可以是指用以确定目标位置的区域,以目标位置为股骨近端的髓内钉理想进钉点为例,该预定插入区域可以是大转子顶点脊状轮廓线。预期插入位置的具体的位置信息,可以与导航组件相固定的骨科手术工具的移动过程中确定。
一些实施例中,预期插入位置(如髓内钉理想进钉点的理想进钉位置)在垂直于水平面的方向上的高度值,由第一参考高度值和第二参考高度值确定,其中,第一参考高度值为骨科手术工具的插入端位于预定插入区域的第一侧顶点时,传感器在垂直于水平面方向上的高度值,第二参考高度值为骨科手术工具的插入端位于预定插入区域的第二侧顶点时,传感器在垂直于水平面方向上的高度值。其中,以股骨近端的髓内钉理想进钉点为例,第一侧顶点具体可以是指大转子顶点脊状轮廓最靠近腹侧的顶点,第二侧顶点具体可以是指大转子顶点脊状轮廓最靠近背侧的顶点。
一些实施例中,在上述各实施例的方法中,还可以包括:
获取所述导航组件的传感器测量的所述导航组件的底面与水平面之间的俯仰角;
提示所述俯仰角。
一些实施例中,在上述各实施例的方法中,还可以包括:
获取所述导航组件的传感器测量的所述导航组件的底面与水平面之间的俯仰角;
将所述俯仰角传输给外部提示设备进行提示。
一些实施例中,在上述各实施例的方法中,还可以包括:
提供误差提示信息,所述误差提示信息为累计时长大于预设时长时生成的信息,和/或,所述误差提示信息为计算获得的误差大于误差阈值时生成的信息,所述累计时长为从记录所述基准位置信息时或者上一次校准所述传感器时开始计时的时长。
其中,医疗导航装置的导航方法的具体实现方式,可以参考上述各实施例中对医疗导航装置和/或导航处理装置的描述。
应该理解的是,虽然上述涉及的各流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本 文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,这些流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供了一种电子设备,其内部结构图可以如图29所示。该电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种如上述所述的医疗导航装置的导航方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
在一个实施例中,还提供了一种电子设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述的任一实施例的医疗导航装置的导航方法的步骤。
在一个实施例中,提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述的任一实施例的医疗导航装置的导航方法的步骤。
在一个实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述任一实施例的医疗导航装置的导航方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可实现包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
在一些实施例中,提供了一种医疗导航系统,医疗导航系统包括:骨科手术工具,以及如上所述的任一实施例中的医疗导航装置和/或导航处理装置。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (76)

  1. 一种用于髓内钉进钉点导航的医疗导航装置,其特征在于,包括导航组件和显影定位组件,所述导航组件设置有传感器;
    所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
    所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与髓内钉理想进钉点之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述髓内钉理想进钉点之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述髓内钉理想进钉点。
  2. 一种用于引导骨科手术工具的医疗导航装置,其特征在于,包括导航组件和显影定位组件,所述导航组件设置有传感器;
    所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
    所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第 一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  3. 一种用于引导骨科手术工具的医疗导航装置,其特征在于,包括导航组件和显影定位组件,所述导航组件设置有传感器;
    所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
    所述导航组件,用于在所述传感器与骨科手术工具相固定的状态下,将所述传感器测量的实时位置信息发送给外部处理设备,并接收所述外部处理设备反馈的第一相对位置信息和/或第二相对位置信息,提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述外部处理设备的所述传感器测量的位置信息,所述第二基准位置信息为所述外部处理设备响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述传感器的实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所 述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  4. 一种用于引导骨科手术工具的医疗导航装置,其特征在于,包括导航组件和显影定位组件,所述导航组件设置有传感器;
    所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
    所述导航组件,用于响应于触发指令,记录所述传感器测量的所述传感器处于基准位置时的基准位置信息,并在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并将所述第一相对位置信息和/或所述第二相对位置信息传输给外部提示设备,由所述外部提示设备对所述第一相对位置信息和/或所述第二相对位置信息进行提示;其中,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  5. 一种用于引导骨科手术工具的导航处理装置,其特征在于,所述导航 处理装置与医疗导航装置的导航组件通信连接,所述医疗导航装置包括所述导航组件和显影定位组件,所述导航组件设置有传感器;
    所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现;
    所述导航处理装置,用于获取所述导航组件发送的、在所述传感器与骨科手术工具相固定的状态下、所述传感器测量的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述导航处理装置的所述传感器测量的位置信息,所述第二基准位置信息为所述导航处理装置响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  6. 根据权利要求1至5任一项所述的装置,其特征在于:
    所述位置标识设置于所述显影定位组件的本体,所述显影定位组件的本体上还设置有用于安装所述导航组件的安装部。
  7. 根据权利要求6所述的装置,其特征在于,所述位置标识包括角度刻度,至少一个所述角度刻度围绕所述安装部分布。
  8. 根据权利要求7所述的装置,其特征在于,所述本体上设有多个所述 角度刻度;
    多个所述角度刻度包括基准角度刻度,以及布设于所述基准角度刻度至少一侧的非基准角度刻度;
    所述非基准角度刻度包括正角度刻度和/或负角度刻度。
  9. 根据权利要求8所述的装置,其特征在于,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,包括:
    所述传感器处于所述基准位置时,所述显影定位组件的所述基准角度刻度位于所述传感器的指定方向上。
  10. 根据权利要求8所述的装置,其特征在于,所述安装部和多个所述角度刻度均设置于所述本体的第一表面。
  11. 根据权利要求10所述的装置,其特征在于,所述安装部包括安装槽,所述导航组件至少部分地容置于所述安装槽。
  12. 根据权利要求11所述的装置,其特征在于,所述安装槽在平行于所述第一表面的平面内的投影形成的图形为轴对称图形;
    所述轴对称图形的对称轴,与所述基准角度刻度在所述第一表面内的投影的延长线共线设置。
  13. 根据权利要求1至5任一项所述的装置,其特征在于,所述显影定位组件上设置有第一触点,所述导航组件上设置有第二触点,所述导航组件在所述第一触点与所述第二触点相接触时被激活。
  14. 根据权利要求13所述的装置,其特征在于,所述触发指令包括所述第一触点与所述第二触点相接触时产生的激活信号。
  15. 根据权利要求13所述的装置,其特征在于,
    在所述导航组件被激活后,接收到所述触发指令时,记录所述传感器的所述基准位置信息。
  16. 根据权利要求1至5任一项所述的装置,其特征在于:
    所述基准位置信息,为响应于所述触发指令获得的所述传感器测量的位置信息。
  17. 根据权利要求1至5任一项所述的装置,其特征在于:
    所述基准位置信息,为响应于所述触发指令初始化所述传感器后,所述传感器测量的位置信息。
  18. 根据权利要求1至5任一项所述的装置,其特征在于:
    所述第一相对位置信息包括所述实时位置与所述基准位置之间的第一位移偏差和/或第一角度偏差。
  19. 根据权利要求18所述的装置,其特征在于,所述第一角度偏差为:将与所述骨科手术工具相固定的所述传感器的指定方向以及处于所述基准位置时的所述传感器的指定方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  20. 根据权利要求18所述的医疗导航装置,其特征在于,所述第一位移偏差为:在垂直于水平面的方向上,所述传感器的实时位置与所述基准位置之间的距离。
  21. 根据权利要求1所述的装置,其特征在于:
    所述第二相对位置信息包括所述实时位置与所述髓内钉理想进钉点之间的第二位移偏差和/或第二角度偏差。
  22. 根据权利要求21所述的装置,其特征在于:
    所述第二角度偏差包括:将处于所述实时位置的所述传感器的指定方向以及所述髓内钉理想进钉点的理想进钉方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  23. 根据权利要求22所述的装置,其特征在于:
    所述理想进钉方向,为用户提供的插入方向;
    或者
    所述理想进钉方向,为对医学图像进行分析获得的,所述医学图像为所述传感器处于所述基准位置时拍摄获得。
  24. 根据权利要求21所述的装置,其特征在于:
    所述第二位移偏差包括:在垂直于水平面的方向上,所述传感器所处的实时位置与所述髓内钉理想进钉点的理想进钉位置之间的距离。
  25. 根据权利要求24所述的设备,其特征在于:
    所述理想进钉位置在垂直于水平面的方向上的高度值,由第一参考高度 值和第二参考高度值确定,所述第一参考高度值为所述骨科手术工具的插入端位于预定插入区域的第一侧顶点时所述传感器在垂直于水平面方向上的高度值,所述第二参考高度值为所述骨科手术工具的插入端位于所述预定插入区域的第二侧顶点时所述传感器在垂直于水平面方向上的高度值。
  26. 根据权利要求2至5任意一项所述的装置,其特征在于:
    所述第二相对位置信息包括所述实时位置与所述目标位置之间的第二位移偏差和/或第二角度偏差。
  27. 根据权利要求26所述的装置,其特征在于:
    所述第二角度偏差包括:将处于所述实时位置的所述传感器的指定方向以及所述预期插入方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  28. 根据权利要求27所述的装置,其特征在于:
    所述预期插入方向,为用户提供的插入方向;
    或者
    所述预期插入方向,为对医学影像进行分析获得的,所述医学影像为所述传感器处于所述基准位置时拍摄获得的。
  29. 根据权利要求9或19或22所述的装置,其特征在于,所述传感器的指定方向为所述导航组件的轴线方向。
  30. 根据权利要求19或22或27所述的装置,其特征在于,所述同一平面为水平面。
  31. 根据权利要求26所述的装置,其特征在于:
    所述第二位移偏差包括:在垂直于水平面的方向上,所述传感器所处的实时位置与所述预期插入位置之间的距离。
  32. 根据权利要求31所述的装置,其特征在于,
    所述预期插入位置在垂直于水平面的方向上的高度值,由第一参考高度值和第二参考高度值确定,所述第一参考高度值为所述骨科手术工具的插入端位于预定插入区域的第一侧顶点时,所述传感器在垂直于水平面方向上的高度值,所述第二参考高度值为所述骨科手术工具的插入端位于所述预定插入区域的第二侧顶点时,所述传感器在垂直于水平面方向上的高度值。
  33. 根据权利要求1至3任意一项所述的装置,其特征在于,所述导航组件还用于提示所述传感器测量的俯仰角;
    所述俯仰角为:所述导航组件的底面与水平面之间的夹角。
  34. 根据权利要求4或5所述的装置,其特征在于:所述导航组件还用于将所述传感器测量的俯仰角传输给外部提示设备进行提示;
    所述俯仰角为:所述导航组件的底面与水平面之间的夹角。
  35. 根据权利要求1至5任意一项所述的装置,其特征在于,所述导航组件,还用于提供误差提示信息,所述误差提示信息为累计时长大于预设时长时生成的信息,和/或,所述误差提示信息为计算获得的误差大于误差阈值时生成的信息,所述累计时长为从记录所述基准位置信息时或者上一次校准所述传感器时开始计时的时长。
  36. 根据权利要求1至5任意一项所述的装置,其特征在于,提示所述第一相对位置信息和/或所述第二相对位置信息的方式包括:
    将所述第一相对位置信息和/或所述第二相对位置信息实时显示;
    和/或
    输出所述第一相对位置信息和/或所述第二相对位置信息的语音信息。
  37. 根据权利要求1至5任意一项所述的装置,其特征在于,所述导航组件设置有触控屏,通过所述触控屏接收所述触发指令,所述触发指令用于指示记录所述基准位置信息。
  38. 根据权利要求1至5任意一项所述的装置,其特征在于,所述导航组件设置有实体按键和/或语音采集组件,通过所述实体按键和/或所述语音采集组件接收所述触发指令,所述触发指令用于指示记录所述基准位置信息。
  39. 根据权利要求1至5任一项所述的装置,其特征在于,
    所述显影定位组件与所述导航组件通过磁吸的方式装配连接。
  40. 根据权利要求1至5任一项所述的装置,其特征在于,所述导航组件可拆卸地与所述骨科手术工具相固定。
  41. 根据权利要求40所述的装置,其特征在于:所述导航组件通过磁吸和/或卡接的方式,可拆卸地与所述骨科手术工具相固定。
  42. 根据权利要求1至5任意一项所述的装置,其特征在于,所述骨科 手术工具为导针、把持器或者电钻。
  43. 根据权利要求1至5任意一项所述的装置,其特征在于:所述传感器为惯性传感器。
  44. 根据权利要求1至5任意一项所述的装置,其特征在于,所述传感器的数量为1个。
  45. 一种用于髓内钉进钉点导航的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
    在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息,其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与髓内钉理想进钉点之间的相对位置关系;
    在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与髓内钉理想进钉点之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和所述目标偏移位置信息确定;
    提示所述第一相对位置信息和/或所述第二相对位置信息,其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述髓内钉理想进钉点。
  46. 一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
    在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息,其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与目标位置之间的相对位置关系;
    在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和所述目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    实时提示所述第一相对位置信息和/或所述第二相对位置信息,其中,所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  47. 一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
    获取与骨科手术工具相固定的所述导航组件的传感器测量的实时位置信息;
    将所述实时位置信息发送给外部处理设备;
    接收所述外部处理设备反馈的第一相对位置信息和/或第二相对位置信息,并提示所述第一相对位置信息和/或所述第二相对位置信息;所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指 令获得、并发送给所述外部处理设备的所述传感器测量的位置信息,所述第二基准位置信息为所述外部处理设备响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述传感器的实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  48. 一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述方法包括:
    在接收到触发指令时,响应于所述触发指令记录所述导航组件的传感器测量的所述传感器处于基准位置时的基准位置信息;
    在所述传感器与骨科手术工具相固定的状态下,获取所述传感器的实时位置信息,基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,其中,所述第一相对位置信息为所述传感器的实时位置与所述基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    将所述第一相对位置信息和/或所述第二相对位置信息传输给外部提示设备,由所述外部提示设备对所述第一相对位置信息和/或所述第二相对位置信息进行提示;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组 件的位置标识具有预先确定的相对位置关系,所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  49. 一种用于引导骨科手术工具的医疗导航装置的导航方法,所述医疗导航装置包括导航组件和显影定位组件,所述导航组件设置有传感器,所述显影定位组件上设置有位置标识,所述位置标识能够在医学影像中可视化地显现,所述医疗导航装置的所述导航组件与导航处理装置通信连接,所述方法由所述导航处理装置执行,所述方法包括:
    获取所述导航组件发送的、在所述传感器与骨科手术工具相固定的状态下、所述传感器测量的实时位置信息;
    基于所述实时位置信息获取第一相对位置信息和/或第二相对位置信息,所述第一相对位置信息为所述传感器的实时位置与所述传感器预先所处的基准位置之间的相对位置信息,所述实时位置由所述实时位置信息确定,所述基准位置由预先记录的基准位置信息确定,所述基准位置信息包括第一基准位置信息和/或第二基准位置信息,所述第一基准位置信息为所述导航组件响应于触发指令获得、并发送给所述导航处理装置的所述传感器测量的位置信息,所述第二基准位置信息为所述导航处理装置响应于触发指令获得的预先设置的位置信息;所述第二相对位置信息为所述实时位置与目标位置之间的相对位置信息,所述第二相对位置信息由所述实时位置信息和目标偏移位置信息确定,所述目标位置由所述骨科手术工具在人体中的预期插入位置和/或预期插入方向确定;
    提示所述第一相对位置信息和/或所述第二相对位置信息;
    其中,所述传感器处于所述基准位置时,所述传感器与所述显影定位组件的位置标识具有预先确定的相对位置关系;所述位置标识用于结合所述预先确定的相对位置关系确定所述目标偏移位置信息,所述目标偏移位置信息用于指示所述基准位置与所述目标位置之间的相对位置关系;
    所述第一相对位置信息结合所述目标偏移位置信息,和/或,所述第二相 对位置信息,可用于辅助引导所述骨科手术工具移动至所述目标位置。
  50. 根据权利要求45至49任一项所述的方法,其特征在于,所述方法还包括:
    所述导航组件在所述导航组件上的第一触点与所述显影定位组件上的第二触点接触时被激活。
  51. 根据权利要求50所述的方法,其特征在于,所述触发指令包括所述第一触点与所述第二触点相接触时产生的激活信号。
  52. 根据权利要求50所述的方法,其特征在于,在所述导航组件被激活后,接收到所述触发指令时,记录所述传感器的基准位置信息。
  53. 根据权利要求45至49任一项所述的方法,其特征在于:
    所述基准位置信息,为响应于所述触发指令获得的所述传感器测量的位置信息。
  54. 根据权利要求45至49任一项所述的方法,其特征在于:
    所述基准位置信息,为响应于所述触发指令初始化所述传感器后,所述传感器测量的位置信息。
  55. 根据权利要求45至49任一项所述的方法,其特征在于:
    所述第一相对位置信息包括所述实时位置与所述基准位置之间的第一位移偏差和/或第一角度偏差。
  56. 根据权利要求55所述的方法,其特征在于,所述第一角度偏差为:将与所述骨科手术工具相固定的所述传感器的指定方向以及处于所述基准位置时的所述传感器的指定方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  57. 根据权利要求55所述的方法,其特征在于,所述第一位移偏差为:在垂直于水平面的方向上,所述传感器的实时位置与所述基准位置之间的距离。
  58. 根据权利要求45所述的方法,其特征在于:
    所述第二相对位置信息包括所述实时位置与所述髓内钉理想进钉点之间的第二位移偏差和/或第二角度偏差。
  59. 根据权利要求58所述的方法,其特征在于:
    所述第二角度偏差包括:将处于所述实时位置的所述传感器的指定方向以及所述髓内钉理想进钉点的理想进钉方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  60. 根据权利要求59所述的方法,其特征在于:
    所述理想进钉方向,为用户提供的插入方向;
    或者
    所述理想进钉方向,为对医学图像进行分析获得的,所述医学图像为所述传感器处于所述基准位置时拍摄获得。
  61. 根据权利要求58所述的方法,其特征在于:
    所述第二位移偏差包括:在垂直于水平面的方向上,所述传感器所处的实时位置与所述髓内钉理想进钉点的理想进钉位置之间的距离。
  62. 根据权利要求61所述的方法,其特征在于:
    所述理想进钉位置在垂直于水平面的方向上的高度值,由第一参考高度值和第二参考高度值确定,所述第一参考高度值为所述骨科手术工具的插入端位于预定插入区域的第一侧顶点时所述传感器在垂直于水平面方向上的高度值,所述第二参考高度值为所述骨科手术工具的插入端位于所述预定插入区域的第二侧顶点时所述传感器在垂直于水平面方向上的高度值。
  63. 根据权利要求46至49任一项所述的方法,其特征在于:
    所述第二相对位置信息包括所述实时位置与所述目标位置之间的第二位移偏差和/或第二角度偏差。
  64. 根据权利要求63所述的方法,其特征在于:
    所述第二角度偏差包括:将处于所述实时位置的所述传感器的指定方向以及所述预期插入方向均投影至同一平面后,在所述平面上的两个投影之间的夹角。
  65. 根据权利要求64所述的方法,其特征在于:
    所述预期插入方向,为用户提供的插入方向;
    或者
    所述预期插入方向,为对医学影像进行分析获得的,所述医学影像为所述传感器处于所述基准位置时拍摄获得的。
  66. 根据权利要求56或59或64所述的方法,其特征在于,所述传感器的指定方向为所述导航组件的轴线方向。
  67. 根据权利要求56或59或64所述的方法,其特征在于,所述同一平面为水平面。
  68. 根据权利要求67所述的方法,其特征在于:
    所述第二位移偏差包括:在垂直于水平面的方向上,所述传感器所处的实时位置与所述预期插入位置之间的距离。
  69. 根据权利要求68所述的方法,其特征在于:
    所述预期插入位置在垂直于水平面的方向上的高度值,由第一参考高度值和第二参考高度值确定,所述第一参考高度值为所述骨科手术工具的插入端位于预定插入区域的第一侧顶点时,所述传感器在垂直于水平面方向上的高度值,所述第二参考高度值为所述骨科手术工具的插入端位于所述预定插入区域的第二侧顶点时,所述传感器在垂直于水平面方向上的高度值。
  70. 根据权利要求45至47任一项所述的方法,其特征在于,所述方法还包括:
    获取所述导航组件的传感器测量的所述导航组件的底面与水平面之间的俯仰角;
    提示所述俯仰角。
  71. 根据权利要求48或50所述的方法,其特征在于,所述方法还包括:
    获取所述导航组件的传感器测量的所述导航组件的底面与水平面之间的俯仰角;
    将所述俯仰角传输给外部提示设备进行提示。
  72. 根据权利要求45至49任一项所述的方法,其特征在于,所述方法还包括:
    提供误差提示信息,所述误差提示信息为累计时长大于预设时长时生成的信息,和/或,所述误差提示信息为计算获得的误差大于误差阈值时生成的信息,所述累计时长为从记录所述基准位置信息时或者上一次校准所述传感器时开始计时的时长。
  73. 一种电子设备,包括处理器和存储器,所述存储器存储有计算机程 序,其特征在于,所述计算机程序在由所述处理器执行时,使得所述处理器实现权利要求45至72中任一项所述的方法的步骤。
  74. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求45至72中任一项所述方法的步骤。
  75. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求45至72中任一项所述的方法的步骤。
  76. 一种医疗导航系统,其特征在于,所述医疗导航系统包括:骨科手术工具,以及如权利要求1至44任一项所述的装置。
PCT/CN2022/130942 2022-03-04 2022-11-09 医疗导航装置、导航处理装置及方法、以及医疗导航系统 WO2023165157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007392.7A CN116887776A (zh) 2022-03-04 2022-11-09 医疗导航装置、导航处理装置及方法、以及医疗导航系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/079413 2022-03-04
CN2022079413 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023165157A1 true WO2023165157A1 (zh) 2023-09-07

Family

ID=87524146

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/130944 WO2023165158A1 (zh) 2022-03-04 2022-11-09 医疗导航设备、导航处理设备及方法、以及医疗导航系统
PCT/CN2022/130942 WO2023165157A1 (zh) 2022-03-04 2022-11-09 医疗导航装置、导航处理装置及方法、以及医疗导航系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130944 WO2023165158A1 (zh) 2022-03-04 2022-11-09 医疗导航设备、导航处理设备及方法、以及医疗导航系统

Country Status (2)

Country Link
CN (5) CN116887775A (zh)
WO (2) WO2023165158A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147714A1 (en) * 2011-10-28 2015-05-28 Navigate Surgical Technologies, Inc. Surgical location monitoring system and method
KR101817438B1 (ko) * 2016-09-13 2018-01-11 재단법인대구경북과학기술원 고관절 전치환술을 위한 수술 항법 시스템
US20180221098A1 (en) * 2012-06-21 2018-08-09 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
CN110584784A (zh) * 2018-06-13 2019-12-20 上海联影医疗科技有限公司 机器人辅助手术系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8165659B2 (en) * 2006-03-22 2012-04-24 Garrett Sheffer Modeling method and apparatus for use in surgical navigation
CN103211655B (zh) * 2013-04-11 2016-03-09 深圳先进技术研究院 一种骨科手术导航系统及导航方法
CN109925027B (zh) * 2017-12-15 2023-06-13 天臣国际医疗科技股份有限公司 包皮环切吻合器
CN115175630A (zh) * 2019-10-28 2022-10-11 沃尔德马连接两合公司 用于实现3d扫描的计算机辅助外科手术导航的系统和方法
EP3815643A1 (en) * 2019-10-29 2021-05-05 Think Surgical, Inc. Two degree of freedom system
CN112288742B (zh) * 2019-12-31 2021-11-19 无锡祥生医疗科技股份有限公司 用于超声探头的导航方法、装置、存储介质以及电子设备
CN112001889A (zh) * 2020-07-22 2020-11-27 杭州依图医疗技术有限公司 医学影像处理方法、装置及医学影像显示方法
CN112053400B (zh) * 2020-09-09 2022-04-05 北京柏惠维康科技有限公司 数据处理方法及机器人导航系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150147714A1 (en) * 2011-10-28 2015-05-28 Navigate Surgical Technologies, Inc. Surgical location monitoring system and method
US20180221098A1 (en) * 2012-06-21 2018-08-09 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
KR101817438B1 (ko) * 2016-09-13 2018-01-11 재단법인대구경북과학기술원 고관절 전치환술을 위한 수술 항법 시스템
CN110584784A (zh) * 2018-06-13 2019-12-20 上海联影医疗科技有限公司 机器人辅助手术系统

Also Published As

Publication number Publication date
CN116740309A (zh) 2023-09-12
WO2023165158A1 (zh) 2023-09-07
CN219501199U (zh) 2023-08-11
CN116687437A (zh) 2023-09-05
CN116887776A (zh) 2023-10-13
CN116887775A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
US20230157782A1 (en) Systems and methods for intraoperatively measuring anatomical orientation
JP4469423B2 (ja) 定位手術処置装置および方法
US11559359B2 (en) Surgical instrument mounted display system
JP2016512973A (ja) 身体に対して対象を追跡するための追跡装置
CN111511281A (zh) 用于外科导航系统的配准面部标志的设备和方法
US20170245942A1 (en) System and Method For Precision Position Detection and Reproduction During Surgery
US11903775B2 (en) Surgical instrument mounted display system
US10939889B2 (en) Optical shape sensing for fluoroscopic surgical navigation
US10165998B2 (en) Method and system for determining an angle between two parts of a bone
WO2023165157A1 (zh) 医疗导航装置、导航处理装置及方法、以及医疗导航系统
JP2014030536A (ja) 骨切り支援装置及び骨切り案内治具
JP2023116743A (ja) 椎弓根スクリューの固定プランニングシステム及び方法
US20230218348A1 (en) X-wing enhanced guidance system for distal targeting
WO2020012286A2 (en) Surgical instrument mounted display system
KR20000011134A (ko) 정위 수술 방법 및 장치
CN117982159A (zh) 导航系统、方法、医疗透视设备和计算机存储介质
WO2023135491A1 (en) X-wing enhanced guidance system for distal targeting
CN116266369A (zh) 确定要由医学图像采集设备成像的扫描区域的技术

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280007392.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929585

Country of ref document: EP

Kind code of ref document: A1