WO2023165129A1 - 一种除雾器堵塞预控系统、方法、设备及介质 - Google Patents

一种除雾器堵塞预控系统、方法、设备及介质 Download PDF

Info

Publication number
WO2023165129A1
WO2023165129A1 PCT/CN2022/123209 CN2022123209W WO2023165129A1 WO 2023165129 A1 WO2023165129 A1 WO 2023165129A1 CN 2022123209 W CN2022123209 W CN 2022123209W WO 2023165129 A1 WO2023165129 A1 WO 2023165129A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module
preset
area
demister
Prior art date
Application number
PCT/CN2022/123209
Other languages
English (en)
French (fr)
Inventor
敬旭业
李宗慧
石战胜
王彤
彭丽
马治安
张伟阔
程思博
李佩佩
Original Assignee
华电电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华电电力科学研究院有限公司 filed Critical 华电电力科学研究院有限公司
Publication of WO2023165129A1 publication Critical patent/WO2023165129A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the application relates to the field of limestone-gypsum wet flue gas desulfurization, in particular to a pre-control system, method, equipment and medium for demister clogging.
  • the demister is an indispensable key equipment. Carrying too much slurry will cause corrosion of the clean flue and equipment behind the desulfurization tower, and prevent the formation of gypsum rain.
  • the net flue gas after desulfurization contains a large amount of solid matter, most of which are captured in the form of slurry when passing through the demister, and stick to the surface of the demister. If it is not washed in time, it will quickly deposit Down, gradually lose water and become gypsum scale, if these dirt can not be washed in time, it will be deposited on the blades of the demister, which will cause blockage of the demister.
  • the clogging of the mist eliminator leads to a high local flue gas flow rate and an increase in the amount of mist carried by the flue gas, which is not conducive to the stable operation of the rear wet electrostatic precipitator. At the same time, it increases the system resistance and increases the energy consumption of the booster fan.
  • the object of the present invention is to provide a pre-control system, method, equipment and medium for demister clogging, which can accurately flush the dirt in the demister to effectively alleviate the clogging of the demister and realize the visualization of the clogging in the demister.
  • the specific plan is as follows:
  • the present application discloses a pre-control system for clogging of a mist eliminator, including:
  • the image acquisition module is configured to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module, and transmit the target image to the image analysis and calculation module;
  • the image analysis and calculation module is used to acquire the target image transmitted by the image acquisition module, and determine the dirt area of the preset sub-region in the target image, and then use the dirt area and the preset Set the longitudinal section area of the sub-area to determine the blockage factor;
  • the interlocking module is configured to use a preset interlocking program and based on the clogging factor to control the opening state of the flushing sub-module on the target sub-region corresponding to the clogging factor, so that the flushing sub-module on the target sub-region The flushing sub-module flushes the target sub-area.
  • the image acquisition submodule includes:
  • a light source installed at a preset light source position in the corresponding preset sub-area, for illuminating the preset sub-area
  • An industrial camera installed at a preset camera position in the corresponding preset sub-area is used to collect pictures of the preset sub-area to obtain a target image.
  • the image analysis and calculation module is configured to acquire the target image transmitted by the image acquisition module, and use an image analysis algorithm to obtain the dirt shape features of the preset sub-region in the target image , and then determine the dirt area corresponding to the dirt shape feature based on the target calculation model, and use the dirt area and the longitudinal cross-sectional area of the preset sub-region to obtain a clogging factor.
  • the image analysis and calculation module is also used to obtain the pre-installed image acquisition sub-module in the preset sub-area where dirt exists before pre-controlling the clogging of the demister.
  • Set the historical image obtained by image acquisition in the sub-area and use the image analysis algorithm to obtain the dirt shape characteristics of the preset sub-area in the historical image, and then measure and calculate the dirt in the preset sub-area in the historical image area, and based on the dirt shape features of the historical image and the corresponding dirt area, train a preset machine learning model to obtain the target calculation model.
  • the chaining module is configured to use a preset chaining program to use the preset sub-area as the target sub-area corresponding to the congestion factor, or to use the preset sub-area and the preset Other preset sub-areas with corresponding sub-areas are used as the target sub-area corresponding to the clogging factor, and when the clogging factor is not less than the first preset ratio, the flushing sub-area on the target sub-area is turned on A module that closes the flushing sub-module on the target sub-area when the clogging factor is less than a second preset ratio.
  • the demister system also includes:
  • the information display module is used to display the related information of the image acquisition module, the image analysis and calculation module, the chain module and the flushing module, and is used to provide user interaction function to retrieve and retrieve the related information save.
  • the demister system also includes:
  • the control module is used to provide an operation control function, so as to modify the preset chain program in the chain module, control whether to run the preset chain program, and control the opening or closing of the flushing sub-module at any time.
  • the present application discloses a pre-control method for clogging of a demister, wherein a preset number of preset sub-regions are set inside the demister; the method includes:
  • the target sub-area corresponding to the clogging factor is flushed based on the clogging factor using a preset chain program.
  • the present application discloses an electronic device, including a processor and a memory; wherein, when the processor executes the computer program stored in the memory, the above-mentioned method for pre-controlling clogging of the demister is realized.
  • the present application discloses a computer-readable storage medium for storing a computer program; wherein, when the computer program is executed by a processor, the aforementioned method for pre-controlling clogging of a demister is realized.
  • the present application discloses a pre-control system for clogging of a demister, including: an image acquisition module, an image analysis and calculation module, an interlocking module, and a flushing module; the demister is provided with a preset number of preset sub-areas
  • the flushing module includes flushing submodules respectively arranged in each of the preset subregions, and the image acquisition module includes image acquisition submodules respectively arranged in several preset subregions; wherein, The image acquisition module is used to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module, and transmit the target image to the image analysis and calculation module;
  • the image analysis and calculation A module configured to acquire the target image transmitted by the image acquisition module, and determine the dirt area of the preset sub-area in the target image, and then use the dirt area and the longitudinal section of the preset sub-area The area determines the clogging factor; the chain module is used to control the opening state of the flushing sub-module on the target sub-area corresponding to
  • the demister clogging pre-control system disclosed in this application can obtain the target image through the image acquisition module to realize the visualization of the clogging in the demister, and can also determine the clogging factor in the target image through the image analysis and calculation module, and then through the chain
  • the module controls the opening state of the flushing sub-module based on the clogging factor to accurately flush the dirt in the demister and effectively alleviate the clogging of the demister.
  • Fig. 1 is the structural diagram of a kind of mist eliminator clogging pre-control system provided by the present application
  • Fig. 2 is a module distribution structure diagram of a kind of mist eliminator clogging pre-control system provided by the present application;
  • Fig. 3 is a module distribution structure diagram of a pre-control system for clogging of a mist eliminator provided by the present application
  • Fig. 4 is a block distribution structure diagram of a pre-control system for a mist eliminator provided by the present application
  • Fig. 5 is the structural diagram of a kind of specific mist eliminator clogging pre-control system provided by the present application.
  • Fig. 6 is a schematic diagram of a pre-control method for demister clogging provided by the present application.
  • FIG. 7 is a structural diagram of an electronic device provided by the present application.
  • this application provides a pre-control solution for demister clogging, which can accurately flush the dirt in the demister and realize the visualization of the clogging in the demister.
  • the embodiment of the present application discloses a pre-control system for clogging of a demister, including: an image acquisition module 11, an image analysis and calculation module 12, an interlocking module 13 and a flushing module 14; There are a preset number of preset sub-regions; the flushing module 14 includes a flushing sub-module 141 respectively arranged in each of the preset sub-regions, and the image acquisition module 11 includes a flushing sub-module 141 respectively arranged in several of the preset sub-regions.
  • the image acquisition sub-module 111 in the preset sub-area; wherein,
  • the image acquisition module 11 is configured to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module 111, and transmit the target image to the image analysis and calculation module 12;
  • the image analysis and calculation module 12 is configured to acquire the target image transmitted by the image acquisition module 11, and determine the dirt area of the preset sub-region in the target image, and then use the dirt area and the Determine the blockage factor based on the longitudinal cross-sectional area of the preset sub-area;
  • the interlocking module 13 is configured to use a preset interlocking program and based on the clogging factor to control the opening state of the flushing sub-module 141 on the target sub-area corresponding to the clogging factor, so that the target sub-area The flushing sub-module 141 on the top flushes the target sub-area.
  • image visualization technology as an intuitive image analysis technology, can display the on-site conditions of complex systems through charts and other forms.
  • Visualization technology has gradually gained widespread attention in industrial remote monitoring, such as wind powder transmission status monitoring, Real-time observation of reaction status in chemical reactors, etc.
  • image visualization technology can be combined to realize visual online monitoring and early warning of demister clogging in the desulfurization tower, and precise flushing of severely clogged areas.
  • This application uses visualization technology to monitor the blockage of the mist eliminator structure online in real time, quantify the blockage degree through the blockage factor, use flushing water or special chemical solution sub-regions for precise flushing, and can be put into a chain program to realize automatic operation.
  • the image acquisition sub-module 111 includes: a light source installed at a preset light source position in the corresponding preset sub-area for illuminating the preset sub-area; installed in the corresponding preset sub-area An industrial camera at a preset camera position in the center is used to collect pictures of the preset sub-area to obtain a target image.
  • the image acquisition sub-module 111 includes the light source and the industrial camera.
  • the preset light source position corresponding to the light source and the preset camera position corresponding to the industrial camera are different positions.
  • the preset light source position corresponding to the light source and the preset camera position corresponding to the industrial camera are the same position.
  • FIG. 2 Fig. 3 and Fig. 4
  • A1, A2, A3, A4, A5, A6 1110, 1111 represent light sources
  • 1112, 1113, 1114, 1115 represent industrial cameras
  • 1411, 1412, 1413, 1414, 1415, 1416 represent each flushing sub-module 141, 1116, 1117, 1118, 1119 represent Combination of light source and industrial camera
  • the demister is circular and divided into 4 preset sub-areas
  • the vertical cross-sectional area of the 4 preset sub-areas is 0.5m 2 .
  • Industrial cameras and light sources are installed in different positions.
  • the washing sub-module 141, the industrial camera and the preset sub-area are all in the same number, all of which are four.
  • the flushing area corresponding to 1411 in the flushing sub-module 141 is the same as the image acquisition area of the industrial camera 1112, which is the preset sub-area A1;
  • the flushing area corresponding to 1412 in the flushing sub-module 141 is the same as the image acquisition area of the industrial camera 1113 Same, all are preset sub-areas A2;
  • the washing area corresponding to 1413 in the washing sub-module 141 is the same as the image acquisition area of the industrial camera 1114, both are preset sub-area A3;
  • the washing area corresponding to 1414 in the washing sub-module 141 It is the same as the image acquisition area of the industrial camera 1115, which is the preset sub-area A4.
  • the demister is square and divided into 4 preset sub-areas.
  • the industrial camera and the light source are installed at the same location, that is, the combination of the light source and the industrial camera.
  • the combination of the washing sub-module 141, the light source and the industrial camera, and the number of preset sub-areas are all four.
  • the washing area corresponding to 1411 in the washing sub-module 141 is the same as the area corresponding to the combination 1116 of the light source and the industrial camera, both of which are preset sub-areas A1; the washing area corresponding to 1412 in the washing sub-module 141 is the combination of the light source and the industrial camera
  • the area corresponding to 1117 is the same, both are preset sub-area A2; the washing area corresponding to 1413 in the washing sub-module 141 is the same as the area corresponding to the combination of light source and industrial camera 1118, both are preset sub-area A3; washing sub-module 141
  • the flushing area corresponding to 1414 in is the same as the area corresponding to the combination 1119 of the light source and the industrial camera, both of which are preset sub-areas A4.
  • the demister is circular and divided into 6 preset sub-areas, and the vertical cross-sectional areas of the 6 preset sub-areas are all 0.6m 2 . It can be observed from the figure that there is a washing sub-module 141 in each preset sub-area, and only half of the preset sub-areas have a combination of industrial cameras and light sources, and in Fig. 4, there will be an industrial camera with a diagonal relationship The preset sub-area of the combination of camera and light source establishes a corresponding relationship with a preset sub-area where there is no combination of industrial camera and light source.
  • the washing area corresponding to 1411 in the washing sub-module 141 is the same as the area corresponding to the combination 1116 of the light source and the industrial camera, both of which are preset sub-areas A1; the washing area corresponding to 1412 in the washing sub-module 141 is the combination of the light source and the industrial camera
  • the area corresponding to 1117 is the same as the preset sub-area A2; the washing area corresponding to 1413 in the washing sub-module 141 is the same as the area corresponding to the combination of light source and industrial camera 1118, both are the preset sub-area A3.
  • the rinsing medium used by the rinsing module 14 can be water and medicament solution; the rinsing sub-module 141 can regularly rinse the industrial cameras in the corresponding area to clean the camera lens, and the frequency can be once a day for 5 minutes, or for , once every two days, 10 minutes each time, in addition, the industrial camera can also be combined with the washing module, so that the industrial camera has its own washing function.
  • the number of industrial cameras in the defogger shall not be less than 2, and the sub-area of the defogger captured by each industrial camera shall not be greater than 7.25m 2 .
  • the image analysis and calculation module 12 is configured to obtain the target image transmitted by the image acquisition module 11, and use an image analysis algorithm to obtain the dirt shape feature of the preset sub-region in the target image, and then The dirt area corresponding to the dirt shape feature is determined based on the target calculation model, and the clogging factor is obtained by using the dirt area and the longitudinal sectional area of the preset sub-region. It should be pointed out that the clogging factor is the percentage obtained by dividing the fouling area by the longitudinal cross-sectional area.
  • the image analysis and calculation module 12 is also used to obtain the image acquisition sub-module 111 pre-installed in the preset sub-area where dirt exists before pre-controlling the clogging of the demister.
  • the historical image obtained by image acquisition in the region, and using an image analysis algorithm to obtain the dirt shape feature of the preset sub-region in the historical image, and then measure and calculate the dirt area of the preset sub-region in the historical image, And based on the dirt shape features of the historical images and the corresponding dirt area, a preset machine learning model is trained to obtain the target calculation model.
  • the dirt in the preset sub-region where there is dirt can be artificially generated, and the preset machine learning model can be a backpropagation neural network model, a support vector machine model, or a other machine learning models. It can be understood that after the target calculation model is obtained, the dirt existing in the preset sub-area needs to be washed away. Wherein, before the demister clogging pre-control can be understood as the demister maintenance period.
  • the chain module 13 is configured to use a preset chain program to use the preset sub-area as the target sub-area corresponding to the congestion factor, or to use the preset sub-area and the preset sub-area
  • the other preset sub-areas of the corresponding relationship are used as the target sub-area corresponding to the clogging factor, and when the clogging factor is not less than the first preset ratio, the flushing sub-module 141 on the target sub-area is turned on , when the clogging factor is less than a second preset ratio, closing the flushing sub-module 141 on the target sub-area. It should be noted that when the clogging factor is between the first preset ratio and the second preset ratio, the flushing sub-module 141 corresponding to the clogging factor is closed.
  • the clogging factor corresponding to another preset sub-area that has an industrial camera corresponding to the preset sub-area is taken as Simultaneously as the congestion factors of the two preset sub-regions having a corresponding relationship, that is, the two preset sub-regions having a corresponding relationship are target sub-regions of the congestion factor.
  • the present application discloses a pre-control system for clogging of a demister, including: an image acquisition module, an image analysis and calculation module, an interlocking module, and a flushing module; the demister is provided with a preset number of preset sub-areas
  • the flushing module includes flushing submodules respectively arranged in each of the preset subregions, and the image acquisition module includes image acquisition submodules respectively arranged in several preset subregions; wherein, The image acquisition module is used to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module, and transmit the target image to the image analysis and calculation module;
  • the image analysis and calculation A module configured to acquire the target image transmitted by the image acquisition module, and determine the dirt area of the preset sub-area in the target image, and then use the dirt area and the longitudinal section of the preset sub-area The area determines the clogging factor; the chain module is used to control the opening state of the flushing sub-module on the target sub-area corresponding to
  • the demister clogging pre-control system disclosed in this application can obtain the target image through the image acquisition module to realize the visualization of the clogging in the demister, and can also determine the clogging factor in the target image through the image analysis and calculation module, and then through the chain
  • the module controls the opening state of the flushing sub-module based on the clogging factor to accurately flush the dirt in the demister and effectively alleviate the clogging of the demister.
  • this application improves the reliability of the desulfurization system and the tail flue gas purification system to achieve super Low emissions play a very important role.
  • the embodiment of the present application discloses a specific pre-control system for demister clogging, including: image acquisition module 11, image analysis and calculation module 12, interlocking module 13, flushing module 14, and information display module 15 and control module 16.
  • the image acquisition sub-module includes: a light source installed at a preset light source position in the corresponding preset sub-area for illuminating the preset sub-area; installed in the corresponding preset sub-area An industrial camera with a preset camera position is used to collect pictures of the preset sub-area to obtain a target image.
  • the image analysis and calculation module 12 is configured to obtain the target image transmitted by the image acquisition module 11, and use an image analysis algorithm to obtain the dirt shape feature of the preset sub-region in the target image, and then The dirt area corresponding to the dirt shape feature is determined based on the target calculation model, and the clogging factor is obtained by using the dirt area and the longitudinal sectional area of the preset sub-region.
  • the image analysis and calculation module 12 is also used to obtain the image acquisition sub-module 111 pre-installed in the preset sub-area where dirt exists before pre-controlling the clogging of the demister.
  • the historical image obtained by image acquisition in the region, and using an image analysis algorithm to obtain the dirt shape feature of the preset sub-region in the historical image, and then measure and calculate the dirt area of the preset sub-region in the historical image, And based on the dirt shape features of the historical images and the corresponding dirt area, a preset machine learning model is trained to obtain the target calculation model.
  • the chain module 13 is configured to use a preset chain program to use the preset sub-area as the target sub-area corresponding to the congestion factor, or to use the preset sub-area and the preset sub-area
  • the other preset sub-areas of the corresponding relationship are used as the target sub-area corresponding to the clogging factor, and when the clogging factor is not less than the first preset ratio, the flushing sub-module 141 on the target sub-area is turned on , when the clogging factor is less than a second preset ratio, closing the flushing sub-module 141 on the target sub-area.
  • the information display module 15 is used to display the related information of the image acquisition module, the image analysis and calculation module, the chain module and the flushing module, and to provide user interaction function to retrieve the related information and save.
  • the relevant information includes the target image of the preset sub-area, the first serial number and longitudinal section area corresponding to the preset sub-area, the dirt shape characteristics of the preset sub-area and the The dirt area, the clogging factor of the preset sub-area, the second number corresponding to the preset sub-area whose clogging factor is not less than the first preset proportion, and the corresponding red flashing alarm, etc.
  • the control module 16 is used to provide an operation control function, so as to modify the preset chain program in the chain module and control whether to run the preset chain program, and control to turn on or off the flushing sub-module 141 at any time. Whether to run the preset chain program can also be interpreted as the input and release of the chain program. It should be pointed out that whether to run the preset interlocking program can be understood as enabling the preset interlocking program or disabling the preset interlocking program.
  • controlling the opening or closing of the flushing sub-module 141 at any time means that when the flushing sub-module 141 is opened and the clogging factor of the corresponding flushing area satisfies the condition for closing the flushing sub-module, it can be controlled to close the flushing sub-module 141.
  • the operation control function refers to controlling the related information provided by the information display module.
  • the present application discloses a pre-control system for clogging of a demister, including: an image acquisition module, an image analysis and calculation module, an interlocking module, and a flushing module; the demister is provided with a preset number of preset sub-areas
  • the flushing module includes flushing submodules respectively arranged in each of the preset subregions, and the image acquisition module includes image acquisition submodules respectively arranged in several preset subregions; wherein, The image acquisition module is used to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module, and transmit the target image to the image analysis and calculation module;
  • the image analysis and calculation A module configured to acquire the target image transmitted by the image acquisition module, and determine the dirt area of the preset sub-area in the target image, and then use the dirt area and the longitudinal section of the preset sub-area The area determines the clogging factor; the chain module is used to control the opening state of the flushing sub-module on the target sub-area corresponding to
  • the demister clogging pre-control system also includes: an information display module 15 and a control module 16, and the information display module 15 is used to display the image acquisition module, the image analysis and calculation module, the chain module and the flushing module related information, and is used to provide user interaction function to retrieve and save the related information; the control module 16 is used to provide operation control function, so as to modify the preset chain program in the chain module and control whether Run the preset chain program, and control the opening or closing of the flushing sub-module 141 at any time.
  • the demister clogging pre-control system disclosed in this application can obtain the target image through the image acquisition module to realize the visualization of the clogging in the demister, and can also determine the clogging factor in the target image through the image analysis and calculation module, and then through the chain
  • the module controls the opening state of the flushing sub-module based on the clogging factor to accurately flush the dirt in the demister and effectively alleviate the clogging of the demister.
  • the application plays a very important role in improving the reliability of the desulfurization system and tail flue gas purification system and achieving ultra-low emissions.
  • the embodiment of the present application discloses a method for pre-controlling the clogging of the mist eliminator, and the interior of the mist eliminator is provided with a preset number of preset sub-regions; the method includes:
  • Step S11 acquiring a target image of the preset sub-area in the demister, and determining the dirt area of the preset sub-area in the target image.
  • Step S12 Using the fouling area and the longitudinal section area of the preset sub-area to determine a clogging factor.
  • the clogging factor is the percentage obtained by dividing the dirt area by the longitudinal section area.
  • Step S13 Utilize a preset chain program and flush the target sub-area corresponding to the clogging factor based on the clogging factor.
  • the flushing sub-module 141 on the target sub-area when the clogging factor is not less than the first preset ratio, the flushing sub-module 141 on the target sub-area is turned on, and when the clogging factor is smaller than the second preset ratio, Turn off the flushing sub-module 141 on the target sub-area.
  • the specific values of the first preset ratio and the second preset ratio can be set or modified in the control module 16 according to the actual operating conditions of the demister, when the clogging factor is at the first When the ratio is between the first preset ratio and the second preset ratio, the flushing sub-module 141 corresponding to the clogging factor is turned off.
  • the preset sub-area is used as the target sub-area corresponding to the congestion factor, or the preset sub-area and other preset sub-areas corresponding to the preset sub-area are used as the congestion
  • the target sub-area corresponding to the factor wherein, when there is no industrial camera in a preset sub-area in the demister system, another preset sub-area corresponding to the preset sub-area with industrial cameras will correspond
  • the clogging factor of is used as the clogging factor of the above two preset sub-regions having a corresponding relationship at the same time, that is, the above-mentioned two preset sub-regions having a corresponding relationship are the target sub-regions of the clogging factor.
  • the first preset proportion is 12%
  • the second preset proportion is 3%.
  • the present application discloses a pre-control system for clogging of a demister, including: an image acquisition module, an image analysis and calculation module, an interlocking module, and a flushing module; the demister is provided with a preset number of preset sub-areas
  • the flushing module includes flushing submodules respectively arranged in each of the preset subregions, and the image acquisition module includes image acquisition submodules respectively arranged in several preset subregions; wherein, The image acquisition module is used to acquire the target image of the corresponding preset sub-region through the image acquisition sub-module, and transmit the target image to the image analysis and calculation module;
  • the image analysis and calculation A module configured to acquire the target image transmitted by the image acquisition module, and determine the dirt area of the preset sub-area in the target image, and then use the dirt area and the longitudinal section of the preset sub-area The area determines the clogging factor; the chain module is used to control the opening state of the flushing sub-module on the target sub-area corresponding to
  • the demister clogging pre-control system disclosed in this application can obtain the target image through the image acquisition module to realize the visualization of the clogging in the demister, and can also determine the clogging factor in the target image through the image analysis and calculation module, and then through the chain
  • the module controls the opening state of the flushing sub-module based on the clogging factor to accurately flush the dirt in the demister and effectively alleviate the clogging of the demister.
  • this application improves the reliability of the desulfurization system and the tail flue gas purification system to achieve super Low emissions play a very important role.
  • FIG. 7 is a structural diagram of an electronic device 20 according to an exemplary embodiment, and the content in the figure should not be regarded as any limitation on the application scope of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device 20 provided by an embodiment of the present application.
  • the electronic device 20 may specifically include: at least one processor 21 , at least one memory 22 , a power supply 23 , an input/output interface 24 , a communication interface 25 and a communication bus 26 .
  • the memory 22 is used to store a computer program, and the computer program is loaded and executed by the processor 21 to implement the relevant steps of the method for pre-controlling the clogging of the demister disclosed in any of the foregoing embodiments.
  • the power supply 23 is used to provide operating voltage for each hardware device on the electronic device 20;
  • the communication interface 25 can create a data transmission channel between the electronic device 20 and external devices, and the communication protocol it follows is applicable Any communication protocol in the technical solution of the present application is not specifically limited here;
  • the input and output interface 24 is used to obtain external input data or output data to the external world, and its specific interface type can be selected according to specific application needs, here Not specifically limited.
  • the memory 22 is used as a resource storage carrier, which can be a read-only memory, a random access memory, a magnetic disk or an optical disk, etc., and the memory 22 can include a random access memory as a running memory and a non-volatile memory used for storage of an external memory.
  • the memory, on which the storage resources include the operating system 221, the computer program 222, etc., can be stored temporarily or permanently.
  • the operating system 221 is used to manage and control various hardware devices and computer programs 222 on the electronic device 20 on the source host, and the operating system 221 may be Windows, Unix, Linux, etc.
  • the computer program 222 can further include a computer program that can be used to complete other specific tasks.
  • the input and output interface 24 may specifically include but not limited to a USB interface, a hard disk reading interface, a serial interface, a voice input interface, a fingerprint input interface, and the like.
  • the embodiment of the present application also discloses a computer-readable storage medium for storing a computer program; wherein, when the computer program is executed by a processor, the above-mentioned method for pre-controlling clogging of the demister is realized.
  • the computer-readable storage medium mentioned here includes random access memory (Random Access Memory, RAM), internal memory, read-only memory (Read-Only Memory, ROM), electrically programmable ROM, electrically erasable programmable ROM, register , hard disk, magnetic disk or optical disk or any other form of storage medium known in the technical field.
  • RAM Random Access Memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • register hard disk
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and the related parts can be referred to the description of the method part.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种除雾器堵塞预控系统、方法、设备及介质,该系统包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;除雾器内部设有预设数量个预设子区域;图像获取模块,通过图像获取子模块获取预设子区域的目标图像,将目标图像传输至图像分析与计算模块;图像分析与计算模块,获取目标图像,确定目标图像中预设子区域的污垢面积,然后利用污垢面积确定堵塞因子;连锁模块,基于堵塞因子对与堵塞因子对应的目标子区域上的冲洗子模块的开启状态进行控制,以便冲洗子模块对目标子区域进行冲洗。由此可见,除雾器堵塞预控系统获取目标图像实现除雾器内堵塞可视化,并基于目标图像得到的堵塞因子精准冲洗除雾器内污垢以有效缓解除雾器堵塞。

Description

一种除雾器堵塞预控系统、方法、设备及介质
本申请要求于2022年03月04日提交中国专利局、申请号为202210205470.6、发明名称为“一种除雾器堵塞预控系统、方法、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及石灰石-石膏湿法烟气脱硫领域,特别涉及一种除雾器堵塞预控系统、方法、设备及介质。
背景技术
当前,在燃煤电厂石灰石-石膏湿法脱硫系统中,除雾器是必不可缺的关键设备,它将通过喷淋层脱硫后的烟气中残留的浆液雾滴分离出来,避免因烟气携带浆液过多,造成脱硫塔后净烟道及设备的腐蚀,同时防止形成石膏雨。但是经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢,如果这些污垢不能得到及时冲洗,就会在除雾器叶片上沉积,进而造成除雾器堵塞。除雾器堵塞导致局部烟气流速高烟气携带雾滴量增加,对后部湿式电除尘器稳定运行带来不利,同时又增加系统阻力加大增压风机能耗。
综上所述,如何精准冲洗除雾器内污垢以有效缓解除雾器堵塞并实现除雾器内堵塞可视化是当前亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种除雾器堵塞预控系统、方法、设备及介质,精准冲洗除雾器内污垢以有效缓解除雾器堵塞并实现除雾器内堵塞可视化。其具体方案如下:
第一方面,本申请公开了一种除雾器堵塞预控系统,包括:
图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个 所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区域中的图像获取子模块;其中,
所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块;
所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;
所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。
可选的,所述图像获取子模块,包括:
安装在相应的所述预设子区域中预设光源位置的光源,用于对所述预设子区域进行照明;
安装在相应的所述预设子区域中预设相机位置的工业相机,用于对所述预设子区域进行图片采集以获得目标图像。
可选的,所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并利用图像分析算法获得所述目标图像中所述预设子区域的所述污垢外形特征,然后基于目标计算模型确定所述污垢外形特征对应的所述污垢面积,并利用所述污垢面积以及所述预设子区域的纵截面面积得到堵塞因子。
可选的,所述图像分析与计算模块,还用于在进行除雾器堵塞预控之前,获取通过存在污垢的所述预设子区域中预先安装的所述图像获取子模块对所述预设子区域进行图像采集得到的历史图像,并利用图像分析算法获得所述历史图像中所述预设子区域的污垢外形特征,然后测算出所述历史图像中的所述预设子区域的污垢面积,并基于所述历史图像的所述污垢外形特征以及对应的所述污垢面积,对预设的机器学习模型进行训练以得到所述目标计算模型。
可选的,所述连锁模块,用于利用预设连锁程序,将所述预设子区域作为所述堵塞因子对应的目标子区域,或,将所述预设子区域以及与所述 预设子区域具有对应关系的其它预设子区域作为所述堵塞因子对应的目标子区域,并在所述堵塞因子不小于第一预设占比时,开启所述目标子区域上的所述冲洗子模块,在所述堵塞因子小于第二预设占比时,关闭所述目标子区域上的所述冲洗子模块。
可选的,所述除雾器系统,还包括:
信息显示模块,用于显示所述图像获取模块、所述图像分析与计算模块、所述连锁模块和所述冲洗模块的相关信息,并用于提供用户交互功能,以便对所述相关信息进行检索和保存。
可选的,所述除雾器系统,还包括:
控制模块,用于提供操作控制功能,以便修改所述连锁模块中的所述预设连锁程序以及控制是否运行所述预设连锁程序,并控制任意时刻开启或关闭所述冲洗子模块。
第二方面,本申请公开了一种除雾器堵塞预控方法,所述除雾器内部设有预设数量个预设子区域;所述方法包括:
获取所述除雾器中所述预设子区域的目标图像,并确定所述目标图像中所述预设子区域的污垢面积;
利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;
利用预设连锁程序,并基于所述堵塞因子对与所述堵塞因子对应的目标子区域进行冲洗。
第三方面,本申请公开了一种电子设备,包括处理器和存储器;其中,所述处理器执行所述存储器中保存的计算机程序时实现前述公开的除雾器堵塞预控方法。
第四方面,本申请公开了一种计算机可读存储介质,用于存储计算机程序;其中,所述计算机程序被处理器执行时实现前述公开的除雾器堵塞预控方法。
可见,本申请公开了一种除雾器堵塞预控系统,包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区 域中的图像获取子模块;其中,所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块;所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。由此可见,本申请公开的除雾器堵塞预控系统可以通过图像获取模块获取目标图像实现除雾器内堵塞可视化,也可以通过图像分析与计算模块确定目标图像中的堵塞因子,然后通过连锁模块基于堵塞因子对冲洗子模块的开启状态进行控制,以精准冲洗除雾器内污垢,有效缓解除雾器堵塞。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请提供的一种除雾器堵塞预控系统的结构图;
图2为本申请提供的一种除雾器堵塞预控系统的模块分布结构图;
图3为本申请提供的一种除雾器堵塞预控系统的模块分布结构图;
图4为本申请提供的一种除雾器堵塞预控系统的模块分布结构图;
图5为本申请提供的一种具体的除雾器堵塞预控系统的结构图;
图6为本申请提供的一种除雾器堵塞预控方法示意图;
图7为本申请提供的一种电子设备结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
当前除雾器堵塞导致局部烟气流速高烟气携带雾滴量增加,对后部湿式电除尘器稳定运行带来不利,同时又增加系统阻力加大增压风机能耗。为了克服上述问题,本申请提供了一种除雾器堵塞预控方案,能够精准冲洗除雾器内污垢并实现除雾器内堵塞可视化。
参见图1所示,本申请实施例公开了一种除雾器堵塞预控系统,包括:图像获取模块11、图像分析与计算模块12、连锁模块13和冲洗模块14;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块14包括分别设置于每个所述预设子区域中的冲洗子模块141,并且,所述图像获取模块11包括分别设置于若干所述预设子区域中的图像获取子模块111;其中,
所述图像获取模块11,用于通过所述图像获取子模块111获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块12;
所述图像分析与计算模块12,用于获取所述图像获取模块11传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;
所述连锁模块13,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块141的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块141对所述目标子区域进行冲洗。
需要指出的是,图像可视化技术作为一种直观的图像分析技术,能够将复杂体系的现场情况通过图表等形式展现出来,可视化技术逐渐在工业远程监测获得了广泛关注,如风粉传输状态监控,化工反应器内反应状态实时观察等。对于预防除雾器堵塞,可结合图像可视化技术,实现脱硫塔内除雾器堵塞的可视化在线监测与预警,并对堵塞严重区域精准冲洗,目前尚未见相关技术及其应用情况的公开报道。本申请利用可视化技术,实 时在线监控除雾器结构堵塞情况,并将堵塞程度通过堵塞因子量化,采用冲洗水或专用药剂溶液子区域精准冲洗,并可投入连锁程序实现自动运行。
所述图像获取子模块111,包括:安装在相应的所述预设子区域中预设光源位置的光源,用于对所述预设子区域进行照明;安装在相应的所述预设子区域中预设相机位置的工业相机,用于对所述预设子区域进行图片采集以获得目标图像。
需要指出的是,所述图像获取子模块111包括所述光源和所述工业相机。
在一种实施例中,同一预设子区域中,所述光源对应的预设光源位置和所述工业相机对应的预设相机位置为不同位置。
在另一种实施例中,同一预设子区域中,所述光源对应的预设光源位置和所述工业相机对应的预设相机位置为相同位置。
如图2、图3、图4所示,展示了图像获取模块11、图像分析与计算模块12、连锁模块13和冲洗模块14的位置关系,其中,A1、A2、A3、A4、A5、A6表示预设子区域,1110、1111表示光源,1112、1113、1114、1115表示工业相机,1411、1412、1413、1414、1415、1416表示每个冲洗子模块141,1116、1117、1118、1119表示光源和工业相机的组合,如图2所示,除雾器为圆形并被分为4个预设子区域,4个预设子区域的纵截面面积都为0.5m 2。工业相机和光源是分别安装在不同位置的。冲洗子模块141、工业相机和预设子区域数量一致,都为4个。另外,冲洗子模块141中的1411对应的冲洗区域与工业相机1112的图像采集区域相同,都为预设子区域A1;冲洗子模块141中的1412对应的冲洗区域与工业相机1113的图像采集区域相同,都为预设子区域A2;冲洗子模块141中的1413对应的冲洗区域与工业相机1114的图像采集区域相同,都为预设子区域A3;冲洗子模块141中的1414对应的冲洗区域与工业相机1115的图像采集区域相同,都为预设子区域A4。如图3所示,除雾器为正方形并被分为4个预设子区域。工业相机和光源是安装在同一位置的,也即光源和工业相机的组合。冲洗子模块141、光源和工业相机的组合以及预设子区域数量一致,都为4个。冲洗子模块141中的1411对应的冲洗区域与光源和工业相机的组合1116对应的区域相同,都为预设 子区域A1;冲洗子模块141中的1412对应的冲洗区域与光源和工业相机的组合1117对应的区域相同,都为预设子区域A2;冲洗子模块141中的1413对应的冲洗区域与光源和工业相机的组合1118对应的区域相同,都为预设子区域A3;冲洗子模块141中的1414对应的冲洗区域与光源和工业相机的组合1119对应的区域相同,都为预设子区域A4。如图4所示,除雾器为圆形并被分为6个预设子区域,6个预设子区域的纵截面面积都为0.6m 2。从图中可以观察出每个预设子区域都存在冲洗子模块141,只有一半数量的预设子区域存在工业相机和光源的组合,并且在图4中,将具有对角关系的一个存在工业相机和光源组合的预设子区域和一个不存在工业相机和光源组合的预设子区域建立对应关系。冲洗子模块141中的1411对应的冲洗区域与光源和工业相机的组合1116对应的区域相同,都为预设子区域A1;冲洗子模块141中的1412对应的冲洗区域与光源和工业相机的组合1117对应的区域相同,都为预设子区域A2;冲洗子模块141中的1413对应的冲洗区域与光源和工业相机的组合1118对应的区域相同,都为预设子区域A3。
需要指出的是,冲洗模块14所使用的冲洗介质可以为水和药剂溶液;冲洗子模块141可以定期冲洗对应区域的工业相机以清洁相机镜头,频率可以为一天一次,一次5分钟,也可以为,两天一次,一次10分钟,另外,工业相机也可以与冲洗模块结合,使工业相机自带冲洗功能。
需要指出的是,规定除雾器中工业相机数量不小于2台,每个工业相机所捕捉的除雾器子区域不大于7.25m 2
所述图像分析与计算模块12,用于获取所述图像获取模块11传输的所述目标图像,并利用图像分析算法获得所述目标图像中所述预设子区域的所述污垢外形特征,然后基于目标计算模型确定所述污垢外形特征对应的所述污垢面积,并利用所述污垢面积以及所述预设子区域的纵截面面积得到堵塞因子。需要指出的是,堵塞因子是污垢面积除以纵截面面积得到的百分比。
所述图像分析与计算模块12,还用于在进行除雾器堵塞预控之前,获取通过存在污垢的所述预设子区域中预先安装的所述图像获取子模块111对所述预设子区域进行图像采集得到的历史图像,并利用图像分析算法获 得所述历史图像中所述预设子区域的污垢外形特征,然后测算出所述历史图像中的所述预设子区域的污垢面积,并基于所述历史图像的所述污垢外形特征以及对应的所述污垢面积,对预设的机器学习模型进行训练以得到所述目标计算模型。需要指出的是,所述存在污垢的所述预设子区域中的污垢可以是人工产生的,预设的机器学习模型可以为反向传播神经网络模型,可以为支持向量机模型,也可以为其它的机器学习模型。可以理解的是,在得到目标计算模型之后,需要将所述预设子区域中存在的污垢冲洗干净。其中,所述除雾器堵塞预控之前可以理解为除雾器检修期间。
所述连锁模块13,用于利用预设连锁程序,将所述预设子区域作为所述堵塞因子对应的目标子区域,或,将所述预设子区域以及与所述预设子区域具有对应关系的其它预设子区域作为所述堵塞因子对应的目标子区域,并在所述堵塞因子不小于第一预设占比时,开启所述目标子区域上的所述冲洗子模141块,在所述堵塞因子小于第二预设占比时,关闭所述目标子区域上的所述冲洗子模块141。需要指出的是,当堵塞因子位于第一预设占比和第二预设占比之间时,堵塞因子对应的冲洗子模块141是关闭的。
可以理解的是,当除雾器系统中的一个预设子区域中不存在工业相机,则将与该预设子区域有对应关系的存在工业相机的另一个预设子区域对应的堵塞因子作为同时作为上述具有对应关系的两个预设子区域的堵塞因子,也即上述具有对应关系的两个预设子区域为所述堵塞因子的目标子区域。
可见,本申请公开了一种除雾器堵塞预控系统,包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区域中的图像获取子模块;其中,所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块;所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确 定堵塞因子;所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。由此可见,本申请公开的除雾器堵塞预控系统可以通过图像获取模块获取目标图像实现除雾器内堵塞可视化,也可以通过图像分析与计算模块确定目标图像中的堵塞因子,然后通过连锁模块基于堵塞因子对冲洗子模块的开启状态进行控制,以精准冲洗除雾器内污垢,有效缓解除雾器堵塞,另外,本申请对提高脱硫系统和尾部烟气净化系统的可靠性,达到超低排放有着非常重要的作用。
参见图5所示,本申请实施例公开了一种具体的除雾器堵塞预控系统,包括:图像获取模块11、图像分析与计算模块12、连锁模块13、冲洗模块14、信息显示模块15和控制模块16。
所述图像获取子模块,包括:安装在相应的所述预设子区域中预设光源位置的光源,用于对所述预设子区域进行照明;安装在相应的所述预设子区域中预设相机位置的工业相机,用于对所述预设子区域进行图片采集以获得目标图像。
所述图像分析与计算模块12,用于获取所述图像获取模块11传输的所述目标图像,并利用图像分析算法获得所述目标图像中所述预设子区域的所述污垢外形特征,然后基于目标计算模型确定所述污垢外形特征对应的所述污垢面积,并利用所述污垢面积以及所述预设子区域的纵截面面积得到堵塞因子。
所述图像分析与计算模块12,还用于在进行除雾器堵塞预控之前,获取通过存在污垢的所述预设子区域中预先安装的所述图像获取子模块111对所述预设子区域进行图像采集得到的历史图像,并利用图像分析算法获得所述历史图像中所述预设子区域的污垢外形特征,然后测算出所述历史图像中的所述预设子区域的污垢面积,并基于所述历史图像的所述污垢外形特征以及对应的所述污垢面积,对预设的机器学习模型进行训练以得到所述目标计算模型。
所述连锁模块13,用于利用预设连锁程序,将所述预设子区域作为所 述堵塞因子对应的目标子区域,或,将所述预设子区域以及与所述预设子区域具有对应关系的其它预设子区域作为所述堵塞因子对应的目标子区域,并在所述堵塞因子不小于第一预设占比时,开启所述目标子区域上的所述冲洗子模141块,在所述堵塞因子小于第二预设占比时,关闭所述目标子区域上的所述冲洗子模块141。
信息显示模块15,用于显示所述图像获取模块、所述图像分析与计算模块、所述连锁模块和所述冲洗模块的相关信息,并用于提供用户交互功能,以便对所述相关信息进行检索和保存。需要指出的是,所述相关信息包括所述预设子区域的所述目标图像、所述预设子区域对应的第一编号和纵截面面积、所述预设子区域的污垢外形特征和所述污垢面积、所述预设子区域的堵塞因子、所述堵塞因子不小于第一预设占比的所述预设子区域对应的第二编号和相应的红色闪烁警报等。
控制模块16,用于提供操作控制功能,以便修改所述连锁模块中的所述预设连锁程序以及控制是否运行所述预设连锁程序,并控制任意时刻开启或关闭所述冲洗子模块141。是否运行所述预设连锁程序也可以解释为连锁程序的投入与解除。需要指出的是,是否运行所述预设连锁程序可以理解为投入预设连锁程序或解除所述预设连锁程序。可以理解的是,控制任意时刻开启或关闭所述冲洗子模块141指,在所述冲洗子模块141开启并且对应的冲洗区域的堵塞因子满足关闭所述冲洗子模块的条件时,可以控制关闭所述冲洗子模块141;在所述冲洗子模块141关闭并且对应的冲洗区域的堵塞因子满足开启所述冲洗子模块的条件时,可以控制开启所述冲洗子模块141。需要指出的是,所述操作控制功能表示对信息显示模块提供的相关信息等进行控制。
可见,本申请公开了一种除雾器堵塞预控系统,包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区域中的图像获取子模块;其中,所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输 至所述图像分析与计算模块;所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。除雾器堵塞预控系统还包括:信息显示模块15和控制模块16,信息显示模块15,用于显示所述图像获取模块、所述图像分析与计算模块、所述连锁模块和所述冲洗模块的相关信息,并用于提供用户交互功能,以便对所述相关信息进行检索和保存;控制模块16,用于提供操作控制功能,以便修改所述连锁模块中的所述预设连锁程序以及控制是否运行所述预设连锁程序,并控制任意时刻开启或关闭所述冲洗子模块141。由此可见,本申请公开的除雾器堵塞预控系统可以通过图像获取模块获取目标图像实现除雾器内堵塞可视化,也可以通过图像分析与计算模块确定目标图像中的堵塞因子,然后通过连锁模块基于堵塞因子对冲洗子模块的开启状态进行控制,以精准冲洗除雾器内污垢,有效缓解除雾器堵塞。另外,本申请对提高脱硫系统和尾部烟气净化系统的可靠性,达到超低排放有着非常重要的作用。
参见图6所示,本申请实施例公开了一种除雾器堵塞预控方法,所述除雾器内部设有预设数量个预设子区域;该方法包括:
步骤S11:获取所述除雾器中所述预设子区域的目标图像,并确定所述目标图像中所述预设子区域的污垢面积。
步骤S12:利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子。
本申请实施例中,堵塞因子为污垢面积除以纵截面面积所得的百分比。
步骤S13:利用预设连锁程序,并基于所述堵塞因子对与所述堵塞因子对应的目标子区域进行冲洗。
本申请实施例中,所述堵塞因子不小于第一预设占比时,开启所述目标子区域上的所述冲洗子模141块,在所述堵塞因子小于第二预设占比时, 关闭所述目标子区域上的所述冲洗子模块141。需要指出的是,所述第一预设占比和所述第二预设占比的具体数值可根据除雾器的实际运行工况在控制模块16当中设定或修改,当堵塞因子位于第一预设占比和第二预设占比之间时,堵塞因子对应的冲洗子模块141是关闭的。另外,将所述预设子区域作为所述堵塞因子对应的目标子区域,或,将所述预设子区域以及与所述预设子区域具有对应关系的其它预设子区域作为所述堵塞因子对应的目标子区域,其中,当除雾器系统中的一个预设子区域中不存在工业相机,则将与该预设子区域有对应关系的存在工业相机的另一个预设子区域对应的堵塞因子作为同时作为上述具有对应关系的两个预设子区域的堵塞因子,也即上述具有对应关系的两个预设子区域为所述堵塞因子的目标子区域。在一种具体实施例中,所述第一预设占比为12%,所述第二预设占比为3%。
可见,本申请公开了一种除雾器堵塞预控系统,包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区域中的图像获取子模块;其中,所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块;所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。由此可见,本申请公开的除雾器堵塞预控系统可以通过图像获取模块获取目标图像实现除雾器内堵塞可视化,也可以通过图像分析与计算模块确定目标图像中的堵塞因子,然后通过连锁模块基于堵塞因子对冲洗子模块的开启状态进行控制,以精准冲洗除雾器内污垢,有效缓解除雾器堵塞,另外,本申请对提高脱硫系统和尾部烟气净化系统的可靠性,达到超低排 放有着非常重要的作用。
进一步的,本申请实施例还提供了一种电子设备,图7是根据一示例性实施例示出的电子设备20结构图,图中的内容不能认为是对本申请的使用范围的任何限制。
图7为本申请实施例提供的一种电子设备20的结构示意图。该电子设备20,具体可以包括:至少一个处理器21、至少一个存储器22、电源23、输入输出接口24、通信接口25和通信总线26。其中,所述存储器22用于存储计算机程序,所述计算机程序由所述处理器21加载并执行,以实现前述任意实施例公开的除雾器堵塞预控方法的相关步骤。
本实施例中,电源23用于为电子设备20上的各硬件设备提供工作电压;通信接口25能够为电子设备20创建与外界设备之间的数据传输通道,其所遵循的通信协议是能够适用于本申请技术方案的任意通信协议,在此不对其进行具体限定;输入输出接口24,用于获取外界输入数据或向外界输出数据,其具体的接口类型可以根据具体应用需要进行选取,在此不进行具体限定。
另外,存储器22作为资源存储的载体,可以是只读存储器、随机存储器、磁盘或者光盘等,存储器22作为可以包括作为运行内存的随机存取存储器和用于外部内存的存储用途的非易失性存储器,其上的存储资源包括操作系统221、计算机程序222等,存储方式可以是短暂存储或者永久存储。
其中,操作系统221用于管理与控制源主机上电子设备20上的各硬件设备以及计算机程序222,操作系统221可以是Windows、Unix、Linux等。计算机程222除了包括能够用于完成前述任一实施例公开的由电子设备20执行的除雾器堵塞预控方法的计算机程序之外,还可以进一步包括能够用于完成其他特定工作的计算机程序。
本实施例中,所述输入输出接口24具体可以包括但不限于USB接口、硬盘读取接口、串行接口、语音输入接口、指纹输入接口等。
进一步的,本申请实施例还公开了一种计算机可读存储介质,用于存储计算机程序;其中,所述计算机程序被处理器执行时实现前述公开的除雾器堵塞预控方法。
关于该方法的具体步骤可以参考前述实施例中公开的相应内容,在此不再进行赘述。
这里所说的计算机可读存储介质包括随机存取存储器(Random Access Memory,RAM)、内存、只读存储器(Read-Only Memory,ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、磁碟或者光盘或技术领域内所公知的任意其他形式的存储介质。其中,所述计算机程序被处理器执行时实现前述除雾器堵塞预控方法。关于该方法的具体步骤可以参考前述实施例中公开的相应内容,在此不再进行赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的除雾器堵塞预控方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种除雾器堵塞预控系统、方法、设备及介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种除雾器堵塞预控系统,其特征在于,包括:图像获取模块、图像分析与计算模块、连锁模块和冲洗模块;所述除雾器内部设有预设数量个预设子区域;所述冲洗模块包括分别设置于每个所述预设子区域中的冲洗子模块,并且,所述图像获取模块包括分别设置于若干所述预设子区域中的图像获取子模块;其中,
    所述图像获取模块,用于通过所述图像获取子模块获取相应的所述预设子区域的目标图像,并将所述目标图像传输至所述图像分析与计算模块;
    所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并确定所述目标图像中所述预设子区域的污垢面积,然后利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;
    所述连锁模块,用于利用预设连锁程序并基于所述堵塞因子对与所述堵塞因子对应的目标子区域上的所述冲洗子模块的开启状态进行控制,以便所述目标子区域上的所述冲洗子模块对所述目标子区域进行冲洗。
  2. 根据权利要求1所述的除雾器堵塞预控系统,其特征在于,所述图像获取子模块,包括:
    安装在相应的所述预设子区域中预设光源位置的光源,用于对所述预设子区域进行照明;
    安装在相应的所述预设子区域中预设相机位置的工业相机,用于对所述预设子区域进行图片采集以获得目标图像。
  3. 根据权利要求1所述的除雾器堵塞预控系统,其特征在于,
    所述图像分析与计算模块,用于获取所述图像获取模块传输的所述目标图像,并利用图像分析算法获得所述目标图像中所述预设子区域的所述污垢外形特征,然后基于目标计算模型确定所述污垢外形特征对应的所述污垢面积,并利用所述污垢面积以及所述预设子区域的纵截面面积得到堵塞因子。
  4. 根据权利要求3所述的除雾器堵塞预控系统,其特征在于,
    所述图像分析与计算模块,还用于在进行除雾器堵塞预控之前,获取通过存在污垢的所述预设子区域中预先安装的所述图像获取子模块对所述 预设子区域进行图像采集得到的历史图像,并利用图像分析算法获得所述历史图像中所述预设子区域的污垢外形特征,然后测算出所述历史图像中的所述预设子区域的污垢面积,并基于所述历史图像的所述污垢外形特征以及对应的所述污垢面积,对预设的机器学习模型进行训练以得到所述目标计算模型。
  5. 根据权利要求1所述的除雾器堵塞预控系统,其特征在于,
    所述连锁模块,用于利用预设连锁程序,将所述预设子区域作为所述堵塞因子对应的目标子区域,或,将所述预设子区域以及与所述预设子区域具有对应关系的其它预设子区域作为所述堵塞因子对应的目标子区域,并在所述堵塞因子不小于第一预设占比时,开启所述目标子区域上的所述冲洗子模块,在所述堵塞因子小于第二预设占比时,关闭所述目标子区域上的所述冲洗子模块。
  6. 根据权利要求1所述的除雾器堵塞预控系统,其特征在于,所述除雾器系统,还包括:
    信息显示模块,用于显示所述图像获取模块、所述图像分析与计算模块、所述连锁模块和所述冲洗模块的相关信息,并用于提供用户交互功能,以便对所述相关信息进行检索和保存。
  7. 根据权利要求1至6任一项所述的除雾器堵塞预控系统,其特征在于,所述除雾器系统,还包括:
    控制模块,用于提供操作控制功能,以便修改所述连锁模块中的所述预设连锁程序以及控制是否运行所述预设连锁程序,并控制任意时刻开启或关闭所述冲洗子模块。
  8. 一种除雾器堵塞预控方法,其特征在于,所述除雾器内部设有预设数量个预设子区域;所述方法包括:
    获取所述除雾器中所述预设子区域的目标图像,并确定所述目标图像中所述预设子区域的污垢面积;
    利用所述污垢面积以及所述预设子区域的纵截面面积确定堵塞因子;
    利用预设连锁程序,并基于所述堵塞因子对与所述堵塞因子对应的目标子区域进行冲洗。
  9. 一种电子设备,其特征在于,包括处理器和存储器;其中,所述处理器执行所述存储器中保存的计算机程序时实现如权利要求8所述的除雾器堵塞预控方法。
  10. 一种计算机可读存储介质,其特征在于,用于存储计算机程序;其中,所述计算机程序被处理器执行时实现如权利要求8所述的除雾器堵塞预控方法。
PCT/CN2022/123209 2022-03-04 2022-09-30 一种除雾器堵塞预控系统、方法、设备及介质 WO2023165129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210205470.6 2022-03-04
CN202210205470.6A CN114273315B (zh) 2022-03-04 2022-03-04 一种除雾器堵塞预控系统、方法、设备及介质

Publications (1)

Publication Number Publication Date
WO2023165129A1 true WO2023165129A1 (zh) 2023-09-07

Family

ID=80882145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123209 WO2023165129A1 (zh) 2022-03-04 2022-09-30 一种除雾器堵塞预控系统、方法、设备及介质

Country Status (2)

Country Link
CN (1) CN114273315B (zh)
WO (1) WO2023165129A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273315B (zh) * 2022-03-04 2022-06-14 华电电力科学研究院有限公司 一种除雾器堵塞预控系统、方法、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435472A1 (de) * 1984-09-27 1986-03-27 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Wasserspuelung fuer entneblerpakete hinter rauchgasentschwefelungsanlagen
CA2184776A1 (en) * 1995-09-05 1997-03-06 Chang-Li Hsieh Chevron mist eliminator wash apparatus, and method and system employing the apparatus
CN107975851A (zh) * 2018-01-02 2018-05-01 广东美的厨房电器制造有限公司 吸油烟机及其清洗控制方法
CN112001271A (zh) * 2020-08-05 2020-11-27 安徽智星交通科技股份有限公司 一种工地道路保洁方法、装置和系统
CN112426841A (zh) * 2020-11-11 2021-03-02 昆岳互联环境技术(江苏)有限公司 数字化脱硫除雾器冲洗控制装置及方法
CN214209876U (zh) * 2020-11-26 2021-09-17 苏州硕冠环境科技有限公司 一种清洗除雾器
CN114273315A (zh) * 2022-03-04 2022-04-05 华电电力科学研究院有限公司 一种除雾器堵塞预控系统、方法、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003262B (zh) * 2018-06-29 2022-06-21 炬大科技有限公司 顽固污渍清洁方法及装置
CN110889801B (zh) * 2018-08-16 2023-10-20 九阳股份有限公司 一种烟灶系统的摄像头去污优化方法以及烟灶系统
US10809685B2 (en) * 2019-03-18 2020-10-20 Midea Group Co., Ltd. Dishwasher with cloud connected cameras
CN211757137U (zh) * 2019-12-17 2020-10-27 南京钢铁股份有限公司 一种脱硫塔管束除雾器清堵装置
CN113255502A (zh) * 2021-05-18 2021-08-13 阳光新能源开发有限公司 一种光伏组件的清洗方法及相关装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435472A1 (de) * 1984-09-27 1986-03-27 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Wasserspuelung fuer entneblerpakete hinter rauchgasentschwefelungsanlagen
CA2184776A1 (en) * 1995-09-05 1997-03-06 Chang-Li Hsieh Chevron mist eliminator wash apparatus, and method and system employing the apparatus
CN107975851A (zh) * 2018-01-02 2018-05-01 广东美的厨房电器制造有限公司 吸油烟机及其清洗控制方法
CN112001271A (zh) * 2020-08-05 2020-11-27 安徽智星交通科技股份有限公司 一种工地道路保洁方法、装置和系统
CN112426841A (zh) * 2020-11-11 2021-03-02 昆岳互联环境技术(江苏)有限公司 数字化脱硫除雾器冲洗控制装置及方法
CN214209876U (zh) * 2020-11-26 2021-09-17 苏州硕冠环境科技有限公司 一种清洗除雾器
CN114273315A (zh) * 2022-03-04 2022-04-05 华电电力科学研究院有限公司 一种除雾器堵塞预控系统、方法、设备及介质

Also Published As

Publication number Publication date
CN114273315A (zh) 2022-04-05
CN114273315B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023165129A1 (zh) 一种除雾器堵塞预控系统、方法、设备及介质
CN111710167A (zh) 一种基于在线交通仿真的单点优化控制方法及装置
CN108345282A (zh) 一种基于人工智能的泵站运行异常诊断方法及系统
CN109191842A (zh) 基于实时通行能力的拥堵调控策略推荐方法及系统
CN105839758B (zh) 一种可变初期雨水弃流控制系统、控制方法及构建方法
CN102033498B (zh) 一种雨水管理系统及其实现方法
CN113311799B (zh) 城市排水运行调度决策系统及构建方法
CN103366500A (zh) 电网系统的警报方法及装置
JP2002298063A (ja) 浸水予測と排水管理をするためのリアル浸水マップシステムおよびその方法
CN113274885B (zh) 应用于膜法污水处理的膜污染智能化预警方法
Vezzaro et al. A generalized dynamic overflow risk assessment (dora) for urban drainage rtc
Ding et al. Neural network based models for forecasting
CN113901626B (zh) 排水管网污泥沉积可视化仿真方法及系统
CN208654841U (zh) 一种水质预警预报系统
Capodaglio Transfer function modelling of urban drainage systems, and potential uses in real-time control applications
Litrico et al. Modelling and robust control of a dam-river system
CN204347573U (zh) 五水共治一站式服务平台
CN107705001A (zh) 一种流域突发污染事故信息链建立的方法
CN114444774A (zh) 基于强化学习的园区水系工作时间选择方法和系统
Figueras et al. Coral off-line: an object-oriented tool for optimal control of sewer networks
Mikulecky et al. A knowledge-based decision support system for river basin management
CN117852610A (zh) 一种基于bp神经网络与支持向量机的反冲洗方法及系统
CN221030517U (zh) 一种雨水口控制系统
Mansour et al. Towards traffic congestion-free through intelligent traffic control system
Sun et al. Operational reliability of urban drainage systems under uncertainties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929559

Country of ref document: EP

Kind code of ref document: A1