WO2023165119A1 - 拓展超声成像设备的功能的方法和系统 - Google Patents

拓展超声成像设备的功能的方法和系统 Download PDF

Info

Publication number
WO2023165119A1
WO2023165119A1 PCT/CN2022/121032 CN2022121032W WO2023165119A1 WO 2023165119 A1 WO2023165119 A1 WO 2023165119A1 CN 2022121032 W CN2022121032 W CN 2022121032W WO 2023165119 A1 WO2023165119 A1 WO 2023165119A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
integrated
ultrasonic
integrated imaging
host computer
Prior art date
Application number
PCT/CN2022/121032
Other languages
English (en)
French (fr)
Inventor
郑永平
黄子豪
郑乐勤
王立科
Original Assignee
意领科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意领科技有限公司 filed Critical 意领科技有限公司
Priority to US18/572,162 priority Critical patent/US20240115245A1/en
Publication of WO2023165119A1 publication Critical patent/WO2023165119A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4411Device being modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/462Displaying means of special interest characterised by constructional features of the display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like

Definitions

  • the present invention relates to the field of ultrasonic imaging, more specifically, to a method for expanding the function of an ultrasonic imaging device and an ultrasonic imaging system with expandable functions.
  • Ultrasound applications for diagnostic purposes include structural imaging and functional imaging, which are used to visualize a subject's anatomy and measure a subject's physiological function, respectively.
  • Traditional ultrasound imaging technology is widely used in medical practice and serves ultrasound examination with some fixed classic functions. Due to fierce market competition and large capital investment, in order to obtain a higher market share, equipment with traditional functions is mainly produced and dominated by large-scale manufacturers. From another perspective, the application fields of the ultrasound industry are relatively independent, and the configured functions depend on the manufacturer. Due to differences in technical barriers, intellectual property ownership, patent protection, talent reserves and development concepts, it is almost impossible to integrate and use ultrasound equipment produced by different manufacturers in the market.
  • a traditional ultrasound imaging system usually consists of three parts: an ultrasound probe, a host computer and a display unit.
  • the probe includes piezoelectric transducers for scanning the measured object;
  • the host includes front-end hardware circuits and computers for controlling and processing ultrasonic data; and
  • the display unit is used for interacting with users.
  • a single system provides several standard probe interfaces for converting and configuring different probes.
  • the "probe" in the narrow sense is only used to emit ultrasonic waves and receive echo signals.
  • the probe is configured on the ultrasound system by relying on the probe interface of the front-end hardware circuit, and communicates with the system through the cable to realize the transmission of data information.
  • Each probe has a specific imaging purpose and is used to achieve a specific function.
  • the traditional integration method has the disadvantages of high cost, heavy workload, complex technology and difficult operation.
  • the integration work involves changing the front-end circuit of the existing equipment and the probe interface based on the front-end hardware circuit; at the software level, the integration work needs to obtain source code and control rights.
  • the above-mentioned traditional configuration scheme has the following defects: first, each manufacturer may have different definitions of the interface line sequence of the probe, and the compatibility is poor, resulting in the probe being configured to only work on the system it belongs to;
  • the function may not be implemented, specifically, at the software level: the existing device may not be able to display a specific user interface and lack corresponding processing Algorithm; on the hardware level, it is manifested as: existing equipment may lack circuits and communication interfaces for controlling various components in the probe; third, in order to configure new probes, the cost of modifying the front-end hardware circuits and probe interfaces in existing equipment is high.
  • the present invention provides a method for expanding the function of an ultrasonic imaging device, comprising the following steps:
  • step S1 based on the user's input to the integrated imaging device, based on the user's input to the host machine and/or based on the sensing information of at least one sensor Identify the capabilities of all-in-one imaging devices and ultrasound imaging devices to be expanded.
  • step S2 if the comparison result shows that the function of the integrated imaging device is not compatible with the functions supported by the ultrasonic imaging device to be expanded, import the Packaged executable code to configure the host machine.
  • the ultrasonic data includes ultrasonic images, videos and measured values after signal and/or image processing.
  • the integrated imaging device is connected to the general interface of the host computer.
  • the step S4 includes:
  • S42 Perform signal processing, image processing, image reconstruction and/or multi-dimensional display on the ultrasound data on the cloud server;
  • the step S4 includes:
  • the present invention also provides an ultrasonic imaging system with expandable functions, including an integrated imaging device and a host machine of the ultrasonic imaging device to be expanded,
  • the integrated imaging device includes:
  • the imaging device is used to scan the measured object and process and generate corresponding ultrasonic data
  • the integrated imaging device communication interface is used to communicate with the host computer to realize two-way data transmission between the integrated imaging device and the host computer;
  • the integrator is used to identify and compare the functions of the integrated imaging device and the host computer, and configure the operating parameters and modes of the integrated imaging device and the host computer based on the comparison result;
  • the host includes:
  • a user terminal for operating the integrated imaging device and displaying the ultrasound data
  • the communication interface of the host computer is used to communicate with the integrated imaging device to realize bidirectional data transmission between the integrated imaging device and the host computer.
  • the communication interface of the host machine is a general interface of the host machine.
  • the ultrasonic data includes ultrasonic images, videos and measured values after signal and/or image processing.
  • the integrator identifies the integrated Imaging device and host functionality.
  • the integrator imports the packaged executable program code to the host computer to configure host machine.
  • the integrated imaging device is used for one-dimensional imaging applications, two-dimensional imaging applications, three-dimensional imaging applications, four-dimensional imaging, elastography, elasticity measurement, viscoelastic imaging, blood At least one of applications in flow imaging, acoustic attenuation imaging, and ultra-high-speed ultrasound imaging.
  • the communication interface of the integrated imaging device and the communication interface of the host computer are wirelessly or wiredly connected.
  • the integrated imaging device further includes at least one sensor for sensing the operation state information of the integrated imaging device, and based on the operation state information to promote the integrated imaging device and Host pairing and integration.
  • the imaging device completes the signal processing, image processing and image reconstruction of the image.
  • a cloud server is also included for realizing at least one of signal processing, image processing, image reconstruction and multi-dimensional display.
  • the cloud server is wirelessly connected to the integrated imaging device.
  • the cloud server is wirelessly connected to the host computer.
  • the integrated imaging device includes a user interface for receiving user input and/or realizing some functions of the user terminal in the host machine.
  • the imaging device is an ultrasonic imaging device, a device based on photoacoustic imaging or a device based on thermoacoustic imaging.
  • the present invention makes full use of the software and hardware resources of the existing ultrasonic imaging device, based on the integrated imaging device and host machine
  • the functions of the two can be integrated to expand the functions of existing equipment; no need to make any changes to the hardware of the host machine of the existing ultrasound imaging equipment, only need to upgrade or slightly modify the software, the new function can be parasitic to the existing equipment , so that new applications can be derived from traditional ultrasound imaging equipment; thus, the development cost can be greatly reduced, and it can be extended to most ultrasound imaging fields, with flexibility, low cost, high universality, easy maintenance, and easy upgrade
  • the advantages can be realized by the development cost of the existing equipment, based on the integrated imaging device and host machine
  • the functions of the two can be integrated to expand the functions of existing equipment; no need to make any changes to the hardware of the host machine of the existing ultrasound imaging equipment, only need to upgrade or slightly modify the software, the new function can be parasitic to the existing equipment , so that new applications can be derived from traditional ultrasound imaging equipment; thus, the development cost can be greatly reduced,
  • FIG. 1 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 1 of the present invention
  • Fig. 2 is a three-dimensional structural schematic diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a three-dimensional structure of an ultrasonic imaging system with expandable functions provided by Embodiment 2 of the present invention
  • Fig. 4 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 3 of the present invention.
  • Fig. 5 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 5 of the present invention.
  • Fig. 7 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 6 of the present invention.
  • Fig. 8 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 7 of the present invention.
  • Fig. 9 is a schematic diagram of the principle of an ultrasonic imaging system with expandable functions provided by Embodiment 8 of the present invention.
  • FIG. 10 is a flow chart of steps of a method for extending the functions of an ultrasound imaging device provided by Embodiment 9 of the present invention.
  • the inventive idea of the present invention is to use the general computer interface and display unit in the existing equipment to integrate the application-specific integrated imaging equipment with the existing ultrasound imaging equipment, and build a compatible ultrasound imaging system on the software level. Extend the functionality of existing equipment.
  • the integrated imaging device has a complete hardware system, and does not need to use existing devices to participate in the realization of functions at the hardware level, including control scheduling and data processing. After integration, the integrated imaging device becomes one of the external devices of the computer in the existing device.
  • the display unit in the existing device becomes one of the user terminals of the integrated imaging device.
  • the further idea of the present invention is to integrate the integrated imaging equipment based on other imaging means such as photoacoustic imaging or thermoacoustic imaging with the existing ultrasonic imaging equipment by using the general computer interface and display unit in the existing equipment.
  • all or part of the work of the processing unit in the integrated imaging device or the computer in the existing device is handed over to the cloud server for execution, and the data is analyzed and processed in the cloud. This method does not require existing equipment to participate in data processing.
  • Figure 1 is a schematic block diagram of an ultrasonic imaging system with expandable functions.
  • the system 100 includes an integrated imaging device 101 and a host computer 105 .
  • the integrated imaging device 101 has a complete set of hardware system, which can independently operate the configured ultrasonic imaging function, mainly including an ultrasonic imaging device 102, an integrator 103 and an integrated imaging device communication interface 104
  • the host machine 105 is a part of the existing ultrasonic imaging equipment, mainly including the user terminal 109 and the host machine communication interface 110 .
  • the integrator 103 identifies and compares the functions of the integrated imaging device 101 and the host computer 105 , and configures the operating parameters and modes of the integrated imaging device and the host computer based on the comparison result.
  • the ultrasonic data scanned by the ultrasonic imaging device 102 is transmitted to the user terminal for display through the communication interface of the integrated imaging device and the communication interface of the host computer.
  • the user can operate the integrated imaging device through the user terminal.
  • the integrated imaging device 101 becomes one of the external devices of the computer in the host machine 105 .
  • the user terminal 109 of the host machine 105 becomes one of the terminal devices of the integrated imaging device 101 .
  • the ultrasonic imaging device 102 includes an ultrasonic transducer, a control unit, a processing unit and a storage unit, which are used to perform ultrasonic scanning on the measured object and generate ultrasonic data of the measured object to carry out specific imaging applications .
  • One-dimensional ultrasonic images (such as A-mode images and M-mode images), two-dimensional ultrasonic images (such as B-mode images, Doppler images, elastic images), three-dimensional ultrasonic images or four-dimensional ultrasonic images can be generated by the ultrasonic imaging device 102 .
  • the ultrasonic transducer is arranged in a point by a single transducer array element or in a linear array, a convex array or a two-dimensional matrix by several transducer array elements, and is used to transmit ultrasonic waves to the measured object and receive echo signals .
  • Non-limiting transducer elements include piezoelectric elements, MEMS elements, or other transducer elements.
  • the control unit is used to coordinate the functions of each unit or component, and is used to execute instructions to control the operation of the probe.
  • the processing unit is used for processing ultrasound data to construct ultrasound images, including A-mode images, M-mode images, B-mode images, Doppler images, elasticity images, three-dimensional images or four-dimensional images.
  • the storage unit is based on at least one of hardware or software, and includes executable program codes that drive the integrated imaging device 101 for caching and packaging data.
  • the data is ultrasound-related data and/or other information, including but not limited to: imaging data, transducer configuration data, other sensor data, user and patient databases from the host computer.
  • the processing unit and the storage unit can be built in the integrated imaging device 101 .
  • the arrangement of the processing unit and the storage unit is not limited to the integrated imaging device 101 , and can also be arranged in the host machine 105 (described below).
  • the processing unit and the storage unit are at least a part of the host machine 105 , and all or part of their functions are performed by the host machine 105 .
  • the integrated imaging device 101 is based on the ultrasonic imaging device 102 and adopts other imaging means or is provided with other sensors and components to realize specific functions.
  • the integrated imaging device 101 is application-specific, and is used to carry out one-dimensional imaging applications, two-dimensional imaging applications, three-dimensional imaging applications and four-dimensional imaging, elastography, elasticity measurement, viscoelastic imaging, blood flow imaging At least one of , acoustic attenuation imaging, and ultra-high-speed ultrasonic imaging applications; it can be a transient elastic measurement device based on low-frequency vibration (with an elastic measurement function), an elastic measurement device based on ultrasonic indentation (with an elastic measurement function), and an acoustic-based Shear wave elastography equipment based on radiation force pulse (with elastography and measurement functions), strain elastography equipment based on quasi-static force (with elastography and measurement functions), three-dimensional ultrasonic imaging equipment based on spatial sensors (with three-dimensional imaging functions
  • the integrator 103 is used to integrate the integrated imaging device 101 into the host computer 105 at the software level, without involving the integration at the hardware circuit level, allowing the integrated imaging device 101 to be used with any host computer. It should be understood that, if the integrator 103 is not working, the integrated imaging device 101 can only be used together with the host 105 that supports the functions or applications of the integrated imaging device 101 .
  • the integrator 103 has the following functions: 1) identify and compare the functions of the integrated imaging device 101 and the functions supported/compatible with the host computer 105; 2) configure The integrated imaging device 101 satisfies the operating parameters and modes of working on the host computer 105; 3) based on the pairing result of the integrated imaging device 101 and the host computer 105, if the host computer 105 does not support/incompatible with the integrated imaging device 101, by importing packaged executable program codes (including front-end user interface codes and back-end processing algorithms) to the host computer 105 to configure the host computer 105 to meet the operating parameters and modes of work on the integrated imaging device 101 , so as to realize the integration of the integrated imaging device 101 and the host computer 105 at the software level.
  • packaged executable program codes including front-end user interface codes and back-end processing algorithms
  • the application mode includes but not limited to: one-dimensional application, two-dimensional application, three-dimensional application and four-dimensional application, etc.;
  • the operation mode includes but not limited to: contrast-enhanced ultrasound mode, elasticity measurement mode, elastic imaging mode, viscoelastic imaging mode, sound attenuation Imaging, ultra-high-speed ultrasound imaging, blood flow measurement mode, blood vessel imaging mode, digestive tract imaging mode, spine 3D reconstruction mode, muscle 3D reconstruction mode, and blood vessel reconstruction mode.
  • the specific mode depends on the functions and applications supported by the integrated imaging device, which is not limited in the present invention.
  • the integrated imaging device communication interface 104 is configured on the integrated imaging device 101 for communicating with the host computer 105 to realize two-way data transmission between the integrated imaging device 101 and the host computer 105 .
  • the way of communication connection includes wireless connection and wired connection.
  • Wired communication protocols include, but are not limited to: Universal Serial Bus (USB), Serial Peripheral Interface (SPI), Thunderbolt, PCIe, Integrated Circuit Bus (I2C).
  • Wireless communication protocols include but are not limited to: WiFi, Bluetooth, ultra-wideband (UWB), ZigBee, radio frequency identification (RFID), near field communication (NFC), 4G technology or 5G technology, etc.
  • RFID radio frequency identification
  • NFC near field communication
  • 5G technology etc.
  • the integrated imaging device communication interface 104 is configured to have a single or multiple communication interfaces for communicating with the host computer 105 that supports different communication protocols and interface types.
  • the host machine 105 includes a user terminal 109 and a host machine communication interface 110 .
  • the user terminal 109 is at least a part of the host machine 105 equipped with a computer, and is used for displaying ultrasound images, displaying ultrasound-related data, controlling the operation of the integrated imaging device, managing databases and post-processing data at least one item.
  • the user terminal 109 includes a display unit 111 , a patient database 112 , a user database 113 and a computer 114 .
  • the user terminal 109 is only used to display ultrasound data in picture and/or video format, but has nothing to do with data processing.
  • the user terminal 109 uses the existing display unit 111 on the host computer as a terminal platform for interacting with users, without any modification to the host computer at the hardware level, and belongs to a part of the firmware of the computer in the host computer.
  • the display unit 111 may be an external display device or a cathode ray tube display or a liquid crystal screen embedded in the ultrasonic imaging device, for displaying ultrasonic images, measurement results and/or ultrasonic data obtained by the integrated imaging device.
  • the display format depends on the existing settings of the host machine. Second, as far as the operation control function is concerned, when the integrated imaging device 101 is integrated into the host computer 105 at the software level, the user terminal 109 is used to carry the packaged executable program code (including front-end user interface code and back-end processing algorithm).
  • the user interface and processing algorithms are configured to be compatible with the host computer 105 .
  • the form of user interaction depends on the existing settings of the host machine.
  • the user can access the patient database 112 and user database 113 of the integrated imaging device 101 under the current application.
  • the computer 114 in the host machine stores various algorithms for completing all or part of the work of the processing unit 106 in the integrated imaging device 101 . This manner can save resources and computing power of the integrated imaging device 101 .
  • the user terminal 109 participates in signal processing, image processing, image reconstruction or multi-dimensional display, which can be applied to the following three situations: 1) complete processing of the unprocessed data of the integrated imaging device 101; 2) complete processing of the integrated imaging device 101 The data pre-processed by the imaging device 101 is further processed; 3) The data processed by the integrated imaging device 101 is post-processed.
  • the host computer communication interface 110 is at least a part of the host computer 105 configured with a computer, and belongs to a general computer interface in the host computer 105 .
  • the host computer communication interface 110 is constructed on the computer of the host computer 105, and is used for communication connection with the integrated imaging device 101, so as to realize two-way data transmission between the integrated imaging device 101 and the host computer 105.
  • the successful pairing between the integrated imaging device 101 and the host computer 105 depends on the interface type of the existing host computer communication interface 110 .
  • the host computer communication interface 110 is existing, without any modification to the host computer, and belongs to a part of the firmware of the computer in the host computer.
  • the communication interface 104 of the integrated imaging device if it is incompatible with the communication interface 110 of the host machine in terms of physical structure, it only needs to configure a suitable adapter for the communication interface 110 of the host machine, and make minor changes at the hardware level to establish communication connection.
  • a suitable adapter for the communication interface 110 of the host machine, and make minor changes at the hardware level to establish communication connection.
  • the host computer communication interface 110 when the host computer communication interface 110 only supports the USB communication protocol, disposing a USB-WiFi adapter on the USB interface may enable the host computer to realize a pairing connection with the integrated imaging device supporting the WiFi communication protocol.
  • FIG. 2 is a schematic perspective view of a system based on a wired communication protocol provided by Embodiment 1 of the present invention.
  • a pluggable cable connection 201 is used between the integrated imaging device communication interface 104 and the host computer communication interface 110 .
  • Data transmission between the integrated imaging device 101 and the host computer 105 is performed through a wired communication protocol.
  • Wired communication protocols include, but are not limited to: Universal Serial Bus (USB), Serial Peripheral Interface (SPI), Thunderbolt, PCIe, Integrated Circuit Bus (I2C).
  • USB Universal Serial Bus
  • SPI Serial Peripheral Interface
  • Thunderbolt PCIe
  • I2C Integrated Circuit Bus
  • FIG. 3 is a schematic perspective view of a system based on a wireless communication protocol provided by Embodiment 2 of the present invention.
  • a wireless connection 301 is adopted between the communication interface 104 of the integrated imaging device and the communication interface 110 of the host machine.
  • data transmission is performed between the integrated imaging device 101 and the host computer 105 through a wireless communication protocol.
  • Wireless communication protocols include but are not limited to: WiFi, Bluetooth, ultra-wideband (UWB), ZigBee, radio frequency identification (RFID), near field communication (NFC), 4G technology or 5G technology, etc.
  • RFID radio frequency identification
  • NFC near field communication
  • 5G technology etc.
  • FIG. 4 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 3.
  • FIG. 4 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 3.
  • the integrated imaging device 101 further includes a power supply unit 401 .
  • the power supply unit 401 includes a battery and related circuits, and is used to independently supply power to the integrated imaging device 101 .
  • the charging method can be wireless charging or wired charging.
  • the integrated imaging device 101 does not need to rely on the host machine 105 to provide power, which is especially suitable for wireless connection.
  • FIG. 5 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 4.
  • FIG. 5 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 4.
  • the integrated imaging device 101 further includes a user interface 501 .
  • the user interface 501 is a hardware device, which is physically arranged at any position of the integrated imaging device 101, and is used to receive instructions input by the user at the integrated imaging device end, and to promote the integrated imaging device based on the contents of the instructions. Pairing and integration of 101 and host machine 105.
  • the instructions include, but are not limited to: selection of an operation mode, selection of an application mode, adjustment of image parameters, and the like.
  • the ways of user input include but are not limited to: audio input, manual key input, touch panel manual input, and touch screen manual input.
  • the user interface 501 is used to realize some functions of the user terminal in the host machine, including displaying ultrasound images (the user interface 501 is used to complete part of the work of the display unit 111), displaying ultrasound-related data (the The user interface 501 is used to complete part of the work of the display unit 111), control the operation of the integrated imaging device (the user interface 501 is used to complete part of the work of the display unit 111 and the computer 114) and manage the database (the user interface 501 is used for Partial work on patient database 112 and/or user database 113 is completed).
  • FIG. 6 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 5.
  • FIG. 6 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 5.
  • the integrated imaging device 101 further includes a sensor 601 .
  • the sensor 601 may be at least one of a temperature sensor, a force sensor, a motion sensor, a three-dimensional space sensor or a camera, and is used to perceive the operation state information of the integrated imaging device 101, and promote the integrated imaging device based on the operation state information. Pairing and integration of 101 and host machine 105. For example, if the integrated imaging device 101 has the application of three-dimensional imaging or four-dimensional imaging, the host computer 105 can analyze and predict the integrated imaging device 101 to be connected according to the data changes and operation information acquired by the three-dimensional space sensor 601.
  • the host machine 105 can analyze and predict the integrated imaging device to be connected according to the data changes and operation information acquired by the motion sensor or force sensor 601
  • the application mode of the device 101 if the integrated imaging device 101 has the application of mammary gland or liver elastography, the host machine 105 can analyze and analyze the ultrasonic image characteristics obtained by the integrated imaging device 101 combined with the operation information obtained by the force sensor 601.
  • the application mode of the integrated imaging device 101 to be connected is predicted.
  • the operation status information sensed by the sensor can further promote the integration of the integrated imaging device and the host machine, thereby improving the pairing efficiency.
  • FIG. 7 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 6.
  • FIG. 7 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 6.
  • the difference between the system provided in this implementation and Embodiment 1 is that the integrated imaging device 101 is not based on ultrasonic imaging or the integrated imaging device 101 is not an application-specific integrated ultrasonic imaging device, but based on photoacoustic imaging or thermoacoustic imaging, etc. Other biomedical imaging modalities.
  • the photoacoustic imaging-based integrated imaging device 101 includes a photoacoustic imaging device 701 for irradiating pulsed laser light on the object to be measured, and then collecting ultrasonic signals generated by tissue excitation by light to generate a photoacoustic image.
  • the integrated imaging device 101 based on thermoacoustic imaging is used to irradiate the measured object with radio-frequency pulsed laser light, and then collect the ultrasonic signals generated by the tissue excited by light to generate thermoacoustic imaging. image.
  • Biomedical imaging methods based on photoacoustic imaging or thermoacoustic imaging are developing rapidly.
  • the present invention can integrate photoacoustic imaging and thermoacoustic imaging into existing Some hosts, and then expand the use of photoacoustic imaging and thermoacoustic imaging.
  • FIG. 8 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 7.
  • FIG. 8 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by Embodiment 7.
  • the system 100 further includes a cloud server 801 .
  • the cloud server 801 is configured to implement all or part of the functions of the user terminal 109 of the host machine 105 on the cloud.
  • the cloud server 801 is directly wirelessly connected to the host computer 105 .
  • the system 100 is connected to the cloud server 801 through the host computer 105 through wired or wireless transmission, and performs data intercommunication. Specifically, the system 100 uploads the relevant data obtained by the integrated imaging device 101 to the cloud server 801 and similar processing modules through the user terminal 109; the cloud server 801 performs cloud computing on the data for analysis and processing . After analysis, calculation and processing are performed in the cloud, the processed relevant data is sent back to the user terminal 109 for display.
  • the cloud server 801 stores various algorithms and has data processing functions for realizing signal processing, image processing, image reconstruction or multi-dimensional display, and is applicable to the following three situations: 1) For the local system 100 Complete processing of the processed data; 1) further processing of the data pre-processed by the local system 100; 2) post-processing of the data processed by the local system 100.
  • a big data workstation can also be built on the cloud server to participate in data storage, management, retrospective analysis and sharing.
  • FIG. 9 is a schematic block diagram of an ultrasonic imaging system with expandable functions provided by the eighth embodiment.
  • the cloud server 801 is directly and wirelessly connected to the integrated imaging device 101 without going through a host computer.
  • the system 100 is connected to the cloud server 801 through the integrated imaging device 101 through wired or wireless transmission, and performs data intercommunication.
  • the integrated imaging device 101 uploads the obtained relevant data to the cloud server 801 and similar processing modules; the cloud server 801 performs cloud computing on the data for analysis and processing.
  • the processed relevant data is sent back to the integrated imaging device, and then transmitted to the user terminal of the host computer through the communication interface of the integrated imaging device for display.
  • this method does not require the host machine to participate in data processing, and has the following advantages: 1) saving the resources and computing power of the local system; 2) promoting the miniaturization and integration of the hardware of the integrated imaging device 3) Conducive to data management; 4) Conducive to the update, optimization and execution of more advanced artificial intelligence-related algorithms.
  • a method for expanding the function of an ultrasonic imaging device includes the following steps:
  • the manner of identifying the functions of the integrated imaging device and the ultrasonic imaging device to be expanded includes: based on user input to the integrated imaging device, based on user input from the host computer of the ultrasonic imaging device to be expanded, and/or based on Sensing information of at least one sensor.
  • the integrated imaging device has a complete set of hardware system, which may be an application-specific integrated imaging device based on ultrasound imaging, or an integrated imaging device based on other biomedical imaging such as photoacoustic imaging or thermoacoustic imaging.
  • the result of the comparison is that the functions of the integrated imaging device are not compatible with the functions supported by the host, import the packaged executable program code to the host to configure the host, and start the integration work.
  • the comparison result shows that the functions of the integrated imaging device are compatible with the functions supported by the host computer, it means that the host computer has been configured with executable program codes dedicated to the integrated imaging device.
  • the selected operation mode, the selected application mode or user input configure the operating parameters and modes of the integrated imaging device and the host computer, including but not limited to communication Interface types, imaging parameters, measurement parameters, imaging modes, operating modes, applications and functions.
  • the configuration process includes: identifying the type and/or supported communication protocol of the integrated imaging device communication interface of the integrated imaging device, identifying the type and/or supported communication protocol of the host computer communication interface of the host, Set the integrated imaging device to the state to be connected, import the packaged executable program code to the host computer for operating the integrated imaging device (if necessary), and set the host computer to the state to be connected.
  • the communication interface of the integrated imaging device and the communication interface of the host computer are constructed on the integrated imaging device and the host computer respectively, and are used to complete the communication connection between the integrated imaging device and the host computer to realize two-way data transmission.
  • the way of communication connection includes wireless connection and wired connection.
  • the host computer communication interface is at least a part of the host computer configured with a computer, and belongs to a general computer interface in the host computer.
  • the integrated imaging device becomes one of the external devices of the host computer.
  • the user terminal of the host machine becomes one of the terminal devices of the integrated imaging equipment, which is used to display ultrasound images, display ultrasound-related data, control the operation of the integrated imaging equipment, manage databases, and post-process data.
  • the integrated imaging device completes all the processing of the ultrasonic data, and the processed ultrasonic data is transmitted to the user terminal for display through the general interface of the host computer, therefore, the step S4 includes:
  • step S4 includes:
  • the integrated imaging device Based on the ultrasound-related data, the integrated imaging device performs signal processing, image processing, image reconstruction and/or multi-dimensional display on the cloud server;
  • the present invention can also be implemented by a computer program product, the program contains all the features capable of realizing the method of the present invention, and when it is installed in a computer system, the method of the present invention can be realized.
  • a computer program in this document refers to: any expression of a set of instructions that can be written in any programming language, code, or symbol, which enables the system to have information processing capabilities to directly implement a specific function, or to perform the following Specific functions are realized after one or two steps mentioned above: a) conversion into other languages, codes or symbols; b) reproduction in different formats.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种拓展超声成像设备功能的方法,包括:识别并比较一体化成像设备和待拓展的超声成像设备的功能(S1);基于比较结果,配置一体化成像设备和宿主机的运行参数和模式(S2);通讯连接一体化成像设备和宿主机(S4);于宿主机的用户终端上操作一体化成像设备并显示超声数据(S4)。利用现有的超声成像设备的软件、硬件资源,基于一体化成像设备和宿主机的功能,将两者进行整合,拓展现有设备的功能;无需对现有宿主机的硬件做任何改动,只需要升级或少量修改软件,就能将新功能整合到现有设备,使传统的超声成像设备衍生出新应用。

Description

拓展超声成像设备的功能的方法和系统 技术领域
本发明涉及超声成像领域,更具体地说,涉及一种拓展超声成像设备的功能的方法和功能可拓展的超声成像系统。
背景技术
诊断用途的超声应用包括结构性成像和功能性成像,分别用于可视化被测对象的解剖结构和测量被测对象的生理功能。传统的超声成像技术被广泛地应用于医疗实践中,并以一些固定的经典功能服务于超声检查。由于市场竞争激烈和资金投入大等原因,为了获得更高的市场占有率,具有传统功能的设备主要由规模大的厂商所生产和主导。从另一个角度看,超声产业的应用领域是相对独立的,所配置的功能取决于所属制造商。由于技术壁垒、知识产权归属、专利保护、人才储备和发展理念的差异,市场上不同厂商生产的超声设备几乎不可能整合使用。
然而,随着理念更新和技术进步,以应用或疾病为导向的超声技术处于蓬勃发展中,并不断扩大着超声产业的版图。由此,一些初创公司和小企业通过创新技术占据了传统的超声大厂商无法涉足的领域。具体例子包括:基于瞬时弹性测量的肝纤维化检测、基于经颅超声多普勒的脑血管检测、基于三维成像的脊柱侧弯检测、基于三维成像的颈动脉硬化检测和基于四维成像的胎儿产前检测等。上述功能主要由各自独立的、应用专用的超声系统来实现。
传统的超声成像系统通常由超声波探头、主机和显示单元三部分组成。一般地,探头包括压电换能器,用于扫描被测对象;主机包括前端硬件电路和计算机,用于控制和处理超声数据;显示单元用于与用户交互。通常地,单个系统提供数个标准探头接口,用于转换、配置不同探头。具体地,狭义上的“探头”仅用于发射超声波并接受回波信号。探头依靠前端硬件电路的探头接口被配置在所属超声系统上,并通过电缆线与所属系统通讯连接,实现传输数据信息。每个探头具有特定的成像目的,用于实现具体的功能。若要在现有设备上配置一种新探头,传统的整合方式具有成本高昂、工作量大、技术复杂、操作难度大的缺点。在硬件层面,整合工作涉及改动现有设备前端电路和基于前端硬件电路的探头接口;在软件层面,整合工作需要获得源代码和控制权。因此,上述传统的配置方案存在以下缺陷:其一,每家厂商对探头的接口线序定义可能不同,兼容性差,导致探头被构造成仅能对所属系统起作用;其二,当用于开展特定功能的新探头被配置在不支持该应用的现有设备上时,该功能可能无法实现,具体地,在软件层面上表现为:现有设备可能无法显示特定的用户界面和缺乏相应的处理算法;在硬件层面上表现为:现有设备可能缺乏用于控制探头内各个部件的电路和通讯接口;其三,为配置新探头,修改现有设备内的前端硬件电路和探头接口成本高。
在不增加额外成本的前提下,于现有设备上配置多种新功能是被期待的。从用户角度而言,新添功能可满足更多的诊断需求、探索更多的超声应用;从大厂商角度而言,新添功能可增加现有设备的产品竞争力;从专注于特定应用的开发者角度而言,将新添功能寄生到现有设备可提高该功能的可及性和普及性,有利于加强市场渗透率。
综上所述,如何将特定的超声功能整合入原本不兼容该功能的传统超声成像设备,拓展现有设备的应用范围,是超声产业的从业者亟需解决的问题。
发明内容
本发明提供一种拓展超声成像设备功能的方法,包括以下步骤:
S1、识别并比较一体化成像设备和待拓展的超声成像设备的功能;
S2、基于比较结果,配置一体化成像设备和待拓展的超声成像设备的宿主机的运行参数和模式;
S3、通讯连接一体化成像设备和所述宿主机;
S4、于宿主机的用户终端上操作一体化成像设备并显示所述一体化成像设备生成的超声数据。
在本发明提供的拓展超声成像设备功能的方法中,在所述步骤S1中,基于用户对一体化成像设备的输入、基于用户对宿主机的输入和/或基于至少一个传感器的传感信息来识别一体化成像设备和待拓展的超声成像设备的功能。
在本发明提供的拓展超声成像设备功能的方法中,在所述步骤S2中,若比较结果为一体化成像设备的功能与待拓展的超声成像设备所支持的功能不兼容,则向宿主机导入已打包的可执行程序代码以配置宿主机。
在本发明提供的拓展超声成像设备功能的方法中,所述超声数据包括经信号和/或图像处理后的超声图像、视频和测量值。
在本发明提供的拓展超声成像设备功能的方法中,所述一体化成像设备连接于所述宿主机的通用接口。
在本发明提供的拓展超声成像设备功能的方法中,所述步骤S4包括:
S41、將一体化成像设备获得的超声数据传送到云端服务器;
S42、在云端服务器对所述超声数据进行信号处理、图像处理、图像重建和/或多维显示;
S43、将处理后的超声数据传送到用户终端显示。
在本发明提供的拓展超声成像设备功能的方法中,所述步骤S4包括:
S41’、通过一体化成像设备获取并处理超声数据;
S42’、将处理后的超声数据通过宿主机的通用接口传送到用户终端显示。
本发明还提供一种功能可拓展的超声成像系统,包括一体化成像设备和待拓展的超声成像设备的宿主机,
所述一体化成像设备包括:
成像装置,用于对被测对象进行扫描并处理生成相应的超声数据;
一体化成像设备通讯接口,用于与宿主机通讯连接,实现一体化成像设备与宿主机之间的双向数据传输;
整合器,用于识别并比较一体化成像设备和宿主机的功能,基于比较结果,配置一体化成像设备和宿主机的运行参数和模式;
所述宿主机包括:
用户终端,用于操作一体化成像设备并显示所述超声数据;
宿主机通讯接口,用于与一体化成像设备通讯连接,实现一体化成像设备与宿主机之间的双向数据传输。
在本发明提供的功能可拓展的超声成像系统中,所述宿主机通讯接口为所述宿主机的通用接口。
在本发明提供的功能可拓展的超声成像系统中,所述超声数据包括经信号和/或图像处理后的超声图像、视频和测量值。
在本发明提供的功能可拓展的超声成像系统中,所述整合器基于用户对一 体化成像设备的输入、基于用户对宿主机的输入和/或基于至少一个传感器的传感信息来识别一体化成像设备和宿主机的功能。
在本发明提供的功能可拓展的超声成像系统中,若比较结果为一体化成像设备的功能与宿主机所支持的功能不兼容,则整合器向宿主机导入已打包的可执行程序代码以配置宿主机。
在本发明提供的功能可拓展的超声成像系统中,所述一体化成像设备用于一维成像应用、二维成像应用、三维成像应用、四维成像、弹性成像、弹性测量、粘弹性成像、血流成像、声衰减成像、超高速超声成像应用中的至少一种。
在本发明提供的功能可拓展的超声成像系统中,一体化成像设备通讯接口和宿主机通讯接口之间为无线连接或有线连接。
在本发明提供的功能可拓展的超声成像系统中,所述一体化成像设备还包括至少一个传感器,用于感知一体化成像设备的操作状态信息,并基于操作状态信息以促进一体化成像设备和宿主机的配对和整合。
在本发明提供的功能可拓展的超声成像系统中,由所述成像装置完成对所述图像的信号处理、图像处理和图像重建。
在本发明提供的功能可拓展的超声成像系统中,还包括云端服务器,用于实现信号处理、图像处理、图像重建和多维显示中的至少一种。
在本发明提供的功能可拓展的超声成像系统中,所述云端服务器与所述一体化成像设备无线连接。
在本发明提供的功能可拓展的超声成像系统中,所述云端服务器与所述宿主机无线连接。
在本发明提供的功能可拓展的超声成像系统中,所述一体化成像设备包括用户接口,用于接收用户输入和/或实现宿主机中用户终端的部分功能。
在本发明提供的功能可拓展的超声成像系统中,所述成像装置为超声成像装置、基于光声成像的装置或基于热声成像的装置。
实施本发明的拓展超声成像设备功能的方法和功能可拓展的超声成像系统至少可以达到以下有益效果:本发明充分利用现有的超声成像设备的软件、硬件资源,基于一体化成像设备和宿主机的功能,将两者进行整合,拓展现有设备的功能;无需对现有超声成像设备的宿主机的硬件做任何改动,只需要升级或少量修改软件,就能将新功能寄生到现有设备,使传统的超声成像设备衍生出新应用;由此,可以大大降低了开发成本,可被推广至绝大多数的超声成像领域,具有灵活、低成本、高普适性、易于维护、易于升级的优点。
附图说明
为了更清楚地说明发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图:
图1为本发明实施例一提供的一种功能可拓展的超声成像系统的原理示意图;
图2为本发明实施例一提供的一种功能可拓展的超声成像系统的立体结构示意图;
图3是本发明实施例二提供的一种功能可拓展的超声成像系统的立体结构示意图;
图4是本发明实施例三提供的一种功能可拓展的超声成像系统的原理示意图;
图5是本发明实施例四提供的一种功能可拓展的超声成像系统的原理示意图;
图6是本发明实施例五提供的一种功能可拓展的超声成像系统的原理示意图;
图7是本发明实施例六提供的一种功能可拓展的超声成像系统的原理示意图;
图8是本发明实施例七提供的一种功能可拓展的超声成像系统的原理示意图;
图9是本发明实施例八提供的一种功能可拓展的超声成像系统的原理示意图;
图10为本发明实施例九提供的一种拓展超声成像设备的功能的方法的步骤流程图。
具体实施方式
本发明的发明构思是利用现有设备内的通用计算机接口和显示单元,将应用专用的一体化成像设备和现有的超声成像设备整合在一起,在软件层面上搭建相兼容的超声成像系统,拓展现有设备的功能。所述一体化成像设备拥有一套完整的硬件系统,无需利用现有设备在硬件层面参与功能的实现,包括控制调度和数据处理。整合后,所述一体化成像设备成为现有设备内的计算机的其一外接设备。现有设备内的显示单元成为所述一体化成像设备的其一用户终端。本发明进一步的构想是,利用现有设备内的通用计算机接口和显示单元,将基于光声成像或热声成像等其他成像手段的一体化成像设备和现有的超声成像设备整合在一起,在软件层面上搭建相兼容的生物医学成像系统。再进一步地,将一体化成像设备内处理单元或现有设备内计算机的全部或部分工作交由云端服务器执行,在云端对数据进行分析和处理。此方法无需现有设备参与数据处理。
实施例一
图1所示为一种功能可拓展的超声成像系统的方框示意图。
参见图1,本实施例提供了一种功能可拓展的超声成像系统。所述系统100 包括一体化成像设备101和宿主机105。本领域技术人员应知悉,所述一体化成像设备101拥有一套完整的硬件系统,可独立运行所配置的超声成像功能,主要包括超声成像装置102、整合器103和一体化成像设备通讯接口104;宿主机105为现有的超声成像设备的一部分,主要包括用户终端109和宿主机通讯接口110。通过整合器103识别并比较一体化成像设备101和宿主机105的功能,基于比较结果,配置一体化成像设备和宿主机的运行参数和模式。当整合完成后,超声成像装置102扫描得到的超声数据通过一体化成像设备通讯接口和宿主机通讯接口传输到用户终端上进行显示,同时,用户可以通过用户终端来操作一体化成像设备。由此,在系统100内,一体化成像设备101成为宿主机105内计算机的其一外接设备。与此同时,宿主机105的用户终端109成为一体化成像设备101的其一终端设备。
本实施例中,所述超声成像装置102包括超声换能器、控制单元、处理单元和储存单元,用于对被测对象进行超声扫描并生成被测对象的超声数据,以开展特定的成像应用。通过超声成像装置102可生成一维超声图像(如A型图像和M型图像)、二维超声图像(如B型图像、多普勒图像、弹性图像)、三维超声图像或四维超声图像。
具体地,超声换能器由单个换能器阵元按点或由数个换能器阵元按线阵、凸阵或二维矩阵排列,用于向被测对象发射超声波并接收回波信号。非限制性的换能器元件包括压电元件、MEMS元件或其它换能器元件。控制单元用于协调各单元或部件的功能,用于执行指令以控制探头运行。处理单元用于处理超声数据以构建超声图像,包括A型图像、M型图像、B型图像、多普勒图像、弹性图像、三维图像或四维图像。储存单元是基于硬件或软件的至少一种,包含驱动一体化成像设备101的可执行程序代码,用于对数据进行缓存和打包。 所述数据是超声相关数据和/或其他信息,包括但不限于:成像数据、换能器配置数据、其他传感器数据、来自宿主机的用户数据库和病人数据库。值得说明的是,处理单元和储存单元可以内置于一体化成像设备101内。在另一实施例中,处理单元和储存单元的设置不局限于一体化成像设备101,也可被设置在宿主机105中(下述)。处理单元和储存单元是宿主机105的至少一部分,其全部或部分功能由宿主机105执行。本领域技术人员应知悉,所述一体化成像设备101是以超声成像装置102为基础,采用其他成像手段或设置其他传感器、元件,实现具体的功能。非限制性地,所述一体化成像设备101是应用专用的,用于开展一维成像应用、二维成像应用、三维成像应用和四维成像、弹性成像、弹性测量、粘弹性成像、血流成像、声衰减成像、超高速超声成像应用中的至少一种;可以是基于低频振动的瞬时弹性测量设备(具有弹性测量功能)、基于超声印压的弹性测量设备(具有弹性测量功能)、基于声辐射力脉冲的剪切波弹性成像设备(具有弹性成像和测量功能)、基于准静态力的应变弹性成像设备(具有弹性成像和测量功能)、基于空间传感器的三维超声成像设备(具有三维成像功能)、经颅超声多普勒设备(具有血流测量功能)、血管内超声成像设备(具有血管成像功能)、超声内窥镜设备(具有消化道成像功能)、超声体层摄影设备(具有断层和三维成像功能)等。值得说明的是,本发明不限制一体化成像设备的外形、频率、通讯接口类型、成像模式、操作模式、应用和功能。本实施例中的一体化成像设备可开展本领域中已知的任何功能和应用。
本实施例中,整合器103用于在软件层面将一体化成像设备101整合入宿主机105,不涉及硬件电路层面的整合,允许所述一体化成像设备101与任何的宿主机一起使用。应当理解的是,若整合器103不工作时,一体化成像设备 101仅能与支持一体化成像设备101的功能或应用的宿主机105一起使用。整合器103具有如下功能:1)识别一体化成像设备101的功能和宿主机105所支持/兼容的功能,并进行比较;2)基于一体化成像设备101与宿主机105功能的比较结果,配置一体化成像设备101内满足在宿主机105上工作的运行参数和模式;3)基于一体化成像设备101与宿主机105的配对结果,若宿主机105不支持/不兼容所述一体化成像设备101的功能,则通过向宿主机105导入已打包的可执行程序代码(包括前端用户界面代码和后端处理算法)以配置宿主机105内满足在一体化成像设备101上工作的运行参数和模式,从而实现一体化成像设备101与宿主机105在软件层面上的整合。其中,应用模式包括但不限于:一维应用、二维应用、三维应用和四维应用等;操作模式包括但不限于:超声造影模式、弹性测量模式、弹性成像模式、粘弹性成像模式、声衰减成像、超高速超声成像、血流测量模式、血管成像模式、消化道成像模式、脊柱三维重建模式、肌肉三维重建模式、血管重建模式。具体模式取决于一体化成像设备所支持的功能和应用,本发明对此不作限定。
本实施例中,一体化成像设备通讯接口104被构造在一体化成像设备101上,用于与宿主机105通讯连接,实现一体化成像设备101与宿主机105之间的双向数据传输。通讯连接的方式包括无线连接和有线连接。有线通讯协议包括但不限于:通用串行总线(USB)、串行外设接口(SPI)、Thunderbolt、PCIe、集成电路总线(I2C)。无线通讯协议包括但不限于:WiFi、蓝牙、超带宽(UWB)、ZigBee、射频识别(RFID)、近场通讯(NFC)、4G技术或5G技术等。本领域技术人员应知悉,所述一体化成像设备通讯接口104被构造成具有单个或者多个通讯接口,用于与支持不同通讯协议和接口类型的宿主机105通讯连接。
在本实施例中,所述宿主机105包括用户终端109和宿主机通讯接口110。 所述用户终端109为已配置有计算机的宿主机105的至少一部分,用于显示超声图像、显示超声相关数据、控制一体化成像设备运行、管理数据库和后处理数据的至少一项。具体地,所述用户终端109包括显示单元111、病人数据库112、用户数据库113和计算机114。其一,就显示功能而言,用户终端109仅用于显示图片和/或视频格式的超声数据,但与数据处理无关。所述用户终端109是以宿主机上现有的显示单元111作为与用户交互的终端平台,无需在硬件层面对宿主机做任何改动,属于宿主机内计算机的其中一部分固件。所述显示单元111可以是外置显示设备或内嵌于超声成像设备的阴极射线管显示器或液晶屏,用于显示由一体化成像设备获得的超声图像、测量结果和/或超声数据。显示形式取决于宿主机的现有设置。其二,就运行控制功能而言,当一体化成像设备101在软件层面被整合入宿主机105时,用户终端109用于承载已打包的可执行程序代码(包括前端用户界面代码和后端处理算法)。值得说明的是,用户界面和处理算法被构造成与所述宿主机105相兼容。用户交互的形式取决于宿主机的现有设置。其三,就数据管理而言,用户可以访问所述一体化成像设备101在当前应用下的病人数据库112和用户数据库113。其四,就数据处理功能而言,所述宿主机内的计算机114存储各种算法,用于完成一体化成像设备101内处理单元106的全部或部分工作。该方式可节约一体化成像设备101的资源和算力。可选地,用户终端109参与信号处理、图像处理、图像重建或多维显示,可适用于如下三种情况:1)对一体化成像设备101未处理过的数据做完整处理;2)对一体化成像设备101预处理过的数据做进一步处理;3)对一体化成像设备101已处理后的数据做后处理。
在本实施例中,所述宿主机通讯接口110为已配置有计算机的宿主机105的至少一部分,属于宿主机105内的通用计算机接口。所述宿主机通讯接口 110被构造在宿主机105的计算机上,用于与一体化成像设备101通讯连接,实现一体化成像设备101与宿主机105之间的双向数据传输。值得说明的是,一体化成像设备101与宿主机105的成功配对取决于现有的宿主机通讯接口110的接口类型。优选地,所述宿主机通讯接口110是现有的,无需对宿主机做任何改动,属于宿主机内计算机的其中一部分固件。在另一实施例中,若一体化成像设备通讯接口104与宿主机通讯接口110在物理结构上不兼容,只需对宿主机通讯接口110配置合适的适配器,在硬件层面做微小改动即可建立通讯连接。例如,当宿主机通讯接口110仅支持USB通讯协议的情况下,在USB接口上配置USB-WiFi适配器可能使宿主机与支持WiFi通讯协议的一体化成像设备实现配对连接。
图2是本发明实施例一提供的基于有线通讯协议的系统的立体结构示意图。
如图2所示,一体化成像设备通讯接口104和宿主机通讯接口110之间采用可拔插的线缆连接201。一体化成像设备101和宿主机105之间是通过有线通讯协议进行数据传输的。有线通讯协议包括但不限于:通用串行总线(USB)、串行外设接口(SPI)、Thunderbolt、PCIe、集成电路总线(I2C)。由此,一体化成像设备在软件层面被整合入现有的超声成像设备,成为其子功能,以便与原本不兼容或不支持特定应用的现有设备一起使用。
实施例二
图3是本发明实施例二提供的基于无线通讯协议的系统的立体结构示意图。
本实施提供的系统与实施例一的区别在于:如图3所示,一体化成像设备通讯接口104和宿主机通讯接口110之间采用无线连接301。在本实施例中, 一体化成像设备101和宿主机105之间是通过无线通讯协议进行数据传输的。无线通讯协议包括但不限于:WiFi、蓝牙、超带宽(UWB)、ZigBee、射频识别(RFID)、近场通讯(NFC)、4G技术或5G技术等。由此,一体化成像设备在软件层面被整合入现有的超声成像设备,成为其子功能,以便与原本不兼容或不支持特定应用的现有设备一起使用。
实施例三
图4所示为实施例三提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例一的区别在于:进一步地,一体化成像设备101还包括电源单元401。所述电源单元401含电池和相关电路,用于向一体化成像设备101独立供电。充电方式可以是无线充电或有线充电。在本实施例中,一体化成像设备101无需依靠宿主机105提供电能,特别适用于无线连接的情况。
实施例四
图5所示为实施例四提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例一的区别在于:进一步地,一体化成像设备101还包括用户接口501。所述用户接口501为一种硬件装置,被物理地设置在一体化成像设备101的任一位置,用于在一体化成像设备端接收用户输入的指令,并基于指令内容以促进一体化成像设备101和宿主机105的配对和整合。所述指令包括但不限于:操作模式的选择、应用模式的选择、图像参数的调整等。用户输入的方式包括但不限于:音频输入、按键手动输入、触控板手动输入、触控屏手动输入。在另一实施例中,用户接口501用于实现宿主机中用户 终端的部分功能,包括显示超声图像(所述用户接口501用于完成显示单元111的部分工作)、显示超声相关数据(所述用户接口501用于完成显示单元111的部分工作)、控制一体化成像设备运行(所述用户接口501用于完成显示单元111和计算机114的部分工作)和管理数据库(所述用户接口501用于完成病人数据库112和/或用户数据库113的部分工作)。
实施例五
图6所示为实施例五提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例一的区别在于:进一步地,一体化成像设备101还包括传感器601。所述传感器601可以是温度传感器、力传感器、运动传感器、三维空间传感器或摄像头中的至少一种,用于感知一体化成像设备101的操作状态信息,并基于操作状态信息以促进一体化成像设备101和宿主机105的配对和整合。例如,若一体化成像设备101具有三维成像或四维成像的应用,宿主机105可根据所述三维空间传感器601所获取的数据变化和操作信息,分析并预判所述待连接一体化成像设备101的应用模式;若一体化成像设备101具有血流成像的应用,宿主机105可根据所述运动传感器或力传感器601所获取的数据变化和操作信息,分析并预判所述待连接一体化成像设备101的应用模式;若一体化成像设备101具有乳腺或肝脏弹性成像的应用,宿主机105可根据所述一体化成像设备101获取的超声图像特征结合力传感器601所获取的操作信息,分析并预判所述待连接一体化成像设备101的应用模式。通过传感器感知的操作状态信息,可以进一步促进一体化成像设备和宿主机的整合,进而提高配对效率。
实施例六
图7所示为实施例六提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例一的区别在于:一体化成像设备101不是基于超声成像的或一体化成像设备101不是应用专用的超声一体化成像设备,而是基于光声成像或热声成像等其他生物医学成像手段。所述基于光声成像的一体化成像设备101包括光声成像装置701,用于将脉冲激光对被测对象进行照射,随后采集组织由光激发所产生的超声信号,生成光声图像。在另一实施例中,所述基于热声成像的一体化成像设备101,用于将无线电频率的脉冲激光对被测对象进行照射,随后采集组织由光激发所产生的超声信号,生成热声图像。基于光声成像或热声成像的生物医学成像手段发展迅猛,本发明通过基于光声成像的一体化成像设备或基于热声成像的一体化成像设备可以将光声成像和热声成像整合到现有的宿主机,进而拓展光声成像和热声成像的使用范围。
实施例七
图8所示为实施例七提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例一的区别在于:进一步地,系统100还包括云端服务器801。所述云端服务器801,用于在云端上实现宿主机105的用户终端109的全部或部分功能。所述云端服务器801是与所述宿主机105直接无线连接的。
本领域技术人员应知悉,该系统100通过宿主机105以有线或无线传输方式与云端服务器801连接,并进行数据互通。具体地,该系统100通过用户终端109将所述一体化成像设备101获得的相关数据上传至所述云端服务器801及类似的处理模块;所述云端服务器801对数据执行云计算以进行分析和处 理。在云端进行分析、运算和处理之后,将处理后的相关数据传回至用户终端109进行显示。
值得说明的是,所述云端服务器801存储各种算法,具有数据处理功能,用于实现信号处理、图像处理、图像重建或多维显示,可适用于如下三种情况:1)对本地系统100未处理过的数据做完整处理;1)对本地系统100预处理过的数据做进一步处理;2)对本地系统100已处理后的数据做后处理。优选地,还可在云端服务器上搭建大数据工作站,用于参与数据存储、管理、回顾性分析与共享。
实施例八
图9所示为实施例八提供的一种功能可拓展的超声成像系统的方框示意图。
本实施提供的系统与实施例八的区别在于:所述云端服务器801是与所述一体化成像设备101直接无线连接的,而不通过宿主机。
本领域技术人员应知悉,该系统100通过一体化成像设备101以有线或无线传输方式与云端服务器801连接,并进行数据互通。具体地,一体化成像设备101将获得的相关数据上传至所述云端服务器801及类似的处理模块;所述云端服务器801对数据执行云计算以进行分析和处理。在云端进行分析、运算和处理之后,将处理后的相关数据传回至一体化成像设备,然后再由一体化成像设备的通讯接口传至宿主机的用户终端进行显示。
利用云端服务器801与一体化成像设备进行信息交互,此方法无需宿主机参与数据处理,具有如下优点:1)节约本地系统的资源和算力;2)促进一体化成像设备硬件的小型化、集成化和便携化;3)利于数据管理;4)利于更高级的人工智能相关算法的更新、优化和执行。
实施例九
如图10所示,实施例九提供的一种拓展超声成像设备的功能的方法,包括如下步骤:
S1、识别并比较一体化成像设备和待拓展的超声成像设备的功能;
具体地,识别所述一体化成像设备和待拓展的超声成像设备的功能的方式包括:基于用户对一体化成像设备的输入、基于用户对待拓展的超声成像设备的宿主机的输入和/或基于至少一个传感器的传感信息。所述一体化成像设备拥有一套完整的硬件系统,可以是基于超声成像的应用专用的一体化成像设备,还可以是基于光声成像或热声成像等其他生物医学成像的一体化成像设备。
S2、基于比较结果,配置所述一体化成像设备和待拓展的超声成像设备的宿主机的运行参数和模式;
具体地,若比较结果是所述一体化成像设备的功能与宿主机所支持的功能不兼容,则向宿主机导入已打包的可执行程序代码以配置宿主机,启动整合工作。若比较结果是所述一体化成像设备的功能和宿主机所支持的功能兼容,则说明宿主机已配置有所述一体化成像设备专用的可执行程序代码。基于一体化成像设备101与宿主机105功能的比较结果、所选择的操作模式、所选择的应用模式或用户输入,配置一体化成像设备和宿主机的运行参数和模式,包括但不限制于通讯接口类型、成像参数、测量参数、成像模式、操作模式、应用和功能。
配置流程包括:识别所述一体化成像设备的一体化成像设备通讯接口的类型和/或所支持的通讯协议、识别所述宿主机的宿主机通讯接口的类型和/或所 支持的通讯协议、设置一体化成像设备为待连接状态、向宿主机导入已打包的可执行程序代码用于操作一体化成像设备(如需)、设置宿主机为待连接状态。
S3、基于所述一体化成像设备的一体化成像设备通讯接口和所述宿主机的宿主机通讯接口,通讯连接一体化成像设备和所配对的宿主机;
具体地,所述一体化成像设备通讯接口和所述宿主机通讯接口分别被构造在一体化成像设备和宿主机上,用于完成一体化成像设备与宿主机之间的通讯连接,实现双向数据传输。通讯连接的方式包括无线连接和有线连接。其中,所述宿主机通讯接口为已配置有计算机的宿主机的至少一部分,属于宿主机内的通用计算机接口。
S4、于所述宿主机的用户终端上操作一体化成像设备并显示一体化成像设备生成的超声数据。
具体地,当通讯连接建立后,所述一体化成像设备成为宿主机内计算机的其一外接设备。与此同时,宿主机的用户终端成为一体化成像设备的其一终端设备,用于显示超声图像、显示超声相关数据、控制一体化成像设备运行、管理数据库、后处理数据。
在本发明一实施例中,由一体化成像设备完成对超声数据的全部处理,处理完成后的超声数据通过宿主机的通用接口传输到用户终端上进行显示,因此,所述步骤S4包括:
S41’、通过一体化成像设备获取并处理超声数据;
S42’、将处理后的超声数据通过宿主机的通用接口传送到用户终端显示。
进一步地,本发明提供的一种拓展超声成像设备的功能的方法还可以利用云端服务器对数据进行分析和处理,在云端完成数据处理的全部或部分工作。因此,在本发明的又一实施例中,步骤S4包括:
S41、將所述一体化成像设备获得的超声数据传送到云端服务器;
S42、基于所述超声相关数据一体化成像设备在所述云端服务器进行信号处理、图像处理、图像重建和/或多维显示;
S43、将处理后的超声数据传送到用户终端显示。
以上还借助于说明某些重要功能的功能模块对本发明进行了描述。为了描述的方便,这些功能组成模块的界限在此处被专门定义。当这些重要的功能被适当地实现时,变化其界限是允许的。类似地,流程图模块也在此处被专门定义来说明某些重要的功能,为广泛应用,流程图模块的界限和顺序可以被另外定义,只要仍能实现这些重要功能。上述功能模块、流程图功能模块的界限及顺序的变化仍应被视为在权利要求保护范围内。
本发明还可以通过计算机程序产品进行实施,程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的一组指令的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或材料,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明 的保护范围之内。

Claims (22)

  1. 一种拓展超声成像设备功能的方法,其特征在于,包括以下步骤:
    S1、识别并比较一体化成像设备和待拓展的超声成像设备的功能;
    S2、基于比较结果,配置一体化成像设备和待拓展的超声成像设备的宿主机的运行参数和模式;
    S3、通讯连接一体化成像设备和所述宿主机;
    S4、于宿主机的用户终端上操作一体化成像设备并显示所述一体化成像设备生成的超声数据。
  2. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,在所述步骤S1中,基于用户对一体化成像设备的输入、基于用户对宿主机的输入和/或基于至少一个传感器的传感信息来识别一体化成像设备和待拓展的超声成像设备的功能。
  3. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,在所述步骤S2中,若比较结果为一体化成像设备的功能与待拓展的超声成像设备所支持的功能不兼容,则向宿主机导入已打包的可执行程序代码以配置宿主机。
  4. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,所述超声数据包括经信号和/或图像处理后的超声图像、视频和测量值。
  5. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,所述一体化成像设备连接于所述宿主机的通用接口。
  6. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,所述步骤S4包括:
    S41、將一体化成像设备获得的超声数据传送到云端服务器;
    S42、在云端服务器对所述超声数据进行信号处理、图像处理、图像重建和/或多维显示;
    S43、将处理后的超声数据传送到用户终端显示。
  7. 根据权利要求1所述的拓展超声成像设备功能的方法,其特征在于,所述步骤S4包括:
    S41’、通过一体化成像设备获取并处理超声数据;
    S42’、将处理后的超声数据通过宿主机的通用接口传送到用户终端显示。
  8. 一种功能可拓展的超声成像系统,其特征在于,包括一体化成像设备和待拓展的超声成像设备的宿主机,
    所述一体化成像设备包括:
    成像装置,用于对被测对象进行扫描并处理生成相应的超声数据;
    一体化成像设备通讯接口,用于与宿主机通讯连接,实现一体化成像设备与宿主机之间的双向数据传输;
    整合器,用于识别并比较一体化成像设备和宿主机的功能,基于比较结果,配置一体化成像设备和宿主机的运行参数和模式;
    所述宿主机包括:
    用户终端,用于操作一体化成像设备并显示所述超声数据;
    宿主机通讯接口,用于与一体化成像设备通讯连接,实现一体化成像设备与宿主机之间的双向数据传输。
  9. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述宿主机通讯接口为所述宿主机的通用接口。
  10. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述超声数据包括经信号和/或图像处理后的超声图像、视频和测量值。
  11. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述整合器基于用户对一体化成像设备的输入、基于用户对宿主机的输入和/或基于至少一个传感器的传感信息来识别一体化成像设备和宿主机的功能。
  12. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,若比较结果为一体化成像设备的功能与宿主机所支持的功能不兼容,则整合器向宿主机导入已打包的可执行程序代码以配置宿主机。
  13. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述一体化成像设备用于一维成像应用、二维成像应用、三维成像应用、四维成像、弹性成像、弹性测量、粘弹性成像、血流成像、声衰减成像、超高速超声成像应用中的至少一种。
  14. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,一体化成像设备通讯接口和宿主机通讯接口之间为无线连接或有线连接。
  15. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述一体化成像设备还包括至少一个传感器,用于感知一体化成像设备的操作状态信息,并基于操作状态信息以促进一体化成像设备和宿主机的配对和整合。
  16. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,由所述成像装置完成对所述图像的信号处理、图像处理和图像重建。
  17. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,还包括云端服务器,用于实现信号处理、图像处理、图像重建和多维显示中的至少一种。
  18. 根据权利要求17所述的功能可拓展的超声成像系统,其特征在于,所述云端服务器与所述一体化成像设备无线连接。
  19. 根据权利要求17所述的功能可拓展的超声成像系统,其特征在于, 所述云端服务器与所述宿主机无线连接。
  20. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述一体化成像设备包括用户接口,用于接收用户输入和/或实现宿主机中用户终端的部分功能。
  21. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述成像装置为超声成像装置、基于光声成像的装置或基于热声成像的装置。
  22. 根据权利要求8所述的功能可拓展的超声成像系统,其特征在于,所述一体化成像设备还包括电源单元。
PCT/CN2022/121032 2022-03-03 2022-09-23 拓展超声成像设备的功能的方法和系统 WO2023165119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/572,162 US20240115245A1 (en) 2022-03-03 2022-09-23 Method and system for expanding function of ultrasonic imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210203574.3 2022-03-03
CN202210203574.3A CN114533119A (zh) 2022-03-03 2022-03-03 拓展超声成像设备的功能的方法和系统

Publications (1)

Publication Number Publication Date
WO2023165119A1 true WO2023165119A1 (zh) 2023-09-07

Family

ID=81662382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121032 WO2023165119A1 (zh) 2022-03-03 2022-09-23 拓展超声成像设备的功能的方法和系统

Country Status (3)

Country Link
US (1) US20240115245A1 (zh)
CN (1) CN114533119A (zh)
WO (1) WO2023165119A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114533119A (zh) * 2022-03-03 2022-05-27 意领科技有限公司 拓展超声成像设备的功能的方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113690A1 (en) * 2003-11-25 2005-05-26 Nahi Halmann Methods and systems for providing portable device extended resources
US20160278739A1 (en) * 2015-03-27 2016-09-29 Clarius Mobile Health Corp. System and method for connecting and controlling wireless ultrasound imaging system from electronic device
CN107661121A (zh) * 2017-10-23 2018-02-06 深圳开立生物医疗科技股份有限公司 一种超声探头自适应匹配方法及系统
CN110121290A (zh) * 2016-11-23 2019-08-13 通用电气公司 成像协议管理器
CN111281422A (zh) * 2018-12-06 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种探头检测方法及超声成像装置、存储介质
CN112336373A (zh) * 2019-08-08 2021-02-09 深圳市恩普电子技术有限公司 一种基于移动终端的便携式超声诊断系统和方法
CN113855072A (zh) * 2021-09-28 2021-12-31 青岛海信医疗设备股份有限公司 超声设备及超声设备工作方法
CN114533119A (zh) * 2022-03-03 2022-05-27 意领科技有限公司 拓展超声成像设备的功能的方法和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603323A (en) * 1996-02-27 1997-02-18 Advanced Technology Laboratories, Inc. Medical ultrasonic diagnostic system with upgradeable transducer probes and other features
EP2895075B1 (en) * 2012-09-13 2016-04-13 Koninklijke Philips N.V. Mobile 3d wireless ultrasound image acquisition device and ultrasound imaging system
KR102532286B1 (ko) * 2015-10-14 2023-05-15 삼성메디슨 주식회사 무선 프로브, 초음파 영상 장치, 및 그 제어방법
KR102607014B1 (ko) * 2018-01-18 2023-11-29 삼성메디슨 주식회사 초음파 영상장치 및 그 제어방법
US20200315573A1 (en) * 2019-04-02 2020-10-08 Samsung Medison Co., Ltd. Ultrasound diagnositic apparatus and control method thereof
CN210604516U (zh) * 2019-07-09 2020-05-22 中国石油化工股份有限公司 适合于跨频段岩石物理参数的超声测量装置
CN211160968U (zh) * 2019-12-09 2020-08-04 谷金凤 一种口腔科工具清洗装置
CN110940986A (zh) * 2019-12-25 2020-03-31 广东奥迪威传感科技股份有限公司 超声波探测装置和超声波探测系统
CN114052780B (zh) * 2020-10-29 2023-11-21 武汉联影医疗科技有限公司 超声探头的激活方法、装置、超声成像设备和介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113690A1 (en) * 2003-11-25 2005-05-26 Nahi Halmann Methods and systems for providing portable device extended resources
US20160278739A1 (en) * 2015-03-27 2016-09-29 Clarius Mobile Health Corp. System and method for connecting and controlling wireless ultrasound imaging system from electronic device
CN110121290A (zh) * 2016-11-23 2019-08-13 通用电气公司 成像协议管理器
CN107661121A (zh) * 2017-10-23 2018-02-06 深圳开立生物医疗科技股份有限公司 一种超声探头自适应匹配方法及系统
CN111281422A (zh) * 2018-12-06 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种探头检测方法及超声成像装置、存储介质
CN112336373A (zh) * 2019-08-08 2021-02-09 深圳市恩普电子技术有限公司 一种基于移动终端的便携式超声诊断系统和方法
CN113855072A (zh) * 2021-09-28 2021-12-31 青岛海信医疗设备股份有限公司 超声设备及超声设备工作方法
CN114533119A (zh) * 2022-03-03 2022-05-27 意领科技有限公司 拓展超声成像设备的功能的方法和系统

Also Published As

Publication number Publication date
CN114533119A (zh) 2022-05-27
US20240115245A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
RU2720290C2 (ru) Ультразвуковая система с процессорным электронным ключом
KR101747305B1 (ko) 초음파 진단 장치 및 그에 따른 통신 연결 방법
US10932758B2 (en) Ultrasound probe and communication method thereof
JP6683677B2 (ja) 自家診断及び遠隔診断のための超音波診断装置、並びに超音波診断装置の動作方法
US10387713B2 (en) Apparatus and method of processing medical image
JP5973163B2 (ja) 無線超音波プローブにユーザ設定を自動的にロードする方法およびシステム
CN102481138B (zh) 超声波诊断装置
EP3071113B1 (en) Method and apparatus for displaying ultrasound image
WO2023165119A1 (zh) 拓展超声成像设备的功能的方法和系统
US10004478B2 (en) Method and apparatus for displaying ultrasound image
CN102579077A (zh) 在独立显示图示超声数据的系统和方法
KR20230135035A (ko) 초음파 진단 장치 및 그 동작 방법
US10130335B2 (en) Ultrasonic diagnostic system
KR102593439B1 (ko) 초음파 진단 장치의 제어 방법 및 초음파 진단 장치
WO2024046408A1 (zh) 一种生物组织识别模型构建方法、装置及电子设备
US11730449B2 (en) Ultrasonic diagnostic system
US10390800B2 (en) Ultrasound diagnosis method and ultrasound diagnosis apparatus
US20170354396A1 (en) Wireless ultrasound probe adapter
KR102580426B1 (ko) 초음파 진단 장치 및 그 동작 방법
CN112336373A (zh) 一种基于移动终端的便携式超声诊断系统和方法
CN110731797A (zh) 超声远程控制器及远程控制超声系统的方法
KR102226214B1 (ko) 스마트 장치, 프로브 장치, 그에 따른 스마트 장치 제어 방법, 및 그에 다른 프로브 장치 제어 방법, 및 그를 기록한 기록 기록 매체
US20090131786A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572162

Country of ref document: US