WO2023164953A1 - 一种声学设备 - Google Patents

一种声学设备 Download PDF

Info

Publication number
WO2023164953A1
WO2023164953A1 PCT/CN2022/079435 CN2022079435W WO2023164953A1 WO 2023164953 A1 WO2023164953 A1 WO 2023164953A1 CN 2022079435 W CN2022079435 W CN 2022079435W WO 2023164953 A1 WO2023164953 A1 WO 2023164953A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
acoustic device
piezoelectric component
component
vibration
Prior art date
Application number
PCT/CN2022/079435
Other languages
English (en)
French (fr)
Inventor
朱光远
张磊
齐心
王庆依
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to MX2023003084A priority Critical patent/MX2023003084A/es
Priority to BR112023005026A priority patent/BR112023005026A2/pt
Priority to KR1020237011695A priority patent/KR20230131170A/ko
Priority to CN202280006702.3A priority patent/CN117015981A/zh
Priority to EP22865877.9A priority patent/EP4266700A4/en
Priority to JP2023521156A priority patent/JP2024512841A/ja
Priority to PCT/CN2022/079435 priority patent/WO2023164953A1/zh
Priority to US18/167,827 priority patent/US20230284534A1/en
Publication of WO2023164953A1 publication Critical patent/WO2023164953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10022Non-printed resistor

Definitions

  • This specification relates to the field of acoustic technology, in particular to an acoustic device.
  • Acoustic devices often transmit sound by applying electrical energy to piezoelectric components to deform them.
  • an acoustic device can radiate sound waves outward by applying a driving voltage in the direction of polarization of the piezoelectric component, using the inverse piezoelectric effect of the piezoelectric material to generate vibrations.
  • the resonant frequency of piezoelectric components in acoustic equipment is usually high, resulting in high-frequency sensitivity of the equipment and low low-frequency sensitivity, resulting in harsher sound from the acoustic equipment, and a poor sense of balance between high and low frequencies in the user's sense of hearing.
  • piezoelectric component After the piezoelectric component is fed with an alternating voltage signal, it will generate heat under the action of the internal resistance of the piezoelectric component material, especially near the resonance frequency, the heating is more serious, which can approach or even exceed 300°C.
  • Piezoelectric components are piezoelectric, and their operating temperature must be lower than the Curie temperature of their materials. Therefore, how to effectively control the operating temperature of piezoelectric components under alternating signals has become the key to improving the reliability of acoustic output devices driven by piezoelectric components.
  • the device includes: a piezoelectric component that vibrates under the action of a driving voltage.
  • the vibrating assembly which is mechanically connected to the piezoelectric assembly, receives vibrations and produces sound.
  • a resistive element the resistive element is connected in series with the piezoelectric component to change the frequency response of the vibrating component, wherein the resistive component makes the difference between the amplitude of the vibration of the vibrating component at 10kHz and the amplitude at 1kHz not exceed 20dB.
  • a resistive element is connected in series with the positive electrode of the piezoelectric assembly.
  • the resistive element is soldered to the positive electrode of the piezoelectric assembly.
  • a resistive element is connected in series with the negative electrode of the piezoelectric assembly.
  • the resistive element is soldered to the negative electrode of the piezoelectric assembly.
  • the positive and negative electrodes of the piezoelectric assembly are drawn from the same side of the piezoelectric assembly.
  • the resistive element includes wires connected to the piezoelectric assembly.
  • the resistive element includes conductive glue connecting the piezoelectric components.
  • the resistive element is arranged on a flexible circuit board.
  • the resistive element comprises electrodes of a piezoelectric assembly.
  • At least part of the electrode of the piezoelectric component is made of one of the following materials: copper, gold, aluminum, tungsten, iron, or platinum.
  • At least a portion of the electrode of the piezoelectric assembly has an effective cross-sectional area that is smaller than a profiled cross-sectional area of the electrode.
  • At least part of the cross-section of the electrode of the piezoelectric component is a mesh structure or an S-shaped structure.
  • the resistance of the resistance element is 1 ⁇ -1k ⁇ .
  • the piezoelectric assembly is a beam structure.
  • the piezoelectric component includes at least two piezoelectric ceramic sheets, and the at least two piezoelectric ceramic sheets are electrically connected to each other.
  • At least two piezoelectric ceramic sheets are interleaved with the electrodes of the piezoelectric component.
  • the surface temperature of the piezoelectric component is lower than its Curie temperature in an operating state.
  • the vibrating component includes: an elastic element; and a mass element, one end of the elastic element is connected to the piezoelectric component, and the other end is connected to the mass element.
  • the elastic element includes one of the following: a vibration transmitting sheet, glue, an elastic piece, or a substrate.
  • the mass element includes a housing for housing the piezoelectric assembly and the resistive element.
  • the acoustic device is a bone conduction acoustic device.
  • the acoustic device further includes a boost electrical system for increasing the voltage output by the power supply.
  • the voltage at both ends of the piezoelectric component can be reduced, thereby reducing the vibration amplitude of the vibration component in the middle and high frequency bands, reducing the sensitivity difference of the whole frequency band, and improving It improves the high and low frequency balance of the sound output by the acoustic equipment.
  • the resistance elements connected in series can also reduce the current flowing through the piezoelectric components by dividing the voltage, thereby reducing the heat energy generated by the piezoelectric components, achieving the effect of temperature control, and improving the acoustic performance. Equipment reliability.
  • Fig. 1 is a structural block diagram of an acoustic device according to some embodiments of the present specification
  • Fig. 2 is a schematic structural diagram of an acoustic device according to some embodiments of the present specification
  • Fig. 3 is a schematic circuit diagram of a piezoelectric component according to some embodiments of the present specification.
  • Fig. 4 is a schematic diagram of an impedance-frequency curve of a piezoelectric component according to some embodiments of the present specification
  • Fig. 5 is a schematic diagram of a current-frequency curve of a piezoelectric component according to some embodiments of the present specification
  • Fig. 6 is a schematic structural diagram of a piezoelectric component according to some embodiments of the present specification.
  • FIG. 7 is a schematic circuit diagram of a resistive element and a piezoelectric component according to some embodiments of the present specification.
  • Fig. 8 is a schematic diagram of a voltage-frequency curve of a piezoelectric component according to some embodiments of the present specification.
  • Fig. 9 is a schematic diagram of a frequency response curve of a vibrating component according to some embodiments of the present specification.
  • Fig. 10 is a schematic diagram of a current-frequency curve of a piezoelectric component according to some embodiments of the present specification
  • Fig. 11A is a schematic diagram of a connection structure of a piezoelectric component and a resistance element according to some embodiments of the present specification
  • Fig. 11B is a schematic diagram of a connection structure of a piezoelectric component and a resistance element according to some embodiments of the present specification
  • Fig. 11C is a schematic diagram of a connection structure of a piezoelectric component and a resistance element according to some embodiments of the present specification
  • Fig. 11D is a schematic diagram of a connection structure of a piezoelectric component and a resistance element according to some embodiments of the present specification
  • Fig. 11E is a schematic diagram of the connection structure of piezoelectric components and resistance elements according to some embodiments of the present specification.
  • Fig. 11F is a schematic diagram of the connection structure of piezoelectric components and resistance elements according to some embodiments of the present specification.
  • Fig. 12 is a schematic structural diagram of a circuit board according to some embodiments of the present specification.
  • FIG. 13A is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • 13B is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • 13C is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • 13D is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • 13E is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • 13F is a schematic diagram of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the acoustic device in one or more embodiments of this specification can output sound through the vibration generated by the piezoelectric component, so as to be applied to various scenarios that need to play audio.
  • the acoustic device can be an independent audio output device (such as a stereo, earphone, etc.) , can play audio according to user instructions; another example, the acoustic device can be a module or component in a terminal device (such as a mobile phone, a computer, etc.), and can play audio according to a terminal instruction.
  • the acoustic device can also adjust the deformation of the piezoelectric component to generate different vibrations according to parameters such as the frequency and magnitude of the sound to be output, so that the vibration component can output different sounds according to different vibrations.
  • the acoustic device can be a bone conduction acoustic device, and the vibration component in the bone conduction acoustic device can be attached to the user's human body tissue, and the sound waves emitted by the vibration component can be transmitted to the user's inner ear through the user's bones.
  • the acoustic equipment can also be other types of acoustic equipment, such as air conduction acoustic equipment, hearing aids, hearing aids, glasses, helmets, augmented reality (Augmented Reality, AR) equipment, virtual reality (Virtual Reality, VR ) equipment, etc., or alternatively, the acoustic equipment can be used as a part of a car audio system or a room audio system for outputting sound.
  • augmented reality Augmented Reality, AR
  • VR Virtual Reality
  • the resonant frequency of piezoelectric components in acoustic equipment is usually high, resulting in high-frequency sensitivity of the equipment and low low-frequency sensitivity, resulting in harsher sounds from the acoustic equipment and poorer sense of balance between high and low frequencies in the user's sense of hearing.
  • an acoustic device may include a piezoelectric assembly, a vibratory assembly, and a resistive element.
  • the piezoelectric component can generate vibration under the action of the driving voltage
  • the vibration component can receive the vibration from the piezoelectric component and generate sound
  • the resistance element can be connected in series with the piezoelectric component to change the frequency response of the vibration component, so that The difference between the amplitude of the vibration of the vibrating component at 10kHz and the amplitude at 1kHz does not exceed 20dB.
  • the voltage at both ends of the piezoelectric component can be reduced, thereby reducing the vibration amplitude of the vibration component in the middle and high frequency bands, reducing the sensitivity difference of the whole frequency band, and improving It improves the high and low frequency balance of the sound output by the acoustic equipment.
  • the resistance elements connected in series can also reduce the current flowing through the piezoelectric component by means of voltage division, thereby reducing the heat energy generated by the piezoelectric component and achieving temperature control. The effect of improving the reliability of the acoustic equipment.
  • Fig. 1 is a structural block diagram of an acoustic device 100 according to some embodiments of this specification.
  • the acoustic device 100 may include: a vibration component 110 , a piezoelectric component 120 and a resistance element 130 .
  • the piezoelectric component 120 vibrates under the action of the driving voltage.
  • the vibration assembly 110 is mechanically connected to the piezoelectric assembly 120, receives vibrations and generates sound.
  • the resistance element 130 is connected in series with the piezoelectric component 120 to change the frequency response of the vibration component 110, and the resistance element 130 makes the difference between the vibration amplitude of the vibration component 110 at 10 kHz and the amplitude at 1 kHz not exceed 20 dB.
  • the vibration component 110 may be configured as a component that transmits vibration and generates sound.
  • the vibrating component 110 may include an elastic element, and the elastic element may respond to vibration and deform to change the sound pressure around itself, so as to generate sound waves and realize sound output.
  • the elastic element can change the density of the surrounding air through its own deformation (such as self-vibration, etc.), forming longitudinal waves with alternating density and density, thereby generating sound waves.
  • the elastic element may include a vibration transmitting sheet, glue, elastic sheet, substrate, etc., or any combination thereof.
  • the material of the elastic element can be any material capable of transmitting vibration.
  • the material of the elastic element may be silicone, plastic, rubber, metal, etc., or any combination thereof.
  • the vibration assembly 110 further includes a mass element. One end of the elastic element may be connected to the piezoelectric assembly 120, and the other end may be connected to the mass element. In some embodiments, at least a part of the piezoelectric component 120 may be connected to the elastic element, and a part of the mass element may be connected to the elastic element.
  • the mass element may include a mass, a housing, and the like.
  • the housing can be used to accommodate the piezoelectric assembly 120 and the resistance element 130 , protect the piezoelectric assembly 120 and the resistance element 130 , and prolong the service life of the acoustic device 100 .
  • the material of the shell may include one or more materials among metal, silica gel, rubber, plastic, etc., so as to achieve the effect of shock absorption.
  • the vibrating component 110 can be a membrane structure (such as an air conduction diaphragm, etc.), or a plate structure (such as a bone conduction vibration panel, etc.), or a mesh structure or a layered structure, etc. structure.
  • An exemplary acoustic device 100 is provided below to describe a specific implementation of the vibration component 110 .
  • Fig. 2 is a schematic structural diagram of an acoustic device 100 according to some embodiments of the present specification.
  • one end of the vibration component 110 may be connected to the vibration output terminal 121 of the piezoelectric component 120 to receive vibration.
  • the other end of the vibration component 110 can output sound.
  • the vibrating component 110 can send sound waves to the user through one or more media (such as air, user's bones, etc.), so that the user can hear the sound output by the acoustic device 100 .
  • the piezoelectric assembly 120 may be configured as an electrical energy conversion device that converts electrical energy into mechanical energy.
  • the piezoelectric component 120 can be deformed to different degrees based on different driving voltages, thereby generating vibrations.
  • the piezoelectric component 120 may be in the shape of sheet, ring, prism, cuboid, column, ball, etc., or any combination thereof, or other irregular shapes.
  • the material of the piezoelectric component 120 may include piezoelectric materials such as piezoelectric crystals, piezoelectric ceramics, piezoelectric polymers, or any combination thereof.
  • piezoelectric crystals may include crystal, sphalerite, boborite, tourmaline, zincite, GaAs, barium titanate and its derived crystals, KH 2 PO 4 , NaKC 4 H 4 O 6 ⁇ 4H 2 O (Roche salt), etc., or any combination thereof.
  • Piezoelectric ceramics refer to piezoelectric polycrystals formed by the random collection of fine grains obtained by solid-state reaction and sintering between different material powders.
  • piezoelectric ceramic materials may include barium titanate (BT), lead zirconate titanate (PZT), lead barium lithium niobate (PBLN), modified lead titanate (PT), aluminum nitride (AIN ), zinc oxide (ZnO), etc., or any combination thereof.
  • the piezoelectric polymer material may include polyvinylidene fluoride (PVDF), or the like.
  • the vibration amplitude of the piezoelectric component 120 can be adjusted by adjusting the magnitude of the driving voltage applied to the piezoelectric component 120 .
  • the amplitude of the vibration output by the piezoelectric component 120 is related to the magnitude of the applied voltage, and the relationship between the two can be expressed as formula (1):
  • F is the vibration amplitude output by the piezoelectric component 120
  • V is the driving voltage of the piezoelectric component 120
  • d is the piezoelectric constant of the piezoelectric component 120
  • A is the area of the piezoelectric component 120
  • t is the area of the piezoelectric component 120.
  • Thickness S E is the elastic compliance constant of the piezoelectric component 120 . According to formula (1), the vibration amplitude output by the piezoelectric component 120 is proportional to the driving voltage of the piezoelectric component 120 .
  • the vibration frequency of the piezoelectric component 120 can also be adjusted by adjusting the frequency of the driving voltage applied to the piezoelectric component 120 .
  • the vibration generated by the piezoelectric component 120 is also related to the piezoelectric constant of the piezoelectric material. For example, when the driving voltage is the same, the larger the piezoelectric constant, the larger the deformation of the piezoelectric component 120 and the stronger the vibration.
  • the piezoelectric constants are different, resulting in different deformation directions of the piezoelectric component 120 .
  • the piezoelectric constant of the piezoelectric component 120 may be a D33 constant or a D31 constant, or other piezoelectric constants.
  • the D33 constant indicates that the electrical direction (ie, the direction of the electric field) and the mechanical direction (ie, the deformation direction) of the piezoelectric component 120 are the same, and the D31 constant indicates that the deformation direction of the piezoelectric component 120 mainly occurs in one direction.
  • FIG. 3 is a schematic circuit diagram of a piezoelectric component 120 according to some embodiments of the present specification.
  • the piezoelectric component 120 can be regarded as a component with capacitive properties. As shown in FIG. 3 , the piezoelectric component 120 can be a capacitance C p with a capacitance value. Correspondingly, the impedance Z p of the piezoelectric component 120 can be determined according to formula (2):
  • Z p is the equivalent impedance value of the piezoelectric component 120
  • is the angular frequency of the driving voltage
  • C p is the equivalent capacitance value of the piezoelectric component 120 .
  • FIG. 4 is a schematic diagram of the impedance-frequency curve of the piezoelectric component 120 according to some embodiments of the present specification.
  • curve 1 is the impedance-frequency curve of the piezoelectric component 120 .
  • the frequency of the driving voltage increases (for example, from 100 Hz to 1 kHz)
  • the angular frequency ⁇ of the driving voltage also increases, and the impedance of the piezoelectric component 120 decreases accordingly (for example, from the impedance value Z p1 drops to the impedance value Z p2 ).
  • the decrease of the impedance Z p of the piezoelectric component 120 may cause the current flowing through the piezoelectric component 120 to increase accordingly. That is to say, as the angular frequency ⁇ of the driving voltage increases, the impedance Z p of the piezoelectric component 120 will decrease accordingly, resulting in an increase in the current flowing through the piezoelectric component 120 .
  • FIG. 5 is a schematic diagram of a current-frequency curve of the piezoelectric component 120 according to some embodiments of the present specification.
  • curve 2 is the current-frequency curve of the piezoelectric component 120 .
  • the frequency of the driving voltage increases (for example, from 1kHz to 10kHz)
  • the angular frequency ⁇ of the driving voltage also increases, and the current flowing through the piezoelectric component 120 increases accordingly (for example, from the current The value I 1 rises to the current value I 2 ).
  • Joule's law that is, formula (3), when the resistance is constant, the heating power P of the electronic device is proportional to the square of the current I,
  • the piezoelectric component 120 will operate at a frequency of the driving voltage at a medium-high frequency (for example, greater than 1KHz).
  • the heating power gradually increases, resulting in a higher operating temperature of the piezoelectric component 120 , which may be higher than the Curie temperature in severe cases, reducing the piezoelectricity of the piezoelectric component 120 and affecting the normal operation of the acoustic device 100 .
  • the piezoelectric component 120 may be a beam structure (for example, a beam structure with one end fixedly connected to the acoustic device and one end freely vibrating can be regarded as a cantilever beam structure).
  • the fixed end of the piezoelectric component 120 of the cantilever beam structure (hereinafter referred to as the piezoelectric beam) can receive a voltage signal, and the entire piezoelectric beam vibrates, and passes through any position on the piezoelectric beam (for example, free Terminal) transmits the vibration to the vibration component, allowing the user to perceive it with the human ear.
  • the vibration output end the position where the vibration is output on the piezoelectric beam is called the vibration output end.
  • the vibration output end can directly output air-conducted sound; in some embodiments, the vibration output end can be connected to the diaphragm to output air-conducted sound; in some embodiments, the vibration output end can be connected to the vibration transmission plate, etc. Structural connection, the vibration is transmitted through the user's skin, bones and other tissues to the auditory nerve, and bone conduction sound is output.
  • the fixed end of the cantilever arm structure can be the driving end 122 of the piezoelectric component 120, and the driving end 122 can receive the driving voltage, and the free end of the cantilever arm structure can be the vibration output of the piezoelectric component 120.
  • Terminal 121, the vibration output terminal 121 can generate and output vibration.
  • the piezoelectric component 120 may include at least two piezoelectric ceramic sheets, and the at least two piezoelectric ceramic sheets are electrically connected to each other.
  • the piezoelectric ceramic sheet may be a sheet-shaped component having piezoelectric properties.
  • the piezoelectric ceramic sheet can be mechanically deformed according to the magnitude and frequency of the driving voltage. For example, a piezoceramic sheet can expand when the driving voltage is positive and contract when the driving voltage is negative.
  • the polarization directions of different piezoelectric ceramic sheets may be different, so that the deformation directions generated under the same driving voltage may also be different.
  • piezoelectric ceramic sheet A and piezoelectric ceramic sheet B when the driving voltage is positive, when the polarization directions of piezoelectric ceramic sheet A and piezoelectric ceramic sheet B are different, piezoelectric ceramic sheet A can be stretched, while piezoelectric ceramic sheet B can be shortened.
  • the polarization directions of different piezoelectric ceramic sheets may also be the same, so that the deformation directions generated under the same driving voltage may also be the same.
  • piezoelectric assembly 120 may be a layered structure. In some embodiments, at least two piezoelectric ceramic sheets can be stacked. For example, multiple piezoelectric ceramic sheets can be arranged overlappingly, and their positions correspond in space. In some embodiments, the vibration of the piezoelectric component 120 may be related to the number of layers of piezoelectric ceramic sheets. Exemplarily, the more layers of piezoelectric ceramic sheets, the greater the vibration amplitude of the piezoelectric component 120 .
  • the manner in which at least two piezoelectric ceramic sheets are electrically connected to each other may be related to the polarization direction between the piezoelectric ceramic sheets. For example, when the polarization directions of the piezoelectric ceramic sheets of different layers are in the same direction, multiple piezoelectric ceramic sheets can be connected in series so that the deformation directions of different piezoelectric ceramic sheets are different.
  • two piezoelectric ceramic sheets with the same polarization direction can be stacked and connected in series, and the driving voltages of the two layers of piezoelectric ceramic sheets are reversed, causing the deformation directions of the two layers of piezoelectric ceramic sheets to be reversed, so that Increasing the deformation strength of the piezoelectric component 120 further increases the vibration amplitude of the piezoelectric component 120 .
  • multiple piezoelectric ceramic sheets can be connected in parallel, so that different piezoelectric ceramic sheets have different deformation directions.
  • two piezoelectric ceramic sheets with opposite polarization directions can be stacked and connected in parallel, and the driving voltages of the two piezoelectric ceramic sheets are reversed, resulting in the opposite deformation direction of the two piezoelectric ceramic sheets, which can increase
  • the greater deformation force of the piezoelectric component 120 further increases the vibration amplitude of the piezoelectric component 120 .
  • An exemplary piezoelectric assembly 120 is provided below to describe a specific implementation of parallel-connected piezoelectric ceramic sheets.
  • Fig. 6 is a schematic structural diagram of a piezoelectric component 120 according to some embodiments of the present specification.
  • the piezoelectric component 120 may include a plurality of piezoelectric ceramic sheets 123 , and the plurality of piezoelectric ceramic sheets 123 are stacked. In some embodiments, a plurality of piezoelectric ceramic sheets 123 may be respectively disposed in the first layer, the second layer, the third layer and the fourth layer of the piezoelectric component 120 .
  • the polarity direction of the piezoelectric ceramic sheet 123 of the first layer and the second layer can be different from the polarity direction of the piezoelectric ceramic sheet 123 of the third layer and the fourth layer (that is, the polarity direction of the first layer and the second layer same, the polarity directions of the third layer and the fourth layer are the same), when a driving voltage is applied to the piezoelectric assembly 120, the deformation direction of the first layer and the second layer can be opposite to that of the third layer and the fourth layer , so as to increase the vibration amplitude of the piezoelectric component 120 .
  • the positive and negative electrodes are respectively arranged at both ends of at least two piezoelectric ceramic sheets, so that the at least two piezoelectric ceramic sheets are connected in parallel to provide the same driving voltage for the piezoelectric ceramic sheets.
  • at least two piezoelectric ceramic sheets may be interleaved with electrodes of the piezoelectric component 120 .
  • the positive and negative electrodes of the piezoelectric component 120 can extend between multiple piezoelectric ceramic sheets, thereby increasing the area in contact with the piezoelectric ceramic sheets and improving driving efficiency.
  • the positive electrode is in contact with the first ends 1231 of the plurality of piezoelectric ceramic sheets 123
  • the negative electrode is in contact with the second ends 1232 of the plurality of piezoelectric ceramic sheets 123, so as to realize a plurality of piezoelectric ceramic slice 123 in parallel.
  • the positive electrode may also be disposed between the first and second layers, and between the third and fourth layers of the plurality of piezoelectric ceramic sheets 123 .
  • the negative electrode may be disposed on the surfaces of the plurality of piezoelectric ceramic sheets 123, and disposed between the second layer and the third layer.
  • the acoustic device 100 generates vibrations and radiates sound waves outward through the inverse piezoelectric effect of the piezoelectric component 120. Compared with the transmission electric speaker, the acoustic device 100 can have high electromechanical conversion efficiency, low energy consumption, and small volume. small size and high integration. It should be noted that FIG. 3 is only an example, and the piezoelectric component 120 may also include other numbers of piezoelectric ceramic sheets, or be connected to electrodes in other forms.
  • the resistive element 130 can be configured as any electrical device that has a resistive characteristic or can achieve a band-pass regulation effect.
  • the resistive element 130 may include resistive components, materials, coatings, adhesives, etc., or any combination thereof.
  • the resistance element 130 may also include a resistance-capacitance (RC) filter with a bandpass regulation effect, such as an RC filter in series configuration, an RC filter in parallel configuration, an RC filter in series-parallel configuration, Cascaded or multi-order RC filters, passive or active RC filters, etc., or any combination thereof.
  • RC resistance-capacitance
  • the resistance element 130 can be connected in series with the piezoelectric component 120 to adjust the amplitude difference of the vibration component 110 .
  • the resistive element 130 regulates the voltage or bandwidth at both ends of the piezoelectric component 120 through the principle of series voltage division, so that the amplitude difference of the vibrating component 110 at high and low frequencies changes.
  • FIG. 7 is a schematic circuit diagram of the resistive element 130 and the piezoelectric component 120 according to some embodiments of the present specification.
  • the resistance element 130 can be equivalent to a resistor R t
  • the piezoelectric component 120 can be equivalent to a capacitor C p
  • the resistor R t can be connected in series with the capacitor C p
  • the driving voltage V is simultaneously the resistor R t and the capacitor C p .
  • Capacitor Cp supplies the voltage.
  • FIG. 8 is a schematic diagram of a voltage-frequency curve of the piezoelectric component 120 according to some embodiments of the present specification.
  • the voltage across the piezoelectric component 120 can be adjusted by adjusting the resistance of the resistance element 130 .
  • curve 4 is the series resistance value In the case of the resistance element 130 of R 2 , the voltage-frequency curve of the piezoelectric assembly 120;
  • the curve 5 is the voltage-frequency curve of the piezoelectric assembly 120 in the case of the resistance element 130 with a series resistance value of R 3 ;
  • the curve 6 It is the voltage-frequency curve of the piezoelectric component 120 when the resistance element 130 with a resistance value of R4 is connected in series.
  • 0 R 1 ⁇ R 2 ⁇ R 3 ⁇ R 4 .
  • the frequency of the driving voltage V when the frequency of the driving voltage V is low (such as a frequency of 10 Hz to 100 Hz), since the impedance of the piezoelectric component 120 is relatively large, the effect of the series resistance element 130 on the overall impedance is not obvious, and the piezoelectric component The voltage of 120 has less effect.
  • the frequency of the driving voltage V gradually increases to a medium-high frequency (such as a frequency of 1k ⁇ 10kHz), the voltage across the piezoelectric component 120 drops.
  • the voltage of the piezoelectric component 120 in curve 3 is U 3
  • the voltage of the piezoelectric component 120 in curve 4 is U 4
  • the voltage of the piezoelectric component 120 in curve 5 is U 5
  • the voltage of the piezoelectric component 120 in curve 6 is U 6 , wherein, U 3 >U 4 >U 5 >U 6 .
  • the adjustment of the acoustic output characteristics of the acoustic device 100 can be realized by adjusting the resistance value of the resistive element 130 , so as to meet the requirements for the frequency response characteristics and applications of the acoustic device 100 .
  • the resistance element 130 can be connected in series with the piezoelectric component 120 to adjust the voltage or bandwidth across the piezoelectric component 120 to change the frequency response of the vibration component 110 . In some embodiments, the resistance element 130 can be connected in series with the piezoelectric component 120 to adjust the voltage across the piezoelectric component 120 so that the amplitude difference of the vibration component 110 at high and low frequencies changes.
  • An exemplary frequency response curve of the vibrating component 110 is provided below to describe a specific implementation of the resistive element 130 .
  • Fig. 9 is a schematic diagram of a frequency response curve of a vibrating component according to some embodiments of the present specification.
  • curve 7 is the frequency response curve of the vibration component 110 when the piezoelectric component 120 is not connected in series with the resistance element 130
  • curve 8 is the frequency response curve of the vibration component 110 when the piezoelectric component 120 is connected in series with the series resistance component 130. sound curve.
  • the series resistive element 130 acts to suppress the high frequency output.
  • the peak and valley position of the frequency response curve will not change, and the amplitude of the low frequency will not be greatly affected, but starting from a certain frequency (for example, 600Hz), as As the frequency increases, the corresponding frequency amplitude decreases more, showing a decrease in the amplitude difference between the high and low frequency curves, the subjective sense of hearing "harshness" is alleviated, and the sense of balance between high and low frequencies is improved.
  • the difference D2 between the amplitudes at 10 kHz and 1 kHz of curve 8 is smaller than the difference D1 between the amplitudes at 10 kHz and 1 kHz of curve 7 .
  • the difference D2 may not exceed a certain threshold (eg, 30dB, 20dB, 15dB, etc.).
  • a certain threshold eg, 30dB, 20dB, 15dB, etc.
  • the resistance element 130 connected in series causes the voltage across the piezoelectric component 120 to drop due to the reduced impedance of the piezoelectric component 120 , the current flowing through the piezoelectric component 120 decreases accordingly.
  • the heating power of the piezoelectric component 120 is proportional to the square of the current. Compared with the situation where the resistance element 130 is not connected in series, the heating of the piezoelectric component 120 can also be reduced accordingly. Thereby improving device reliability.
  • FIG. 10 is a schematic diagram of a current-frequency curve of a piezoelectric component 120 according to some embodiments of the present specification.
  • the current flowing through the piezoelectric component 120 can be adjusted by adjusting the resistance value of the resistive element 130 , thereby adjusting the heating of the piezoelectric component 120 to realize temperature control.
  • the curve 10 is the series resistance value Under the situation of the resistive element 130 that is R 10 , the current-frequency curve of piezoelectric assembly 120;
  • Curve 11 is under the situation of the resistive element 130 of series resistance value R 11 , the current-frequency curve of piezoelectric assembly 120;
  • Curve 12 It is the current-frequency curve of the piezoelectric component 120 when the resistance element 130 with a resistance value of R 12 is connected in series.
  • 0 R 9 ⁇ R 10 ⁇ R 11 ⁇ R 12 .
  • the frequency of the driving voltage V is low (such as 10-100 Hz)
  • the impedance of the piezoelectric component 120 is relatively large, the effect of the series resistance element 130 on the overall impedance is not obvious, and the influence on the current flowing through the piezoelectric component 120 smaller.
  • the frequency of the driving voltage V gradually increases to a medium-high frequency (such as a frequency of 1k ⁇ 10kHz)
  • the current flowing through the piezoelectric component 120 decreases.
  • the resistance of the resistance element 130 increases, the current flowing through the piezoelectric component 120 becomes smaller.
  • the current of the piezoelectric component 120 in the curve 9 is I 9
  • the current of the piezoelectric component 120 in the curve 10 is I 10
  • the voltage of the piezoelectric component 120 in the curve 11 is I 11
  • the current of the piezoelectric component 120 in curve 12 is I 12 .
  • the size of the series resistance can be determined according to the overall frequency response characteristics of the formed acoustic device 100 . For example, according to the characteristics of the piezoelectric component 120, assuming that the high-frequency amplitude is relatively large or tends to increase, the size of the resistance element 130 that needs to be connected in series can be determined in combination with subjective listening. For example, according to the frequency response curve of the piezoelectric component 120 , it can be determined that from a certain frequency threshold fc, the effect increases with frequency, and the higher the frequency, the more the corresponding amplitude decreases. In some embodiments, the frequency threshold fc may be determined according to vibration characteristics of a specific piezoelectric component 120 .
  • the electrostatic capacity of the piezoelectric sheet of the piezoelectric component 120 can be determined according to formula (4):
  • is the dielectric constant of the piezoelectric sheet
  • S is the electrode area
  • t is the distance between the positive and negative electrodes.
  • the resistance value of the resistive element 130 can be within a certain range (for example, 1 ⁇ -1000 ⁇ , 100 ⁇ -10k ⁇ , etc.), so that the vibration amplitude of the vibration component 110 begins to decrease at the frequency threshold fc (for example, 100Hz) so that the difference between the amplitude of the vibrating component 110 at 10kHz and the amplitude at 1kHz does not exceed 20dB, so that the acoustic device 100 has a smaller sensitivity difference in the full frequency band, thereby improving the high and low frequencies of the sound output by the acoustic device 100 sense of balance.
  • fc for example, 100Hz
  • the resistance element 130 can also reduce the heating of the piezoelectric component 120 , so that the operating temperature of the piezoelectric component 120 can be lower than the Curie temperature, ensuring the normal operation of the acoustic device 100 .
  • the surface temperature (for example, 236.9° C.) of the piezoelectric component 120 not connected in series is relatively high, which can be close to its Curie temperature (for example, the Curie temperature of the piezoelectric component 120 is 290°C).
  • the surface temperature of the piezoelectric component 120 will exceed its Curie temperature, causing the piezoelectric component to fail.
  • the temperature of the surface of the piezoelectric component 120 connected in series with the resistance element 130 drops significantly.
  • the surface temperature of the piezoelectric component 120 may be lower than its Curie temperature within 5 minutes of being excited by a 6 kHz single-frequency signal.
  • the resistive element 130 can be connected in series with the piezoelectric component 120 in different ways. Taking the above-mentioned piezoelectric assembly shown in FIG. 6 as an example, several exemplary connection relationships between the resistance element 130 and the piezoelectric assembly 120 are provided below to describe the specific implementation of the resistance element 130 in detail.
  • 11A-11F are schematic diagrams of the connection structure of the piezoelectric component 120 and the resistance element 130 according to some embodiments of the present specification.
  • the resistive element 130 may be connected to the electrodes of the piezoelectric assembly 120 .
  • the resistance element 130 can be connected in series with the positive electrode of the piezoelectric component 120 .
  • the driving voltage can be applied to both ends of the whole composed of the resistive element 130 and the piezoelectric component 120 .
  • the resistance element 130 may also be connected in series with the negative electrode of the piezoelectric component 120 .
  • the driving voltage can be applied to both ends of the whole composed of the piezoelectric component 120 and the resistance element 130 .
  • there may be multiple resistive elements 130 and the multiple resistive elements 130 are respectively connected in series on the positive pole and/or the negative pole of the piezoelectric component 120 .
  • one or more of the plurality of resistive elements 130 may be connected in series to the positive electrode of the piezoelectric assembly 120 , and the remaining resistive elements 130 may be connected in series to the negative electrode of the piezoelectric assembly 120 .
  • the plurality of resistance elements 130 may all be connected in series on the positive pole or the negative pole of the piezoelectric component 120 .
  • the resistive element 130 may be connected to the electrodes of the piezoelectric component 120 through wires. As shown in FIG. 11A , one end of the resistance element 130 can be connected to the anode of the piezoelectric component 120 through a wire, and the other end of the resistance element 130 can receive a driving voltage. As shown in FIG. 11D , one end of the resistance element 130 can be connected to the negative electrode of the piezoelectric component 120 through a wire, and the other end of the resistance element 130 can receive a driving voltage.
  • the resistive element 130 may be welded on the electrodes of the piezoelectric component 120 .
  • the resistance element 130 can be welded on the positive electrode of the piezoelectric component 120 .
  • one end of the resistance element 130 (the welding point shown in the figure) can be welded on the positive electrode of the piezoelectric component 120 through conductive glue 131 and electrically connected with the piezoelectric component 120 .
  • the driving voltage can be applied to both ends of the whole composed of the resistive element 130 and the piezoelectric component 120 .
  • the resistance element 130 can also be welded on the negative electrode of the piezoelectric component 120 . As shown in FIGS. 11E-11F , one end of the resistance element 130 can be welded to the negative electrode of the piezoelectric component 120 through a conductive glue 131 and electrically connected to the piezoelectric component 120 . Correspondingly, the driving voltage can be applied to both ends of the whole composed of the piezoelectric component 120 and the resistance element 130 .
  • the positive pole and the negative pole of the piezoelectric component 120 can be drawn out from different sides of the piezoelectric component 120 to apply a driving voltage to the piezoelectric component 120 and the resistance element 130 .
  • the positive pole of the piezoelectric component 120 can be drawn out from the first side 1201 of the piezoelectric component 120, and the negative pole of the piezoelectric component 120 can be drawn out from the second side 1202 of the piezoelectric component 120. lead out.
  • the positive pole and the negative pole of the piezoelectric component 120 can be drawn out from the same side of the piezoelectric component 120 to save the space occupied by the piezoelectric component 120 and the resistance element 130 . As shown in FIG. 11C and FIG. 11F , both the positive pole and the negative pole of the piezoelectric component 120 can be drawn out from the third side 1203 of the piezoelectric component 120 .
  • resistive element 130 may include one or more resistors in series with piezoelectric assembly 120 .
  • the size of the resistive element 130 can be adjusted by adjusting the number and/or resistance of the resistors.
  • the resistive element 130 may include wires connected to the piezoelectric assembly 120 .
  • the wire can be a circuit device for electrically connecting the piezoelectric component 120 with other devices, as shown in FIG. 11A and FIG. 11D , the wire can be used to connect the resistance element 130 and the piezoelectric component 120 .
  • the wires may include one or more of wires between the piezoelectric assembly 120 and the driving voltage, wires between the piezoelectric assembly 120 and resistors, and wires between the piezoelectric assembly 120 and other devices. The combination.
  • the resistance of the resistance element 130 can be adjusted by adjusting the resistance of the wire.
  • the resistance value of the wire can be adjusted by adjusting the configuration of the wire, such as the cross-sectional area, length, and detour shape of the wire, so as to realize the adjustment of the resistance value of the resistance element 130 .
  • the resistive element 130 may include conductive glue connecting the piezoelectric assembly 120 .
  • the conductive adhesive can be a circuit device for electrically connecting the piezoelectric component 120 with other devices, as shown in FIG. 11B, FIG. 11C, FIG. 11E or FIG. .
  • the material of the conductive adhesive may include: one or more of metal (such as gold, silver, copper, aluminum, zinc, iron, nickel), graphite, epoxy resin, acrylate resin, polyurethane
  • the material of the conductive adhesive can also include other conductive compounds.
  • the resistance value of the conductive glue can be adjusted by adjusting the material and amount of the conductive glue, so as to realize the adjustment of the resistance value of the resistance element 130 .
  • the resistive element 130 may include one or more resistors, wires connected to the piezoelectric component 120, conductive glue connected to the piezoelectric component 120, or other resistors with resistive properties. device.
  • the overall resistance of the resistance element 130 can be adjusted by adjusting the resistance of one or more devices in the resistance element 130 .
  • Fig. 12 is a schematic structural diagram of a circuit board according to some embodiments of the present specification.
  • the resistance element 130 may be arranged on a flexible printed circuit (FPC for short), so as to save the volume of the acoustic device 100 .
  • the two resistors R t can be respectively connected to the positive and negative electrodes of the piezoelectric component 120 , and arranged on the wires drawn from the electrodes of the piezoelectric component 120 in the flexible circuit board 200 .
  • the resistance element 130 can include a resistor R t , wires, and conductive glue, etc.
  • the resistance value of the resistor element 130 can be based on the resistance value of the resistor R t , the configuration of the wire (such as cross-sectional area, length, roundabout shape, etc.) and the resistance value of the conductive glue. Sure.
  • resistive element 130 may comprise electrodes of piezoelectric assembly 120 .
  • resistive element 130 may comprise electrodes of piezoelectric assembly 120 .
  • the overall resistance of the resistance element 130 may be adjusted by adjusting the resistance of the electrodes of the piezoelectric component 120 .
  • the resistance value of electrode can be determined according to formula (6):
  • R p is the resistance value of the electrode
  • is the resistivity of the electrode
  • L is the length of the electrode
  • S is the cross-sectional area of the electrode.
  • the resistance value of the electrode can be adjusted by adjusting the material, shape, length and other parameters of the electrode.
  • At least part of the electrode of the piezoelectric component 120 may be made of one of the following materials: copper, gold, aluminum, tungsten, iron, or platinum, or other materials with suitable resistivity.
  • part of the material of the electrode of the piezoelectric component 120 can be replaced from silver to copper, so that the resistivity changes, and the resistance of the electrode also changes accordingly, thereby adjusting the resistance of the resistance element 130 .
  • the effective cross-sectional area of at least part of the electrode of the piezoelectric component 120 may be smaller than the profile cross-sectional area of the electrode, so as to increase the resistance value of the resistance element 130, thereby adjusting the voltage and heating power of the piezoelectric component 120 .
  • the effective cross-sectional area of the electrode may be the cross-sectional area actually used when the electrode is working, and the contour cross-sectional area may be the cross-sectional area formed by the lines on the outermost edge of the electrode.
  • the resistance of the electrode can be increased, thereby adjusting the resistance of the resistance element 130 .
  • the effective cross-sectional shape of the electrode can be adjusted, such as the cross-section of the control electrode is in the form of a mesh (for example, the grid shape is a triangle, quadrilateral, polygon, circle, ellipse, etc.) to reduce the The effective cross-sectional area of the small electrode.
  • a mesh for example, the grid shape is a triangle, quadrilateral, polygon, circle, ellipse, etc.
  • 13A-13F are schematic diagrams of electrodes of a piezoelectric assembly according to some embodiments of the present specification.
  • At least part of the cross section of the electrode of the piezoelectric component 120 may be a mesh structure or an S-shaped structure.
  • electrode a is an original rectangular electrode
  • electrode b and electrode c are mesh electrodes
  • electrode d is an S-shaped electrode.
  • the effective cross-sectional area is the area of the shaded part
  • the contour cross-sectional area is the rectangular area. That is, the effective cross-sectional area of the electrode a is equal to the profile cross-sectional area of the electrode.
  • the effective cross-sectional area of the electrode b and the electrode c is mesh-shaped, so that the effective cross-sectional area is smaller than the profile cross-sectional area.
  • the effective cross-sectional area of the electrode d is S-shaped such that the effective cross-sectional area is smaller than the profile cross-sectional area.
  • the partial cross-sectional area of the electrode of the piezoelectric component 120 can be changed to change the resistance of the electrode.
  • the cross-sectional area of the lead-out sections of the rectangular electrodes 310 and 320 can be reduced to a circular shape to change the resistance of the electrodes, thereby changing the resistance of the resistance element 130 .
  • the electrode resistance of the piezoelectric component 120 can also be adjusted by changing the length of the electrode, thereby adjusting the resistance of the resistance element 130 . As shown in FIG. 13E , the length of the lead-out section of the positive and negative electrodes of the piezoelectric component 120 can be increased, thereby increasing the resistance of the electrodes, and further increasing the resistance of the resistance element 130 .
  • the electrode resistance of the piezoelectric component 120 can also be adjusted by changing the thickness of the electrode, thereby adjusting the resistance of the resistance element 130 . As shown in FIG. 13F, compared with the electrode thickness of the piezoelectric component 120 shown in FIG. 6, the electrode thickness of the piezoelectric component 120 shown in FIG. value.
  • the acoustic device 100 may be a bone conduction acoustic device.
  • the vibrating component 110 can be attached to the user's human body tissue, and the sound waves emitted by the vibrating component 110 can be transmitted to the user's inner ear through the user's bones, thereby realizing sound transmission.
  • the acoustic device 100 may also include a boost electrical system.
  • the boost electrical system may be used to boost the voltage output by a power source (eg, a battery).
  • the acoustic device 100 may further include: a connecting piece, used for connecting the housing with the human body.
  • the connector may be a wearable device for fitting the housing to the user.
  • the connector may be a spectacle frame, and the casing may be disposed at the temple of the spectacle frame. When the user wears the spectacle frame, the casing may be in contact with the human body, so that the acoustic device 100 can transmit sound for the user.
  • the connector can be a headband, and the shell can be arranged at one end of the headband. When the user wears the headband, the shell can be in contact with the human body, so that the acoustic device 100 can transmit sound for the user.
  • the possible beneficial effects of the embodiments of this specification include but are not limited to: (1) By setting the resistance element in series with the piezoelectric component to divide the voltage, the voltage at both ends of the piezoelectric component can be reduced, thereby reducing the vibration of the vibration component in the middle and high frequency bands The amplitude reduces the sensitivity difference in the whole frequency band, and improves the high and low frequency balance of the sound output by the acoustic equipment. (2) When the acoustic equipment is in the middle and high frequency range, the resistance elements connected in series can also reduce the current flowing through the piezoelectric component by means of voltage division, thereby reducing the heat energy generated by the piezoelectric component, achieving the effect of temperature control, and improving Operating reliability of acoustic equipment.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本申请实施例公开了一种声学设备。所述设备包括:压电组件,压电组件在驱动电压的作用下产生振动;振动组件,振动组件机械地连接到压电组件,接收振动并产生声音;以及电阻元件,电阻元件与压电组件串联以改变振动组件的频率响应,其中,电阻元件使得振动组件的振动在10kHz处的幅值与1kHz处的幅值的差异不超过20dB。本申请通过串联电阻元件,达到降低振动组件在中高频带振动的幅值,减小全频带的灵敏度差异,提高了声学设备输出的声音的高低频均衡感。并且,当声学设备在中高频段时,串联的电阻元件还可以通过分压的方式,降低流经压电组件的电流,从而减小压电组件产生的热能,达到控制温度的效果,提高声学设备的工作可靠性。

Description

一种声学设备 技术领域
本说明书涉及声学技术领域,特别涉及一种声学设备。
背景技术
声学设备往往会通过向压电组件施加电能的方式,使其发生形变传输声音。例如,声学设备可以通过在压电组件的极化方向上施加驱动电压,利用压电材料的逆压电效应产生振动,从而向外辐射声波。
然而声学设备中压电组件的谐振频率通常较高,造成设备的高频灵敏度较高而低频灵敏度较低,从而导致声学设备发出的声音较为刺耳,用户听感的高低频均衡感较差。
此外,压电组件在通入交变电压信号后,在压电组件材料的内阻的作用下会发热,尤其在谐振频率附近,发热更为严重,可接近甚至超过300℃。而压电组件具有压电性,其工作温度必须低于其材料的居里温度。因此,如何有效控制压电组件在交变信号下的工作温度,成为提高压电组件驱动的声学输出设备工作可靠性的关键。
因此,有必要提出一种高低频灵敏度均衡,同时有效控制中高频发热的声学设备。
发明内容
本说明书实施例之一提供一种声学设备。该设备包括:压电组件,压电组件在驱动电压的作用下产生振动。振动组件,振动组件机械地连接到压电组件,接收振动并产生声音。以及电阻元件,电阻元件与压电组件串联以改变振动组件的频率响应,其中,电阻元件使得振动组件的振动在10kHz处的幅值与1kHz处的幅值的差异不超过20dB。
在一些实施例中,电阻元件串联在压电组件的正极上。
在一些实施例中,电阻元件焊接在压电组件的正极上。
在一些实施例中,电阻元件串联在压电组件的负极上。
在一些实施例中,电阻元件焊接在压电组件的负极上。
在一些实施例中,压电组件的正极和负极从压电组件的同一侧引出。
在一些实施例中,电阻元件包括连接压电组件的导线。
在一些实施例中,电阻元件包括连接压电组件的导电胶。
在一些实施例中,电阻元件布置在柔性线路板上。
在一些实施例中,电阻元件包括压电组件的电极。
在一些实施例中,压电组件的电极的至少部分的材料为以下材料之一:铜、金、铝、钨、铁、或铂。
在一些实施例中,压电组件的电极的至少部分的有效横截面积小于电极的轮廓横截面积。
在一些实施例中,压电组件的电极的至少部分的横截面为网状结构或S型结构。
在一些实施例中,电阻元件的阻值为1Ω-1kΩ。
在一些实施例中,压电组件为梁结构。
在一些实施例中,压电组件包括至少两个压电陶瓷片,至少两个压电陶瓷片相互电学连接。
在一些实施例中,至少两个压电陶瓷片与压电组件的电极交错层叠。
在一些实施例中,在工作状态下,压电组件的表面温度低于其居里温度。
在一些实施例中,振动组件包括:弹性元件;以及质量元件,弹性元件的一端连接压电组件,另一端连接质量元件。
在一些实施例中,弹性元件包括以下之一:传振片、胶、弹片、或基板。
在一些实施例中,质量元件包括用于容纳压电组件和电阻元件的壳体。
在一些实施例中,声学设备为骨传导声学设备。
在一些实施例中,声学设备还包括升压电学系统,升压电学系统用于提高电源输出的电压。
本说明书实施例通过设置电阻元件与压电组件串联进行分压,可以降低压电组件两端的电压,从而降低了振动组件在中高频带振动的幅值,减小了全频带的灵敏度差异,提高了声学设备输出的声音的高低频均衡感。
并且,当声学设备在中高频段时,串联的电阻元件还可以通过分压的方式,降低流经压电组件的电流,从而减小压电组件产生的热能,达到控制温度的效果,提高声学设备的工作可靠性。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的声学设备的结构框图;
图2是根据本说明书一些实施例所示的声学设备的结构示意图;
图3是根据本说明书一些实施例所示的压电组件的电路示意图;
图4是根据本说明书一些实施例所示的压电组件的阻抗-频率曲线示意图;
图5是根据本说明书一些实施例所示的压电组件的电流-频率曲线示意图;
图6是根据本说明书一些实施例所示的压电组件的结构示意图;
图7是根据本说明书一些实施例所示的电阻元件和压电组件的电路示意图;
图8是根据本说明书一些实施例所示的压电组件的电压-频率曲线示意图;
图9是根据本说明书一些实施例所示的振动组件的频响曲线的示意图;
图10是根据本说明书一些实施例所示的压电组件的电流-频率曲线示意图;
图11A是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图11B是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图11C是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图11D是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图11E是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图11F是根据本说明书一些实施例所示的压电组件和电阻元件的连接结构示意图;
图12是根据本说明书一些实施例所示的线路板的结构示意图;
图13A是根据本说明书一些实施例所示的压电组件的电极的示意图;
图13B是根据本说明书一些实施例所示的压电组件的电极的示意图;
图13C是根据本说明书一些实施例所示的压电组件的电极的示意图;
图13D是根据本说明书一些实施例所示的压电组件的电极的示意图;
图13E是根据本说明书一些实施例所示的压电组件的电极的示意图;以及
图13F是根据本说明书一些实施例所示的压电组件的电极的示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明 书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书一个或多个实施例的声学设备可以通过压电组件产生的振动输出声音,以便应用于各种需要播放音频的场景,如声学设备可以为独立的音频输出设备(如音响、耳机等),能够根据用户指令播放音频;又如声学设备可以为终端设备(如手机、电脑等)中的模块或组件,能够根据终端指令播放音频。在一些实施例中,声学设备还可以根据需要输出的声音的频率、大小等参数,调整压电组件的形变产生不同的振动,以使振动组件根据不同的振动输出不同的声音。
在一些实施例中,声学设备可以为骨传导声学设备,骨传导声学设备中的振动组件可以与用户的人体组织贴合,通过用户的骨骼将振动组件发出的声波传输至用户内耳。在一些实施例中,声学设备也可以为其他类型的声学设备,如空气传导声学设备、助听器、辅听器、眼镜、头盔、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等,或者可选地,声学设备可以作为车载音频系统或者室内音响系统的一部分,用于输出声音。
目前,声学设备中压电组件的谐振频率通常较高,造成设备的高频灵敏度较高而低频灵敏度较低,从而导致声学设备发出的声音较为刺耳,用户听感的高低频均衡感较差。
本说明书实施例描述了一种声学设备。在一些实施例中,声学设备可以包括压电组件、振动组件和电阻元件。其中,压电组件可以在驱动电压的作用下产生振动,振动组件可以接收来自压电组件的振动并产生声音,电阻元件可以与压电组件串联,以改变所述振动组件的频率响应,以使振动组件的振动在10kHz处 的幅值与1kHz处的幅值的差异不超过20dB。
本说明书实施例通过设置电阻元件与压电组件串联进行分压,可以降低压电组件两端的电压,从而降低了振动组件在中高频带振动的幅值,减小了全频带的灵敏度差异,提高了声学设备输出的声音的高低频均衡感。
并且,本说明书实施例提供的声学设备在中高频段时,串联的电阻元件还可以通过分压的方式,降低流经压电组件的电流,从而减小压电组件产生的热能,达到控制温度的效果,提高声学设备的工作可靠性。
图1是根据本说明书一些实施例所示的一种声学设备100的结构框图。
如图1所示,声学设备100可以包括:振动组件110、压电组件120和电阻元件130。其中,压电组件120在驱动电压的作用下产生振动。振动组件110机械地连接到压电组件120,接收振动并产生声音。电阻元件130与压电组件120串联,以改变所述振动组件110的频率响应,且电阻元件130使得振动组件110的振动在10kHz处的幅值与1kHz处的幅值的差异不超过20dB。
振动组件110可以被配置为传输振动并产生声音的组件。在一些实施例中,振动组件110可以包括弹性元件,弹性元件可以响应振动并发生形变,改变自身周边的声压,从而产生声波,实现声音的输出。示例性的,弹性元件可以通过自身的形变(如自身振动等)使周围的空气产生疏密变化,形成疏密相间的纵波,从而产生声波。在一些实施例中,弹性元件可以包括传振片、胶、弹片、基板等,或其任意组合。在一些实施例中,弹性元件的材料可以为任何具有传输振动能力的材料。例如,所述弹性元件的材料可以为硅胶、塑胶、橡胶、金属等,或其任意组合。在一些实施例中,所述振动组件110还包括质量元件。所述弹性元件的一端可以连接所述压电组件120,另一端连接所述质量元件。在一些实施例中,所述压电组件120的至少一部分可以连接所述弹性元件,所述质量元件的一部分可以连接所述弹性元件。在一些实施例中,所述质量元件可以包括质量块、壳体等。例如,所述壳体可以用于容纳所述压电组件120和所述电阻元件130,保护压电组件120和所述电阻元件130,延长声学设备100的使用寿命。在一些实施例中,壳体的材料可以包括金属、硅胶、橡胶、塑料等中的一种或多种材料,以达到缓冲减震的作用。在一些实施例中,振动组件110可以为膜状结构(如气导振膜等),也可以为板状结构(如骨导振动面板等),还可以为网状结构或层状结构等其他结构。
下面提供一种示例性的声学设备100,以描述振动组件110的具体实现方式。
图2是根据本说明书一些实施例所示的声学设备100的结构示意图。
如图2所示,振动组件110的一端可以与压电组件120的振动输出端121 连接,以接收振动。振动组件110的另一端可以输出声音。示例性的,振动组件110可以通过一种或多种介质(如空气、用户骨骼等)向用户发送声波,从而使得用户听到声学设备100输出的声音。
压电组件120可以被配置为将电能转换为机械能的电能转换设备。在一些实施例中,压电组件120可以基于不同驱动电压发生不同程度的形变,从而产生振动。压电组件120的具体实现方式,可以参考下述图6、图11A-11F、图12、以及图13A-13F中的相关描述,此处不再赘述。在一些实施例中,压电组件120可以为片状、环状、棱型、长方体型、柱型、球型等形状,或其任意组合,也可以为其他不规则形状。在一些实施例中,压电组件120的材料可以包括压电晶体、压电陶瓷、压电聚合物等压电材料,或其任意组合。在一些实施例中,压电晶体可以包括水晶、闪锌矿、方硼石、电气石、红锌矿、GaAs、钛酸钡及其衍生结构晶体、KH 2PO 4、NaKC 4H 4O 6·4H 2O(罗息盐)等,或其任意组合。压电陶瓷是指由不同材料粉粒之间的固相反应和烧结而获得的微细晶粒无规则集合而成的压电多晶体。在一些实施例中,压电陶瓷材料可以包括钛酸钡(BT)、锆钛酸铅(PZT)、铌酸铅钡锂(PBLN)、改性钛酸铅(PT)、氮化铝(AIN)、氧化锌(ZnO)等,或其任意组合。在一些实施例中,压电聚合物材料可以包括聚偏氟乙烯(PVDF)等。
在一些实施例中,可以通过调整向压电组件120施加的驱动电压的大小,调整压电组件120的振动的幅度。例如,压电组件120输出的振动的幅度与施加的电压大小相关,两者的关系式可以为公式(1):
Figure PCTCN2022079435-appb-000001
其中,F为压电组件120输出的振动幅度,V为压电组件120的驱动电压,d为压电组件120的压电常数,A为压电组件120的面积,t为压电组件120的厚度,S E为压电组件120的弹性柔顺常数。根据公式(1),压电组件120输出的振动幅度与压电组件120的驱动电压成正比。
在一些实施例中,还可以通过调整向压电组件120施加的驱动电压的频率大小,调整压电组件120的振动频率。在一些实施例中,压电组件120产生的振动还与压电材料的压电常数有关。例如,在驱动电压相同时,压电常数越大,压电组件120产生的形变越大,振动越强烈。在一些实施例中,压电常数不同,导致压电组件120发生的形变方向不同。例如,压电组件120的压电常数可以为D33常数或D31常数,也可以为其他压电常数。其中,D33常数表示压电组件120的电学方向(即电场的方向)和力学方向(即形变的方向)是相同的,D31常数表示压电组件120的形变方向主要发生在一个方向。
图3是根据本说明书一些实施例所示的压电组件120的电路示意图。
在一些实施例中,压电组件120可以看作一种具有电容性质的元器件。如图3所示,压电组件120可以是具有容值的电容C p,相对应的,压电组件120的阻抗Z p可以根据公式(2)确定:
Figure PCTCN2022079435-appb-000002
其中,Z p为压电组件120的等效阻抗值,ω为驱动电压的角频率,C p为压电组件120的等效电容值。根据公式(2),在未设置电阻元件130时,随着驱动电压的角频率ω的增加,压电组件120的阻抗Z p会随之降低。
图4是根据本说明书一些实施例所示的压电组件120的阻抗-频率曲线示意图。
如图4所示,曲线1为压电组件120的阻抗-频率曲线。根据曲线1,随着驱动电压的频率的增加(例如,从100Hz升高至1kHz),驱动电压的角频率ω也随之上升,而压电组件120的阻抗随之降低(例如,从阻抗值Z p1下降至阻抗值Z p2)。
继续参考图3,在未串联电阻元件130且驱动电压的电压V不变的情况下,压电组件120的阻抗Z p降低可以导致流经压电组件120的电流随之增加。也就是说,随着驱动电压的角频率ω的增加,压电组件120的阻抗Z p会随之降低,导致流经压电组件120的电流会增加。
图5是根据本说明书一些实施例所示的压电组件120的电流-频率曲线示意图。
如图5所示,曲线2为压电组件120的电流-频率曲线。根据曲线2,随着驱动电压的频率的增加(例如从1kHz升高至10kHz),驱动电压的角频率ω也随之上升,而流经压电组件120的电流随之增加(例如,从电流值I 1升高至电流值I 2)。根据焦耳定律,即公式(3),在电阻一定的情况下,电子器件的发热功率P与电流I的平方成正比,
P=I 2R      (3),
因此,在未串联电阻元件130的情况下,随着驱动电压频率的增加,压电组件120的电流随之增加,压电组件120会在驱动电压的频率为中高频(例如,大于1KHz)处发热功率逐渐增大,导致压电组件120的工作温度较高,严重时可能会高于居里温度,使压电组件120的压电性降低影响声学设备100的正常工作。
在一些实施例中,压电组件120可以为梁结构(例如,一端与声学设备固定连接,一端自由振动的梁结构,可视为悬臂梁结构)。在一些实施例中,悬臂梁结构的压电组件120(以下简称压电梁)的固定端可以接收电压信号,压电梁整体产生振动,并通过压电梁上的任一位置(例如,自由端)将振动传输给振动 组件,让用户人耳感知。其中,压电梁上输出振动的位置称为振动输出端。在一些实施例中,振动输出端可以直接输出气导声;在一些实施例中,振动输出端可以与振膜连接输出气导声;在一些实施例中,振动输出端可以与传振片等结构连接,将振动传递通过用户的皮肤、骨骼等组织传递到听觉神经,输出骨导声。
示例性的,如图2所示,悬梁臂结构的固定端可以为压电组件120的驱动端122,驱动端122可以接收驱动电压,悬梁臂结构的自由端可以为压电组件120的振动输出端121,振动输出端121可以产生并输出振动。
在一些实施例中,压电组件120可以包括至少两个压电陶瓷片,至少两个压电陶瓷片相互电学连接。压电陶瓷片可以为片状的具有压电特性的部件。在一些实施例中,压电陶瓷片可以根据驱动电压的大小和频率发生机械形变。例如,压电陶瓷片可以在驱动电压为正向时伸长,在驱动电压为负向时收缩。在一些实施例中,不同的压电陶瓷片的极化方向可以不同,从而在相同的驱动电压的作用下产生的形变方向也可以不同。例如,在驱动电压为正向时,当压电陶瓷片A和压电陶瓷片B的极化方向不同时,压电陶瓷片A可以伸长,而压电陶瓷片B可以缩短。在一些实施例中,不同的压电陶瓷片的极化方向也可以相同,从而在相同的驱动电压的作用下产生的形变方向也可以相同。
在一些实施例中,压电组件120可以为层状结构。在一些实施例中,至少两个压电陶瓷片可以通过层叠的方式进行设置。例如,多个压电陶瓷片可以重叠设置,且其位置在空间上对应。在一些实施例中,压电组件120的振动可以与压电陶瓷片的层数有关。示例性的,压电陶瓷片的层数越多,压电组件120的振动幅度越大。
在一些实施例中,至少两个压电陶瓷片相互电学连接的方式可以与压电陶瓷片之间的极化方向有关。例如,在不同层的压电陶瓷片的极化方向同向时,多个压电陶瓷片可以串联,以使不同的压电陶瓷片的形变方向不同。又例如,两个极化方向同向的压电陶瓷片可以层叠且串联,且两层的压电陶瓷片的驱动电压反向,导致两层的压电陶瓷片的形变方向反向,从而可以增大压电组件120的形变力度,进一步增加压电组件120的振动幅度。
在一些实施例中,在不同层的压电陶瓷片的极化方向反向时,多个压电陶瓷片可以通过并联的方式连接,以使不同的压电陶瓷片的形变方向不同。例如,两个极化方向反向的压电陶瓷片可以层叠且并联,且两层的压电陶瓷片的驱动电压反向,导致两层的压电陶瓷片的形变方向反向,从而可以增大压电组件120的形变力度,进一步增加压电组件120的振动幅度。下面提供一种示例性的压电组件120,以描述并联的压电陶瓷片的具体实现方式。
图6是根据本说明书一些实施例所示的压电组件120的结构示意图。
如图6所示,压电组件120可以包括多个压电陶瓷片123,多个压电陶瓷片123层叠设置。在一些实施例中,多个压电陶瓷片123可以分别设置在压电组件120的第一层、第二层、第三层和第四层内。第一层和第二层的压电陶瓷片123的极性方向可以与第三层和第四层的压电陶瓷片123的极性方向不同(即第一层和第二层的极性方向相同,第三层和第四层的极性方向相同),当向压电组件120施加驱动电压时,第一层和第二层的形变方向可以与第三层和第四层的形变方向相反,以加大增强压电组件120的振动幅度。
在一些实施例中,正负电极分别设置在至少两个压电陶瓷片两端,使得至少两个压电陶瓷片相互并联,从而为压电陶瓷片提供相同的驱动电压。在一些实施例中,至少两个压电陶瓷片可以与压电组件120的电极交错层叠。压电组件120的正负电极可以延伸至多个压电陶瓷片之间,从而增大与压电陶瓷片相互接触的面积,提高驱动效率。
示例性的,如图6所示,正电极与多个压电陶瓷片123的第一端1231接触,负电极与多个压电陶瓷片123的第二端1232接触,实现多个压电陶瓷片123的并联。正电极还可以设置在多个压电陶瓷片123的第一层和第二层之间,以及设置在第三层和第四层之间。负电极可以设置在多个压电陶瓷片123的表面,以及设置在第二层和第三层之间。
本说明书实施例中,声学设备100通过压电组件120的逆压电效应产生振动向外辐射声波,与传动电动式扬声器相比,声学设备100可以具有机电换能效率高、能耗低、体积小、集成度高等优势。需要说明的是,图3仅为示例,压电组件120还可以包括其他数量的压电陶瓷片,或以其他形式与电极连接。
电阻元件130可以被配置为任何具有电阻特性或可以实现带通调控效果的电学器件。例如,电阻元件130可以包括具有电阻性质的元器件、材料、涂层、粘胶等器件,或其任意组合。再例如,电阻元件130还可以包括具有带通调控效果的电阻-电容(RC)滤波器,如串联构型的RC滤波器、并联构型的RC滤波器、串并联构型的RC滤波器、级联或多阶RC滤波器、无源或有源RC滤波器等,或其任意组合。
在一些实施例中,电阻元件130可以与压电组件120串联,以调整振动组件110的幅值差异。例如,电阻元件130通过串联分压原理调控压电组件120两端的电压或带宽,从而使得振动组件110在高低频处的幅值差异发生改变。
图7是根据本说明书一些实施例所示的电阻元件130和压电组件120的电路示意图。
如图7所示,电阻元件130可以等效成一个电阻R t,压电组件120可以等效成一个电容C p,电阻R t可以与电容C p串联,驱动电压V同时为电阻R t和 电容C p提供电压。在驱动电压V的电压不变且驱动电压V的频率不断升高的情况下,由于压电组件120的阻抗降低,使得电阻元件130两端的电压增加,从而压电组件120两端的电压下降。
图8是根据本说明书一些实施例所示的压电组件120的电压-频率曲线示意图。
在一些实施例中,可以通过调整电阻元件130的阻值,调整压电组件120两端的电压。如图8所示,曲线3为未串联电阻元件130(即,串联电阻值为R 1=0的电阻元件130)的情况下,压电组件120的电压-频率曲线;曲线4为串联电阻值为R 2的电阻元件130的情况下,压电组件120的电压-频率曲线;曲线5为串联电阻值为R 3的电阻元件130的情况下,压电组件120的电压-频率曲线;曲线6为串联电阻值为R 4的电阻元件130的情况下,压电组件120的电压-频率曲线。其中,0=R 1<R 2<R 3<R 4
在一些实施例中,在驱动电压V的频率较低(如频率10Hz~100Hz)时,由于压电组件120的阻抗较大,串联的电阻元件130对整体阻抗的作用不明显,对压电组件120的电压的影响较小。当驱动电压V的频率逐渐升高至中高频(如频率1k~10kHz)时,压电组件120两端的电压下降。例如,在驱动电压V的频率升高至10kHz时,曲线3的压电组件120的电压为U 3,曲线4的压电组件120的电压为U 4,曲线5的压电组件120的电压为U 5,曲线6的压电组件120的电压为U 6,其中,U 3>U 4>U 5>U 6
在一些实施例中,随着电阻元件130的阻值的增加,压电组件120两端电压开始下降的频率点逐渐提高。如图8中的曲线2-4所示,随着电阻元件阻值的增加,电压开始下降的频率点逐步提高。相对应的,在一些实施例中,可以通过调整电阻元件130的阻值,实现声学设备100的声学输出特性的调控,以满足对声学设备100的频响特性和应用的需求。
在一些实施例中,电阻元件130可以通过与压电组件120串联,进而调控压电组件120两端的电压或带宽,改变振动组件110的频率响应。在一些实施例中,电阻元件130可以与压电组件120串联,调整压电组件120两端的电压,以使得振动组件110在高低频处的幅值差异发生改变。下面提供一种示例性的振动组件110的频响曲线,以描述电阻元件130的具体实现方式。
图9是根据本说明书一些实施例所示的振动组件的频响曲线的示意图。如图9所示,曲线7为当压电组件120未串联电阻元件130时,振动组件110的频响曲线,曲线8为当压电组件120与串联电阻元件130串联时,振动组件110的频响曲线。在一些实施例中,串联电阻元件130的作用在于压制高频输出。例如,如图9所示,当串联电阻元件130后,频响曲线峰谷位置不会发生变化,对 低频的幅值影响也不大,但从某一频率开始(例如,600Hz),随着频率的增加,对应频率幅值下降的越多,呈现出高、低频曲线幅值差异的减小,主观听感上“刺耳感”缓解,高低频的均衡感提高。如图9所示,曲线8在10kHz处的幅值与1kHz处的幅值的差异D2,比曲线7在10kHz处的幅值与1kHz处的幅值的差异D1更小。在一些实施例中,所述差异D2可以不超过特定阈值(例如,30dB,20dB,15dB等)。本说明书实施例通过设置电阻元件130与压电组件120串联,使得声学设备100具有较小的全频带的灵敏度差异,从而提高了声学设备100输出的声音的高低频均衡感。
在一些实施例中,在驱动电压V的电压不变且驱动电压V的频率不断升高的情况下,由于压电组件120的阻抗降低,串联的电阻元件130使得压电组件120两端的电压下降,流经压电组件120的电流相应降低。并且,根据焦耳定律(公式(3)),压电组件120的发热功率与电流的二次方成正比,相较于未串联电阻元件130的情况,压电组件120的发热也可以相应降低,从而提高器件可靠性。
图10是根据本说明书一些实施例所示的压电组件120的电流-频率曲线示意图。
在一些实施例中,可以通过调整电阻元件130的阻值,调整流经压电组件120的电流,从而调整压电组件120的发热,实现温度的控制。如图9所示,曲线9为未串联电阻元件130(即,串联电阻值为R 9=0的电阻元件130)的情况下,压电组件120的电流-频率曲线;曲线10为串联电阻值为R 10的电阻元件130的情况下,压电组件120的电流-频率曲线;曲线11为串联电阻值为R 11的电阻元件130的情况下,压电组件120的电流-频率曲线;曲线12为串联电阻值为R 12的电阻元件130的情况下,压电组件120的电流-频率曲线。其中,0=R 9<R 10<R 11<R 12
在驱动电压V的频率较低(如频率10~100Hz)时,由于压电组件120的阻抗较大,串联的电阻元件130对整体阻抗的作用不明显,对流经压电组件120的电流的影响较小。当驱动电压V的频率逐渐升高至中高频(如频率1k~10kHz)时,流经压电组件120的电流下降。并且,在驱动电压的相同频率下,随着电阻元件130的阻值的增加,流经压电组件120的电流越小。例如,在驱动电压V的频率升高至10kHz时,曲线9的压电组件120的电流为I 9,曲线10的压电组件120的电流为I 10,曲线11的压电组件120的电压为I 11,曲线12的压电组件120的电流为I 12。其中,I 9>I 10>I 11>I 12
在一些实施例中,串联电阻的大小需可以根据形成的声学设备100的整体频响特性来确定。例如,根据压电组件120的特性,假设高频幅值较大或呈升 高趋势,可以结合主观听音确定需要串联的电阻元件130的大小。例如,可以根据压电组件120的频响曲线,确定从某一频率阈值fc处实现随频率增加,且频率越高则相应幅值下降的越多的效果。在一些实施例中,频率阈值fc可以根据具体压电组件120的振动特性确定。
在一些实施例中,压电组件120的压电片的静电容可以根据公式(4)确定:
Figure PCTCN2022079435-appb-000003
其中,ε为压电片的介电常数,S为电极面积,t为正负电极间的距离。假设改变了压电材料,使介电常数ε改变,从而改变了静电容,则需根据公式(5)重新匹配电阻。若改变电极的几何尺寸S和t,则会对声学设备100的振动特性产生影响,需根据其频响曲线结合主观听音判断串联电阻具体值。
对于由具有不同容值的压电片Cp1和Cp2构建的声学设备100,假设这两个声学设备均需要从频率阈值fc处实现频响幅值随频率升高而下降的效果,可以根据公式(5)确定需要串联的电阻元件R1和R2:
Figure PCTCN2022079435-appb-000004
在一些实施例中,电阻元件130的阻值可以在一定范围内(例如,1Ω-1000Ω,100Ω-10kΩ等),使得振动组件110在频率阈值fc(例如,100Hz)处的振动幅值开始下降,以使振动组件110在10kHz处的幅值与1kHz处的幅值的差异不超过20dB,使得声学设备100具有较小的全频带的灵敏度差异,从而提高了声学设备100输出的声音的高低频均衡感。同时,电阻元件130还可以降低压电组件120的发热,使得压电组件120的工作温度可以低于居里温度,确保声学设备100的正常工作。例如,当6kHz的单频激励下,未串联所述压电组件120的表面温度(例如,236.9℃)较高,可以接近其居里温度(例如,所述压电组件120的居里温度为290℃)。当激励时间增加,所述压电组件120的表面温度会超过其居里温度,造成所述压电组件失效。而在6kHz单频信号激励下,串联了所述电阻元件130的压电组件120表面的温度显著下降。例如,压电组件120的表面温度可以在6kHz单频信号激励5min内低于其居里温度。
在一些实施例中,电阻元件130可以以不同的连接方式与压电组件120串联。以上述图6所示的压电组件为例,下面分别提供几个示例性的电阻元件130与压电组件120的连接关系,以详细说明电阻元件130的具体实现方式。
图11A-11F是根据本说明书一些实施例所示的压电组件120和电阻元件130的连接结构示意图。
在一些实施例中,电阻元件130可以与压电组件120的电极连接。在一 些可选的实施例中,如图11A-图11C所示,电阻元件130可以串联在压电组件120的正极上。相对应的,驱动电压可以施加在电阻元件130与压电组件120组成的整体的两端。
在一些可选的实施例中,如图11D-图11F所示,电阻元件130也可以串联在压电组件120的负极上。相对应的,驱动电压可以施加在压电组件120与电阻元件130组成的整体的两端。在一些实施例中,电阻元件130也可以为多个,多个电阻元件130分别串联在压电组件120的正极和/或负极上。例如,多个电阻元件130中的一个或多个可以串联在压电组件120的正极上,剩余电阻元件130可以串联在压电组件120的负极上。再例如,所述多个电阻元件130可以全部串联在压电组件120的正极上或负极上。
在一些实施例中,电阻元件130可以通过导线与压电组件120的电极连接。如图11A所示,电阻元件130的一端可以通过导线与压电组件120的正极连接,电阻元件130的另一端可以接收驱动电压。再如图11D所示,电阻元件130的一端可以通过导线与压电组件120的负极连接,电阻元件130的另一端可以接收驱动电压。
在一些实施例中,电阻元件130可以焊接在压电组件120的电极上。在一些实施例中,电阻元件130可以焊接在压电组件120的正极上。如图11B-图11C所示,电阻元件130的一端(如图中所示的焊点)可以通过导电胶131焊接在压电组件120的正极上,并与压电组件120电连接。相对应的,驱动电压可以施加在电阻元件130与压电组件120组成的整体的两端。
在一些实施例中,电阻元件130还可以焊接在压电组件120的负极上。如图11E-图11F所示,电阻元件130的一端可以通过导电胶131焊接在压电组件120的负极上,并与压电组件120电连接。相对应的,驱动电压可以施加在压电组件120与电阻元件130组成的整体的两端。
在一些实施例中,压电组件120的正极和负极可以分别从压电组件120的不同侧引出,以便为压电组件120和电阻元件130施加驱动电压。如图11A-图11B以及图11D-图11E所示,压电组件120的正极可以压电组件120的第一侧1201引出,压电组件120的负极可以从压电组件120的第二侧1202引出。
在一些实施例中,压电组件120的正极和负极可以从压电组件120的同一侧引出,以节约压电组件120和电阻元件130占用的空间。如图11C以及图11F所示,压电组件120的正极和负极均可以从压电组件120的第三侧1203引出。
在一些实施例中,电阻元件130可以包括一个或多个电阻,电阻与压电组件120串联。在一些实施例中,可以通过调整电阻的数量和/或阻值,调整电 阻元件130的大小。
在一些实施例中,电阻元件130可以包括连接压电组件120的导线。其中,导线可以为压电组件120与其他器件进行电学连接的电路器件,如图11A和图11D所示,导线可以用于连接电阻元件130与压电组件120。在一些实施例中,导线可以包括压电组件120与驱动电压之间的导线、压电组件120与电阻之间的导线、压电组件120与其他器件之间的导线中的一种或多种的组合。
在一些实施例中,可以通过调整导线的阻值,调整电阻元件130的阻值。例如,可以通过调整导线的构型,如导线截面面积、长度、迂回形状等参数,调整导线的阻值,从而实现电阻元件130的阻值的调节。
在一些实施例中,电阻元件130可以包括连接压电组件120的导电胶。其中,导电胶可以为压电组件120与其他器件进行电学连接的电路器件,如图11B、图11C、图11E或图11F所示,导电胶131可以用于连接电阻元件130与压电组件120。在一些实施例中,导电胶的材料可以包括:金属(如金、银、铜、铝、锌、铁、镍)、石墨、环氧树脂、丙烯酸酯树脂、聚氯酯中的一个或多个的组合,导电胶的材料还可以包括其他导电化合物。在一些实施例中,可以通过调整导电胶的材料以及用量,调整导电胶的阻值,从而实现电阻元件130的阻值的调节。
在一些实施例中,电阻元件130可以包括一个或多个电阻、连接压电组件120的导线、连接压电组件120的导电胶中的一种或多种的组合,也可以包括其他具有电阻特性的器件。在一些实施例中,可以通过调整电阻元件130中的一个或多个器件的阻值,调整电阻元件130整体的阻值。
图12是根据本说明书一些实施例所示的线路板的结构示意图。
在一些实施例中,电阻元件130可以布置在柔性线路板(Flexible Printed Circuit,简称FPC)上,以节约声学设备100的体积。如图12所示,两个电阻R t可以分别与压电组件120的正负电极连连接,布置在从压电组件120的电极引出的在柔性线路板200中的导线上。电阻元件130可以包括电阻R t、导线以及导电胶等,电阻元件130的阻值可以根据电阻R t的阻值、导线构型(如截面面积、长度、迂回形状等)以及导电胶的阻值确定。
在一些实施例中,电阻元件130可以包括压电组件120的电极。压电组件120的正负电极与压电组件120的设置关系可以参看上述图6所示的相关内容,此处不再赘述。
在一些实施例中,由于电极也可以具有一定的电阻性质,可以通过调整压电组件120的电极的阻值,调整电阻元件130整体的阻值。其中,电极的阻值可以根据公式(6)确定:
Figure PCTCN2022079435-appb-000005
其中,R p为电极的阻值,ρ为电极的电阻率,L为电极的长度,S为电极的截面积。在一些实施例中,可以通过调整电极的材料、形状、长度等参数,从而调整电极的阻值。
在一些实施例中,压电组件120的电极的至少部分的材料可以为以下材料之一:铜、金、铝、钨、铁、或铂,或其他电阻率适宜的材料。例如,可以将压电组件120的电极中的部分材料从银更换为铜,使得电阻率发生变化,电极阻值也随之发生变化,从而调整电阻元件130的阻值。
在一些实施例中,压电组件120的电极的至少部分的有效横截面积可以小于电极的轮廓横截面积,以增大电阻元件130的阻值,从而调节压电组件120的电压和发热功率。其中,电极的有效横截面积可以为电极工作时的实际使用的横截面积,轮廓横截面积可以为电极最外缘的线条所构成的横截面积。在一些实施例中,通过控制电极的至少部分的有效横截面积小于轮廓横截面积,可以使得电极的阻值增加,从而调整电阻元件130的阻值。在一些实施例中,可以通过调节电极的有效横截面形状,如控制电极的横截面呈网状(例如,网格形状为三角形、四边形、多边形、圆形、椭圆形等其他异形),以减小电极的有效横截面积。
图13A-13F是根据本说明书一些实施例所示的压电组件的电极的示意图。
在一些实施例中,压电组件120的电极的至少部分的横截面可以为网状结构或S型结构。如图13A-图13C所示,电极a为原始矩形电极,电极b和电极c为网状电极,电极d为S形电极。其中,有效横截面积为阴影部分的面积,轮廓横截面积为矩形面积。也就是说,电极a的有效横截面积等于电极的轮廓横截面积。电极b和电极c的有效横截面积呈网状,使得有效横截面积小于轮廓横截面积。电极d的有效横截面积呈S形,使得有效横截面积小于轮廓横截面积。如此,在相同材料和相同长度的条件下,电极d的阻值大于电极b和电极c的阻值,电极b和电极c的阻值大于电极a的阻值。
在一些实施例中,可以改变压电组件120的电极的局部横截面积,以改变电极的阻值。例如,如图13D所示,可以将矩形电极310和320的引出段的横截面积减小至圆形,以改变电极的阻值,进而改变电阻元件130的阻值。
在一些实施例中,还可以通过改变电极的长度的方式,调整压电组件120的电极阻值,从而调节电阻元件130的阻值。如图13E所示,可以增加压电组件120的正负电极的引出段的长度,从而增加电极的阻值,进而增加电阻元件130的阻值。
在一些实施例中,还可以通过改变电极的厚度的方式,调整压电组件120的电极阻值,从而调节电阻元件130的阻值。如图13F所示,相较于图6所示 的压电组件120的电极厚度,图13F所示的压电组件120的电极厚度增加,从而增加电极的阻值,进而增加电阻元件130的阻值。
在一些实施例中,声学设备100可以为骨传导声学设备。相对应的,振动组件110可以与用户的人体组织贴合,通过用户的骨骼将振动组件110发出的声波传输至用户内耳,实现声音的传播。在一些实施例中,声学设备100还可以包括升压电学系统。所述升压电学系统可以用于提高电源(例如,电池)输出的电压。
在一些实施例中,声学设备100还可以包括:连接件,用于连接所述壳体与人体。在一些实施例中,连接件可以为可穿戴设备,用于将壳体与用户贴合。示例性的,连接件可以为眼镜框,壳体可以设置在眼镜框的镜腿处,当用户戴上眼镜框时,壳体可以与人体接触,从而声学设备100可以为用户传输声音。又例如,连接件可以为头箍,壳体可以设置在头箍的一端,当用户戴上头箍时,壳体可以与人体接触,从而声学设备100可以为用户传输声音。
本说明书实施例可能带来的有益效果包括但不限于:(1)通过设置电阻元件与压电组件串联进行分压,可以降低压电组件两端的电压,从而降低了振动组件在中高频带振动的幅值,减小了全频带的灵敏度差异,提高了声学设备输出的声音的高低频均衡感。(2)当声学设备在中高频段时,串联的电阻元件还可以通过分压的方式,降低流经压电组件的电流,从而减小压电组件产生的热能,达到控制温度的效果,提高声学设备的工作可靠性。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确,说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施 例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (23)

  1. 一种声学设备,包括:
    压电组件,所述压电组件在驱动电压的作用下产生振动;
    振动组件,所述振动组件机械地连接到所述压电组件,接收所述振动并产生声音;以及
    电阻元件,所述电阻元件与所述压电组件串联以改变所述振动组件的频率响应,其中,所述电阻元件使得所述振动组件的振动在10kHz处的幅值与1kHz处的幅值的差异不超过20dB。
  2. 根据权利要求1所述的声学设备,其特征在于,所述电阻元件串联在所述压电组件的正极上。
  3. 根据权利要求2所述的声学设备,其特征在于,所述电阻元件焊接在所述压电组件的正极上。
  4. 根据权利要求1-3中任意一项所述的声学设备,其特征在于,所述电阻元件串联在所述压电组件的负极上。
  5. 根据权利要求4所述的声学设备,其特征在于,所述电阻元件焊接在所述压电组件的负极上。
  6. 根据权利要求4或权利要求5所述的声学设备,其特征在于,所述压电组件的正极和负极从所述压电组件的同一侧引出。
  7. 根据权利要求1-6中任意一项所述的声学设备,其特征在于,所述电阻元件包括连接所述压电组件的导线。
  8. 根据权利要求1-7中任意一项所述的声学设备,其特征在于,所述电阻元件包括连接所述压电组件的导电胶。
  9. 根据权利要求1-8中任意一项所述的声学设备,其特征在于,所述电阻元件布置在柔性线路板上。
  10. 根据权利要求1-9中任一项所述的声学设备,其特征在于,所述电阻元件包括所述压电组件的电极。
  11. 根据权利要求10所述的声学设备,其特征在于,所述压电组件的电极的至少部分的材料为以下材料之一:铜、金、铝、钨、铁、或铂。
  12. 根据权利要求10或权利要求11所述的声学设备,其特征在于,所述压电组件的电极的至少部分的有效横截面积小于所述电极的轮廓横截面积。
  13. 根据权利要求12所述的声学设备,其特征在于,所述压电组件的电极的至少部分的横截面为网状结构或S型结构。
  14. 根据权利要求1-13中任意一项所述的声学设备,其特征在于,所述电阻元件的阻值为1Ω-1kΩ。
  15. 根据权利要求1-14中任意一项所述的声学设备,其特征在于,所述压电组件为梁结构。
  16. 根据权利要求15所述的声学设备,其特征在于,所述压电组件包括至少两个压电陶瓷片,所述至少两个压电陶瓷片相互电学连接。
  17. 根据权利要求16所述的声学设备,其特征在于,所述至少两个压电陶瓷片与所述压电组件的电极交错层叠。
  18. 根据权利要求1-17中任一项所述的声学设备,其特征在于,在工作状态下,所述压电组件的表面温度低于其居里温度。
  19. 根据权利要求1-18中任一项所述的声学设备,其特征在于,所述振动组件包括:
    弹性元件;以及
    质量元件,所述弹性元件的一端连接所述压电组件,另一端连接所述质量元件。
  20. 根据权利要求19所述的声学设备,其特征在于,所述弹性元件包括以下之一:传振片、胶、弹片、或基板。
  21. 根据权利要求19或20所述的声学设备,其特征在于,所述质量元件包括用于容纳所述压电组件和所述电阻元件的壳体。
  22. 根据权利要求1-21中任意一项所述的声学设备,其特征在于,所述声学设备为骨传导声学设备。
  23. 根据权利要求1-22中任一项所述的声学设备,其特征在于,还包括升压电学系统,所述升压电学系统用于提高电源输出的电压。
PCT/CN2022/079435 2022-03-04 2022-03-04 一种声学设备 WO2023164953A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2023003084A MX2023003084A (es) 2022-03-04 2022-03-04 Dispositivos acusticos.
BR112023005026A BR112023005026A2 (pt) 2022-03-04 2022-03-04 Dispositivo acústico
KR1020237011695A KR20230131170A (ko) 2022-03-04 2022-03-04 음향장치
CN202280006702.3A CN117015981A (zh) 2022-03-04 2022-03-04 一种声学设备
EP22865877.9A EP4266700A4 (en) 2022-03-04 2022-03-04 ACOUSTIC DEVICES
JP2023521156A JP2024512841A (ja) 2022-03-04 2022-03-04 音響装置
PCT/CN2022/079435 WO2023164953A1 (zh) 2022-03-04 2022-03-04 一种声学设备
US18/167,827 US20230284534A1 (en) 2022-03-04 2023-02-10 Acoustic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079435 WO2023164953A1 (zh) 2022-03-04 2022-03-04 一种声学设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/167,827 Continuation US20230284534A1 (en) 2022-03-04 2023-02-10 Acoustic devices

Publications (1)

Publication Number Publication Date
WO2023164953A1 true WO2023164953A1 (zh) 2023-09-07

Family

ID=87850347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079435 WO2023164953A1 (zh) 2022-03-04 2022-03-04 一种声学设备

Country Status (8)

Country Link
US (1) US20230284534A1 (zh)
EP (1) EP4266700A4 (zh)
JP (1) JP2024512841A (zh)
KR (1) KR20230131170A (zh)
CN (1) CN117015981A (zh)
BR (1) BR112023005026A2 (zh)
MX (1) MX2023003084A (zh)
WO (1) WO2023164953A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245362A1 (en) * 2012-03-15 2013-09-19 Cochlear Limited Vibration Sensor for Bone Conduction Hearing Prosthesis
CN108119603A (zh) * 2017-12-07 2018-06-05 南京航空航天大学 一种基于压电堆叠的减振环装置
CN208174657U (zh) * 2018-05-31 2018-11-30 苏州攀特电陶科技股份有限公司 一种振动驱动电路
CN210639985U (zh) * 2019-07-19 2020-05-29 桂林电子科技大学 一种基于分流阻尼的双层隔声结构
CN113596684A (zh) * 2020-04-30 2021-11-02 深圳市韶音科技有限公司 声音输出装置及调节音量的方法
CN113596647A (zh) * 2020-04-30 2021-11-02 深圳市韶音科技有限公司 声音输出装置及调节声像的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644527B2 (en) * 2007-12-19 2014-02-04 Panasonic Corporation Piezoelectric acoustic transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245362A1 (en) * 2012-03-15 2013-09-19 Cochlear Limited Vibration Sensor for Bone Conduction Hearing Prosthesis
CN108119603A (zh) * 2017-12-07 2018-06-05 南京航空航天大学 一种基于压电堆叠的减振环装置
CN208174657U (zh) * 2018-05-31 2018-11-30 苏州攀特电陶科技股份有限公司 一种振动驱动电路
CN210639985U (zh) * 2019-07-19 2020-05-29 桂林电子科技大学 一种基于分流阻尼的双层隔声结构
CN113596684A (zh) * 2020-04-30 2021-11-02 深圳市韶音科技有限公司 声音输出装置及调节音量的方法
CN113596647A (zh) * 2020-04-30 2021-11-02 深圳市韶音科技有限公司 声音输出装置及调节声像的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266700A4 *

Also Published As

Publication number Publication date
US20230284534A1 (en) 2023-09-07
EP4266700A1 (en) 2023-10-25
BR112023005026A2 (pt) 2023-10-24
EP4266700A4 (en) 2024-01-31
KR20230131170A (ko) 2023-09-12
MX2023003084A (es) 2023-09-15
CN117015981A (zh) 2023-11-07
JP2024512841A (ja) 2024-03-21

Similar Documents

Publication Publication Date Title
US9843866B2 (en) Piezoelectric bone conduction receiver and portable electronic device
JP4683635B2 (ja) 受話装置
US8994247B2 (en) Piezoelectric actuator, piezoelectric vibration apparatus, and portable terminal
US8837760B2 (en) Bone conduction device having a multilayer piezoelectric element
JP4780297B2 (ja) 圧電セラミックス素子および携帯機器
WO2021003087A1 (en) Piezoelectric transducer for tympanic membrane
CN103002388A (zh) 一种与眼镜集成的多功能压电骨导耳机与触控力反馈系统
EP2519031A1 (en) Electroacoustic transducer, electronic device, method for converting electronic sound, and method for outputting acoustic wave from electronic device
CN113330754A (zh) 声学设备
WO2023164953A1 (zh) 一种声学设备
JP2015109589A (ja) イヤホン
KR101500562B1 (ko) 압전 스피커
TW202337235A (zh) 聲學設備
US20240244384A1 (en) Dual actuator bone conduction hearing prosthesis
JP2007221532A (ja) 音響振動発生素子
CN116939444A (zh) 声学输出装置
RU2795203C1 (ru) Акустические выходные устройства
WO2014050240A1 (ja) 圧電アクチュエータ、圧電振動装置および携帯端末
JP2014096739A (ja) イヤホン
US20230328455A1 (en) Acoustic output devices
TWI843202B (zh) 聲學輸出裝置
TWI815634B (zh) 聲學設備
TWI820888B (zh) 聲學設備
USRE48797E1 (en) Bone conduction device having a multilayer piezoelectric element
TW202341657A (zh) 聲學設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202317015907

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/003084

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2022865877

Country of ref document: EP

Effective date: 20230313

WWE Wipo information: entry into national phase

Ref document number: 2023521156

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280006702.3

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023005026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230317