WO2023163524A1 - System for preventing major disaster due to building resilience collapse and method using same - Google Patents

System for preventing major disaster due to building resilience collapse and method using same Download PDF

Info

Publication number
WO2023163524A1
WO2023163524A1 PCT/KR2023/002606 KR2023002606W WO2023163524A1 WO 2023163524 A1 WO2023163524 A1 WO 2023163524A1 KR 2023002606 W KR2023002606 W KR 2023002606W WO 2023163524 A1 WO2023163524 A1 WO 2023163524A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
information
stiffness
unit
learning
Prior art date
Application number
PCT/KR2023/002606
Other languages
French (fr)
Korean (ko)
Inventor
박종덕
Original Assignee
주식회사 소테리아에이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230006045A external-priority patent/KR102579897B1/en
Application filed by 주식회사 소테리아에이트 filed Critical 주식회사 소테리아에이트
Publication of WO2023163524A1 publication Critical patent/WO2023163524A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/14Central alarm receiver or annunciator arrangements

Definitions

  • the present disclosure relates to a serious disaster prevention system and method using the same due to collapse of a building, and specifically, to a serious disaster prevention system and method for preventing disasters caused by destruction due to deterioration of a building or destruction due to demolition of a building.
  • an object of the present disclosure is to provide a system and method capable of predicting the stiffness of a building with high accuracy using vibration data collected in real time by a vibration sensor.
  • an object of the present disclosure is to provide a system and method that can be automatically collected without a user directly inputting congestion, abnormal weather, and disaster information of building users, thereby increasing convenience.
  • an object of the present disclosure is to provide a system and method capable of obtaining results with high reliability even under conditions in which an ultrasonic flaw detector is not applicable or a result of an ultrasonic flaw detector is difficult to trust.
  • an object of the present disclosure is to provide a system and method capable of obtaining high-quality learning data by excluding outliers of input information.
  • the present disclosure aims to provide a system and method that can take into account various events that may affect concrete.
  • an object of the present disclosure is to provide a system and method capable of further improving learning accuracy through labeling of input information.
  • an object of the present disclosure is to provide a system and method capable of preventing false alarms through measurement and determination of complex resilience indicators of building structural stiffness.
  • an object of the present disclosure is to provide a system and method capable of minimizing casualties and secondary damage.
  • a method for preventing serious accidents due to collapse of a building by predicting the stiffness of the building using information including vibration data collected by the vibration sensor 120 attached to the building comprising: (a) collecting input information including vibration data and output information including stiffness of the building by the learning information generating module 10; (b) learning, by the vibration characteristic learning module 20, the prediction model 22 using the input information and the output information; (c1) outputting the stiffness of the building when vibration data is input to the vibration characteristic learning module 20; (d) comparing the stiffness output in step (c1) with a preset risk level; (e1) repeating steps (c) to (d1) if the stiffness output in step (d1) is equal to or greater than the preset risk level; (e2) comparing the cumulative impact applied to the building for a predetermined unit period with a threshold for resilience of the building if the stiffness output in the step (d1) is less than the preset risk level; (f1) repeating steps (c1) to (e2) if the cumulative impact amount is less than or
  • the learning information generation module 10 includes a stiffness measuring unit 110, a pre-processing unit 130, an abnormal climate and disaster information input unit 140, and measurement of usage information.
  • the unit 150 is further included, and the step (a) includes: (a1) collecting the stiffness of the building at the normal point (A) and the deterioration point (B) by the stiffness measurement unit 110; (a2) collecting vibration data of a normal point (A) and a deterioration point (B) by the vibration sensor 120; (a31) generating kurtosis by performing fast fourier transformation (FFT) on the vibration data, by the pre-processor 130; (a32) calculating, by the pre-processor 130, acceleration over time, RMS, peak, and crest factor (CF) using the vibration data; (a4) collecting weather information and disaster information by the abnormal weather and disaster information input unit 140; and (a5) collecting congestion by time slot and logistics information by time slot by the usage information measuring unit 150 .
  • FFT fast fourier transformation
  • the vibration characteristic learning module 20 includes a learning period determining unit 24, and the step (b) includes (b1) the kurtosis, When input information including acceleration, RMS, peak, CF, congestion by time zone, logistics information by time zone, weather information, and disaster information is input, the prediction model 22 configured to output output information including the stiffness of the building vibrates. Learning by the characteristic learning module 20; and (b2) calculating, by the learning period determining unit 24, a reconstruction loss value using the input information and the output information, and adjusting a learning period using the information loss value. do.
  • the correction module 30 determines the stiffness of the building output in the step (b1), and the (a1) ) calculating the relational expression of the buildings collected in step; And after the step (c1), (c2) the correction module 30 correcting the stiffness of the building output in the step (c1) using the relational expression calculated in the step (b3); further comprising do.
  • the stiffness measuring unit 110 is a first stiffness measuring device configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building. (112); and a second stiffness measuring device 114 configured to measure the stiffness of the building.
  • the first stiffness measuring device 112 according to an embodiment of the present disclosure; Is an ultrasonic flaw detector, and the second stiffness measuring device 114 is a Schmidt hammer.
  • step (a32) when it is determined that an outlier outlier occurs among raw data of acceleration, RMS, peak, and CF calculated in step (a32) according to an embodiment of the present disclosure, data of n ⁇ or more ( At this time, n is a positive real number) is excluded from the input information.
  • the input information according to an embodiment of the present disclosure further includes a type of building.
  • the cumulative impact amount according to an embodiment of the present disclosure is calculated by an impact calculation unit, and the impact calculation unit is configured by the abnormal weather and disaster information input unit 140 and the usage information measuring unit 150.
  • the accumulated impact is calculated using the collected information.
  • a learning information generating module 10 configured to collect input information including vibration data collected by the vibration sensor 120 and output information including the stiffness of the building collected by the stiffness measurement unit 110 ); a vibration characteristic learning module 20 configured to learn a predictive model 22 configured to output the output information when the input information is input; a correction module 30 configured to correct the stiffness of the building output by the vibration characteristic learning module 20; and an alarm providing module 40 configured to determine whether or not to provide an alarm using the stiffness of the building corrected by the correction module 30 and to provide an alarm.
  • the learning information generation module 10 is a pre-processing unit 130 for pre-processing the vibration data, converting the vibration data into a frequency domain to obtain Kurtosis ) FFT transform unit 132 configured to generate; and a pre-processing unit 130 including a vibration characteristic calculation unit 134 for calculating acceleration, RMS, peak, and crest factor (CF) according to time from the vibration data;
  • a usage information measuring unit 150 configured to collect usage information of a building, comprising: a user congestion measuring unit 152 configured to measure congestion by time zone; and a usage information measurement unit 150 including a logistics movement information input unit 154 configured to receive logistics information for each time period; And configured to receive and store data from the stiffness measurement unit 110, the vibration sensor 120, the pre-processing unit 130, the weather information and disaster information input unit 140, and the usage information measurement unit 150.
  • the input information includes the acceleration, RMS, peak, CF, kurtosis, meteorological information, disaster information, congestion by time slot, and logistics information by time slot.
  • the vibration characteristic learning module 20 includes a learning period determining unit 24, and the learning period determining unit 24 is configured to connect between the input information and the output information.
  • the learning period is adjusted using the reconstruction loss of .
  • the stiffness measuring unit 110 is a first stiffness measuring device configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building. (112); and a second stiffness measuring device 114 configured to measure the stiffness of the building.
  • the present embodiment by predicting the stiffness of the building using the information collected by the vibration sensor, it is possible to detect the abnormal behavior of the building, thereby preventing the destruction or collapse of the building. It has the effect of being able to deal with it in advance before it happens.
  • the usage information measurement unit and the abnormal weather and disaster information input unit are formed to collect information using previously entered data or in collaboration with an external database. It works.
  • the present disclosure has an effect of predicting the stiffness of a building with higher accuracy in consideration of climate change or disasters that may affect concrete.
  • the users can escape the building in advance before the collapse of the building, thereby minimizing human casualties.
  • an alarm can be provided to users and residents of adjacent buildings around the building to be measured, so there is an effect that secondary damage can be minimized.
  • FIG. 1 is a block diagram of a serious accident prevention system according to an embodiment of the present disclosure.
  • Figure 2 is a flow chart of a serious accident prevention method according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram of a learning information generation module according to an embodiment of the present disclosure.
  • FIG 4 illustrates the flow of data according to an embodiment of the present disclosure.
  • FIG. 5 is for explaining data processed by a vibration sensor and a pre-processing unit according to an embodiment of the present disclosure.
  • FIG. 6 is for explaining data processed by a usage information measurement unit according to an embodiment of the present disclosure.
  • Figure 8 is a comparison of the predicted value and the actual value by the serious accident prevention system according to an embodiment of the present disclosure.
  • symbols such as first, second, i), ii), a), and b) may be used. These codes are only for distinguishing the component from other components, and the nature or sequence or order of the corresponding component is not limited by the codes. In the specification, when a part is said to 'include' or 'include' a certain component, it means that it may further include other components, not excluding other components unless explicitly stated otherwise. .
  • stiffness of a building means the internal strength of a vicinity where a vibration sensor is attached. Since buildings are generally constructed from concrete, in this disclosure it is preferable to understand that the stiffness of a building is the strength of the concrete at the point where the vibration sensor is attached. In the present disclosure, the description is given on the premise that the unit of stiffness of a building is Mpa.
  • resilience of a building means a property in which the stiffness of a building temporarily decreases and then recovers to its original stiffness after a concentrated force is applied to a local area of the building for a short period of time.
  • the cumulative impact amount beyond the resilience and no longer recovering to its original stiffness is referred to as "the resilience threshold of the building”.
  • the severe disaster prevention system 1 may be applied to concrete facilities including retaining walls, bridges, and dams in addition to buildings, but for convenience of explanation, a case where it is applied to a building will be described.
  • FIG. 1 is a block diagram of a serious accident prevention system according to an embodiment of the present disclosure.
  • Figure 2 is a flow chart of a serious accident prevention method according to an embodiment of the present disclosure.
  • the major disaster prevention system 1 determines the stiffness of the building, more specifically It is configured to output the internal strength of the concrete constituting the building (unit is preferably MPa).
  • an alarm can be provided to minimize victims from the major disaster. That is, according to the present disclosure, by predicting the stiffness of a building using information collected by a vibration sensor, it is possible to detect an abnormal behavior of a building, and through this, it is possible to deal with it in advance before destruction or collapse of the building occurs. There is an effect that there is.
  • the serious accident prevention system 1 includes all or all of the learning information generation module 10, the vibration characteristic learning module 20, the correction module 30, and the alarm providing module 40 includes some
  • the learning information generation module 10 is configured to generate information necessary for the vibration characteristic learning module 20 to learn.
  • the learning information generating module 10 includes a stiffness measuring unit 110, a vibration sensor 120, a preprocessing unit 130, an abnormal weather and disaster information input unit 140, a usage information measuring unit 150, and a learning information database. Includes all or part of (160). A detailed description related to the learning information generation of the learning information generation module 10 will be described in detail with reference to FIGS. 3 to 7 .
  • the vibration characteristic learning module 20 is configured to learn a prediction model capable of predicting the stiffness of a building using the information generated and collected by the learning information generating module 10 .
  • the configuration and function of the vibration characteristic learning module 20 will be described in detail with reference to FIG. 4 .
  • the correction module 30 uses the correlation between the stiffness of the building output by the vibration characteristic learning module 20 and the stiffness of the actual building to correct the output stiffness of the building to be close to the stiffness of the actual building. It consists of The function of the correction module 30 will be described in detail with reference to FIG. 8 .
  • the alarm providing module 40 is configured to provide an alarm to building users, management offices of neighboring buildings, and infrastructure facilities associated with the building to be measured, when it is determined that the corrected stiffness of the building has reached a predetermined threshold. .
  • the alarm providing module 40 will be described in detail with reference to FIG. 9 .
  • FIG. 2 the overall sequence of the major disaster prediction method using the major disaster prediction system according to an embodiment of the present disclosure will be described.
  • Prediction model input information is collected by the vibration sensor 120, the usage information measurement unit 150, and the abnormal climate and disaster information input unit 140, and the prediction model output information (by the stiffness measurement unit 110) output information) is collected (S200).
  • the vibration characteristic learning module 20 learns the predictive model 22 (see FIG. 4) using all or part of the information collected in step S220 (S210). At this time, the prediction model 22 is formed to output the stiffness of the building when information including information sensed by the vibration sensor 120 is input.
  • the vibration sensor 120 When learning is completed for a predetermined learning period, new sensing information not used for learning the prediction model by the vibration sensor 120 is input to the prediction model 22, and the stiffness of the building (specifically, the internal strength of concrete) is input. ) is output (S220).
  • the usage information measurement unit 150 and the abnormal weather and disaster information input unit 140 are formed to collect information using previously entered data or in collaboration with an external database (eg, the Korea Meteorological Administration database). There is an effect that the user only needs to input the vibration data collected by the vibration sensor.
  • the stiffness of the outputted building may be corrected by the correction module 30, but it should be noted that this can be appropriately selected according to the designer's needs.
  • step S230 the output and/or calibrated stiffness of the building is compared to a preset threshold. If it is determined that the stiffness of the outputted building in step S230 is greater than or equal to the preset risk level, the process returns to step S220. That is, since it is greater than the risk value, this is to prevent the alarm from ringing.
  • the alarm providing module 40 compares the cumulative impact accumulated during the unit period with the building's resilience threshold (S240). If it is determined in step S240 that the cumulative impact is less than the resilience threshold of the building, it returns to step S220.
  • the alarm providing module 40 provides an alarm (S250).
  • the alarm providing module 40 may provide alarms to building users, management offices of neighboring buildings, and infrastructure facilities related to the building to be measured.
  • FIG. 3 is a block diagram of a learning information generation module according to an embodiment of the present disclosure.
  • 5 is for explaining data processed by a vibration sensor and a pre-processing unit according to an embodiment of the present disclosure.
  • FIG. 6 is for explaining data processed by the usage information measurer according to an embodiment of the present disclosure.
  • FIG. 7 is for explaining kurtosis according to an embodiment of the present disclosure.
  • the learning information generation module 10 includes a stiffness measuring unit 110, a vibration sensor 120, a pre-processing unit 130, and an abnormal weather and disaster information input unit 140. , Includes all or part of the usage information measurement unit 150 and the learning information database 160.
  • the stiffness measurement unit 110 is installed or attached to a portion of a building to measure the stiffness of the building.
  • the stiffness measuring unit 110 may be attached to a normal point (A) and a deterioration point (B), respectively.
  • the normal point (A) and the deterioration point (B) are points determined by the precise safety diagnosis result.
  • Precise safety inspection means a building safety inspection conducted according to the standards provided by the law.
  • the results of the detailed safety diagnosis are stored in an external database (not shown) that can be accessed by the building owner or a building stakeholder.
  • the stiffness measuring unit 110 will be attached to each of the deterioration points (B) determined to be .
  • the stiffness measuring unit 110 includes an ultrasonic flaw detector 112 and a Schmidt hammer 114.
  • the ultrasonic flaw detector 112 is formed to transmit ultrasonic waves to the attached building and receive the reflected ultrasonic waves.
  • a cavity formed inside a building wall can be detected by comparing transmitted ultrasound with reflected ultrasound.
  • the depth of the cavity formed inside the building wall and the stiffness of the building can be measured.
  • Schmidt Hammer (114) is configured to test the internal strength of concrete. To this end, the Schmidt hammer is configured to estimate the internal strength by applying an impact to the attached wall surface and measuring the degree of resilience.
  • the stiffness measuring unit 110 basically includes the ultrasonic flaw detector 112, but may optionally or additionally include the ultrasonic flaw detector 112 or the Schmidt hammer 114. This is because there is an effect that the internal strength of concrete can be measured in any environment by alternatively selecting the Schmidt hammer 114 in an environment where the use of the device 112 is difficult.
  • the ultrasonic flaw detector 112 has a higher accuracy than the Schmidt hammer 114
  • the Schmidt hammer 114 has an advantage in that it can be applied to many places due to its simple operation method and low price. Therefore, in some limited environments, the Schmidt hammer 114 may be used instead of the ultrasonic flaw detector 112.
  • the vibration sensor 120 is formed to collect vibration data, and for this purpose is attached to a normal point (A) and a deterioration point (B), respectively.
  • the pre-processing unit 130 is configured to process vibration data collected by the vibration sensor 120 .
  • the pre-processing unit 130 includes an FFT conversion unit 132 and a vibration characteristic calculation unit 134.
  • Vibration data is information about acceleration over time (see FIG. 5).
  • the FFT conversion unit 132 converts vibration data from a time domain to a frequency domain to generate frequency data.
  • the frequency data processed by the FFT converter 132 may be acceleration information with respect to frequency or amplitude information with respect to frequency.
  • Acceleration information with respect to frequency may be displayed in a shape such as a graph shown under the FFT conversion unit 132 of FIG. 5 .
  • Amplitude information with respect to frequency may be displayed in a kurtosis shape as shown in the graph of FIG. 7 .
  • the vibration characteristic calculation unit 134 is configured to calculate an acceleration, a root mean square (RMS), a peak, and a crest factor (CF) using vibration data. Acceleration, RMS, peak, and CF can be understood using the graph shown below the vibration characteristic calculating unit 134 of FIG. 5 .
  • the vibration characteristic calculating unit 134 determines that data that is close to noise in the collected acceleration, RMS, peak, and CF, that is, outliers are present in the data, it is possible to construct high-quality data by excluding them through a specific range.
  • Acceleration, RMS, peak, and CF are information identified from vibration data collected during the second period in units of the first period, and values outside a specific range are preferably excluded.
  • the first period may be, for example, 10 seconds
  • the second period may be 10 minutes
  • the specific range may be 1 ⁇ .
  • these are only exemplary values, and the lengths and specific ranges of the first period and the second period may be appropriately designed and changed by the user.
  • the abnormal weather and disaster information input unit 140 is configured to input weather changes and disasters that affect the deterioration of concrete. When events such as severe cold, heat waves, heavy rain, earthquakes, typhoons, etc., which were not considered at the time of design, occur, concrete structures are affected. Weather change and disaster information is input to the abnormal weather and disaster information input unit 140 based on a predetermined period, for example, a week or a quarter.
  • the present disclosure has an effect of being able to predict the stiffness of a building with higher accuracy in consideration of climate change or disasters that may affect concrete.
  • the usage information measurement unit 150 is configured to input usage information according to the time of the building. To this end, the usage information measurement unit 150 includes a user congestion measurement unit 152 and a logistic movement information input unit 154.
  • the user congestion measuring unit 152 is configured to measure congestion by time zone (see (a) in FIG. 6).
  • Figure 6 (a) shows the average number of Incheon Airport users by time period from July to August 2022. Referring to (a) of FIG. 6, it can be seen that the largest number of users is from 8:00 to 20:00.
  • the impact of user loads can also affect the stiffness of a building.
  • the present disclosure has an effect of being able to predict the stiffness of a building with higher accuracy because it also considers users who may affect concrete.
  • the logistics movement information input unit 154 is configured to input logistics information (see FIG. 6(b)) for each time period.
  • Figure 6 (b) shows the average weight of cargoes disposed at Incheon Airport for each time period from July to August 2022. Referring to (b) of FIG. 6, it can be seen that the cargo weight is the heaviest from 9 o'clock to 20 o'clock. In other words, for the vibration data observed between 9:00 and 20:00, the weight of cargo entering and exiting the building may not be important if it is an office or residential building, but the weight of cargo entering and exiting the building is the stiffness of the building if it is a warehouse or airport. will be able to affect The present disclosure has an effect of predicting the stiffness of a building with higher accuracy because it also considers the weight of logistics that may affect concrete.
  • the early morning time zone (Ta) with the smallest congestion and the daytime time zone (Tb) with the highest congestion may be extracted.
  • Ta may range from 5 o'clock to 6 o'clock
  • Tb may range from 17 o'clock to 18 o'clock.
  • vibration data in the corresponding time zone may be labeled and input to the predictive model 22 .
  • vibration data may be additionally labeled using logistic information for each time zone. Vibration data labeling has an effect of further improving learning accuracy.
  • the information shown in FIG. 6 is exemplary for explaining user congestion and logistics movement information, and the information obtained may be different depending on the type of building.
  • the learning information database 160 receives data collected by the stiffness measuring unit 110, the vibration sensor 120, the pre-processing unit 130, the abnormal weather and disaster information input unit 140, and the usage information measuring unit 150. and store. At this time, preferably, the learning information database 160 converts the received information into a dataset and stores it. For example, the learning information database 160 may vectorize and store inputted information.
  • the type of building may be further input into the learning information database 160 .
  • the type of building may be, for example, a general building, a department store, a mart, a public facility for citizens (for example, a sports facility, a library, etc.), an airport, a school, a concrete retaining wall, an industrial complex infrastructure facility, and the like.
  • the learning information database 160 may transmit the stored data set to the vibration characteristic learning module 20 upon request from the vibration characteristic learning module 20 .
  • FIG 4 illustrates the flow of data according to an embodiment of the present disclosure.
  • the vibration characteristic learning module 20 is configured to learn the prediction model 22 .
  • the prediction model 22 is the acceleration collected or processed by the vibration sensor 120 and the pre-processing unit 130, RMS, peak, CF and Kurtosis, and the time period measured by the user congestion measuring unit 152 Congestion, logistic information by time zone entered into the logistics movement information input unit 154, weather information and disaster information input into the abnormal weather and disaster information input unit 140 are input data, and the building measured by the stiffness measurement unit 110 The stiffness of is used as output data.
  • the prediction model 22 may be implemented as an unsupervised learning or reinforcement learning model.
  • ANNs artificial neural networks
  • CNNs convolutional neural networks
  • RNNs recurrent neural networks
  • LSTMs long short-term memory
  • GANs generative neural networks
  • Anomaly detection of time-series vibration data detects anomalies in observed values, point anomalies, and anomalies caused by changes in data tendencies.
  • the method of measuring the score can be divided into categories such as 'Reconstruction error', 'Prediction error' and 'Dissimilarity', and here, the anomaly score that is optimal for each prediction model is measured.
  • reconstruction error is measured by encoding the time-series data into a low-dimensional space and then decoding the encoded vector again.
  • Anomaly data detection is performed on the assumption that the reconstruction error measured in this way is small in case of normal data and large in case of abnormal data.
  • the vibration characteristic learning module 20 may arbitrarily set a learning period, but may preferably adjust the learning period to obtain a more accurate result. To this end, the vibration characteristic learning module 20 may further include a learning period determining unit 24 .
  • the learning period determining unit 24 takes into account the stiffness of the building output by the prediction model 22 and the reconstruction loss of the difference between the input data and the output data input to the prediction model 22.
  • the period can be reset. Specifically, the learning period may be adjusted until the anomaly of the information loss value falls within a preset threshold range. Because of this, no matter what kind of learning model the predictive model 22 is implemented, an appropriate learning period can be set, and the compatibility of already given data with various models can be increased.
  • Figure 8 is a comparison of the predicted value and the actual value by the serious accident prevention system according to an embodiment of the present disclosure.
  • the stiffness of the actual building (refer to the actual axis) and the stiffness of the building output by the vibration characteristic learning module 20 (refer to the predicted axis) have a high correlation.
  • the serious accident prevention system 1 of the present disclosure may correct the output stiffness of the building so that the stiffness of the outputted building through the correction module 30 approaches the stiffness of the actual building.
  • the correction module 30 may correct the stiffness of the outputted building using linear regression.
  • this is only an example, and an appropriate correction equation may be selected by the user.
  • the alarm providing module 40 may determine whether the stiffness of the outputted building is greater than a preset risk level (threshold).
  • the preset risk level may be the structural safety standard strength specified in the rules on the structural standards of buildings. However, it is not necessarily limited thereto and may be adjusted according to the management level of the safety manager or the building owner.
  • the alarm provision module 40 determines not to provide an alarm. Therefore, it returns to the step of collecting vibration data using the vibration sensor 120.
  • step S240 of FIG. 2 when it is determined that the output stiffness of the building is less than a preset risk level, the alarm providing module 40 determines whether the cumulative impact is greater than the resilience threshold of the building.
  • the magnitude of the accumulated impact is the accumulation of the magnitude of the impact applied to the building in a preset period, that is, a unit period.
  • a separately provided impact calculation unit may calculate the accumulated impact using information measured or input by the abnormal weather and disaster information input unit 140 and the usage information measuring unit 150.
  • the impact calculation unit calculates the amount of impact applied to the building using the magnitude of the earthquake, the distance to the epicenter, and the duration of the earthquake size can be calculated.
  • the impact calculation unit can calculate the size of the impact applied to the building by the weight of the users and the logistics there is.
  • the alarm providing module 40 determines not to provide an alarm. Therefore, it returns to the step of collecting vibration data using the vibration sensor 120. That is, since it is determined that the result of the temporary weakening of the rigidity of the building does not truly cause the building to be destroyed or collapsed, a false alarm can be prevented. Due to this, there is an effect that unnecessary evacuation, anxiety, etc. can be prevented.
  • step S240 When it is determined in step S240 that the magnitude of the cumulative impact is greater than the threshold for resilience of the building, the alarm provision module 40 determines to provide an alarm as in step S250.
  • the alarm provided to the alarm provision module 40 includes an alarm provided to users in the building, an alarm provided to an adjacent building management unit, and an alarm provided to infrastructure facilities associated with the building.
  • An alarm provided to users in a building may be provided through, for example, a speaker or a display.
  • a push alarm or the like may be provided through an application (for example, a department store application) installed in a terminal of a user in a building. Due to this, there is an effect that users using the building can escape the building in advance before the collapse of the building, thereby minimizing human casualties.
  • the alarm provided to the management unit of the adjacent building may be provided through a terminal provided to the management unit provided in the adjacent building.
  • the adjacent buildings may include buildings and facilities facing the building to be measured, as shown in FIG. 9 . If the building to be measured collapses, secondary damage may occur to neighboring buildings due to falling rocks and dust generated during the collapse. On the other hand, if an alarm is provided to the management unit of an adjacent building, it is possible to prepare for damage caused by falling rocks and impact, and an alarm can also be provided to users and residents of the adjacent building, thereby minimizing secondary damage.
  • Alarms provided to infrastructure facilities associated with buildings may be provided to agencies, ceremonies, and facilities that manage overhead high-voltage lines, communication facilities, high-pressure tanks, substations, city gas, and water supply, for example.
  • damage to infrastructure such as electricity, communication, gas, water, etc.
  • extensive damage may occur. Therefore, there is an effect that secondary damage can be minimized by providing an alarm to agencies and ceremonies such as telecommunications companies, electrical construction companies, fire departments, Korea Electric Power Corporation, and City Gas Corporation.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Emergency Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Software Systems (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

According to an embodiment of the present disclosure, provided is a method for preventing a serious disaster due to the collapse of a building by predicting the rigidity of the building by using information including vibration data collected by a vibration sensor (120) attached to the building, the method comprising the steps of: (a) collecting, by a training information generation module (10), vibration data and the rigidity of a building; (b) training, by a vibration characteristic training module (20), a prediction model (22); (c1) when the vibration data is input into the vibration characteristic training module (20), outputting the rigidity of the building; (d) comparing the rigidity output in the step (c1) with the size of a preset risk level; (e2) if the rigidity output in the step (d1) is less than the preset risk level, comparing an accumulated amount of an impact applied to the building during a predetermined unit period with a resilience threshold value of the building; and (f2) if the accumulated amount of the impact exceeds the resilience threshold value of the building in the step (e2), providing, by an alarm provision module (40), an alarm to a building user, a neighboring building management unit, and an infrastructure management unit.

Description

건축물 회복탄력성 붕괴에 따른 중대재해 예방 시스템 및 이를 이용한 방법Severe disaster prevention system due to building resilience collapse and method using it
본 개시는 건축물 붕괴에 따른 중대재해 예방 시스템 및 이를 이용한 방법에 관한 것으로, 구체적으로는 건축물 노후에 따른 파괴 또는 건축물 철거에 따른 파괴로 인한 재해를 예방하기 위한 중대재해 예방 시스템 및 방법에 관한 것이다.The present disclosure relates to a serious disaster prevention system and method using the same due to collapse of a building, and specifically, to a serious disaster prevention system and method for preventing disasters caused by destruction due to deterioration of a building or destruction due to demolition of a building.
이 부분에 기술된 내용은 단순히 본 개시에 대한 배경정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section simply provides background information for the present disclosure and does not constitute prior art.
최근, 건물 붕괴에 따라 사망, 실종 및 수 천억에 이르는 금전적 손실이 야기되는 사건이 빈번하게 발생하고 있다. 나아가, 재개발 시 건물 철거 및 옹벽 붕괴 등으로 인해 수많은 인명 피해가 발생하고 있는 실정이다. Recently, incidents causing deaths, disappearances, and financial losses amounting to hundreds of billions of dollars have occurred frequently due to building collapse. Furthermore, numerous human casualties are occurring due to demolition of buildings and collapse of retaining walls during redevelopment.
이러한 건물 붕괴에 따른 피해를 최소화하기 위하여 건물의 이상 거동을 예측하고, 알람을 제공하는 연구는 증가해오고 있다. In order to minimize the damage caused by such building collapse, research on predicting abnormal behavior of buildings and providing alarms has been increasing.
다만, 종래의 연구들은 건물의 거동을 모니터링하기 위하여 진동센서만을 이용하기에, 정확도가 떨어진다는 문제점이 있다. However, conventional studies have a problem in that accuracy is low because only vibration sensors are used to monitor the behavior of buildings.
또한, 건물의 이용객에 의한 충격이나, 이상기후, 천재지변, 재난 등에 따른 건물 열화를 고려하지 않아, 정확도가 떨어진다는 문제점이 있다.In addition, there is a problem in that the accuracy is low because the building deterioration due to shocks by users of the building, abnormal weather, natural disasters, disasters, etc. is not considered.
이에, 건물의 강성을 더 측정할 수 있는데, 정교한 측정이 어렵다는 문제점이 있다.Accordingly, it is possible to further measure the stiffness of the building, but there is a problem in that precise measurement is difficult.
또한, 방대한 양의 정보를 체계적으로 분류하거나 전처리하지 못하여, 건물의 붕괴를 예측하는 데에 있어 정확도가 떨어진다는 문제점이 있다.In addition, there is a problem in that the accuracy of predicting the collapse of a building is low because a vast amount of information cannot be systematically classified or preprocessed.
또한, 건물이 일시적으로 강성이 약해질 수 있는데, 이러한 경우 다시 건물의 강성이 회복되는 것을 고려하지 않아 거짓된 재난경보가 제공되어, 혼란을 야기한다는 문제점이 있다. In addition, although the stiffness of the building may be temporarily weakened, in this case, there is a problem in that a false disaster warning is provided without considering the recovery of the stiffness of the building, causing confusion.
또한, 건물이 붕괴될 때 인접한 건물과 인프라에 막대한 피해가 발생함에도, 체계적으로 이를 알릴 수 있는 시스템이 미비하다는 문제점이 있다. In addition, there is a problem in that a system capable of systematically notifying the collapse of a building causes enormous damage to adjacent buildings and infrastructure.
이에, 본 개시는 진동센서에 의해 실시간으로 수집되는 진동 데이터를 이용하여 높은 정확도로 건물의 강성을 예측할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.Accordingly, an object of the present disclosure is to provide a system and method capable of predicting the stiffness of a building with high accuracy using vibration data collected in real time by a vibration sensor.
또한, 본 개시는 사용자가 직접 건물 이용객의 혼잡도, 이상기후, 재난정보를 입력하지 않아도 자동으로 수집될 수 있어, 편리함이 증대될 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, an object of the present disclosure is to provide a system and method that can be automatically collected without a user directly inputting congestion, abnormal weather, and disaster information of building users, thereby increasing convenience.
또한, 본 개시는 초음파 탐상장치가 적용이 불가능하거나, 초음파 탐상장치의 결과를 신뢰하기 어려운 조건에서도 높은 신뢰도를 갖는 결과를 취득할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다. In addition, an object of the present disclosure is to provide a system and method capable of obtaining results with high reliability even under conditions in which an ultrasonic flaw detector is not applicable or a result of an ultrasonic flaw detector is difficult to trust.
또한, 본 개시는 입력 정보의 아웃라이어를 제외함으로써, 양질의 학습 데이터를 얻을 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, an object of the present disclosure is to provide a system and method capable of obtaining high-quality learning data by excluding outliers of input information.
또한, 본 개시는 콘크리트에 영향을 줄 수 있는 다양한 이벤트를 고려할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, the present disclosure aims to provide a system and method that can take into account various events that may affect concrete.
또한, 본 개시는 입력정보의 라벨링을 통해 학습 정확도를 더 제고할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, an object of the present disclosure is to provide a system and method capable of further improving learning accuracy through labeling of input information.
또한, 본 개시는 건축물 구조 강성의 복합적 회복탄력성 지표 측정 및 판단을 통해 가짜 알람을 방지할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, an object of the present disclosure is to provide a system and method capable of preventing false alarms through measurement and determination of complex resilience indicators of building structural stiffness.
또한, 본 개시는 인명피해 및 2차 피해를 최소화할 수 있는 시스템 및 방법을 제공하는 데 목적이 있다.In addition, an object of the present disclosure is to provide a system and method capable of minimizing casualties and secondary damage.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 개시의 일 실시예에 의하면, 건물에 부착된 진동센서(120)에 의해 수집된 진동 데이터를 포함하는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 붕괴에 따른 중대재해를 예방하기 위한 방법으로, (a) 학습정보 생성모듈(10)에 의해, 진동 데이터를 포함하는 입력정보 및 건물의 강성을 포함하는 출력정보가 수집되는 단계; (b) 진동특성 학습모듈(20)이, 상기 입력정보 및 상기 출력정보를 이용하여 예측모델(22)을 학습하는 단계; (c1) 상기 진동특성 학습모듈(20)에 진동 데이터가 입력되면, 건물의 강성이 출력되는 단계; (d) 상기 (c1) 단계에서 출력된 강성이 기 설정된 위험수준의 크기와 비교되는 단계; (e1) 상기 (d1) 단계에서 상기 출력된 강성이 상기 기 설정된 위험수준 이상이면, 상기 (c) 단계 내지 상기 (d1) 단계가 반복되는 단계; (e2) 상기 (d1) 단계에서 상기 출력된 강성이 상기 기 설정된 위험수준 미만이면, 미리 결정된 단위기간 동안 상기 건물에 가해진 누적 충격량과 건물의 회복탄력 임계치가 비교되는 단계; (f1) 상기 (e2) 단계에서 상기 누적 충격량이 상기 건물의 회복탄력 임계치 이하이면, 상기 (c1) 단계 내지 상기 (e2) 단계가 반복되는 단계; 및 (f2) 상기 (e2) 단계에서 상기 누적 충격량이 상기 건물의 회복탄력 임계치를 초과하면, 알람제공 모듈(40)이 건물 이용객, 인접건물 관리부 및 인프라 관리부에 알람을 제공하는 단계;를 포함하는, 방법을 제공한다.According to an embodiment of the present disclosure, a method for preventing serious accidents due to collapse of a building by predicting the stiffness of the building using information including vibration data collected by the vibration sensor 120 attached to the building. (a) collecting input information including vibration data and output information including stiffness of the building by the learning information generating module 10; (b) learning, by the vibration characteristic learning module 20, the prediction model 22 using the input information and the output information; (c1) outputting the stiffness of the building when vibration data is input to the vibration characteristic learning module 20; (d) comparing the stiffness output in step (c1) with a preset risk level; (e1) repeating steps (c) to (d1) if the stiffness output in step (d1) is equal to or greater than the preset risk level; (e2) comparing the cumulative impact applied to the building for a predetermined unit period with a threshold for resilience of the building if the stiffness output in the step (d1) is less than the preset risk level; (f1) repeating steps (c1) to (e2) if the cumulative impact amount is less than or equal to the resilience threshold of the building in step (e2); And (f2) when the cumulative impact amount exceeds the resilience threshold of the building in step (e2), providing an alarm to building users, adjacent building management units and infrastructure management units by the alarm providing module 40; , provides a method.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 학습정보 생성모듈(10)은, 강성 측정부(110), 전처리부(130), 이상기후 및 재난정보 입력부(140) 및 이용정보 측정부(150)를 더 포함하고, 상기 (a) 단계는, (a1) 상기 강성 측정부(110)에 의해 정상 포인트(A) 및 열화 포인트(B)의 건물의 강성이 수집되는 단계; (a2) 상기 진동센서(120)에 의해 정상 포인트(A) 및 열화 포인트(B)의 진동 데이터가 수집되는 단계; (a31) 상기 전처리부(130)가 상기 진동 데이터를 FFT(fast fourier transformation)처리하여, 첨도(Kurtosis)를 생성하는 단계; (a32) 상기 전처리부(130)가 상기 진동 데이터를 이용하여, 시간에 따른 가속도, RMS, 피크(peak) 및 CF(crest factor)를 연산하는 단계; (a4) 상기 이상기후 및 재난정보 입력부(140)에 의해 기상정보 및 재난정보가 수집되는 단계; 및 (a5) 상기 이용정보 측정부(150)에 의해 시간대별 혼잡도와 시간대별 물류정보가 수집되는 단계;를 포함한다.In addition, preferably, the learning information generation module 10 according to an embodiment of the present disclosure includes a stiffness measuring unit 110, a pre-processing unit 130, an abnormal climate and disaster information input unit 140, and measurement of usage information. The unit 150 is further included, and the step (a) includes: (a1) collecting the stiffness of the building at the normal point (A) and the deterioration point (B) by the stiffness measurement unit 110; (a2) collecting vibration data of a normal point (A) and a deterioration point (B) by the vibration sensor 120; (a31) generating kurtosis by performing fast fourier transformation (FFT) on the vibration data, by the pre-processor 130; (a32) calculating, by the pre-processor 130, acceleration over time, RMS, peak, and crest factor (CF) using the vibration data; (a4) collecting weather information and disaster information by the abnormal weather and disaster information input unit 140; and (a5) collecting congestion by time slot and logistics information by time slot by the usage information measuring unit 150 .
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 진동특성 학습모듈(20)은 학습기간 결정부(24)를 포함하고, 상기 (b) 단계는, (b1) 상기 첨도(Kurtosis), 가속도, RMS, 피크, CF, 시간대별 혼잡도, 시간대별 물류정보, 기상정보 및 재난정보를 포함하는 입력정보가 입력되면, 건물의 강성을 포함하는 출력정보가 출력되도록 구성된 예측모델(22)이 진동특성 학습모듈(20)에 의해 학습되는 단계; 및 (b2) 상기 학습기간 결정부(24)는 상기 입력정보와 상기 출력정보를 이용하여 정보손실값(reconstruction loss)을 연산하고, 상기 정보손실값을 이용하여 학습기간을 조절하는 단계;를 포함한다.Also, preferably, the vibration characteristic learning module 20 according to an embodiment of the present disclosure includes a learning period determining unit 24, and the step (b) includes (b1) the kurtosis, When input information including acceleration, RMS, peak, CF, congestion by time zone, logistics information by time zone, weather information, and disaster information is input, the prediction model 22 configured to output output information including the stiffness of the building vibrates. Learning by the characteristic learning module 20; and (b2) calculating, by the learning period determining unit 24, a reconstruction loss value using the input information and the output information, and adjusting a learning period using the information loss value. do.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 방법은, 상기 (b2) 단계 이후에, (b3) 보정모듈(30)이 상기 (b1) 단계에서 출력된 건물의 강성과, 상기 (a1) 단계에서 수집된 건물의 관계식을 연산하는 단계; 및 상기 (c1) 단계 이후에, (c2) 상기 보정모듈(30)이 상기 (b3) 단계에서 연산된 관계식을 이용하여 상기 (c1) 단계에서 출력된 건물의 강성을 보정하는 단계;를 더 포함한다.In addition, preferably, the method according to an embodiment of the present disclosure, after the step (b2), (b3) the correction module 30 determines the stiffness of the building output in the step (b1), and the (a1) ) calculating the relational expression of the buildings collected in step; And after the step (c1), (c2) the correction module 30 correcting the stiffness of the building output in the step (c1) using the relational expression calculated in the step (b3); further comprising do.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 강성 측정부(110)는, 건물 벽 내부에 형성된 공동(cavity), 상기 공동의 깊이 및 건물의 강성을 측정하도록 구성된 제1 강성 측정장치(112); 및 상기 건물의 강성을 측정하도록 구성된 제2 강성 측정장치(114)를 포함한다.Also, preferably, the stiffness measuring unit 110 according to an embodiment of the present disclosure is a first stiffness measuring device configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building. (112); and a second stiffness measuring device 114 configured to measure the stiffness of the building.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 제1 강성 측정장치(112); 는 초음파 탐상장치이고, 상기 제2 강성 측정장치(114)는 슈미트해머이다.In addition, preferably, the first stiffness measuring device 112 according to an embodiment of the present disclosure; Is an ultrasonic flaw detector, and the second stiffness measuring device 114 is a Schmidt hammer.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 (a32) 단계에서 연산된 가속도, RMS, 피크 및 CF의 로우 데이터(raw data) 중 outlier 이상치 발생이 판단될 경우 n·σ 이상의 데이터(이때, n은 양의 실수)는 상기 입력정보에서 제외된다.In addition, preferably, when it is determined that an outlier outlier occurs among raw data of acceleration, RMS, peak, and CF calculated in step (a32) according to an embodiment of the present disclosure, data of n σ or more ( At this time, n is a positive real number) is excluded from the input information.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 입력정보는, 건물의 종류를 더 포함한다.Also, preferably, the input information according to an embodiment of the present disclosure further includes a type of building.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 누적 충격량은 충격량 연산부에 의해 연산되되, 상기 충격량 연산부는, 상기 이상기후 및 재난정보 입력부(140) 및 이용정보 측정부(150)에 의해 수집되는 정보를 이용하여, 상기 누적 충격량을 연산한다.Also, preferably, the cumulative impact amount according to an embodiment of the present disclosure is calculated by an impact calculation unit, and the impact calculation unit is configured by the abnormal weather and disaster information input unit 140 and the usage information measuring unit 150. The accumulated impact is calculated using the collected information.
또한, 본 개시의 일 실시예에 의하면, 건물에 부착된 진동센서(120)에 의해 수집된 진동 데이터를 포함하는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 붕괴에 따른 중대재해를 예방하기 위한 장치로서, 진동센서(120)에 의해 수집된 진동 데이터를 포함하는 입력정보와, 강성 측정부(110)에 의해 수집된 건물의 강성을 포함하는 출력정보를 수집하도록 구성된 학습정보 생성모듈(10); 상기 입력정보가 입력되면, 상기 출력정보를 출력하도록 구성된 예측모델(22)을 학습하도록 구성된 진동특성 학습모듈(20); 상기 진동특성 학습모듈(20)에 의해 출력된 건물의 강성을 보정하도록 구성된 보정모듈(30); 및 상기 보정모듈(30)에 의해 보정된 건물의 강성을 이용하여 알람 제공 여부를 결정하고, 알람을 제공하도록 구성된 알람제공 모듈(40);을 포함하는, 장치를 제공한다.In addition, according to an embodiment of the present disclosure, by predicting the stiffness of the building using information including vibration data collected by the vibration sensor 120 attached to the building, to prevent serious accidents due to collapse of the building A learning information generating module 10 configured to collect input information including vibration data collected by the vibration sensor 120 and output information including the stiffness of the building collected by the stiffness measurement unit 110 ); a vibration characteristic learning module 20 configured to learn a predictive model 22 configured to output the output information when the input information is input; a correction module 30 configured to correct the stiffness of the building output by the vibration characteristic learning module 20; and an alarm providing module 40 configured to determine whether or not to provide an alarm using the stiffness of the building corrected by the correction module 30 and to provide an alarm.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 학습정보 생성모듈(10)은, 상기 진동 데이터를 전처리하기 위한 전처리부(130)로서, 상기 진동 데이터를 주파수 도메인으로 변환하여 첨도(Kurtosis)를 생성하도록 구성된 FFT 변환부(132); 및 상기 진동 데이터로부터 시간에 따른 가속도, RMS, 피크(peak) 및 CF(crest factor)를 연산하기 위한 진동특성 연산부(134)를 포함하는 전처리부(130); 기상정보 및 재난정보가 입력되는 이상기후 및 재난정보 입력부(140); 건물의 이용정보를 수집하도록 구성된 이용정보 측정부(150)로서, 시간대별 혼잡도를 측정하도록 구성된 이용객 혼잡도 측정부(152); 및 시간대별 물류정보를 입력받도록 구성된 물류이동 정보 입력부(154)를 포함하는 이용정보 측정부(150); 및 상기 강성 측정부(110), 상기 진동센서(120), 상기 전처리부(130), 상기 기상정보 및 재난정보 입력부(140) 및 상기 이용정보 측정부(150)로부터 데이터를 수신 및 저장하도록 구성된 학습정보 데이터베이스(160);를 포함한다.Also, preferably, the learning information generation module 10 according to an embodiment of the present disclosure is a pre-processing unit 130 for pre-processing the vibration data, converting the vibration data into a frequency domain to obtain Kurtosis ) FFT transform unit 132 configured to generate; and a pre-processing unit 130 including a vibration characteristic calculation unit 134 for calculating acceleration, RMS, peak, and crest factor (CF) according to time from the vibration data; An abnormal climate and disaster information input unit 140 into which weather information and disaster information are input; A usage information measuring unit 150 configured to collect usage information of a building, comprising: a user congestion measuring unit 152 configured to measure congestion by time zone; and a usage information measurement unit 150 including a logistics movement information input unit 154 configured to receive logistics information for each time period; And configured to receive and store data from the stiffness measurement unit 110, the vibration sensor 120, the pre-processing unit 130, the weather information and disaster information input unit 140, and the usage information measurement unit 150. Includes; learning information database (160).
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 입력정보는, 상기 가속도, RMS, 피크, CF, 첨도, 기상정보, 재난정보, 시간대별 혼잡도, 시간대별 물류정보를 포함한다.Also, preferably, the input information according to an embodiment of the present disclosure includes the acceleration, RMS, peak, CF, kurtosis, meteorological information, disaster information, congestion by time slot, and logistics information by time slot.
또한, 바람직하게는, 본 개시의 일 실시예에 의한 진동특성 학습모듈(20)은 학습기간 결정부(24)를 포함하고, 상기 학습기간 결정부(24)는 상기 입력정보와 상기 출력정보 사이의 정보손실값(reconstruction loss)을 이용하여 학습기간을 조절한다.Also, preferably, the vibration characteristic learning module 20 according to an embodiment of the present disclosure includes a learning period determining unit 24, and the learning period determining unit 24 is configured to connect between the input information and the output information. The learning period is adjusted using the reconstruction loss of .
또한, 바람직하게는, 본 개시의 일 실시예에 의한 상기 강성 측정부(110)는, 건물 벽 내부에 형성된 공동(cavity), 상기 공동의 깊이 및 건물의 강성을 측정하도록 구성된 제1 강성 측정장치(112); 및 상기 건물의 강성을 측정하도록 구성된 제2 강성 측정장치(114)를 포함한다.Also, preferably, the stiffness measuring unit 110 according to an embodiment of the present disclosure is a first stiffness measuring device configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building. (112); and a second stiffness measuring device 114 configured to measure the stiffness of the building.
이상에서 설명한 바와 같이 본 실시예에 의하면, 진동센서에 의해 수집되는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 이상 거동(abnormal behavior)을 감지할 수 있고, 이를 통해 건물의 파괴 또는 붕괴의 발생 전에 미리 대처할 수 있다는 효과가 있다.As described above, according to the present embodiment, by predicting the stiffness of the building using the information collected by the vibration sensor, it is possible to detect the abnormal behavior of the building, thereby preventing the destruction or collapse of the building. It has the effect of being able to deal with it in advance before it happens.
또한, 이용정보 측정부, 이상기후 및 재난정보 입력부는 기 입력된 자료를 이용하거나, 외부 데이터베이스와 협업하여 정보를 수집하도록 형성되는바, 실제로 사용자는 진동센서에 의해 수집되는 진동 데이터만 입력해주면 되는 효과가 있다.In addition, the usage information measurement unit and the abnormal weather and disaster information input unit are formed to collect information using previously entered data or in collaboration with an external database. It works.
또한, 초음파 탐상장치의 결과에 대한 신뢰도가 낮아지는 환경에서 슈미트해머가 더 사용됨으로써, 결과에 대한 신뢰도를 높일 수 있다는 효과가 있다.In addition, since the Schmidt hammer is further used in an environment in which the reliability of the result of the ultrasonic flaw detector is lowered, there is an effect that the reliability of the result can be increased.
또한, 초음파 탐상장치의 사용이 어려운 환경에서 슈미트해머를 대체적으로 선택함으로써, 어떠한 환경에서도 콘크리트의 내부강도를 측정할 수 있다는 효과가 있다.In addition, by selecting the Schmidt hammer as an alternative in an environment where the use of an ultrasonic flaw detector is difficult, there is an effect that the internal strength of concrete can be measured in any environment.
또한, 입력자료 중 가속도, RMS,피크 및 CF 중 outlier 이상치 발생이 판단될 경우 1σ 이상의 값은 제외되기에, 얻어지는 정보 중 노이즈로 취급될 수 있는 데이터가 제외되고, 양질의 학습데이터가 얻어진다는 효과가 있다.In addition, if an outlier outlier occurs among the input data, acceleration, RMS, peak, and CF, values greater than 1σ are excluded, so data that can be treated as noise is excluded from the obtained information, and high-quality training data is obtained. there is
또한, 본 개시는 콘크리트에 영향을 줄 수 있는 기후변화나 재난을 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다.In addition, the present disclosure has an effect of predicting the stiffness of a building with higher accuracy in consideration of climate change or disasters that may affect concrete.
또한, 콘크리트에 영향을 줄 수 있는 이용객도 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다.In addition, since it considers the users who can affect the concrete, it has the effect of predicting the stiffness of the building with higher accuracy.
또한, 콘크리트에 영향을 줄 수 있는 적재물류 및 이송시스템의 적재량 및 흐름에 따른 구조체 하중도 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다.In addition, since the structure load according to the load and flow of the loading logistics and transport system that can affect the concrete is also considered, there is an effect that the stiffness of the building can be predicted with higher accuracy.
또한, 진동 데이터 라벨링을 통해, 학습 정확도가 더 제고되는 효과가 있다.In addition, through vibration data labeling, there is an effect of further improving learning accuracy.
또한, 일시적인 건물의 강성의 약화는 진정으로 건물 파괴 또는 붕괴를 야기하지 않는다고 판단하기에, 건축물 강성의 회복탄력성(Resilience)을 고려하여 가짜 알람(false alarm)을 방지할 수 있고, 이로 인해, 불필요한 대피, 불안감 조성 등이 방지될 수 있다는 효과가 있다.In addition, since it is judged that the temporary weakening of the stiffness of the building does not truly cause the destruction or collapse of the building, it is possible to prevent false alarms by considering the resilience of the stiffness of the building, thereby preventing unnecessary evacuation. , there is an effect that the formation of anxiety can be prevented.
또한, 건물을 이용하는 이용객에게 제공되는 알람으로 인해, 이용객은 건물 붕괴가 발생하기 전에 미리 건물을 탈출할 수 있어 인명피해를 최소화할 수 있다는 효과가 있다.In addition, due to the alarm provided to the users using the building, the users can escape the building in advance before the collapse of the building, thereby minimizing human casualties.
또한, 측정 대상 건물 주변의 인접건물의 이용객과 상주인원에게도 알람이 제공될 수 있어, 2차 피해를 최소화할 수 있다는 효과가 있다.In addition, an alarm can be provided to users and residents of adjacent buildings around the building to be measured, so there is an effect that secondary damage can be minimized.
또한, 통신사, 전기공사, 소방서, 한국전력공사, 도시가스공사 등의 기관 및 부처에 알람이 제공됨으로써, 2차 피해를 최소화할 수 있다는 효과가 있다.In addition, there is an effect that secondary damage can be minimized by providing an alarm to institutions and departments such as telecommunications companies, electrical construction companies, fire departments, Korea Electric Power Corporation, and City Gas Corporation.
도 1은 본 개시의 일 실시예에 따른 중대재해 예방 시스템의 블록도이다.1 is a block diagram of a serious accident prevention system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 중대재해 예방 방법의 순서도이다.Figure 2 is a flow chart of a serious accident prevention method according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 학습정보 생성모듈의 블록도이다.3 is a block diagram of a learning information generation module according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 데이터의 흐름을 나타낸 것이다. 4 illustrates the flow of data according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 진동센서 및 전처리부에서 처리되는 데이터를 설명하기 위한 것이다.5 is for explaining data processed by a vibration sensor and a pre-processing unit according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 이용정보 측정부에 의해 처리되는 데이터를 설명하기 위한 것이다.6 is for explaining data processed by a usage information measurement unit according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시예에 따른 첨도(Kurtosis)를 설명하기 위한 것이다.7 is for explaining Kurtosis according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시예에 따른 중대재해 예방 시스템에 의해 예측된 수치와 실제 수치를 비교한 것이다.Figure 8 is a comparison of the predicted value and the actual value by the serious accident prevention system according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시예에 따른 알람제공 모듈이 알람을 제공하는 범위를 설명하기 위한 것이다.9 is for explaining a range in which an alarm providing module provides an alarm according to an embodiment of the present disclosure.
이하, 본 개시의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present disclosure will be described in detail through exemplary drawings. In adding reference numerals to components of each drawing, it should be noted that the same components have the same numerals as much as possible, even if they are displayed on different drawings. In addition, in describing the present disclosure, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present disclosure, the detailed description will be omitted.
본 개시에 따른 실시예의 구성요소를 설명하는 데 있어서, 제1, 제2, i), ii), a), b) 등의 부호를 사용할 수 있다. 이러한 부호는 그 구성요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 부호에 의해 해당 구성요소의 본질 또는 차례나 순서 등이 한정되지 않는다. 명세서에서 어떤 부분이 어떤 구성요소를 '포함' 또는 '구비'한다고 할 때, 이는 명시적으로 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In describing the components of the embodiment according to the present disclosure, symbols such as first, second, i), ii), a), and b) may be used. These codes are only for distinguishing the component from other components, and the nature or sequence or order of the corresponding component is not limited by the codes. In the specification, when a part is said to 'include' or 'include' a certain component, it means that it may further include other components, not excluding other components unless explicitly stated otherwise. .
본 개시에서, "건물의 강성"은 진동센서가 부착된 부근의 내부강도를 의미한다. 건물은 콘크리트에서 건설되는 것이 일반적이기에, 본 개시에서는 건물의 강성은 진동센서가 부착된 지점에서의 콘크리트 강도라고 이해하는 것이 바람직하다. 본 개시에서, 건물의 강성의 단위는 Mpa임을 전제로 설명한다.In the present disclosure, "stiffness of a building" means the internal strength of a vicinity where a vibration sensor is attached. Since buildings are generally constructed from concrete, in this disclosure it is preferable to understand that the stiffness of a building is the strength of the concrete at the point where the vibration sensor is attached. In the present disclosure, the description is given on the premise that the unit of stiffness of a building is Mpa.
또한, 본 개시에서, "건물의 회복탄력성(resilience)"이란 건물의 국소 부위에 단기간에 집중된 힘이 가해진 후, 건물의 강성이 일시적으로 감소하였다가 다시 본래 강성으로 회복되려는 성질을 의미한다. 이하에서는, 회복탄력성을 넘어, 더 이상 본래 강성으로 회복되지 않는 누적 충격량을 "건물의 회복탄력 임계치"라고 지칭한다.In addition, in the present disclosure, “resilience of a building” means a property in which the stiffness of a building temporarily decreases and then recovers to its original stiffness after a concentrated force is applied to a local area of the building for a short period of time. Hereinafter, the cumulative impact amount beyond the resilience and no longer recovering to its original stiffness is referred to as "the resilience threshold of the building".
또한, 본 개시에서 중대재해 예방 시스템(1)은 건물 외에도 옹벽, 교량, 댐을 포함하는 콘크리트 시설물에 적용될 수 있으나, 설명의 편의를 위하여 건물에 적용되는 경우를 상정하여 설명한다. In addition, in the present disclosure, the severe disaster prevention system 1 may be applied to concrete facilities including retaining walls, bridges, and dams in addition to buildings, but for convenience of explanation, a case where it is applied to a building will be described.
중대재해 예방 시스템 개괄Severe Accident Prevention System Overview
도 1은 본 개시의 일 실시예에 따른 중대재해 예방 시스템의 블록도이다. 도 2는 본 개시의 일 실시예에 따른 중대재해 예방 방법의 순서도이다.1 is a block diagram of a serious accident prevention system according to an embodiment of the present disclosure. Figure 2 is a flow chart of a serious accident prevention method according to an embodiment of the present disclosure.
본 개시의 일 실시예에 의하면, 건물에 부착된 하나 이상의 진동센서로부터 수집되는 진동 데이터가 중대재해 예방 시스템(1)에 입력되면, 중대재해 예방 시스템(1)은 건물의 강성, 더 구체적으로는 건물을 구성하는 콘크리트의 내부 강도(단위는 바람직하게는 MPa)를 출력하도록 구성된다. 또한, 예측되는 건물의 강성이 위험 수준 이상인 것으로 판단되어 중대 재해가 예상되는 경우에는, 알람을 제공하여 중대재해로부터 피해자를 최소화할 수 있다. 즉, 본 개시에 의하면 진동센서에 의해 수집되는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 이상 거동(abnormal behavior)을 감지할 수 있고, 이를 통해 건물의 파괴 또는 붕괴의 발생 전에 미리 대처할 수 있다는 효과가 있다. According to an embodiment of the present disclosure, when vibration data collected from one or more vibration sensors attached to a building is input to the major disaster prevention system 1, the major disaster prevention system 1 determines the stiffness of the building, more specifically It is configured to output the internal strength of the concrete constituting the building (unit is preferably MPa). In addition, when a major disaster is expected because the predicted stiffness of the building is determined to be higher than the risk level, an alarm can be provided to minimize victims from the major disaster. That is, according to the present disclosure, by predicting the stiffness of a building using information collected by a vibration sensor, it is possible to detect an abnormal behavior of a building, and through this, it is possible to deal with it in advance before destruction or collapse of the building occurs. There is an effect that there is.
이를 위해, 본 개시의 일 실시예에 의한 중대재해 예방 시스템(1)은 학습정보 생성모듈(10), 진동특성 학습모듈(20), 보정모듈(30) 및 알람제공 모듈(40)의 전부 또는 일부를 포함한다.To this end, the serious accident prevention system 1 according to an embodiment of the present disclosure includes all or all of the learning information generation module 10, the vibration characteristic learning module 20, the correction module 30, and the alarm providing module 40 includes some
학습정보 생성모듈(10)은 진동특성 학습모듈(20)이 학습하기 위해 필요한 정보들을 생성하도록 구성된다. 이를 위해 학습정보 생성모듈(10)은 강성 측정부(110), 진동센서(120), 전처리부(130), 이상기후 및 재난정보 입력부(140), 이용정보 측정부(150) 및 학습정보 데이터베이스(160)의 전부 또는 일부를 포함한다. 학습정보 생성모듈(10)의 학습정보 생성과 관련된 상세한 설명은 도 3 내지 도 7에서 자세히 설명한다. The learning information generation module 10 is configured to generate information necessary for the vibration characteristic learning module 20 to learn. To this end, the learning information generating module 10 includes a stiffness measuring unit 110, a vibration sensor 120, a preprocessing unit 130, an abnormal weather and disaster information input unit 140, a usage information measuring unit 150, and a learning information database. Includes all or part of (160). A detailed description related to the learning information generation of the learning information generation module 10 will be described in detail with reference to FIGS. 3 to 7 .
진동특성 학습모듈(20)은 학습정보 생성모듈(10)에 의해 생성 및 수집된 정보를 이용하여, 건물의 강성을 예측할 수 있는 예측모델을 학습하도록 구성된다. 진동특성 학습모듈(20)의 구성 및 기능과 관련하여, 도 4에서 상세히 설명한다. The vibration characteristic learning module 20 is configured to learn a prediction model capable of predicting the stiffness of a building using the information generated and collected by the learning information generating module 10 . The configuration and function of the vibration characteristic learning module 20 will be described in detail with reference to FIG. 4 .
보정모듈(30)은 진동특성 학습모듈(20)에 의하여 출력된 건물의 강성과, 실제 건물의 강성의 상관관계를 이용하여, 출력된 건물의 강성을 실제 건물의 강성의 값에 근접하게 보정하도록 구성된다. 보정모듈(30)의 기능과 관련하여 도 8을 참조하여 상세히 설명한다. The correction module 30 uses the correlation between the stiffness of the building output by the vibration characteristic learning module 20 and the stiffness of the actual building to correct the output stiffness of the building to be close to the stiffness of the actual building. It consists of The function of the correction module 30 will be described in detail with reference to FIG. 8 .
알람제공 모듈(40)은, 보정된 건물의 강성이 미리 결정된 위험수준(threshold)에 이르렀다고 판단되면, 건물 이용자와 인접건물의 관리사무소, 측정 대상 건물과 연관된 인프라 시설에 알람을 제공하도록 구성된다. 알람제공 모듈(40)과 관련하여 도 9를 참조하여 상세히 설명한다. The alarm providing module 40 is configured to provide an alarm to building users, management offices of neighboring buildings, and infrastructure facilities associated with the building to be measured, when it is determined that the corrected stiffness of the building has reached a predetermined threshold. . The alarm providing module 40 will be described in detail with reference to FIG. 9 .
도 2를 참조하여, 본 개시의 일 실시예에 의한 중대재해 예상 시스템을 이용한 중대재해 예상 방법의 전체적인 순서를 설명한다.Referring to FIG. 2, the overall sequence of the major disaster prediction method using the major disaster prediction system according to an embodiment of the present disclosure will be described.
진동센서(120), 이용정보 측정부(150), 이상기후 및 재난정보 입력부(140)에 의해 예측모델 입력정보(input information)이 수집되며, 강성 측정부(110)에 의해 예측모델 출력정보(output information)가 수집된다(S200).Prediction model input information is collected by the vibration sensor 120, the usage information measurement unit 150, and the abnormal climate and disaster information input unit 140, and the prediction model output information (by the stiffness measurement unit 110) output information) is collected (S200).
진동특성 학습모듈(20)은 S220 단계에서 수집된 정보의 전부 또는 일부를 이용하여 예측모델(22, 도 4 참조)을 학습한다(S210). 이때, 예측모델(22)은 진동센서(120)에 의해 센싱된 정보를 포함하는 정보가 입력되면 건물의 강성을 출력하도록 형성된다.The vibration characteristic learning module 20 learns the predictive model 22 (see FIG. 4) using all or part of the information collected in step S220 (S210). At this time, the prediction model 22 is formed to output the stiffness of the building when information including information sensed by the vibration sensor 120 is input.
미리 결정된 학습기간만큼 학습이 완료되면, 예측모델(22)에는 진동센서(120)에 의해 예측모델의 학습에 사용되지 않은 새로운 센싱 정보가 입력되고, 건물의 강성(구체적으로는, 콘크리트의 내부강도)이 출력된다(S220). 한편, 이용정보 측정부(150), 이상기후 및 재난정보 입력부(140)는 기 입력된 자료를 이용하거나, 외부 데이터베이스(예를 들어, 기상청 데이터베이스)와 협업하여 정보를 수집하도록 형성되는바, 실제로 사용자는 진동센서에 의해 수집되는 진동 데이터만 입력해주면 되는 효과가 있다. 이때, 바람직하게는 출력된 건물의 강성은 보정모듈(30)에 의해 보정될 수 있으나, 이는 설계자의 필요에 따라 적절히 선택 가능함을 유의하여야 한다. When learning is completed for a predetermined learning period, new sensing information not used for learning the prediction model by the vibration sensor 120 is input to the prediction model 22, and the stiffness of the building (specifically, the internal strength of concrete) is input. ) is output (S220). On the other hand, the usage information measurement unit 150 and the abnormal weather and disaster information input unit 140 are formed to collect information using previously entered data or in collaboration with an external database (eg, the Korea Meteorological Administration database). There is an effect that the user only needs to input the vibration data collected by the vibration sensor. At this time, preferably, the stiffness of the outputted building may be corrected by the correction module 30, but it should be noted that this can be appropriately selected according to the designer's needs.
이후, 출력 및/또는 보정된 건물의 강성이 기 설정된 위험수준(threshold)과 비교된다. 만약 S230 단계에서 출력된 건물의 강성이 기 설정된 위험수준 이상인 것으로 판단되면, S220 단계로 되돌아간다. 즉, 위험수치보다는 크기 때문에, 알람이 울리지 않도록 하기 위함이다.Then, the output and/or calibrated stiffness of the building is compared to a preset threshold. If it is determined that the stiffness of the outputted building in step S230 is greater than or equal to the preset risk level, the process returns to step S220. That is, since it is greater than the risk value, this is to prevent the alarm from ringing.
만약, 출력된 건물의 강성이 기 설정된 위험수준(threshold)보다 낮은 것으로 판단되면, 알람제공 모듈(40)은 단위기간 동안 누적된 누적 충격과, 건물의 회복탄력 임계치를 비교한다(S240). 만약 S240 단계에서 누적 충격이 건물의 회복탄력 임계치 이하인 것으로 판단되면, S220 단계로 되돌아간다. If it is determined that the output stiffness of the building is lower than a predetermined threshold, the alarm providing module 40 compares the cumulative impact accumulated during the unit period with the building's resilience threshold (S240). If it is determined in step S240 that the cumulative impact is less than the resilience threshold of the building, it returns to step S220.
S240 단계에서 누적 충격이 건물의 회복탄력성보다 큰 것으로 판단되면, 알람제공 모듈(40)은 알람을 제공한다(S250). 이때, 알람제공 모듈(40)은 건물 이용자와 인접건물의 관리사무소, 측정 대상 건물과 연관된 인프라 시설에 알람을 제공할 수 있다. If it is determined in step S240 that the cumulative impact is greater than the resilience of the building, the alarm providing module 40 provides an alarm (S250). In this case, the alarm providing module 40 may provide alarms to building users, management offices of neighboring buildings, and infrastructure facilities related to the building to be measured.
이하에서는, S200 내지 S220 단계를 상세히 설명한다. Hereinafter, steps S200 to S220 will be described in detail.
학습을 위한 데이터 수집 및 전처리Data collection and preprocessing for training
도 3은 본 개시의 일 실시예에 따른 학습정보 생성모듈의 블록도이다. 도 5는 본 개시의 일 실시예에 따른 진동센서 및 전처리부에서 처리되는 데이터를 설명하기 위한 것이다. 도 6은 본 개시의 일 실시예에 따른 이용정보 측정부에 의해 처리되는 데이터를 설명하기 위한 것이다.도 7은 본 개시의 일 실시예에 따른 첨도(Kurtosis)를 설명하기 위한 것이다.3 is a block diagram of a learning information generation module according to an embodiment of the present disclosure. 5 is for explaining data processed by a vibration sensor and a pre-processing unit according to an embodiment of the present disclosure. FIG. 6 is for explaining data processed by the usage information measurer according to an embodiment of the present disclosure. FIG. 7 is for explaining kurtosis according to an embodiment of the present disclosure.
도 3 및 도 5 내지 도 7을 참조하여, 학습을 위한 데이터의 종류를 설명한다. Referring to FIGS. 3 and 5 to 7, types of data for learning will be described.
도 3을 참조하면, 본 개시의 일 실시예에 따른 학습정보 생성모듈(10)은 강성 측정부(110), 진동센서(120), 전처리부(130), 이상기후 및 재난정보 입력부(140), 이용정보 측정부(150) 및 학습정보 데이터베이스(160)의 전부 또는 일부를 포함한다. Referring to FIG. 3, the learning information generation module 10 according to an embodiment of the present disclosure includes a stiffness measuring unit 110, a vibration sensor 120, a pre-processing unit 130, and an abnormal weather and disaster information input unit 140. , Includes all or part of the usage information measurement unit 150 and the learning information database 160.
강성 측정부(110)는 건물의 일 부분에 설치 또는 부착되어, 건물의 강성을 측정하도록 구성된다. The stiffness measurement unit 110 is installed or attached to a portion of a building to measure the stiffness of the building.
강성 측정부(110)는 정상 포인트(A) 및 열화 포인트(B)에 각각 부착될 수 있다. 여기서, 정상 포인트(A)와 열화 포인트(B)는 정밀안전진단 결과에 의해 결정되는 지점이다. 정밀안전진단은 법령에 의해 제공되는 기준에 따라 실시되는 건물 안전진단을 의미한다. 정밀안전진단 결과는 건물 주인 또는 건물 이해관계자가 접근할 수 있는 외부 데이터베이스(미도시)에 저장되며, 정밀안전진단 결과를 이용하여 정상으로 판단된 정상 포인트(A)와 노후화에 따른 구조체 강도의 열화로 판단된 열화 포인트(B) 각각에 강성 측정부(110)가 부착될 것이다. The stiffness measuring unit 110 may be attached to a normal point (A) and a deterioration point (B), respectively. Here, the normal point (A) and the deterioration point (B) are points determined by the precise safety diagnosis result. Precise safety inspection means a building safety inspection conducted according to the standards provided by the law. The results of the detailed safety diagnosis are stored in an external database (not shown) that can be accessed by the building owner or a building stakeholder. The stiffness measuring unit 110 will be attached to each of the deterioration points (B) determined to be .
강성 측정부(110)는 초음파 탐상장치(112) 및 슈미트해머(114)를 포함한다. The stiffness measuring unit 110 includes an ultrasonic flaw detector 112 and a Schmidt hammer 114.
초음파 탐상장치(112)는 부착된 건물에 초음파를 송신하고, 반사되는 초음파를 수신하도록 형성된다. 또한, 송신한 초음파와 반사되는 초음파를 비교하여 건물 벽 내부에 형성된 공동(cavity)을 감지할 수 있다. 또한, 건물 벽 내부에 형성된 공동의 깊이와 건물의 강성을 측정할 수 있다.The ultrasonic flaw detector 112 is formed to transmit ultrasonic waves to the attached building and receive the reflected ultrasonic waves. In addition, a cavity formed inside a building wall can be detected by comparing transmitted ultrasound with reflected ultrasound. In addition, the depth of the cavity formed inside the building wall and the stiffness of the building can be measured.
슈미트해머(Schmidt Hammer, 114)는 콘크리트의 내부강도를 시험하도록 구성된다. 이를 위해, 슈미트해머는 부착된 벽면에 충격을 가하고, 반발도를 측정하여 내부강도를 추정하도록 구성된다. Schmidt Hammer (114) is configured to test the internal strength of concrete. To this end, the Schmidt hammer is configured to estimate the internal strength by applying an impact to the attached wall surface and measuring the degree of resilience.
한편, 본 개시에 의한 강성 측정부(110)는 초음파 탐상장치(112)를 기본적으로 포함하되, 초음파 탐상장치(112) 슈미트해머(114)를 선택적으로 또는 추가적으로 포함할 수 있다.이는, 초음파 탐상장치(112)의 사용이 어려운 환경에서 슈미트해머(114)를 대체적으로 선택함으로써, 어떠한 환경에서도 콘크리트의 내부강도를 측정할 수 있다는 효과가 있기 때문이다. 일반적으로 초음파 탐상장치(112)가 슈미트해머(114)보다 더 높은 정확도를 가지기는 하나, 슈미트해머(114)의 경우 조작 방법이 간단하고 가격이 저렴하여 여러 곳에 적용될 수 있다는 장점이 있다. 따라서, 일부 제한된 환경에서는 초음파 탐상장치(112) 대신 슈미트해머(114)가 사용될 수 있다. Meanwhile, the stiffness measuring unit 110 according to the present disclosure basically includes the ultrasonic flaw detector 112, but may optionally or additionally include the ultrasonic flaw detector 112 or the Schmidt hammer 114. This is because there is an effect that the internal strength of concrete can be measured in any environment by alternatively selecting the Schmidt hammer 114 in an environment where the use of the device 112 is difficult. In general, although the ultrasonic flaw detector 112 has a higher accuracy than the Schmidt hammer 114, the Schmidt hammer 114 has an advantage in that it can be applied to many places due to its simple operation method and low price. Therefore, in some limited environments, the Schmidt hammer 114 may be used instead of the ultrasonic flaw detector 112.
진동센서(120)는 진동 데이터를 수집하도록 형성되며, 이를 위해 정상 포인트(A) 및 열화 포인트(B)에 각각 부착된다. The vibration sensor 120 is formed to collect vibration data, and for this purpose is attached to a normal point (A) and a deterioration point (B), respectively.
전처리부(130)는 진동센서(120)에 의해 수집된 진동 데이터를 처리하도록 구성된다. 이를 위해, 전처리부(130)는 FFT 변환부(132) 및 진동특성 연산부(134)를 포함한다. The pre-processing unit 130 is configured to process vibration data collected by the vibration sensor 120 . To this end, the pre-processing unit 130 includes an FFT conversion unit 132 and a vibration characteristic calculation unit 134.
진동 데이터는 시간에 따른 가속도에 대한 정보이다(도 5 참조). FFT 변환부(132)는 진동 데이터를 시간 영역(time domain)에서 주파수 영역(frequency domain)으로 변환하여 주파수 데이터를 생성하도록 형성된다. FFT 변환부(132)에 의해 처리된 주파수 데이터는, 주파수에 대한 가속도 정보, 또는 주파수에 대한 진폭(amplitude) 정보일 수 있다. Vibration data is information about acceleration over time (see FIG. 5). The FFT conversion unit 132 converts vibration data from a time domain to a frequency domain to generate frequency data. The frequency data processed by the FFT converter 132 may be acceleration information with respect to frequency or amplitude information with respect to frequency.
주파수에 대한 가속도 정보는 도 5의 FFT 변환부(132) 밑에 도시된 그래프와같은 형상으로 나타날 수 있다. 주파수에 대한 진폭 정보는 도 7에 도시된 그래프와 같이 첨도(Kurtosis) 형상으로 나타날 수 있다. Acceleration information with respect to frequency may be displayed in a shape such as a graph shown under the FFT conversion unit 132 of FIG. 5 . Amplitude information with respect to frequency may be displayed in a kurtosis shape as shown in the graph of FIG. 7 .
진동특성 연산부(134)는, 진동 데이터를 이용하여, 가속도, RMS(root means square), 피크(peak) 및 CF(crest factor)를 연산하도록 구성된다. 가속도, RMS, 피크, CF는 도 5의 진동특성 연산부(134)의 밑에 도시된 그래프를 이용하여 이해될 수 있다. The vibration characteristic calculation unit 134 is configured to calculate an acceleration, a root mean square (RMS), a peak, and a crest factor (CF) using vibration data. Acceleration, RMS, peak, and CF can be understood using the graph shown below the vibration characteristic calculating unit 134 of FIG. 5 .
진동특성 연산부(134)는 취합된 가속도, RMS, 피크 및 CF 에서 노이즈에 가깝다고 판단되는 데이터, 즉, 아웃라이어가 데이터에 존재한다고 판단되면, 이를 특정 범위를 통해 제외시킴으로써 양질의 데이터를 구축할 수 있다. 가속도, RMS, 피크 및 CF는 제1 기간 단위로 제2 기간동안 취합된 진동 데이터로부터 확인되는 정보이며, 특정 범위를 벗어나는 값은 제외되는 것이 바람직하다. 여기서, 제1 기간은 예를 들어 10초이고, 제2 기간은 10분일 수 있고, 특정 범위는 1σ 일 수 있다. 다만, 이는 예시적인 수치일 뿐이며 제1 기간, 제2 기간의 길이 및 특정 범위는 사용자에 의해 적절히 설계변경 가능함에 유의한다. 이렇게 가속도, RMS,피크 및 CF 중 특정범위(예를 들어, 1σ) 이상의 값은 제외되기에, 얻어지는 정보 중 노이즈로 취급될 수 있는 데이터, 즉, 아웃라이어는 제외되고, 양질의 학습데이터가 얻어진다는 효과가 있다.If the vibration characteristic calculating unit 134 determines that data that is close to noise in the collected acceleration, RMS, peak, and CF, that is, outliers are present in the data, it is possible to construct high-quality data by excluding them through a specific range. there is. Acceleration, RMS, peak, and CF are information identified from vibration data collected during the second period in units of the first period, and values outside a specific range are preferably excluded. Here, the first period may be, for example, 10 seconds, the second period may be 10 minutes, and the specific range may be 1σ. However, it should be noted that these are only exemplary values, and the lengths and specific ranges of the first period and the second period may be appropriately designed and changed by the user. Since values over a specific range (eg, 1σ) among acceleration, RMS, peak, and CF are excluded, data that can be treated as noise among the obtained information, that is, outliers, are excluded, and high-quality training data is obtained. It has an effect.
이상기후 및 재난정보 입력부(140)는 콘크리트의 열화에 영향을 미치는 기상변화 및 재난이 입력되도록 구성된다. 설계 당시 고려하지 못한 혹한이나 폭염, 폭우, 지진, 태풍 등의 이벤트가 발생하는 경우, 콘크리트 이루어진 구조물은 영향을 받게 된다. 이상기후 및 재난정보 입력부(140)에는, 정해진 기간, 예를 들어 일주일 또는 한 분기 단위를 기준으로 기상변화 및 재난정보가 입력된다. 본 개시는 콘크리트에 영향을 줄 수 있는 기후변화나 재난을 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다. The abnormal weather and disaster information input unit 140 is configured to input weather changes and disasters that affect the deterioration of concrete. When events such as severe cold, heat waves, heavy rain, earthquakes, typhoons, etc., which were not considered at the time of design, occur, concrete structures are affected. Weather change and disaster information is input to the abnormal weather and disaster information input unit 140 based on a predetermined period, for example, a week or a quarter. The present disclosure has an effect of being able to predict the stiffness of a building with higher accuracy in consideration of climate change or disasters that may affect concrete.
이용정보 측정부(150)는 건물의 시간에 따른 이용정보가 입력되도록 구성된다. 이를 위해, 이용정보 측정부(150)는 이용객 혼잡도 측정부(152) 및 물류이동 정보 입력부(154)를 포함한다.The usage information measurement unit 150 is configured to input usage information according to the time of the building. To this end, the usage information measurement unit 150 includes a user congestion measurement unit 152 and a logistic movement information input unit 154.
이용객 혼잡도 측정부(152)는 시간대별 혼잡도(도 6의 (a) 참조)를 측정하도록 구성된다. 도 6의 (a)는 2022년 7월 내지 8월의 시간대별 인천공항 이용자 수 평균을 나타낸 것이다. 도 6의 (a)를 참조하면, 8시부터 20시까지 이용객이 가장 많은 것을 알 수 있다. 이용객 하중에 따른 충격도 건물의 강성에 영향을 줄 수 있다. 본 개시는 콘크리트에 영향을 줄 수 있는 이용객도 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다. The user congestion measuring unit 152 is configured to measure congestion by time zone (see (a) in FIG. 6). Figure 6 (a) shows the average number of Incheon Airport users by time period from July to August 2022. Referring to (a) of FIG. 6, it can be seen that the largest number of users is from 8:00 to 20:00. The impact of user loads can also affect the stiffness of a building. The present disclosure has an effect of being able to predict the stiffness of a building with higher accuracy because it also considers users who may affect concrete.
물류이동 정보 입력부(154)는 시간대별 물류정보(도 6의 (b) 참조)가 입력되도록 구성된다. 도 6의 (b)는 2022년 7월 내지 8월의 시간대별 인천공항에 배치되는 화물 무게 평균을 나타낸 것이다. 도 6의 (b)를 참조하면, 9시부터 20시까지 화물 무게가 가장 무거운 것을 알 수 있다. 즉, 9시부터 20시 사이에 관측되는 진동 데이터는 사무실이나 거주용 건물이라면 건물에 출입하는 화물의 무게가 중요하지 않을 수 있지만, 물류창고 또는 공항이라면 건물에 출입하는 화물의 무게가 건물의 강성에 영향을 줄 수 있을 것이다. 본 개시는 콘크리트에 영향을 줄 수 있는 물류의 무게도 고려하기에, 더 높은 정확도로 건물의 강성을 예측할 수 있다는 효과가 있다. The logistics movement information input unit 154 is configured to input logistics information (see FIG. 6(b)) for each time period. Figure 6 (b) shows the average weight of cargoes disposed at Incheon Airport for each time period from July to August 2022. Referring to (b) of FIG. 6, it can be seen that the cargo weight is the heaviest from 9 o'clock to 20 o'clock. In other words, for the vibration data observed between 9:00 and 20:00, the weight of cargo entering and exiting the building may not be important if it is an office or residential building, but the weight of cargo entering and exiting the building is the stiffness of the building if it is a warehouse or airport. will be able to affect The present disclosure has an effect of predicting the stiffness of a building with higher accuracy because it also considers the weight of logistics that may affect concrete.
시간대별 혼잡도를 이용하여, 가장 혼잡도가 작은 새벽 시간대(Ta)와 가장 혼잡도가 높은 주간 시간대(Tb)가 추출될 수 있다. 도 6에 따른 예시에 의하면 Ta는 5시부터 6시이고, Tb는 17시부터 18시까지일 수 있다. 해당 시간대를 고려하여 해당 시간대에서의 진동 데이터가 라벨링(labeling)되어 예측모델(22)에 입력될 수 있다. 마찬가지로, 시간대별 물류정보를 이용하여 진동 데이터를 추가적으로 라벨링(labeling)할 수도 있다. 진동 데이터 라벨링을 통해, 학습 정확도가 더 제고되는 효과가 있다. By using the degree of congestion for each time zone, the early morning time zone (Ta) with the smallest congestion and the daytime time zone (Tb) with the highest congestion may be extracted. According to the example shown in FIG. 6 , Ta may range from 5 o'clock to 6 o'clock, and Tb may range from 17 o'clock to 18 o'clock. Considering the corresponding time zone, vibration data in the corresponding time zone may be labeled and input to the predictive model 22 . Similarly, vibration data may be additionally labeled using logistic information for each time zone. Vibration data labeling has an effect of further improving learning accuracy.
한편, 도 6에 도시된 정보는 이용객 혼잡도와 물류이동 정보를 설명하기 위한 예시적인 것이며, 건물의 종류 등에 따라 얻어지는 정보는 상이할 수 있다. Meanwhile, the information shown in FIG. 6 is exemplary for explaining user congestion and logistics movement information, and the information obtained may be different depending on the type of building.
학습정보 데이터베이스(160)는 강성 측정부(110), 진동센서(120), 전처리부(130), 이상기후 및 재난정보 입력부(140), 이용정보 측정부(150)에 의해 수집된 데이터를 수신 및 저장하도록 구성된다. 이때, 바람직하게는, 학습정보 데이터베이스(160)는 수신한 정보를 데이터세트화하여 저장한다. 예를 들면, 학습정보 데이터베이스(160)는 입력되는 정보를 벡터화하여 저장할 수 있다. The learning information database 160 receives data collected by the stiffness measuring unit 110, the vibration sensor 120, the pre-processing unit 130, the abnormal weather and disaster information input unit 140, and the usage information measuring unit 150. and store. At this time, preferably, the learning information database 160 converts the received information into a dataset and stores it. For example, the learning information database 160 may vectorize and store inputted information.
학습정보 데이터베이스(160)에는 건물의 종류가 더 입력될 수 있다. 건물의 종류는 예컨대, 일반건물, 백화점, 마트, 시민공용시설(예를 들어 체육시설, 도서관 등), 공항, 학교, 콘크리트 옹벽, 산업단지 인프라 시설 등일 수 있다. The type of building may be further input into the learning information database 160 . The type of building may be, for example, a general building, a department store, a mart, a public facility for citizens (for example, a sports facility, a library, etc.), an airport, a school, a concrete retaining wall, an industrial complex infrastructure facility, and the like.
학습정보 데이터베이스(160)는 진동특성 학습모듈(20)의 요청이 있는 경우, 저장한 데이터세트를 진동특성 학습모듈(20)에 송신할 수 있다. The learning information database 160 may transmit the stored data set to the vibration characteristic learning module 20 upon request from the vibration characteristic learning module 20 .
학습모델의 입력자료, 출력자료 및 예측 결과Input data, output data, and predicted results of the learning model
도 4는 본 개시의 일 실시예에 따른 데이터의 흐름을 나타낸 것이다. 4 illustrates the flow of data according to an embodiment of the present disclosure.
도 4를 참고하면, 진동특성 학습모듈(20)은 예측모델(22)을 학습하도록 구성된다. 예측모델(22)은, 진동센서(120)와 전처리부(130)에 의해 수집 또는 처리된 가속도, RMS, 피크, CF 및 첨도(Kurtosis), 이용객 혼잡도 측정부(152)에 의해 측정된 시간대별 혼잡도, 물류이동 정보 입력부(154)에 입력된 시간대별 물류정보, 이상기후 및 재난정보 입력부(140)에 입력된 기상정보 및 재난정보가 입력자료료, 강성 측정부(110)에 의해 측정된 건물의 강성이 출력자료로 한다. Referring to FIG. 4 , the vibration characteristic learning module 20 is configured to learn the prediction model 22 . The prediction model 22 is the acceleration collected or processed by the vibration sensor 120 and the pre-processing unit 130, RMS, peak, CF and Kurtosis, and the time period measured by the user congestion measuring unit 152 Congestion, logistic information by time zone entered into the logistics movement information input unit 154, weather information and disaster information input into the abnormal weather and disaster information input unit 140 are input data, and the building measured by the stiffness measurement unit 110 The stiffness of is used as output data.
바람직하게는, 예측모델(22)은 바람직하게는 비지도학습(Unsupervised learning) 또는 강화학습 모델(Reinforcement Learning)로 구현될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니며, ANN(artificial neural network), CNN(convolutional neural network), RNN(recurrent neural networks), 베이즈 네트워크(Bayesian network), LSTM (Long Short-Term Memory), GAN (Generative adversarial network), Transformer, 의사결정나무(decision tree) 중 어느 하나에 의해 구현될 수 있으며, 반드시 상기한 모델에 한정되는 것은 아니고, 어떠한 종류의 예측용 모델로 구현되더라도 무방하다.Preferably, the prediction model 22 may be implemented as an unsupervised learning or reinforcement learning model. However, it is not necessarily limited thereto, and artificial neural networks (ANNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), Bayesian networks, long short-term memory (LSTMs), generative neural networks (GANs) It can be implemented by any one of adversarial network), Transformer, and decision tree, and is not necessarily limited to the above model, and may be implemented with any kind of predictive model.
시계열 진동 데이터의 이상탐지는 관측값 Point 이상, 데이터 경향성의 변화에 따른 이상 등을 탐지하는 것으로 이상의 정도를 나타내주는 anomaly score를 각 시계열 구간마다 측정하며, 상기 기술된 인공지능 예측모델 각 방법마다 anomaly score를 측정하는 방식은 'Reconstruction error', 'Prediction error' 그리고 'Dissimilarity'라는 카테고리로 나눌 수 있으며, 여기서는 각 예측모델에 최적합한 anomaly score를 측정한다 Anomaly detection of time-series vibration data detects anomalies in observed values, point anomalies, and anomalies caused by changes in data tendencies. The method of measuring the score can be divided into categories such as 'Reconstruction error', 'Prediction error' and 'Dissimilarity', and here, the anomaly score that is optimal for each prediction model is measured.
예를 들어, LSTM과 Autoencoder 방식을 사용하는 경우, 예측모델의 작동방식이 시계열 데이터를 저차원 공간으로 인코딩 시킨 후, 인코딩 된 벡터를 다시 디코딩 시키는 방식으로 reconstruction error를 측정한다. 이렇게 측정된 Reconstruction error는 정상 데이터일 경우 그 값이 작고, 이상 데이터일 경우 그 값이 커지는 것을 가정하여 이상 데이터 탐지를 수행한다.For example, in case of using LSTM and autoencoder method, reconstruction error is measured by encoding the time-series data into a low-dimensional space and then decoding the encoded vector again. Anomaly data detection is performed on the assumption that the reconstruction error measured in this way is small in case of normal data and large in case of abnormal data.
진동특성 학습모듈(20)은 학습기간을 임의로 정할 수도 있지만, 바람직하게는 보다 높은 정확도의 결과를 얻기 위하여 학습기간을 조절할 수도 있다. 이를 위해, 진동특성 학습모듈(20)은 학습기간 결정부(24)를 더 포함할 수 있다.The vibration characteristic learning module 20 may arbitrarily set a learning period, but may preferably adjust the learning period to obtain a more accurate result. To this end, the vibration characteristic learning module 20 may further include a learning period determining unit 24 .
학습기간 결정부(24)는 예측모델(22)에 의해 출력된 건물의 강성과, 예측모델(22)에 입력되는 입력자료와 출력자료의 차이에 대한 정보손실값(reconstruction loss)을 고려하여 학습기간을 재설정할 수 있다. 구체적으로는, 정보손실값의 변칙 정도(anomaly)가 미리 설정된 기준(threshold) 범위 내로 들어 올때까지 학습기간을 조절할 수 있을 것이다. 이로 인해, 예측모델(22)이 어떠한 종류의 학습모델로 구현되더라도 적절한 학습기간을 설정할 수 있으며, 이미 주어진 데이터가 여러가지 모델에 대한 호환성이 높아질 수 있다. The learning period determining unit 24 takes into account the stiffness of the building output by the prediction model 22 and the reconstruction loss of the difference between the input data and the output data input to the prediction model 22. The period can be reset. Specifically, the learning period may be adjusted until the anomaly of the information loss value falls within a preset threshold range. Because of this, no matter what kind of learning model the predictive model 22 is implemented, an appropriate learning period can be set, and the compatibility of already given data with various models can be increased.
도 8은 본 개시의 일 실시예에 따른 중대재해 예방 시스템에 의해 예측된 수치와 실제 수치를 비교한 것이다. Figure 8 is a comparison of the predicted value and the actual value by the serious accident prevention system according to an embodiment of the present disclosure.
도 8을 참조하면, 실제 건물의 강성(actual 축 참조)와 진동특성 학습모듈(20)에 의해 출력된 건물의 강성(predicted 축 참조)이 높은 상관도를 가지는 것으로 확인된다. Referring to FIG. 8 , it is confirmed that the stiffness of the actual building (refer to the actual axis) and the stiffness of the building output by the vibration characteristic learning module 20 (refer to the predicted axis) have a high correlation.
다만, 실제 건물의 강성과 출력된 건물의 강성이 어느 정도 차이가 있을 수 있기에, 예측모델(22)에 의해 출력된 건물의 강성을 보정할 필요가 있다. 이를 위해, 본 개시의 중대재해 예방 시스템(1)은 보정모듈(30)을 통해 출력된 건물의 강성이 실제 건물의 강성에 근접하도록, 출력된 건물의 강성을 보정할 수 있다. 예를 들어, 보정모듈(30)은 선형 회귀(linear regression)을 이용하여 출력된 건물의 강성을 보정할 수 있다. 다만, 이는 하나의 예시에 불과하며, 사용자에 의해 적절한 보정식이 선택될 수 있음에 유의한다.However, since there may be some difference between the stiffness of the actual building and the stiffness of the output building, it is necessary to correct the stiffness of the building output by the prediction model 22. To this end, the serious accident prevention system 1 of the present disclosure may correct the output stiffness of the building so that the stiffness of the outputted building through the correction module 30 approaches the stiffness of the actual building. For example, the correction module 30 may correct the stiffness of the outputted building using linear regression. However, it should be noted that this is only an example, and an appropriate correction equation may be selected by the user.
이하에서는, 출력된 건물의 강성을 이용하여 알람을 제공할지 여부에 대해 판단하는 방법에 대해 자세히 설명한다(도 2의 S230 내지 S250 단계 참조).Hereinafter, a method of determining whether to provide an alarm using the output stiffness of the building will be described in detail (see steps S230 to S250 of FIG. 2 ).
알람제공 방법How to provide alarm
도 2의 S230 단계에 따르면, 알람제공 모듈(40)은 출력된 건물의 강성이 기 설정된 위험수준(threshold)보다 큰지 판단할 수 있다. 이때, 기 설정된 위험수준은 건축물의 구조기준 등에 관한 규칙에서 지정한 구조안전기준강도일 수 있다. 그러나, 반드시 이에 한정되는 것은 아니며 안전관리자 또는 건물 소유주의 관리수준에 따라 조정이 가능할 것이다.According to step S230 of FIG. 2 , the alarm providing module 40 may determine whether the stiffness of the outputted building is greater than a preset risk level (threshold). At this time, the preset risk level may be the structural safety standard strength specified in the rules on the structural standards of buildings. However, it is not necessarily limited thereto and may be adjusted according to the management level of the safety manager or the building owner.
만약, 출력된 건물의 강성이 기 설정된 위험수준 이상인 것으로 판단된 경우, 알람제공 모듈(40)은 알람을 제공하지 않는 것으로 결정한다. 따라서, 진동센서(120)를 이용하여 진동 데이터를 수집하는 단계로 다시 돌아간다.If it is determined that the output stiffness of the building is greater than or equal to a preset risk level, the alarm provision module 40 determines not to provide an alarm. Therefore, it returns to the step of collecting vibration data using the vibration sensor 120.
도 2의 S240 단계에 따르면, 출력된 건물의 강성이 기 설정된 위험수준 미만인 것으로 판단된 경우, 알람제공 모듈(40)은 누적 충격이 건물의 회복탄력 임계치보다 큰지 판단한다. According to step S240 of FIG. 2 , when it is determined that the output stiffness of the building is less than a preset risk level, the alarm providing module 40 determines whether the cumulative impact is greater than the resilience threshold of the building.
건물의 국소 부위에 단기간에 집중된 힘이 가해진 후 건물은 일시적으로 강성이 낮아질 수 있다. 이러한 충격이 누적될 경우, 건물은 회복탄력성을 잃게 될 수 있다. 여기서, 건물이 회복탄력성을 잃게 되는 충격량의 크기를 회복탄력 임계치라고 한다. 누적된 충격량의 크기는, 미리 설정된 기간, 즉, 단위기간에 건물에 가해지는 충격량의 크기를 누적한 것이다. 이를 위해, 별도로 마련된 충격량 연산부(미도시)는, 이상기후 및 재난정보 입력부(140) 및 이용정보 측정부(150)에 의해 측정 또는 입력되는 정보를 이용하여 누적 충격량을 연산할 수 있다. After a short-term, concentrated force is applied to a local area of a building, the building may temporarily lose its stiffness. When these shocks accumulate, the building can lose its resilience. Here, the magnitude of the impact at which the building loses its resilience is called the resilience threshold. The magnitude of the accumulated impact is the accumulation of the magnitude of the impact applied to the building in a preset period, that is, a unit period. To this end, a separately provided impact calculation unit (not shown) may calculate the accumulated impact using information measured or input by the abnormal weather and disaster information input unit 140 and the usage information measuring unit 150.
예를 들어 이상기후 및 재난정보 입력부(140)에 의해 측정 대상 건물의 주변에서 지진이 발생한 것으로 확인되면, 충격량 연산부는 지진의 진도, 진원까지의 거리 및 지진 지속시간을 이용하여 건물에 가해지는 충격량의 크기를 연산할 수 있다. 또는, 이용정보 측정부(150)에 의해 1시간 동안 건물의 가용인원의 2배 이상의 인원과 물류가 감지되는 경우, 충격량 연산부는 이용객과 물류 자중에 의해 건물에 가해지는 충격량의 크기를 연산할 수 있다. For example, if it is confirmed that an earthquake has occurred in the vicinity of the building to be measured by the abnormal weather and disaster information input unit 140, the impact calculation unit calculates the amount of impact applied to the building using the magnitude of the earthquake, the distance to the epicenter, and the duration of the earthquake size can be calculated. Alternatively, when more than twice as many people and logistics as the number of available people in the building are detected by the usage information measuring unit 150 for 1 hour, the impact calculation unit can calculate the size of the impact applied to the building by the weight of the users and the logistics there is.
S240 단계에서 누적 충격량의 크기가 건물의 회복탄력 임계치 이하인 것으로 판단된 경우, 알람제공 모듈(40)은 알람을 제공하지 않는 것으로 결정한다. 따라서, 진동센서(120)를 이용하여 진동 데이터를 수집하는 단계로 다시 돌아간다. 즉, 일시적인 건물의 강성의 약화에 따른 결과는 진정으로 건물 파괴 또는 붕괴를 야기하지 않는다고 판단한 것으로, 가짜 알람(false alarm)을 방지할 수 있다. 이로 인해, 불필요한 대피, 불안감 조성 등이 방지될 수 있다는 효과가 있다. When it is determined in step S240 that the magnitude of the cumulative impact is less than the resilience threshold of the building, the alarm providing module 40 determines not to provide an alarm. Therefore, it returns to the step of collecting vibration data using the vibration sensor 120. That is, since it is determined that the result of the temporary weakening of the rigidity of the building does not truly cause the building to be destroyed or collapsed, a false alarm can be prevented. Due to this, there is an effect that unnecessary evacuation, anxiety, etc. can be prevented.
S240 단계에서 누적 충격량의 크기가 건물의 회복탄력 임계치보다 큰 것으로 판단된 경우, S250 단계와 같이 알람제공 모듈(40)은 알람을 제공하는 것으로 결정한다.When it is determined in step S240 that the magnitude of the cumulative impact is greater than the threshold for resilience of the building, the alarm provision module 40 determines to provide an alarm as in step S250.
여기서, 알람제공 모듈(40)에 제공하는 알람은, 건물 내 이용객에게 제공되는 알람, 인접건물 관리부에 제공되는 알람 및 건물과 연관된 인프라 시설에 제공되는 알람을 포함한다. Here, the alarm provided to the alarm provision module 40 includes an alarm provided to users in the building, an alarm provided to an adjacent building management unit, and an alarm provided to infrastructure facilities associated with the building.
건물 내 이용객에게 제공되는 알람은, 예를 들어 스피커(speaker) 또는 디스플레이(display)를 통해 제공될 수 있다. 또는, 건물 내 이용객의 단말기에 설치된 어플리케이션(예를 들어, 백화점 어플리케이션)을 통해 푸시 알람 등을 제공할 수 있다. 이로 인해, 건물을 이용하는 이용객이 건물 붕괴가 발생하기 전에 미리 건물을 탈출할 수 있어 인명피해를 최소화할 수 있다는 효과가 있다. An alarm provided to users in a building may be provided through, for example, a speaker or a display. Alternatively, a push alarm or the like may be provided through an application (for example, a department store application) installed in a terminal of a user in a building. Due to this, there is an effect that users using the building can escape the building in advance before the collapse of the building, thereby minimizing human casualties.
인접건물 관리부에 제공되는 알람은, 인접건물에 마련된 관리부에 마련된 단말기 등을 통해 제공될 수 있다. 여기서, 인접건물이란, 도 9에 도시된 것과 마찬가지로, 측정 대상 건물과 대면하는 건물 및 시설물을 포함할 수 있다. 측정 대상 건물이 붕괴할 경우, 붕괴시 발생하는 낙석과 분진 등으로 인해 인접건물에 2차피해가 발생할 수 있다. 한편, 인접건물 관리부에 알람이 제공된다면 낙석 및 충격에 따른 피해를 대비할 수 있고, 인접건물의 이용객과 상주인원에게도 알람이 제공될 수 있어, 2차 피해를 최소화할 수 있다는 효과가 있다.The alarm provided to the management unit of the adjacent building may be provided through a terminal provided to the management unit provided in the adjacent building. Here, the adjacent buildings may include buildings and facilities facing the building to be measured, as shown in FIG. 9 . If the building to be measured collapses, secondary damage may occur to neighboring buildings due to falling rocks and dust generated during the collapse. On the other hand, if an alarm is provided to the management unit of an adjacent building, it is possible to prepare for damage caused by falling rocks and impact, and an alarm can also be provided to users and residents of the adjacent building, thereby minimizing secondary damage.
건물과 연관된 인프라 시설에 제공되는 알람은, 예를 들어 가공고압선, 통신시설, 고압탱크, 변전소, 도시가스 및 상수도를 주관하는 기관, 부처 및 시설에 제공될 수 있다. 전기, 통신, 가스, 수도 등의 인프라에 위해가 가해지는 경우, 광범위적으로 피해가 발생할 수 있다. 따라서, 통신사, 전기공사, 소방서, 한국전력공사, 도시가스공사 등의 기관 및 부처에 알람이 제공됨으로써, 2차 피해를 최소화할 수 있다는 효과가 있다. Alarms provided to infrastructure facilities associated with buildings may be provided to agencies, ministries, and facilities that manage overhead high-voltage lines, communication facilities, high-pressure tanks, substations, city gas, and water supply, for example. In the case of damage to infrastructure such as electricity, communication, gas, water, etc., extensive damage may occur. Therefore, there is an effect that secondary damage can be minimized by providing an alarm to agencies and ministries such as telecommunications companies, electrical construction companies, fire departments, Korea Electric Power Corporation, and City Gas Corporation.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely an example of the technical idea of the present embodiment, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment, but to explain, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of this embodiment should be construed according to the claims below, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of rights of this embodiment.
[부호의 설명][Description of code]
1: 중대재해 예방 시스템1: Severe Accident Prevention System
10: 학습정보 생성모듈10: learning information generation module
20: 진동특성 학습모듈20: vibration characteristic learning module
30: 보정모듈30: correction module
40: 알람제공 모듈40: alarm providing module
110: 강성 측정부110: stiffness measuring unit
120: 진동센서120: vibration sensor
130: 전처리부130: pre-processing unit
140: 이상기후 및 재난정보 입력부140: abnormal weather and disaster information input unit
150: 이용정보 측정부150: usage information measuring unit
160: 학습정보 데이터베이스160: learning information database

Claims (14)

  1. 건물에 부착된 진동센서(120)에 의해 수집된 진동 데이터를 포함하는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 회복탄력성 붕괴에 따른 중대재해를 예방하기 위한 방법으로, As a method for preventing serious accidents due to the resilience collapse of a building by predicting the stiffness of the building using information including vibration data collected by the vibration sensor 120 attached to the building,
    (a) 학습정보 생성모듈(10)에 의해, 진동 데이터를 포함하는 입력정보 및 건물의 강성을 포함하는 출력정보가 수집되는 단계; (a) collecting input information including vibration data and output information including stiffness of a building by the learning information generation module 10;
    (b) 진동특성 학습모듈(20)이, 상기 입력정보 및 상기 출력정보를 이용하여 예측모델(22)을 학습하는 단계; (b) learning, by the vibration characteristic learning module 20, the prediction model 22 using the input information and the output information;
    (c1) 상기 진동특성 학습모듈(20)에 진동 데이터가 입력되면, 건물의 강성이 출력되는 단계; (c1) outputting the stiffness of the building when vibration data is input to the vibration characteristic learning module 20;
    (d) 상기 (c1) 단계에서 출력된 강성이 기 설정된 위험수준의 크기와 비교되는 단계; (d) comparing the stiffness output in step (c1) with a preset risk level;
    (e1) 상기 (d1) 단계에서 상기 출력된 강성이 상기 기 설정된 위험수준 이상이면, 상기 (c) 단계 내지 상기 (d1) 단계가 반복되는 단계; (e1) repeating steps (c) to (d1) if the stiffness output in step (d1) is equal to or greater than the preset risk level;
    (e2) 상기 (d1) 단계에서 상기 출력된 강성이 상기 기 설정된 위험수준 미만이면, 미리 결정된 단위기간 동안 상기 건물에 가해진 누적 충격량과 건물의 회복탄력 임계치가 비교되는 단계; (e2) comparing the cumulative impact applied to the building for a predetermined unit period with a threshold for resilience of the building if the stiffness output in the step (d1) is less than the preset risk level;
    (f1) 상기 (e2) 단계에서 상기 누적 충격량이 상기 건물의 회복탄력 임계치 이하이면, 상기 (c1) 단계 내지 상기 (e2) 단계가 반복되는 단계; 및 (f1) repeating steps (c1) to (e2) if the cumulative impact amount is less than or equal to the resilience threshold of the building in step (e2); and
    (f2) 상기 (e2) 단계에서 상기 누적 충격량이 상기 건물의 회복탄력 임계치를 초과하면, 알람제공 모듈(40)이 건물 이용객, 인접건물 관리부 및 인프라 관리부에 알람을 제공하는 단계;를 포함하는, (f2) in the step (e2), when the cumulative impact exceeds the resilience threshold of the building, the alarm providing module 40 provides an alarm to building users, adjacent building management units, and infrastructure management units; Including,
    방법.method.
  2. 제1항에 있어서, According to claim 1,
    상기 학습정보 생성모듈(10)은, 강성 측정부(110), 전처리부(130), 이상기후 및 재난정보 입력부(140) 및 이용정보 측정부(150)를 더 포함하고, The learning information generation module 10 further includes a stiffness measuring unit 110, a preprocessing unit 130, an abnormal climate and disaster information input unit 140, and a usage information measuring unit 150,
    상기 (a) 단계는,In step (a),
    (a1) 상기 강성 측정부(110)에 의해 정상 포인트(A) 및 열화 포인트(B)의 건물의 강성이 수집되는 단계;(a1) collecting the stiffness of a building at a normal point (A) and a deterioration point (B) by the stiffness measuring unit 110;
    (a2) 상기 진동센서(120)에 의해 정상 포인트(A) 및 열화 포인트(B)의 진동 데이터가 수집되는 단계; (a2) collecting vibration data of a normal point (A) and a deterioration point (B) by the vibration sensor 120;
    (a31) 상기 전처리부(130)가 상기 진동 데이터를 FFT(fast fourier transformation)처리하여, 첨도(Kurtosis)를 생성하는 단계; (a31) generating kurtosis by performing fast fourier transformation (FFT) on the vibration data, by the pre-processor 130;
    (a32) 상기 전처리부(130)가 상기 진동 데이터를 이용하여, 시간에 따른 가속도, RMS, 피크(peak) 및 CF(crest factor)를 연산하는 단계; (a32) calculating, by the pre-processor 130, acceleration over time, RMS, peak, and crest factor (CF) using the vibration data;
    (a4) 상기 이상기후 및 재난정보 입력부(140)에 의해 기상정보 및 재난정보가 수집되는 단계; 및 (a4) collecting weather information and disaster information by the abnormal weather and disaster information input unit 140; and
    (a5) 상기 이용정보 측정부(150)에 의해 시간대별 혼잡도와 시간대별 물류정보가 수집되는 단계;를 포함하는, (a5) collecting congestion by time slot and logistics information by time slot by the usage information measuring unit 150;
    방법.method.
  3. 제2항에 있어서,According to claim 2,
    상기 진동특성 학습모듈(20)은 학습기간 결정부(24)를 포함하고, The vibration characteristic learning module 20 includes a learning period determining unit 24,
    상기 (b) 단계는,In step (b),
    (b1) 상기 첨도(Kurtosis), 가속도, RMS, 피크, CF, 시간대별 혼잡도, 시간대별 물류정보, 기상정보 및 재난정보를 포함하는 입력정보가 입력되면, 건물의 강성을 포함하는 출력정보가 출력되도록 구성된 예측모델(22)이 진동특성 학습모듈(20)에 의해 학습되는 단계; 및 (b1) When input information including the Kurtosis, acceleration, RMS, peak, CF, congestion by time zone, logistics information by time zone, weather information, and disaster information is input, output information including the stiffness of the building is output Learning the prediction model 22 configured to be performed by the vibration characteristic learning module 20; and
    (b2) 상기 학습기간 결정부(24)는 상기 입력정보와 상기 출력정보를 이용하여 정보손실값(reconstruction loss)을 연산하고, 상기 정보손실값을 이용하여 학습기간을 조절하는 단계;를 포함하는, (b2) the learning period determination unit 24 calculating a reconstruction loss using the input information and the output information, and adjusting the learning period using the information loss value; ,
    방법.method.
  4. 제3항에 있어서,According to claim 3,
    상기 (b2) 단계 이후에, (b3) 보정모듈(30)이 상기 (b1) 단계에서 출력된 건물의 강성과, 상기 (a1) 단계에서 수집된 건물의 관계식을 연산하는 단계; 및 After step (b2), (b3) calculating, by the correction module 30, a relational expression between the stiffness of the building output in step (b1) and the building collected in step (a1); and
    상기 (c1) 단계 이후에, (c2) 상기 보정모듈(30)이 상기 (b3) 단계에서 연산된 관계식을 이용하여 상기 (c1) 단계에서 출력된 건물의 강성을 보정하는 단계;를 더 포함하는, After the step (c1), (c2) the correction module 30 correcting the stiffness of the building output in the step (c1) using the relational expression calculated in the step (b3); further comprising ,
    방법.method.
  5. 제2항에 있어서, According to claim 2,
    상기 강성 측정부(110)는, 건물 벽 내부에 형성된 공동(cavity), 상기 공동의 깊이 및 건물의 강성을 측정하도록 구성된 제1 강성 측정장치(112); 및The stiffness measuring unit 110 includes a first stiffness measuring device 112 configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building; and
    상기 건물의 강성을 측정하도록 구성된 제2 강성 측정장치(114)를 포함하는, Including a second stiffness measuring device 114 configured to measure the stiffness of the building,
    방법.method.
  6. 제5항에 있어서,According to claim 5,
    상기 제1 강성 측정장치(112); 는 초음파 탐상장치이고,The first stiffness measuring device 112; is an ultrasonic flaw detector,
    상기 제2 강성 측정장치(114)는 슈미트해머인, The second stiffness measuring device 114 is a Schmidt hammer,
    방법.method.
  7. 제2항에 있어서,According to claim 2,
    상기 (a32) 단계에서 연산된 가속도, RMS, 피크 및 CF의 로우 데이터(raw data) 중 이상치 발생이 판단될 경우, n·σ 이상의 데이터(이때, n은 양의 실수)는 상기 입력정보에서 제외되는, If it is determined that an outlier occurs among the raw data of acceleration, RMS, peak, and CF calculated in step (a32), data of n σ or more (where n is a positive real number) is excluded from the input information. felled,
    방법.method.
  8. 제2항에 있어서,According to claim 2,
    상기 입력정보는, 건물의 종류를 더 포함하는,The input information further includes the type of building,
    방법.method.
  9. 제2항에 있어서, According to claim 2,
    상기 누적 충격량은 충격량 연산부에 의해 연산되되,The cumulative impact amount is calculated by an impact calculation unit,
    상기 충격량 연산부는, 상기 이상기후 및 재난정보 입력부(140) 및 이용정보 측정부(150)에 의해 수집되는 정보를 이용하여, 상기 누적 충격량을 연산하는, The impact calculation unit calculates the cumulative impact amount using information collected by the abnormal weather and disaster information input unit 140 and the usage information measuring unit 150,
    방법.method.
  10. 건물에 부착된 진동센서(120)에 의해 수집된 진동 데이터를 포함하는 정보를 이용하여 건물의 강성을 예측함으로써, 건물의 회복탄력성 붕괴에 따른 중대재해를 예방하기 위한 장치로서, As a device for preventing serious accidents due to the resilience collapse of a building by predicting the stiffness of the building using information including vibration data collected by the vibration sensor 120 attached to the building,
    진동센서(120)에 의해 수집된 진동 데이터를 포함하는 입력정보와, 강성 측정부(110)에 의해 수집된 건물의 강성을 포함하는 출력정보를 수집하도록 구성된 학습정보 생성모듈(10); A learning information generating module 10 configured to collect input information including vibration data collected by the vibration sensor 120 and output information including the stiffness of the building collected by the stiffness measuring unit 110;
    상기 입력정보가 입력되면, 상기 출력정보를 출력하도록 구성된 예측모델(22)을 학습하도록 구성된 진동특성 학습모듈(20); a vibration characteristic learning module 20 configured to learn a predictive model 22 configured to output the output information when the input information is input;
    상기 진동특성 학습모듈(20)에 의해 출력된 건물의 강성을 보정하도록 구성된 보정모듈(30); 및 a correction module 30 configured to correct the stiffness of the building output by the vibration characteristic learning module 20; and
    상기 보정모듈(30)에 의해 보정된 건물의 강성을 이용하여 알람 제공 여부를 결정하고, 알람을 제공하도록 구성된 알람제공 모듈(40);을 포함하는, An alarm providing module 40 configured to determine whether to provide an alarm using the stiffness of the building corrected by the correction module 30 and provide an alarm;
    장치.Device.
  11. 제10항에 있어서, According to claim 10,
    상기 학습정보 생성모듈(10)은, The learning information generation module 10,
    상기 진동 데이터를 전처리하기 위한 전처리부(130)로서, As a pre-processing unit 130 for pre-processing the vibration data,
    상기 진동 데이터를 주파수 도메인으로 변환하여 첨도(Kurtosis)를 생성하도록 구성된 FFT 변환부(132); 및 an FFT conversion unit 132 configured to generate kurtosis by converting the vibration data into a frequency domain; and
    상기 진동 데이터로부터 시간에 따른 가속도, RMS, 피크(peak) 및 CF(crest factor)를 연산하기 위한 진동특성 연산부(134)를 포함하는 전처리부(130); A pre-processing unit 130 including a vibration characteristic calculation unit 134 for calculating acceleration according to time, RMS, peak, and CF (crest factor) from the vibration data;
    기상정보 및 재난정보가 입력되는 이상기후 및 재난정보 입력부(140); An abnormal climate and disaster information input unit 140 into which weather information and disaster information are input;
    건물의 이용정보를 수집하도록 구성된 이용정보 측정부(150)로서,As a usage information measuring unit 150 configured to collect usage information of a building,
    시간대별 혼잡도를 측정하도록 구성된 이용객 혼잡도 측정부(152); 및 a user congestion measuring unit 152 configured to measure congestion by time zone; and
    시간대별 물류정보를 입력받도록 구성된 물류이동 정보 입력부(154)를 포함하는 이용정보 측정부(150); 및a usage information measurement unit 150 including a logistics movement information input unit 154 configured to receive logistics information by time slot; and
    상기 강성 측정부(110), 상기 진동센서(120), 상기 전처리부(130), 상기 기상정보 및 재난정보 입력부(140) 및 상기 이용정보 측정부(150)로부터 데이터를 수신 및 저장하도록 구성된 학습정보 데이터베이스(160);를 포함하는, Learning configured to receive and store data from the stiffness measurement unit 110, the vibration sensor 120, the preprocessor 130, the weather information and disaster information input unit 140, and the usage information measurement unit 150 Including; information database 160;
    장치.Device.
  12. 제11항에 있어서,According to claim 11,
    상기 입력정보는, 상기 가속도, RMS, 피크, CF, 첨도, 기상정보, 재난정보, 시간대별 혼잡도, 시간대별 물류정보를 포함하는, The input information includes the acceleration, RMS, peak, CF, kurtosis, weather information, disaster information, congestion by time zone, and logistics information by time zone.
    장치.Device.
  13. 제12항에 있어서,According to claim 12,
    진동특성 학습모듈(20)은 학습기간 결정부(24)를 포함하고,The vibration characteristic learning module 20 includes a learning period determining unit 24,
    상기 학습기간 결정부(24)는 상기 입력정보와 상기 출력정보 사이의 정보손실값(reconstruction loss)을 이용하여 학습기간을 조절하는, The learning period determining unit 24 adjusts the learning period using a reconstruction loss between the input information and the output information.
    장치.Device.
  14. 제10항에 있어서,According to claim 10,
    상기 강성 측정부(110)는, 건물 벽 내부에 형성된 공동(cavity), 상기 공동의 깊이 및 건물의 강성을 측정하도록 구성된 제1 강성 측정장치(112); 및The stiffness measuring unit 110 includes a first stiffness measuring device 112 configured to measure a cavity formed inside a building wall, a depth of the cavity, and stiffness of the building; and
    상기 건물의 강성을 측정하도록 구성된 제2 강성 측정장치(114)를 포함하는, Including a second stiffness measuring device 114 configured to measure the stiffness of the building,
    장치.Device.
PCT/KR2023/002606 2022-02-24 2023-02-23 System for preventing major disaster due to building resilience collapse and method using same WO2023163524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0024432 2022-02-24
KR20220024432 2022-02-24
KR10-2023-0006045 2023-01-16
KR1020230006045A KR102579897B1 (en) 2022-02-24 2023-01-16 Disaster Prevention System According to Building Resilience Destruction and Method Using the Same

Publications (1)

Publication Number Publication Date
WO2023163524A1 true WO2023163524A1 (en) 2023-08-31

Family

ID=87766457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002606 WO2023163524A1 (en) 2022-02-24 2023-02-23 System for preventing major disaster due to building resilience collapse and method using same

Country Status (1)

Country Link
WO (1) WO2023163524A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264235A (en) * 2003-03-04 2004-09-24 Shimizu Corp Sensing device for damaged part of structures and its sensing method
KR20190130257A (en) * 2018-05-14 2019-11-22 한양대학교 에리카산학협력단 Prediction method for compression strength of concrete structure based on deep convolutional neural network algorithm and prediction system using the method
KR20210085761A (en) * 2019-12-31 2021-07-08 동의대학교 산학협력단 Building collapse prevention system
KR20210085168A (en) * 2019-12-30 2021-07-08 달리웍스 주식회사 System and method for safety inspection by trainiing nature freqeuncy of structure based on machine learning
JP2021110721A (en) * 2020-01-10 2021-08-02 メインマーク・ストラクチュアル・コンサルティング株式会社 State analysis program, device and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264235A (en) * 2003-03-04 2004-09-24 Shimizu Corp Sensing device for damaged part of structures and its sensing method
KR20190130257A (en) * 2018-05-14 2019-11-22 한양대학교 에리카산학협력단 Prediction method for compression strength of concrete structure based on deep convolutional neural network algorithm and prediction system using the method
KR20210085168A (en) * 2019-12-30 2021-07-08 달리웍스 주식회사 System and method for safety inspection by trainiing nature freqeuncy of structure based on machine learning
KR20210085761A (en) * 2019-12-31 2021-07-08 동의대학교 산학협력단 Building collapse prevention system
JP2021110721A (en) * 2020-01-10 2021-08-02 メインマーク・ストラクチュアル・コンサルティング株式会社 State analysis program, device and system

Similar Documents

Publication Publication Date Title
US11899442B2 (en) System and method for structural health monitoring using internet of things and machine learning
CN108830390A (en) A kind of intelligent operational system and method for charging station
KR101290824B1 (en) Infrastructure maintenance and management businesssupport system
CN111964731A (en) Pipe gallery monitoring and warning device and method
WO2017039195A1 (en) Large-space structure collapse sensing device, structure monitoring device, and method using same
WO2018044040A1 (en) Method for pre-detecting abnormality sign of nuclear power plant device including processor for determining device importance and warning validity, and system therefor
CN111445671A (en) Power transmission line geological disaster monitoring system and method based on optical fiber strain analysis
KR20170067319A (en) Intelligence structure safety monitoring system for collecting timing- synchronized sensor data, and method for the same
CN117629549A (en) Bridge building health monitoring and safety early warning system
WO2023163524A1 (en) System for preventing major disaster due to building resilience collapse and method using same
CN115830757B (en) Display equipment performance monitoring system and method based on big data
CN109900328A (en) A kind of safety device of Hydropower Unit confined space personnel disengaging and environmental surveillance
KR102579897B1 (en) Disaster Prevention System According to Building Resilience Destruction and Method Using the Same
CN114739448A (en) Data processing method, system, device and storage medium
KR102058382B1 (en) Method for monitoring damage to structures and system for thereof
KR102206502B1 (en) Rapid structural dynamic stability assessment system and method
JPH07129870A (en) Gas leak detecting device of gas insulation opening and closing device
CN115659243B (en) Infrastructure risk monitoring method and monitoring system based on MEMS
US11756411B1 (en) System and method for remote inspection of equipment mechanical dial gauge readings, electrical termination and bushing condition monitoring
Xiaoling et al. Anomaly Detection Algorithm for Stay Cable Monitoring Data Based on Data Fusion [J]
Shan et al. Intelligent Health Monitoring System for a Railway Cable-Stayed Bridge
KR102521212B1 (en) Partial discharge signal generator for underground online partial discharge diagnosis and test system and control method thereof
KR101848642B1 (en) System for monitoring of railway station
Yau et al. Improving bridge collapse detection and on-site emergency alarms: A case study in Taiwan
JPH06174776A (en) Fault section locator for transmission line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760398

Country of ref document: EP

Kind code of ref document: A1