WO2023163369A1 - Method for preparing nano calcium citrate - Google Patents

Method for preparing nano calcium citrate Download PDF

Info

Publication number
WO2023163369A1
WO2023163369A1 PCT/KR2023/000341 KR2023000341W WO2023163369A1 WO 2023163369 A1 WO2023163369 A1 WO 2023163369A1 KR 2023000341 W KR2023000341 W KR 2023000341W WO 2023163369 A1 WO2023163369 A1 WO 2023163369A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium citrate
nano
calcium
citrate
citric acid
Prior art date
Application number
PCT/KR2023/000341
Other languages
French (fr)
Korean (ko)
Inventor
박정규
박종실
Original Assignee
(주)피엠아이바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엠아이바이오텍 filed Critical (주)피엠아이바이오텍
Publication of WO2023163369A1 publication Critical patent/WO2023163369A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid

Definitions

  • the present invention relates to a method for preparing nano calcium citrate.
  • Calcium is one of the essential minerals for the composition and activities of various organisms. In the case of animals, it is not only a component necessary for the composition and production of bones and blood, but also plays a role in transmitting information to the heart or brain. In plants, calcium is an important element for meristem growth and root development. Calcium is an element that plays an important role in maintaining the life activity of animals and plants, and is used for various purposes such as health functional foods and food additives. In particular, active research and application of calcium ions as raw materials for various food additives and health functional foods are currently being conducted.
  • the dissolution rate of calcium must be fast and its ionization degree must be high.
  • various types of calcium compounds are used, such as calcium carbonate, calcium citrate, calcium gluconate, calcium lactate, calcium phosphate, calcium hydroxide, and calcium sulfate.
  • calcium citrate is commonly known as tricalcium citrate (TCC), and has a calcium content of 21% or more and is widely used in food additives and health functional foods at an affordable price, so the manufacturing method is of great interest. there is.
  • tricalcium citrate (TCC) has a solubility as low as 0.85 g/L at 20° C., which limits its use. Research is being actively conducted to supplement the problem of low solubility.
  • Korean Patent Registration No. 10-2063807 discloses a method for producing high ionized calcium using an ultrasonic synthesis method, specifically mixing at least one selected from the group consisting of calcium carbonate and calcium oxide in a solvent and irradiating with ultrasonic waves. pre-processing; forming a mixture by mixing an organic acid with the solution of the above step; A method for increasing the solubility of an organic acid calcium salt has been disclosed as a method for preparing an organic acid calcium salt comprising: and irradiating ultrasonic waves to a mixture formed by mixing the organic acid.
  • the present inventors prepared calcium citrate through calcium carbonate and citric acid using ultrasonic waves, adding calcium carbonate to a solution in which citric acid was dissolved and simultaneously irradiating ultrasonic waves to obtain significantly higher solubility. And it was confirmed that nano-sized calcium citrate having a degree of dispersion could be prepared, and the present invention was completed.
  • step 1 dissolving citric acid in solvents of ethanol and water
  • a method for producing nano-calcium citrate comprising: mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano-calcium citrate (step 2).
  • Step 2 is preferably performed by irradiating ultrasonic waves while mixing calcium carbonate with the solution formed in step 1.
  • the ultrasound may be irradiated with an intensity of 2 kHz to 200 kHz.
  • the ultrasound may be irradiated for 5 to 20 minutes.
  • the solvent includes 0.1 to 3 times the weight of ethanol as water, nano calcium citrate manufacturing method.
  • the mixing in step 2 may be mixing citric acid in a molar ratio of 0.8 to 5 with respect to calcium carbonate.
  • step 1 may be a step of dissolving citric acid by mixing it with a solvent of ethanol and water and irradiating ultrasonic waves.
  • the ultrasonic wave may be irradiated with an intensity of preferably 1 kHz to 100 kHz.
  • ultrasonic waves may be irradiated for 1 to 10 minutes.
  • the method for preparing nano calcium citrate prepares nano calcium citrate having an average particle size of 50 mn to 500 nm.
  • step 3 It may further include a step of washing and drying the nano calcium citrate prepared in step 2 (step 3).
  • the washing may be performed by centrifugation or filtration.
  • the drying may be performed at a temperature of 30 °C to 150 °C.
  • the calcium carbonate may be shell-derived calcium carbonate.
  • the citric acid may be hydrous citric acid or anhydrous citric acid.
  • the method for producing nano-calcium citrate produces tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
  • the method for preparing nano-calcium citrate according to one aspect has an effect of easily preparing nano-calcium citrate having high solubility and dispersibility at low cost and within a short time.
  • FIG. 1 is a schematic diagram of a manufacturing process for a method for manufacturing nano-calcium citrate according to an aspect
  • Figure 2 is a graph showing the particle size distribution of calcium citrate prepared according to a comparative example
  • Figure 3 is a graph showing the particle size distribution of calcium citrate prepared according to the embodiment
  • Figure 4 is a photograph comparing the solubility of calcium citrate prepared according to one embodiment and a comparative example.
  • step 1 dissolving citric acid in solvents of ethanol and water
  • a method for producing nano-calcium citrate comprising: mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano-calcium citrate (step 2).
  • One aspect relates to a method for producing nano calcium citrate having high solubility and dispersibility.
  • FIG. 1 is a schematic diagram of a manufacturing process for a method for manufacturing nano-calcium citrate according to an aspect.
  • the method for preparing nano calcium citrate according to an embodiment includes dissolving citric acid in a solvent of ethanol and water (step 1).
  • Step 1 is a step of dissolving citric acid in solvents of ethanol and water.
  • the solvent includes ethanol in an amount of 0.1 to 3 times the weight of water, and it may be more preferable to include 0.3 to 1 times the weight of water.
  • ethanol is included in an amount less than 0.1 times that of water, so it takes a long time for calcium citrate to precipitate, and also the aggregation between calcium citrate particles causes particles The size increases, and ultimately, calcium citrate with low solubility can be obtained.
  • ethanol is included in an amount three times or more that of water, calcium carbonate is dissolved in the subsequent mixing step with calcium carbonate, and nucleation in which calcium citrate is formed by reaction with citric acid in a calcium ion state is too fast, and this is also citric acid. It can cause aggregation between calcium particles. Accordingly, in this case, the particle size of the calcium citrate produced also increases, ultimately obtaining calcium citrate with low solubility, and there may be a problem in economics due to the use of excessive ethanol.
  • the citric acid may be mixed with the solvent in a ratio of at least 0.8 moles or more, preferably 0.8 to 5 moles, based on 1 mole of calcium carbonate.
  • citric acid is added in an amount of less than 0.8 mol relative to 1 mol of calcium carbonate, the amount of citric acid dissolved in the mixed solution is low, causing a problem in that all calcium carbonate is not dissolved or calcium citrate with low solubility is generated.
  • amount of citric acid exceeds 5 moles relative to 1 mole of calcium carbonate, citric acid that does not participate in the reaction is excessively used, which may cause a problem of lowering economic feasibility.
  • step 1 may be performed by mixing citric acid with solvents of ethanol and water and dissolving by irradiating ultrasonic waves.
  • the ultrasound may be irradiated with an intensity of 1 kHz to 100 kHz, preferably for 1 minute to 10 minutes.
  • dissolution of citric acid can be achieved more quickly by irradiating ultrasonic waves in step 1.
  • step 2 mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano calcium citrate (step 2).
  • Step 2 is a step for preparing nano calcium citrate by mixing calcium carbonate with a solution in which citric acid is dissolved.
  • the mixture so that the citric acid is mixed in a ratio of at least 0.8 moles or more, preferably 0.8 to 5 moles, relative to 1 mole of calcium carbonate.
  • ultrasonic waves may be irradiated while mixing calcium carbonate with the solution formed in step 1. Accordingly, ultrasonic waves may be irradiated at the same time as mixing with calcium carbonate, and ultrasonic waves may be further irradiated to the mixture formed by the mixing.
  • the particle size of the calcium citrate prepared by adding calcium carbonate to a solution in which citric acid is dissolved and simultaneously irradiating ultrasonic waves can be reduced to a nano-size. Accordingly, nano calcium citrate having high solubility and dispersibility can be prepared.
  • the ultrasound may be irradiated with an intensity of 2 kHz to 200 kHz, and may be irradiated for 5 minutes to 20 minutes.
  • the ultrasound may be irradiated at an intensity of 2 kHz to 200 kHz within a time range of 5 minutes to 12 hours, preferably at an intensity of 15 kHz to 25 kHz within a time range of 5 minutes to 1 hour, and more preferably It may be irradiated within a time range of 5 minutes to 15 minutes at an intensity of 15 kHz to 25 kHz.
  • step 2 when ultrasonic waves are irradiated at an intensity of less than 2 kHz, there is a problem in that nano calcium citrate having an average particle size of 50 mn to 500 nm is not produced because the ultrasonic irradiation is not sufficiently performed, and at an intensity of more than 200 kHz
  • nano calcium citrate having an average particle size of 50 mn to 500 nm is not produced.
  • step 3 of obtaining nano calcium citrate powder by washing and drying the nano calcium citrate prepared in step 2.
  • the step 3 is a step of washing and drying the nano calcium citrate present in the reaction solution after performing the step 2.
  • the washing may be performed by centrifuging or filtering the nano-calcium citrate present in the reaction solution, washing with ethanol, and centrifuging or filtering three or more times.
  • the temperature for the drying is not particularly limited, but may be carried out at 30 ° C to 150 ° C, preferably 50 ° C to 120 ° C, 50 ° C to 100 ° C, and the most Preferably it can be carried out at a temperature of 80 °C.
  • the time for the drying is not particularly limited, but may be performed for 1 hour to 20 hours, preferably 3 hours to 18 hours, and more preferably 4 hours to 10 hours. And, most preferably, it can be performed for 5 hours.
  • Calcium carbonate used in the nanocalcium citrate manufacturing method according to an embodiment may be shell-derived calcium carbonate, and the shell-derived calcium carbonate means powdered shells such as oysters, cockles, and clams after removing foreign substances.
  • Citric acid used in the method for preparing nano-calcium citrate according to an embodiment may be hydrous citric acid or anhydrous citric acid, but preferably may be anhydrous citric acid.
  • the method for producing nano-calcium citrate is a method for producing nano-calcium citrate, specifically, tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
  • calcium citrate is produced more quickly by dissolving citric acid in water and ethanol and mixing with calcium carbonate, and at the same time, ethanol is formed on the surface of calcium citrate crystals by hydrogen bonding between COO - and OH - By being adsorbed on the calcium citrate, it is possible to prevent the growth of calcium citrate particles, thereby suppressing the growth of the particles.
  • nano calcium citrate of 50 nm to 500 nm having remarkably high solubility and dispersibility can be prepared by irradiating ultrasonic waves simultaneously with mixing with calcium carbonate.
  • nano-calcium citrate prepared according to one aspect increases the ionization concentration of calcium and dissolves well in water, absorption of calcium can be further improved.
  • Step 1 Dissolve 1.17 mol of citric acid in a container containing 400 mL of distilled water and 200 mL of ethanol.
  • Step 2 While adding 1 mol of calcium carbonate to the container, ultrasonic wave at 20 kHz (50%) intensity was irradiated for 10 minutes.
  • nano calcium citrate is formed by pulverization by irradiated ultrasonic waves.
  • the mixed solution prepared with the nano-calcium citrate was centrifuged or filtered to separate the nano-calcium citrate and the solution, wash the separated nano-calcium citrate three or more times, and wash the nano-calcium citrate at 80° C. for 5 hours. It was dried to obtain nano calcium citrate powder.
  • Step 1 Dissolve calcium carbonate in a container containing 400 mL distilled water and 200 mL ethanol.
  • Step 2 1.17 mol of citric acid was added to the container, and ultrasonic waves at an intensity of 20 kHz (50%) were irradiated to the mixed solution.
  • the calcium citrate-prepared mixed solution is centrifuged or filtered to separate the calcium citrate and the solution, wash the separated calcium citrate three or more times, and dry the washed calcium citrate at 80° C. for 5 hours to obtain calcium citrate powder was obtained.
  • Formula 1 shows the structure of tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
  • the nano-calcium citrate prepared in Example 1 corresponds to the Ca, C, and H content of the structure of tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ) can confirm.
  • the nano-calcium citrate prepared in Example 1 is tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
  • Example 1 in which ultrasonic waves were irradiated while adding calcium carbonate to a solution in which citric acid was dissolved, was more pulverized in the process of preparing calcium citrate, resulting in calcium citrate having a uniform nano-size of 50 nm to 500 nm. It can be confirmed that this was produced.
  • the calcium citrate of Comparative Example 1 has a solubility of 0.85 g/L or less under the same conditions, whereas the method for preparing nano-calcium citrate according to one aspect has a solubility of 5 g/L or more, which is 5 times greater than that of the calcium citrate of Comparative Example 1. It can be confirmed that the above nano-calcium citrate having a remarkably high solubility can be prepared in a very short time of about 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a method for preparing nano calcium citrate and, specifically, to a method for preparing nano calcium citrate, comprising the steps of: dissolving citric acid in a solvent of ethanol and water (step 1); and mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves so as to prepare nano calcium citrate (step 2).

Description

나노 구연산칼슘의 제조방법Manufacturing method of nano calcium citrate
본 발명은 나노 구연산칼슘의 제조방법에 관한 것이다.The present invention relates to a method for preparing nano calcium citrate.
칼슘은 각종 생명체의 구성과 활동에 필수적인 미네랄 성분 중 하나이다. 동물의 경우 뼈와 혈액의 조성 및 생성에 필요한 성분일 뿐만 아니라 심장이나 뇌의 정보전달의 기능을 담당한다. 식물에 있어서 칼슘은 분열 조직의 생장 및 뿌리 발육에 중요한 요소이다. 칼슘은 동식물의 생명체 활성 유지에 중요한 역할을 하는 요소로서, 건강기능 식품이나 식품첨가물 등 다양한 용도로 사용되고 있다. 특히 현재 칼슘이온을 이용한 다양한 식품첨가물과 건강기능식품의 원료로서의 응용과 연구가 활발하게 이루어지고 있다. Calcium is one of the essential minerals for the composition and activities of various organisms. In the case of animals, it is not only a component necessary for the composition and production of bones and blood, but also plays a role in transmitting information to the heart or brain. In plants, calcium is an important element for meristem growth and root development. Calcium is an element that plays an important role in maintaining the life activity of animals and plants, and is used for various purposes such as health functional foods and food additives. In particular, active research and application of calcium ions as raw materials for various food additives and health functional foods are currently being conducted.
다양한 용도에 적합하게 사용되기 위해서는 칼슘의 용해 속도가 빠르고 그 이온화도가 높아야 한다. 현재 다양한 형태의 칼슘화합물이 사용되고 있는데, 탄산칼슘, 구연산칼슘, 글루콘산칼슘, 젖산칼슘, 인산칼슘, 수산화칼슘, 황산칼슘 등이 사용되고 있다. 그 중에 구연산칼슘은 보통 트리칼슘싸이트레이트(Tricalcium Citrate, TCC))로 알려져있으며, 칼슘의 함량이 21% 이상이고 저렴한 가격으로 식품첨가물이나 건강기능식품 등에 많이 사용되고 있어 그 제조방법에 많은 관심을 가지고 있다. 또한 트리칼슘싸이트레이트(Tricalcium Citrate, TCC))는 용해도가 20℃에서 0.85g/L로 낮아서 그 용도에 한계성을 가지고 있다. 낮은 용해도의 문제점을 보완하기 위한 연구가 활발히 이루어지고 있다.In order to be suitably used for various purposes, the dissolution rate of calcium must be fast and its ionization degree must be high. Currently, various types of calcium compounds are used, such as calcium carbonate, calcium citrate, calcium gluconate, calcium lactate, calcium phosphate, calcium hydroxide, and calcium sulfate. Among them, calcium citrate is commonly known as tricalcium citrate (TCC), and has a calcium content of 21% or more and is widely used in food additives and health functional foods at an affordable price, so the manufacturing method is of great interest. there is. In addition, tricalcium citrate (TCC) has a solubility as low as 0.85 g/L at 20° C., which limits its use. Research is being actively conducted to supplement the problem of low solubility.
이와 관련하여, 대한민국 등록특허 제10-2063807호에서는 초음파합성법을 이용한 고이온화 칼슘의 제조방법으로서, 구체적으로 탄산칼슘 및 산화칼슘으로 이루어지는 군으로부터 선택되는 1종 이상을 용매에 혼합하여 초음파 조사를 하여 전처리하는 단계; 상기 단계의 용액에 유기산을 혼합하여 혼합물을 형성하는 단계; 및 상기 유기산을 혼합하여 형성된 혼합물에 초음파를 조사하는 단계;를 포함하는 유기산 칼슘염의 제조방법으로 유기산 칼슘염의 용해도를 높이는 방법을 개시한 바 있다. In this regard, Korean Patent Registration No. 10-2063807 discloses a method for producing high ionized calcium using an ultrasonic synthesis method, specifically mixing at least one selected from the group consisting of calcium carbonate and calcium oxide in a solvent and irradiating with ultrasonic waves. pre-processing; forming a mixture by mixing an organic acid with the solution of the above step; A method for increasing the solubility of an organic acid calcium salt has been disclosed as a method for preparing an organic acid calcium salt comprising: and irradiating ultrasonic waves to a mixture formed by mixing the organic acid.
본 발명자들은 보다 높은 용해도를 갖는 구연산칼슘을 제조하기 위하여, 초음파를 이용하여 탄산칼슘 및 구연산을 통해 구연산칼슘을 제조하되, 구연산이 용해된 용액에 탄산칼슘을 첨가하는 동시에 초음파를 조사함으로써 현저히 높은 용해도 및 분산도를 갖는 나노크기의 구연산칼슘을 제조할 수 있음을 확인하고 본 발명을 완성하였다.In order to prepare calcium citrate having a higher solubility, the present inventors prepared calcium citrate through calcium carbonate and citric acid using ultrasonic waves, adding calcium carbonate to a solution in which citric acid was dissolved and simultaneously irradiating ultrasonic waves to obtain significantly higher solubility. And it was confirmed that nano-sized calcium citrate having a degree of dispersion could be prepared, and the present invention was completed.
일 측면에서의 목적은The purpose of one aspect is
나노 구연산칼슘의 제조방법을 제공하는 데 있다.It is to provide a method for producing nano calcium citrate.
상기 목적을 달성하기 위하여,In order to achieve the above purpose,
일 측면에서는,On one side,
구연산을 에탄올 및 물의 용매에 용해시키는 단계(단계 1); 및dissolving citric acid in solvents of ethanol and water (step 1); and
상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하고 초음파를 조사하여 나노 구연산칼슘을 제조하는 단계(단계 2);를 포함하는, 나노 구연산칼슘 제조방법이 제공된다.A method for producing nano-calcium citrate is provided, comprising: mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano-calcium citrate (step 2).
상기 단계 2는 바람직하게는 상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하면서 초음파를 조사하는 방법으로 수행된다. Step 2 is preferably performed by irradiating ultrasonic waves while mixing calcium carbonate with the solution formed in step 1.
또한, 상기 단계 2에서 상기 초음파는 2kHz 내지 200kHz의 강도로 조사될 수 있다.In addition, in the step 2, the ultrasound may be irradiated with an intensity of 2 kHz to 200 kHz.
또한, 상기 단계 2에서 상기 초음파는 5분 내지 20분 동안 조사될 수 있다.In addition, in step 2, the ultrasound may be irradiated for 5 to 20 minutes.
또한, 상기 용매는 에탄올을 물의 0.1 내지 3배 중량으로 포함하는, 나노 구연산칼슘 제조방법.In addition, the solvent includes 0.1 to 3 times the weight of ethanol as water, nano calcium citrate manufacturing method.
또한, 상기 단계 2에서의 혼합은 구연산을 탄산칼슘 대비 0.8 내지 5몰비로 혼합하는 것일 수 있다.In addition, the mixing in step 2 may be mixing citric acid in a molar ratio of 0.8 to 5 with respect to calcium carbonate.
또한, 상기 단계 1은 구연산을 에탄올 및 물의 용매와 혼합하고 초음파를 조사하여 용해시키는 단계일 수 있다.In addition, step 1 may be a step of dissolving citric acid by mixing it with a solvent of ethanol and water and irradiating ultrasonic waves.
이때 상기 단계 1에서 초음파는 바람직하게는 1kHz 내지 100kHz의 강도로 조사될 수 있다.At this time, in step 1, the ultrasonic wave may be irradiated with an intensity of preferably 1 kHz to 100 kHz.
또한, 상기 단계 1에서 초음파는 바람직하게는 1분 내지 10분 동안 조사될 수 있다.In addition, in step 1, ultrasonic waves may be irradiated for 1 to 10 minutes.
상기 나노 구연산칼슘 제조방법은 평균 입자 크기가 50 mn 내지 500 nm인 나노 구연산칼슘을 제조한다.The method for preparing nano calcium citrate prepares nano calcium citrate having an average particle size of 50 mn to 500 nm.
상기 나노 구연산칼슘 제조방법은The nano calcium citrate manufacturing method
상기 단계 2에서 제조된 나노 구연산칼슘을 세척 및 건조하는 단계(단계 3);를 더 포함할 수 있다.It may further include a step of washing and drying the nano calcium citrate prepared in step 2 (step 3).
이때 상기 세척은 원심분리 또는 여과 방법으로 수행될 수 있다.At this time, the washing may be performed by centrifugation or filtration.
또한, 상기 건조는 30 ℃ 내지 150 ℃의 온도에서 수행될 수 있다.In addition, the drying may be performed at a temperature of 30 ℃ to 150 ℃.
상기 탄산칼슘은 패각 유래 탄산칼슘일 수 있다.The calcium carbonate may be shell-derived calcium carbonate.
또한, 상기 구연산은 함수 구연산 또는 무수 구연산일 수 있다.Also, the citric acid may be hydrous citric acid or anhydrous citric acid.
또한, 상기 나노 구연산칼슘 제조방법은 트리칼슘싸이트레이트(Ca3(C6H5O7)2)을 제조한다.In addition, the method for producing nano-calcium citrate produces tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
일 측면에 따른 나노 구연산칼슘의 제조방법은 높은 용해도 및 분산성을 갖는 나노 구연산칼슘을 저비용 및 짧은 시간 내에 용이하게 제조할 수 있는 효과를 갖는다.The method for preparing nano-calcium citrate according to one aspect has an effect of easily preparing nano-calcium citrate having high solubility and dispersibility at low cost and within a short time.
도 1은 일 측면에 따른 나노 구연산칼슘의 제조방법에 대한 제조공정 모식도이고, 1 is a schematic diagram of a manufacturing process for a method for manufacturing nano-calcium citrate according to an aspect;
도 2는 비교 예에 따라 제조된 구연산칼슘의 입도 분포를 나타낸 그래프이고,Figure 2 is a graph showing the particle size distribution of calcium citrate prepared according to a comparative example,
도 3은 실시 예에 따라 제조된 구연산칼슘의 입도 분포를 나타낸 그래프이고,Figure 3 is a graph showing the particle size distribution of calcium citrate prepared according to the embodiment,
도 4는 일 실시 예 및 비교 예에 따라 제조된 구연산칼슘의 용해도를 비교한 사진이다.Figure 4 is a photograph comparing the solubility of calcium citrate prepared according to one embodiment and a comparative example.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다. 그러나 본 발명의 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하에서 설명하는 실시 예로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below.
일 측면에서는,On one side,
구연산을 에탄올 및 물의 용매에 용해시키는 단계(단계 1); 및dissolving citric acid in solvents of ethanol and water (step 1); and
상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하고 초음파를 조사하여 나노 구연산칼슘을 제조하는 단계(단계 2);를 포함하는, 나노 구연산칼슘 제조방법이 제공된다.A method for producing nano-calcium citrate is provided, comprising: mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano-calcium citrate (step 2).
일 측면은 높은 용해도 및 분산성을 갖는 나노 구연산칼슘의 제조방법에 관한 것이다.One aspect relates to a method for producing nano calcium citrate having high solubility and dispersibility.
이하, 일 실시 예에 따른 나노 구연산칼슘 제조방법을 도면을 참조하여 각 단계별로 상세히 설명한다.Hereinafter, a method for manufacturing nano calcium citrate according to an embodiment will be described in detail for each step with reference to the drawings.
도 1은 일 측면에 따른 나노 구연산칼슘의 제조방법에 대한 제조공정 모식도이다.1 is a schematic diagram of a manufacturing process for a method for manufacturing nano-calcium citrate according to an aspect.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 구연산을 에탄올 및 물의 용매에 용해시키는 단계(단계 1)를 포함한다.The method for preparing nano calcium citrate according to an embodiment includes dissolving citric acid in a solvent of ethanol and water (step 1).
상기 단계 1은 구연산을 에탄올 및 물의 용매에 용해시키는 단계이다. Step 1 is a step of dissolving citric acid in solvents of ethanol and water.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 용매로서 물 및 에탄올을 사용함으로써 높은 용해도 및 분산성을 갖는 나노 구연산칼슘을 제조하는데 있어, 구연산칼슘의 핵성장을 방해하여 입자가 커지는 것을 방지할 수 있다.In the method for preparing nano calcium citrate according to an embodiment, in preparing nano calcium citrate having high solubility and dispersibility by using water and ethanol as solvents, it is possible to prevent the growth of particles by interfering with the growth of nuclei of calcium citrate. .
이때 상기 용매는 에탄올을 물의 0.1 내지 3배 중량으로 포함하는 것이 바람직하며, 0.3 내지 1배 중량으로 포함하는 것이 보다 바람직할 수 있다. At this time, it is preferable that the solvent includes ethanol in an amount of 0.1 to 3 times the weight of water, and it may be more preferable to include 0.3 to 1 times the weight of water.
만약, 에탄올을 물의 0.1배 이하의 중량으로 포함할 경우, 이후 구연산칼슘이 제조되는 단계에서 구연산칼슘의 핵생성이 늦어져 구연산칼슘이 석출되는데 오랜 시간이 소요되고 또한 구연산칼슘 입자들간의 응집으로 입자 크기가 커져 궁극적으로 용해도가 낮은 구연산칼슘을 얻게 될 수 있다. 또한, 에탄올을 물의 3배 이상의 중량으로 포함할 경우, 이후 탄산칼슘과 혼합하는 단계에서 탄산칼슘이 용해되어 칼슘 이온 상태에서 구연산과의 반응에 의해 구연산칼슘이 형성되는 핵생성이 너무 빨라져 이또한 구연산칼슘 입자간의 응집을 유발할 수 있다. 이에 이 경우 또한 제조되는 구연산칼슘 입 자 크기가 커져 궁극적으로 용해도가 낮은 구연산칼슘이 얻어지게 되고 또한 과량의 에탄올 사용으로 경제성에 문제점이 있을 수 있다.If ethanol is included in an amount less than 0.1 times that of water, the nucleation of calcium citrate is delayed in the subsequent step of preparing calcium citrate, so it takes a long time for calcium citrate to precipitate, and also the aggregation between calcium citrate particles causes particles The size increases, and ultimately, calcium citrate with low solubility can be obtained. In addition, when ethanol is included in an amount three times or more that of water, calcium carbonate is dissolved in the subsequent mixing step with calcium carbonate, and nucleation in which calcium citrate is formed by reaction with citric acid in a calcium ion state is too fast, and this is also citric acid. It can cause aggregation between calcium particles. Accordingly, in this case, the particle size of the calcium citrate produced also increases, ultimately obtaining calcium citrate with low solubility, and there may be a problem in economics due to the use of excessive ethanol.
또한, 상기 구연산은 탄산칼슘 1몰 대비 적어도 0.8몰 이상, 바람직하게는 0.8 내지 5몰비로 혼합되도록 상기 용매와 혼합될 수 있다.In addition, the citric acid may be mixed with the solvent in a ratio of at least 0.8 moles or more, preferably 0.8 to 5 moles, based on 1 mole of calcium carbonate.
만약, 상기 구연산이 탄산칼슘 1몰 대비 0.8몰 미만으로 첨가될 경우, 혼합 용액에 녹아있는 구연산의 양이 적어 탄산칼슘이 모두 용해되지 못하는 문제가 발생하거나 용해도가 낮은 구연산칼슘이 생성되는 문제가 발생할 수 있고, 구연산이 탄산칼슘 1몰 대비 5몰을 초과할 경우 반응에 참여하지 못하는 구연산이 과하게 사용되게 되어 경제성이 낮아지는 문제가 발생할 수 있다.If the citric acid is added in an amount of less than 0.8 mol relative to 1 mol of calcium carbonate, the amount of citric acid dissolved in the mixed solution is low, causing a problem in that all calcium carbonate is not dissolved or calcium citrate with low solubility is generated. When the amount of citric acid exceeds 5 moles relative to 1 mole of calcium carbonate, citric acid that does not participate in the reaction is excessively used, which may cause a problem of lowering economic feasibility.
또한, 상기 단계 1은 구연산을 에탄올 및 물의 용매와 혼합하고 초음파를 조사하여 용해시키는 방법으로 수행될 수 있다.In addition, step 1 may be performed by mixing citric acid with solvents of ethanol and water and dissolving by irradiating ultrasonic waves.
이때, 상기 단계 1에서 상기 초음파는 1kHz 내지 100kHz의 강도로 조사될 수 있고, 바람직하게는 1분 내지 10분 동안 조사될 수 있다.At this time, in the step 1, the ultrasound may be irradiated with an intensity of 1 kHz to 100 kHz, preferably for 1 minute to 10 minutes.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 상기 단계 1에서 초음파를 조사함으로써, 구연산의 용해를 보다 빠르게 달성할 수 있다.In the method for preparing nano calcium citrate according to an embodiment, dissolution of citric acid can be achieved more quickly by irradiating ultrasonic waves in step 1.
다음, 일 실시 예에 따른 나노 구연산칼슘 제조방법은Next, the method for producing nano calcium citrate according to an embodiment is
상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하고 초음파를 조사하여 나노 구연산칼슘을 제조하는 단계(단계 2)를 포함한다.and mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano calcium citrate (step 2).
상기 단계 2은 구연산이 용해된 용액에 탄산칼슘을 혼합하여 나노 구연산칼슘을 제조하기 위한 단계이다. Step 2 is a step for preparing nano calcium citrate by mixing calcium carbonate with a solution in which citric acid is dissolved.
이때 상기 혼합은 탄산칼슘 1몰 대비 구연산이 적어도 0.8몰 이상, 바람직하게는 0.8 내지 5몰비로 혼합되도록 혼합하는 것이 바람직하다. At this time, it is preferable to mix the mixture so that the citric acid is mixed in a ratio of at least 0.8 moles or more, preferably 0.8 to 5 moles, relative to 1 mole of calcium carbonate.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 바람직하게는 상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하면서 초음파를 조사할 수 있다. 이에 탄산칼슘과 혼합하는 동시에 초음파가 조사되고, 또한 상기 혼합으로 형성된 혼합물에 초음파가 더 조사될 수 있다.In the method for preparing nano-calcium citrate according to an embodiment, ultrasonic waves may be irradiated while mixing calcium carbonate with the solution formed in step 1. Accordingly, ultrasonic waves may be irradiated at the same time as mixing with calcium carbonate, and ultrasonic waves may be further irradiated to the mixture formed by the mixing.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 구연산이 용해된 용액에 탄산칼슘을 투입하는 동시에 초음파를 조사함으로써 제조되는 구연산칼슘의 입자 크기를 나노 크기로 줄일 수 있다. 이에 높은 용해도 및 분산성을 갖는 나노 구연산칼슘을 제조할 수 있다.In the method for producing nano-calcium citrate according to an embodiment, the particle size of the calcium citrate prepared by adding calcium carbonate to a solution in which citric acid is dissolved and simultaneously irradiating ultrasonic waves can be reduced to a nano-size. Accordingly, nano calcium citrate having high solubility and dispersibility can be prepared.
이때 상기 단계 2에서 초음파는 2kHz 내지 200kHz의 강도로 조사될 수 있 수 있고, 5분 내지 20분 동안 조사될 수 있다.At this time, in step 2, the ultrasound may be irradiated with an intensity of 2 kHz to 200 kHz, and may be irradiated for 5 minutes to 20 minutes.
이에 상기 초음파는 2kHz 내지 200kHz 강도로 5분-12시간의 시간범위 내에서 조사될 수 있고, 바람직하게는 15kHz 내지 25kHz의 강도로 5분 내지 1시간의 시간범위 내에서 조사할 수 있으며, 더욱 바람직하게는 15kHz 내지 25kHz의 강도로 5분분 내지 15분의 시간범위 내에서 조사될 수 있다.Accordingly, the ultrasound may be irradiated at an intensity of 2 kHz to 200 kHz within a time range of 5 minutes to 12 hours, preferably at an intensity of 15 kHz to 25 kHz within a time range of 5 minutes to 1 hour, and more preferably It may be irradiated within a time range of 5 minutes to 15 minutes at an intensity of 15 kHz to 25 kHz.
만약, 상기 단계 2에서 초음파가 2kHz미만의 강도로 조사될 경우, 초음파 조사가 충분히 이루어지지 않아 평균 입자 크기가 50 mn 내지 500 nm인 나노 구연산칼슘이 제조되지 않는 문제점이 있고, 200kHz 초과의 강도로 조사될 경우, 초음파 조사에 의한 열 때문에 구연산칼슘이 응집되어 집합체를 형성하므로 이또한 평균 입자 크기가 50 mn 내지 500 nm인 나노 구연산칼슘이 제조되지 않는 문제가 발생할 수 있다.If, in step 2, when ultrasonic waves are irradiated at an intensity of less than 2 kHz, there is a problem in that nano calcium citrate having an average particle size of 50 mn to 500 nm is not produced because the ultrasonic irradiation is not sufficiently performed, and at an intensity of more than 200 kHz When irradiated, since calcium citrate aggregates due to the heat caused by ultrasonic irradiation to form an aggregate, this may also cause a problem in that nano calcium citrate having an average particle size of 50 mn to 500 nm is not produced.
한편, 일 실시 예에 따른 나노 구연산칼슘 제조방법은On the other hand, the method for producing nano calcium citrate according to an embodiment is
상기 단계 2에서 제조된 나노 구연산칼슘을 세척 및 건조하여 나노 구연산칼슘분말을 얻는 단계(단계 3);를 더 포함할 수 있다.It may further include a step (step 3) of obtaining nano calcium citrate powder by washing and drying the nano calcium citrate prepared in step 2.
상기 단계 3은 상기 단계 2를 수행한 후 반응용액 내에 존재하는 나노 구연산칼슘을 세척 및 건조하는 단계이다.The step 3 is a step of washing and drying the nano calcium citrate present in the reaction solution after performing the step 2.
구체적으로, 상기 세척은 반응용액 내에 존재하는 나노 구연산칼슘을 원심분리 또는 여과에 의하여 분리하고, 에탄올을 이용하여 세척한 후 원심분리 또는 여과를 3회 이상 수행하는 방법으로 수행할 수 있다.Specifically, the washing may be performed by centrifuging or filtering the nano-calcium citrate present in the reaction solution, washing with ethanol, and centrifuging or filtering three or more times.
또한, 상기 건조를 위한 온도는 특별히 제한된 것은 아니나, 30℃ 내지 150℃에서 수행할 수 있고, 바람직하게는 50℃ 내지 120℃에서 수행할 수 있고, 50℃ 내지 100℃에서 수행할 수 있고, 가장 바람직하게는 80℃의 온도에서 수행할 수 있다.In addition, the temperature for the drying is not particularly limited, but may be carried out at 30 ° C to 150 ° C, preferably 50 ° C to 120 ° C, 50 ° C to 100 ° C, and the most Preferably it can be carried out at a temperature of 80 ℃.
또한 상기 건조를 위한 시간은 특별히 제한된 것은 아니나, 1시간 내지 20시간 동안 수행할 수 있고, 바람직하게는 3시간 내지 18시간동안 수행할 수 있고, 더욱 바람직하게는 4시간 내지 10시간 동안 수행할 수 있고, 가장 바람직하게는 5시간 동안 수행할 수 있다.In addition, the time for the drying is not particularly limited, but may be performed for 1 hour to 20 hours, preferably 3 hours to 18 hours, and more preferably 4 hours to 10 hours. And, most preferably, it can be performed for 5 hours.
일 실시 예에 따른 나노 구연산칼슘 제조방법에서 사용하는 탄산칼슘은 패각 유래 탄산칼슘일 수 있으며, 상기 패각 유래 탄산칼슘은 굴, 꼬막, 바지락 등의 패각을 이물질 제거 후 분말화한 것을 의미한다.Calcium carbonate used in the nanocalcium citrate manufacturing method according to an embodiment may be shell-derived calcium carbonate, and the shell-derived calcium carbonate means powdered shells such as oysters, cockles, and clams after removing foreign substances.
일 실시 예에 따른 나노 구연산칼슘 제조방법에서 사용하는 구연산은 함수 구연산 또는 무수 구연산일 수 있으나 바람직하게는 무수 구연산일 수 있다.Citric acid used in the method for preparing nano-calcium citrate according to an embodiment may be hydrous citric acid or anhydrous citric acid, but preferably may be anhydrous citric acid.
일 실시 예에 따른 나노 구연산칼슘 제조방법은 나노 구연산칼슘을 제조하는 방법으로 구체적으로는 50 nm 내지 500 nm, 바람직하게는 50 nm 내지 200 nm의 나노크기를 갖는 트리칼슘싸이트레이트(Ca3(C6H5O7)2)를 제조하는 방법이다.The method for producing nano-calcium citrate according to an embodiment is a method for producing nano-calcium citrate, specifically, tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
일 측면에 따른 나노 구연산칼슘의 제조방법은 구연산을 물 및 에탄올에 용해시키고 탄산칼슘과 혼합함으로써 구연산칼슘을 보다 빨리 생성시키고, 동시에 COO-와 OH-의 수소결합에 의해 에탄올이 구연산칼슘 결정의 표면에 흡착됨으로써 구연산칼슘 입자가 성장하는 것을 방지하여 입자가 커지는 것을 억제할 수 있다.In the method for producing nano calcium citrate according to one aspect, calcium citrate is produced more quickly by dissolving citric acid in water and ethanol and mixing with calcium carbonate, and at the same time, ethanol is formed on the surface of calcium citrate crystals by hydrogen bonding between COO - and OH - By being adsorbed on the calcium citrate, it is possible to prevent the growth of calcium citrate particles, thereby suppressing the growth of the particles.
또한, 탄산칼슘과의 혼합과 동시에 초음파를 조사함으로써 용해도 및 분산성이 현저히 높은 50 nm 내지 500 nm의 나노 구연산칼슘을 제조할 수 있다.In addition, nano calcium citrate of 50 nm to 500 nm having remarkably high solubility and dispersibility can be prepared by irradiating ultrasonic waves simultaneously with mixing with calcium carbonate.
일 측면에 따라 제조된 나노 구연산칼슘은 칼슘의 이온화 농도를 증가시키고 물에 용해가 잘되므로 칼슘의 흡수를 더욱 향상시킬 수 있다. Since the nano-calcium citrate prepared according to one aspect increases the ionization concentration of calcium and dissolves well in water, absorption of calcium can be further improved.
이하 실시 예 및 실험 예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이하의 실시 예 및 실험 예는 본 발명의 설명을 위한 예일 뿐, 본 발명의 권리 범위가 이에 한정되는 것은 아니다.The present invention will be described in more detail through examples and experimental examples below. However, the following examples and experimental examples are only examples for explanation of the present invention, and the scope of the present invention is not limited thereto.
<실시 예 1> 나노 구연산칼슘의 제조<Example 1> Preparation of nano calcium citrate
단계 1: 구연산 1.17 mol을 400 mL 증류수와 200 mL 에탄올이 들어있는 용기에 넣고 용해시킨다.Step 1: Dissolve 1.17 mol of citric acid in a container containing 400 mL of distilled water and 200 mL of ethanol.
단계 2: 용기에 탄산칼슘 1 mol을 넣으면서 10분간 20kHz(50%)강도의 초음파를 조사하였다.Step 2: While adding 1 mol of calcium carbonate to the container, ultrasonic wave at 20 kHz (50%) intensity was irradiated for 10 minutes.
초음파를 조사함에 따라 뿌옇던 용액이 투명하게 변하고, 이후 바로 다시 뿌옇게 바뀌는 것을 관찰할 수 있었는데, 이것은 탄산칼슘이 용해되면서 칼슘이온 상태로 존재 되었다가 구연산과 반응하여 구연산칼슘으로 핵생성이 발생했다는 것을 의미한다. 또한 조사되는 초음파에 의해 분쇄가 일어나서 나노 구연산칼슘이 형성된다고 볼 수 있다. As the ultrasound was irradiated, it was observed that the cloudy solution changed to transparent, and then immediately turned cloudy again. it means. In addition, it can be seen that nano calcium citrate is formed by pulverization by irradiated ultrasonic waves.
상기 나노 구연산칼슘이 제조된 혼합 용액을 원심분리나 여과를 하여 나노 구연산칼슘과 용액을 분리하고, 분리된 나노 구연산칼슘을 3회 이상 반복하여 세척하고, 세척된 나노 구연산칼슘을 80℃에서 5시간 건조하여 나노 구연산칼슘분말을 얻었다.The mixed solution prepared with the nano-calcium citrate was centrifuged or filtered to separate the nano-calcium citrate and the solution, wash the separated nano-calcium citrate three or more times, and wash the nano-calcium citrate at 80° C. for 5 hours. It was dried to obtain nano calcium citrate powder.
<비교 예 1> 구연산칼슘의 제조<Comparative Example 1> Preparation of calcium citrate
단계 1: 탄산칼슘을 400 mL 증류수와 200 mL 에탄올이 들어있는 용기에 넣고 용해시킨다.Step 1: Dissolve calcium carbonate in a container containing 400 mL distilled water and 200 mL ethanol.
단계 2: 상기 용기에 구연산 1.17 mol을 넣고, 혼합 용액에 20kHz(50%)강도의 초음파를 조사하였다.Step 2: 1.17 mol of citric acid was added to the container, and ultrasonic waves at an intensity of 20 kHz (50%) were irradiated to the mixed solution.
상기 교반에 따라 뿌옇던 용액이 약간 투명하게 변하고, 이후 바로 다시 뿌옇게 바뀌는 것을 관찰할 수 있었는데, 이것은 구연산이 용해되었다가 탄산칼슘과 반응하여 구연산칼슘으로 핵생성이 발생했다는 것을 의미한다.According to the stirring, it was observed that the cloudy solution turned slightly transparent and then immediately turned cloudy again, which means that citric acid was dissolved and then reacted with calcium carbonate to generate nucleation with calcium citrate.
상기 구연산칼슘이 제조된 혼합 용액을 원심분리나 여과를 하여 구연산칼슘과 용액을 분리하고, 분리된 구연산칼슘을 3회 이상 반복하여 세척하고, 세척된 구연산칼슘을 80℃에서 5시간 건조하여 구연산칼슘분말을 얻었다.The calcium citrate-prepared mixed solution is centrifuged or filtered to separate the calcium citrate and the solution, wash the separated calcium citrate three or more times, and dry the washed calcium citrate at 80° C. for 5 hours to obtain calcium citrate powder was obtained.
<실험 예 1> 나노 구연산칼슘의 원소분석 <Experimental Example 1> Elemental analysis of nano calcium citrate
상기 실시 예 1에서 제조된 나노 구연산칼슘의 구조분석을 위하여 원소분석기 (Elemental Analyzer)를 이용하여 원소분석을 하였고 그 결과를 아래의 표 1에 나타내었다.For structural analysis of the nano calcium citrate prepared in Example 1, elemental analysis was performed using an elemental analyzer, and the results are shown in Table 1 below.
CaCa CC HH
화학식 1 구조의 이론적 함량Theoretical content of Formula 1 structure 24.1224.12 28.9228.92 2.022.02
실시 예 1Example 1 24.524.5 30.230.2 2.92.9
<화학식 1><Formula 1>
Figure PCTKR2023000341-appb-img-000001
Figure PCTKR2023000341-appb-img-000001
상기 화학식 1은 트리칼슘싸이트레이트(Ca3(C6H5O7)2)의 구조를 나타낸다. Formula 1 shows the structure of tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
실시 예 1에서 제조된 나노 구연산칼슘은 상기 표 1에 나타난 바와 같이, 화학식 1은 트리칼슘싸이트레이트(Ca3(C6H5O7)2)의 구조의 Ca, C, H 함량과 일치함을 확인할 수 있다.As shown in Table 1, the nano-calcium citrate prepared in Example 1, Formula 1 corresponds to the Ca, C, and H content of the structure of tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ) can confirm.
상기 결과를 통해 실시 예 1에서 제조한 나노 구연산칼슘은 트리칼슘싸이트레이트(Ca3(C6H5O7)2)임을 알 수 있다.From the above results, it can be seen that the nano-calcium citrate prepared in Example 1 is tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ).
<실험 예 2> 구연산칼슘의 입자 사이즈 분석 <Experimental Example 2> Analysis of particle size of calcium citrate
실시 예 및 비교 예의 방법에 따라 제조된 구연산칼슘의 입자 크기를 분석하기 위해 Horiba 사의 LA-960 모델을 사용하여 입자 크기를 분석하였으며, 그 결과를 도 2 및 도 3에 나타내었다. In order to analyze the particle size of the calcium citrate prepared according to the methods of Examples and Comparative Examples, the particle size was analyzed using Horiba's LA-960 model, and the results are shown in FIGS. 2 and 3.
도 2에 나타난 바와 같이, 비교 예 1에 의해 제조된 구연산칼슘의 경우 전반적으로 입도 분포가 넓으며 평균적으로 100nm 부터 10μm까지의 넓은 입도 분포를 보인다. 반면, 도 3에 나타난 바와 같이, 실시 예 1에 의해 제조된 나노 구연산칼슘의 경우 평균적으로 140nm의 분포도를 갖는 나노 사이즈의 구연산칼슘이 제조된 것을 확인할 수 있다. As shown in Figure 2, in the case of calcium citrate prepared by Comparative Example 1, the particle size distribution is generally wide and shows a wide particle size distribution from 100 nm to 10 μm on average. On the other hand, as shown in FIG. 3, in the case of the nano-calcium citrate prepared in Example 1, it can be confirmed that nano-sized calcium citrate having an average distribution of 140 nm was prepared.
상기 결과를 통해 구연산이 용해된 용액에 탄산칼슘을 투입하면서 초음파를 조사한 실시 예 1의 방법은 구연산칼슘이 제조되는 과정에서분쇄가 보다 잘 일어나 50 nm 내지 500 nm로 균일한 나노크기를 갖는 구연산칼슘이 제조됨을 확인할 수 있다.Through the above results, the method of Example 1, in which ultrasonic waves were irradiated while adding calcium carbonate to a solution in which citric acid was dissolved, was more pulverized in the process of preparing calcium citrate, resulting in calcium citrate having a uniform nano-size of 50 nm to 500 nm. It can be confirmed that this was produced.
<실험 예 3> 나노 구연산칼슘의 용해도 실험<Experimental Example 3> Solubility test of nano calcium citrate
상기 실시 예 1에서 제조한 나노 구연산칼슘 및 비교 예 1의 구연산칼슘의 용해도를 비교하기 위해 10ml의 증류수에 실시 예 1의 나노 구연산칼슘 및 비교 예 1의 구연산칼슘을 각각 8.5mg, 20mg, 50mg 용해시켰으며 그 결과를 도 4에 나타내었다.In order to compare the solubility of the nano calcium citrate prepared in Example 1 and the calcium citrate of Comparative Example 1, 8.5 mg, 20 mg, and 50 mg of the nano calcium citrate of Example 1 and the calcium citrate of Comparative Example 1 were dissolved in 10 ml of distilled water, respectively. and the results are shown in Figure 4.
도 4에 나타난 바와 같이, 실시 예 1에서 제조한 나노 구연산칼슘의 경우 50mg이 10ml의 증류수에 모두 용해되어 투명한 상태가 유지된 반면에 비교 예 1의 구연산칼슘은 8.5mg도 10ml의 증류수에 모두 용해되지 않아 뿌옇게 분산된 상태를 나타내었다. As shown in Figure 4, in the case of the nano-calcium citrate prepared in Example 1, 50 mg was all dissolved in 10 ml of distilled water and the transparent state was maintained, whereas 8.5 mg of calcium citrate in Comparative Example 1 was all dissolved in 10 ml of distilled water. It was not, so it showed a hazy dispersed state.
상기 결과를 통해 동일 조건에서 비교 예 1의 구연산칼슘은 0.85g/L이하의 용해도를 갖는 반면, 일 측면에 따른 나노 구연산칼슘의 제조방법은 5g/L이상으로 비교 예 1의 구연산칼슘 대비 5배 이상의 현저히 높은 용해도를 갖는 나노 구연산칼슘을 10분 내외로 매우 빠른 시간에 제조할 수 있음을 확인할 수 있다.Through the above results, the calcium citrate of Comparative Example 1 has a solubility of 0.85 g/L or less under the same conditions, whereas the method for preparing nano-calcium citrate according to one aspect has a solubility of 5 g/L or more, which is 5 times greater than that of the calcium citrate of Comparative Example 1. It can be confirmed that the above nano-calcium citrate having a remarkably high solubility can be prepared in a very short time of about 10 minutes.

Claims (16)

  1. 구연산을 에탄올 및 물의 용매에 용해시키는 단계(단계 1); 및dissolving citric acid in solvents of ethanol and water (step 1); and
    상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하고 초음파를 조사하여 나노 구연산칼슘을 제조하는 단계(단계 2);를 포함하는, 나노 구연산칼슘 제조방법.A method for producing nano-calcium citrate, comprising: mixing calcium carbonate with the solution formed in step 1 and irradiating ultrasonic waves to prepare nano-calcium citrate (step 2).
  2. 제1항에 있어서,According to claim 1,
    상기 단계 2는Step 2 above
    상기 단계 1에서 형성된 용액에 탄산칼슘을 혼합하면서 초음파를 조사하는 방법으로 수행되는, 나노 구연산칼슘 제조방법.A method for producing nano-calcium citrate, which is performed by irradiating ultrasonic waves while mixing calcium carbonate with the solution formed in step 1.
  3. 제1항에 있어서,According to claim 1,
    상기 단계 2에서 상기 초음파는 2kHz 내지 200kHz의 강도로 조사되는, 나노 구연산칼슘의 제조방법.In step 2, the ultrasound is irradiated at an intensity of 2kHz to 200kHz, a method for producing nano calcium citrate.
  4. 제1항에 있어서,According to claim 1,
    상기 단계 2에서 상기 초음파는 5분 내지 20분 동안 조사되는, 나노 구연산칼슘의 제조방법.In step 2, the ultrasound is irradiated for 5 to 20 minutes, a method for producing nano calcium citrate.
  5. 제1항에 있어서,According to claim 1,
    상기 용매는 에탄올을 물의 0.1 내지 3배 중량으로 포함하는, 나노 구연산칼슘 제조방법.The solvent comprises 0.1 to 3 times the weight of ethanol as water, nano calcium citrate manufacturing method.
  6. 제1항에 있어서,According to claim 1,
    상기 단계 1는Step 1 above
    구연산을 에탄올 및 물의 용매와 혼합하고 초음파를 조사하여 용해시키는 단계인, 나노 구연산칼슘 제조방법. A method for producing nano-calcium citrate, which is a step of mixing citric acid with a solvent of ethanol and water and dissolving it by irradiating ultrasonic waves.
  7. 제6항에 있어서,According to claim 6,
    상기 단계 1에서 초음파는 1kHz 내지 100kHz의 강도로 조사되는, 나노 구연산칼슘 제조방법.In step 1, ultrasonic waves are irradiated at an intensity of 1 kHz to 100 kHz, nano calcium citrate manufacturing method.
  8. 제6항에 있어서,According to claim 6,
    상기 단계 1에서 초음파는 1분 내지 10분 동안 조사되는, 나노 구연산칼슘의 제조방법.In step 1, ultrasonic waves are irradiated for 1 to 10 minutes, a method for producing nano calcium citrate.
  9. 제1항에 있어서,According to claim 1,
    상기 단계 2에서의 혼합은 구연산을 탄산칼슘 1몰 대비 0.8 내지 5몰비로 혼합하는 것인, 나노 구연산칼슘 제조방법.The mixing in step 2 is to mix citric acid at a molar ratio of 0.8 to 5 with respect to 1 mole of calcium carbonate, nano calcium citrate manufacturing method.
  10. 제1항에 있어서,According to claim 1,
    상기 나노 구연산칼슘 제조방법은 평균 입자 크기가 50 nm 내지 500 nm인 나노 구연산칼슘을 제조하는, 나노 구연산칼슘 제조방법.The method for producing nano-calcium citrate is a method for producing nano-calcium citrate, which produces nano-calcium citrate having an average particle size of 50 nm to 500 nm.
  11. 제1항에 있어서,According to claim 1,
    상기 나노 구연산칼슘 제조방법은The nano calcium citrate manufacturing method
    상기 단계 2에서 제조된 나노 구연산칼슘을 세척 및 건조하여 나노 구연산칼슘분말을 얻는 단계(단계 3);를 더 포함하는, 나노 구연산칼슘 제조방법.Washing and drying the nano-calcium citrate prepared in step 2 to obtain nano-calcium citrate powder (step 3); further comprising, nano-calcium citrate production method.
  12. 제11항에 있어서,According to claim 11,
    상기 세럭은 원심분리 또는 여과 방법으로 수행되는, 나노 구연산칼슘 제조방법.The ceruk is carried out by centrifugation or filtration method, nano calcium citrate production method.
  13. 제11항에 있어서,According to claim 11,
    상기 건조는 30 ℃ 내지 150 ℃의 온도에서 수행되는, 나노 구연산칼슘 제조방법.The drying is carried out at a temperature of 30 ℃ to 150 ℃, nano calcium citrate manufacturing method.
  14. 제1항에 있어서,According to claim 1,
    상기 탄산칼슘은 패각 유래 탄산칼슘인, 나노 구연산칼슘 제조방법.The calcium carbonate is shell-derived calcium carbonate, nano calcium citrate manufacturing method.
  15. 제1항에 있어서,According to claim 1,
    상기 구연산은 함수 구연산 또는 무수 구연산인, 나노 구연산칼슘 제조방법.The citric acid is hydrous citric acid or anhydrous citric acid, nano calcium citrate manufacturing method.
  16. 제1항에 있어서,According to claim 1,
    상기 나노 구연산칼슘 제조방법은 트리칼슘싸이트레이트(Ca3(C6H5O7)2)을 제조하는, 나노 구연산칼슘 제조방법.The method for producing nano-calcium citrate is a method for preparing tricalcium citrate (Ca 3 (C 6 H 5 O 7 ) 2 ), nano-calcium citrate.
PCT/KR2023/000341 2022-02-24 2023-01-06 Method for preparing nano calcium citrate WO2023163369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0024324 2022-02-24
KR1020220024324A KR20230126903A (en) 2022-02-24 2022-02-24 Preparation method of the nanocalcium citrate

Publications (1)

Publication Number Publication Date
WO2023163369A1 true WO2023163369A1 (en) 2023-08-31

Family

ID=87766184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000341 WO2023163369A1 (en) 2022-02-24 2023-01-06 Method for preparing nano calcium citrate

Country Status (2)

Country Link
KR (1) KR20230126903A (en)
WO (1) WO2023163369A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195756A (en) * 2009-02-25 2010-09-09 Toshiaki Saito Method for producing nanocalcium as nanomineral
KR101499292B1 (en) * 2012-09-18 2015-03-09 주식회사 서진바이오텍 Process for Preparing of Calcium Citrate Using Oyster Shells
KR101683150B1 (en) * 2016-07-21 2016-12-06 주식회사 나예코스메틱 Method of manufacturing calcium citrate with high degree of electrolytic dissociation
KR102063807B1 (en) * 2018-01-12 2020-01-08 한국화학연구원 Preparation method of the high activated calcium by sonochemistry
KR20210057391A (en) * 2019-11-12 2021-05-21 한국화학연구원 Disposal of oyster shell by sonochemistry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195756A (en) * 2009-02-25 2010-09-09 Toshiaki Saito Method for producing nanocalcium as nanomineral
KR101499292B1 (en) * 2012-09-18 2015-03-09 주식회사 서진바이오텍 Process for Preparing of Calcium Citrate Using Oyster Shells
KR101683150B1 (en) * 2016-07-21 2016-12-06 주식회사 나예코스메틱 Method of manufacturing calcium citrate with high degree of electrolytic dissociation
KR102063807B1 (en) * 2018-01-12 2020-01-08 한국화학연구원 Preparation method of the high activated calcium by sonochemistry
KR20210057391A (en) * 2019-11-12 2021-05-21 한국화학연구원 Disposal of oyster shell by sonochemistry

Also Published As

Publication number Publication date
KR20230126903A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
CN1151845C (en) Crystallographically stable amorphous sephalosporin compositions and process for producing the same
WO2014046344A1 (en) Method for preparing calcium citrate using oyster shell chips
WO2012083678A1 (en) Method for preparing high-purity lithium carbonate
JP2009197020A (en) Pharmaceutical composition
CN1021629C (en) Medicine compound of non-suspending agent and stable sucralfate suspending liquid
WO2016129733A1 (en) Method for preparing high-density nickel-cobalt-manganese composite precursor
WO2023163369A1 (en) Method for preparing nano calcium citrate
WO2019138398A1 (en) Drug-layered silicate composite for enhancement of oral bioavailability, oral pharmaceutical composition comprising same, and method for manufacturing composite
KR20190086145A (en) Preparation method of the high activated calcium by sonochemistry
WO2014046345A1 (en) Method for isolating fraction having anti-inflammatory or osteoarthritis-inhibiting effects by using oyster shell chips
JPH02262534A (en) Bismuth-containing composition suitable for treatment and preparation thereof
CN101906109B (en) Method for preparing cefuroxime sodium
JPH03219835A (en) Production of whey mineral excellent in transparency
WO2019216719A1 (en) Method for manufacture of transition metal oxide fine particles
WO2018124528A1 (en) Method for preparing thiamine dilauryl sulfate without using organic solvent
TWI674241B (en) Ferric pyrophosphate containing mixed powder and method of manufacturing the same
CN101210114B (en) Nitrosohaemoglobin subunit flesh red pigment and preparing method thereof
WO2014123265A1 (en) Method for preparing nano chemical manganese dioxide (cmd) for cathode material of secondary battery by using recirculation process and nano chemical manganese dioxide (cmd) prepared through same
SA98190680B1 (en) pharmaceutical suspension comprising nevirapine hemihydrate
KR20090081166A (en) Manufacturing Method of Copper Powder
US5783585A (en) Solid bulk compositions containing quinolone carboxylic acids or naphthyridine carboxylic acids in free base form
CN1842531A (en) Crystal of 1-methyl carbapenem compound
CA1221367A (en) Fine crystalline isoxicam
WO2018174553A2 (en) Calcium complex comprising mussel shell and oligosaccharide as effective ingredient and use thereof
WO2024025048A1 (en) Complex compound comprising citric acid and iron, and food composition comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760244

Country of ref document: EP

Kind code of ref document: A1