WO2023163241A1 - 3d printer photo curing composition and preparation method therefor - Google Patents

3d printer photo curing composition and preparation method therefor Download PDF

Info

Publication number
WO2023163241A1
WO2023163241A1 PCT/KR2022/002635 KR2022002635W WO2023163241A1 WO 2023163241 A1 WO2023163241 A1 WO 2023163241A1 KR 2022002635 W KR2022002635 W KR 2022002635W WO 2023163241 A1 WO2023163241 A1 WO 2023163241A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
formula
Prior art date
Application number
PCT/KR2022/002635
Other languages
French (fr)
Korean (ko)
Inventor
김훈
심운섭
Original Assignee
주식회사 그래피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그래피 filed Critical 주식회사 그래피
Priority to PCT/KR2022/002635 priority Critical patent/WO2023163241A1/en
Publication of WO2023163241A1 publication Critical patent/WO2023163241A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a photocurable composition for a 3D printer and a method for producing the same, and more particularly, to a photocurable composition capable of producing an output product using a DLP-type 3D printer and a method for producing the same.
  • 3D printing is a process technology that outputs a three-dimensional shape by repeatedly stacking two-dimensional cross sections using digitally designed data. Design design or modification is very free, and the cost and time required for prototyping can be greatly reduced.
  • 3D printing technology since even products with complex shapes can be easily produced, the types of products that can be produced using 3D printing technology can be said to be virtually endless. As a result, 3D printing technology is expected to lead industrial innovation by changing the paradigm of technology in many fields such as manufacturing, medical, and IT fields.
  • 3D printer technology can be divided into photocuring lamination method, laser sintering lamination method, resin extrusion lamination method, inkjet lamination method, polyjet lamination method, and thin film lamination method according to the material.
  • the double photocuring lamination method is a method of manufacturing a molded product by curing a photo curing resin with a laser beam or strong ultraviolet (UV, Ultraviolet ray). , SLA) and digital light processing (DLP).
  • UV ultraviolet
  • SLA strong ultraviolet
  • DLP digital light processing
  • the photocurable lamination method has excellent surface roughness and can be used in the medical field where it is necessary to manufacture a molded product with a complex shape.
  • Patent Document 1 KR 10-2020-0120992
  • An object of the present invention is to provide a photocurable composition for a 3D printer and a method for producing the same.
  • Another object of the present invention is to further include nano-clay in the photocurable composition for 3D printers to enhance the mechanical properties of the output printed by 3D printing and to maintain a viscosity capable of 3D printing.
  • a photocurable composition for 3D printers is to provide
  • Another object of the present invention is to provide a manufacturing method capable of preparing a photocurable composition capable of 3D printing by uniformly distributing nano-clay in the photocurable composition.
  • Another object of the present invention is to apply 3D printing technology, can be output and manufactured in a form suitable for the patient's oral structure, can increase the corrective force due to excellent mechanical properties, and can change and restore the shape when heat is provided It can be provided as a transparent orthodontic appliance capable of exhibiting a high orthodontic effect.
  • a photocurable composition for a 3D printer includes a photocurable oligomer; reactive monomers; photoinitiators; and nano-clay, wherein the nano-clay may enhance mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
  • the nano-clay is sepiolite, and the sepiolite is in the form of a single fiber, has an average length of 0.2 to 4 ⁇ m, a width of 10 to 30 nm, and an average thickness of 5 to 10 nm.
  • the photocurable oligomer is a compound represented by Formula 1 below:
  • n is an integer from 1 to 1,000;
  • A is a compound represented by Formula 2 or Formula 3,
  • R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms.
  • the silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms.
  • alkynyl group aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
  • the reactive monomer is an acrylate-based monomer.
  • a transparent orthodontic device includes the photocurable composition for the 3D printer.
  • a method for preparing a photocurable composition for a 3D printer includes: 1) mixing and stirring at least one reactive monomer; 2) preparing a first mixture by adding nanoclay to the reactive monomer, pulverizing and dispersing; 3) preparing a second mixture by adding a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours into the first mixture; and 4) adding a photoinitiator to the second mixture, mixing, and defoaming.
  • the present invention further comprises a nano-clay in the photocurable composition for a 3D printer, is uniformly distributed, enhances mechanical properties of the output printed by 3D printing, and maintains a viscosity capable of 3D printing.
  • a photocurable type for a 3D printer. Compositions and methods for their preparation.
  • the photocurable composition by 3D printing using the photocurable composition, it can be output and manufactured in a form suitable for the oral structure of the patient, and the mechanical properties are excellent to increase the corrective force, and when heat is provided, the change and restoration of the shape It is possible to provide a transparent orthodontic appliance capable of exhibiting a high orthodontic effect.
  • 1 is an evaluation result for storage stability of a photocurable composition according to an embodiment of the present invention.
  • 3 relates to the structure of sepiolite according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of the content of sepiolite and its alignment according to an embodiment of the present invention.
  • the present invention relates to a photocurable composition for a 3D printer and a method for preparing the same, including a photocurable oligomer; reactive monomers; photoinitiators; and a nano-clay, wherein the nano-clay relates to a photocurable composition for a 3D printer capable of enhancing mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
  • 3D printing of the present invention refers to a process of manufacturing a three-dimensional object by laminating materials using 3D digital data.
  • DLP Device Light Processing
  • SLA Stepo Lithography Apparatus
  • PolyJet method PolyJet method
  • the photocurable composition of the present invention is a material that is cured by light irradiation, and refers to a polymer that is crosslinked and polymerized into a polymer network structure.
  • the description is centered on UV light, but it is not limited to UV light and can be applied to other lights as well.
  • a photocurable composition for a 3D printer includes a photocurable oligomer; reactive monomers; photoinitiators; and nano-clay, wherein the nano-clay may enhance mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
  • the nano-clay is characterized in that it is sepiolite, but the nano-clay is not limited to sepiolite, and any nano-clay that can be included in a photocurable composition for a 3D printer to enhance mechanical properties is not limited thereto. Available.
  • Polymer composite technology can be applied to overcome the limitations of mechanical strength of 3D printing materials.
  • 3D printing materials there are several problems in applying the composite material to 3D printing.
  • the most important issue is the size of additives used in composite materials. As the size of the additive increases, the size of the printing gap also increases, and as a result, a problem of lowering the printing resolution may occur.
  • nano-sized materials may be used as additives.
  • graphene, carbon nanotube (CNT), etc. which are conventionally known as nano-sized materials
  • price competitiveness may be a problem.
  • nanoclay has a reasonable price, making it more suitable for industrial applications.
  • sepiolite is a hydrated magnesium silicate with a half unit cell formula of Mg 8 Si 12 O 30 (OH) 4 .12H 2 O.
  • the sepiolite has a cross-sectional chemical structure as shown in FIG. 2 and a lettis crystal form as shown in FIG. 3. More specifically, it is a needle-like or fiber-like shape composed of several blocks and tunnels parallel to the fiber direction. Each structural block contains a central octahedral magnesium (MgOH 6 ) sheet sandwiched between two tetrahedral silica (SiO 4 ) sheets.
  • MgOH 6 octahedral magnesium
  • SiO 4 tetrahedral silica
  • the viscosity of the photocurable composition increases, and when the viscosity increases, the composition cannot be manufactured as an output product through a 3D printer.
  • the nano-clay is included in a certain amount or more, the mechanical strength of the output may increase.
  • the viscosity of the photocurable composition is preferably included within a certain range.
  • the photocurable composition may include 0.5 to 5 parts by weight of nanoclay and 1 part by weight of a photoinitiator based on 100 parts by weight of the UV resin.
  • the UV resin includes a photocurable oligomer and a reactive oligomer. When mixed and used within the above range, not only can it be manufactured as an output using a 3D printer, but also the manufactured output can exhibit excellent mechanical strength. More specifically, the 3D printer is a DLP type 3D printer.
  • the photocurable oligomer may be a compound represented by Formula 1 below:
  • n is an integer from 1 to 1,000;
  • A is a compound represented by Formula 2 or Formula 3,
  • R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms.
  • the silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms.
  • alkynyl group aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
  • R 1 to R 6 are the same as or different from each other, and may be each independently selected from the group consisting of hydrogen, heavy hydrogen, a hydroxyl group, and an alkyl group having 1 to 30 carbon atoms.
  • the photocurable oligomer is a compound represented by Formula 1, and includes both a compound in which A is selected from Formula 2 and a compound in which A is selected from Formula 3.
  • it is a polymer compound to which a photocurable functional group is bound for UV curing, and includes a double bond structure between carbons, and a photocurable action can be exhibited by the carbon-carbon double bond.
  • the photocurable oligomer includes a polyurethane structure as a main chain, a photocurable functional group is bonded to the polyurethane structure, and a soft functional group and a hard functional group are included in the compound.
  • a print may exhibit flexible properties due to the soft functional group included in the photocurable composition, and may exhibit heat resistance due to the hard functional group.
  • a flexible effect can be exhibited by using a carbon skeleton having a soft property at room temperature, and a hard property at room temperature.
  • the carbon skeleton having a carbon skeleton it is possible to exhibit a property that is resistant to heat.
  • the photocurable oligomer includes a carbon skeleton having a hard property, it is possible to manufacture a 3D printed output having excellent physical properties such as thermal properties, strength, modulus of elasticity and tensile elongation, and which can be restored to its original shape by heat. there is.
  • the photocurable oligomer since the photocurable oligomer includes a carbon skeleton having a soft property, the shape can be deformed by an external force after heat is applied.
  • a composition for a 3D printer includes only a carbon skeleton having a hard property in order to increase the physical properties of an output product, which can increase the physical properties of an output product, but on the contrary, when the shape is deformed by use, the shape Since it cannot be restored, there is a problem that it cannot be used multiple times.
  • composition for a 3D printer in the present invention includes a carbon skeleton having a hard property and a carbon skeleton having a soft property, not only excellent physical properties such as thermal properties, strength, elastic modulus and tensile elongation, but also a soft functional group
  • the flexible property of can be used together, so that if the shape is deformed by an external force in a state where heat is applied, the deformed shape can be fixed, and then when heat is provided again, it is possible to restore the original shape.
  • the photocurable composition for a 3D printer of the present invention can be used as a transparent orthodontic device, and the transparent orthodontic device is used to straighten teeth to a desired position while being fitted to a patient's teeth.
  • the transparent orthodontic device output by the 3D printer must exhibit physical characteristics that will not be damaged against the resistance at the current position of the patient's teeth, and must be able to provide force to move the teeth to the position to be corrected.
  • the correction effect and the correction principle of the transparent orthodontic appliance of the present invention will be described later.
  • the photocurable composition for 3D printers of the present invention contains both soft functional groups and hard functional groups in the photocurable oligomer, so that it has excellent physical properties and is capable of shape deformation in a state where heat is applied.
  • the photocurable composition additionally includes nano-clay, so that physical properties can be supplemented to exhibit high corrective power.
  • the reactive monomer is an acrylate-based monomer.
  • the acrylate-based monomer may be selected from the group consisting of a compound represented by Chemical Formula 4, a compound represented by Chemical Formula 5, and a mixture thereof:
  • the transparent orthodontic appliance according to another embodiment of the present invention may include the photocurable composition for the 3D printer.
  • the transparent orthodontic device of the present invention is output by 3D printing using a photocurable composition, and unlike conventional transparent orthodontic devices, it is possible to precisely reproduce the curved surface of teeth, and the orthodontic effect is excellent because of its high adhesion to the teeth. .
  • the transparent orthodontic device of the present invention is manufactured by obtaining data on the patient's tooth structure and outputting it, and can be manufactured with almost no difference with the tooth structure and deviation of 50 to 80 ⁇ m, whereas the conventional transparent orthodontic device The deviation from the patient's teeth appears to be 200 to 300 ⁇ m, so the orthodontic force is poor because it cannot be closely adhered to.
  • the transparent orthodontic device of the present invention is heated to 40 ° C. or higher, and then inserted into the patient's teeth and fixed in shape in close contact with the teeth, and the transparent orthodontic device in close contact with the teeth is restored to its original shape by body temperature to straighten teeth
  • the transparent orthodontic device of the present invention can be deformed in shape by putting it in and out of heated water. When heat is applied, flexibility appears for a certain period of time, and shape deformation is possible. Using this property, the transparent orthodontic appliance is immersed in water at 60 to 100 ° C. before being inserted into the patient's teeth, then taken out and inserted into the teeth. Then, if you simply press it with your hand, the shape is deformed into a form that closely adheres to the teeth.
  • the transparent orthodontic device of the present invention is transformed in shape according to the current patient's tooth structure, and then When heat is provided by body temperature, the original output form is gradually restored, and at this time, the transparent orthodontic appliance moves the teeth to the position to be corrected by the force to restore the original shape.
  • the conventional orthodontic device is manufactured as a transparent orthodontic device according to the position of the tooth to be corrected step by step from information obtained from the patient's tooth structure, and then inserted into the tooth to move the tooth by the nature of the hard material. .
  • the conventional transparent orthodontic device moves the teeth due to the nature of the material, and does not provide a uniform force within the teeth, so the orthodontic effect is reduced.
  • the transparent orthodontic device of the present invention is in a state in which the transparent orthodontic device is deformed to the same structure as the teeth when first used, but when heat is provided by body temperature, the transparent orthodontic device is originally It is restored to the shape of the tooth, and the force transmitted to the tooth is not the force of the material of the orthodontic device, but the force generated and transmitted by the restoration of the shape. provided, and the tooth becomes movable as a whole.
  • a method for preparing a photocurable composition for a 3D printer includes: 1) mixing and stirring at least one reactive monomer; 2) preparing a first mixture by adding nanoclay to the reactive monomer, pulverizing and dispersing; 3) preparing a second mixture by adding a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours into the first mixture; and 4) adding a photoinitiator to the second mixture, mixing, and defoaming.
  • Step 1) is a step of mixing and stirring a reactive monomer, mixing and stirring a compound represented by Formula 4 and a compound represented by Formula 5 below:
  • the reactive monomers are mixed in the same weight ratio and stirred. Thereafter, the nanoclay is added to the mixture in which the reactive monomer is mixed, and pulverized and dispersed to prepare a first mixture.
  • the first mixture is a form in which nanoclay is uniformly dispersed, and more specifically, a grinding and dispersing process is performed for 30 seconds to 90 seconds at an output of 700 to 800 w using a tip sonicator.
  • a grinding and dispersing process is performed for 30 seconds to 90 seconds at an output of 700 to 800 w using a tip sonicator.
  • the nanoclay is not uniformly dispersed and the dispersion stability is deteriorated, so that the first mixture is layer-separated over time. That is, when dispersing by the above dispersing method, it is not only uniformly dispersed, but also exhibits excellent stability.
  • a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours is added to the first mixture to prepare a second mixture. Since the photocurable oligomer has a high viscosity and is difficult to mix at room temperature, it is mixed by heating in an oven.
  • a photoinitiator is added and mixed and defoamed using a paste mixer to prepare a photocurable composition.
  • the photoinitiator is a compound represented by Formula 6 below:
  • the photocurable composition may include a photocurable oligomer; reactive monomers; photoinitiators; And in addition to the nano-clay, additives may be included, for example, a leveling agent, a slip agent, or a stabilizer to improve thermal and oxidative stability, storage stability, surface properties, flow properties, and process properties. Conventional additives may be included.
  • the photocurable composition according to an embodiment of the present invention may include 0.5 to 5 parts by weight of nanoclay and 1 part by weight of a photoinitiator based on 100 parts by weight of the UV resin.
  • the UV resin is a photocurable oligomer of the present invention; and a reactive monomer, more specifically, a compound in which A is selected from Formula 2 among compounds represented by Formula 1 below, a compound in which A is selected from Formula 3 among compounds represented by Formula 1 below, and a compound represented by Formula 4 below
  • the compound and the compound represented by Formula 5 may be included in a weight ratio of 1:1:1:1 to 1:2:1:1:
  • n is an integer from 1 to 1,000;
  • A is a compound represented by Formula 2 or Formula 3,
  • R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms.
  • the silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms.
  • alkynyl group aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
  • the monomers represented by Chemical Formulas 4 and 5 were mixed in a weight ratio of 1:1, sepiolite was added, and then pulverized and dispersed for 1 minute at 750w output using a tip sonicator. Thereafter, the photocurable oligomer having fluidity was mixed by heating in an oven at 60° C. for 12 hours.
  • the photocurable oligomer is a compound represented by Formula 1 below, including both a compound in which A is selected from Formula 2 and a compound in which A is selected from Formula 3, and a compound selected from Formula 2 and a compound selected from Formula 3 in a weight ratio of 1:1.5.
  • a photoinitiator represented by Formula 6 was mixed, and mixed and defoamed using a paste mixer.
  • n is an integer from 1 to 1,000;
  • R 1 to R 6 are methyl groups.
  • the weight ratio with respect to the photocurable composition is as follows.
  • composition sample name sepiolite UV resin photoinitiator 100 One DLP Sep-0 0 DLP Sep-0.5 0.5 DLP Sep-1 One DLP Sep-2 2 DLP Sep-3 3 DLP Sep-5 5
  • the UV resin includes a photocurable oligomer and a monomer, wherein A in Formula 1 is a compound selected from Formula 2, a compound selected from Formula 3, a monomer represented by Formula 4, and a compound represented by Formula 5 Monomers are included in a weight ratio of 1:1.5:1:1.
  • DLP Sep-0.5, DLP Sep-1, DLP Sep-2, DLP Sep-3, and DLP Sep-5 do not cause layer separation even after 3 days and remain stable.
  • Sepiolite is a type of clay, and it is not easy to disperse with monomers, and there is a problem of poor storage stability even after dispersion.
  • the pulverization and dispersion process is performed using the tips sonic equipment, it is not only uniformly dispersed, but also exhibits excellent stability even during long-term storage.
  • the tensile strength of the composite samples was measured using UTM (AllroundLine Z010, Zwick, Germany) to confirm the change in material properties and 3D printing effect as the SEP content and printing method increased. A crosshead speed of 5 mm/min was used during the measurement and the mechanical properties were analyzed at room temperature (RT, ⁇ 20 °C). Seven samples of each configuration were measured to calculate the margin of error.
  • a rheometer (MCR 302, Anton Paar Ltd., Austria) was used to measure the rheological properties of the photocurable composition.
  • the disposable parallel plate had a diameter of 25 mm, an experimental temperature of 25 °C, a plate interval of 100 ⁇ m, and a shear rate of 0.1 to 100 rad/s.
  • the rheological behavior before curing as the content of sepiolite increases is shown in FIG. 5 .
  • the viscosity of the composition increased, but shear thinning behavior began as the deformation increased.
  • sepiolite when it is included in 0.5 and 1 part by weight, no interference occurs even when both ends of the sepiolite rotate in any direction.
  • the sepiolite particles when included in an amount of 1 part by weight or more, a nanostructure was formed at a moment above a critical value for rheological permeation and aligned under shear force.
  • the photocurable composition comprising 5 parts by weight of sepiolite showed a critical point for entanglement and started to exhibit a clear shear thinning behavior.
  • the yield characteristics play an important role in maintaining the shape of the output.
  • the photocurable composition for 3D printing of the DLP method must flow in a liquid state. Otherwise, it cannot be printed in the DLP printing environment. Therefore, since the viscosity increases as the content of sepiolite increases, it is necessary to check the yield characteristics.
  • the shear modulus and viscosity of the photocurable composition according to an embodiment of the present invention vary not only by the content of sepiolite but also by shear stress and time, which can be confirmed through FIG. 7 .
  • the correlation between sepiolite content, stress and time is fluid as shown in FIG. 7 .
  • the storage modulus decreases during a shear force of 300 Pa, but recovers at a shear force of 0.5 pa. However, during the test process, the loss coefficient of the sample maintained a higher value than the storage coefficient.
  • An MCR 302 rheometer (Anton Paar Ltd., Austria) was used to measure the change in rheological properties during the curing behavior of the photocurable composition.
  • the diameter of the disposable parallel plates is 12 mm
  • the experimental temperature is 25 °C
  • the plate spacing is 100 ⁇ m
  • the shear rate is 0.01%
  • the radian is 10 rad/s.
  • An LED with a wavelength of 365 nm was used at an intensity of 15 mW/cm 2 .
  • the plate was vibrated for 30 seconds, then irradiated for 300 seconds, and at the same time, a force of 0.1 N was applied to measure the degree of shrinkage of the material while moving the plate.
  • the rheological behavior of the material was observed while irradiating with 385 nm UV. 8 is a result of monitoring the storage modulus change of the photocurable composition during the curing process. After stabilizing the composition for 30 seconds, UV irradiation was performed.
  • a photocurable composition to which nanomaterials are added tends to cure slowly because the nanomaterials absorb UV rays. If the photocuring behavior is delayed by sepiolite, a problem of applying different printing conditions for each sample may occur.
  • composition of the present invention increased the storage modulus of all samples 5 seconds after UV irradiation started.
  • the photocurable composition of the present invention can have improved mechanical properties and can change the mechanical properties depending on the purpose and use.
  • the present invention relates to a photocurable composition for a 3D printer and a method for producing the same, and more particularly, to a photocurable composition capable of producing an output product using a DLP-type 3D printer and a method for producing the same.

Abstract

The present invention relates to a 3D printer photo curing composition and a preparation method therefor, the 3D printer photo curing composition additionally comprising nanoclay, being uniformly distributed so as to reinforce the mechanical properties of a printout output by 3D printing, and enabling a 3D-printable viscosity to be maintained. In addition, the photo curing composition is used for 3D printing so as to be output and manufactured in a form suitable for the oral structure of a patient, has excellent mechanical properties such that orthodontic force can be increased, and, during heat provision, enables shape changing and restoration so as to provide a transparent orthodontic device capable of exhibiting an enhanced orthodontic effect.

Description

3D 프린터용 광경화형 조성물 및 이의 제조 방법Photocurable composition for 3D printer and method for producing the same
본 발명은 3D 프린터용 광경화형 조성물 및 이의 제조 방법에 관한 것으로, 보다 구체적으로, DLP 방식의 3D 프린터를 이용하여 출력물을 제조할 수 있는 광경화형 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a photocurable composition for a 3D printer and a method for producing the same, and more particularly, to a photocurable composition capable of producing an output product using a DLP-type 3D printer and a method for producing the same.
3D 프린팅은 디지털 방식으로 디자인된 데이터를 이용하여 2차원의 단면을 반복적으로 적층시켜 3차원의 입체적인 형상으로 출력하는 공정 기술이다. 디자인 설계나 수정이 매우 자유로우며, 시제품 제작에 드는 비용 및 시간이 크게 절감될 수 있다.3D printing is a process technology that outputs a three-dimensional shape by repeatedly stacking two-dimensional cross sections using digitally designed data. Design design or modification is very free, and the cost and time required for prototyping can be greatly reduced.
또한 3D 프린팅 기술에 의하면, 아무리 복잡한 모양의 제품이라도 간단하게 생산할 수 있기 때문에, 3D 프린팅 기술을 이용하여 생산할 수 있는 제품의 종류는 사실상 무궁무진하다고 할 수 있다. 그로 인해, 3D 프린팅 기술은 제조업, 의료, IT 분야 등 다방면에서 기술의 패러다임을 바꾸며, 산업 혁신을 이끌 것으로 기대되고 있다.In addition, according to 3D printing technology, since even products with complex shapes can be easily produced, the types of products that can be produced using 3D printing technology can be said to be virtually endless. As a result, 3D printing technology is expected to lead industrial innovation by changing the paradigm of technology in many fields such as manufacturing, medical, and IT fields.
3D 프린터 기술은 소재에 따라 광경화 적층방식, 레이저 소결 적층방식, 수지 압출 적층방식, 잉크젯 적층방식, 폴리젯 적층방식 및 박막 적층방식으로 나뉠 수 있다.3D printer technology can be divided into photocuring lamination method, laser sintering lamination method, resin extrusion lamination method, inkjet lamination method, polyjet lamination method, and thin film lamination method according to the material.
이중 광경화 적층 방식은 레이저 빔이나 강한 자외선(UV, Ultraviolet ray)으로 광경화성 액상 수지(Photo curing resin)를 경화시키며 성형물을 제조하는 방식으로, 이러한 광경화 적층방식에는 스테레오리소그래피장치(Stereo Lithography Apparatus, SLA) 및 디지털광원처리(Digital Light Processing, DLP)가 있다.The double photocuring lamination method is a method of manufacturing a molded product by curing a photo curing resin with a laser beam or strong ultraviolet (UV, Ultraviolet ray). , SLA) and digital light processing (DLP).
최근, 3D 프린팅 기술은 다양한 의학 분야에서 활용되고 있으며, 기존의 절삭가공보다 제작시간과 비용, 과정측 면에서 매우 효율적이다. 특히 광경화형 적층 방식은 표면 조도가 우수하여 복잡한 형상의 성형물로 제조될 필요성이 있는 의학 분야에 활용이 가능하다. Recently, 3D printing technology is being used in various medical fields, and it is very efficient in terms of manufacturing time, cost, and process compared to conventional cutting. In particular, the photocurable lamination method has excellent surface roughness and can be used in the medical field where it is necessary to manufacture a molded product with a complex shape.
그러나, 상기 언급한 바와 같이, 종래 3D 프린터용 소재를 이용하는 경우에, 출력물에 대한 물리적 특성의 한계로 인해, 의학 분야에 적용하기 어려운 문제가 있어, 다양한 의학 분야에 적용할 수 있는 광경화형 고분자 3D 프린터용 소재의 개발이 시급하다.However, as mentioned above, in the case of using a material for a conventional 3D printer, there is a problem in that it is difficult to apply to the medical field due to limitations in physical properties for the output, and thus, a photocurable polymer 3D that can be applied to various medical fields It is urgent to develop materials for printers.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR 10-2020-0120992(Patent Document 1) KR 10-2020-0120992
본 발명의 목적은 3D 프린터용 광경화형 조성물 및 이의 제조 방법을 제공하는 것이다. An object of the present invention is to provide a photocurable composition for a 3D printer and a method for producing the same.
본 발명의 다른 목적은 3D 프린터용 광경화형 조성물에 나노 클레이를 추가로 포함하여, 3D 프린팅으로 출력된 출력물의 기계적 물성을 강화하고, 3D 프린팅이 가능한 점도를 유지할 수 있는 3D 프린터용 광경화형 조성물을 제공하는 것이다. Another object of the present invention is to further include nano-clay in the photocurable composition for 3D printers to enhance the mechanical properties of the output printed by 3D printing and to maintain a viscosity capable of 3D printing. A photocurable composition for 3D printers is to provide
본 발명의 다른 목적은 나노 클레이가 광경화형 조성물 내에 균일하게 분포하여, 3D 프린팅이 가능한 광경화형 조성물로 제조할 수 있는 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a manufacturing method capable of preparing a photocurable composition capable of 3D printing by uniformly distributing nano-clay in the photocurable composition.
본 발명의 다른 목적은 3D 프린팅 기술을 적용하여, 환자의 구강 구조에 맞는 형태로 출력되어 제조될 수 있고, 기계적 물성이 우수하여 교정력을 높일 수 있고, 열이 제공 시, 형상의 변화 및 복원이 가능하여 높은 치아 교정 효과를 나타낼 수 있는 투명 치아 교정 장치로 제공될 수 있다.Another object of the present invention is to apply 3D printing technology, can be output and manufactured in a form suitable for the patient's oral structure, can increase the corrective force due to excellent mechanical properties, and can change and restore the shape when heat is provided It can be provided as a transparent orthodontic appliance capable of exhibiting a high orthodontic effect.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 3D 프린터용 광경화형 조성물은 광경화성 올리고머; 반응성 모노머; 광개시제; 및 나노 클레이를 포함하며, 상기 나노 클레이는 반응성 모노머와 전기적 인력의 상호 작용으로 인해, 3D 프린팅에 의해 출력된 출력물의 기계적 물성을 강화할 수 있다. In order to achieve the above object, a photocurable composition for a 3D printer according to an embodiment of the present invention includes a photocurable oligomer; reactive monomers; photoinitiators; and nano-clay, wherein the nano-clay may enhance mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
상기 나노 클레이는 세피올라이트(Sepiolite)이며, 상기 세피올라이트는 단일 섬유 형태로, 평균 길이는 0.2 내지 4㎛이며, 폭은 10 내지 30nm이고, 평균 두께는 5 내지 10nm이다. The nano-clay is sepiolite, and the sepiolite is in the form of a single fiber, has an average length of 0.2 to 4 μm, a width of 10 to 30 nm, and an average thickness of 5 to 10 nm.
상기 광경화성 올리고머는 하기 화학식 1로 표시되는 화합물이다:The photocurable oligomer is a compound represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2022002635-appb-img-000001
Figure PCTKR2022002635-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2022002635-appb-img-000002
Figure PCTKR2022002635-appb-img-000002
[화학식 3][Formula 3]
Figure PCTKR2022002635-appb-img-000003
Figure PCTKR2022002635-appb-img-000003
여기서, here,
n은 1 내지 1,000의 정수이고,n is an integer from 1 to 1,000;
A는 상기 화학식 2 또는 화학식 3으로 표시되는 화합물이며, A is a compound represented by Formula 2 or Formula 3,
*는 결합되는 부분을 의미하며, * means the part to be combined,
R1 내지 R6은 서로 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기, 치환 또는 비치환의 탄소수 1 내지 20개의 시클로알킬기, 치환 또는 비치환의 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환의 탄소수 2 내지 24의 알키닐기, 치환 또는 비치환의 탄소수 7 내지 30의 아르알킬기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴기, 치환 또는 비치환의 탄소수 5 내지 60의 헤테로아릴기, 치환 또는 비치환의 탄소수 6 내지 30의 헤테로아릴알킬기, 치환 또는 비치환의 탄소수 1 내지 30의 알콕시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아르알킬아미노기, 치환 또는 비치환의 탄소수 2 내지 24의 헤테로 아릴아미노기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬실릴기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴실릴기 및 치환 또는 비치환의 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택되며,R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms. An alkyl group, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 24 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 60 carbon atoms, a substituted or unsubstituted heteroarylalkyl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylamino group having 2 to 24 carbon atoms, or a substituted or unsubstituted alkylsilyl group having 1 to 30 carbon atoms , It is selected from the group consisting of a substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms and a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기, 치환된 시클로알킬렌기, 치환된 알킬기, 치환된 시클로알킬기, 치환된 알케닐기, 치환된 알키닐기, 치환된 아르알킬기, 치환된 아릴기, 치환된 헤테로아릴기, 치환된 헤테로아릴알킬기, 치환된 알콕시기, 치환된 알킬아미노기, 치환된 아릴아미노기, 치환된 아르알킬아미노기, 치환된 헤테로 아릴아미노기, 치환된 알킬실릴기, 치환된 아릴실릴기 및 치환된 아릴옥시기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.The substituted alkylene group, substituted arylene group, substituted heteroarylene group, substituted cycloalkylene group, substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted alkynyl group, substituted aralkyl group, substituted aryl Group, substituted heteroaryl group, substituted heteroarylalkyl group, substituted alkoxy group, substituted alkylamino group, substituted arylamino group, substituted aralkylamino group, substituted heteroarylamino group, substituted alkylsilyl group, substituted aryl The silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms. alkynyl group, aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
상기 반응성 모노머는 아크릴레이트계 모노머이다.The reactive monomer is an acrylate-based monomer.
본 발명의 다른 일 실시예에 따른 투명 치아 교정 장치는 상기 3D 프린터용 광경화형 조성물을 포함하는 것이다. A transparent orthodontic device according to another embodiment of the present invention includes the photocurable composition for the 3D printer.
본 발명의 다른 일 실시예에 따른 3D 프린터용 광경화형 조성물의 제조 방법은 1) 1종 이상의 반응성 모노머를 혼합하고 교반하는 단계; 2) 상기 반응성 모노머에 나노 클레이를 첨가하고, 분쇄 및 분산하여 제1 혼합물을 제조하는 단계; 3) 50 내지 70℃ 오븐에서 10 내지 15시간 동안 가열한 광경화성 올리고머를 상기 제1 혼합물에 넣고 제2 혼합물을 제조하는 단계; 및 4) 상기 제2 혼합물에 광개시제를 추가하고 혼합 및 탈포하는 단계를 포함할 수 있다.A method for preparing a photocurable composition for a 3D printer according to another embodiment of the present invention includes: 1) mixing and stirring at least one reactive monomer; 2) preparing a first mixture by adding nanoclay to the reactive monomer, pulverizing and dispersing; 3) preparing a second mixture by adding a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours into the first mixture; and 4) adding a photoinitiator to the second mixture, mixing, and defoaming.
본 발명은 3D 프린터용 광경화형 조성물에 나노 클레이를 추가로 포함하며, 균일하게 분포되어, 3D 프린팅으로 출력된 출력물의 기계적 물성을 강화하고, 3D 프린팅이 가능한 점도를 유지할 수 있는 3D 프린터용 광경화형 조성물 및 이의 제조 방법에 관한 것이다. The present invention further comprises a nano-clay in the photocurable composition for a 3D printer, is uniformly distributed, enhances mechanical properties of the output printed by 3D printing, and maintains a viscosity capable of 3D printing. A photocurable type for a 3D printer. Compositions and methods for their preparation.
또한, 상기 광경화형 조성물을 이용하여 3D 프린팅하여, 환자의 구강 구조에 맞는 형태로 출력되어 제조될 수 있고, 기계적 물성이 우수하여 교정력을 높일 수 있고, 열이 제공 시, 형상의 변화 및 복원이 가능하여 높은 치아 교정 효과를 나타낼 수 있는 투명 치아 교정 장치로 제공할 수 있다.In addition, by 3D printing using the photocurable composition, it can be output and manufactured in a form suitable for the oral structure of the patient, and the mechanical properties are excellent to increase the corrective force, and when heat is provided, the change and restoration of the shape It is possible to provide a transparent orthodontic appliance capable of exhibiting a high orthodontic effect.
도 1은 본 발명의 일 실시예에 따른 광경화성 조성물의 보관 안정성에 대한 평가 결과이다. 1 is an evaluation result for storage stability of a photocurable composition according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 세피올라이트의 구조에 관한 것이다. 2 relates to the structure of sepiolite according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 세피올라이트의 구조에 관한 것이다. 3 relates to the structure of sepiolite according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 세피올라이트의 함량 및 이에 따른 배향에 관한 모식도이다. 4 is a schematic view of the content of sepiolite and its alignment according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 광경화성 조성물의 유변학적 전단 특성에 대한 결과이다. 5 is a result of rheological shear characteristics of a photocurable composition according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 광경화성 조성물의 유변학적 항복 특성에 대한 결과이다. 6 is a result of the rheological yield characteristics of a photocurable composition according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 광경화성 조성물의 시간에 따른 응력 변화 측정 결과이다. 7 is a result of measuring stress change over time of a photocurable composition according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 광경화성 조성물의 UV 조사에 의한 유변학적 특성에 대한 결과이다. 8 is a result of the rheological properties of the photocurable composition according to an embodiment of the present invention by UV irradiation.
도 9는 본 발명의 일 실시예에 따른 3D 프린팅된 출력물의 기계적 인장 특성에 대한 결과이다. 9 is a result of mechanical tensile properties of a 3D printed output according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 세피올라이트의 함량 변화에 따른 스트레인-스트레스 곡선 변화 결과이다.10 is a strain-stress curve change result according to a change in the content of sepiolite according to an embodiment of the present invention.
본 발명은 3D 프린터용 광경화형 조성물 및 이의 제조방법에 관한 것으로, 광경화성 올리고머; 반응성 모노머; 광개시제; 및 나노 클레이를 포함하며, 상기 나노 클레이는 반응성 모노머와 전기적 인력의 상호 작용으로 인해, 3D 프린팅에 의해 출력된 출력물의 기계적 물성을 강화할 수 있는 3D 프린터용 광경화형 조성물에 관한 것이다.The present invention relates to a photocurable composition for a 3D printer and a method for preparing the same, including a photocurable oligomer; reactive monomers; photoinitiators; and a nano-clay, wherein the nano-clay relates to a photocurable composition for a 3D printer capable of enhancing mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명의 3D 프린팅은 3D 디지털 데이터를 이용하여 소재를 적층해 3차원 물체를 제조하는 프로세스를 말한다. 본 명세서에는 3D 프린팅 기술로서 DLP(Disital Light Processing), SLA(Stereo Lithography Apparatus) 및 PolyJet 방식을 중심으로 기술하나, 다른 3D 프린팅 기술에도 적용가능한 것으로 이해될 수 있다.3D printing of the present invention refers to a process of manufacturing a three-dimensional object by laminating materials using 3D digital data. In this specification, as 3D printing technologies, DLP (Disital Light Processing), SLA (Stereo Lithography Apparatus), and PolyJet method are mainly described, but it can be understood that they are applicable to other 3D printing technologies.
본 발명의 광경화형 조성물은 광 조사에 의해 경화되는 물질로서, 가교되고 중합체 망상구조로 중합되는 고분자를 말한다. 본 명세서에서는 UV 광을 중심으로 기술하나, UV 광에 한정되지 않고 다른 광에 대해서도 적용 가능하다.The photocurable composition of the present invention is a material that is cured by light irradiation, and refers to a polymer that is crosslinked and polymerized into a polymer network structure. In this specification, the description is centered on UV light, but it is not limited to UV light and can be applied to other lights as well.
본 발명의 일 실시예에 따른 3D 프린터용 광경화성 조성물은 광경화성 올리고머; 반응성 모노머; 광개시제; 및 나노 클레이를 포함하며, 상기 나노 클레이는 반응성 모노머와 전기적 인력의 상호 작용으로 인해, 3D 프린팅에 의해 출력된 출력물의 기계적 물성을 강화할 수 있다.A photocurable composition for a 3D printer according to an embodiment of the present invention includes a photocurable oligomer; reactive monomers; photoinitiators; and nano-clay, wherein the nano-clay may enhance mechanical properties of an output product output by 3D printing due to an interaction between a reactive monomer and electrical attraction.
상기 나노 클레이는 세피올라이트(Sepiolite)인 것을 특징으로 하나, 상기 나노 클레이는 세피올라이트에 국한되지 않고, 3D 프린터용 광경화형 조성물에 포함되어, 기계적 물성을 강화할 수 있는 나노 클레이는 제한 없이 모두 사용 가능하다. The nano-clay is characterized in that it is sepiolite, but the nano-clay is not limited to sepiolite, and any nano-clay that can be included in a photocurable composition for a 3D printer to enhance mechanical properties is not limited thereto. Available.
3D 프린팅 재료가 가지는 기계적 강도의 한계를 극복하기 위해 고분자 복합 기술을 적용할 수 있다. 다만, 상기 복합 재료를 3D 프린팅에 적용하려면 몇 가지 문제가 있다. 가장 중요한 문제는 복합 재료에 사용되는 첨가제의 크기이다. 상기 첨가제의 크기가 커짐에 따라 프린팅 gap의 크기도 증가하여, 결과적으로 인쇄 해상도가 낮아지는 문제가 발생할 수 있다. Polymer composite technology can be applied to overcome the limitations of mechanical strength of 3D printing materials. However, there are several problems in applying the composite material to 3D printing. The most important issue is the size of additives used in composite materials. As the size of the additive increases, the size of the printing gap also increases, and as a result, a problem of lowering the printing resolution may occur.
상기 문제를 방지하기 위해, 나노 크기의 물질을 첨가제로 사용할 수 있다. 종래 나노 크기의 재료로 알려진 그래핀, 탄소나노튜브(CNT) 등의 경우, 가격 경쟁력이 문제될 수 있다. 반면, 나노 클레이는 합리적인 가격을 가지고 있어 산업 적용에 더 적합하다. 나노 클레이 중, 세피올라이트(Sepiolite)는 Mg8Si12O30(OH)4·12H2O의 반 단위 셀 공식을 가진 수화된 규산 마그네슘이다. In order to avoid the above problems, nano-sized materials may be used as additives. In the case of graphene, carbon nanotube (CNT), etc., which are conventionally known as nano-sized materials, price competitiveness may be a problem. On the other hand, nanoclay has a reasonable price, making it more suitable for industrial applications. Among nanoclays, sepiolite is a hydrated magnesium silicate with a half unit cell formula of Mg 8 Si 12 O 30 (OH) 4 .12H 2 O.
상기 세피올라이트는 도 2와 같은 단면의 화학구조 및 도 3과 같은 레티스 결정의 형태를 이루고 있다. 보다 구체적으로 섬유 방향에 평행한 여러 블록과 터널로 구성된 바늘 모양 또는 섬유 모양의 형태이다. 각 구조 블록에는 두 개의 사면체 실리카(SiO4) 시트가 끼인 중앙 팔면체 마그네슘(MgOH6) 시트가 포함되어 있다. 단일 세피올라이트 섬유는 길이가 0.2 내지 4㎛, 폭이 10 내지 30nm, 두께가 5 내지 10 nm이다.The sepiolite has a cross-sectional chemical structure as shown in FIG. 2 and a lettis crystal form as shown in FIG. 3. More specifically, it is a needle-like or fiber-like shape composed of several blocks and tunnels parallel to the fiber direction. Each structural block contains a central octahedral magnesium (MgOH 6 ) sheet sandwiched between two tetrahedral silica (SiO 4 ) sheets. A single sepiolite fiber is 0.2 to 4 μm long, 10 to 30 nm wide, and 5 to 10 nm thick.
세피올라이트를 나노 클레이로 포함하게 되면, 광경화형 조성물 내에서 3D 프린팅이 가능한 점도를 유지하며, 출력된 출력물에 대한 높은 기계적 강도를 나타낼 수 있다. When sepiolite is included as nano-clay, a viscosity capable of 3D printing is maintained in the photocurable composition, and high mechanical strength can be exhibited for the printed object.
즉, 나노 클레이를 다량 포함 시, 광경화형 조성물의 점도가 커지게 되고, 점도가 커지면 상기 조성물이 3D 프린터를 통해 출력물로 제조가 불가능한 문제가 있다. 나노 클레이를 일정량 이상으로 포함 시, 출력물의 기계적 강도가 증가할 수 있으나, 3D 프린팅을 위해선 높은 점도의 조성물은 이용이 불가능한 문제로 인해, 광경화형 조성물의 점도도 일정 범위 내로 포함되는 것이 바람직하다. That is, when a large amount of nano-clay is included, the viscosity of the photocurable composition increases, and when the viscosity increases, the composition cannot be manufactured as an output product through a 3D printer. When the nano-clay is included in a certain amount or more, the mechanical strength of the output may increase. However, since a high-viscosity composition cannot be used for 3D printing, the viscosity of the photocurable composition is preferably included within a certain range.
이에, 상기 광경화형 조성물은 UV 레진 100 중량부에 대해, 나노 클레이 0.5 내지 5 중량부 및 광개시제 1 중량부로 포함할 수 있다. 상기 UV 레진은 광경화성 올리고머 및 반응성 올리고머를 포함하는 것이다. 상기 범위 내에서 혼합하여 사용 시, 3D 프린터를 이용하여 출력물로 제조가 가능할 뿐 아니라, 제조된 출력물이 우수한 기계적 강도를 나타낼 수 있다. 보다 구체적으로, 상기 3D 프린터는 DLP 방식의 3D 프린터이다. Accordingly, the photocurable composition may include 0.5 to 5 parts by weight of nanoclay and 1 part by weight of a photoinitiator based on 100 parts by weight of the UV resin. The UV resin includes a photocurable oligomer and a reactive oligomer. When mixed and used within the above range, not only can it be manufactured as an output using a 3D printer, but also the manufactured output can exhibit excellent mechanical strength. More specifically, the 3D printer is a DLP type 3D printer.
상기 광경화성 올리고머는 하기 화학식 1로 표시되는 화합물일 수 있다:The photocurable oligomer may be a compound represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2022002635-appb-img-000004
Figure PCTKR2022002635-appb-img-000004
[화학식 2][Formula 2]
Figure PCTKR2022002635-appb-img-000005
Figure PCTKR2022002635-appb-img-000005
[화학식 3][Formula 3]
Figure PCTKR2022002635-appb-img-000006
Figure PCTKR2022002635-appb-img-000006
여기서, here,
n은 1 내지 1,000의 정수이고,n is an integer from 1 to 1,000;
A는 상기 화학식 2 또는 화학식 3으로 표시되는 화합물이며, A is a compound represented by Formula 2 or Formula 3,
*는 결합되는 부분을 의미하며, * means the part to be combined,
R1 내지 R6은 서로 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기, 치환 또는 비치환의 탄소수 1 내지 20개의 시클로알킬기, 치환 또는 비치환의 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환의 탄소수 2 내지 24의 알키닐기, 치환 또는 비치환의 탄소수 7 내지 30의 아르알킬기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴기, 치환 또는 비치환의 탄소수 5 내지 60의 헤테로아릴기, 치환 또는 비치환의 탄소수 6 내지 30의 헤테로아릴알킬기, 치환 또는 비치환의 탄소수 1 내지 30의 알콕시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아르알킬아미노기, 치환 또는 비치환의 탄소수 2 내지 24의 헤테로 아릴아미노기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬실릴기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴실릴기 및 치환 또는 비치환의 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택되며,R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms. An alkyl group, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 24 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 60 carbon atoms, a substituted or unsubstituted heteroarylalkyl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylamino group having 2 to 24 carbon atoms, or a substituted or unsubstituted alkylsilyl group having 1 to 30 carbon atoms , It is selected from the group consisting of a substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms and a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기, 치환된 시클로알킬렌기, 치환된 알킬기, 치환된 시클로알킬기, 치환된 알케닐기, 치환된 알키닐기, 치환된 아르알킬기, 치환된 아릴기, 치환된 헤테로아릴기, 치환된 헤테로아릴알킬기, 치환된 알콕시기, 치환된 알킬아미노기, 치환된 아릴아미노기, 치환된 아르알킬아미노기, 치환된 헤테로 아릴아미노기, 치환된 알킬실릴기, 치환된 아릴실릴기 및 치환된 아릴옥시기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.The substituted alkylene group, substituted arylene group, substituted heteroarylene group, substituted cycloalkylene group, substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted alkynyl group, substituted aralkyl group, substituted aryl Group, substituted heteroaryl group, substituted heteroarylalkyl group, substituted alkoxy group, substituted alkylamino group, substituted arylamino group, substituted aralkylamino group, substituted heteroarylamino group, substituted alkylsilyl group, substituted aryl The silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms. alkynyl group, aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
구체적으로, 상기 R1 내지 R6은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 히드록시기 및 탄소수 1 내지 30의 알킬기로 이루어진 군으로부터 선택될 수 있다. Specifically, R 1 to R 6 are the same as or different from each other, and may be each independently selected from the group consisting of hydrogen, heavy hydrogen, a hydroxyl group, and an alkyl group having 1 to 30 carbon atoms.
보다 구체적으로 상기 광경화성 올리고머는 상기 화학식 1로 표시되는 화합물이며, 상기 A가 화학식 2로 선택되는 화합물 및 상기 A가 화학식 3으로 선택되는 화합물을 모두 포함한다. More specifically, the photocurable oligomer is a compound represented by Formula 1, and includes both a compound in which A is selected from Formula 2 and a compound in which A is selected from Formula 3.
보다 구체적으로, UV 경화를 위하여, 광경화 작용기가 결합된 고분자 화합물로, 탄소간의 이중결합 구조를 포함하고 있고, 상기 탄소-탄소 이중 결합에 의해 광경화 작용을 나타낼 수 있다. More specifically, it is a polymer compound to which a photocurable functional group is bound for UV curing, and includes a double bond structure between carbons, and a photocurable action can be exhibited by the carbon-carbon double bond.
또한, 상기 광경화성 올리고머는 메인 체인으로 폴리 우레탄 구조를 포함하며, 상기 폴리 우레탄 구조에 광경화 작용기가 결합되고, 화합물 내 소프트 작용기 및 하드 작용기를 포함한 것을 특징으로 한다. In addition, the photocurable oligomer includes a polyurethane structure as a main chain, a photocurable functional group is bonded to the polyurethane structure, and a soft functional group and a hard functional group are included in the compound.
상기 광경화성 조성물 내 포함된 소프트 작용기에 의해 출력물은 플렉서블한 성질을 나타내며, 또한, 하드 작용기에 의해, 열 저항성(Heat resistant)을 나타낼 수 있다. A print may exhibit flexible properties due to the soft functional group included in the photocurable composition, and may exhibit heat resistance due to the hard functional group.
즉, 광경화성 올리고머에 광경화 작용기를 결합시키고, 소프트 작용기 및 하드 작용기를 이용함에 따라, 상온에서 부드러운 성질을 갖는 탄소 골격을 이용하여, 플렉서블 효과를 나타낼 수 있을 뿐만 아니라, 상온에서 하드한 성질을 갖는 탄소 골격을 이용하여, 열에 강한 성질을 함께 나타낼 수 있다. That is, as the photocurable functional group is bonded to the photocurable oligomer and the soft functional group and the hard functional group are used, a flexible effect can be exhibited by using a carbon skeleton having a soft property at room temperature, and a hard property at room temperature. By using the carbon skeleton having a carbon skeleton, it is possible to exhibit a property that is resistant to heat.
상기 광경화성 올리고머는 하드한 성질을 갖는 탄소 골격을 포함함에 따라, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수하고, 열에 의해 원래의 형상으로 복원이 가능한 3D 프린팅 출력물을 제조할 수 있다. As the photocurable oligomer includes a carbon skeleton having a hard property, it is possible to manufacture a 3D printed output having excellent physical properties such as thermal properties, strength, modulus of elasticity and tensile elongation, and which can be restored to its original shape by heat. there is.
또한, 광경화성 올리고머는 소프트한 성질을 갖는 탄소 골격을 포함함에 따라, 열이 제공된 후 외력에 의해 형상의 변형이 가능하다.In addition, since the photocurable oligomer includes a carbon skeleton having a soft property, the shape can be deformed by an external force after heat is applied.
일반적으로, 3D 프린터용 조성물은 출력물의 물리적인 특성을 높이기 위해, 하드한 성질을 갖는 탄소 골격만을 포함하고, 이는 출력물의 물리적 특성을 높일 수 있으나, 반대로, 사용에 의해 형상이 변형되는 경우, 형상 복원이 불가하여, 다 회 사용이 불가한 문제가 있다. In general, a composition for a 3D printer includes only a carbon skeleton having a hard property in order to increase the physical properties of an output product, which can increase the physical properties of an output product, but on the contrary, when the shape is deformed by use, the shape Since it cannot be restored, there is a problem that it cannot be used multiple times.
본 발명에서의 3D 프린터용 조성물은 하드한 성질을 갖는 탄소 골격 및 소프트한 성질을 갖는 탄소 골격을 포함함에 따라, 열적 물성, 강도, 탄성율 및 인장신율과 같은 물리적 특성이 우수할 뿐만 아니라, 소프트 작용기의 플렉서블한 성질을 함께 이용할 수 있어, 열이 제공된 상태에서 외력에 의해 형상을 변형시키면 변형된 형상으로 고정될 수 있고, 이후 다시 열이 제공되면 원래의 형상으로 복원을 가능하게 한다. As the composition for a 3D printer in the present invention includes a carbon skeleton having a hard property and a carbon skeleton having a soft property, not only excellent physical properties such as thermal properties, strength, elastic modulus and tensile elongation, but also a soft functional group The flexible property of can be used together, so that if the shape is deformed by an external force in a state where heat is applied, the deformed shape can be fixed, and then when heat is provided again, it is possible to restore the original shape.
후술하는 바와 같이, 본 발명의 3D 프린터용 광경화형 조성물은 투명 치아 교정 장치로 이용될 수 있으며, 상기 투명 치아 교정 장치는 환자의 치아에 끼워진 상태에서, 원하는 치아의 위치로 교정하기 위해 사용되는 것이다. 이에 3D 프린터로 출력된 투명 치아 교정 장치는 현재 환자의 치아 위치에서의 저항에 대해 파손되지 않을 물리적 특성을 나타내야 하며, 치아를 교정하고자 하는 위치로 이동할 수 있는 힘을 제공할 수 있어야 한다. 본 발명의 투명 치아 교정 장치의 교정 효과 및 교정 원리에 대해서는 후술하고자 한다. 다만, 상기 본 발명의 3D 프린터용 광경화형 조성물은, 광경화성 올리고머에 소프트한 작용기 및 하드한 작용기를 모두 포함하고 있어, 물리적인 특성이 우수할 뿐 아니라, 열이 가해진 상태에서의 형상 변형이 가능할 뿐 아니라, 열에 의해 원래의 형상으로의 복원도 가능한 특성으로 인해 우수한 교정력을 가지는 투명 치아 교정 장치로 제조가 가능하다. As will be described later, the photocurable composition for a 3D printer of the present invention can be used as a transparent orthodontic device, and the transparent orthodontic device is used to straighten teeth to a desired position while being fitted to a patient's teeth. . Accordingly, the transparent orthodontic device output by the 3D printer must exhibit physical characteristics that will not be damaged against the resistance at the current position of the patient's teeth, and must be able to provide force to move the teeth to the position to be corrected. The correction effect and the correction principle of the transparent orthodontic appliance of the present invention will be described later. However, the photocurable composition for 3D printers of the present invention contains both soft functional groups and hard functional groups in the photocurable oligomer, so that it has excellent physical properties and is capable of shape deformation in a state where heat is applied. In addition, it is possible to manufacture a transparent orthodontic appliance having excellent orthodontic power due to the property that it can be restored to its original shape by heat.
또한, 앞서 설명한 바와 같이 상기 광경화형 조성물은 나노 클레이를 추가로 포함하고 있어, 물리적 특성이 보완되어 높은 교정력을 나타낼 수 있다. In addition, as described above, the photocurable composition additionally includes nano-clay, so that physical properties can be supplemented to exhibit high corrective power.
상기 반응성 모노머는 아크릴레이트계 모노머이다. The reactive monomer is an acrylate-based monomer.
보다 구체적으로 상기 아크릴레이트계 모노머는 하기 화학식 4로 표시되는 화합물, 하기 화학식 5로 표시되는 화합물 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다:More specifically, the acrylate-based monomer may be selected from the group consisting of a compound represented by Chemical Formula 4, a compound represented by Chemical Formula 5, and a mixture thereof:
[화학식 4][Formula 4]
Figure PCTKR2022002635-appb-img-000007
Figure PCTKR2022002635-appb-img-000007
[화학식 5][Formula 5]
Figure PCTKR2022002635-appb-img-000008
Figure PCTKR2022002635-appb-img-000008
본 발명의 다른 일 실시예에 따른 투명 치아 교정 장치는 상기 3D 프린터용 광경화형 조성물을 포함할 수 있다.The transparent orthodontic appliance according to another embodiment of the present invention may include the photocurable composition for the 3D printer.
본 발명의 투명 교정 장치는 광경화형 조성물을 이용하여 3D 프린팅으로 출력된 것이며, 기존 투명 치아 교정 장치와 달리 치아의 굴곡면까지 정밀하게 재현이 가능하고, 치아와의 밀착력이 높아 교정 효과가 우수하다. The transparent orthodontic device of the present invention is output by 3D printing using a photocurable composition, and unlike conventional transparent orthodontic devices, it is possible to precisely reproduce the curved surface of teeth, and the orthodontic effect is excellent because of its high adhesion to the teeth. .
본 발명의 투명 치아 교정 장치는 환자의 치아 구조에 대한 데이터를 획득하고 이를 출력하여 제조하는 것으로, 치아 구조와 편차가 50 내지 80㎛로 거의 차이가 없이 제조가 가능한 반면, 종래 투명 치아 교정 장치는 환자의 치아와 편차가 200 내지 300㎛로 나타나 밀착하지 못해 교정력이 떨어진다.The transparent orthodontic device of the present invention is manufactured by obtaining data on the patient's tooth structure and outputting it, and can be manufactured with almost no difference with the tooth structure and deviation of 50 to 80 μm, whereas the conventional transparent orthodontic device The deviation from the patient's teeth appears to be 200 to 300 μm, so the orthodontic force is poor because it cannot be closely adhered to.
본 발명의 투명 치아 교정 장치는 40℃ 이상으로 가열 후, 환자의 치아에 끼워 치아와 밀착된 형태로 형상이 고정되며, 상기 치아에 밀착된 투명 치아 교정 장치는 체온에 의해 원래의 형상으로 복원되어 치아를 교정하는 것이다. The transparent orthodontic device of the present invention is heated to 40 ° C. or higher, and then inserted into the patient's teeth and fixed in shape in close contact with the teeth, and the transparent orthodontic device in close contact with the teeth is restored to its original shape by body temperature to straighten teeth
상기 본 발명의 투명 치아 교정 장치는 가열된 물 속에 넣었다 빼면, 형상의 변형이 가능하다. 열을 가하게 되면 일정 시간 유연성이 나타나게 되어, 형상의 변형이 가능하게 되는데, 이러한 성질을 이용하여, 투명 치아 교정 장치를 환자의 치아에 끼우기 전에 60 내지 100℃의 물에 담근 후, 꺼내서 치아에 끼운 후 손으로 간단히 눌러주면, 치아에 밀착하는 형태로 형상이 변형된다. The transparent orthodontic device of the present invention can be deformed in shape by putting it in and out of heated water. When heat is applied, flexibility appears for a certain period of time, and shape deformation is possible. Using this property, the transparent orthodontic appliance is immersed in water at 60 to 100 ° C. before being inserted into the patient's teeth, then taken out and inserted into the teeth. Then, if you simply press it with your hand, the shape is deformed into a form that closely adheres to the teeth.
이후, 구강 내 체온에 의해 투명 치아 교정 장치에 열이 제공되게 되면 본래 출력된 형태로의 복원이 일어나게 된다. Thereafter, when heat is provided to the transparent orthodontic device by body temperature in the oral cavity, restoration to the original output form occurs.
즉, 60 내지 100℃의 물에 담근 후, 치아에 끼우고, 형태를 치아와 동일한 형태로 변형시키고 나면, 본 발명의 투명 치아 교정 장치는 현재 환자의 치아 구조에 맞춰 형상이 변형되게 되고, 이후 체온에 의해 열이 제공되면 원래 출력된 형태로 서서히 복원되게 되고, 이때 투명 치아 교정 장치가 원래의 형상으로 복원하고자 하는 힘에 의해, 치아를 교정하고자 하는 위치로 이동시키게 된다. That is, after immersing it in water at 60 to 100 ° C., inserting it into the teeth, and transforming the shape into the same shape as the teeth, the transparent orthodontic device of the present invention is transformed in shape according to the current patient's tooth structure, and then When heat is provided by body temperature, the original output form is gradually restored, and at this time, the transparent orthodontic appliance moves the teeth to the position to be corrected by the force to restore the original shape.
즉, 종래 치아 교정 장치는 환자의 치아 구조로부터 획득된 정보에서 단계적으로 교정하고자 하는 치아의 위치에 맞춰 투명 치아 교정 장치로 제조한 후, 치아에 끼워, 경질 소재의 성질에 의해 치아를 이동시키게 된다. 앞서 설명한 바와 같이 종래 투명 치아 교정 장치는 소재의 성질에 의해 치아를 이동시키는 것으로, 치아 내 균일한 힘이 제공되지 못하여, 치아 교정 효과가 떨어진다. That is, the conventional orthodontic device is manufactured as a transparent orthodontic device according to the position of the tooth to be corrected step by step from information obtained from the patient's tooth structure, and then inserted into the tooth to move the tooth by the nature of the hard material. . As described above, the conventional transparent orthodontic device moves the teeth due to the nature of the material, and does not provide a uniform force within the teeth, so the orthodontic effect is reduced.
반면, 본 발명의 투명 치아 교정 장치는 앞서 설명한 바와 같이, 투명 치아 교정 장치가 최초 사용 시, 치아의 구조와 동일한 상태로 변형된 상태이나, 체온에 의해 열이 제공되면, 투명 치아 교정 장치가 원래의 형상으로 복원되어, 치아에 힘이 전달되는 것으로, 치아에 전달되는 힘이 교정 장치의 소재에 의한 힘이 아니며, 형상의 복원에 의한 힘의 발생 및 전달인 점에서 치아 전체에 균일한 힘이 제공되고, 치아가 전체로 이동할 수 있게 된다. On the other hand, as described above, the transparent orthodontic device of the present invention is in a state in which the transparent orthodontic device is deformed to the same structure as the teeth when first used, but when heat is provided by body temperature, the transparent orthodontic device is originally It is restored to the shape of the tooth, and the force transmitted to the tooth is not the force of the material of the orthodontic device, but the force generated and transmitted by the restoration of the shape. provided, and the tooth becomes movable as a whole.
본 발명의 다른 일 실시예에 따른 3D 프린터용 광경화형 조성물의 제조 방법은 1) 1종 이상의 반응성 모노머를 혼합하고 교반하는 단계; 2) 상기 반응성 모노머에 나노 클레이를 첨가하고, 분쇄 및 분산하여 제1 혼합물을 제조하는 단계; 3) 50 내지 70℃ 오븐에서 10 내지 15시간 동안 가열한 광경화성 올리고머를 상기 제1 혼합물에 넣고 제2 혼합물을 제조하는 단계; 및 4) 상기 제2 혼합물에 광개시제를 추가하고 혼합 및 탈포하는 단계를 포함할 수 있다. A method for preparing a photocurable composition for a 3D printer according to another embodiment of the present invention includes: 1) mixing and stirring at least one reactive monomer; 2) preparing a first mixture by adding nanoclay to the reactive monomer, pulverizing and dispersing; 3) preparing a second mixture by adding a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours into the first mixture; and 4) adding a photoinitiator to the second mixture, mixing, and defoaming.
상기 1) 단계는, 반응성 모노머를 혼합하고 교반하는 단계로, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물을 혼합하고 교반하는 것이다:Step 1) is a step of mixing and stirring a reactive monomer, mixing and stirring a compound represented by Formula 4 and a compound represented by Formula 5 below:
[화학식 4][Formula 4]
Figure PCTKR2022002635-appb-img-000009
Figure PCTKR2022002635-appb-img-000009
[화학식 5][Formula 5]
Figure PCTKR2022002635-appb-img-000010
Figure PCTKR2022002635-appb-img-000010
상기 반응성 모노머는 동일한 중량 비율로 혼합하고 교반하는 단계이다. 이후, 반응성 모노머가 혼합된 혼합물에 나노 클레이를 첨가하고, 분쇄 및 분산하여 제1 혼합물을 제조한다. The reactive monomers are mixed in the same weight ratio and stirred. Thereafter, the nanoclay is added to the mixture in which the reactive monomer is mixed, and pulverized and dispersed to prepare a first mixture.
상기 제1 혼합물은 나노 클레이가 균일하게 분산된 형태이며, 보다 구체적으로 팁 초음파 처리기를 이용하여, 700 내지 800w의 출력으로 30초 내지 90초 동안 분쇄 및 분산 공정을 진행한다. 상기와 같은 분쇄 및 분산 공정이 아닌 다른 분산 공정으로 진행 시, 나노 클레이가 균일하게 분산되지 않고, 분산 안정성이 떨어져 시간의 경과 시, 제1 혼합물이 층 분리가 일어나게 된다. 즉 상기와 같은 분산 방법에 의해 분산 시 균일하게 분산될 뿐 아니라, 우수한 안정성을 나타낼 수 있다. The first mixture is a form in which nanoclay is uniformly dispersed, and more specifically, a grinding and dispersing process is performed for 30 seconds to 90 seconds at an output of 700 to 800 w using a tip sonicator. When proceeding with a dispersion process other than the above grinding and dispersion process, the nanoclay is not uniformly dispersed and the dispersion stability is deteriorated, so that the first mixture is layer-separated over time. That is, when dispersing by the above dispersing method, it is not only uniformly dispersed, but also exhibits excellent stability.
이후, 50 내지 70℃ 오븐에서 10 내지 15시간 동안 가열한 광경화성 올리고머를 상기 제1 혼합물에 넣고 제2 혼합물을 제조한다. 상기 광경화성 올리고머는 점도가 높아 상온에서 혼합이 어려워, 오븐에서 가열하여 혼합한다. Thereafter, a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours is added to the first mixture to prepare a second mixture. Since the photocurable oligomer has a high viscosity and is difficult to mix at room temperature, it is mixed by heating in an oven.
마지막으로 광개시제를 추가하고 페이스트 믹서를 사용하여 혼합 및 탈포하여 광경화형 조성물을 제조한다. Finally, a photoinitiator is added and mixed and defoamed using a paste mixer to prepare a photocurable composition.
구체적으로 상기 광개시제는 하기 화학식 6로 표시되는 화합물이다:Specifically, the photoinitiator is a compound represented by Formula 6 below:
[화학식 6][Formula 6]
Figure PCTKR2022002635-appb-img-000011
Figure PCTKR2022002635-appb-img-000011
상기 광경화형 조성물은 광경화성 올리고머; 반응성 모노머; 광개시제; 및 나노 클레이 이외에 추가로 첨가제를 포함할 수 있으며, 상기 첨가제는 열적 및 산화 안정성, 저장안정성, 표면특성, 유동 특성 및 공정 특성 등을 향상시키기 위하여 예를 들어 레벨링제, 슬립제 또는 안정화제 등의 통상의 첨가제를 포함할 수 있다. The photocurable composition may include a photocurable oligomer; reactive monomers; photoinitiators; And in addition to the nano-clay, additives may be included, for example, a leveling agent, a slip agent, or a stabilizer to improve thermal and oxidative stability, storage stability, surface properties, flow properties, and process properties. Conventional additives may be included.
본 발명의 일 실시예에 따른 광경화형 조성물은 UV 레진 100 중량부에 대해, 나노 클레이 0.5 내지 5 중량부 및 광개시제 1 중량부로 포함할 수 있다. 상기 UV 레진은 본 발명의 광경화성 올리고머; 및 반응성 모노머를 포함하는 것으로, 보다 구체적으로 하기 화학식 1로 표시되는 화합물 중 A가 화학식 2로 선택되는 화합물, 하기 화학식 1로 표시되는 화합물 중 A가 화학식 3으로 선택되는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물을 1:1:1:1 내지 1:2:1:1의 중량 비율로 포함할 수 있다:The photocurable composition according to an embodiment of the present invention may include 0.5 to 5 parts by weight of nanoclay and 1 part by weight of a photoinitiator based on 100 parts by weight of the UV resin. The UV resin is a photocurable oligomer of the present invention; and a reactive monomer, more specifically, a compound in which A is selected from Formula 2 among compounds represented by Formula 1 below, a compound in which A is selected from Formula 3 among compounds represented by Formula 1 below, and a compound represented by Formula 4 below The compound and the compound represented by Formula 5 may be included in a weight ratio of 1:1:1:1 to 1:2:1:1:
[화학식 1][Formula 1]
Figure PCTKR2022002635-appb-img-000012
Figure PCTKR2022002635-appb-img-000012
[화학식 2][Formula 2]
Figure PCTKR2022002635-appb-img-000013
Figure PCTKR2022002635-appb-img-000013
[화학식 3][Formula 3]
Figure PCTKR2022002635-appb-img-000014
Figure PCTKR2022002635-appb-img-000014
[화학식 4][Formula 4]
Figure PCTKR2022002635-appb-img-000015
Figure PCTKR2022002635-appb-img-000015
[화학식 5][Formula 5]
Figure PCTKR2022002635-appb-img-000016
Figure PCTKR2022002635-appb-img-000016
여기서, here,
n은 1 내지 1,000의 정수이고,n is an integer from 1 to 1,000;
A는 상기 화학식 2 또는 화학식 3으로 표시되는 화합물이며, A is a compound represented by Formula 2 or Formula 3,
*는 결합되는 부분을 의미하며, * means the part to be combined,
R1 내지 R6은 서로 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기, 치환 또는 비치환의 탄소수 1 내지 20개의 시클로알킬기, 치환 또는 비치환의 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환의 탄소수 2 내지 24의 알키닐기, 치환 또는 비치환의 탄소수 7 내지 30의 아르알킬기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴기, 치환 또는 비치환의 탄소수 5 내지 60의 헤테로아릴기, 치환 또는 비치환의 탄소수 6 내지 30의 헤테로아릴알킬기, 치환 또는 비치환의 탄소수 1 내지 30의 알콕시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아르알킬아미노기, 치환 또는 비치환의 탄소수 2 내지 24의 헤테로 아릴아미노기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬실릴기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴실릴기 및 치환 또는 비치환의 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택되며,R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms. An alkyl group, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 24 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 60 carbon atoms, a substituted or unsubstituted heteroarylalkyl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylamino group having 2 to 24 carbon atoms, or a substituted or unsubstituted alkylsilyl group having 1 to 30 carbon atoms , It is selected from the group consisting of a substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms and a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms,
상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기, 치환된 시클로알킬렌기, 치환된 알킬기, 치환된 시클로알킬기, 치환된 알케닐기, 치환된 알키닐기, 치환된 아르알킬기, 치환된 아릴기, 치환된 헤테로아릴기, 치환된 헤테로아릴알킬기, 치환된 알콕시기, 치환된 알킬아미노기, 치환된 아릴아미노기, 치환된 아르알킬아미노기, 치환된 헤테로 아릴아미노기, 치환된 알킬실릴기, 치환된 아릴실릴기 및 치환된 아릴옥시기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다.The substituted alkylene group, substituted arylene group, substituted heteroarylene group, substituted cycloalkylene group, substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted alkynyl group, substituted aralkyl group, substituted aryl Group, substituted heteroaryl group, substituted heteroarylalkyl group, substituted alkoxy group, substituted alkylamino group, substituted arylamino group, substituted aralkylamino group, substituted heteroarylamino group, substituted alkylsilyl group, substituted aryl The silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms. alkynyl group, aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
제조예manufacturing example
하기 화학식 4 및 화학식 5로 표시되는 모노머를 1:1의 중량 비율로 혼합하고, 세피올라이트를 첨가한 후, 팁 초음파 처리기를 이용하여, 750w 출력으로 1 분간 분쇄 및 분산하였다. 이후, 60℃ 오븐에서 12 시간 동안 가열하여 유동성이 확보된 광경화성 올리고머를 혼합하였다. 상기 광경화성 올리고머는 하기 화학식 1로 표시되는 화합물이며, A가 화학식 2로 선택되는 화합물 및 A가 화학식 3으로 선택되는 화합물을 모두 포함하고, 화학식 2로 선택되는 화합물 및 화학식 3으로 선택되는 화합물을 1:1.5의 중량 비율로 포함한다. 이후 하기 화학식 6으로 표시되는 광개시제를 혼합하고, 페이스트 믹서를 사용하여 혼합 및 탈포하였다. The monomers represented by Chemical Formulas 4 and 5 were mixed in a weight ratio of 1:1, sepiolite was added, and then pulverized and dispersed for 1 minute at 750w output using a tip sonicator. Thereafter, the photocurable oligomer having fluidity was mixed by heating in an oven at 60° C. for 12 hours. The photocurable oligomer is a compound represented by Formula 1 below, including both a compound in which A is selected from Formula 2 and a compound in which A is selected from Formula 3, and a compound selected from Formula 2 and a compound selected from Formula 3 in a weight ratio of 1:1.5. Then, a photoinitiator represented by Formula 6 was mixed, and mixed and defoamed using a paste mixer.
[화학식 1][Formula 1]
Figure PCTKR2022002635-appb-img-000017
Figure PCTKR2022002635-appb-img-000017
[화학식 2][Formula 2]
Figure PCTKR2022002635-appb-img-000018
Figure PCTKR2022002635-appb-img-000018
[화학식 3][Formula 3]
Figure PCTKR2022002635-appb-img-000019
Figure PCTKR2022002635-appb-img-000019
[화학식 4][Formula 4]
Figure PCTKR2022002635-appb-img-000020
Figure PCTKR2022002635-appb-img-000020
[화학식 5][Formula 5]
Figure PCTKR2022002635-appb-img-000021
Figure PCTKR2022002635-appb-img-000021
[화학식 6][Formula 6]
Figure PCTKR2022002635-appb-img-000022
Figure PCTKR2022002635-appb-img-000022
여기서, here,
n은 1 내지 1,000의 정수이며,n is an integer from 1 to 1,000;
*는 결합되는 부분을 의미하며,* means the part to be combined,
R1 내지 R6은 메틸기이다.R 1 to R 6 are methyl groups.
상기 광경화형 조성물에 대한 중량 비율은 하기와 같다. The weight ratio with respect to the photocurable composition is as follows.
구성composition 샘플명sample name 세피올라이트sepiolite
UV 레진 UV resin 광개시제photoinitiator
100100 1One DLP Sep-0DLP Sep-0 00
DLP Sep-0.5DLP Sep-0.5 0.50.5
DLP Sep-1DLP Sep-1 1One
DLP Sep-2DLP Sep-2 22
DLP Sep-3DLP Sep-3 33
DLP Sep-5DLP Sep-5 55
(단위 중량부)여기서 UV 레진은 광경화성 올리고머 및 모노머를 포함하는 것으로, 화학식1의 A가 화학식 2로 선택되는 화합물, 화학식 3으로 선택되는 화합물, 화학식 4로 표시되는 모노머 및 화학식 5로 표시되는 모노머를 1:1.5:1:1의 중량비율로 포함하는 것이다. (Unit by weight) Here, the UV resin includes a photocurable oligomer and a monomer, wherein A in Formula 1 is a compound selected from Formula 2, a compound selected from Formula 3, a monomer represented by Formula 4, and a compound represented by Formula 5 Monomers are included in a weight ratio of 1:1.5:1:1.
보관 안정성 평가Storage stability evaluation
모노머 및 세피올라이트의 분산에 의한 보관 안정성을 평가하기 위해, 세피올라이트 및 모노머가 혼합된 용액을 3일 동안 보관하여 층 분리가 발생하는지 여부를 확인하였다. In order to evaluate storage stability due to the dispersion of the monomer and sepiolite, a mixed solution of sepiolite and monomer was stored for 3 days to determine whether layer separation occurred.
실험 결과는 도 1과 같다. The experimental results are shown in FIG. 1 .
왼쪽부터 DLP Sep-0.5, DLP Sep-1, DLP Sep-2, DLP Sep-3 및 DLP Sep-5로 3일 경과 후에도 층 분리가 일어나지 않고, 안정하게 유지되는 것을 확인할 수 있다. 세피올라이트는 클레이의 일 종류로, 모노머와 분산이 용이하지 않고, 분산 후에도 보관 안성성이 떨어지는 문제가 있다. 다만, 본 발명에서와 같이 팁소닉 장비를 이용하여 분쇄 및 분산 공정을 진행하게 되면, 균일하게 분산될 뿐 아니라, 장기간 보관 시에도 우수한 안정성을 나타냄을 확인하였다. From the left, it can be seen that DLP Sep-0.5, DLP Sep-1, DLP Sep-2, DLP Sep-3, and DLP Sep-5 do not cause layer separation even after 3 days and remain stable. Sepiolite is a type of clay, and it is not easy to disperse with monomers, and there is a problem of poor storage stability even after dispersion. However, it was confirmed that, as in the present invention, when the pulverization and dispersion process is performed using the tips sonic equipment, it is not only uniformly dispersed, but also exhibits excellent stability even during long-term storage.
출력물의 물성 평가Evaluation of physical properties of output
DLP 방식의 3D 프린터를 이용하여 ASTM D638 타입 5번으로 출력하였다. 1차적으로 DLP 방식의 3D 프린터를 사용하여 시편을 출력하였으며 400mW/㎠의 인텐시티로 10분간 경화를 진행하였다.It was printed in ASTM D638 type No. 5 using a DLP-type 3D printer. First, a specimen was printed using a DLP-type 3D printer, and curing was performed for 10 minutes at an intensity of 400 mW/cm 2 .
복합 시료의 인장 강도는 UTM(AllroundLine Z010, Zwick, Germany)을 사용하여 측정하여 SEP 함량 및 인쇄 방법 별 차이가 증가함에 따라 재료 특성 및 3D 인쇄 효과의 변화를 확인하였다. 측정 중에 5mm/min의 크로스 헤드 속도를 사용하고 기계적 특성을 실온(RT, ~ 20℃)에서 분석하였다. 오차 범위를 계산하기 위해 각 구성의 7 개 표본을 측정하였다.The tensile strength of the composite samples was measured using UTM (AllroundLine Z010, Zwick, Germany) to confirm the change in material properties and 3D printing effect as the SEP content and printing method increased. A crosshead speed of 5 mm/min was used during the measurement and the mechanical properties were analyzed at room temperature (RT, ~20 °C). Seven samples of each configuration were measured to calculate the margin of error.
광경화형 조성물의 유변 특성 측정을 위해 레오미터(MCR 302, Anton Paar Ltd., Austria)를 사용하였다. 일회용 평행판의 직경은 25mm, 실험 온도는 25 ℃, 플레이트 간격은 100μm, 전단 속도는 0.1 내지 100rad/s 로 설정하였다.A rheometer (MCR 302, Anton Paar Ltd., Austria) was used to measure the rheological properties of the photocurable composition. The disposable parallel plate had a diameter of 25 mm, an experimental temperature of 25 °C, a plate interval of 100 μm, and a shear rate of 0.1 to 100 rad/s.
세피올라이트의 함량이 증가함에 따른 경화 전의 유변학적 거동은 도 5와 같다. 세피올라이트가 분산됨에 따라 조성물의 점도는 증가하지만 변형이 증가함에 따라 전단박화 거동을 시작하였다.The rheological behavior before curing as the content of sepiolite increases is shown in FIG. 5 . As the sepiolite was dispersed, the viscosity of the composition increased, but shear thinning behavior began as the deformation increased.
세피올라이트를 2, 3 및 5 중량부로 포함하는 광경화형 조성물의 경우 전단박화와 같이 정지 상태로 구성된 나노 구조체의 구조가 붕괴됨에 따라 점도가 감소하고 항복 응력이 발생하는 현상으로 설명할 수 있다. 그러나 본 발명에서 세피올라이트를 0, 0.5 및 1 중량부로 포함하는 경우는 뉴턴 유체 거동을 나타내며, 상기와 같은 현상은 도 4와 같다. 세피올라이트가 없는 광경화형 조성물은 모너머가 다량 함유되어 있고, 일부 광개시제만 존재함에 따라, 뉴턴 유체 거동을 나타낸다. 또한, 세피올라이트가 존재하지만 0.5 및 1 중량부로 포함하는 경우에는, 세피올라이트의 양쪽 끝이 어느 방향으로 회전하더라도 간섭이 발생하지 않는다. 다만, 세피올라이트 입자는 1 중량부 이상으로 포함 시, 유변학적 침투에 대한 임계 값 이상의 순간에서 나노 구조를 형성하고 전단력 하에서 정렬하였다. 세피올라이트를 5 중량부로 포함하는 광경화성 조성물은 얽힘에 대한 임계점을 보여주고 명백한 전단 희석 거동을 시작하였다.In the case of a photocurable composition containing 2, 3, and 5 parts by weight of sepiolite, it can be explained by a phenomenon in which viscosity decreases and yield stress occurs as the structure of a nanostructure configured in a stationary state collapses, such as shear thinning. However, in the present invention, the case of including 0, 0.5, and 1 parts by weight of sepiolite exhibits Newtonian fluid behavior, and the above phenomenon is shown in FIG. 4. The photocurable composition without sepiolite contains a large amount of monomers and exhibits Newtonian fluid behavior as only some photoinitiators are present. In addition, although sepiolite is present, when it is included in 0.5 and 1 part by weight, no interference occurs even when both ends of the sepiolite rotate in any direction. However, when the sepiolite particles were included in an amount of 1 part by weight or more, a nanostructure was formed at a moment above a critical value for rheological permeation and aligned under shear force. The photocurable composition comprising 5 parts by weight of sepiolite showed a critical point for entanglement and started to exhibit a clear shear thinning behavior.
광경화성 조성물의 수율 특성 평가Evaluation of yield characteristics of photocurable compositions
도 6은 본 발명의 광경화성 조성물에 대한 수율 특성에 관한 것이다. 상기 수율 특성은 출력물의 형태를 유지하는데 중요한 역할을 한다. 다만, DLP 방식의 3D 프린팅을 위한 광경화성 조성물은 액상으로 흐르는 상태여야 한다. 그렇지 않으면 DLP 프린팅 환경에서 출력이 되지 않는다. 이에, 세피올라이트의 함량이 증가할수록 점도가 증가하므로 수율 특성에 대한 확인이 필요하다. 6 relates to yield characteristics for the photocurable composition of the present invention. The yield characteristics play an important role in maintaining the shape of the output. However, the photocurable composition for 3D printing of the DLP method must flow in a liquid state. Otherwise, it cannot be printed in the DLP printing environment. Therefore, since the viscosity increases as the content of sepiolite increases, it is necessary to check the yield characteristics.
수율 특성에 대한 중요한 그래프는 전단 희석 특성을 가진 2, 3 및 5 중량부로 세피올라이트를 포함하는 샘플에서 확인될 수 있다. 세피올라이트를 0, 0.5 및 1 중량부로 포함하는 경우는, 뉴턴 유체 거동이 관찰되어, 항복 특성에 의미가 없다. 2 내지 5 중량부로 포함하는 경우는, 세피올라이트의 함량이 증가함에 따라 저장 계수와 손실 계수가 모두 증가하였다. An important plot of yield characteristics can be seen for samples containing sepiolite at 2, 3 and 5 parts by weight with shear thinning properties. In the case of including 0, 0.5, and 1 part by weight of sepiolite, Newtonian fluid behavior is observed, and the yield properties are meaningless. When included in 2 to 5 parts by weight, both the storage coefficient and the loss coefficient increased as the content of sepiolite increased.
또한, 함량이 증가함에 따라 저장 계수 및 손실 계수의 차이가 좁아지는 것을 확인하였다. 그러나 손실 계수는 모든 시료에서, 저장 계수보다 높게 유지되었고, 세피올라이트를 5 중량부 이하로 포함하는 경우, 광경화성 조성물이 흐르는 액상으로 존재함을 확인하였다. In addition, it was confirmed that the difference between the storage coefficient and the loss coefficient narrowed as the content increased. However, the loss coefficient was maintained higher than the storage coefficient in all samples, and it was confirmed that the photocurable composition existed in a flowing liquid phase when the sepiolite was included in an amount of 5 parts by weight or less.
광경화성 조성물의 회복 특성 평가Evaluation of recovery properties of photocurable compositions
본 발명의 일 실시예에 따른 광경화성 조성물의 전단 계수 및 점도는 세피올라이트의 함량뿐만 아니라 전단 응력 및 시간에 의해 달라지는 바, 이는 도 7을 통해 확인할 수 있다. 세피올라이트 함량, 스트레스 및 시간의 상관 관계는 도 7과 같이 유동적이다. 저장 탄성률은 300 Pa의 전단력 동안 감소하지만 0.5 pa의 전단력에서 회복하였다. 다만, 테스트 과정에서 샘플의 손실 계수는 저장 계수보다 높은 값을 유지하였다.The shear modulus and viscosity of the photocurable composition according to an embodiment of the present invention vary not only by the content of sepiolite but also by shear stress and time, which can be confirmed through FIG. 7 . The correlation between sepiolite content, stress and time is fluid as shown in FIG. 7 . The storage modulus decreases during a shear force of 300 Pa, but recovers at a shear force of 0.5 pa. However, during the test process, the loss coefficient of the sample maintained a higher value than the storage coefficient.
광경화성 조성물의 광경화 거동 평가Evaluation of photocuring behavior of photocurable compositions
광경화성 조성물의 경화거동 과정에서 유변학적 특성 변화를 측정하기 위해 MCR 302 레오미터(Anton Paar Ltd., Austria)를 사용하였다. 일회용 평행 판의 직경은 12mm, 실험 온도는 25 ℃, 플레이트 간격은 100μm, 전단 속도는 0.01 %, 라디안은 10rad/s이다. 파장 365nm의 LED는 15mW/cm2의 강도로 사용하였다. 안정화를 위하여 플레이트의 진동을 30초 동안 수행한 다음 300초 동안 조사하고, 동시에 0.1N의 힘이 가해, 플레이트를 이동하며 재료의 수축 정도를 측정하였다.An MCR 302 rheometer (Anton Paar Ltd., Austria) was used to measure the change in rheological properties during the curing behavior of the photocurable composition. The diameter of the disposable parallel plates is 12 mm, the experimental temperature is 25 °C, the plate spacing is 100 μm, the shear rate is 0.01%, and the radian is 10 rad/s. An LED with a wavelength of 365 nm was used at an intensity of 15 mW/cm 2 . For stabilization, the plate was vibrated for 30 seconds, then irradiated for 300 seconds, and at the same time, a force of 0.1 N was applied to measure the degree of shrinkage of the material while moving the plate.
광경화 거동의 평가를 위해, 385nm의 UV를 조사함과 동시에 재료의 유변학적 거동을 관찰하였다. 도 8은 경화 과정에서 광경화성 조성물의 저장 모듈러스 변화를 모니터링한 결과이다. 상기 조성물을 30초 동안 안정화시킨 후 UV 조사를 수행하였다. 일반적으로 나노 물질이 첨가된 광경화성 조성물은 나노 물질이 UV를 흡수하기 때문에 천천히 경화되는 경향이 있다. 광경화 거동이 세피올라이트에 의해 지연되는 경우 각 샘플에 대해 다른 인쇄 조건을 적용해야 하는 문제가 발생할 수 있다. To evaluate the photocuring behavior, the rheological behavior of the material was observed while irradiating with 385 nm UV. 8 is a result of monitoring the storage modulus change of the photocurable composition during the curing process. After stabilizing the composition for 30 seconds, UV irradiation was performed. In general, a photocurable composition to which nanomaterials are added tends to cure slowly because the nanomaterials absorb UV rays. If the photocuring behavior is delayed by sepiolite, a problem of applying different printing conditions for each sample may occur.
그러나, 도 8과 같이 본 발명의 조성물은 UV 조사가 시작된 후 5 초 후에 모든 샘플의 저장 탄성률이 증가하는 것을 확인하였다. However, as shown in FIG. 8, it was confirmed that the composition of the present invention increased the storage modulus of all samples 5 seconds after UV irradiation started.
또한, 세피올라이트 함량이 증가할수록 재료의 저장 탄성율이 증가하는 경향이 나타남을 확인하였으며, 상기 결과를 토대로, 세피올라이트는 UV 레진과의 상용성이 좋고 구조보강에 효과적이라고 할 것이다.In addition, it was confirmed that the storage modulus of the material tended to increase as the sepiolite content increased, and based on the above results, sepiolite has good compatibility with UV resin and is effective in structural reinforcement.
3D 프린팅된 출력물의 기계적 인장 특성Mechanical Tensile Properties of 3D Printed Outputs
인장강도를 측정하기 위한 샘플은 DLP 방법을 사용하여 인쇄하고 이를 평가하였다. DLP 출력 샘플의 실험 결과는 세피올라이트의 함량이 증가함에 따라 인장 강도 및 탄성 계수가 증가하였다. 5 중량부의 농도에서 인장 강도는 20.7MPa (대조군, 순수 광경화성 수지)에서 25.6MPa로 증가하였고, 탄성 계수는 210.9MPa (대조군, 순수 광경화성 수지)에서 346.4MPa로 증가하였다. Samples for measuring tensile strength were printed using the DLP method and evaluated. Experimental results of the DLP output samples showed that the tensile strength and modulus of elasticity increased as the content of sepiolite increased. At a concentration of 5 parts by weight, the tensile strength increased from 20.7 MPa (control, pure photocurable resin) to 25.6 MPa, and the elastic modulus increased from 210.9 MPa (control, pure photocurable resin) to 346.4 MPa.
또한, 도 9 및 10과 같이 세피올라이트 함량이 증가함에도 불구하고 샘플 파단 시 높은 연신율을 유지하였다. 상기 현상은 본 실험에 사용된 광경화성 올리고머의 특성 때문인 것으로 추정된다. 실험에 사용된 고점도 올리고머 및 점도 희석용 모노머는 세피올라이트와 전기적 인력의 상호 작용을 통해 구조적 강화 및 변형에 반응할 수 있다. 일반적인 나노 복합체는 고분자 매트릭스 분자 사슬의 이동을 제한하여, 강도는 증가하지만 연신율은 낮아진다. In addition, as shown in FIGS. 9 and 10, high elongation was maintained at sample breakage despite an increase in sepiolite content. This phenomenon is presumed to be due to the characteristics of the photocurable oligomer used in this experiment. The high-viscosity oligomer and the monomer for viscosity dilution used in the experiment can respond to structural strengthening and transformation through the interaction of electrical attraction with sepiolite. A typical nanocomposite restricts the movement of molecular chains in a polymer matrix, resulting in increased strength but lower elongation.
반면, 본 발명은 광경화성 조성물은 기계적 특성이 향상될 수 있고, 기계적 물성의 특성을 목적 및 용도에 의해 변경 가능하다.On the other hand, the photocurable composition of the present invention can have improved mechanical properties and can change the mechanical properties depending on the purpose and use.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concept of the present invention defined in the following claims are also made according to the present invention. falls within the scope of the rights of
본 발명은 3D 프린터용 광경화형 조성물 및 이의 제조 방법에 관한 것으로, 보다 구체적으로, DLP 방식의 3D 프린터를 이용하여 출력물을 제조할 수 있는 광경화형 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a photocurable composition for a 3D printer and a method for producing the same, and more particularly, to a photocurable composition capable of producing an output product using a DLP-type 3D printer and a method for producing the same.

Claims (7)

  1. 광경화성 올리고머;photocurable oligomers;
    반응성 모노머; reactive monomers;
    광개시제; 및photoinitiators; and
    나노 클레이를 포함하며,Including nanoclay,
    상기 나노 클레이는 반응성 모노머와 전기적 인력의 상호 작용으로 인해, 3D 프린팅에 의해 출력된 출력물의 기계적 물성을 강화하는The nanoclay enhances the mechanical properties of the output printed by 3D printing due to the interaction of the reactive monomer and the electrical attraction
    3D 프린터용 광경화형 조성물.A photocurable composition for 3D printers.
  2. 제1항에 있어서, According to claim 1,
    상기 나노 클레이는 세피올라이트(Sepiolite)인The nano-clay is Sepiolite
    3D 프린터용 광경화형 조성물.A photocurable composition for 3D printers.
  3. 제2항에 있어서,According to claim 2,
    상기 세피올라이트는 단일 섬유 형태로, 평균 길이는 0.2 내지 4㎛이며, 폭은 10 내지 30nm이고, 평균 두께는 5 내지 10nm인The sepiolite is in the form of a single fiber, with an average length of 0.2 to 4 μm, a width of 10 to 30 nm, and an average thickness of 5 to 10 nm.
    3D 프린터용 광경화형 조성물.A photocurable composition for 3D printers.
  4. 제1항에 있어서, According to claim 1,
    상기 광경화성 올리고머는 하기 화학식 1로 표시되는 화합물인The photocurable oligomer is a compound represented by Formula 1 below.
    3D 프린터용 광경화형 조성물:Photocurable composition for 3D printers:
    [화학식 1][Formula 1]
    Figure PCTKR2022002635-appb-img-000023
    Figure PCTKR2022002635-appb-img-000023
    [화학식 2][Formula 2]
    Figure PCTKR2022002635-appb-img-000024
    Figure PCTKR2022002635-appb-img-000024
    [화학식 3][Formula 3]
    Figure PCTKR2022002635-appb-img-000025
    Figure PCTKR2022002635-appb-img-000025
    여기서, here,
    n은 1 내지 1,000의 정수이고,n is an integer from 1 to 1,000;
    A는 상기 화학식 2 또는 화학식 3으로 표시되는 화합물이며, A is a compound represented by Formula 2 or Formula 3,
    *는 결합되는 부분을 의미하며, * means the part to be combined,
    R1 내지 R6은 서로 동일하거나 상이하며 각각 독립적으로 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬기, 치환 또는 비치환의 탄소수 1 내지 20개의 시클로알킬기, 치환 또는 비치환의 탄소수 2 내지 30의 알케닐기, 치환 또는 비치환의 탄소수 2 내지 24의 알키닐기, 치환 또는 비치환의 탄소수 7 내지 30의 아르알킬기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴기, 치환 또는 비치환의 탄소수 5 내지 60의 헤테로아릴기, 치환 또는 비치환의 탄소수 6 내지 30의 헤테로아릴알킬기, 치환 또는 비치환의 탄소수 1 내지 30의 알콕시기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴아미노기, 치환 또는 비치환의 탄소수 6 내지 30의 아르알킬아미노기, 치환 또는 비치환의 탄소수 2 내지 24의 헤테로 아릴아미노기, 치환 또는 비치환의 탄소수 1 내지 30의 알킬실릴기, 치환 또는 비치환의 탄소수 6 내지 30의 아릴실릴기 및 치환 또는 비치환의 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택되며,R 1 to R 6 are the same as or different from each other, and each independently represents hydrogen, heavy hydrogen, a cyano group, a nitro group, a halogen group, a hydroxy group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted cyclo group having 1 to 20 carbon atoms. An alkyl group, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 24 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 60 carbon atoms, a substituted or unsubstituted heteroarylalkyl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkylamino group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylamino group having 2 to 24 carbon atoms, or a substituted or unsubstituted alkylsilyl group having 1 to 30 carbon atoms , It is selected from the group consisting of a substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms and a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms,
    상기 치환된 알킬렌기, 치환된 아릴렌기, 치환된 헤테로아릴렌기, 치환된 시클로알킬렌기, 치환된 알킬기, 치환된 시클로알킬기, 치환된 알케닐기, 치환된 알키닐기, 치환된 아르알킬기, 치환된 아릴기, 치환된 헤테로아릴기, 치환된 헤테로아릴알킬기, 치환된 알콕시기, 치환된 알킬아미노기, 치환된 아릴아미노기, 치환된 아르알킬아미노기, 치환된 헤테로 아릴아미노기, 치환된 알킬실릴기, 치환된 아릴실릴기 및 치환된 아릴옥시기는 수소, 중수소, 시아노기, 니트로기, 할로겐기, 히드록시기, 탄소수 1 내지 30의 알킬기, 탄소수 1 내지 20개의 시클로알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 24의 알키닐기, 탄소수 7 내지 30의 아르알킬기, 탄소수 6 내지 30의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, 탄소수 6 내지 30의 헤테로아릴알킬기, 탄소수 1 내지 30의 알콕시기, 탄소수 1 내지 30의 알킬아미노기, 탄소수 6 내지 30의 아릴아미노기, 탄소수 6 내지 30의 아르알킬아미노기, 탄소수 2 내지 24의 헤테로 아릴아미노기, 탄소수 1 내지 30의 알킬실릴기, 탄소수 6 내지 30의 아릴실릴기 및 탄소수 6 내지 30의 아릴옥시기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환되며, 복수 개의 치환기로 치환되는 경우 이들은 서로 동일하거나 상이하다. The substituted alkylene group, substituted arylene group, substituted heteroarylene group, substituted cycloalkylene group, substituted alkyl group, substituted cycloalkyl group, substituted alkenyl group, substituted alkynyl group, substituted aralkyl group, substituted aryl Group, substituted heteroaryl group, substituted heteroarylalkyl group, substituted alkoxy group, substituted alkylamino group, substituted arylamino group, substituted aralkylamino group, substituted heteroarylamino group, substituted alkylsilyl group, substituted aryl The silyl group and the substituted aryloxy group are hydrogen, deuterium, cyano group, nitro group, halogen group, hydroxy group, alkyl group having 1 to 30 carbon atoms, cycloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 30 carbon atoms, and 2 to 24 carbon atoms. alkynyl group, aralkyl group having 7 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, heteroaryl group having 5 to 60 nuclear atoms, heteroarylalkyl group having 6 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and 1 carbon atom to 30 alkylamino groups, C6-30 arylamino groups, C6-30 aralkylamino groups, C2-24 heteroarylamino groups, C1-30 alkylsilyl groups, C6-30 arylsilyl groups, and It is substituted with one or more substituents selected from the group consisting of aryloxy groups having 6 to 30 carbon atoms, and when substituted with a plurality of substituents, they are the same as or different from each other.
  5. 제1항에 있어서, According to claim 1,
    상기 반응성 모노머는 아크릴레이트계 모노머인The reactive monomer is an acrylate-based monomer
    3D 프린터용 광경화형 조성물.A photocurable composition for 3D printers.
  6. 제1항 내지 제5항에 따른 3D 프린터용 광경화형 조성물을 포함하는Claims 1 to 5 comprising a photo-curable composition for a 3D printer
    투명 치아 교정 장치.Transparent orthodontic appliance.
  7. 1) 1종 이상의 반응성 모노머를 혼합하고 교반하는 단계;1) mixing and stirring at least one reactive monomer;
    2) 상기 반응성 모노머에 나노 클레이를 첨가하고, 분쇄 및 분산하여 제1 혼합물을 제조하는 단계;2) preparing a first mixture by adding nanoclay to the reactive monomer, pulverizing and dispersing;
    3) 50 내지 70℃ 오븐에서 10 내지 15시간 동안 가열한 광경화성 올리고머를 상기 제1 혼합물에 넣고 제2 혼합물을 제조하는 단계; 및3) preparing a second mixture by adding a photocurable oligomer heated in an oven at 50 to 70° C. for 10 to 15 hours into the first mixture; and
    4) 상기 제2 혼합물에 광개시제를 추가하고 혼합 및 탈포하는 단계를 포함하는4) adding a photoinitiator to the second mixture, mixing and defoaming
    3D 프린터용 광경화형 조성물의 제조 방법.A method for producing a photocurable composition for 3D printers.
PCT/KR2022/002635 2022-02-23 2022-02-23 3d printer photo curing composition and preparation method therefor WO2023163241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/002635 WO2023163241A1 (en) 2022-02-23 2022-02-23 3d printer photo curing composition and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/002635 WO2023163241A1 (en) 2022-02-23 2022-02-23 3d printer photo curing composition and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2023163241A1 true WO2023163241A1 (en) 2023-08-31

Family

ID=87766294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002635 WO2023163241A1 (en) 2022-02-23 2022-02-23 3d printer photo curing composition and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2023163241A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761426B1 (en) * 2006-05-29 2007-10-04 주식회사 대하맨텍 Hard coating composition having phtosensitive hardening characteristics, manufacturing method thereof, mobile terminal window, plat display monitor and film coated with the hard coating composition
KR20190107737A (en) * 2017-02-02 2019-09-20 이머리스 탈크 아메리카, 인코포레이티드 Improved inter-rod adhesion and fusion of plastic parts made by 3D printing
KR20200046153A (en) * 2018-10-16 2020-05-07 주식회사 그래피 Photocurable composition for 3D printer for the manufacture of transparent aligner
KR20220112393A (en) * 2021-02-04 2022-08-11 주식회사 그래피 Photocurable composition for 3D printer and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761426B1 (en) * 2006-05-29 2007-10-04 주식회사 대하맨텍 Hard coating composition having phtosensitive hardening characteristics, manufacturing method thereof, mobile terminal window, plat display monitor and film coated with the hard coating composition
KR20190107737A (en) * 2017-02-02 2019-09-20 이머리스 탈크 아메리카, 인코포레이티드 Improved inter-rod adhesion and fusion of plastic parts made by 3D printing
KR20200046153A (en) * 2018-10-16 2020-05-07 주식회사 그래피 Photocurable composition for 3D printer for the manufacture of transparent aligner
KR20220112393A (en) * 2021-02-04 2022-08-11 주식회사 그래피 Photocurable composition for 3D printer and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAPAWAN KUNWONG, NATTHAWADEE SUMANOCHITRAPORN, SUPRANEE KAEWPIROM: "Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers", SONGKLANAKARIN JOURNAL OF SCIENCE AND TECHNOLOGY., RESEARCH AND DEVELOPMENT OFFICE (RDO), THAILAND, vol. 33, no. 2, 1 April 2011 (2011-04-01), Thailand, pages 201 - 207, XP055331359, ISSN: 0125-3395 *
KIM HOON, RYU KWANG-HYUN, BAEK DOOYOUNG, KHAN TANVEER AHMED, KIM HYUN-JOONG, SHIN SUNGCHUL, HYUN JINHO, AHN JIN SOO, AHN SUG-JOON,: "3D Printing of Polyethylene Terephthalate Glycol–Sepiolite Composites with Nanoscale Orientation", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 20, 20 May 2020 (2020-05-20), US , pages 23453 - 23463, XP093086884, ISSN: 1944-8244, DOI: 10.1021/acsami.0c03830 *

Similar Documents

Publication Publication Date Title
WO2022225097A1 (en) Post-curing method of 3d printout, and transparent orthodontic appliance manufactured thereby
WO2020040414A1 (en) Radiation curable polymer composition for 3d printer
WO2017073921A1 (en) Polyimide film and method for producing same
WO2016190722A1 (en) Functionalized graphene comprising two or more types of amines, and preparation method therefor
WO2020080643A1 (en) Photocurable composition for 3d printer for producing transparent orthodontic device
WO2022124509A1 (en) Transparent orthodontic appliance having increased correctability
WO2018021674A1 (en) Radiation curable resin composition and use thereof
KR102607733B1 (en) Photocurable composition for 3D printer and manufacturing method thereof
WO2020159282A1 (en) Polycarbonate-nanocellulose composite material and method for manufacturing same
WO2022196878A1 (en) Silicone-based composition and cured product thereof
WO2014133287A1 (en) Resin composition for encapsulating optical element
WO2023163241A1 (en) 3d printer photo curing composition and preparation method therefor
WO2019132473A1 (en) Photocurable composition and molded article manufactured using same
WO2021107366A1 (en) Post-curing process for 3d printed product and device therefor
WO2020105968A1 (en) Single molecule-bonded boron nitride nanotubes, and method for preparing colloid solution by using same
WO2022045785A1 (en) Silicone-based coating composition and silicone-based release film comprising same
WO2021107365A1 (en) Top-down mode 3d printer and method for producing product using same
WO2017195927A1 (en) Novel 2,4,6-triaminotriazine-based urethane acrylate compound and preparation method therefor
WO2023113483A1 (en) Novel organic compound and photocurable composition for 3d printer comprising same
WO2016171303A1 (en) Dental impression material composition having favorable scanning performance and mechanical properties, and dental impression material including same
WO2022080997A1 (en) Patient-customized partial denture using 3d printer
WO2022139403A1 (en) Adhesive film, optical member including same, and optical display device including same
WO2010140804A2 (en) Norbornene resins for encapsulating optical device
WO2023128535A1 (en) Retainer and manufacturing method therefor
WO2020045827A1 (en) Silicone rubber sponge composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928994

Country of ref document: EP

Kind code of ref document: A1