WO2023163230A1 - Laser diode - Google Patents

Laser diode Download PDF

Info

Publication number
WO2023163230A1
WO2023163230A1 PCT/JP2023/007424 JP2023007424W WO2023163230A1 WO 2023163230 A1 WO2023163230 A1 WO 2023163230A1 JP 2023007424 W JP2023007424 W JP 2023007424W WO 2023163230 A1 WO2023163230 A1 WO 2023163230A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser diode
conductivity
conductivity type
film thickness
Prior art date
Application number
PCT/JP2023/007424
Other languages
French (fr)
Japanese (ja)
Inventor
陽 吉川
梓懿 張
真希 久志本
千秋 笹岡
浩 天野
Original Assignee
旭化成株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社, 国立大学法人東海国立大学機構 filed Critical 旭化成株式会社
Publication of WO2023163230A1 publication Critical patent/WO2023163230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • This disclosure relates to laser diodes.
  • nitride semiconductors have been used as materials for forming light emitting diodes (LEDs) and laser diodes (LDs). Since nitride semiconductors have a recombination mode of direct transition, they are suitable as materials for LEDs and LDs in that high recombination efficiency and high optical gain can be obtained.
  • a technique for oscillating a current injection type laser diode in the ultraviolet region has been disclosed (for example, Non-Patent Document 1).
  • An object of the present disclosure is to provide a laser diode with reduced lasing threshold current.
  • a laser diode includes a nitride semiconductor substrate containing Al, and a semiconductor lamination portion arranged on the nitride semiconductor substrate, wherein the semiconductor lamination portion is a first conductivity type clad layer disposed on a nitride semiconductor substrate and including a first conductivity type nitride semiconductor layer; a first waveguide layer disposed on the first conductivity type clad layer; a light-emitting layer disposed on the waveguide layer and formed of a nitride semiconductor including one or more quantum wells; a second waveguide layer disposed on the light-emitting layer; a second waveguide layer disposed on the second waveguide layer; a second-conductivity-type clad layer including a second-conductivity-type nitride semiconductor layer, wherein the first-conductivity-type clad layer is Al a Ga (1-a) N (0.7 ⁇ a ⁇ 0.8 ), the first wave
  • FIG. 1 is a schematic cross-sectional view showing one configuration example of a laser diode according to an embodiment of the present disclosure
  • FIG. 1 is a plan view showing a configuration example of a laser diode according to an embodiment of the present disclosure
  • FIG. 1 is a schematic cross-sectional view showing one configuration example of a laser diode according to an embodiment of the present disclosure
  • FIG. 1 is a plan view showing a configuration example of a laser diode according to an embodiment of the present disclosure
  • a laser diode according to an embodiment of the present disclosure will be described.
  • (1.1) Configuration of Laser Diode A laser diode according to the present embodiment includes a nitride semiconductor substrate containing Al and a semiconductor lamination portion arranged on the nitride semiconductor substrate.
  • the semiconductor lamination portion is arranged on the nitride semiconductor substrate and includes a first conductivity type clad layer including a first conductivity type nitride semiconductor layer, and a first waveguide layer arranged on the first conductivity type clad layer.
  • a light-emitting layer disposed on the first waveguide layer and formed of a nitride semiconductor including one or more quantum wells; a second waveguide layer disposed on the light-emitting layer; and a second conductivity type clad layer disposed and including a second conductivity type nitride semiconductor layer.
  • the first conductivity type clad layer is Al a Ga (1 ⁇ a) N (0.7 ⁇ a ⁇ 0.8), and the first waveguide layer is Al c1 Ga (1 ⁇ c1) N (0.8).
  • the second waveguide layer is Al c2 Ga (1 ⁇ c2) N (0.6 ⁇ c2 ⁇ 0.7)
  • the thickness of the first waveguide layer is T1 and the film thickness T2 of the second waveguide layer, the film thickness ratio T1/T2 is 0.3 or more and 0.7 or less.
  • a nitride semiconductor substrate (hereinafter sometimes referred to as a substrate) contains a nitride semiconductor containing Al.
  • a nitride semiconductor containing Al is, for example, AlN. That is, the substrate is preferably an AlN single crystal substrate.
  • the nitride semiconductor containing Al is not limited to AlN, and may be AlGaN, for example.
  • the substrate is a nitride semiconductor single crystal substrate such as AlN or AlGaN, the difference in lattice constant from the nitride semiconductor layer formed on the substrate becomes small, and the nitride semiconductor layer is grown in a lattice matching system. This can reduce threading dislocations.
  • the threading dislocation density of the substrate is preferably 5 ⁇ 10 4 cm ⁇ 2 or less.
  • the threading dislocation density is more preferably 1 ⁇ 10 3 or more and 1 ⁇ 10 4 cm ⁇ 2 or less.
  • the expression “including” in the expression “including a nitride semiconductor” means that the nitride semiconductor is mainly included in the layer, but the expression also includes cases where other elements are included. Specifically, a small amount of an element other than a nitride semiconductor (for example, Ga (when Ga is not the main element), In, As, P, or Sb, etc. is added in a few percent or less) to the composition of this layer. This expression also includes cases where minor changes are made. The term “includes” also has the same meaning in expressing the compositions of other layers. Also, the minor elements contained are not limited to those described above.
  • the substrate preferably has a layer thickness of 100 ⁇ m or more and 600 ⁇ m or less.
  • the plane orientation includes c-plane (0001), a-plane (11-20), m-plane (10-10), etc., but the c-plane (0001) substrate is more preferable.
  • it can be formed on a plane inclined at some angle (for example, -4° to 4°, preferably -0.4° to 0.4°) from the c-plane (0001) normal direction, but this is not limited to
  • the buffer layer is formed between the substrate and the clad layer of the first conductivity type, and is preferably formed over the entire surface of the substrate.
  • a nitride semiconductor layer having a small difference in lattice constant and thermal expansion coefficient and few defects is formed on the buffer layer.
  • the buffer layer is preferably a nitride semiconductor layer containing Al. For example, AlN.
  • the buffer layer has a thickness of several ⁇ m, for example.
  • the thickness of the buffer layer is preferably thicker than 10 nm and thinner than 10 ⁇ m.
  • the thickness of the buffer layer is thicker than 10 nm, the crystallinity of the nitride semiconductor such as AlN is increased.
  • the thickness of the buffer layer is less than 10 ⁇ m, cracks are less likely to occur in the buffer layer formed by crystal growth over the entire surface of the wafer.
  • a first conductivity type clad layer is formed on the substrate.
  • the term “on” in the expression "a clad layer of the first conductivity type is formed on the substrate” means that the clad layer of the first conductivity type is formed on one side of the substrate. do.
  • the above expression also includes the case where another layer further exists between the substrate and the first-conductivity-type clad layer.
  • the word “upper” has the same meaning also in relation between other layers. For example, even when a second conductivity type clad layer is formed on a first waveguide layer, which will be described later, through an electron blocking layer, the phrase “the second conductivity type clad layer is formed on the first waveguide layer” is used. included in the expression. Further, in the description of the present embodiment, “first conductivity type” and “second conductivity type” mean semiconductors exhibiting different conductivity types. , the other becomes p-type conductive.
  • the first conductivity type cladding layer is a nitride semiconductor layer containing Al and Ga.
  • the first conductivity type cladding layer is made of Al a Ga (1-a) N (0 ⁇ a ⁇ 1), for example. This makes it possible to improve the crystallinity of the light-emitting layer and improve the light-emitting efficiency when the light-emitting layer is formed of a material corresponding to the bandgap energy of the deep ultraviolet region.
  • the nitride semiconductor forming the first conductivity type clad layer is preferably a mixed crystal of AlN and GaN.
  • the first conductivity type clad layer is more preferably made of Al a Ga (1-a) N (0.6 ⁇ a ⁇ 0.9). . From the viewpoint of improving the optical confinement coefficient, it is more preferably made of Al a Ga (1-a) N (0.7 ⁇ a ⁇ 0.8).
  • the Al composition of the first-conductivity-type cladding layer is preferably uniform in the film thickness direction, but is not limited to this. The average Al composition in the first-conductivity-type cladding layer is obtained by integrating the Al composition at a certain position over the film thickness range and then dividing it by the film thickness.
  • the average composition a' is 85%. Further, when 2/3 of the film thickness is 100% and 1/3 of the film thickness is 70%, the average composition a' is 90%.
  • the first conductivity type clad layer may be a graded layer in which the Al composition increases with distance from the substrate.
  • the Al composition described above can be limited to the Al composition obtained by averaging the Al composition at positions in the first conductivity type clad layer in the film thickness direction with respect to the thickness of the first conductivity type clad layer.
  • the first-conductivity-type cladding layer is an n-type conductive semiconductor layer, it may contain group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. Good, but the type of impurity element is not limited to this.
  • the impurity contained in the first-conductivity-type cladding layer is preferably Si, and the impurity concentration is 5 ⁇ 10 18 cm ⁇ 3 or more and 5 ⁇ 10 19 cm. -3 is preferred.
  • the first conductivity type clad layer preferably has a layer thickness of 250 nm or more and 600 nm or less, and has a layer thickness of 300 nm or more and 450 nm or less, from the viewpoint of lattice relaxation in the first conductivity type clad layer and the film resistance. is more preferable.
  • the light emitting layer is a nitride semiconductor layer containing Al and Ga.
  • the nitride semiconductor included in the light-emitting layer is preferably a mixed crystal of AlN and GaN, for example, from the viewpoint of achieving high light- emitting efficiency. be.
  • the quantum well layer of the light emitting layer is preferably Al b Ga (1-b) N (0.35 ⁇ b ⁇ 0.6).
  • the light-emitting layer may have either a multi-quantum well structure or a single-layer quantum well structure, but the number of quantum well structures is preferably two to four.
  • the film thickness of the quantum well layer is preferably 3 nm or more and 6 nm or less.
  • the light-emitting layer may contain group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. do not have.
  • the laser diode of this embodiment is formed above and below the light-emitting layer so as to sandwich the light-emitting layer, and has the effect of confining the light emitted from the light-emitting layer within the light-emitting layer. It may have layers.
  • the waveguide layer is composed of a first waveguide layer arranged on the first conductivity type clad layer side with respect to the light emitting layer and a second waveguide layer arranged on the second conductivity type clad layer side with respect to the light emitting layer. It is preferably composed of two layers.
  • the laser diode of this embodiment includes, for example, a first waveguide layer disposed between a first conductivity type clad layer and a light emitting layer to confine light in the light emitting layer, a second conductivity type clad layer, and a light emitting layer. a second waveguide layer disposed between the layers to confine light to the light emitting layer.
  • the waveguide layer is preferably a nitride semiconductor containing Al and Ga having a bandgap with higher energy than the light emitting layer.
  • the waveguide layer preferably has an Al composition and thickness that increase the field intensity distribution of the light residing within the device and the overlap of the light emitting layer.
  • the first waveguide layer is Al c1 Ga (1 ⁇ c1) N (0.6 ⁇ c1 ⁇ 0.7)
  • the second waveguide layer is Al c2 Ga (1 -c2) N (0.6 ⁇ c2 ⁇ 0.7) is preferred.
  • the film thickness T1 of the first waveguide layer is 20 nm or more and 50 nm or less
  • the film thickness T2 of the second waveguide layer is 50 nm or more and 90 nm or less. More preferably, the film thickness T1 of the first waveguide layer is 30 nm or more and 50 nm or less
  • the film thickness T2 of the second waveguide layer is 60 nm or more and 80 nm or less.
  • the film thickness ratio T1/T2 between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is preferably 0.3 or more and 0.7 or less. It is preferably 0.5 or more and 0.6 or less.
  • the waveguide layer may contain group V elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. isn't it.
  • the Al composition of each of the first waveguide layer and the second waveguide layer is preferably uniform in the film thickness direction, but is not limited to this.
  • the Al composition of the second waveguide layer is higher than the Al composition of the first waveguide layer in order to avoid light absorption by the metal (for example, the second electrode) existing above the second conductivity type cladding layer, which will be described later. may be
  • the second-conductivity-type cladding layer is a nitride semiconductor layer formed on the light-emitting layer and containing Al and Ga having second-conductivity-type conductivity.
  • the second-conductivity-type cladding layer is made of Al d Ga (1-d) N (0 ⁇ d ⁇ 1), for example.
  • the second conductivity type cladding layer is formed on the waveguide layer (second waveguide layer).
  • the second-conductivity-type cladding layer has conductivity sufficient to inject carriers (electrons or holes) into the light-emitting layer, and increases the electric field intensity distribution of the optical mode existing in the device and the overlap of the light-emitting layer.
  • the conductivity type is not particularly limited as long as it is possible to increase the confinement of light (that is, to increase the optical confinement).
  • the average Al composition d' of the second-conductivity-type clad layer is preferably larger than the average Al composition a' of the first-conductivity-type clad layer. More preferably, the average Al composition d' of the second-conductivity-type clad layer is 0.8 or more and 0.9 or less.
  • the average Al composition is obtained by integrating the Al composition at a certain position in the film thickness range and then dividing it by the film thickness. For example, when the Al composition is linearly graded from 100% to 70% from the start position to the end position of the second-conductivity-type clad layer, the average composition d' is 85%. Further, when 2/3 of the film thickness is 100% and 1/3 of the film thickness is 70%, the average composition d' is 90%. From the viewpoint of relaxation, the film thickness of the second clad layer is preferably 300 nm or more and 400 nm or less.
  • the second-conductivity-type cladding layer is inclined such that the Al composition e decreases with increasing distance from the substrate, that is, the Al composition e decreases in the direction away from the upper surface of the substrate.
  • a composition gradient layer (second conductivity type vertical conduction layer) made of Al e Ga (1 ⁇ e) N (0.1 ⁇ e ⁇ 1) and Al f Ga (1 ⁇ f) N (0 ⁇ f ⁇ 1) 1) and a lateral conductive layer of the second conductivity type including 1).
  • the second conductivity type cladding layer may be, for example, p-type AlGaN doped with Mg.
  • the second conductivity type cladding layer may contain, for example, group V elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. is not limited to this.
  • group V elements other than N such as P, As, and Sb
  • impurities such as C, H, F, O, Mg, and Si. is not limited to this.
  • the second-conductivity-type vertical conduction layer and the second-conductivity-type horizontal conduction layer will be described below.
  • the second-conductivity-type vertical conduction layer is a layer forming a region of the second-conductivity-type clad layer on the light-emitting layer side.
  • the second-conductivity-type vertical conduction layer is a layer containing AleGa (1-e) N.
  • the profile (slope) of the Al composition e in the second-conductivity-type vertical conduction layer may decrease continuously or may decrease intermittently.
  • "intermittently decreasing" means that a portion of the film of the second-conductivity-type vertical conduction layer includes a portion in which the Al composition e is the same (constant in the film thickness direction). . That is, the second-conductivity-type vertical conduction layer may include a portion where the Al composition e does not decrease in the direction away from the substrate, but does not include a portion where the Al composition e increases.
  • the film thickness of the second-conductivity-type vertical conduction layer is preferably 500 nm or less, more preferably 20 nm or more and 400 nm or less, and even more preferably 30 nm or more and 350 nm or less.
  • the second-conductivity-type lateral conduction layer is a layer forming a region of the second-conductivity-type cladding layer opposite to the light-emitting layer, and is formed on the second-conductivity-type vertical conduction layer.
  • the second conductivity type lateral conduction layer is a layer containing Al f Ga (1 ⁇ f) N (0 ⁇ f ⁇ 1).
  • the Al composition f of the surface of the second-conductivity-type horizontal conduction layer facing the second-conductivity-type vertical conduction layer is larger than the minimum value of the Al composition e of the second-conductivity-type vertical conduction layer.
  • the thickness of the second-conductivity-type lateral conducting layer is preferably 20 nm or less, more preferably 10 nm or less, and 5 nm. More preferably:
  • the Al composition at the interface between the second-conductivity-type lateral-conducting layer and the second-conductivity-type contact layer is It is preferably less than the Al composition in the layer and fully strained relative to the substrate.
  • the net internal electric field accumulated on the surface and near the surface of the second-conductivity-type lateral conductive layer becomes negative, and carriers are induced at the interface, thereby laterally Conductivity can be improved.
  • the second-conductivity-type vertical conduction layer generates carriers (for example, holes when the second-conductivity-type vertical conduction layer is formed of a p-type semiconductor) by the polarization doping effect, and the carriers are efficiently generated. It has a good effect of injecting into the active layer in the light emitting layer. Therefore, the carrier injection efficiency of the laser diode can be increased by providing the vertical conduction layer of the second conductivity type on the light emitting layer.
  • the lateral conductive layer of the second conductivity type has the effect of widening the carrier distribution, which is narrowed by the electric field concentrated under the electrode, in the lateral direction (within the plane of the lateral conductive layer of the second conductivity type). Due to this effect, the second-conductivity-type horizontal conduction layer can increase the efficiency of carrier injection into the light-emitting layer in the same manner as the second-conductivity-type vertical conduction layer.
  • the semiconductor lamination portion of the laser diode of this embodiment may further include a second conductivity type contact layer disposed on the second conductivity type clad layer.
  • the nitride semiconductor constituting the second-conductivity-type contact layer is preferably made of, for example, GaN, AlN, or InN, or a mixed crystal containing them, and more preferably a nitride semiconductor containing GaN.
  • the second conductivity type contact layer may contain V group elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, Si, and Be. Due to the versatility of the raw material gas, the impurity contained in the second conductivity type contact layer is preferably Mg. From the viewpoint of reducing the contact resistance, the Mg concentration is preferably 8 ⁇ 10 19 cm ⁇ 3 or more and 5 ⁇ 10 21 cm ⁇ 3 or less, and more preferably 5 ⁇ 10 20 cm ⁇ 3 or more and 5 ⁇ 10 21 cm ⁇ 3 or less. It is more preferable to have
  • the layer thickness of the second-conductivity-type contact layer is preferably 1 nm or more and 20 nm or less.
  • the carrier injection efficiency of the light-emitting layer improves as the layer thickness of the second-conductivity-type contact layer decreases, and the carrier injection efficiency decreases as the layer thickness increases.
  • the semiconductor lamination portion of the light emitting layer of the present embodiment may further have an electron blocking layer above the light emitting layer and having a bandgap larger than that of the light emitting layer.
  • the electron blocking layer may be provided, for example, on the light-emitting layer, inside the second waveguide layer, between the second waveguide layer and the light-emitting layer, or between the second waveguide layer and the second conductivity type vertical conduction layer. It can also be set between The layer thickness of the electron blocking layer is preferably 30 nm or less, more preferably 20 nm or less so that carriers (holes) can easily quantum penetrate the electron blocking layer.
  • a laser diode can emit light or oscillate by injecting a current through a second electrode arranged on a second-conductivity-type clad layer and a first electrode arranged on a first-conductivity-type clad layer.
  • the first electrode is formed so as to be in electrical contact with the clad layer of the first conductivity type
  • the second electrode is formed so as to be in electrical contact with the clad layer of the second conductivity type.
  • the first electrode can be arranged, for example, on the back side of the substrate.
  • the first electrode is arranged on the first conductivity type cladding layer exposed by removing the layer above the first conductivity type cladding layer of the semiconductor lamination portion by chemical etching or dry etching, for example. That is, the first electrode is arranged on a region in which the mesa structure is not formed in the first-conductivity-type cladding layer.
  • the first electrode is Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt. , Cu, Ag, Au, Zr, etc., a mixed crystal thereof, or a conductive oxide such as ITO or Ga 2 O 3 .
  • the first electrode is Ni, Au, Pt, Ag, Rh, Pd, Pt, Cu, Al, Ti, Zr, Hf, V, Nb, Ta, Cr , Mo, W, Co, Ir, and Zr, or mixed crystals thereof, or conductive oxides such as ITO or Ga 2 O 3 .
  • the second electrode is Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt. , Cu, Ag, Au, Zr, etc., a mixed crystal thereof, or a conductive oxide such as ITO or Ga 2 O 3 .
  • the second electrode is Ni, Au, Pt, Ag, Rh, Pd, Pt, Cu, Al, Ti, Zr, Hf, V, Nb, Ta, Cr , Mo, W, Co, Ir, and Zr, or mixed crystals thereof, or conductive oxides such as ITO or Ga 2 O 3 .
  • the arrangement regions and shapes of the first electrode and the second electrode are the same as those of the first-conductivity-type clad layer and the second-conductivity-type clad layer (the second-conductivity-type contact layer when the second-conductivity-type contact layer is provided). There is no limitation as long as electrical contact is obtained.
  • the laser diode of the present embodiment is manufactured through steps of forming layers on a substrate.
  • the substrate is formed by a general substrate growth method such as a vapor phase growth method such as a sublimation method, a hydride vapor phase epitaxy (HVPE) method, or a liquid phase growth method.
  • a general substrate growth method such as a vapor phase growth method such as a sublimation method, a hydride vapor phase epitaxy (HVPE) method, or a liquid phase growth method.
  • Each layer of the semiconductor laminate formed on the substrate is formed by, for example, a molecular beam epitaxy (MBE) method, a hydride vapor phase epitaxy (HVPE) method, or a metal organic chemical vapor deposition (MOCVD) method. It can be formed by a method or the like.
  • the nitride semiconductor layer is, for example, an Al raw material containing trimethylaluminum (TMAl), a Ga raw material containing trimethylgallium (TMGa) or triethylgallium (TEGa), or ammonia ( NH 3 ) can be used as the N source material.
  • a first conductivity type clad layer containing a first conductivity type nitride semiconductor is formed on a buffer layer formed on a substrate.
  • a light-emitting layer is formed on the first-conductivity-type clad layer using a nitride semiconductor (such as AlGaN) including one or more quantum wells, and a second-conductivity-type clad layer is formed on the light-emitting layer.
  • a nitride semiconductor such as AlGaN
  • waveguide layers made of a nitride semiconductor such as AlGaN may be formed above and below the light emitting layer.
  • an intermediate layer made of a nitride semiconductor such as AlGaN may be formed between the second-conductivity-type clad layer and the waveguide, or a second-conductivity-type nitride semiconductor containing GaN or the like may be formed on the second-conductivity-type clad layer.
  • a contact layer may be provided, and an electron blocking layer may be formed above the light emitting layer.
  • a laser diode is manufactured through a process (mesa structure forming process) of removing unnecessary portions of each layer of a semiconductor laminate formed on a substrate by etching.
  • the removal of unnecessary portions of each layer of the semiconductor laminate can be performed by, for example, inductively coupled plasma (ICP) etching or the like.
  • ICP inductively coupled plasma
  • unnecessary portions of each layer of the conductor laminate are removed by etching, thereby partially exposing the first conductivity type clad layer.
  • the laser diode can be manufactured through a process of forming electrodes. Electrodes such as the first electrode and the second electrode are formed by various methods of evaporating metal by electron beam evaporation (EB), such as resistance heating evaporation, electron gun evaporation, or sputtering. is not limited. Each electrode may be formed as a single layer, or may be formed by laminating a plurality of layers. Further, each electrode may be subjected to heat treatment in an atmosphere of oxygen, nitrogen, air, or the like after the layer is formed. Finally, the substrate on which each layer is formed through the above steps is divided into individual pieces by dicing to manufacture laser diodes.
  • EB electron beam evaporation
  • a first electrode is formed on the surface of the first-conductivity-type clad layer.
  • the second electrode is formed on the uppermost layer (for example, the second-conductivity-type clad layer) of the mesa structure formed in part of the semiconductor laminate.
  • the layer thickness of each layer constituting the laser diode is measured by cutting out a predetermined cross section perpendicular to the substrate, observing this cross section with a transmission electron microscope (TEM), and using the length measurement function of the TEM.
  • TEM transmission electron microscope
  • a measuring method first, a TEM is used to observe a cross section perpendicular to the main surface of the substrate of the laser diode.
  • the observation width is defined as a range of 2 ⁇ m or more in a direction parallel to the main surface of the substrate in a TEM image showing a cross section perpendicular to the main surface of the substrate of the laser diode.
  • the layer thickness of each layer can be obtained by calculating the average value of the thickness of each layer included in the observation area of 200 nm width from five points arbitrarily extracted from the observation width of 2 ⁇ m or more.
  • the concentration of dopants and impurities contained in each layer constituting the laser diode can be measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • the concentrations of dopants and impurities contained in each layer can be measured by SIMS after processing into a device, it can be performed in a state where electrodes are removed by chemical etching or physical polishing.
  • the concentration of dopants and impurities contained in each layer can be measured by sputtering from the side of the substrate where no electrodes are formed.
  • SIMS measurement is performed under measurement conditions provided by Evans Analytical Group (EAG).
  • a cesium (Cs) ion beam having an energy of 14.5 keV is used for sputtering the sample during measurement.
  • Methods for measuring the atomic concentration contained in each layer constituting a laser diode include reciprocal space mapping (RSM) by X-ray diffraction (XRD). Specifically, by analyzing the reciprocal lattice mapping data in the vicinity of the diffraction peak obtained with the asymmetric plane as the diffraction plane, the lattice relaxation rate and Al composition for the underlayer can be obtained. Examples of diffraction planes include the (10-15) plane and the (20-24) plane.
  • XPS X-ray photoelectron spectroscopy
  • EDX Energy Dispersive X-ray spectroscopy
  • EELS electron energy-loss spectroscopy
  • EELS analyzes the composition of a sample by measuring the energy lost by an electron beam as it passes through the sample. Specifically, for example, in a sliced sample used for TEM observation, etc., an energy loss spectrum of the intensity of a transmitted electron beam is measured and analyzed. Using the fact that the peak position appearing near the energy loss of 20 eV changes according to the composition of each layer, the composition can be obtained from the peak position. In the same manner as the layer thickness calculation method by TEM observation described above, the average value of the Al composition at an observation width of 200 nm is calculated from 5 points arbitrarily extracted from the observation area of 2 ⁇ m or more to obtain the Al composition of each layer.
  • the EDX measures and analyzes the characteristic X-rays generated by the electron beam in the thinned sample used for the above-mentioned TEM observation.
  • the average value of the Al composition at an observation width of 200 nm is calculated from 5 points arbitrarily extracted from the observation area of 2 ⁇ m or more to obtain the Al composition of each layer.
  • XPS X-ray photoelectron spectroscopy
  • Ar + is generally used for the ion beam, but other ion species such as Ar cluster ions may be used as long as the ions can be irradiated by an etching ion gun mounted on the XPS apparatus.
  • the XPS peak intensities of Al, Ga, and N are measured and analyzed to obtain the depth direction distribution of the Al composition of each layer.
  • the laser diode may be obliquely polished so that the cross section perpendicular to the main surface of the substrate is enlarged and exposed, and the exposed cross section may be measured by XPS.
  • the composition of each layer can be measured not only by XPS but also by using Auger Electron Spectroscopy (AES). In this case, the composition can be measured by measurement by Auger electron spectroscopy on a section exposed by sputter etching or oblique polishing. The composition of each layer can also be measured by SEM-EDX measurement of a section exposed by oblique polishing.
  • AES Auger Electron Spectroscopy
  • the laser diode according to the present disclosure is applicable to devices in, for example, the medical/life science field, the environmental field, the industrial/industrial field, the life/home appliance field, the agricultural field, and other fields.
  • Laser diodes are used in equipment for synthesizing and decomposing drugs or chemical substances, sterilizing equipment for liquids, gases, and solids (containers, food, medical equipment, etc.), cleaning equipment for semiconductors, etc., equipment for surface modification of films, glass, metals, etc., semiconductors ⁇ FPD (Flat Panel Display) ⁇ PCB (Printed Wiring Board) ⁇ Exposing equipment for manufacturing other electronic products, printing/coating equipment, adhesive/sealing equipment, transfer/molding equipment for film/pattern/mock-up, banknote/scratches ⁇ Applicable to measuring and testing devices for blood, chemical substances, etc.
  • liquid sterilizers include automatic ice makers, ice trays and ice storage containers in refrigerators, water supply tanks for ice makers, freezers, ice makers, humidifiers, dehumidifiers, cold water tanks, hot water tanks, and flow paths of water servers. Piping, stationary water purifiers, portable water purifiers, water supply equipment, water heaters, waste water treatment equipment, disposers, waste water traps for toilet bowls, washing machines, dialysis water sterilization modules, peritoneal dialysis connector sterilizers, disaster water storage systems, etc. are listed, but are not limited to these.
  • gas sterilizers include air purifiers, air conditioners, ceiling fans, floor or bedding vacuum cleaners, futon dryers, shoe dryers, washing machines, clothes dryers, indoor germicidal lamps, and storage ventilation. Examples include, but are not limited to, systems, shoeboxes, chests of drawers, and the like.
  • solid sterilizers include vacuum packers, belt conveyors, hand tool sterilizers for medical, dental, barber and beauty salon use, toothbrushes, toothbrush cases, chopstick cases, cosmetic pouches, Drain lids, local washes of toilet bowls, toilet bowl lids, etc., but not limited to these.
  • FIG. 1 is a schematic cross-sectional view of a laser diode 1 according to this embodiment.
  • FIG. 2 is a plan view of the laser diode 1 according to this embodiment.
  • the laser diode 1 includes a substrate 11, a semiconductor lamination portion 10 arranged on the substrate 11, a first electrode 12, and a second electrode 13.
  • FIG. 1 is a schematic cross-sectional view of a laser diode 1 according to this embodiment.
  • FIG. 2 is a plan view of the laser diode 1 according to this embodiment.
  • the laser diode 1 includes a substrate 11, a semiconductor lamination portion 10 arranged on the substrate 11, a first electrode 12, and a second electrode 13.
  • FIG. 1 is a schematic cross-sectional view of a laser diode 1 according to this embodiment.
  • the laser diode 1 includes a substrate 11, a semiconductor lamination portion 10 arranged on the substrate 11, a first electrode 12, and a second electrode 13.
  • FIG. 1 is a schematic cross-sectional view of a laser dio
  • the semiconductor lamination portion 10 includes a first conductivity type cladding layer 101 having n-type conductivity, a first waveguide layer 102, a light emitting layer 103, a second waveguide layer 104, and a second waveguide layer 104 having p-type conductivity.
  • a conductive clad layer 105 and a contact layer 106 are provided.
  • a laser diode according to the present disclosure includes a nitride semiconductor substrate containing Al and a semiconductor lamination portion arranged on the nitride semiconductor substrate, the semiconductor lamination portion being arranged on the nitride semiconductor substrate, a first conductivity type cladding layer including a first conductivity type nitride semiconductor layer; a first waveguide layer disposed on the first conductivity type cladding layer; and one or more waveguide layers disposed on the first waveguide layer a light emitting layer formed of a nitride semiconductor including a quantum well of; a second waveguide layer disposed on the light emitting layer; and a nitride semiconductor layer of a second conductivity type disposed on the second waveguide layer and a second conductivity type clad layer comprising: the first conductivity type clad layer is Al a Ga (1 ⁇ a) N (0.7 ⁇ a ⁇ 0.8); , Al c1 Ga (1 ⁇ c1) N (0.6 ⁇ c1
  • the film thickness T1 of the first waveguide layer is 20 nm or more and 50 nm or less, and the film thickness T2 of the second waveguide layer is 50 nm or more and 90 nm or less. This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
  • the first conductivity type clad layer preferably has a thickness of 250 nm or more and 500 nm or less.
  • the second conductivity type clad layer is Al d Ga (1 ⁇ d) N (0 ⁇ d ⁇ 1)
  • the average composition d′ is the average of the first conductivity type clad layer It is preferably larger than the Al composition a'. This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
  • the film thickness of the second-conductivity-type clad layer is 300 nm or more and 400 nm or less. This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
  • the quantum well layer of the light-emitting layer is Al b Ga (1-b) N (0.4 ⁇ b ⁇ 0.6) and has a thickness of 3 nm or more and 6 nm or less. , preferably has a multiple quantum well structure of two to four layers.
  • the nitride semiconductor substrate is preferably an AlN single crystal substrate.
  • the lattice constant difference between the substrate and the nitride semiconductor layer formed on the upper side of the substrate is reduced, and the nitride semiconductor layer is grown in a lattice matching system, thereby reducing threading dislocations and increasing stability.
  • a high nitride semiconductor layer can be formed.
  • the laser diode of the present disclosure includes a second conductivity type contact layer disposed on the second conductivity type cladding layer and formed of a nitride semiconductor containing GaN, wherein the second conductivity type cladding layer is made of Al A first film containing e Ga (1 ⁇ e) N (0.1 ⁇ e ⁇ 1), having a composition gradient in which the Al composition e decreases with increasing distance from the nitride semiconductor substrate, and having a film thickness of less than 0.5 ⁇ m. It is preferable to have a two-conductivity-type vertical conduction layer and a second-conductivity-type horizontal conduction layer containing Al f Ga (1 ⁇ f) N (0 ⁇ f ⁇ 1). This makes it possible to inject carriers into the light-emitting layer more efficiently, improve the light-emitting efficiency, and reduce the oscillation threshold current density.
  • the laser diode of the present disclosure will be described with examples and comparative examples. Note that the laser diode of the present disclosure is not limited to these examples.
  • Example 1 A (0001) plane AlN single crystal substrate having a thickness of 550 ⁇ m was used as the substrate. Next, an AlN layer as a buffer layer was formed on the substrate. The AlN layer was formed with a thickness of 500 nm under an environment of 1200°C. At this time, the ratio (V/III ratio) between the supply rate of the group III element source gas and the supply rate of the nitrogen source gas was set to 50. The growth rate of the AlN layer at this time was 0.5 ⁇ m/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Ammonia (NH 3 ) was used as the N raw material.
  • TMAl trimethylaluminum
  • the first-conductivity-type cladding layer was an n-type AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer) using Si as a dopant impurity.
  • the first conductivity type cladding layer was formed at a temperature of 1080° C., a degree of vacuum of 50 mbar and a V/III ratio of 4000 to a thickness of 400 nm.
  • the growth rate of the first conductivity type clad layer at this time was 0.4 ⁇ m/hr.
  • trimethylaluminum (TMAl) was used as an Al raw material.
  • triethylgallium (TEGa) was used as a Ga source. Ammonia (NH 3 ) was used as the N raw material.
  • monosilane (SiH 4 ) was used as the Si raw material.
  • an n-type waveguide layer as a first waveguide layer was formed on the first conductivity type clad layer.
  • the n-type waveguide layer was an AlGaN layer (Al: 63%, ie Al 0.63 Ga 0.37 N layer) containing no dopant.
  • the n-type waveguide layer was formed with a thickness of 40 nm under the conditions of a temperature of 1080° C., a degree of vacuum of 50 mbar, and a V/III ratio of 4000.
  • the growth rate of the n-type waveguide layer at this time was 0.35 ⁇ m/hr.
  • trimethylaluminum (TMAl) was used as an Al raw material.
  • triethylgallium (TEGa) was used as a Ga source. Ammonia (NH 3 ) was used as the N raw material.
  • the light-emitting layer was formed by forming a film so as to have a multi-quantum well structure in which two periods of quantum well layers and barrier layers were laminated.
  • the quantum well layer was an AlGaN layer (Al: 52%, ie Al 0.52 Ga 0.48 N layer) having a thickness of 4.5 nm.
  • the barrier layer having a thickness of 6.0 nm was an AlGaN layer (Al: 63%, that is, an Al 0.63 Ga 0.37 N layer).
  • the light-emitting layer was formed under the conditions that the degree of vacuum was set to 50 mbar and the V/III ratio was set to 4000.
  • the growth rate of the quantum well layer at this time was 0.18 ⁇ m/hr.
  • the growth rate of the barrier layer was 0.15 ⁇ m/hr.
  • a p-type waveguide layer as a second waveguide layer was formed on the light emitting layer.
  • the p-type waveguide layer was an AlGaN layer (Al: 63%, ie Al 0.63 Ga 0.37 N layer) containing no dopant.
  • the p-type waveguide layer was formed at a temperature of 1080° C., a degree of vacuum of 50 mbar and a V/III ratio of 4000 to a thickness of 70 nm.
  • the growth rate of the p-type waveguide layer at this time was 0.35 ⁇ m/hr.
  • trimethylaluminum (TMAl) was used as an Al raw material.
  • triethylgallium (TEGa) was used as a Ga source.
  • the second-conductivity-type cladding layer has a laminated structure including a second-conductivity-type vertical conduction layer and a second-conductivity-type horizontal conduction layer, and is a graded layer with a graded Al composition ratio.
  • the second-conductivity-type clad layer was formed at a temperature of 1,080° C.
  • the growth rate of the second conductivity type clad layer at this time was 0.3 to 0.5 ⁇ m/hr.
  • trimethylaluminum (TMAl) was used as an Al raw material.
  • triethylgallium (TEGa) was used as a Ga source.
  • the average Al composition d' in the second-conductivity-type clad layer was 0.85, which was larger than the average Al composition a' in the first-conductivity-type clad layer.
  • a p-type contact layer as a second conductivity type contact layer was formed on the second conductivity type cladding layer.
  • the p-type contact layer was formed of an AlGaN layer and a GaN layer.
  • the GaN layer was formed of GaN (that is, Al: 0%) with a thickness of 10 nm.
  • the second conductivity type contact layer was formed at a temperature of 950.degree. The growth rate of the second conductivity type contact layer at this time was 0.2 ⁇ m/hr.
  • a semiconductor lamination portion was formed on the AlN substrate.
  • the reciprocal lattice mapping measurement by XRD was performed on this semiconductor lamination portion, it was found that the semiconductor lamination portion undergoes pseudomorphic growth without relaxation up to the contact layer of the second conductivity type.
  • the semiconductor lamination portion formed as described above was annealed at 700° C. for 10 minutes or longer in an N 2 atmosphere to further reduce the resistance of the second conductivity type contact layer.
  • a mesa structure with the first conductivity type clad layer exposed was formed.
  • the formed mesa structure had a length of 700 ⁇ m in the ⁇ 1-100> direction and a length of 40 ⁇ m in the ⁇ 11-20> direction.
  • the length in the ⁇ 1-100> direction of the mesa structure is the distance between the resonator mirror end faces in plan view
  • the length in the ⁇ 11-20> direction is the distance between the side surfaces of the mesa structure. is.
  • Ni and Au were sequentially formed into films in a rectangular shape elongated in the ⁇ 1-100> direction to form a plurality of electrode metal regions to form a p-type second electrode.
  • the width of the second electrode was 5 ⁇ m and the length was 700 ⁇ m.
  • V, Al, Ni, Ti and Au are deposited in order in a rectangular shape elongated in the ⁇ 1-100> direction to form a plurality of electrode metal regions. It was used as the first electrode of the mold.
  • An RTA apparatus was used to anneal the first electrode and the second electrode at 750° C. for 60 seconds in a nitrogen atmosphere.
  • the substrate was divided into stripes by cleaving in parallel in the ⁇ 11-20> direction multiple times to form singulated laser diodes.
  • the length of the mesa structure after division in the ⁇ 1-100> direction was 600 ⁇ m.
  • the threshold voltage was 12.0 V and the oscillation threshold current density was 7.5 kA/cm 2 .
  • Example 2 The laser diode of Example 2 was produced in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 61%, that is, Al 0.61 Ga 0.39 N layers). formed.
  • the threshold voltage was 11.5 V and the oscillation threshold current density was 8.5 kA/cm 2 .
  • Example 3 The laser diode of Example 3 was manufactured in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 66%, that is, Al 0.66 Ga 0.34 N layers). formed.
  • the threshold voltage was 12.5 V and the oscillation threshold current density was 7.2 kA/cm 2 .
  • Example 4 The laser diode of Example 4 was produced in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 69%, that is, Al 0.69 Ga 0.31 N layers). formed.
  • the threshold voltage was 12.9 V and the oscillation threshold current density was 7.0 kA/cm 2 .
  • Example 5 A laser diode of Example 5 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 23 nm and the film thickness ratio T1/T2 was set to 0.33.
  • the threshold voltage was 12.0 V and the oscillation threshold current density was 8.8 kA/cm 2 .
  • Example 6 A laser diode of Example 6 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 33 nm and the film thickness ratio T1/T2 was set to 0.47.
  • the threshold voltage was 12.0 V and the oscillation threshold current density was 8.2 kA/cm 2 .
  • Example 7 A laser diode of Example 7 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 47 nm and the film thickness ratio T1/T2 was set to 0.67.
  • the threshold voltage was 12.0 V and the oscillation threshold current density was 8.3 kA/cm 2 .
  • Example 8> Conducted in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 35 nm, the film thickness T2 of the second waveguide layer was changed to 55 nm, and the film thickness ratio T1/T2 was changed to 0.64.
  • a laser diode of Example 8 was formed. When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.6 V and the oscillation threshold current density was 9.3 kA/cm 2 .
  • Example 9 A laser diode of Example 9 was formed in the same manner as in Example 1 except that the film thickness T2 of the second waveguide layer was changed to 85 nm and the film thickness ratio T1/T2 was set to 0.47.
  • the threshold voltage was 12.7 V and the oscillation threshold current density was 7.2 kA/cm 2 .
  • Example 10 A laser diode of Example 10 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 72%, ie, an Al 0.72 Ga 0.28 N layer).
  • the threshold voltage was 10.0 V and the oscillation threshold current density was 9.0 kA/cm 2 .
  • Example 11 A laser diode of Example 11 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 78%, ie, an Al 0.78 Ga 0.22 N layer).
  • the threshold voltage was 14.0 V and the oscillation threshold current density was 7.2 kA/cm 2 .
  • Example 12 A laser diode of Example 12 was formed in the same manner as in Example 1 except that the light emitting layer was an AlGaN layer (Al: 43%, that is, an Al 0.43 Ga 0.57 N layer).
  • the threshold voltage was 11.5 V and the oscillation threshold current density was 6.5 kA/cm 2 .
  • Example 13 A laser diode of Example 13 was formed in the same manner as in Example 1 except that the light emitting layer was an AlGaN layer (Al: 58%, ie, an Al 0.58 Ga 0.42 N layer).
  • the threshold voltage was 12.5 V and the oscillation threshold current density was 8.5 kA/cm 2 .
  • Example 14 A laser diode of Example 14 was formed in the same manner as in Example 1 except that the number of periods of the light emitting layer was 3, that is, the number of quantum well structures was 3.
  • the threshold voltage was 11.5 V and the oscillation threshold current density was 7.1 kA/cm 2 .
  • Example 15 A laser diode of Example 15 was formed in the same manner as in Example 1 except that the periodicity of the light emitting layer was 4, that is, the number of quantum well layers was 4.
  • the threshold voltage was 11.0 V and the oscillation threshold current density was 6.8 kA/cm 2 .
  • Example 16 A laser diode of Example 16 was formed in the same manner as in Example 1, except that the film thickness of the light emitting layer was 3.5 nm.
  • the threshold voltage was 11.3 V and the oscillation threshold current density was 8.0 kA/cm 2 .
  • Example 17 A laser diode of Example 17 was formed in the same manner as in Example 1, except that the thickness of the light emitting layer was 5.5 nm.
  • the threshold voltage was 10.4 V and the oscillation threshold current density was 7.1 kA/cm 2 .
  • Example 18 A laser diode of Example 18 was formed in the same manner as in Example 1 except that the film thickness of the second-conductivity-type cladding layer was 300 nm. Current-edge emission intensity measurement by current injection was performed on the laser diode thus obtained, and the threshold voltage was 10.5 V, and the oscillation threshold current density was 8.3 kA/cm 2 .
  • Example 19 A laser diode of Example 19 was formed in the same manner as in Example 1, except that the thickness of the second-conductivity-type cladding layer was set to 250 nm.
  • the threshold voltage was 10.2 V and the oscillation threshold current density was 9.1 kA/cm 2 .
  • Example 20 A laser diode of Example 20 was formed in the same manner as in Example 1, except that the film thickness of the second-conductivity-type clad layer was 400 nm.
  • the threshold voltage was 12.6 V and the oscillation threshold current density was 7.0 kA/cm 2 .
  • Example 21 A laser diode of Example 21 was formed in the same manner as in Example 1 except that the film thickness of the second-conductivity-type cladding layer was set to 450 nm.
  • the threshold voltage was 12.9 V and the oscillation threshold current density was 7.1 kA/cm 2 .
  • a laser diode of Example 22 was formed. When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 10.0 V and the oscillation threshold current density was 9.0 kA/cm 2 .
  • Comparative Example 1 A laser diode of Comparative Example 1 was formed in the same manner as in Example 1 except that the first waveguide layer was an AlGaN layer (Al: 55%, that is, an Al 0.55 Ga 0.45 N layer).
  • the threshold voltage was 11.8 V and the oscillation threshold current density was 11.7 kA/cm 2 .
  • Comparative Example 2 A laser diode of Comparative Example 2 was formed in the same manner as in Example 1 except that the first waveguide layer was an AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer).
  • the threshold voltage was 12.2 V and the oscillation threshold current density was 12.1 kA/cm 2 .
  • Comparative Example 3 A laser diode of Comparative Example 3 was formed in the same manner as in Example 1 except that the second waveguide layer was an AlGaN layer (Al: 55%, ie, an Al 0.55 Ga 0.45 N layer).
  • the threshold voltage was 11.8 V and the oscillation threshold current density was 11.9 kA/cm 2 .
  • Comparative Example 4 A laser diode of Comparative Example 4 was formed in the same manner as in Example 1 except that the second waveguide layer was an AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer).
  • the threshold voltage was 12.2 V and the oscillation threshold current density was 12.1 kA/cm 2 .
  • a laser diode of Comparative Example 5 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 65%, ie, an Al 0.65 Ga 0.35 N layer).
  • the threshold voltage was 9.0 V and the oscillation threshold current density was 12.0 kA/cm 2 .
  • Comparative Example 6 A laser diode of Comparative Example 6 was formed in the same manner as in Comparative Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 85%, ie, an Al 0.85 Ga 0.15 N layer).
  • the threshold voltage was 17.0 V and the oscillation threshold current density was 12.0 kA/cm 2 .
  • Comparative Example 7 was carried out in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was 25 nm, the film thickness T2 of the second waveguide layer was 100 nm, and the film thickness ratio T1/T2 was 0.25. of laser diodes were formed. When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 10.9 kA/cm 2 .
  • Comparative Example 8 The laser of Comparative Example 8 was produced in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was 50 nm, the film thickness T2 of the second waveguide layer was 50 nm, and the film thickness ratio T1/T2 was 1. formed a diode.
  • the threshold voltage was 12.0 V and the oscillation threshold current density was 11.8 kA/cm 2 .
  • Table 1 below shows the evaluation results of each example and each comparative example.
  • the Al composition a of the first conductivity type cladding layer satisfies 0.7 ⁇ a ⁇ 0.8
  • the Al composition c1 of the first waveguide layer satisfies 0.6 ⁇ c1 ⁇ 0.7
  • the Al composition c2 of the second waveguide layer satisfies 0.6 ⁇ c2 ⁇ 0.7
  • the film thickness ratio between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is T1/
  • the oscillation threshold current density was 10.9 kA/cm 2 or more.
  • the laser diodes of the examples in which each layer satisfies the above range, had an oscillation threshold current density of less than 10 kA/cm 2 , which was lower than that of the laser diodes of the comparative examples.
  • the Al composition c1 of the first waveguide layer and the Al composition c2 of the second waveguide layer are within the ranges described above, the Al composition c1 and the Al composition c2 are The higher the value, the stronger the light confinement effect in the light-emitting layer, and the lower the oscillation threshold current density, but the higher the threshold voltage.
  • the thickness ratio T1/T2 between the first waveguide layer and the second waveguide layer is 0.3 to 0.3. 7 or less, when the thickness T1 of the first waveguide layer and the thickness T2 of the second waveguide layer are large, the resistance tends to deteriorate and the threshold voltage tends to increase, but the optical confinement effect is strong and the oscillation threshold current Density decreased.
  • the average Al composition a' of the clad layer of the first conductivity type is smaller than the average Al composition d' of the clad layer of the second conductivity type, the average Al composition a' and the average Al The oscillation threshold current density was lower than in the case of the same composition d'. Therefore, it is preferable that the average Al composition a' of the clad layer of the first conductivity type is smaller than the average Al composition d' of the clad layer of the second conductivity type.
  • the oscillation threshold current density decreases as the film thickness of the second-conductivity-type clad layer increases from 300 nm, but the oscillation threshold current density decreases within the film thickness range of 400 to 450 nm. The densities were almost the same.
  • the threshold voltage tends to be higher than when the thickness is 400 nm. From the above, it is preferable that the film thickness of the second-conductivity-type clad layer is 300 nm or more and 400 nm or less.
  • the Al composition of the first conductivity type cladding layer, the first waveguide layer, and the second waveguide layer, the film thickness T1 of the first waveguide layer, and the second waveguide layer By adjusting the film thickness ratio T1/T2 of the film thickness T2, the oscillation threshold current density can be lowered to enable stable continuous oscillation by pulse driving.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided is a laser diode that relates to the reduction of an oscillating threshold current. The laser diode comprises a nitride semiconductor substrate containing Al, and a semiconductor layering part disposed on the nitride semiconductor substrate. The semiconductor layering part is formed by sequentially layering a first conductivity type cladding layer containing a first conductivity type nitride semiconductor layer, a first waveguide layer, a light emitting layer formed by a nitride semiconductor containing one or more quantum wells, a second waveguide layer, and a second conductivity type cladding layer containing a second conductivity type nitride semiconductor layer. The first conductivity type cladding layer is AlaGa(1-a)N (0.7<a<0.8), the first waveguide layer is Alc1Ga(1-c1)N (0.6<c1<0.7), the second waveguide layer is Alc2Ga(1-c2)N (0.6<c2<0.7), and the film thickness ratio T1/T2 of the first waveguide layer film thickness T1 and the second waveguide layer film thickness T2 is 0.3-0.7, inclusive.

Description

レーザダイオードlaser diode
 本開示はレーザダイオードに関する。 This disclosure relates to laser diodes.
 従来、ライトエミッティングダイオード(LED)およびレーザダイオード(LD)を形成するための材料として窒化物半導体が用いられている。窒化物半導体は、直接遷移の再結合形態を有することから、高い再結合効率および高い光学利得を得ることができる点で、LEDおよびLDのための材料として適している。このような窒化物半導体が用いられたレーザダイオードの一例として、紫外領域での電流注入型のレーザダイオードを発振させる技術が開示されている(例えば、非特許文献1)。 Conventionally, nitride semiconductors have been used as materials for forming light emitting diodes (LEDs) and laser diodes (LDs). Since nitride semiconductors have a recombination mode of direct transition, they are suitable as materials for LEDs and LDs in that high recombination efficiency and high optical gain can be obtained. As an example of a laser diode using such a nitride semiconductor, a technique for oscillating a current injection type laser diode in the ultraviolet region has been disclosed (for example, Non-Patent Document 1).
 上述した紫外レーザダイオードはパルス駆動であり、実際のアプリケーションへの応用には連続発振が必要とされる。この連続発振には発振閾値電流の低減が必要とされる。
 本開示の目的は、発振閾値電流の低減に関するレーザダイオードを提供することにある。
The UV laser diodes mentioned above are pulsed and require continuous wave for practical applications. This continuous oscillation requires reduction of the oscillation threshold current.
An object of the present disclosure is to provide a laser diode with reduced lasing threshold current.
 上述した課題を解決するために、本開示の一態様に係るレーザダイオードは、Alを含む窒化物半導体基板と、窒化物半導体基板上に配置される半導体積層部と、を備え、半導体積層部は、窒化物半導体基板上に配置され、第1導電型の窒化物半導体層を含む第1導電型クラッド層と、第1導電型クラッド層上に配置された第1導波路層と、第1導波路層上に配置され、一つ以上の量子井戸を含む窒化物半導体で形成された発光層と、発光層上に配置された第2導波路層と、第2導波路層上に配置され、第2導電型の窒化物半導体層を含む第2導電型クラッド層と、を有し、第1導電型クラッド層は、AlGa(1-a)N(0.7<a<0.8)であり、第1導波路層は、Alc1Ga(1-c1)N(0.6<c1<0.7)であり、第2導波路層は、Alc2Ga(1-c2)N(0.6<c2<0.7)であり、第1導波路層の膜厚T1と第2導波路層の膜厚T2との膜厚比T1/T2は、0.3以上0.7以下である。
 なお、上述した発明の概要は、本開示にかかる発明の特徴の全てを列挙したものではない。
In order to solve the above-described problems, a laser diode according to one aspect of the present disclosure includes a nitride semiconductor substrate containing Al, and a semiconductor lamination portion arranged on the nitride semiconductor substrate, wherein the semiconductor lamination portion is a first conductivity type clad layer disposed on a nitride semiconductor substrate and including a first conductivity type nitride semiconductor layer; a first waveguide layer disposed on the first conductivity type clad layer; a light-emitting layer disposed on the waveguide layer and formed of a nitride semiconductor including one or more quantum wells; a second waveguide layer disposed on the light-emitting layer; a second waveguide layer disposed on the second waveguide layer; a second-conductivity-type clad layer including a second-conductivity-type nitride semiconductor layer, wherein the first-conductivity-type clad layer is Al a Ga (1-a) N (0.7<a<0.8 ), the first waveguide layer is Al c1 Ga (1−c1) N (0.6<c1<0.7), and the second waveguide layer is Al c2 Ga (1−c2) N (0.6<c2<0.7), and the film thickness ratio T1/T2 between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is 0.3 or more and 0.7. It is below.
Note that the summary of the invention described above does not list all the features of the invention according to the present disclosure.
 本開示によれば、発振閾値電流を低減することが可能なレーザダイオードを提供することができる。 According to the present disclosure, it is possible to provide a laser diode capable of reducing the oscillation threshold current.
本開示の実施形態に係るレーザダイオードの一構成例を示す断面模式図である。1 is a schematic cross-sectional view showing one configuration example of a laser diode according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係るレーザダイオードの一構成例を示す平面図である。1 is a plan view showing a configuration example of a laser diode according to an embodiment of the present disclosure; FIG.
 以下、実施形態を通じて本開示に係るレーザダイオードを説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 また、以下の説明では、「上」及び「下」は、必ずしも地面に対する鉛直方向を意味しない。つまり、「上」及び「下」の方向は、重力方向に限定されない。「上」及び「下」は、面、膜及び基板等における相対的な位置関係を特定する便宜的な表現に過ぎず、本発明の技術的思想を限定するものではない。例えば、紙面を180度回転すれば「上」が「下」に、「下」が「上」になることは勿論である。
Although the laser diode according to the present disclosure will be described below through embodiments, the following embodiments do not limit the invention according to the claims. Also, not all combinations of features described in the embodiments are essential for the solution of the invention.
Also, in the following description, "above" and "below" do not necessarily mean the vertical direction with respect to the ground. That is, the "up" and "down" directions are not limited to the direction of gravity. "Upper" and "lower" are merely expedient expressions specifying relative positional relationships among surfaces, films, substrates, etc., and do not limit the technical idea of the present invention. For example, if the paper surface is rotated 180 degrees, it goes without saying that "top" becomes "bottom" and "bottom" becomes "top".
1.実施形態
 本開示の実施形態に係るレーザダイオードについて説明する。
(1.1)レーザダイオードの構成
 本実施形態に係るレーザダイオードは、Alを含む窒化物半導体基板と、窒化物半導体基板上に配置される半導体積層部と、を備えている。半導体積層部は、窒化物半導体基板上に配置され、第1導電型の窒化物半導体層を含む第1導電型クラッド層と、第1導電型クラッド層上に配置された第1導波路層と、第1導波路層上に配置され、一つ以上の量子井戸を含む窒化物半導体で形成された発光層と、発光層上に配置された第2導波路層と、第2導波路上に配置され、第2導電型の窒化物半導体層を含む第2導電型クラッド層と、を有している。第1導電型クラッド層は、AlGa(1-a)N(0.7<a<0.8)であり、第1導波路層は、Alc1Ga(1-c1)N(0.6<c1<0.7)であり、第二導波路層は、Alc2Ga(1-c2)N(0.6<c2<0.7)であり、第1導波路層の膜厚T1と第二導波路層の膜厚T2の膜厚比T1/T2が0.3以上0.7以下となっている。
 以下、レーザダイオードの各層について詳細に説明する。
1. Embodiment A laser diode according to an embodiment of the present disclosure will be described.
(1.1) Configuration of Laser Diode A laser diode according to the present embodiment includes a nitride semiconductor substrate containing Al and a semiconductor lamination portion arranged on the nitride semiconductor substrate. The semiconductor lamination portion is arranged on the nitride semiconductor substrate and includes a first conductivity type clad layer including a first conductivity type nitride semiconductor layer, and a first waveguide layer arranged on the first conductivity type clad layer. , a light-emitting layer disposed on the first waveguide layer and formed of a nitride semiconductor including one or more quantum wells; a second waveguide layer disposed on the light-emitting layer; and a second conductivity type clad layer disposed and including a second conductivity type nitride semiconductor layer. The first conductivity type clad layer is Al a Ga (1−a) N (0.7<a<0.8), and the first waveguide layer is Al c1 Ga (1−c1) N (0.8). 6<c1<0.7), the second waveguide layer is Al c2 Ga (1−c2) N (0.6<c2<0.7), and the thickness of the first waveguide layer is T1 and the film thickness T2 of the second waveguide layer, the film thickness ratio T1/T2 is 0.3 or more and 0.7 or less.
Each layer of the laser diode will be described in detail below.
<窒化物半導体基板>
 窒化物半導体基板(以下、基板と記載することがある)は、Alを含む窒化物半導体を含んでいる。Alを含む窒化物半導体は、例えばAlNである。すなわち、基板はAlN単結晶基板であることが好ましい。 また、Alを含む窒化物半導体は、AlNに限定されず、例えばAlGaNであってよい。例えば、基板がAlN、AlGaN等の窒化物半導体単結晶基板である場合、基板の上側に形成される窒化物半導体層との格子定数差が小さくなり、窒化物半導体層を格子整合系で成長させることで貫通転位を少なくできる。
 基板の貫通転位密度は、5×10cm-2以下であることが好ましい。特に、発振閾値電流の低減の観点から、貫通転位密度は1×10以上1×10cm-2以下であることがより好ましい。
<Nitride semiconductor substrate>
A nitride semiconductor substrate (hereinafter sometimes referred to as a substrate) contains a nitride semiconductor containing Al. A nitride semiconductor containing Al is, for example, AlN. That is, the substrate is preferably an AlN single crystal substrate. Also, the nitride semiconductor containing Al is not limited to AlN, and may be AlGaN, for example. For example, when the substrate is a nitride semiconductor single crystal substrate such as AlN or AlGaN, the difference in lattice constant from the nitride semiconductor layer formed on the substrate becomes small, and the nitride semiconductor layer is grown in a lattice matching system. This can reduce threading dislocations.
The threading dislocation density of the substrate is preferably 5×10 4 cm −2 or less. In particular, from the viewpoint of reducing the oscillation threshold current, the threading dislocation density is more preferably 1×10 3 or more and 1×10 4 cm −2 or less.
 ここで、「窒化物半導体を含む」という表現における「含む」とは、窒化物半導体を主に層内に含むことを意味するが、その他の元素を含む場合もこの表現に含まれる。具体的には、窒化物半導体以外の元素を少量(例えばGa(Gaが主元素でない場合)、In、As、P、またはSb等の元素を数%以下)加える等してこの層の組成に軽微な変更を加える場合についてもこの表現に含まれる。その他の層の組成の表現においても、「含む」という文言は、同様の意味を有する。また、含まれる少量元素については前述の限りではない。 Here, "including" in the expression "including a nitride semiconductor" means that the nitride semiconductor is mainly included in the layer, but the expression also includes cases where other elements are included. Specifically, a small amount of an element other than a nitride semiconductor (for example, Ga (when Ga is not the main element), In, As, P, or Sb, etc. is added in a few percent or less) to the composition of this layer. This expression also includes cases where minor changes are made. The term "includes" also has the same meaning in expressing the compositions of other layers. Also, the minor elements contained are not limited to those described above.
 基板は、一例として100μm以上600μm以下の層厚を有することが好ましい。また、面方位はc面(0001)、a面(11-20)、m面(10-10)などが挙げられるが、c面(0001)基板がより好ましい。さらに、c面(0001)法線方向からいくらかの角度(例えば-4°~4°、好ましくは-0.4°~0.4°)に傾いた面上に形成することができるが、これに限らない。 For example, the substrate preferably has a layer thickness of 100 μm or more and 600 μm or less. The plane orientation includes c-plane (0001), a-plane (11-20), m-plane (10-10), etc., but the c-plane (0001) substrate is more preferable. Furthermore, it can be formed on a plane inclined at some angle (for example, -4° to 4°, preferably -0.4° to 0.4°) from the c-plane (0001) normal direction, but this is not limited to
<バッファ層>
 バッファ層は、基板と、第1導電型クラッド層との間に形成されており、基板の全面に形成されていることが好ましい。バッファ層を備えることにより、バッファ層上には格子定数差及び熱膨張係数差が小さく欠陥の少ない窒化物半導体層が形成される。
 バッファ層は、Alを含んだ窒化物半導体層であることが好ましい。例えばAlNである。
<Buffer layer>
The buffer layer is formed between the substrate and the clad layer of the first conductivity type, and is preferably formed over the entire surface of the substrate. By providing the buffer layer, a nitride semiconductor layer having a small difference in lattice constant and thermal expansion coefficient and few defects is formed on the buffer layer.
The buffer layer is preferably a nitride semiconductor layer containing Al. For example, AlN.
 バッファ層は、例えば数μmの厚さを有している。具体的には、バッファ層の厚さは、10nmより厚く10μmより薄いことが好ましい。バッファ層の厚さが10nmより厚い場合、AlN等の窒化物半導体の結晶性が高くなる。また、バッファ層の厚さが10μmより薄い場合、ウエハ全面に結晶成長により形成されたバッファ層にクラックが発生しにくくなる。 The buffer layer has a thickness of several μm, for example. Specifically, the thickness of the buffer layer is preferably thicker than 10 nm and thinner than 10 μm. When the thickness of the buffer layer is thicker than 10 nm, the crystallinity of the nitride semiconductor such as AlN is increased. Further, when the thickness of the buffer layer is less than 10 μm, cracks are less likely to occur in the buffer layer formed by crystal growth over the entire surface of the wafer.
<第1導電型クラッド層>
 第1導電型クラッド層は、基板上に形成される。ここで、例えば「第1導電型クラッド層は基板上に形成される」という表現における「上に」という文言は、基板の一方の面上に第1導電型クラッド層が形成されることを意味する。また、基板と第1導電型クラッド層との間に別の層がさらに存在する場合も上述の表現に含まれる。その他の層同士の関係においても、「上の」という文言は、同様の意味を有する。例えば、後述する第1導波路層上に電子ブロック層を介して第2導電型クラッド層が形成される場合も、「第2導電型クラッド層は第1導波路層上に形成される」という表現に含まれる。また、本実施形態の説明において、「第1導電型」および「第2導電型」は、それぞれ異なる導電型を示す半導体であることを意味し、例えば、一方がn型導電性である場合は、他方がp型導電性となる。
<First conductivity type cladding layer>
A first conductivity type clad layer is formed on the substrate. Here, for example, the term "on" in the expression "a clad layer of the first conductivity type is formed on the substrate" means that the clad layer of the first conductivity type is formed on one side of the substrate. do. The above expression also includes the case where another layer further exists between the substrate and the first-conductivity-type clad layer. The word "upper" has the same meaning also in relation between other layers. For example, even when a second conductivity type clad layer is formed on a first waveguide layer, which will be described later, through an electron blocking layer, the phrase "the second conductivity type clad layer is formed on the first waveguide layer" is used. included in the expression. Further, in the description of the present embodiment, "first conductivity type" and "second conductivity type" mean semiconductors exhibiting different conductivity types. , the other becomes p-type conductive.
 第1導電型クラッド層は、AlおよびGaを含む窒化物半導体の層である。第1導電型クラッド層は、例えばAlGa(1-a)N(0<a<1)により形成される。これにより、深紫外領域のバンドギャップエネルギーに対応する材料を発光層として形成する場合に、発光層の結晶性を高め、発光効率を向上させることが可能となる。高い発光効率を実現する観点から、第1導電型クラッド層を構成する窒化物半導体は、AlNおよびGaNの混晶であることが好ましい。また、基板に対して 完全歪で成長させる観点から、第1導電型クラッド層は、AlGa(1-a)N(0.6<a≦0.9)により形成されることがより好ましい。光閉じ込め係数を向上させる観点からAlGa(1-a)N(0.7<a≦0.8)により形成されることがより好ましい。第1導電型クラッド層のAl組成は、膜厚方向において均一であることが好ましいが、この限りではない。第1導電型クラッド層における平均Al組成は、ある位置におけるAl組成を膜厚範囲で積分してから、膜厚で除したものとなる。たとえば第1導電型クラッド層の開始位置から終了位置まで、Al組成が100%から70%まで直線的に傾斜していた場合、平均組成a’は85%となる。また、膜厚の2/3が100%であり、膜厚の1/3が70%であった場合、平均組成a’は90%となる。 The first conductivity type cladding layer is a nitride semiconductor layer containing Al and Ga. The first conductivity type cladding layer is made of Al a Ga (1-a) N (0<a<1), for example. This makes it possible to improve the crystallinity of the light-emitting layer and improve the light-emitting efficiency when the light-emitting layer is formed of a material corresponding to the bandgap energy of the deep ultraviolet region. From the viewpoint of achieving high luminous efficiency, the nitride semiconductor forming the first conductivity type clad layer is preferably a mixed crystal of AlN and GaN. Further, from the viewpoint of growing with perfect strain on the substrate, the first conductivity type clad layer is more preferably made of Al a Ga (1-a) N (0.6<a≦0.9). . From the viewpoint of improving the optical confinement coefficient, it is more preferably made of Al a Ga (1-a) N (0.7<a≦0.8). The Al composition of the first-conductivity-type cladding layer is preferably uniform in the film thickness direction, but is not limited to this. The average Al composition in the first-conductivity-type cladding layer is obtained by integrating the Al composition at a certain position over the film thickness range and then dividing it by the film thickness. For example, when the Al composition is linearly graded from 100% to 70% from the start position to the end position of the first-conductivity-type cladding layer, the average composition a' is 85%. Further, when 2/3 of the film thickness is 100% and 1/3 of the film thickness is 70%, the average composition a' is 90%.
 第1導電型クラッド層は、縦伝導率を制御する目的などから、Al組成が基板から遠ざかるほど増加するような傾斜層であって良い。この場合、上述したAl組成に対する限定は、第1導電型クラッド層内の膜厚方向の位置におけるAl組成を第1導電型クラッド層の膜厚で平均したAl組成とすることができる。 For the purpose of controlling longitudinal conductivity, the first conductivity type clad layer may be a graded layer in which the Al composition increases with distance from the substrate. In this case, the Al composition described above can be limited to the Al composition obtained by averaging the Al composition at positions in the first conductivity type clad layer in the film thickness direction with respect to the thickness of the first conductivity type clad layer.
 第1導電型クラッド層がn型導電性半導体層の場合は、P、As、Sb等のN以外のV族元素、C、H、F、O、Mg、Si等の不純物を含んでいてもよいが、不純物の元素の種類としてはこの限りではない。電気抵抗を低減する観点および原料の入手難易度の観点から、第1導電型クラッド層に含まれる不純物はSiであることが好ましく、不純物濃度は5×1018cm-3以上5×1019cm-3であることが好ましい。
 第1導電型クラッド層は、第1導電型クラッド層内での格子緩和の観点と膜抵抗の観点から、250nm以上600nm以下の層厚を有することが好ましく、300nm以上450nm以下の層厚を有することがより好ましい。
When the first-conductivity-type cladding layer is an n-type conductive semiconductor layer, it may contain group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. Good, but the type of impurity element is not limited to this. From the viewpoint of reducing the electrical resistance and the difficulty of obtaining raw materials, the impurity contained in the first-conductivity-type cladding layer is preferably Si, and the impurity concentration is 5×10 18 cm −3 or more and 5×10 19 cm. -3 is preferred.
The first conductivity type clad layer preferably has a layer thickness of 250 nm or more and 600 nm or less, and has a layer thickness of 300 nm or more and 450 nm or less, from the viewpoint of lattice relaxation in the first conductivity type clad layer and the film resistance. is more preferable.
<発光層>
 発光層は、AlおよびGaを含む窒化物半導体の層である。発光層が含む窒化物半導体は、高い発光効率を実現する観点から例えばAlN、GaNの混晶であることが好ましく、たとえばAlGa(1-b)N(0<b<1)により形成される。基板との格子整合の観点から、発光層の量子井戸層はAlGa(1-b)N(0.35<b<0.6)であることが好ましい。また、発光層は、多重量子井戸構造も単層量子井戸構造も取り得るが、量子井戸構造の数は好ましくは2から4のいずれかであることが好ましい。また、発光層の発光効率の観点から、量子井戸層の膜厚は3nm以上6nm以下であることが好ましい。
 発光層は、P、As、Sb等のN以外のV族元素、C、H、F、O、Mg、Si等の不純物を含んでいてもよいが、不純物の元素の種類としてはこの限りではない。
<Light emitting layer>
The light emitting layer is a nitride semiconductor layer containing Al and Ga. The nitride semiconductor included in the light-emitting layer is preferably a mixed crystal of AlN and GaN, for example, from the viewpoint of achieving high light- emitting efficiency. be. From the viewpoint of lattice matching with the substrate, the quantum well layer of the light emitting layer is preferably Al b Ga (1-b) N (0.35<b<0.6). The light-emitting layer may have either a multi-quantum well structure or a single-layer quantum well structure, but the number of quantum well structures is preferably two to four. Moreover, from the viewpoint of the light emission efficiency of the light emitting layer, the film thickness of the quantum well layer is preferably 3 nm or more and 6 nm or less.
The light-emitting layer may contain group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. do not have.
<導波路層>
 本実施形態のレーザダイオードは、レーザダイオードとしての光閉じ込めの観点から、発光層を挟み込むように発光層の上下に形成され、発光層から放出された光を発光層内に閉じ込める効果を有する導波路層を備えていても良い。導波路層は、発光層に対して第1導電型クラッド層側に配置された第1導波路層と、発光層に対して第2導電型クラッド層側に配置された第2導波路層の2層から構成されることが好ましい。
 すなわち、本実施形態のレーザダイオードは、例えば、第1導電型クラッド層と発光層との間に配置されて、発光層へ光を閉じ込める第1導波路層と、第2導電型クラッド層と発光層との間に配置されて、発光層へ光を閉じ込める第2導波路層 と、を備えていても良い。
<Waveguide layer>
From the viewpoint of light confinement as a laser diode, the laser diode of this embodiment is formed above and below the light-emitting layer so as to sandwich the light-emitting layer, and has the effect of confining the light emitted from the light-emitting layer within the light-emitting layer. It may have layers. The waveguide layer is composed of a first waveguide layer arranged on the first conductivity type clad layer side with respect to the light emitting layer and a second waveguide layer arranged on the second conductivity type clad layer side with respect to the light emitting layer. It is preferably composed of two layers.
That is, the laser diode of this embodiment includes, for example, a first waveguide layer disposed between a first conductivity type clad layer and a light emitting layer to confine light in the light emitting layer, a second conductivity type clad layer, and a light emitting layer. a second waveguide layer disposed between the layers to confine light to the light emitting layer.
 導波路層は、光閉じ込めの観点から、発光層よりエネルギーの高いバンドギャップを持つAl、Gaを含む窒化物半導体であることが好ましい。導波路層は、デバイス内で定在する光の電界強度分布と発光層の重なりを増大させるAl組成と膜厚とを有することが好ましい。発光層へのキャリア閉じ込めの観点から、第1導波路層はAlc1Ga(1-c1)N(0.6<c1<0.7)であり、第2導波路層はAlc2Ga(1-c2)N(0.6<c2<0.7)であることが好ましい。たとえば発光波長が265nmの発光層を例とした場合、発光層の量子井戸層におけるAl組成b=0.52であり、c1及びc2は0.63などを取りうる。また、光閉じ込めと、デバイス抵抗の観点から、第1導波路層の膜厚T1は20nm以上50nm以下であり、第2導波路層の膜厚T2は50nm以上90nm以下であることが好ましい。より好ましくは第1導波路層の膜厚T1は30nm以上50nm以下であり、第2導波路層の膜厚T2は60nm以上80nm以下である。これにより、非対称であった光モードを発光層により強く重複することが可能となる。それによってさらに光閉じ込め係数が向上し、発振電流閾値を低減することが可能となる。同様にして、前記第1導波路層の膜厚T1と前記第2導波路層の膜厚T2との膜厚比T1/T2は、0.3以上0.7以下であることが好ましく、さらに好ましくは0.5以上0.6以下である。 From the viewpoint of optical confinement, the waveguide layer is preferably a nitride semiconductor containing Al and Ga having a bandgap with higher energy than the light emitting layer. The waveguide layer preferably has an Al composition and thickness that increase the field intensity distribution of the light residing within the device and the overlap of the light emitting layer. From the viewpoint of carrier confinement in the light emitting layer, the first waveguide layer is Al c1 Ga (1−c1) N (0.6<c1<0.7), and the second waveguide layer is Al c2 Ga (1 -c2) N (0.6<c2<0.7) is preferred. For example, in the case of a light-emitting layer with an emission wavelength of 265 nm, the Al composition in the quantum well layer of the light-emitting layer is b=0.52, and c1 and c2 can be 0.63. From the viewpoint of light confinement and device resistance, it is preferable that the film thickness T1 of the first waveguide layer is 20 nm or more and 50 nm or less, and the film thickness T2 of the second waveguide layer is 50 nm or more and 90 nm or less. More preferably, the film thickness T1 of the first waveguide layer is 30 nm or more and 50 nm or less, and the film thickness T2 of the second waveguide layer is 60 nm or more and 80 nm or less. This makes it possible to more strongly overlap the asymmetric optical modes in the light-emitting layer. As a result, the optical confinement coefficient is further improved, and the oscillation current threshold can be reduced. Similarly, the film thickness ratio T1/T2 between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is preferably 0.3 or more and 0.7 or less. It is preferably 0.5 or more and 0.6 or less.
 導波路層は、P、As、Sb等のN以外のV族元素、C、H、F、O、Mg、Si等の不純物が混入していてよいが、不純物の元素の種類としてはこの限りではない。
 第1導波路層および第2導波路層のAl組成のそれぞれは、膜厚方向において均一であることが好ましいが、この限りではない。後述する第2導電型クラッド層の上方に存在する金属(例えば第2電極)への光吸収を回避するために、第2導波路層のAl組成が第1導波路層のAl組成より高くなっていてもよい。
The waveguide layer may contain group V elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. isn't it.
The Al composition of each of the first waveguide layer and the second waveguide layer is preferably uniform in the film thickness direction, but is not limited to this. The Al composition of the second waveguide layer is higher than the Al composition of the first waveguide layer in order to avoid light absorption by the metal (for example, the second electrode) existing above the second conductivity type cladding layer, which will be described later. may be
<第2導電型クラッド層>
 第2導電型クラッド層は、発光層上に形成され、第2導電型の導電性を有するAlおよびGaを含む窒化物半導体層である。第2導電型クラッド層は、例えばAlGa(1-d)N(0<d<1)により形成される。また、発光層上に導波路層(第2導波路層)が設けられている場合には、第2導電型クラッド層は、導波路層(第2導波路層)上に形成される。これにより、第2導電型クラッド層は、発光層または導波路層に対して格子整合が容易であり、貫通転位密度の抑制が可能となる。
<Second conductivity type clad layer>
The second-conductivity-type cladding layer is a nitride semiconductor layer formed on the light-emitting layer and containing Al and Ga having second-conductivity-type conductivity. The second-conductivity-type cladding layer is made of Al d Ga (1-d) N (0<d<1), for example. Further, when a waveguide layer (second waveguide layer) is provided on the light emitting layer, the second conductivity type cladding layer is formed on the waveguide layer (second waveguide layer). Thereby, the second-conductivity-type cladding layer can be easily lattice-matched with the light-emitting layer or the waveguide layer, and the threading dislocation density can be suppressed.
 第2導電型クラッド層は、キャリア(電子または正孔)を発光層へ注入するに足りる導電性を有しており、デバイス内で定在する光モードの電界強度分布と発光層の重なりを増大させる(すなわち光閉じ込めを増大させる)ことが可能であれば、導電型は特に限定されない。より光閉じ込めを高める観点から、第2導電型クラッド層の平均Al組成d’は第1導電型クラッド層の平均Al組成a’よりも大きいことが好ましい。さらに好ましくは、第2導電型クラッド層の平均Al組成d’は0.8以上0.9以下である。これにより、非対称であった光モードを発光層により強く重複することが可能となる。それによってさらに光閉じ込め係数が向上し、発振電流閾値を低減することが可能となる。このとき平均Al組成はある位置におけるAl組成を膜厚範囲で積分してから、膜厚で除したものとなる。たとえば第2導電型クラッド層の開始位置から終了位置まで、Al組成が100%から70%まで直線的に傾斜していた場合、平均組成d’は85%となる。また、膜厚の2/3が100%であり、膜厚の1/3が70%であった場合、平均組成d’は90%となる。
 また、緩和の観点から、第2クラッド層の膜厚は300nm以上400nm以下であることが好ましい。
The second-conductivity-type cladding layer has conductivity sufficient to inject carriers (electrons or holes) into the light-emitting layer, and increases the electric field intensity distribution of the optical mode existing in the device and the overlap of the light-emitting layer. The conductivity type is not particularly limited as long as it is possible to increase the confinement of light (that is, to increase the optical confinement). From the viewpoint of enhancing optical confinement, the average Al composition d' of the second-conductivity-type clad layer is preferably larger than the average Al composition a' of the first-conductivity-type clad layer. More preferably, the average Al composition d' of the second-conductivity-type clad layer is 0.8 or more and 0.9 or less. This makes it possible to more strongly overlap the asymmetric optical modes in the light-emitting layer. As a result, the optical confinement coefficient is further improved, and the oscillation current threshold can be reduced. At this time, the average Al composition is obtained by integrating the Al composition at a certain position in the film thickness range and then dividing it by the film thickness. For example, when the Al composition is linearly graded from 100% to 70% from the start position to the end position of the second-conductivity-type clad layer, the average composition d' is 85%. Further, when 2/3 of the film thickness is 100% and 1/3 of the film thickness is 70%, the average composition d' is 90%.
From the viewpoint of relaxation, the film thickness of the second clad layer is preferably 300 nm or more and 400 nm or less.
 キャリアをより効率よく発光層へ注入する観点から、第2導電型クラッド層は 、基板から遠ざかるにつれてAl組成eが小さくなる、すなわちAl組成eが基板の上面から遠ざかる方向へ減少する様に傾斜したAlGa(1-e)N(0.1≦e≦1)で形成された組成傾斜層(第2導電型縦伝導層)と、AlGa(1-f)N(0<f≦1)を含む第2導電型横伝導層とを備えることが好ましい。
 また、第2導電型クラッド層は、たとえばMgをドーピングしたp型AlGaNであってよい。第2導電型クラッド層は、たとえばP、As、Sb等のN以外のV族元素、C、H、F、O、Mg、Si等の不純物を含んでいてもよいが、不純物の元素の種類としてはこの限りではない。
 以下、第2導電型縦伝導層および第2導電型横伝導層について説明する。
From the viewpoint of injecting carriers into the light-emitting layer more efficiently, the second-conductivity-type cladding layer is inclined such that the Al composition e decreases with increasing distance from the substrate, that is, the Al composition e decreases in the direction away from the upper surface of the substrate. A composition gradient layer (second conductivity type vertical conduction layer) made of Al e Ga (1−e) N (0.1≦e≦1) and Al f Ga (1−f) N (0<f≦1) 1) and a lateral conductive layer of the second conductivity type including 1).
Also, the second conductivity type cladding layer may be, for example, p-type AlGaN doped with Mg. The second conductivity type cladding layer may contain, for example, group V elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. is not limited to this.
The second-conductivity-type vertical conduction layer and the second-conductivity-type horizontal conduction layer will be described below.
(第2導電型縦伝導層)
 第2導電型縦伝導層は、第2導電型クラッド層のうちの発光層側の領域を構成する層である。
 第2導電型縦伝導層は、AlGa(1-e)Nを含む層である。第2導電型縦伝導層におけるAl組成eのプロファイル(傾斜)は、連続的に減少してもよいし、断続的に減少してもよい。ここで、「断続的に減少する」とは、第2導電型縦伝導層の膜中の一部にAl組成eが同じ(膜厚方向に一定)になっている部分を含むことを意味する。つまり、第2導電型縦伝導層には、基板から遠ざかる方向にAl組成eが減少しない部分が含まれていてもよいが、増加する部分は含まれていない。
(Second conductivity type vertical conduction layer)
The second-conductivity-type vertical conduction layer is a layer forming a region of the second-conductivity-type clad layer on the light-emitting layer side.
The second-conductivity-type vertical conduction layer is a layer containing AleGa (1-e) N. The profile (slope) of the Al composition e in the second-conductivity-type vertical conduction layer may decrease continuously or may decrease intermittently. Here, "intermittently decreasing" means that a portion of the film of the second-conductivity-type vertical conduction layer includes a portion in which the Al composition e is the same (constant in the film thickness direction). . That is, the second-conductivity-type vertical conduction layer may include a portion where the Al composition e does not decrease in the direction away from the substrate, but does not include a portion where the Al composition e increases.
 第2導電型縦伝導層の膜厚は、格子整合の観点から500nm以下であることが好ましく、20nm以上400nm以下であることがより好ましく、30nm以上350nm以下であることがさらに好ましい。 From the viewpoint of lattice matching, the film thickness of the second-conductivity-type vertical conduction layer is preferably 500 nm or less, more preferably 20 nm or more and 400 nm or less, and even more preferably 30 nm or more and 350 nm or less.
(第2導電型横伝導層)
 第2導電型横伝導層は、第2導電型クラッド層のうちの発光層と反対側の領域を構成する層であり、第2導電型縦伝導層上に形成される。
 第2導電型横伝導層は、AlGa(1-f)N(0<f≦1)を含む層である。ここで、第2導電型横伝導層の第2導電型縦伝導層と対向する面におけるAl組成fは、第2導電型縦伝導層のAl組成eの最小値よりも大きいことが好ましい。
 第2導電型横伝導層の膜厚は、第2導電型横伝導層を貫通するキャリアの量子透過を容易とする観点から20nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
(Second conductivity type lateral conductive layer)
The second-conductivity-type lateral conduction layer is a layer forming a region of the second-conductivity-type cladding layer opposite to the light-emitting layer, and is formed on the second-conductivity-type vertical conduction layer.
The second conductivity type lateral conduction layer is a layer containing Al f Ga (1−f) N (0<f≦1). Here, it is preferable that the Al composition f of the surface of the second-conductivity-type horizontal conduction layer facing the second-conductivity-type vertical conduction layer is larger than the minimum value of the Al composition e of the second-conductivity-type vertical conduction layer.
From the viewpoint of facilitating quantum transmission of carriers passing through the second-conductivity-type lateral conducting layer, the thickness of the second-conductivity-type lateral conducting layer is preferably 20 nm or less, more preferably 10 nm or less, and 5 nm. More preferably:
 第2導電型横伝導層の上に後述する第2導電型コンタクト層が設けられる場合、第2導電型横伝導層の第2導電型コンタクト層との界面におけるAl組成は、第2導電型コンタクト層におけるAl組成よりも小さく、かつ基板に対して完全歪であることが好ましい。このような第2導電型横伝導層は、第2導電型横伝導層の表面および表面付近の内部に蓄積される正味内部電界が負となって、界面にキャリアが誘積されることで横伝導率を向上させることができる。 When a second-conductivity-type contact layer, which will be described later, is provided on the second-conductivity-type lateral-conducting layer, the Al composition at the interface between the second-conductivity-type lateral-conducting layer and the second-conductivity-type contact layer is It is preferably less than the Al composition in the layer and fully strained relative to the substrate. In such a second-conductivity-type lateral conductive layer, the net internal electric field accumulated on the surface and near the surface of the second-conductivity-type lateral conductive layer becomes negative, and carriers are induced at the interface, thereby laterally Conductivity can be improved.
 このように、第2導電型縦伝導層は、分極ドーピング効果によりキャリア(例えば第2導電型縦伝導層がp型半導体により形成されている場合には正孔)を生成させて、キャリアを効率良く発光層内の活性層に注入する作用を有する。このため、第2導電型縦伝導層が発光層上に設けられることで、レーザダイオードのキャリア注入効率を高めることができる。 In this way, the second-conductivity-type vertical conduction layer generates carriers (for example, holes when the second-conductivity-type vertical conduction layer is formed of a p-type semiconductor) by the polarization doping effect, and the carriers are efficiently generated. It has a good effect of injecting into the active layer in the light emitting layer. Therefore, the carrier injection efficiency of the laser diode can be increased by providing the vertical conduction layer of the second conductivity type on the light emitting layer.
 また、第2導電型横伝導層は、電極下部に集中する電界によって狭められるキャリア分布を横方向(第2導電型横伝導層の面内)に広げる効果を有する。この効果により、第2導電型横伝導層は、第2導電型縦伝導層と同様に発光層へのキャリア注入効率を高めることができる。 In addition, the lateral conductive layer of the second conductivity type has the effect of widening the carrier distribution, which is narrowed by the electric field concentrated under the electrode, in the lateral direction (within the plane of the lateral conductive layer of the second conductivity type). Due to this effect, the second-conductivity-type horizontal conduction layer can increase the efficiency of carrier injection into the light-emitting layer in the same manner as the second-conductivity-type vertical conduction layer.
<第2導電型コンタクト層>
 本実施形態のレーザダイオードの半導体積層部は、第2導電型クラッド層上に配置された第2導電型コンタクト層を更に備えていても良い。第2導電型コンタクト層を構成する窒化物半導体は、例えばGaN、AlNまたはInNおよび、それらを含む混晶で形成されることが好ましく、GaNを含む窒化物半導体であることがより好ましい。
<Second conductivity type contact layer>
The semiconductor lamination portion of the laser diode of this embodiment may further include a second conductivity type contact layer disposed on the second conductivity type clad layer. The nitride semiconductor constituting the second-conductivity-type contact layer is preferably made of, for example, GaN, AlN, or InN, or a mixed crystal containing them, and more preferably a nitride semiconductor containing GaN.
 第2導電型コンタクト層は、P、As、Sb等のN以外のV族元素、C、H、F、O、Mg、Si、Be等の不純物が混入していてよい。原料ガスの汎用性から、第2導電型コンタクト層に含まれる不純物はMgであることが好ましい。コンタクト抵抗低減の観点から、Mgの濃度が8×1019cm-3以上5×1021cm-3以下であることが好ましく、5×1020cm-3以上5×1021cm-3以下であることがより好ましい。 The second conductivity type contact layer may contain V group elements other than N, such as P, As, and Sb, and impurities such as C, H, F, O, Mg, Si, and Be. Due to the versatility of the raw material gas, the impurity contained in the second conductivity type contact layer is preferably Mg. From the viewpoint of reducing the contact resistance, the Mg concentration is preferably 8×10 19 cm −3 or more and 5×10 21 cm −3 or less, and more preferably 5×10 20 cm −3 or more and 5×10 21 cm −3 or less. It is more preferable to have
 また、第2導電型コンタクト層の層厚は、1nm以上20nm以下であることが好ましい。第2導電型コンタクト層の層厚が薄いほど発光層のキャリア注入効率が向上し、層厚が厚いほどキャリア注入効率が低下する。 Further, the layer thickness of the second-conductivity-type contact layer is preferably 1 nm or more and 20 nm or less. The carrier injection efficiency of the light-emitting layer improves as the layer thickness of the second-conductivity-type contact layer decreases, and the carrier injection efficiency decreases as the layer thickness increases.
<電子ブロック層>
 本実施形態の発光層の半導体積層部は、発光層よりも上方に、バンドギャップが発光層より大きい電子ブロック層を更に有していても良い。電子ブロック層は、例えば発光層の上に設けてもよく、第2導波路層の内部、第2導波路層と発光層との間または第2導波路層と第2導電型縦伝導層との間に設けることもできる。
 電子ブロック層の層厚は、電子ブロック層をキャリア(正孔)が量子貫通しやすいように、30nm以下であることが好ましく、20nm以下であることがより好ましい。
<Electron blocking layer>
The semiconductor lamination portion of the light emitting layer of the present embodiment may further have an electron blocking layer above the light emitting layer and having a bandgap larger than that of the light emitting layer. The electron blocking layer may be provided, for example, on the light-emitting layer, inside the second waveguide layer, between the second waveguide layer and the light-emitting layer, or between the second waveguide layer and the second conductivity type vertical conduction layer. It can also be set between
The layer thickness of the electron blocking layer is preferably 30 nm or less, more preferably 20 nm or less so that carriers (holes) can easily quantum penetrate the electron blocking layer.
<電極>
 レーザダイオードは、第2導電型クラッド層上に配置された第2電極と、第1導電型クラッド層上に配置された第1電極によって電流を注入することにより発光または発振を行うことができる。このとき、第1電極は、第1導電型クラッド層と電気に接触するように形成されており、第2電極は、第2導電型クラッド層と電気に接触するように形成されている。
 第1電極は、例えば、基板の裏側に電極を配置することができる。また、第1電極は、半導体積層部の第1導電型クラッド層よりも上部の層を例えば化学エッチングまたはドライエッチングによって除去することにより露出した第1導電型クラッド層上に配置される。つまり、第1電極は、第1導電型クラッド層においてメサ構造を形成しない領域上に配置される。
<Electrode>
A laser diode can emit light or oscillate by injecting a current through a second electrode arranged on a second-conductivity-type clad layer and a first electrode arranged on a first-conductivity-type clad layer. At this time, the first electrode is formed so as to be in electrical contact with the clad layer of the first conductivity type, and the second electrode is formed so as to be in electrical contact with the clad layer of the second conductivity type.
The first electrode can be arranged, for example, on the back side of the substrate. Also, the first electrode is arranged on the first conductivity type cladding layer exposed by removing the layer above the first conductivity type cladding layer of the semiconductor lamination portion by chemical etching or dry etching, for example. That is, the first electrode is arranged on a region in which the mesa structure is not formed in the first-conductivity-type cladding layer.
 第1導電型クラッド層がn型クラッド層の場合、第1電極は、Al、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zr等の金属、これらの混晶、または、ITOもしくはGa等の導電性酸化物等により形成される。
 第1導電型クラッド層がp型クラッド層の場合、第1電極は、Ni、Au、Pt、Ag、Rh、Pd、Pt、Cu、Al、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、Ir、Zr等の金属、これらの混晶、または、ITOもしくはGa等の導電性酸化物等により形成される。
When the first conductivity type clad layer is an n-type clad layer, the first electrode is Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt. , Cu, Ag, Au, Zr, etc., a mixed crystal thereof, or a conductive oxide such as ITO or Ga 2 O 3 .
When the first conductivity type clad layer is a p-type clad layer, the first electrode is Ni, Au, Pt, Ag, Rh, Pd, Pt, Cu, Al, Ti, Zr, Hf, V, Nb, Ta, Cr , Mo, W, Co, Ir, and Zr, or mixed crystals thereof, or conductive oxides such as ITO or Ga 2 O 3 .
 第2導電型クラッド層がn型クラッド層の場合、第2電極は、Al、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zr等の金属、これらの混晶、または、ITOもしくはGa等の導電性酸化物等により形成される。
 第2導電型クラッド層がp型クラッド層の場合、第2電極は、Ni、Au、Pt、Ag、Rh、Pd、Pt、Cu、Al、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、Ir、Zr等の金属、これらの混晶、または、ITOもしくはGa等の導電性酸化物等により形成される。
When the second conductivity type clad layer is an n-type clad layer, the second electrode is Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt. , Cu, Ag, Au, Zr, etc., a mixed crystal thereof, or a conductive oxide such as ITO or Ga 2 O 3 .
When the second conductivity type clad layer is a p-type clad layer, the second electrode is Ni, Au, Pt, Ag, Rh, Pd, Pt, Cu, Al, Ti, Zr, Hf, V, Nb, Ta, Cr , Mo, W, Co, Ir, and Zr, or mixed crystals thereof, or conductive oxides such as ITO or Ga 2 O 3 .
 第1電極および第2電極の配置領域および形状は、第1導電型クラッド層と第2導電型クラッド層(第2導電型コンタクト層を備える場合には第2導電型コンタクト層)とのそれぞれと電気的接触が得られていれば限定はされない。 The arrangement regions and shapes of the first electrode and the second electrode are the same as those of the first-conductivity-type clad layer and the second-conductivity-type clad layer (the second-conductivity-type contact layer when the second-conductivity-type contact layer is provided). There is no limitation as long as electrical contact is obtained.
(1.2)紫外線レーザダイオードの製造方法
 本実施形態のレーザダイオードは、基板上に各層を形成する工程を経て製造される。
(1.2) Manufacturing Method of Ultraviolet Laser Diode The laser diode of the present embodiment is manufactured through steps of forming layers on a substrate.
(基板の形成)
 基板は、昇華法、ハイドライド気相成長(HVPE:Hydride Vapor Phase Epitaxy)法等の気相成長法および液相成長法等の一般的な基板成長法により形成される。
(Formation of substrate)
The substrate is formed by a general substrate growth method such as a vapor phase growth method such as a sublimation method, a hydride vapor phase epitaxy (HVPE) method, or a liquid phase growth method.
(半導体積層部の形成)
 基板上に形成される半導体積層部の各層は、例えば、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、ハイドライド気相成長(HVPE)法または有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法等により形成することができる。
 ここで、基板上に形成された各層のうち窒化物半導体の層は、例えばトリメチルアルミニウム(TMAl)を含むAl原料、トリメチルガリウム(TMGa)またはトリエチルガリウム(TEGa)等を含むGa原料、もしくはアンモニア(NH)を含むN原料を用いて形成することができる。
(Formation of semiconductor laminated portion)
Each layer of the semiconductor laminate formed on the substrate is formed by, for example, a molecular beam epitaxy (MBE) method, a hydride vapor phase epitaxy (HVPE) method, or a metal organic chemical vapor deposition (MOCVD) method. It can be formed by a method or the like.
Here, among the layers formed on the substrate, the nitride semiconductor layer is, for example, an Al raw material containing trimethylaluminum (TMAl), a Ga raw material containing trimethylgallium (TMGa) or triethylgallium (TEGa), or ammonia ( NH 3 ) can be used as the N source material.
 基板上に形成されたバッファ層の上に、第1導電型の窒化物半導体を含む第1導電型クラッド層を形成する。次いで、第1導電型クラッド層上に、1つ以上の量子井戸を含む窒化物半導体(AlGaN等)により発光層を形成し、発光層上に、第2導電型クラッド層を形成する。
 必要に応じて、発光層の上下にAlGaN等の窒化物半導体による導波路層を形成してもよい。また、第2導電型クラッド層および導波路の間にAlGaN等の窒化物半導体による中間層を形成してもよいし、第2導電型クラッド層上にGaN等を含む窒化物半導体第2導電型コンタクト層を設けてもよいし、発光層よりも上方に電子ブロック層を形成してもよい。
A first conductivity type clad layer containing a first conductivity type nitride semiconductor is formed on a buffer layer formed on a substrate. Next, a light-emitting layer is formed on the first-conductivity-type clad layer using a nitride semiconductor (such as AlGaN) including one or more quantum wells, and a second-conductivity-type clad layer is formed on the light-emitting layer.
If necessary, waveguide layers made of a nitride semiconductor such as AlGaN may be formed above and below the light emitting layer. Further, an intermediate layer made of a nitride semiconductor such as AlGaN may be formed between the second-conductivity-type clad layer and the waveguide, or a second-conductivity-type nitride semiconductor containing GaN or the like may be formed on the second-conductivity-type clad layer. A contact layer may be provided, and an electron blocking layer may be formed above the light emitting layer.
 レーザダイオードは、基板上に形成された半導体積層部の各層の不要部分をエッチングによって除去する工程(メサ構造形成工程)を経て製造される。半導体積層部の各層の不要部分の除去は、例えば誘導結合型プラズマ(ICP)エッチング等で行うことができる。
 メサ構造形成工程では、エッチングによって導体積層部の各層の不要部分が除去されることで、第1導電型クラッド層の一部が露出される。
A laser diode is manufactured through a process (mesa structure forming process) of removing unnecessary portions of each layer of a semiconductor laminate formed on a substrate by etching. The removal of unnecessary portions of each layer of the semiconductor laminate can be performed by, for example, inductively coupled plasma (ICP) etching or the like.
In the mesa structure forming step, unnecessary portions of each layer of the conductor laminate are removed by etching, thereby partially exposing the first conductivity type clad layer.
(電極の形成)
 また、レーザダイオードは、電極を形成する工程を経て製造され得る。第1電極および第2電極等の電極は、例えば抵抗加熱蒸着、電子銃蒸着またはスパッタ等のように電子線蒸着(EB)法によって金属を蒸着させる種々の方法により形成されるが、これら方法には限定されない。各電極は、単層で形成してもよく、複数層積層して形成してもよい。また、各電極は、層の形成後に酸素、窒素または空気雰囲気等で熱処理が行われてもよい。
 最後に、上述した工程を経て各層が形成された基板を、ダイシングにより個片へと分割してレーザダイオードが製造される。
(Formation of electrodes)
Also, the laser diode can be manufactured through a process of forming electrodes. Electrodes such as the first electrode and the second electrode are formed by various methods of evaporating metal by electron beam evaporation (EB), such as resistance heating evaporation, electron gun evaporation, or sputtering. is not limited. Each electrode may be formed as a single layer, or may be formed by laminating a plurality of layers. Further, each electrode may be subjected to heat treatment in an atmosphere of oxygen, nitrogen, air, or the like after the layer is formed.
Finally, the substrate on which each layer is formed through the above steps is divided into individual pieces by dicing to manufacture laser diodes.
 具体的には、第1導電型クラッド層上において、表面上に第1電極を形成する。また、第2電極は、半導体積層部の一部形成されるメサ構造の最上層(例えば、第2導電型クラッド層)に形成される。
 このように、本実施形態によるレーザダイオードの製造方法によれば、発振閾値電流密度を低減することができ、長寿命のレーザダイオードを作製することができる。
Specifically, a first electrode is formed on the surface of the first-conductivity-type clad layer. Also, the second electrode is formed on the uppermost layer (for example, the second-conductivity-type clad layer) of the mesa structure formed in part of the semiconductor laminate.
As described above, according to the laser diode manufacturing method according to the present embodiment, the oscillation threshold current density can be reduced, and a long-life laser diode can be manufactured.
2.レーザダイオードの物性等の測定方法
 上述したレーザダイオードの物性等は、以下のようにして測定することができる。
2. Method for Measuring Physical Properties of Laser Diode The physical properties of the laser diode described above can be measured as follows.
(層厚の測定方法)
 レーザダイオードを構成する各層の層厚は、基板に垂直な所定断面を切り出して、この断面を透過型電子顕微鏡(TEM:Transmission Electron Microscope)により観察し、TEMの測長機能を使用することで測定できる。測定方法としては、先ず、TEMを用いて、レーザダイオードの基板の主面に対して垂直な断面を観察する。具体的には、例えば、レーザダイオードの基板の主面に対して垂直な断面を示すTEM画像内の、基板の主面に対して平行な方向において2μm以上の範囲を観察幅とする。この観察幅の範囲において、組成の異なる2層の界面にはコントラストが観察されるので、この界面までの厚さを、幅200nmの連続する観察領域で観察する。この200nm幅の観察領域内に含まれる各層の厚さの平均値を、上述した2μm以上の観察幅から任意に抽出した5箇所から算出することで、各層の層厚を得ることができる。
(Method for measuring layer thickness)
The layer thickness of each layer constituting the laser diode is measured by cutting out a predetermined cross section perpendicular to the substrate, observing this cross section with a transmission electron microscope (TEM), and using the length measurement function of the TEM. can. As a measuring method, first, a TEM is used to observe a cross section perpendicular to the main surface of the substrate of the laser diode. Specifically, for example, the observation width is defined as a range of 2 μm or more in a direction parallel to the main surface of the substrate in a TEM image showing a cross section perpendicular to the main surface of the substrate of the laser diode. In this observation width range, a contrast is observed at the interface between the two layers with different compositions, so the thickness up to this interface is observed in a continuous observation area with a width of 200 nm. The layer thickness of each layer can be obtained by calculating the average value of the thickness of each layer included in the observation area of 200 nm width from five points arbitrarily extracted from the observation width of 2 μm or more.
(不純物濃度およびドーピング濃度の測定)
 レーザダイオードを構成する各層に含まれるドーパントや不純物の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により測定することができる。
 各層に含まれるドーパントや不純物の濃度を、デバイスに加工された後にSIMSで測定する場合は、化学的なエッチングや物理研磨により電極を除去した状態で行うことができる。また、各層に含まれるドーパントや不純物の濃度は、電極が形成されていない基板側からスパッタして測定することもできる。
 具体的には、エバンス・アナリティカル・グループ(EAG)社が提供する測定条件によりSIMS測定を実施する。測定時の試料のスパッタには、14.5keVのエネルギーを有したセシウム(Cs)イオンビームを用いる。
(Measurement of impurity concentration and doping concentration)
The concentration of dopants and impurities contained in each layer constituting the laser diode can be measured by secondary ion mass spectrometry (SIMS).
When the concentrations of dopants and impurities contained in each layer are measured by SIMS after processing into a device, it can be performed in a state where electrodes are removed by chemical etching or physical polishing. Also, the concentration of dopants and impurities contained in each layer can be measured by sputtering from the side of the substrate where no electrodes are formed.
Specifically, SIMS measurement is performed under measurement conditions provided by Evans Analytical Group (EAG). A cesium (Cs) ion beam having an energy of 14.5 keV is used for sputtering the sample during measurement.
(各層の原子濃度の測定方法)
 レーザダイオードを構成する各層に含まれる原子濃度を測定する方法としては、X線回折(XRD:X-Ray Diffraction)法による逆格子マッピング測定(RSM:Reciprocal Space Mapping)が挙げられる。具体的には、非対称面を回折面として得られる回折ピーク近傍の逆格子マッピングデータを解析することにより、下地に対する格子緩和率とAl組成が得られる。回折面としては、例えば(10-15)面や(20-24)面が挙げられる。
 また、発光層や傾斜層、各層に形成されたヒロックなどのXRDで十分な反射強度が得られない層や領域は、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)、及び電子エネルギー損失分光法(EELS:Electron Energy-Loss Spectroscopy)によって測定することができる。
(Method for measuring atomic concentration of each layer)
Methods for measuring the atomic concentration contained in each layer constituting a laser diode include reciprocal space mapping (RSM) by X-ray diffraction (XRD). Specifically, by analyzing the reciprocal lattice mapping data in the vicinity of the diffraction peak obtained with the asymmetric plane as the diffraction plane, the lattice relaxation rate and Al composition for the underlayer can be obtained. Examples of diffraction planes include the (10-15) plane and the (20-24) plane.
In addition, layers and regions where sufficient reflection intensity cannot be obtained by XRD, such as the light emitting layer, the gradient layer, and the hillocks formed in each layer, are X-ray photoelectron spectroscopy (XPS), energy dispersive X It can be measured by line spectroscopy (EDX: Energy Dispersive X-ray spectroscopy) and electron energy-loss spectroscopy (EELS: Electron Energy-Loss Spectroscopy).
 EELSでは、電子線が試料を透過する際に失うエネルギーを測定することで、試料の組成を分析する。具体的には、例えば、TEM観察等で使用する薄片化試料において、透過電子線の強度のエネルギー損失スペクトルを測定・解析する。そして、エネルギー損失量20eV付近に現れるピーク位置が、各層の組成に応じて変化することを利用し、ピーク位置から組成を求めることができる。
 上述のTEM観察による層厚算出方法と同様にして、観察幅200nmにおけるAl組成の平均値を、2μm以上の観察領域から任意に抽出した5箇所から算出することで、各層のAl組成を得る。
EELS analyzes the composition of a sample by measuring the energy lost by an electron beam as it passes through the sample. Specifically, for example, in a sliced sample used for TEM observation, etc., an energy loss spectrum of the intensity of a transmitted electron beam is measured and analyzed. Using the fact that the peak position appearing near the energy loss of 20 eV changes according to the composition of each layer, the composition can be obtained from the peak position.
In the same manner as the layer thickness calculation method by TEM observation described above, the average value of the Al composition at an observation width of 200 nm is calculated from 5 points arbitrarily extracted from the observation area of 2 μm or more to obtain the Al composition of each layer.
 EDXでは、上述のTEM観察等で使用する薄片化試料において電子線によって発生する特性X線を測定・解析する。上述のTEM観察による層厚算出方法と同様にして、観察幅200nmにおけるAl組成の平均値を、2μm以上の観察領域から任意に抽出した5箇所から算出することで、各層のAl組成を得る。 EDX measures and analyzes the characteristic X-rays generated by the electron beam in the thinned sample used for the above-mentioned TEM observation. In the same manner as the layer thickness calculation method by TEM observation described above, the average value of the Al composition at an observation width of 200 nm is calculated from 5 points arbitrarily extracted from the observation area of 2 μm or more to obtain the Al composition of each layer.
 XPSでは、イオンビームを用いたスパッタエッチングを行いながらXPS測定を行うことで、深さ方向の評価が可能である。イオンビームには一般的にAr+が用いられるが、XPS装置に搭載されたエッチング用イオン銃で照射できるイオンであれば、例えばArクラスターイオンなどの他のイオン種でもよい。Al、Ga、NのXPSピーク強度を測定・解析して各層のAl組成の深さ方向分布を得る。スパッタエッチングの代わりに、基板の主面に対して垂直な断面が拡大されて露出されるようにレーザダイオードを斜め研磨して、露出断面をXPSで測ってもよい。 With XPS, evaluation in the depth direction is possible by performing XPS measurement while performing sputter etching using an ion beam. Ar + is generally used for the ion beam, but other ion species such as Ar cluster ions may be used as long as the ions can be irradiated by an etching ion gun mounted on the XPS apparatus. The XPS peak intensities of Al, Ga, and N are measured and analyzed to obtain the depth direction distribution of the Al composition of each layer. Instead of sputter etching, the laser diode may be obliquely polished so that the cross section perpendicular to the main surface of the substrate is enlarged and exposed, and the exposed cross section may be measured by XPS.
 XPSだけでなくオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いても各層の組成を測定できる。この場合、スパッタエッチングあるいは斜め研磨により露出させた断面においてオージェ電子分光法による測定を行うことで、組成を測定できる。また、斜め研磨により露出させた断面に対するSEM-EDX測定によっても、各層の組成を測定できる。 The composition of each layer can be measured not only by XPS but also by using Auger Electron Spectroscopy (AES). In this case, the composition can be measured by measurement by Auger electron spectroscopy on a section exposed by sputter etching or oblique polishing. The composition of each layer can also be measured by SEM-EDX measurement of a section exposed by oblique polishing.
(紫外線レーザダイオードの適用分野)
 本開示に係るレーザダイオードは、例えば、医療・ライフサイエンス分野、環境分野、産業・工業分野、生活・家電分野、農業分野、その他分野の装置に適用可能である。レーザダイオードは、薬品または化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・FPD(Flat Panel Display)・PCB(Printed Wiring Board)・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。
(Application fields of ultraviolet laser diodes)
The laser diode according to the present disclosure is applicable to devices in, for example, the medical/life science field, the environmental field, the industrial/industrial field, the life/home appliance field, the agricultural field, and other fields. Laser diodes are used in equipment for synthesizing and decomposing drugs or chemical substances, sterilizing equipment for liquids, gases, and solids (containers, food, medical equipment, etc.), cleaning equipment for semiconductors, etc., equipment for surface modification of films, glass, metals, etc., semiconductors・FPD (Flat Panel Display) ・PCB (Printed Wiring Board) ・Exposing equipment for manufacturing other electronic products, printing/coating equipment, adhesive/sealing equipment, transfer/molding equipment for film/pattern/mock-up, banknote/scratches・Applicable to measuring and testing devices for blood, chemical substances, etc.
 液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿および貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるが、この限りではない。 Examples of liquid sterilizers include automatic ice makers, ice trays and ice storage containers in refrigerators, water supply tanks for ice makers, freezers, ice makers, humidifiers, dehumidifiers, cold water tanks, hot water tanks, and flow paths of water servers. Piping, stationary water purifiers, portable water purifiers, water supply equipment, water heaters, waste water treatment equipment, disposers, waste water traps for toilet bowls, washing machines, dialysis water sterilization modules, peritoneal dialysis connector sterilizers, disaster water storage systems, etc. are listed, but are not limited to these.
 気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用または寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるが、この限りではない。
 固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるが、この限りではない。
Examples of gas sterilizers include air purifiers, air conditioners, ceiling fans, floor or bedding vacuum cleaners, futon dryers, shoe dryers, washing machines, clothes dryers, indoor germicidal lamps, and storage ventilation. Examples include, but are not limited to, systems, shoeboxes, chests of drawers, and the like.
Examples of solid sterilizers (including surface sterilizers) include vacuum packers, belt conveyors, hand tool sterilizers for medical, dental, barber and beauty salon use, toothbrushes, toothbrush cases, chopstick cases, cosmetic pouches, Drain lids, local washes of toilet bowls, toilet bowl lids, etc., but not limited to these.
3.レーザダイオードの具体例
 以下、図1及び図2を参照して、本実施形態のレーザダイオードをより具体的に説明する。なお、以下の各実施形態の各層の詳細な構成は、上述した通りである。
 図1は、本実施形態にかかるレーザダイオード1の断面模式図である。図2は、本実施形態にかかるレーザダイオード1の平面図である。図1に示すように、レーザダイオード1は、基板11と、基板11上に配置される半導体積層部10と、第1電極12と、第2電極13とを備えている。半導体積層部10は、n型の導電型を有する第1導電型クラッド層101と、第1導波路層102、発光層103と、第2導波路層104、p型の導電型を有する第2導電型クラッド層105と、コンタクト層106とを備えている。
3. Specific Example of Laser Diode Hereinafter, the laser diode of the present embodiment will be described more specifically with reference to FIGS. 1 and 2. FIG. The detailed configuration of each layer in the following embodiments is as described above.
FIG. 1 is a schematic cross-sectional view of a laser diode 1 according to this embodiment. FIG. 2 is a plan view of the laser diode 1 according to this embodiment. As shown in FIG. 1, the laser diode 1 includes a substrate 11, a semiconductor lamination portion 10 arranged on the substrate 11, a first electrode 12, and a second electrode 13. As shown in FIG. The semiconductor lamination portion 10 includes a first conductivity type cladding layer 101 having n-type conductivity, a first waveguide layer 102, a light emitting layer 103, a second waveguide layer 104, and a second waveguide layer 104 having p-type conductivity. A conductive clad layer 105 and a contact layer 106 are provided.
4.効果
 上述したレーザダイオードは、以下の効果を有する。
(1)本開示のレーザダイオードは、Alを含む窒化物半導体基板と、窒化物半導体基板上に配置される半導体積層部と、を備え、半導体積層部は、窒化物半導体基板上に配置され、第1導電型の窒化物半導体層を含む第1導電型クラッド層と、第1導電型クラッド層上に配置された第1導波路層と、第1導波路層上に配置され、一つ以上の量子井戸を含む窒化物半導体で形成された発光層と、発光層上に配置された第2導波路層と、第2導波路層上に配置され、第2導電型の窒化物半導体層を含む第2導電型クラッド層と、を有し、第1導電型クラッド層は、AlGa(1-a)N(0.7<a<0.8)であり、第1導波路層は、Alc1Ga(1-c1)N(0.6<c1<0.7)であり、第二導波路層はAlc2Ga(1-c2)N(0.6<c2<0.7)であり、第1導波路層の膜厚T1と第二導波路層の膜厚T2との膜厚比T1/T2は、0.3以上0.7以下となっている。
 これにより、光閉じ込め係数を向上させ、発振閾値電流密度を低減することが可能となる。
4. Effects The laser diode described above has the following effects.
(1) A laser diode according to the present disclosure includes a nitride semiconductor substrate containing Al and a semiconductor lamination portion arranged on the nitride semiconductor substrate, the semiconductor lamination portion being arranged on the nitride semiconductor substrate, a first conductivity type cladding layer including a first conductivity type nitride semiconductor layer; a first waveguide layer disposed on the first conductivity type cladding layer; and one or more waveguide layers disposed on the first waveguide layer a light emitting layer formed of a nitride semiconductor including a quantum well of; a second waveguide layer disposed on the light emitting layer; and a nitride semiconductor layer of a second conductivity type disposed on the second waveguide layer and a second conductivity type clad layer comprising: the first conductivity type clad layer is Al a Ga (1−a) N (0.7<a<0.8); , Al c1 Ga (1−c1) N (0.6<c1<0.7), and the second waveguide layer is Al c2 Ga (1−c2) N (0.6<c2<0.7) , and the film thickness ratio T1/T2 between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is 0.3 or more and 0.7 or less.
This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
(2)本開示のレーザダイオードにおいて、第1導波路層の膜厚T1は20nm以上50nm以下であり、第2導波路層の膜厚T2は50nm以上90nm以下であることが好ましい。
 これにより、光閉じ込め係数を向上させ、発振閾値電流密度を低減することが可能となる。
(2) In the laser diode of the present disclosure, it is preferable that the film thickness T1 of the first waveguide layer is 20 nm or more and 50 nm or less, and the film thickness T2 of the second waveguide layer is 50 nm or more and 90 nm or less.
This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
(3)本開示のレーザダイオードにおいて第1導電型クラッド層は、250nm以上500nm以下である、ことが好ましい。
 これにより、緩和しない窒化物半導体積層体が得られ、発光効率の向上が得られ、発振閾値電流密度の低減することが可能となる。
(3) In the laser diode of the present disclosure, the first conductivity type clad layer preferably has a thickness of 250 nm or more and 500 nm or less.
As a result, a nitride semiconductor laminate that does not relax can be obtained, the luminous efficiency can be improved, and the oscillation threshold current density can be reduced.
(4)本開示のレーザダイオードにおいて、第2導電型クラッド層は、AlGa(1-d)N(0<d<1)であり、平均組成d’が第1導電型クラッド層の平均Al組成a’よりも大きいことが好ましい。
 これにより光閉じ込め係数を向上させ、発振閾値電流密度を低減することが可能となる。
(4) In the laser diode of the present disclosure, the second conductivity type clad layer is Al d Ga (1−d) N (0<d<1), and the average composition d′ is the average of the first conductivity type clad layer It is preferably larger than the Al composition a'.
This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
(5)本開示のレーザダイオードにおいて、第2導電型クラッド層の膜厚が300nm以上400nm以下であることが好ましい。
 これにより光閉じ込め係数を向上させ、発振閾値電流密度を低減することが可能となる。
(5) In the laser diode of the present disclosure, it is preferable that the film thickness of the second-conductivity-type clad layer is 300 nm or more and 400 nm or less.
This makes it possible to improve the optical confinement factor and reduce the oscillation threshold current density.
(6)本開示のレーザダイオードにおいて、発光層の量子井戸層は、AlGa(1-b)N(0.4<b<0.6)であり、膜厚が3nm以上6nm以下であり、2層以上4層以下の多重量子井戸構造となっていることが好ましい。
 これにより、緩和しない窒化物半導体積層体が得られ、発光効率の向上が得られ、発振閾値電流密度の低減することが可能となる。
(6) In the laser diode of the present disclosure, the quantum well layer of the light-emitting layer is Al b Ga (1-b) N (0.4<b<0.6) and has a thickness of 3 nm or more and 6 nm or less. , preferably has a multiple quantum well structure of two to four layers.
As a result, a nitride semiconductor laminate that does not relax can be obtained, the luminous efficiency can be improved, and the oscillation threshold current density can be reduced.
(7)本開示のレーザダイオードにおいて、窒化物半導体基板がAlN単結晶基板であることが好ましい。
 これにより、基板と基板の上側に形成される窒化物半導体層との格子定数差が小さくなり、窒化物半導体層を格子整合系で成長させることで貫通転位を少なくすることができ、安定性の高い窒化物半導体層を形成することができる。
(7) In the laser diode of the present disclosure, the nitride semiconductor substrate is preferably an AlN single crystal substrate.
As a result, the lattice constant difference between the substrate and the nitride semiconductor layer formed on the upper side of the substrate is reduced, and the nitride semiconductor layer is grown in a lattice matching system, thereby reducing threading dislocations and increasing stability. A high nitride semiconductor layer can be formed.
(8)本開示のレーザダイオードにおいて、第2導電型クラッド層上に配置され、GaNを含む窒化物半導体で形成された第2導電型コンタクト層を備え、前記第2導電型クラッド層は、AlGa(1-e)N(0.1≦e≦1)を含み、前記窒化物半導体基板から遠ざかるにつれてAl組成eが小さくなる組成傾斜を有し、膜厚が0.5μm未満である第2導電型縦伝導層と、AlGa(1-f)N(0<f≦1)を含む第2導電型横伝導層を有することが好ましい。これによりキャリアをより効率よく発光層へ注入することが可能となり、発光効率の向上が得られ、発振閾値電流密度の低減することが可能となる。 (8) The laser diode of the present disclosure includes a second conductivity type contact layer disposed on the second conductivity type cladding layer and formed of a nitride semiconductor containing GaN, wherein the second conductivity type cladding layer is made of Al A first film containing e Ga (1−e) N (0.1≦e≦1), having a composition gradient in which the Al composition e decreases with increasing distance from the nitride semiconductor substrate, and having a film thickness of less than 0.5 μm. It is preferable to have a two-conductivity-type vertical conduction layer and a second-conductivity-type horizontal conduction layer containing Al f Ga (1−f) N (0<f≦1). This makes it possible to inject carriers into the light-emitting layer more efficiently, improve the light-emitting efficiency, and reduce the oscillation threshold current density.
 以下、本開示のレーザダイオードを、実施例及び比較例により説明する。なお、本開示のレーザダイオードは、これら実施例に限定されない。 Hereinafter, the laser diode of the present disclosure will be described with examples and comparative examples. Note that the laser diode of the present disclosure is not limited to these examples.
<実施例1>
 基板として厚さ550μmの(0001)面AlN単結晶基板を用いた。
 次に、基板上に、バッファ層であるAlN層を形成した。AlN層は、1200℃の環境下において500nmの厚さで形成した。このとき、III族元素原料ガスの供給レートと窒素原料ガスの供給レートとの比率(V/III比)は50とした。このときのAlN層の成長レートは0.5μm/hrであった。また、Al原料としてトリメチルアルミニウム(TMAl)を用いた。また、N原料としてアンモニア(NH)を用いた。
<Example 1>
A (0001) plane AlN single crystal substrate having a thickness of 550 μm was used as the substrate.
Next, an AlN layer as a buffer layer was formed on the substrate. The AlN layer was formed with a thickness of 500 nm under an environment of 1200°C. At this time, the ratio (V/III ratio) between the supply rate of the group III element source gas and the supply rate of the nitrogen source gas was set to 50. The growth rate of the AlN layer at this time was 0.5 μm/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Ammonia (NH 3 ) was used as the N raw material.
 この基板上に第1導電型クラッド層を形成した。第1導電型クラッド層は、Siをドーパント不純物として用いたn型AlGaN層(Al:75%、すなわちAl0.75Ga0.25N層)とした。第1導電型クラッド層は、1080℃の温度で、真空度を50mbarに設定し、V/III比を4000とした条件で400nmの厚さで形成した。このときの第1導電型クラッド層の成長レートは0.4μm/hrであった。また、Al原料としてトリメチルアルミニウム(TMAl)を用いた。また、Ga原料としてトリエチルガリウム(TEGa)を用いた。また、N原料としてアンモニア(NH)を用いた。また、Si原料としてモノシラン(SiH)を用いた。 A clad layer of the first conductivity type was formed on this substrate. The first-conductivity-type cladding layer was an n-type AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer) using Si as a dopant impurity. The first conductivity type cladding layer was formed at a temperature of 1080° C., a degree of vacuum of 50 mbar and a V/III ratio of 4000 to a thickness of 400 nm. The growth rate of the first conductivity type clad layer at this time was 0.4 μm/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Also, triethylgallium (TEGa) was used as a Ga source. Ammonia (NH 3 ) was used as the N raw material. Also, monosilane (SiH 4 ) was used as the Si raw material.
 続いて、第1導電型クラッド層上に第1導波路層であるn型導波路層を形成した。n型導波路層は、ドーパントを含まないAlGaN層(Al:63%、すなわちAl0.63Ga0.37N層)とした。n型導波路層は、1080℃の温度で、真空度を50mbarに設定し、V/III比を4000とした条件で40nmの厚さで形成した。このときのn型導波路層の成長レートは0.35μm/hrであった。また、Al原料としてトリメチルアルミニウム(TMAl)を用いた。また、Ga原料としてトリエチルガリウム(TEGa)を用いた。また、N原料としてアンモニア(NH)を用いた。 Subsequently, an n-type waveguide layer as a first waveguide layer was formed on the first conductivity type clad layer. The n-type waveguide layer was an AlGaN layer (Al: 63%, ie Al 0.63 Ga 0.37 N layer) containing no dopant. The n-type waveguide layer was formed with a thickness of 40 nm under the conditions of a temperature of 1080° C., a degree of vacuum of 50 mbar, and a V/III ratio of 4000. The growth rate of the n-type waveguide layer at this time was 0.35 μm/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Also, triethylgallium (TEGa) was used as a Ga source. Ammonia (NH 3 ) was used as the N raw material.
 続いて、第1導波路層上に発光層を形成した。発光層は、量子井戸層とバリア層とを2周期積層させた多重量子井戸構造を有するように成膜して形成した。ここで、量子井戸層は、4.5nmの厚さを有するAlGaN層(Al:52%、すなわちAl0.52Ga0.48N層)とした。また、6.0nmの厚さを有するバリア層は、AlGaN層(Al:63%、すなわちAl0.63Ga0.37N層)とした。
 発光層は、真空度を50mbarに設定し、V/III比を4000とした条件で形成した。このときの量子井戸層の成長レートは0.18μm/hrであった。また、バリア層の成長レートは0.15μm/hrであった。
Subsequently, a light emitting layer was formed on the first waveguide layer. The light-emitting layer was formed by forming a film so as to have a multi-quantum well structure in which two periods of quantum well layers and barrier layers were laminated. Here, the quantum well layer was an AlGaN layer (Al: 52%, ie Al 0.52 Ga 0.48 N layer) having a thickness of 4.5 nm. Also, the barrier layer having a thickness of 6.0 nm was an AlGaN layer (Al: 63%, that is, an Al 0.63 Ga 0.37 N layer).
The light-emitting layer was formed under the conditions that the degree of vacuum was set to 50 mbar and the V/III ratio was set to 4000. The growth rate of the quantum well layer at this time was 0.18 μm/hr. Also, the growth rate of the barrier layer was 0.15 μm/hr.
 続いて、発光層上に第2導波路層であるp型導波路層を形成した。p型導波路層は、ドーパントを含まないAlGaN層(Al:63%、すなわちAl0.63Ga0.37N層)とした。p型導波路層は、1080℃の温度で、真空度を50mbarに設定し、V/III比を4000とした条件で70nmの厚さで形成した。このときのp型導波路層の成長レートは0.35μm/hrであった。また、Al原料としてトリメチルアルミニウム(TMAl)を用いた。また、Ga原料としてトリエチルガリウム(TEGa)を用いた。 Subsequently, a p-type waveguide layer as a second waveguide layer was formed on the light emitting layer. The p-type waveguide layer was an AlGaN layer (Al: 63%, ie Al 0.63 Ga 0.37 N layer) containing no dopant. The p-type waveguide layer was formed at a temperature of 1080° C., a degree of vacuum of 50 mbar and a V/III ratio of 4000 to a thickness of 70 nm. The growth rate of the p-type waveguide layer at this time was 0.35 μm/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Also, triethylgallium (TEGa) was used as a Ga source.
 続いて、p型導波路層上に第2導電型クラッド層を形成した。第2導電型クラッド層は、第2導電型縦伝導層と、第2導電型横伝導層とを備える積層構造であり、Al組成比が傾斜するグレーデッド層である。第2導電型縦伝導層は、基板から遠ざかる方向にAl組成が分布をもち、Al=1.0から0.7まで変化する、層厚330nmのAlGaN層とした。第2導電型クラッド層は、1080℃の温度で、真空度を50mbarに設定し、V/III比を4000とした条件で形成した。このときの第2導電型クラッド層の成長レートは0.3~0.5μm/hrであった。また、Al原料としてトリメチルアルミニウム(TMAl)を用いた。また、Ga原料としてトリエチルガリウム(TEGa)を用いた。第2導電型横伝導層は、Al=0.8、層厚5nmのAlGaN層とした。
 このとき、第2導電型クラッド層における平均Al組成d’は0.85であり、第1導電型クラッド層における平均Al組成a’よりも大きかった。
Subsequently, a second conductivity type clad layer was formed on the p-type waveguide layer. The second-conductivity-type cladding layer has a laminated structure including a second-conductivity-type vertical conduction layer and a second-conductivity-type horizontal conduction layer, and is a graded layer with a graded Al composition ratio. The vertical conduction layer of the second conductivity type was an AlGaN layer having a layer thickness of 330 nm and having a distribution of Al composition in the direction away from the substrate and varying from Al = 1.0 to 0.7. The second-conductivity-type clad layer was formed at a temperature of 1,080° C. under the conditions of a degree of vacuum of 50 mbar and a V/III ratio of 4,000. The growth rate of the second conductivity type clad layer at this time was 0.3 to 0.5 μm/hr. Also, trimethylaluminum (TMAl) was used as an Al raw material. Also, triethylgallium (TEGa) was used as a Ga source. The lateral conduction layer of the second conductivity type was an AlGaN layer with Al=0.8 and a layer thickness of 5 nm.
At this time, the average Al composition d' in the second-conductivity-type clad layer was 0.85, which was larger than the average Al composition a' in the first-conductivity-type clad layer.
 続いて、第2導電型クラッド層上に第2導電型コンタクト層であるp型コンタクト層を形成した。ここで、p型コンタクト層は、AlGaN層とGaN層とにより形成した。AlGaN層は、Mgをドーパント不純物として用い、基板から遠ざかる方向にAl組成が分布をもち、Al=0.7から0.4まで変化する、層厚30nmのp型窒化物半導体層とした。また、GaN層は、10nmの厚さを有するGaN(すなわちAl:0%)で形成した。
 第2導電型コンタクト層は、950℃の温度で、真空度を150mbarに設定し、V/III比を3650とした条件で形成した。このときの第2導電型コンタクト層の成長レートは0.2μm/hrであった。
Subsequently, a p-type contact layer as a second conductivity type contact layer was formed on the second conductivity type cladding layer. Here, the p-type contact layer was formed of an AlGaN layer and a GaN layer. The AlGaN layer was a p-type nitride semiconductor layer with a layer thickness of 30 nm, using Mg as a dopant impurity, having an Al composition distribution in the direction away from the substrate and varying from Al=0.7 to 0.4. Also, the GaN layer was formed of GaN (that is, Al: 0%) with a thickness of 10 nm.
The second conductivity type contact layer was formed at a temperature of 950.degree. The growth rate of the second conductivity type contact layer at this time was 0.2 μm/hr.
 以上のようにして、AlN基板上に、半導体積層部を形成した。この半導体積層部に対してXRDによる逆格子マッピング測定を実施したところ、半導体積層部は第2導電型コンタクト層まで緩和のないシュードモルフィック成長をしていることが分かった。 As described above, a semiconductor lamination portion was formed on the AlN substrate. When the reciprocal lattice mapping measurement by XRD was performed on this semiconductor lamination portion, it was found that the semiconductor lamination portion undergoes pseudomorphic growth without relaxation up to the contact layer of the second conductivity type.
 上述したように形成された半導体積層部に対して、N雰囲気中、700℃で10分以上アニーリングを行うことによって、第2導電型コンタクト層を更に低抵抗化した。ICPを用いてClを含むガスによりドライエッチングを行うことによって、第1導電型クラッド層を露出させたメサ構造を形成した。
 形成されたメサ構造は<1-100>方向の長さが700μmであり、<11-20>方向の長さが40μmであった。ここで、メサ構造の<1-100>方向の長さは平面視における共振器ミラー端面同士の間の距離であり、<11-20>方向の長さはメサ構造の側面同士の間の距離である。
The semiconductor lamination portion formed as described above was annealed at 700° C. for 10 minutes or longer in an N 2 atmosphere to further reduce the resistance of the second conductivity type contact layer. By performing dry etching using ICP with a gas containing Cl 2 , a mesa structure with the first conductivity type clad layer exposed was formed.
The formed mesa structure had a length of 700 μm in the <1-100> direction and a length of 40 μm in the <11-20> direction. Here, the length in the <1-100> direction of the mesa structure is the distance between the resonator mirror end faces in plan view, and the length in the <11-20> direction is the distance between the side surfaces of the mesa structure. is.
 メサ構造における第2導電型コンタクト層上に、<1-100>方向に長い矩形状にNiおよびAuを順に成膜して電極金属領域を複数形成してp型の第2電極とした。このとき、第2電極の幅は5μmであり、長さは700μmであった。また、メサ構造のn型クラッド層が露出した領域において、<1-100>方向に長い矩形状にV、Al、Ni、Ti及びAuを順に成膜して電極金属領域を複数形成してn型の第1電極とした。RTA装置によって、第1電極及び第2電極に対して窒素雰囲気下で750℃のアニールを60秒間実施した。 On the contact layer of the second conductivity type in the mesa structure, Ni and Au were sequentially formed into films in a rectangular shape elongated in the <1-100> direction to form a plurality of electrode metal regions to form a p-type second electrode. At this time, the width of the second electrode was 5 μm and the length was 700 μm. Further, in the region where the n-type cladding layer of the mesa structure is exposed, V, Al, Ni, Ti and Au are deposited in order in a rectangular shape elongated in the <1-100> direction to form a plurality of electrode metal regions. It was used as the first electrode of the mold. An RTA apparatus was used to anneal the first electrode and the second electrode at 750° C. for 60 seconds in a nitrogen atmosphere.
 さらに、電極金属領域内において、<11-20>方向に平行に複数回劈開させることによって、基板をストライプ状に分割し、個片化されたレーザダイオードを形成した。分割後のメサ構造の<1-100>方向の長さは600μmであった。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は7.5kA/cmであった。
Furthermore, in the electrode metal region, the substrate was divided into stripes by cleaving in parallel in the <11-20> direction multiple times to form singulated laser diodes. The length of the mesa structure after division in the <1-100> direction was 600 μm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 7.5 kA/cm 2 .
<実施例2>
 第1導波路層と第2導波路層とをAlGaN層(Al:61%、すなわちAl0.61Ga0.39N層)とした以外は実施例1と同様にして実施例2のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.5V、発振閾値電流密度は8.5kA/cmであった。
<Example 2>
The laser diode of Example 2 was produced in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 61%, that is, Al 0.61 Ga 0.39 N layers). formed.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.5 V and the oscillation threshold current density was 8.5 kA/cm 2 .
<実施例3>
 第1導波路層と第2導波路層とをAlGaN層(Al:66%、すなわちAl0.66Ga0.34N層)とした以外は実施例1と同様にして実施例3のレーザダイオードを形成した。このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.5V、発振閾値電流密度は7.2kA/cmであった。
<Example 3>
The laser diode of Example 3 was manufactured in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 66%, that is, Al 0.66 Ga 0.34 N layers). formed. When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.5 V and the oscillation threshold current density was 7.2 kA/cm 2 .
<実施例4>
 第1導波路層と第2導波路層とをAlGaN層(Al:69%、すなわちAl0.69Ga0.31N層)とした以外は実施例1と同様にして実施例4のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.9V、発振閾値電流密度は7.0kA/cmであった。
<Example 4>
The laser diode of Example 4 was produced in the same manner as in Example 1 except that the first waveguide layer and the second waveguide layer were AlGaN layers (Al: 69%, that is, Al 0.69 Ga 0.31 N layers). formed.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.9 V and the oscillation threshold current density was 7.0 kA/cm 2 .
<実施例5>
 第1導波路層の膜厚T1を23nmに変更し、膜厚の比T1/T2を0.33とした以外は実施例1と同様にして実施例5のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は8.8kA/cmであった。
<Example 5>
A laser diode of Example 5 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 23 nm and the film thickness ratio T1/T2 was set to 0.33.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 8.8 kA/cm 2 .
<実施例6>
 第1導波路層の膜厚T1を33nmに変更し、膜厚の比T1/T2を0.47とした以外は実施例1と同様にして実施例6のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は8.2kA/cmであった。
<Example 6>
A laser diode of Example 6 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 33 nm and the film thickness ratio T1/T2 was set to 0.47.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 8.2 kA/cm 2 .
<実施例7>
 第1導波路層の膜厚T1を47nmに変更し、膜厚の比T1/T2を0.67とした以外は実施例1と同様にして実施例7のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は8.3kA/cmであった。
<Example 7>
A laser diode of Example 7 was formed in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 47 nm and the film thickness ratio T1/T2 was set to 0.67.
When current-edge emission intensity measurement was performed on the laser diode thus obtained by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 8.3 kA/cm 2 .
<実施例8>
 第1導波路層の膜厚T1を35nm、第2導波路層の膜厚T2を55nmに変更し、膜厚の比T1/T2を0.64とした以外は実施例1と同様にして実施例8のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.6V、発振閾値電流密度は9.3kA/cmであった。
<Example 8>
Conducted in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was changed to 35 nm, the film thickness T2 of the second waveguide layer was changed to 55 nm, and the film thickness ratio T1/T2 was changed to 0.64. A laser diode of Example 8 was formed.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.6 V and the oscillation threshold current density was 9.3 kA/cm 2 .
<実施例9>
 第2導波路層の膜厚T2を85nmに変更し、膜厚の比T1/T2を0.47とした以外は実施例1と同様にして実施例9のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.7V、発振閾値電流密度は7.2kA/cmであった。
<Example 9>
A laser diode of Example 9 was formed in the same manner as in Example 1 except that the film thickness T2 of the second waveguide layer was changed to 85 nm and the film thickness ratio T1/T2 was set to 0.47.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.7 V and the oscillation threshold current density was 7.2 kA/cm 2 .
<実施例10>
 第1導電型クラッド層をAlGaN層(Al:72%、すなわちAl0.72Ga0.28N層)とした以外は実施例1と同様にして実施例10のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は10.0V、発振閾値電流密度は9.0kA/cmであった。
<Example 10>
A laser diode of Example 10 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 72%, ie, an Al 0.72 Ga 0.28 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 10.0 V and the oscillation threshold current density was 9.0 kA/cm 2 .
<実施例11>
 第1導電型クラッド層をAlGaN層(Al:78%、すなわちAl0.78Ga0.22N層)とした以外は実施例1と同様にして実施例11のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は14.0V、発振閾値電流密度は7.2kA/cmであった。
<Example 11>
A laser diode of Example 11 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 78%, ie, an Al 0.78 Ga 0.22 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 14.0 V and the oscillation threshold current density was 7.2 kA/cm 2 .
<実施例12>
 発光層をAlGaN層(Al:43%、すなわちAl0.43Ga0.57N層)とした以外は実施例1と同様にして実施例12のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.5V、発振閾値電流密度は6.5kA/cmであった。
<Example 12>
A laser diode of Example 12 was formed in the same manner as in Example 1 except that the light emitting layer was an AlGaN layer (Al: 43%, that is, an Al 0.43 Ga 0.57 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.5 V and the oscillation threshold current density was 6.5 kA/cm 2 .
<実施例13>
 発光層をAlGaN層(Al:58%、すなわちAl0.58Ga0.42N層)とした以外は実施例1と同様にして実施例13のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.5V、発振閾値電流密度は8.5kA/cmであった。
<Example 13>
A laser diode of Example 13 was formed in the same manner as in Example 1 except that the light emitting layer was an AlGaN layer (Al: 58%, ie, an Al 0.58 Ga 0.42 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.5 V and the oscillation threshold current density was 8.5 kA/cm 2 .
<実施例14>
 発光層の周期数を3、すなわち量子井戸構造の数を3とした以外は実施例1と同様にして実施例14のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.5V、発振閾値電流密度は7.1kA/cmであった。
<Example 14>
A laser diode of Example 14 was formed in the same manner as in Example 1 except that the number of periods of the light emitting layer was 3, that is, the number of quantum well structures was 3.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.5 V and the oscillation threshold current density was 7.1 kA/cm 2 .
<実施例15>
 発光層の周期数を4、すなわち量子井戸層を4層とした以外は実施例1と同様にして実施例15のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.0V、発振閾値電流密度は6.8kA/cmであった。
<Example 15>
A laser diode of Example 15 was formed in the same manner as in Example 1 except that the periodicity of the light emitting layer was 4, that is, the number of quantum well layers was 4.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.0 V and the oscillation threshold current density was 6.8 kA/cm 2 .
<実施例16>
 発光層の膜厚を3.5nmとした以外は実施例1と同様にして実施例16のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.3V、発振閾値電流密度は8.0kA/cmであった。
<Example 16>
A laser diode of Example 16 was formed in the same manner as in Example 1, except that the film thickness of the light emitting layer was 3.5 nm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.3 V and the oscillation threshold current density was 8.0 kA/cm 2 .
<実施例17>
 発光層の膜厚を5.5nmとした以外は実施例1と同様にして実施例17のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は10.4V、発振閾値電流密度は7.1kA/cmであった。
<Example 17>
A laser diode of Example 17 was formed in the same manner as in Example 1, except that the thickness of the light emitting layer was 5.5 nm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 10.4 V and the oscillation threshold current density was 7.1 kA/cm 2 .
<実施例18>
 第2導電型クラッド層の膜厚を300nmとした以外は実施例1と同様にして実施例18のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は10.5V、発振閾値電流密度は8.3kA/cmであった。
<Example 18>
A laser diode of Example 18 was formed in the same manner as in Example 1 except that the film thickness of the second-conductivity-type cladding layer was 300 nm.
Current-edge emission intensity measurement by current injection was performed on the laser diode thus obtained, and the threshold voltage was 10.5 V, and the oscillation threshold current density was 8.3 kA/cm 2 .
<実施例19>
 第2導電型クラッド層の膜厚を250nmとした以外は実施例1と同様にして実施例19のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は10.2V、発振閾値電流密度は9.1kA/cmであった。
<Example 19>
A laser diode of Example 19 was formed in the same manner as in Example 1, except that the thickness of the second-conductivity-type cladding layer was set to 250 nm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 10.2 V and the oscillation threshold current density was 9.1 kA/cm 2 .
<実施例20>
 第2導電型クラッド層の膜厚を400nmとした以外は実施例1と同様にして実施例20のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.6V、発振閾値電流密度は7.0kA/cmであった。
<Example 20>
A laser diode of Example 20 was formed in the same manner as in Example 1, except that the film thickness of the second-conductivity-type clad layer was 400 nm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.6 V and the oscillation threshold current density was 7.0 kA/cm 2 .
<実施例21>
 第2導電型クラッド層の膜厚を450nmとした以外は実施例1と同様にして実施例21のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.9V、発振閾値電流密度は7.1kA/cmであった。
<Example 21>
A laser diode of Example 21 was formed in the same manner as in Example 1 except that the film thickness of the second-conductivity-type cladding layer was set to 450 nm.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.9 V and the oscillation threshold current density was 7.1 kA/cm 2 .
<実施例22>
 第2導電型縦伝導層を、基板から遠ざかる方向にAl組成が分布をもち、Al=1.0から0.5まで変化する、層厚330nmのAlGaN層とした以外は実施例1と同様にして実施例22のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は10.0V、発振閾値電流密度は9.0kA/cmであった。
<Example 22>
The same procedure as in Example 1 was performed except that the second conductivity type vertical conduction layer was an AlGaN layer with a layer thickness of 330 nm, which had an Al composition distribution in the direction away from the substrate and varied from Al = 1.0 to 0.5. A laser diode of Example 22 was formed.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 10.0 V and the oscillation threshold current density was 9.0 kA/cm 2 .
<比較例1>
 第1導波路層をAlGaN層(Al:55%、すなわちAl0.55Ga0.45N層)とした以外は実施例1と同様にして比較例1のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.8V、発振閾値電流密度は11.7kA/cmであった。
<Comparative Example 1>
A laser diode of Comparative Example 1 was formed in the same manner as in Example 1 except that the first waveguide layer was an AlGaN layer (Al: 55%, that is, an Al 0.55 Ga 0.45 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.8 V and the oscillation threshold current density was 11.7 kA/cm 2 .
<比較例2>
 第1導波路層をAlGaN層(Al:75%、すなわちAl0.75Ga0.25N層)とした以外は実施例1と同様にして比較例2のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.2V、発振閾値電流密度は12.1kA/cmであった。
<Comparative Example 2>
A laser diode of Comparative Example 2 was formed in the same manner as in Example 1 except that the first waveguide layer was an AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.2 V and the oscillation threshold current density was 12.1 kA/cm 2 .
<比較例3>
 第2導波路層をAlGaN層(Al:55%、すなわちAl0.55Ga0.45N層)とした以外は実施例1と同様にして比較例3のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は11.8V、発振閾値電流密度は11.9kA/cmであった。
<Comparative Example 3>
A laser diode of Comparative Example 3 was formed in the same manner as in Example 1 except that the second waveguide layer was an AlGaN layer (Al: 55%, ie, an Al 0.55 Ga 0.45 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 11.8 V and the oscillation threshold current density was 11.9 kA/cm 2 .
<比較例4>
 第2導波路層をAlGaN層(Al:75%、すなわちAl0.75Ga0.25N層)とした以外は実施例1と同様にして比較例4のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.2V、発振閾値電流密度は12.1kA/cmであった。
<Comparative Example 4>
A laser diode of Comparative Example 4 was formed in the same manner as in Example 1 except that the second waveguide layer was an AlGaN layer (Al: 75%, ie, an Al 0.75 Ga 0.25 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.2 V and the oscillation threshold current density was 12.1 kA/cm 2 .
<比較例5>
 第1導電型クラッド層をAlGaN層(Al:65%、すなわちAl0.65Ga0.35N層)とした以外は実施例1と同様にして比較例5のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は9.0V、発振閾値電流密度は12.0kA/cmであった。
<Comparative Example 5>
A laser diode of Comparative Example 5 was formed in the same manner as in Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 65%, ie, an Al 0.65 Ga 0.35 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 9.0 V and the oscillation threshold current density was 12.0 kA/cm 2 .
<比較例6>
 第1導電型クラッド層をAlGaN層(Al:85%、すなわちAl0.85Ga0.15N層)とした以外は比較例1と同様にして比較例6のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は17.0V、発振閾値電流密度は12.0kA/cmであった。
<Comparative Example 6>
A laser diode of Comparative Example 6 was formed in the same manner as in Comparative Example 1 except that the first conductivity type cladding layer was an AlGaN layer (Al: 85%, ie, an Al 0.85 Ga 0.15 N layer).
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 17.0 V and the oscillation threshold current density was 12.0 kA/cm 2 .
<比較例7>
 第1導波路層の膜厚T1を25nm、第2導波路層の膜厚T2を100nmとし、膜厚の比T1/T2を0.25とした以外は実施例1と同様にして比較例7のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は10.9kA/cmであった。
<Comparative Example 7>
Comparative Example 7 was carried out in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was 25 nm, the film thickness T2 of the second waveguide layer was 100 nm, and the film thickness ratio T1/T2 was 0.25. of laser diodes were formed.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 10.9 kA/cm 2 .
<比較例8>
 第1導波路層の膜厚T1を50nm、第2導波路層の膜厚T2を50nmとし、膜厚の比T1/T2を1とした以外は実施例1と同様にして比較例8のレーザダイオードを形成した。
 このようにして得られたレーザダイオードに対して電流注入による電流-端面発光強度測定を実施したところ、閾値電圧は12.0V、発振閾値電流密度は11.8kA/cmであった。
<Comparative Example 8>
The laser of Comparative Example 8 was produced in the same manner as in Example 1 except that the film thickness T1 of the first waveguide layer was 50 nm, the film thickness T2 of the second waveguide layer was 50 nm, and the film thickness ratio T1/T2 was 1. formed a diode.
When the laser diode thus obtained was subjected to current-edge emission intensity measurement by current injection, the threshold voltage was 12.0 V and the oscillation threshold current density was 11.8 kA/cm 2 .
 以下の表1に、各実施例及び各比較例の評価結果を示す。 Table 1 below shows the evaluation results of each example and each comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第1導電型クラッド層のAl組成aが0.7<a<0.8であり、第1導波路層のAl組成c1が0.6<c1<0.7であり、第2導波路層のAl組成c2が0.6<c2<0.7であり、第1導波路層の膜厚T1と第2導波路層の膜厚T2との膜厚比T1/T2が0.3以上0.7以下を満たさない層を備える各比較例のレーザダイオードでは、発振閾値電流密度が10.9kA/cm以上となった。
 一方、各層が上述した範囲を満たす各実施例のレーザダイオードは、発振閾値電流密度が10kA/cm未満となり、各比較例のレーザダイオードと比較して発振閾値電流密度が低減した。
As shown in Table 1, the Al composition a of the first conductivity type cladding layer satisfies 0.7<a<0.8, and the Al composition c1 of the first waveguide layer satisfies 0.6<c1<0.7. , the Al composition c2 of the second waveguide layer satisfies 0.6<c2<0.7, and the film thickness ratio between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is T1/ In the laser diodes of the comparative examples, which include a layer in which T2 does not satisfy 0.3 or more and 0.7 or less, the oscillation threshold current density was 10.9 kA/cm 2 or more.
On the other hand, the laser diodes of the examples, in which each layer satisfies the above range, had an oscillation threshold current density of less than 10 kA/cm 2 , which was lower than that of the laser diodes of the comparative examples.
 また、実施例1から実施例4に示すように、第1導波路層のAl組成c1及び第2導波路層のAl組成c2が上述した範囲内にある場合、Al組成c1及びAl組成c2が高いほど発光層内への光閉じ込め効果が強く、発振閾値電流密度が低くなるものの、閾値電圧が高くなってしまった。 Further, as shown in Examples 1 to 4, when the Al composition c1 of the first waveguide layer and the Al composition c2 of the second waveguide layer are within the ranges described above, the Al composition c1 and the Al composition c2 are The higher the value, the stronger the light confinement effect in the light-emitting layer, and the lower the oscillation threshold current density, but the higher the threshold voltage.
 また、実施例1、実施例5から実施例9及び比較例7,8に示すように、第1導波路層と第2導波路層の厚さの比T1/T2が0.3以上0.7以下の場合、第1導波路層の厚さT1及び第2導波路層の厚さT2が厚いと抵抗が悪化して閾値電圧が高くなる傾向にあるものの、光閉じ込め効果が強く発振閾値電流密度が低下した。 Further, as shown in Examples 1, 5 to 9, and Comparative Examples 7 and 8, the thickness ratio T1/T2 between the first waveguide layer and the second waveguide layer is 0.3 to 0.3. 7 or less, when the thickness T1 of the first waveguide layer and the thickness T2 of the second waveguide layer are large, the resistance tends to deteriorate and the threshold voltage tends to increase, but the optical confinement effect is strong and the oscillation threshold current Density decreased.
 実施例1及び実施例22に示すように、第1導電型クラッド層のAl平均組成a’が第2導電型クラッド層のAl平均組成d’よりも小さい場合、Al平均組成a’とAl平均組成d’とが同等の場合と比較して発振閾値電流密度がより低下した。このため、第1導電型クラッド層のAl平均組成a’が第2導電型クラッド層のAl平均組成d’よりも小さく形成することが好ましい。
 実施例1及び実施例18~21に示すように、第2導電型クラッド層の膜厚が膜圧300nmから厚くなるほど発振閾値電流密度が低下するものの、膜厚400~450nmの範囲では発振閾値電流密度がほぼ同等となった。一方、第2導電型クラッド層の膜厚が450nmの場合、膜厚が400nmの場合と比較して閾値電圧が高くなる傾向があった。以上から、第2導電型クラッド層の膜厚は300nm以上400nm以下とすることが好ましい。
As shown in Examples 1 and 22, when the average Al composition a' of the clad layer of the first conductivity type is smaller than the average Al composition d' of the clad layer of the second conductivity type, the average Al composition a' and the average Al The oscillation threshold current density was lower than in the case of the same composition d'. Therefore, it is preferable that the average Al composition a' of the clad layer of the first conductivity type is smaller than the average Al composition d' of the clad layer of the second conductivity type.
As shown in Examples 1 and 18 to 21, the oscillation threshold current density decreases as the film thickness of the second-conductivity-type clad layer increases from 300 nm, but the oscillation threshold current density decreases within the film thickness range of 400 to 450 nm. The densities were almost the same. On the other hand, when the thickness of the second-conductivity-type cladding layer is 450 nm, the threshold voltage tends to be higher than when the thickness is 400 nm. From the above, it is preferable that the film thickness of the second-conductivity-type clad layer is 300 nm or more and 400 nm or less.
 実施例1及び実施例14,15に示すように、量子井戸の数が多いほど、発振閾値電流密度が低下した。また、量子井戸の数が多いほど、閾値電圧も低下した。以上から、発光層は、多重量子井戸構造であることが好ましい。
 また、実施例1及び実施例16,17に示すように、量子井戸の数が同じであっても、量子井戸層の厚さが厚いほど発振閾値電流密度が低下した。
As shown in Examples 1 and 14 and 15, the larger the number of quantum wells, the lower the oscillation threshold current density. Also, the larger the number of quantum wells, the lower the threshold voltage. From the above, it is preferable that the light-emitting layer has a multiple quantum well structure.
Moreover, as shown in Example 1 and Examples 16 and 17, even if the number of quantum wells was the same, the larger the thickness of the quantum well layer, the lower the oscillation threshold current density.
 以上のように、本開示のレーザダイオードは、第1導電型クラッド層、第1導波路層及び第2導波路層のAl組成と、第1導波路層の膜厚T1及び第2導波路層の膜厚T2の膜厚比T1/T2とを調整することにより、発振閾値電流密度を低くしてパルス駆動による安定的な連続発振が可能となった。 As described above, in the laser diode of the present disclosure, the Al composition of the first conductivity type cladding layer, the first waveguide layer, and the second waveguide layer, the film thickness T1 of the first waveguide layer, and the second waveguide layer By adjusting the film thickness ratio T1/T2 of the film thickness T2, the oscillation threshold current density can be lowered to enable stable continuous oscillation by pulse driving.
 以上、本開示の実施形態を説明したが、上記実施形態は、本開示の技術的思想を具体化するための装置や方法を例示するものであって、本開示の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本開示の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Although the embodiments of the present disclosure have been described above, the above embodiments illustrate devices and methods for embodying the technical ideas of the present disclosure. It does not specify the material, shape, structure, arrangement, etc. Various modifications can be made to the technical idea of the present disclosure within the technical scope defined by the claims.
1 レーザダイオード
10 半導体積層部
11 基板
12 第1電極
13 第2電極
101 第1導電型クラッド層
102 第1導波路層
103 発光層
104 第2導波路層
105 第2導電型クラッド層
106 コンタクト層
1 laser diode 10 semiconductor lamination portion 11 substrate 12 first electrode 13 second electrode 101 first conductivity type clad layer 102 first waveguide layer 103 light emitting layer 104 second waveguide layer 105 second conductivity type clad layer 106 contact layer

Claims (12)

  1.  Alを含む窒化物半導体基板と、
     前記窒化物半導体基板上に配置される半導体積層部と、
    を備え、
     前記半導体積層部は、
     前記窒化物半導体基板上に配置され、第1導電型の窒化物半導体層を含む第1導電型クラッド層と、
     前記第1導電型クラッド層上に配置された第1導波路層と、
     前記第1導波路層上に配置され、一つ以上の量子井戸を含む窒化物半導体で形成された発光層と、
     前記発光層上に配置された第2導波路層と、
     前記第2導波路層上に配置され、第2導電型の窒化物半導体層を含む第2導電型クラッド層と、
    を有し、
     前記第1導電型クラッド層は、AlGa(1-a)N(0.7<a<0.8)であり、
     前記第1導波路層は、Alc1Ga(1-c1)N(0.6<c1<0.7)であり、
     前記第2導波路層は、Alc2Ga(1-c2)N(0.6<c2<0.7)であり、
     前記第1導波路層の膜厚T1と前記第2導波路層の膜厚T2との膜厚比T1/T2は、0.3以上0.7以下である
    レーザダイオード。
    a nitride semiconductor substrate containing Al;
    a semiconductor lamination portion arranged on the nitride semiconductor substrate;
    with
    The semiconductor lamination part is
    a first conductivity type clad layer disposed on the nitride semiconductor substrate and including a first conductivity type nitride semiconductor layer;
    a first waveguide layer disposed on the first conductivity type cladding layer;
    a light emitting layer disposed on the first waveguide layer and formed of a nitride semiconductor including one or more quantum wells;
    a second waveguide layer disposed on the light emitting layer;
    a second conductivity type clad layer disposed on the second waveguide layer and including a second conductivity type nitride semiconductor layer;
    has
    The first conductivity type cladding layer is Al a Ga (1-a) N (0.7<a<0.8),
    The first waveguide layer is Al c1 Ga (1-c1) N (0.6<c1<0.7),
    the second waveguide layer is Al c2 Ga (1-c2) N (0.6<c2<0.7);
    A laser diode, wherein a film thickness ratio T1/T2 between a film thickness T1 of the first waveguide layer and a film thickness T2 of the second waveguide layer is 0.3 or more and 0.7 or less.
  2.  前記第1導波路層の膜厚T1は、20nm以上50nm以下であり、
     前記第2導波路層の膜厚T2は、50nm以上90nm以下である
    請求項1に記載のレーザダイオード。
    A film thickness T1 of the first waveguide layer is 20 nm or more and 50 nm or less,
    2. The laser diode according to claim 1, wherein the film thickness T2 of said second waveguide layer is 50 nm or more and 90 nm or less.
  3.  前記第1導電型クラッド層の膜厚は、250nm以上600nm以下である
    請求項1または2に記載のレーザダイオード。
    3. The laser diode according to claim 1, wherein the first-conductivity-type clad layer has a thickness of 250 nm or more and 600 nm or less.
  4.  前記第2導電型クラッド層は、AlGa(1-d)N(0<d<1)であり、
     平均Al組成d’は、前記第1導電型クラッド層の平均Al組成a’よりも大きい
    請求項1から3のいずれか一項に記載のレーザダイオード。
    The second conductivity type cladding layer is Al d Ga (1-d) N (0<d<1),
    4. The laser diode according to claim 1, wherein the average Al composition d' is larger than the average Al composition a' of the first conductivity type cladding layer.
  5.  前記第2導電型クラッド層の膜厚は、300nm以上400nm以下である
    請求項1から4のいずれか一項に記載のレーザダイオード。
    5. The laser diode according to any one of claims 1 to 4, wherein the second-conductivity-type clad layer has a thickness of 300 nm or more and 400 nm or less.
  6.  前記発光層の量子井戸層は、AlGa(1-b)N(0.4<b<0.6)であり、膜厚が3nm以上6nm以下であり、2層以上4層以下の多重量子井戸構造となっている
    請求項1から5のいずれか一項に記載のレーザダイオード。
    The quantum well layer of the light-emitting layer is Al b Ga (1-b) N (0.4<b<0.6), has a thickness of 3 nm or more and 6 nm or less, and has a multilayer structure of two to four layers. 6. A laser diode according to any one of claims 1 to 5, having a quantum well structure.
  7.  前記窒化物半導体基板は、AlN単結晶基板である
    請求項1から6のいずれか一項に記載のレーザダイオード。
    7. The laser diode according to claim 1, wherein said nitride semiconductor substrate is an AlN single crystal substrate.
  8.  前記第2導電型クラッド層上に配置され、GaNを含む窒化物半導体で形成された第2導電型コンタクト層を備え、
     前記第2導電型クラッド層は、AlGa(1-e)N(0.1≦e≦1)を含み、前記窒化物半導体基板から遠ざかるにつれてAl組成eが小さくなる組成傾斜を有し、膜厚が0.5μm未満である第2導電型縦伝導層と、AlGa(1-f)N(0<f≦1)を含む第2導電型横伝導層と、を有する、
    請求項1から7のいずれか一項に記載のレーザダイオード。
    a second conductivity type contact layer disposed on the second conductivity type cladding layer and formed of a nitride semiconductor containing GaN;
    The second conductivity type cladding layer contains Al e Ga (1−e) N (0.1≦e≦1), and has a composition gradient in which the Al composition e decreases with increasing distance from the nitride semiconductor substrate, a second-conductivity-type vertical conduction layer having a thickness of less than 0.5 μm and a second-conductivity-type lateral conduction layer containing Al f Ga (1−f) N (0<f≦1);
    8. A laser diode as claimed in any one of claims 1 to 7.
  9.  前記第1導波路層の膜厚T1と前記第2導波路層の膜厚T2との膜厚比T1/T2は、0.5以上0.6以下である
    請求項1から8のいずれか一項に記載のレーザダイオード。
    9. The film thickness ratio T1/T2 between the film thickness T1 of the first waveguide layer and the film thickness T2 of the second waveguide layer is 0.5 or more and 0.6 or less. A laser diode according to any one of the preceding paragraphs.
  10.  前記第1導波路層の膜厚T1は、30nm以上50nm以下であり、
     前記第2導波路層の膜厚T2は、60nm以上80nm以下である
    請求項1から9のいずれか一項に記載のレーザダイオード。
    The film thickness T1 of the first waveguide layer is 30 nm or more and 50 nm or less,
    10. The laser diode according to claim 1, wherein the second waveguide layer has a film thickness T2 of 60 nm or more and 80 nm or less.
  11.  前記第1導電型クラッド層の膜厚は、300nm以上500nm以下である
    請求項1から10のいずれか一項に記載のレーザダイオード。
    11. The laser diode according to any one of claims 1 to 10, wherein the first-conductivity-type clad layer has a thickness of 300 nm or more and 500 nm or less.
  12.  前記第2導電型クラッド層は、AlGa(1-d)N(0<d<1)であり、
     平均Al組成d’は0.8以上0.9以下であり、前記第1導電型クラッド層の平均Al組成a’(0.7<a’<0.8)よりも大きい
    請求項1から11のいずれか一項に記載のレーザダイオード。
    The second conductivity type cladding layer is Al d Ga (1-d) N (0<d<1),
    The average Al composition d' is 0.8 or more and 0.9 or less, and is larger than the average Al composition a'(0.7<a'<0.8) of the clad layer of the first conductivity type. The laser diode according to any one of Claims 1 to 3.
PCT/JP2023/007424 2022-02-28 2023-02-28 Laser diode WO2023163230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022030046 2022-02-28
JP2022-030046 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163230A1 true WO2023163230A1 (en) 2023-08-31

Family

ID=87766323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007424 WO2023163230A1 (en) 2022-02-28 2023-02-28 Laser diode

Country Status (1)

Country Link
WO (1) WO2023163230A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340580A (en) * 1997-07-30 1999-12-10 Fujitsu Ltd Semiconductor laser, semiconductor light-emitting element and its manufacture
JP2001057461A (en) * 1999-06-10 2001-02-27 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2002299768A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
JP2004111853A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Nitride semiconductor laser device
US20110103421A1 (en) * 2009-10-29 2011-05-05 Tarun Kumar Sharma Application-oriented nitride substrates for epitaxial growth of electronic and optoelectronic device structures
WO2014123092A1 (en) * 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
JP2016111353A (en) * 2014-12-08 2016-06-20 パロ アルト リサーチ センター インコーポレイテッド NITRIDE LASER DIODE HAVING ENGINEERING HETEROGENEOUS ALLOY COMPOSITION IN n-CLAD LAYER
WO2021060538A1 (en) * 2019-09-27 2021-04-01 旭化成株式会社 Laser diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340580A (en) * 1997-07-30 1999-12-10 Fujitsu Ltd Semiconductor laser, semiconductor light-emitting element and its manufacture
JP2001057461A (en) * 1999-06-10 2001-02-27 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2002299768A (en) * 2001-03-30 2002-10-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
JP2004111853A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Nitride semiconductor laser device
US20110103421A1 (en) * 2009-10-29 2011-05-05 Tarun Kumar Sharma Application-oriented nitride substrates for epitaxial growth of electronic and optoelectronic device structures
WO2014123092A1 (en) * 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
JP2016111353A (en) * 2014-12-08 2016-06-20 パロ アルト リサーチ センター インコーポレイテッド NITRIDE LASER DIODE HAVING ENGINEERING HETEROGENEOUS ALLOY COMPOSITION IN n-CLAD LAYER
WO2021060538A1 (en) * 2019-09-27 2021-04-01 旭化成株式会社 Laser diode

Similar Documents

Publication Publication Date Title
JP4714712B2 (en) Group III nitride semiconductor light emitting device, method for manufacturing the same, and lamp
US20090087936A1 (en) Deposition method of iii group nitride compound semiconductor laminated structure
KR20150110765A (en) Optoelectronic devices incorporating single crystalline aluminum nitride substrate
JP2019110195A (en) Nitride semiconductor light-emitting element
WO2023163230A1 (en) Laser diode
Murase et al. Optical properties of (1‐101) InGaN/GaN MQW stripe laser structure on Si substrate
WO2024047917A1 (en) Laser diode
JP2020068283A (en) Light receiving/emitting device
US11637221B2 (en) Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
JP2021034509A (en) Ultraviolet light-emitting element
JP2023141196A (en) Method of manufacturing light-emitting element and light-emitting element
JP2020167321A (en) Nitride semiconductor light-emitting device
JP2022149612A (en) Manufacturing method of laser diode, and laser diode
JP2022139216A (en) laser diode
JP2023125769A (en) laser diode
JP2022149980A (en) Method for manufacturing laser diode, laser diode
JP2022152484A (en) laser diode
JP7388859B2 (en) nitride semiconductor device
JP7492885B2 (en) Ultraviolet light emitting device
JP7489269B2 (en) Ultraviolet light emitting device
JP7405554B2 (en) UV light emitting element
JP7195815B2 (en) UV light emitting element
JP6998146B2 (en) Ultraviolet light emitting element and ultraviolet irradiation module
JP7545142B2 (en) Optical Devices
JP2022153164A (en) optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024503325

Country of ref document: JP

Kind code of ref document: A