WO2023163182A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2023163182A1
WO2023163182A1 PCT/JP2023/007116 JP2023007116W WO2023163182A1 WO 2023163182 A1 WO2023163182 A1 WO 2023163182A1 JP 2023007116 W JP2023007116 W JP 2023007116W WO 2023163182 A1 WO2023163182 A1 WO 2023163182A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
anode
fuel cell
heat
housing
Prior art date
Application number
PCT/JP2023/007116
Other languages
French (fr)
Japanese (ja)
Inventor
大河 村上
秀貴 渡邉
浩一 岡田
亮介 中村
臻偉 王
海 加藤
堀内幸一郎
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023163182A1 publication Critical patent/WO2023163182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell system.
  • Patent Document 1 describes a cell stack, a high-temperature housing that accommodates the cell stack and is covered with a heat insulating member, and a fuel off-gas (anode off-gas) from the cell stack that is led out of the high-temperature housing and then reintroduced into the high-temperature housing.
  • a cooler located outside the hot housing of the fuel off-gas delivery channel to cool the fuel off-gas; and upstream within the hot housing of the fuel off-gas delivery channel.
  • a fuel cell system comprising:
  • Patent Document 2 discloses a fuel processing device that steam reforms a raw material gas to generate a fuel gas, a fuel cell, a steam separation membrane that removes steam from the off-gas discharged from the fuel cell, and steam from the off-gas. and a regenerated fuel gas path for supplying the regenerated fuel gas from the fuel processing device to the fuel cell from the downstream side of the fuel processing device.
  • a heat exchanger that exchanges heat between at least one of water and a fuel off-gas.
  • fuel off-gas (anode off-gas) flowing downstream of the fuel off-gas supply channel in the high-temperature housing (portion again located in the high-temperature housing after being led out of the high-temperature housing) has a small heat capacity and cannot sufficiently cool the anode off-gas before it passes through the cooler, increasing the enthalpy of the anode off-gas carried out of the housing.
  • heat can be exchanged between the fuel off-gas and at least one of the regenerated fuel gas, raw material gas, air, water vapor, and water condensed from water vapor. There is no mention of whether the heat should be exchanged at , which is insufficient to improve the power generation efficiency of the system.
  • the main purpose of the fuel cell system of the present disclosure is to keep the temperature of the fuel cell at an appropriate temperature and reduce the enthalpy carried away by the anode off-gas, thereby further improving the power generation efficiency of the fuel cell system.
  • the fuel cell system of the present disclosure employs the following means to achieve the above-mentioned main purpose.
  • a first fuel cell system of the present disclosure includes: a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas; a reforming unit that reforms the raw fuel gas into the anode gas using water vapor; a vaporization unit that vaporizes the reforming water to generate the steam; a housing that has heat insulation properties and accommodates the fuel cell, the reforming section, and the vaporization section; a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit; a reformed water supply unit that supplies the reformed water to the vaporization unit; a cathode gas supply unit that supplies the cathode gas to the fuel cell; an anode off-gas flow path for leading the anode off-gas from the fuel cell to the outside of the housing; a first heat exchanging part provided in the housing for exchanging heat between the anode off-gas flowing through the anode off-gas channel and the fluid flowing upstream of the fuel cell toward the fuel cell; a second heat exchange
  • the first fuel cell system of the present disclosure includes a first heat exchange section and a second heat exchange section provided within the housing.
  • the first heat exchange section exchanges heat between the anode off-gas flowing through the anode off-gas channel and the fluid flowing upstream of the fuel cell toward the fuel cell.
  • the second heat exchange section exchanges heat between the anode offgas flowing downstream of the first heat exchange section in the anode offgas channel and the reforming water.
  • the temperature of the fuel cell can be maintained at a temperature suitable for its operation (high temperature state) by the fluid whose temperature has been raised by heat exchange with the anode off-gas in the first heat exchange section.
  • the anode off-gas flowing downstream of the first heat exchange section is heat-exchanged with the reforming water.
  • the anode off-gas can be sufficiently cooled to reduce the enthalpy of the anode off-gas carried out of the housing. As a result, the power generation efficiency of the fuel cell system can be further improved.
  • the fluid may be the cathode gas
  • the first heat exchange section may exchange heat between the anode off-gas and the cathode gas.
  • the temperature of the fuel cell can be maintained at a temperature suitable for its operation (high temperature state) by the cathode gas heated by heat exchange with the anode off-gas.
  • the second heat exchange section is provided in the vaporizer, and the anode off-gas and the raw fuel gas and reforming water respectively supplied to the vaporizer are exchanged. You may heat-exchange between. In this way, the anode off-gas can be sufficiently cooled by heat exchange with the reforming water, and the raw fuel gas can be preheated by heat exchange with the raw fuel gas.
  • the apparatus can be made more compact by incorporating the second heat exchange section into the vaporization section.
  • a second fuel cell system of the present disclosure includes: a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas; a reforming unit that reforms the raw fuel gas into the anode gas using water vapor; a vaporization unit that vaporizes the reforming water to generate the steam; a combustion section that heats the reforming section and the vaporization section with combustion heat; a housing having heat insulating properties and housing the fuel cell, the reforming section, the vaporization section, and the combustion section; a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit; a reformed water supply unit that supplies the reformed water to the vaporization unit; a cathode gas supply unit that supplies the cathode gas to the fuel cell; an anode off-gas flow path for introducing the anode off-gas from the fuel cell to the outside of the housing, introducing it into the housing, and supplying it to the combustion section; a cooling unit provided outside the housing for cooling the
  • the first heat exchange section includes the anode offgas flowing upstream of the cooling section of the anode offgas channel and the anode offgas flowing downstream of the cooling section of the anode offgas channel. It exchanges heat with the anode off-gas.
  • the second heat exchange section exchanges heat between the anode offgas and the reforming water that flow downstream of the first heat exchange section and upstream of the cooling section in the anode offgas flow path.
  • the anode off-gas flowing downstream of the first heat exchange section is heat-exchanged with the reforming water.
  • the anode off-gas can be sufficiently cooled to reduce the enthalpy of the anode off-gas carried out of the housing. As a result, the power generation efficiency of the fuel cell system can be further improved.
  • the fuel cell is composed of a reversibly operating solid oxide cell, and has a power generation operation of generating power through a reaction between an anode gas and a cathode gas; It may be possible to switch between an electrolysis operation in which hydrogen is generated by steam electrolysis while power is supplied to the . In this way, even during the electrolysis operation, the hydrogen-containing off-gas discharged from the fuel electrode can be sufficiently cooled to reduce the enthalpy carried away by the off-gas to the outside of the housing. As a result, the power generation efficiency and the electrolysis efficiency can be further improved in a system capable of power generation and electrolysis.
  • a recovery path communicating between the anode offgas flow path and the tank, an on-off valve provided in the recovery path, and a pump provided in the recovery path are provided, and the electrolysis operation is performed.
  • a recovery unit may be provided for recovering the hydrogen-containing off-gas flowing through the anode off-gas flow path into the tank by opening the on-off valve and driving the pump at times. By doing so, hydrogen can be recovered during the electrolysis operation with a simple configuration.
  • a return path is provided which is connected to the anode off-gas flow path and returns the anode off-gas flowing through the anode off-gas flow path to the raw fuel gas supply section, and the recovery path branches off from the return path. may be connected to the tank through In this way, in a fuel cell system of the type in which the anode off-gas is recirculated to the raw fuel gas supply section, hydrogen can be recovered during the electrolysis operation using the recirculation path.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to an embodiment
  • FIG. FIG. 4 is a schematic configuration diagram of a fuel cell system of another embodiment
  • FIG. 4 is a schematic configuration diagram of a fuel cell system of another embodiment
  • FIG. 2 is a schematic configuration diagram of a fuel cell system that is a modified example of FIG. 1
  • FIG. 3 is a schematic configuration diagram of a fuel cell system that is a modified example of FIG. 2
  • FIG. 4 is a schematic configuration diagram of a fuel cell system that is a modification of FIG. 3;
  • FIG. 1 is a schematic configuration diagram of the fuel cell system 10 of this embodiment.
  • the fuel cell system 10 of this embodiment includes a power generation module 20 including a fuel cell stack 21 that generates power through an electrochemical reaction between hydrogen in the anode gas and oxygen in the cathode gas;
  • a raw fuel gas supply device 30 that supplies raw fuel gas (for example, natural gas or LP gas) as a raw material of anode gas to (vaporizer 22), and a power generation module 20 (vaporizer 22) from raw fuel gas to anode gas.
  • an air supply device 50 for supplying air as a cathode gas to the power generation module 20 (fuel cell stack 21).
  • the power generation module 20 includes a fuel cell stack 21, a vaporizer 22, a reformer 23, a combustor 24, three heat exchangers (first, second and third heat exchangers 25, 26, 27), These are housed in a box-shaped housing 29 having thermal insulation.
  • the fuel cell stack 21 includes a plurality of solid oxide single cells each having an electrolyte such as zirconium oxide and an anode and a cathode sandwiching the electrolyte.
  • An anode gas passage is connected to the anode of each single cell.
  • a cathode gas passage is connected to the cathode of each unit cell.
  • the vaporizer 22 and reformer 23 of the power generation module 20 are arranged above the fuel cell stack 21 inside the housing 29 .
  • a combustor 24 that generates heat necessary for the operation of the fuel cell stack 21 and the reaction in the vaporizer 22 and the reformer 23. is arranged.
  • the raw fuel gas from the raw fuel gas supply device 30 and the reforming water from the reforming water supply device 40 flow into the vaporizer 22 .
  • the raw fuel gas supply device 30 includes a raw fuel gas supply pipe 31 that connects a raw fuel supply source 1 that supplies the raw fuel gas and a vaporizer 22, an on-off valve 32 installed in the raw fuel gas supply pipe 31, It has an orifice 34 , a zero governor 35 , a gas pump 36 and a desulfurizer 38 .
  • the raw fuel gas is pumped (supplied) from the raw fuel supply source 1 to the vaporizer 22 via the desulfurizer 38 by operating the gas pump 36 .
  • the reforming water supply device 40 is installed in a reforming water tank 42 that stores reforming water, a reforming water supply pipe 41 that connects the reforming water tank 42 and the vaporizer 22 , and the reforming water supply pipe 41 . and a modified water pump 43 .
  • a reforming water pump 43 By operating the reformed water pump 43 , the reformed water in the reformed water tank 42 is pumped (supplied) to the vaporizer 22 by the reformed water pump 43 .
  • the vaporizer 22 heats the inflowing raw fuel gas and reformed water with the heat (combustion heat) from the combustor 24 to preheat the raw fuel gas and evaporate the reformed water to generate steam.
  • the raw fuel gas preheated by the vaporizer 22 is mixed with steam, and the mixed gas flows from the vaporizer 22 into the reformer 23 .
  • the reformer 23 has, for example, a Ru-based or Ni-based reforming catalyst filled therein, and in the presence of heat from the combustor 24, the mixed gas from the vaporizer 22 reacts with the reforming catalyst.
  • A steam reforming reaction
  • the reformer 23 produces hydrogen gas and carbon dioxide through a reaction (carbon monoxide shift reaction) between carbon monoxide produced in the steam reforming reaction and steam.
  • the reformer 23 generates anode gas containing hydrogen, carbon monoxide, carbon dioxide, water vapor, unreformed raw fuel gas, and the like.
  • the anode gas produced by the reformer 23 flows through the anode gas pipe 71 into the anode gas passage of each single cell of the fuel cell stack 21 and is supplied to the anode.
  • air as cathode gas flows from the air supply device 50 through the cathode gas pipe 72 into the cathode gas passage of each unit cell of the fuel cell stack 21 and is supplied to the cathode.
  • the air supply device 50 has an air supply pipe 51 connected to the cathode gas pipe 72 , an air filter 52 provided at the inlet of the air supply pipe 51 , and an air pump 53 installed in the air supply pipe 51 .
  • air pump 53 By operating the air pump 53, air as the cathode gas is sucked into the air supply pipe 51 through the air filter 52 and pressure-fed (supplied) through the cathode gas pipe 72 to the fuel cell stack 21 (cathode).
  • Oxide ions (O 2 ⁇ ) are produced at the cathode of each single cell, and the oxide ions permeate the electrolyte and react with hydrogen and carbon monoxide at the anode to obtain electrical energy.
  • the output terminal of the fuel cell stack 21 is connected to the input terminal of a power conditioner 90, and the output terminal of the power conditioner 90 is connected to the power line 3 from the power system 2 to the load 4 via a relay. there is By driving and controlling the power conditioner 90 , the power generated by the fuel cell stack 21 can be converted into AC power and supplied to the load 4 .
  • Anode gas containing components not used for the electrochemical reaction (power generation) in each unit cell (hereinafter referred to as “anode off-gas”) is once led out of the housing 29 through the anode off-gas pipe 73, and then out of the housing 29. It is supplied to the installed condenser 62 (cooler). Then, the anode off-gas is cooled by the condenser 62 to remove at least a part of the water vapor contained in the anode off-gas, and then introduced into the housing 29 through the anode off-gas pipe 74 to the combustor in the housing 29. 24.
  • the condenser 62 is connected to the hot water storage tank 61 via a circulation pipe 63 .
  • the condenser 62 drives the circulation pump 64 to circulate the hot water stored in the hot water storage tank 61, thereby cooling the anode off-gas through heat exchange with the hot water and condensing water vapor in the anode off-gas.
  • a condensed water pipe 44 and an anode off gas pipe 74 are connected to a passage outlet on the anode off gas side of the condenser 62, and the condensed water obtained by condensing water vapor in the anode off gas in the condenser 62 is It is introduced into the reforming water tank 42 through the condensed water pipe 44 .
  • the condensed water can be used as the reforming water, and the operation of the fuel cell system 10 can be continued without supplying water from the outside (water independent operation).
  • the anode off-gas from which water vapor has been removed through the condenser 62 is supplied to the combustor 24 through the anode off-gas pipe 74 .
  • a part of the anode off-gas from which water vapor has been removed by passing through the condenser 62 is supplied to the raw fuel gas supply pipe 31 (between the zero governor 35 and the gas pump 36) via a reflux pipe 81 branching from the anode off-gas pipe 74. is refluxed to
  • the reflux pipe 81 is provided with an on-off valve 82 for opening and closing the reflux pipe 81 and an orifice 83 for adjusting the amount of reflux.
  • cathode off-gas the cathode gas not used for the electrochemical reaction (power generation) in each single cell
  • the anode off-gas that has flowed into the combustor 24 is combustible gas containing fuel components such as hydrogen and carbon monoxide, and is mixed with the oxygen-containing cathode off-gas that has flowed into the combustor 24 .
  • the mixed gas hereinafter referred to as "off-gas"
  • the combustion of the off-gas activates the fuel cell stack 21, preheats the raw fuel gas in the vaporizer 22, generates steam, and reforms it. Heat necessary for the steam reforming reaction or the like in the reformer 23 is generated.
  • combustion exhaust gas containing unburned fuel is generated, and the combustion exhaust gas passes through the combustion exhaust gas pipe 76, passes through the combustion catalyst 28, and is discharged to the outside air.
  • the combustion catalyst 28 is an oxidation catalyst for burning unburned fuel in the combustion exhaust gas.
  • the first, second and third heat exchangers 25, 26, 27 are all installed inside the housing 29.
  • the first heat exchanger 25 exchanges heat between the anode off-gas flowing upstream of the condenser 62 in the anode off-gas pipe 73 and the cathode gas flowing through the cathode gas pipe 72 .
  • the second heat exchanger 26 includes anode offgas flowing downstream of the first heat exchanger 25 and upstream of the condenser 62 in the anode offgas pipe 73, and raw fuel gas and reforming gas flowing through the vaporizer 22. It exchanges heat with water.
  • the second heat exchanger 26 is built into the vaporizer 22 .
  • an anode off-gas flow path is formed so that at least part of the reformed water flowing through the vaporizer 22 exchanges heat with the anode off-gas in a liquid phase state.
  • the third heat exchanger 27 exchanges heat between the flue gas flowing through the flue gas pipe 76 and the cathode gas flowing downstream of the first heat exchanger 25 in the cathode gas pipe 72 .
  • the cathode gas supplied from the air supply device 50 to the cathode gas pipe 72 passes through the third heat exchanger 27 and the first heat exchanger 25 in order, and undergoes heat exchange between the combustion exhaust gas and the anode off-gas.
  • the fuel is heated and sent to the fuel cell stack 21 . Therefore, a high-temperature cathode gas is supplied to the fuel cell stack 21, and the temperature of the fuel cell stack 21 is maintained at a temperature suitable for its operation (high temperature state).
  • the anode off-gas that has passed through the first heat exchanger 25 is further cooled by being heat-exchanged with the reforming water in the second heat exchanger 26, and then discharged out of the housing 29 to the condenser 62. supplied. Since water has a relatively large heat of evaporation and can evaporate in a relatively low-temperature region within the housing, the anode off-gas can be sufficiently cooled by heat-exchanging the anode off-gas with the liquid-phase reforming water. That is, it is possible to reduce the enthalpy that the anode off-gas carries away to the outside of the housing 29 .
  • the condensation of water vapor contained in the anode off-gas can be promoted in the condenser 62. is used as the reforming water to operate the fuel cell system 10 stably in a so-called water self-sustaining operation.
  • the first heat exchanger 25 exchanges heat between the anode offgas flowing through the anode offgas pipe 73 and the cathode gas flowing through the cathode gas pipe 72 in the housing 29. and a second heat exchanger 26 that exchanges heat between the anode offgas flowing downstream of the first heat exchanger 25 in the anode offgas pipe 73 and the reforming water.
  • the temperature of the fuel cell stack 21 can be maintained at a temperature suitable for its operation (high temperature state).
  • the anode off-gas is sufficiently cooled within the housing 29 by further heat-exchanging the anode off-gas with the reforming water. , and the enthalpy carried away by the anode off-gas to the outside of the housing 29 can be reduced. As a result, the power generation efficiency of the fuel cell stack 21 can be improved.
  • the second heat exchanger 25 exchanges heat between the anode off-gas and the raw fuel gas and reforming water flowing into the vaporizer 22, so that the raw fuel gas is preheated. It is possible to accelerate the vaporization of the reforming water. Furthermore, since the second heat exchanger 26 is built in the evaporator 22, the device can be made more compact.
  • the first heat exchanger 25 exchanges heat between the anode off-gas and the cathode gas.
  • the first heat exchanger is configured to have an anode off-gas flow path through which the anode off-gas flows inside the reformer 23, and the anode off-gas flowing through the anode off-gas flow path and the reformer 23 flow through the anode off-gas flow path. You may make it heat-exchange between gas.
  • the first heat exchanger may exchange heat between the anode off-gas and the anode gas flowing through the anode gas pipe 71 .
  • the first heat exchanger may exchange heat between the anode off-gas and the raw fuel gas flowing between the desulfurizer 38 and the vaporizer 22 in the raw fuel gas supply pipe 31 .
  • All of these fluids are fluids that flow toward the fuel cell stack 21 on the upstream side of the fuel cell stack 21, and are supplied to the fuel cell stack 21 after being heated by heat exchange with the anode off-gas.
  • the temperature of the fuel cell stack 21 can be maintained at a temperature suitable for its operation.
  • the fuel cell system 10 includes the first heat exchanger 25 that exchanges heat between the anode offgas and the cathode gas; and a second heat exchanger 26 that exchanges heat with water.
  • the anode off-gas and the reformed water alone (liquid phase) have passed through the second heat exchanger 26.
  • the heat exchanger 126 is installed in the housing 29 , and the anode offgas flowing downstream of the second heat exchanger 26 and upstream of the condenser 62 in the anode offgas pipe 73 and the reforming water supply pipe 41 . Heat is exchanged with the reformed water flowing upstream of the vaporizer 22 . By exchanging heat between the anode off-gas and the liquid reforming water, the anode off-gas can be further cooled, and the enthalpy carried away by the anode off-gas can be further reduced.
  • the second heat exchanger 26 may be configured such that the anode off-gas is heat-exchanged with the reforming water (water vapor) in the vapor phase state.
  • a first heat exchanger 225 and a second heat exchanger 226 may be provided instead of the first heat exchanger 25 and the second heat exchanger 26.
  • the first heat exchanger 225 exchanges heat between the anode off-gas flowing through the anode off-gas pipe 73 upstream of the condenser 62 and the anode off-gas flowing through the anode off-gas pipe 74 downstream of the condenser 62 .
  • the second heat exchanger 226 combines anode offgas, which flows downstream of the first heat exchanger 225 in the anode offgas pipe 73 and upstream of the condenser 62 , with the reforming water supply pipe 41 before the vaporizer 22 .
  • the anode off-gas cooled by the condenser 62 can be heated by the first heat exchanger 225 and then supplied to the combustor 24, thereby suppressing a temperature drop in the combustor 24 and vaporizing the gas.
  • the temperature of the reactor 22, the reformer 23, and the fuel cell stack 21 can be maintained at appropriate temperatures.
  • the anode off-gas can be sufficiently cooled and the enthalpy of the anode off-gas carried out of the housing 29 can be reduced. .
  • FIGS. 4, 5, and 6 are schematic configuration diagrams of fuel cell systems 10B, 110B, and 210B, which are modifications of the fuel cell systems 10, 110, and 210 of FIGS. 1, 2, and 3, respectively.
  • the fuel cell systems 10B, 110B, and 210B shown in FIGS. 4, 5, and 6, the same components as those of the fuel cell systems 10, 110, and 210 shown in FIGS. A detailed description is omitted because it overlaps.
  • the fuel cell stack 21B has the same configuration as the fuel cell stack 21, but is used as a reversible solid oxide cell stack. That is, the fuel cell stack 21B has, as an operation mode, an electric power generation operation (FC mode) in which electric power is generated by a reaction between hydrogen and oxygen, as in the fuel cell systems 10, 110, and 210 of each embodiment, and an electric power generation operation (FC mode) between the power source and both electrodes. It has an electrolysis operation (EC mode) in which hydrogen is generated by high-temperature steam electrolysis while power is supplied to. The operating mode can be selected according to power demand.
  • FC mode electric power generation operation
  • FC mode electric power generation operation
  • FC mode electric power generation operation
  • FC mode electric power generation operation
  • FC mode electric power generation operation
  • EC mode electrolysis operation
  • the operating mode can be selected according to power demand.
  • the FC mode can be selected when load L is requesting power, and the EC mode can be selected when load L is not requesting power.
  • the FC mode is selected, and a higher DR that increases the power demand is requested.
  • EC mode can be selected.
  • Each of the modified fuel cell systems 10B, 110B, and 210B includes a recovery pipe 91 branched from a reflux pipe 81 and connected to a hydrogen tank 95, a gas pump 92 installed in the recovery pipe 91, and a and an on-off valve 93 installed between the branch point with the reflux pipe 81 and the gas pump 93 .
  • the on-off valve 93 is closed in FC mode and opened in EC mode.
  • a power source (not shown) is connected to the terminal on the anode side so as to supply electric power at a voltage required for high-temperature steam electrolysis.
  • a power supply a system power supply, renewable energy such as a solar power generation device, a storage battery, or the like can be used.
  • water vapor and a small amount of hydrogen gas are introduced to the fuel electrode of the fuel cell stack 21B, and air is introduced to the air electrode of the fuel cell stack 21B. Then, when electric power of a predetermined voltage is supplied between the terminals of the fuel cell stack 21B (reversible solid oxide cell stack) from a power source, the water vapor introduced into the fuel electrode is converted into hydrogen and oxygen by electrolysis at the fuel electrode. It is decomposed into ions (O 2- ). Oxygen gas is generated at the air electrode by the permeation of the oxygen ions through the electrolyte.
  • the hydrogen gas produced at the fuel electrode is discharged to the anode offgas pipe 73 as fuel electrode offgas together with water vapor that has not undergone electrolysis reaction, and is supplied to the condenser 62 . After water vapor is removed by the condenser 62 , the hydrogen-containing fuel electrode off-gas that has passed through the condenser 62 passes through the reflux pipe 81 and the recovery pipe 91 and is stored in the hydrogen tank 95 .
  • the hydrogen gas stored in the hydrogen tank 95 may be used as anode gas in the FC mode, or may be used in the EC mode.
  • a part of the fuel electrode off-gas that has passed through the condenser 62 is supplied to the combustor 24 through the anode off-gas pipe 74, and air containing oxygen gas is supplied from the air electrode to the combustor 24 through the cathode off-gas pipe 75. It is mixed with pole off-gas and combusted.
  • the fuel electrode off-gas containing hydrogen gas and water vapor discharged from the fuel electrode is 26 in order, and then supplied to the condenser 62 outside the module case 29 .
  • combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 through the condenser 62 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 passes through the third heat exchanger 27 and is discharged out of the module case 29 .
  • the air from the air pump 53 is used to heat the combustion exhaust gas and the fuel electrode off-gas discharged from the fuel electrode, respectively. It is possible to supply the air electrode of the fuel cell stack 21B after sequentially raising the temperature by the exchange.
  • the vaporizer 22 including the second heat exchanger 26 the water (raw water) supplied from the reforming water tank 42 to the vaporizer 22 is mixed with the fuel electrode offgas after passing through the first heat exchanger 25.
  • the steam can be converted into steam by heat exchange and the combustion heat of the combustor 24, and the steam can be heated and then supplied to the fuel electrode of the fuel cell stack 21B.
  • the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced.
  • the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved.
  • the first heat exchanger 25 is included in the evaporator 22, compared to a configuration in which the entire first heat exchanger 25 is provided outside the evaporator 22, the arrangement space for the first heat exchanger 25 is reduced. It is possible to reduce the size of the power generation module 20 (the fuel cell system 10) and suppress the increase in size.
  • the fuel electrode off-gas containing hydrogen gas and water vapor discharged from the fuel electrode passes through the first heat exchanger 25, the second heat exchanger 26, and the heat After passing through the exchanger 126 in order, it is supplied to the condenser 62 outside the module case 29 .
  • combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 through the condenser 62 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 passes through the third heat exchanger 27 and is discharged out of the module case 29 .
  • the air from the air pump 53 is used to heat the combustion exhaust gas and the fuel electrode off-gas discharged from the fuel electrode, respectively. It is possible to supply the air electrode of the fuel cell stack 21B after sequentially raising the temperature by the exchange. Further, in the heat exchanger 126, the water (raw water ) can be converted to water vapor.
  • the vaporizer 22 including the second heat exchanger 26 by heat exchange with the fuel electrode offgas that has passed through the first heat exchanger 25 and before passing through the heat exchanger 126 and the combustion heat of the combustor 24 , the steam that has passed through the heat exchanger 126 can be heated and then supplied to the fuel electrode of the fuel cell stack 21B.
  • the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced.
  • the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved. can.
  • the first heat exchanger 25 is included in the evaporator 22, compared to a configuration in which the entire first heat exchanger 25 is provided outside the evaporator 22, the arrangement space for the first heat exchanger 25 is reduced. It is possible to reduce the size of the power generation module 20 (the fuel cell system 10) and suppress the increase in size.
  • the fuel cell system 210B of the modified example in FIG. After passing through in order, it is supplied to the condenser 62 outside the module case 29 .
  • the fuel electrode off-gas containing hydrogen gas After passing through the condenser 62 , the fuel electrode off-gas containing hydrogen gas is heated in the first heat exchanger 225 by heat exchange with the fuel electrode off-gas before passing through the condenser 62 .
  • the combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 is transferred to the third heat exchanger. After passing through 27 , it is discharged out of the module case 29 .
  • the temperature of the air from the air pump 53 is raised by heat exchange with the combustion exhaust gas, and then supplied to the air electrode of the fuel cell stack 21B.
  • the water (raw water) supplied from the reforming water tank 42 to the vaporizer 22 is converted into steam by heat exchange with the fuel electrode offgas after passing through the first heat exchanger 225. , and the temperature of the water vapor can be raised before being supplied to the fuel electrode of the fuel cell stack 21B.
  • the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced.
  • the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved. can.
  • the fuel cell stack 21 corresponds to the "fuel cell” of the present invention
  • the reformer 23 corresponds to the "reforming section”
  • the vaporizer 22 corresponds to the "vaporization section”
  • the housing 29 corresponds to the "
  • the raw fuel gas supply device 30 corresponds to the “raw fuel gas supply unit”
  • the reforming water supply device 40 corresponds to the “reforming water supply unit”
  • the air supply device 50 corresponds to the “cathode gas supply unit”.
  • the anode offgas pipe 73 corresponds to the "anode offgas channel”
  • the first heat exchanger 25 corresponds to the "first heat exchange section”
  • the second heat exchanger 26 corresponds to the "second Equivalent to "heat exchange section”.
  • the combustor 24 corresponds to the "combustion section”
  • the anode offgas pipes 73 and 74 correspond to the "anode offgas flow path”
  • the condenser 62 corresponds to the "cooling section”
  • the first heat exchanger 225 It corresponds to the "first heat exchange section”
  • the second heat exchanger 226 corresponds to the "second heat exchange section”.
  • the fuel cell stack 21B corresponds to a "reversible operation solid oxide cell stack”.
  • the recovery pipe 91 corresponds to the "recovery path", the hydrogen tank 95 to the "tank”, the on-off valve 93 to the “on-off valve”, and the gas pump 92 to the "pump". Also, the reflux pipe 81 corresponds to the "reflux path”.
  • the present invention can be used in the manufacturing industry of fuel cell systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell system is equipped with: a fuel cell; a reformer unit for reforming a starting material gas by using water vapor; a vaporization unit for generating water vapor by vaporizing the reformed water; a housing that has heat-insulating properties and houses the fuel cell, the reformer unit, and the vaporization unit; an anode off-gas flow passage for guiding anode off-gas from the fuel cell to the exterior of the housing; and a first heat exchanger and a second heat exchanger that are provided inside the housing. The first heat exchanger exchanges heat between the anode off-gas flowing through the anode off-gas flow passage and a fluid flowing toward the fuel cell on the upstream side of the fuel cell. The second heat exchanger exchanges heat between the reformed water and the anode off-gas flowing through the anode off-gas flow passage on the downstream side of the first heat exchanger.

Description

燃料電池システムfuel cell system
 本開示は、燃料電池システムに関する。 This disclosure relates to a fuel cell system.
 従来、この種の燃料電池システムとしては、燃料電池スタックからのアノードオフガスと他の流体との間で熱交換する熱交換器を備えるものが知られている。例えば、特許文献1には、セルスタックと、セルスタックが収容されると共に断熱部材に覆われる高温ハウジングと、セルスタックからの燃料オフガス(アノードオフガス)を高温ハウジング外に導いた後に再び高温ハウジング内に導いて燃焼器に送る燃料オフガス送給流路と、燃料オフガス送給流路の高温ハウジング外に配置されて燃料オフガスを冷却する冷却器と、燃料オフガス送給流路の高温ハウジング内における上流側を流れる燃料オフガスと燃料オフガス送給流路の高温ハウジング内における下流側(高温ハウジング外に導かれた後に再び高温ハウジング内に位置する部分)を流れる燃料オフガスとの間で熱交換する熱交換器と、を備える燃料電池システムが開示されている。 Conventionally, this type of fuel cell system is known to have a heat exchanger that exchanges heat between the anode off-gas from the fuel cell stack and another fluid. For example, Patent Document 1 describes a cell stack, a high-temperature housing that accommodates the cell stack and is covered with a heat insulating member, and a fuel off-gas (anode off-gas) from the cell stack that is led out of the high-temperature housing and then reintroduced into the high-temperature housing. a cooler located outside the hot housing of the fuel off-gas delivery channel to cool the fuel off-gas; and upstream within the hot housing of the fuel off-gas delivery channel. heat exchange between the fuel off-gas flowing on the side and the fuel off-gas flowing on the downstream side of the fuel off-gas delivery channel in the high-temperature housing (the portion that is again located in the high-temperature housing after being led out of the high-temperature housing) A fuel cell system is disclosed comprising:
 また、特許文献2には、原料ガスを水蒸気改質して燃料ガスを生成する燃料処理装置と、燃料電池と、燃料電池から排出されたオフガスから水蒸気を除去する水蒸気分離膜と、オフガスから水蒸気を除去した再生燃料ガスを燃料処理装置よりも下流側から燃料電池に供給する再生燃料ガス経路と、を備える循環式燃料電池システムにおいて、再生燃料ガス、原料ガス、空気、水蒸気および水蒸気を凝縮した水の少なくとも1つと、燃料オフガスとを熱交換する熱交換器を備えるものが開示されている。 Further, Patent Document 2 discloses a fuel processing device that steam reforms a raw material gas to generate a fuel gas, a fuel cell, a steam separation membrane that removes steam from the off-gas discharged from the fuel cell, and steam from the off-gas. and a regenerated fuel gas path for supplying the regenerated fuel gas from the fuel processing device to the fuel cell from the downstream side of the fuel processing device. Disclosed is a heat exchanger that exchanges heat between at least one of water and a fuel off-gas.
特開2020-47400号公報Japanese Patent Application Laid-Open No. 2020-47400 特開2016-115496号公報JP 2016-115496 A
 特許文献1に記載の燃料電池システムでは、燃料オフガス送給流路の高温ハウジング内における下流側(高温ハウジング外に導かれた後に再び高温ハウジング内に位置する部分)を流れる燃料オフガス(アノードオフガス)は熱容量が小さく、冷却器を通過する前のアノードオフガスを十分に冷却することができず、アノードオフガスがハウジング外に持ち去るエンタルピーが大きくなる。また、特許文献2に記載の燃料電池システムでは、再生燃料ガスや原料ガス、空気、水蒸気および水蒸気を凝縮した水の少なくとも1つと燃料オフガスとを熱交換できるものとしているが、どの流体をどの順番で熱交換すべきかについて何ら言及されておらず、システムの発電効率を向上させるには不十分である。 In the fuel cell system described in Patent Document 1, fuel off-gas (anode off-gas) flowing downstream of the fuel off-gas supply channel in the high-temperature housing (portion again located in the high-temperature housing after being led out of the high-temperature housing) has a small heat capacity and cannot sufficiently cool the anode off-gas before it passes through the cooler, increasing the enthalpy of the anode off-gas carried out of the housing. Further, in the fuel cell system described in Patent Document 2, heat can be exchanged between the fuel off-gas and at least one of the regenerated fuel gas, raw material gas, air, water vapor, and water condensed from water vapor. There is no mention of whether the heat should be exchanged at , which is insufficient to improve the power generation efficiency of the system.
 本開示の燃料電池システムは、燃料電池の温度を適温に保つと共にアノードオフガスが持ち去るエンタルピーを低減して燃料電池システムの発電効率をより向上させることを主目的とする。 The main purpose of the fuel cell system of the present disclosure is to keep the temperature of the fuel cell at an appropriate temperature and reduce the enthalpy carried away by the anode off-gas, thereby further improving the power generation efficiency of the fuel cell system.
 本開示の燃料電池システムは、上述の主目的を達成するために以下の手段を採った。 The fuel cell system of the present disclosure employs the following means to achieve the above-mentioned main purpose.
 本開示の第1の燃料電池システムは、
 アノードガスとカソードガスとの反応により発電する燃料電池と、
 水蒸気を用いて原燃料ガスを前記アノードガスに改質する改質部と、
 改質水を気化して前記水蒸気を生成する気化部と、
 断熱性を有し、前記燃料電池と前記改質部と前記気化部とを収容するハウジングと、
 前記原燃料ガスを前記気化部へ供給する原燃料ガス供給部と、
 前記改質水を前記気化部へ供給する改質水供給部と、
 前記カソードガスを前記燃料電池へ供給するカソードガス供給部と、
 前記燃料電池からのアノードオフガスを前記ハウジング外へ導出するアノードオフガス流路と、
 前記ハウジング内に設けられ、前記アノードオフガス流路を流通するアノードオフガスと前記燃料電池に向かって該燃料電池の上流側を流れる流体との間で熱交換する第1熱交換部と、
 前記ハウジング内に設けられ、前記アノードオフガス流路の前記第1熱交換部よりも下流側を流通するアノードオフガスと前記改質水との間で熱交換する第2熱交換部と、
 を備えることを要旨とする。
A first fuel cell system of the present disclosure includes:
a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas;
a reforming unit that reforms the raw fuel gas into the anode gas using water vapor;
a vaporization unit that vaporizes the reforming water to generate the steam;
a housing that has heat insulation properties and accommodates the fuel cell, the reforming section, and the vaporization section;
a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit;
a reformed water supply unit that supplies the reformed water to the vaporization unit;
a cathode gas supply unit that supplies the cathode gas to the fuel cell;
an anode off-gas flow path for leading the anode off-gas from the fuel cell to the outside of the housing;
a first heat exchanging part provided in the housing for exchanging heat between the anode off-gas flowing through the anode off-gas channel and the fluid flowing upstream of the fuel cell toward the fuel cell;
a second heat exchange section provided in the housing for exchanging heat between the reforming water and the anode offgas flowing downstream of the first heat exchange section in the anode offgas flow path;
The gist is to provide
 この本開示の第1の燃料電池システムでは、ハウジング内に設けられる第1熱交換部および第2熱交換部を備える。第1熱交換部は、アノードオフガス流路を流通するアノードオフガスと燃料電池に向かって燃料電池の上流側を流れる流体との間で熱交換する。第2熱交換部は、アノードオフガス流路の第1熱交換部よりも下流側を流通するアノードオフガスと改質水との間で熱交換する。第1熱交換部においてアノードオフガスとの熱交換により昇温した流体により燃料電池の温度をその運転に適した温度(高温状態)に保つことができる。また、水は蒸発熱が比較的大きく且つハウジング内における比較的低温域にて蒸発可能であるため、第1熱交換部よりも下流側を流通するアノードオフガスを改質水と熱交換することで、アノードオフガスを十分に冷却してアノードオフガスがハウジング外に持ち去るエンタルピーを低減することができる。これらの結果、燃料電池システムの発電効率をより向上させることができる。 The first fuel cell system of the present disclosure includes a first heat exchange section and a second heat exchange section provided within the housing. The first heat exchange section exchanges heat between the anode off-gas flowing through the anode off-gas channel and the fluid flowing upstream of the fuel cell toward the fuel cell. The second heat exchange section exchanges heat between the anode offgas flowing downstream of the first heat exchange section in the anode offgas channel and the reforming water. The temperature of the fuel cell can be maintained at a temperature suitable for its operation (high temperature state) by the fluid whose temperature has been raised by heat exchange with the anode off-gas in the first heat exchange section. In addition, since water has a relatively large heat of evaporation and can evaporate in a relatively low temperature range in the housing, the anode off-gas flowing downstream of the first heat exchange section is heat-exchanged with the reforming water. , the anode off-gas can be sufficiently cooled to reduce the enthalpy of the anode off-gas carried out of the housing. As a result, the power generation efficiency of the fuel cell system can be further improved.
 こうした本開示の第1の燃料電池システムにおいて、前記流体は、前記カソードガスであり、前記第1熱交換部は、前記アノードオフガスと前記カソードガスとの間で熱交換してもよい。こうすれば、アノードオフガスとの熱交換によって昇温したカソードガスにより燃料電池の温度をその運転に適した温度(高温状態)に保持することができる。 In the first fuel cell system of the present disclosure, the fluid may be the cathode gas, and the first heat exchange section may exchange heat between the anode off-gas and the cathode gas. In this way, the temperature of the fuel cell can be maintained at a temperature suitable for its operation (high temperature state) by the cathode gas heated by heat exchange with the anode off-gas.
 また、本開示の第1の燃料電池システムにおいて、前記第2熱交換部は、前記気化器内に設けられ、前記アノードオフガスと前記気化器にそれぞれ供給された原燃料ガスおよび改質水との間で熱交換してもよい。こうすれば、改質水との熱交換によりアノードオフガスを十分に冷却することができると共に原燃料ガスとの熱交換により原燃料ガスを予熱することができる。加えて、第2熱交換部を気化部に内蔵することで装置をよりコンパクトにすることができる。 Further, in the first fuel cell system of the present disclosure, the second heat exchange section is provided in the vaporizer, and the anode off-gas and the raw fuel gas and reforming water respectively supplied to the vaporizer are exchanged. You may heat-exchange between. In this way, the anode off-gas can be sufficiently cooled by heat exchange with the reforming water, and the raw fuel gas can be preheated by heat exchange with the raw fuel gas. In addition, the apparatus can be made more compact by incorporating the second heat exchange section into the vaporization section.
 本開示の第2の燃料電池システムは、
 アノードガスとカソードガスとの反応により発電する燃料電池と、
 水蒸気を用いて原燃料ガスを前記アノードガスに改質する改質部と、
 改質水を気化して前記水蒸気を生成する気化部と、
 燃焼熱により前記改質部と前記気化部とを加熱する燃焼部と、
 断熱性を有し、前記燃料電池と前記改質部と前記気化部と前記燃焼部とを収容するハウジングと、
 前記原燃料ガスを前記気化部へ供給する原燃料ガス供給部と、
 前記改質水を前記気化部へ供給する改質水供給部と、
 前記カソードガスを前記燃料電池へ供給するカソードガス供給部と、
 前記燃料電池からのアノードオフガスを前記ハウジング外に一旦導出した後、前記ハウジング内に導入して前記燃焼部へ供給するアノードオフガス流路と、
 前記ハウジング外に設けられ、前記アノードオフガス流路を流通するアノードオフガスを冷却する冷却部と、
 前記ハウジング内に設けられ、前記アノードオフガス流路の前記冷却部よりも上流側を流通するアノードオフガスと前記アノードオフガス流路の前記冷却部よりも下流側を流通するアノードオフガスとの間で熱交換する第1熱交換部と、
 前記ハウジング内に設けられ、前記アノードオフガス流路の前記第1熱交換部よりも下流側かつ前記冷却部よりも上流側を流通するアノードオフガスと前記改質水との間で熱交換する第2熱交換部と、
 を備えることを要旨とする。
A second fuel cell system of the present disclosure includes:
a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas;
a reforming unit that reforms the raw fuel gas into the anode gas using water vapor;
a vaporization unit that vaporizes the reforming water to generate the steam;
a combustion section that heats the reforming section and the vaporization section with combustion heat;
a housing having heat insulating properties and housing the fuel cell, the reforming section, the vaporization section, and the combustion section;
a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit;
a reformed water supply unit that supplies the reformed water to the vaporization unit;
a cathode gas supply unit that supplies the cathode gas to the fuel cell;
an anode off-gas flow path for introducing the anode off-gas from the fuel cell to the outside of the housing, introducing it into the housing, and supplying it to the combustion section;
a cooling unit provided outside the housing for cooling the anode off-gas flowing through the anode off-gas channel;
heat exchange between the anode off-gas provided in the housing and flowing upstream of the cooling portion of the anode off-gas channel and the anode off-gas flowing downstream of the cooling portion of the anode off-gas channel; a first heat exchange section to
A second heat exchanger is provided in the housing and exchanges heat between the reforming water and the anode offgas flowing downstream of the first heat exchange section and upstream of the cooling section of the anode offgas flow path. a heat exchange section;
The gist is to provide
 この本開示の第2の燃料電池システムでは、第1熱交換部は、アノードオフガス流路の冷却部よりも上流側を流通するアノードオフガスとアノードオフガス流路の冷却部よりも下流側を流通するアノードオフガスとの間で熱交換する。第2熱交換部は、アノードオフガス流路の第1熱交換部よりも下流側かつ冷却部よりも上流側を流通するアノードオフガスと改質水との間で熱交換する。第1熱交換部において冷却部を通過したアノードオフガスを昇温させてから燃焼部に供給することで、改質部や気化部、燃料電池の温度を適温(高温状態)に保つことができる。また、水は蒸発熱が比較的大きく且つハウジング内における比較的低温域にて蒸発可能であるため、第1熱交換部よりも下流側を流通するアノードオフガスを改質水と熱交換することで、アノードオフガスを十分に冷却してアノードオフガスがハウジング外に持ち去るエンタルピーを低減することができる。これらの結果、燃料電池システムの発電効率をより向上させることができる。 In the second fuel cell system of the present disclosure, the first heat exchange section includes the anode offgas flowing upstream of the cooling section of the anode offgas channel and the anode offgas flowing downstream of the cooling section of the anode offgas channel. It exchanges heat with the anode off-gas. The second heat exchange section exchanges heat between the anode offgas and the reforming water that flow downstream of the first heat exchange section and upstream of the cooling section in the anode offgas flow path. By raising the temperature of the anode off-gas that has passed through the cooling section in the first heat exchange section and then supplying it to the combustion section, the temperatures of the reforming section, the vaporization section, and the fuel cell can be maintained at appropriate temperatures (high temperature state). In addition, since water has a relatively large heat of evaporation and can evaporate in a relatively low temperature range in the housing, the anode off-gas flowing downstream of the first heat exchange section is heat-exchanged with the reforming water. , the anode off-gas can be sufficiently cooled to reduce the enthalpy of the anode off-gas carried out of the housing. As a result, the power generation efficiency of the fuel cell system can be further improved.
 また、本開示の第1または第2の燃料電池システムにおいて、前記燃料電池は、可逆作動固体酸化物形セルにより構成され、アノードガスとカソードガスとの反応により発電する発電動作と、前記燃料電池に対して電力が供給された状態で水蒸気電解により水素を生成する電解動作と、を切り替え可能であってもよい。こうすれば、電解動作時においても、燃料極から排出される水素を含むオフガスを十分に冷却して当該オフガスがハウジング外に持ち去るエンタルピーを低減することができる。この結果、発電動作と電解動作とが可能なシステムにおいて、発電効率と電解効率とをより向上させることができる。この場合、前記ハウジング外において前記アノードオフガス流路とタンクとを連通する回収路と、前記回収路に設けられた開閉弁と、前記回収路に設けられたポンプと、を有し、前記電解動作時において前記開閉弁を開弁して前記ポンプを駆動することにより、前記アノードオフガス流路を流れる水素を含むオフガスを前記タンクに回収する回収部を備えてもよい。こうすれば、簡易な構成により、電解動作時に水素を回収することができる。さらに、この場合、前記アノードオフガス流路に接続され、前記アノードオフガス流路を流れるアノードオフガスを前記原燃料ガス供給部に還流させる還流路を有し、前記回収路は、前記還流路から分岐して前記タンクに接続されてもよい。こうすれば、アノードオフガスを原燃料ガス供給部に還流させるタイプの燃料電池システムにおいて、還流路を利用して電解動作時に水素を回収することができる。 Further, in the first or second fuel cell system of the present disclosure, the fuel cell is composed of a reversibly operating solid oxide cell, and has a power generation operation of generating power through a reaction between an anode gas and a cathode gas; It may be possible to switch between an electrolysis operation in which hydrogen is generated by steam electrolysis while power is supplied to the . In this way, even during the electrolysis operation, the hydrogen-containing off-gas discharged from the fuel electrode can be sufficiently cooled to reduce the enthalpy carried away by the off-gas to the outside of the housing. As a result, the power generation efficiency and the electrolysis efficiency can be further improved in a system capable of power generation and electrolysis. In this case, outside the housing, a recovery path communicating between the anode offgas flow path and the tank, an on-off valve provided in the recovery path, and a pump provided in the recovery path are provided, and the electrolysis operation is performed. A recovery unit may be provided for recovering the hydrogen-containing off-gas flowing through the anode off-gas flow path into the tank by opening the on-off valve and driving the pump at times. By doing so, hydrogen can be recovered during the electrolysis operation with a simple configuration. Further, in this case, a return path is provided which is connected to the anode off-gas flow path and returns the anode off-gas flowing through the anode off-gas flow path to the raw fuel gas supply section, and the recovery path branches off from the return path. may be connected to the tank through In this way, in a fuel cell system of the type in which the anode off-gas is recirculated to the raw fuel gas supply section, hydrogen can be recovered during the electrolysis operation using the recirculation path.
本実施形態の燃料電池システムの概略構成図である。1 is a schematic configuration diagram of a fuel cell system according to an embodiment; FIG. 他の実施形態の燃料電池システムの概略構成図である。FIG. 4 is a schematic configuration diagram of a fuel cell system of another embodiment; 他の実施形態の燃料電池システムの概略構成図である。FIG. 4 is a schematic configuration diagram of a fuel cell system of another embodiment; 図1の変形例である燃料電池システムの概略構成図である。FIG. 2 is a schematic configuration diagram of a fuel cell system that is a modified example of FIG. 1; 図2の変形例である燃料電池システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a fuel cell system that is a modified example of FIG. 2; 図3の変形例である燃料電池システムの概略構成図である。FIG. 4 is a schematic configuration diagram of a fuel cell system that is a modification of FIG. 3;
 本発明を実施するための形態について図面を参照しながら説明する。 A mode for carrying out the present invention will be described with reference to the drawings.
 図1は、本実施形態の燃料電池システム10の概略構成図である。本実施形態の燃料電池システム10は、図1に示すように、アノードガス中の水素とカソードガス中の酸素との電気化学反応により発電する燃料電池スタック21を含む発電モジュール20と、発電モジュール20(気化器22)にアノードガスの原料となる原燃料ガス(例えば天然ガスやLPガス)を供給する原燃料ガス供給装置30と、発電モジュール20(気化器22)に原燃料ガスからアノードガスへの改質(水蒸気改質)に必要な改質水を供給する改質水供給装置40と、発電モジュール20(燃料電池スタック21)にカソードガスとしてのエアを供給するエア供給装置50と、を備える。 FIG. 1 is a schematic configuration diagram of the fuel cell system 10 of this embodiment. As shown in FIG. 1, the fuel cell system 10 of this embodiment includes a power generation module 20 including a fuel cell stack 21 that generates power through an electrochemical reaction between hydrogen in the anode gas and oxygen in the cathode gas; A raw fuel gas supply device 30 that supplies raw fuel gas (for example, natural gas or LP gas) as a raw material of anode gas to (vaporizer 22), and a power generation module 20 (vaporizer 22) from raw fuel gas to anode gas. and an air supply device 50 for supplying air as a cathode gas to the power generation module 20 (fuel cell stack 21). Prepare.
 発電モジュール20は、燃料電池スタック21や、気化器22、改質器23、燃焼器24、3つの熱交換器(第1、第2および第3熱交換器25,26,27)を含み、これらは、断熱性を有する箱形のハウジング29に収容されている。 The power generation module 20 includes a fuel cell stack 21, a vaporizer 22, a reformer 23, a combustor 24, three heat exchangers (first, second and third heat exchangers 25, 26, 27), These are housed in a box-shaped housing 29 having thermal insulation.
 燃料電池スタック21は、酸化ジルコニウム等の電解質と当該電解質を挟持するアノードおよびカソードとをそれぞれ有する複数の固体酸化物形の単セルを備える。各単セルのアノードには、アノードガス通路が接続されている。また、各単セルのカソードには、カソードガス通路が接続されている。 The fuel cell stack 21 includes a plurality of solid oxide single cells each having an electrolyte such as zirconium oxide and an anode and a cathode sandwiching the electrolyte. An anode gas passage is connected to the anode of each single cell. A cathode gas passage is connected to the cathode of each unit cell.
 発電モジュール20の気化器22および改質器23は、ハウジング29内における燃料電池スタック21の上方に配設される。また、燃料電池スタック21と気化器22および改質器23との間には、燃料電池スタック21の作動や、気化器22および改質器23での反応に必要な熱を発生させる燃焼器24が配設される。 The vaporizer 22 and reformer 23 of the power generation module 20 are arranged above the fuel cell stack 21 inside the housing 29 . Between the fuel cell stack 21 and the vaporizer 22 and the reformer 23 is a combustor 24 that generates heat necessary for the operation of the fuel cell stack 21 and the reaction in the vaporizer 22 and the reformer 23. is arranged.
 気化器22には、原燃料ガス供給装置30からの原燃料ガスと改質水供給装置40からの改質水とが流入する。原燃料ガス供給装置30は、原燃料ガスを供給する原燃料供給源1と気化器22とを接続する原燃料ガス供給管31と、当該原燃料ガス供給管31に設置された開閉弁32、オリフィス34、ゼロガバナ35、ガスポンプ36および脱硫器38とを有する。原燃料ガスは、ガスポンプ36を作動させることで、原燃料供給源1から脱硫器38を介して気化器22へと圧送(供給)される。改質水供給装置40は、改質水を貯留する改質水タンク42と、改質水タンク42と気化器22とを接続する改質水供給管41と、改質水供給管41に設置された改質水ポンプ43と、を有する。改質水ポンプ43を作動させることで、改質水タンク42内の改質水は、当該改質水ポンプ43により気化器22へと圧送(供給)される。 The raw fuel gas from the raw fuel gas supply device 30 and the reforming water from the reforming water supply device 40 flow into the vaporizer 22 . The raw fuel gas supply device 30 includes a raw fuel gas supply pipe 31 that connects a raw fuel supply source 1 that supplies the raw fuel gas and a vaporizer 22, an on-off valve 32 installed in the raw fuel gas supply pipe 31, It has an orifice 34 , a zero governor 35 , a gas pump 36 and a desulfurizer 38 . The raw fuel gas is pumped (supplied) from the raw fuel supply source 1 to the vaporizer 22 via the desulfurizer 38 by operating the gas pump 36 . The reforming water supply device 40 is installed in a reforming water tank 42 that stores reforming water, a reforming water supply pipe 41 that connects the reforming water tank 42 and the vaporizer 22 , and the reforming water supply pipe 41 . and a modified water pump 43 . By operating the reformed water pump 43 , the reformed water in the reformed water tank 42 is pumped (supplied) to the vaporizer 22 by the reformed water pump 43 .
 気化器22は、流入した原燃料ガスと改質水とを燃焼器24からの熱(燃焼熱)により加熱し、原燃料ガスを予熱すると共に改質水を蒸発させて水蒸気を生成する。気化器22により予熱された原燃料ガスは、水蒸気と混合され、その混合ガスは、当該気化器22から改質器23に流入する。 The vaporizer 22 heats the inflowing raw fuel gas and reformed water with the heat (combustion heat) from the combustor 24 to preheat the raw fuel gas and evaporate the reformed water to generate steam. The raw fuel gas preheated by the vaporizer 22 is mixed with steam, and the mixed gas flows from the vaporizer 22 into the reformer 23 .
 改質器23は、その内部に充填された例えばRu系またはNi系の改質触媒を有し、燃焼器24からの熱の存在下で、改質触媒による気化器22からの混合ガスの反応(水蒸気改質反応)によって水素ガスと一酸化炭素とを生成する。更に、改質器23は、水蒸気改質反応にて生成された一酸化炭素と水蒸気との反応(一酸化炭素シフト反応)によって水素ガスと二酸化炭素とを生成する。これにより、改質器23によって、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の原燃料ガス等を含むアノードガスが生成されることになる。改質器23により生成されたアノードガスは、アノードガス配管71を通って燃料電池スタック21の各単セルのアノードガス通路へ流入し、アノードに供給される。 The reformer 23 has, for example, a Ru-based or Ni-based reforming catalyst filled therein, and in the presence of heat from the combustor 24, the mixed gas from the vaporizer 22 reacts with the reforming catalyst. A (steam reforming reaction) produces hydrogen gas and carbon monoxide. Furthermore, the reformer 23 produces hydrogen gas and carbon dioxide through a reaction (carbon monoxide shift reaction) between carbon monoxide produced in the steam reforming reaction and steam. As a result, the reformer 23 generates anode gas containing hydrogen, carbon monoxide, carbon dioxide, water vapor, unreformed raw fuel gas, and the like. The anode gas produced by the reformer 23 flows through the anode gas pipe 71 into the anode gas passage of each single cell of the fuel cell stack 21 and is supplied to the anode.
 また、カソードガスとしてのエアは、エア供給装置50からカソードガス配管72を介して燃料電池スタック21の各単セルのカソードガス通路へ流入し、カソードに供給される。エア供給装置50は、カソードガス配管72に接続されるエア供給管51と、エア供給管51の入口に設けられたエアフィルタ52と、エア供給管51に設置されたエアポンプ53と、を有する。エアポンプ53を作動させることで、カソードガスとしてのエアは、エアフィルタ52を介してエア供給管51に吸引され、カソードガス配管72を通って燃料電池スタック21(カソード)へと圧送(供給)される。 Also, air as cathode gas flows from the air supply device 50 through the cathode gas pipe 72 into the cathode gas passage of each unit cell of the fuel cell stack 21 and is supplied to the cathode. The air supply device 50 has an air supply pipe 51 connected to the cathode gas pipe 72 , an air filter 52 provided at the inlet of the air supply pipe 51 , and an air pump 53 installed in the air supply pipe 51 . By operating the air pump 53, air as the cathode gas is sucked into the air supply pipe 51 through the air filter 52 and pressure-fed (supplied) through the cathode gas pipe 72 to the fuel cell stack 21 (cathode). be.
 各単セルのカソードでは、酸化物イオン(O2-)が生成され、当該酸化物イオンが電解質を透過してアノードで水素や一酸化炭素と反応することにより電気エネルギが得られる。燃料電池スタック21の出力端子には、パワーコンディショナ90の入力端子が接続され、当該パワーコンディショナ90の出力端子は、リレーを介して電力系統2から負荷4への電力ライン3に接続されている。パワーコンディショナ90を駆動制御することで、燃料電池スタック21の発電電力を交流電力に変換して負荷4に供給することができる。 Oxide ions (O 2− ) are produced at the cathode of each single cell, and the oxide ions permeate the electrolyte and react with hydrogen and carbon monoxide at the anode to obtain electrical energy. The output terminal of the fuel cell stack 21 is connected to the input terminal of a power conditioner 90, and the output terminal of the power conditioner 90 is connected to the power line 3 from the power system 2 to the load 4 via a relay. there is By driving and controlling the power conditioner 90 , the power generated by the fuel cell stack 21 can be converted into AC power and supplied to the load 4 .
 各単セルにおいて電気化学反応(発電)に使用されなかった成分を含むアノードガス(以下、「アノードオフガス」という)は、アノードオフガス配管73を通ってハウジング29外へ一旦導出され、ハウジング29外に設置された凝縮器62(冷却器)に供給される。そして、アノードオフガスは、凝縮器62により冷却させられてアノードオフガスに含まれる水蒸気の少なくとも一部が除去された後、アノードオフガス配管74を通ってハウジング29内に導入され、ハウジング29内の燃焼器24に供給される。 Anode gas containing components not used for the electrochemical reaction (power generation) in each unit cell (hereinafter referred to as “anode off-gas”) is once led out of the housing 29 through the anode off-gas pipe 73, and then out of the housing 29. It is supplied to the installed condenser 62 (cooler). Then, the anode off-gas is cooled by the condenser 62 to remove at least a part of the water vapor contained in the anode off-gas, and then introduced into the housing 29 through the anode off-gas pipe 74 to the combustor in the housing 29. 24.
 凝縮器62は、循環配管63を介して貯湯タンク61に接続されている。凝縮器62は、循環ポンプ64を駆動して貯湯タンク61に貯留された湯水を循環させることにより、湯水との熱交換によってアノードオフガスを冷却し、アノードオフガス中の水蒸気を凝縮する。凝縮器62におけるアノードオフガス側の通路出口には、凝縮水配管44とアノードオフガス配管74とが接続されており、凝縮器62においてアノードオフガス中の水蒸気が凝縮することにより得られた凝縮水は、凝縮水配管44を通って改質水タンク42内に導入される。これにより、凝縮水を改質水として用いることができ、外部から水を補給することなく、燃料電池システム10の運転を継続することができる(水自立運転)。また、上述したように、凝縮器62を通過して水蒸気が除去されたアノードオフガスは、アノードオフガス配管74を通って燃焼器24に供給される。更に、凝縮器62を通過して水蒸気が除去されたアノードオフガスの一部は、アノードオフガス配管74から分岐する還流配管81を介して原燃料ガス供給管31(ゼロガバナ35とガスポンプ36との間)に還流される。還流配管81には、還流配管81を開閉するための開閉弁82や、還流量を調整するためのオリフィス83が設置されている。 The condenser 62 is connected to the hot water storage tank 61 via a circulation pipe 63 . The condenser 62 drives the circulation pump 64 to circulate the hot water stored in the hot water storage tank 61, thereby cooling the anode off-gas through heat exchange with the hot water and condensing water vapor in the anode off-gas. A condensed water pipe 44 and an anode off gas pipe 74 are connected to a passage outlet on the anode off gas side of the condenser 62, and the condensed water obtained by condensing water vapor in the anode off gas in the condenser 62 is It is introduced into the reforming water tank 42 through the condensed water pipe 44 . As a result, the condensed water can be used as the reforming water, and the operation of the fuel cell system 10 can be continued without supplying water from the outside (water independent operation). Further, as described above, the anode off-gas from which water vapor has been removed through the condenser 62 is supplied to the combustor 24 through the anode off-gas pipe 74 . Furthermore, a part of the anode off-gas from which water vapor has been removed by passing through the condenser 62 is supplied to the raw fuel gas supply pipe 31 (between the zero governor 35 and the gas pump 36) via a reflux pipe 81 branching from the anode off-gas pipe 74. is refluxed to The reflux pipe 81 is provided with an on-off valve 82 for opening and closing the reflux pipe 81 and an orifice 83 for adjusting the amount of reflux.
 また、各単セルにおいて電気化学反応(発電)に使用されなかったカソードガス(以下、「カソードオフガス」という)は、カソードオフガス配管75を通って直接に燃焼器24に供給される。 In addition, the cathode gas not used for the electrochemical reaction (power generation) in each single cell (hereinafter referred to as "cathode off-gas") is directly supplied to the combustor 24 through the cathode off-gas pipe 75.
 燃焼器24に流入したアノードオフガスは、水素や一酸化炭素等の燃料成分を含む可燃性ガスであり、燃焼器24に流入した酸素を含むカソードオフガスと混合される。そして、燃焼器24で混合ガス(以下、「オフガス」という)が燃焼すると、当該オフガスの燃焼により、燃料電池スタック21の作動や、気化器22での原燃料ガスの予熱や水蒸気の生成、改質器23での水蒸気改質反応等に必要な熱が発生することになる。また、燃焼器24では、未燃燃料を含む燃焼排ガスが生成され、当該燃焼排ガスは、燃焼排ガス配管76を通り、燃焼触媒28を経て外気へ排出される。燃焼触媒28は、燃焼排ガス中の未燃燃料を燃焼させるための酸化触媒である。 The anode off-gas that has flowed into the combustor 24 is combustible gas containing fuel components such as hydrogen and carbon monoxide, and is mixed with the oxygen-containing cathode off-gas that has flowed into the combustor 24 . When the mixed gas (hereinafter referred to as "off-gas") is burned in the combustor 24, the combustion of the off-gas activates the fuel cell stack 21, preheats the raw fuel gas in the vaporizer 22, generates steam, and reforms it. Heat necessary for the steam reforming reaction or the like in the reformer 23 is generated. In addition, in the combustor 24, combustion exhaust gas containing unburned fuel is generated, and the combustion exhaust gas passes through the combustion exhaust gas pipe 76, passes through the combustion catalyst 28, and is discharged to the outside air. The combustion catalyst 28 is an oxidation catalyst for burning unburned fuel in the combustion exhaust gas.
 第1、第2および第3熱交換器25,26,27は、いずれも、ハウジング29内に設置されている。第1熱交換器25は、アノードオフガス配管73の凝縮器62よりも上流側を流通するアノードオフガスと、カソードガス配管72を流通するカソードガスとの間で熱交換を行なう。第2熱交換器26は、アノードオフガス配管73の第1熱交換器25よりも下流側かつ凝縮器62よりも上流側を流通するアノードオフガスと、気化器22を流通する原燃料ガスおよび改質水との間で熱交換を行なう。本実施形態では、第2熱交換器26は、気化器22に内蔵されている。気化器22の内部には、当該気化器22を流通する改質水の少なくとも一部が液相状態でアノードオフガスと熱交換するようにアノードオフガス流路が形成される。第3熱交換器27は、燃焼排ガス配管76を流通する燃焼排ガスと、カソードガス配管72の第1熱交換器25よりも下流側を流通するカソードガスとの間で熱交換を行なう。 The first, second and third heat exchangers 25, 26, 27 are all installed inside the housing 29. The first heat exchanger 25 exchanges heat between the anode off-gas flowing upstream of the condenser 62 in the anode off-gas pipe 73 and the cathode gas flowing through the cathode gas pipe 72 . The second heat exchanger 26 includes anode offgas flowing downstream of the first heat exchanger 25 and upstream of the condenser 62 in the anode offgas pipe 73, and raw fuel gas and reforming gas flowing through the vaporizer 22. It exchanges heat with water. In this embodiment, the second heat exchanger 26 is built into the vaporizer 22 . Inside the vaporizer 22, an anode off-gas flow path is formed so that at least part of the reformed water flowing through the vaporizer 22 exchanges heat with the anode off-gas in a liquid phase state. The third heat exchanger 27 exchanges heat between the flue gas flowing through the flue gas pipe 76 and the cathode gas flowing downstream of the first heat exchanger 25 in the cathode gas pipe 72 .
 これにより、エア供給装置50からカソードガス配管72へ供給されたカソードガスは、第3熱交換器27と第1熱交換器25とを順に通過し、それぞれ燃焼排ガスとアノードオフガスとの熱交換により昇温させられて燃料電池スタック21へ送られることとなる。このため、燃料電池スタック21には高温のカソードガスが供給され、燃料電池スタック21の温度は、その運転に適した温度(高温状態)に保持される。 As a result, the cathode gas supplied from the air supply device 50 to the cathode gas pipe 72 passes through the third heat exchanger 27 and the first heat exchanger 25 in order, and undergoes heat exchange between the combustion exhaust gas and the anode off-gas. The fuel is heated and sent to the fuel cell stack 21 . Therefore, a high-temperature cathode gas is supplied to the fuel cell stack 21, and the temperature of the fuel cell stack 21 is maintained at a temperature suitable for its operation (high temperature state).
 また、第1熱交換器25を通過したアノードオフガスは、更に第2熱交換器26において、改質水と熱交換されることで冷却されてから、ハウジング29外へ導出されて凝縮器62へ供給される。水は蒸発熱が比較的大きく且つハウジング内における比較的低温域にて蒸発できることから、アノードオフガスを液相の改質水と熱交換することにより、アノードオフガスを十分に冷却することができる。すなわち、アノードオフガスがハウジング29外に持ち去るエンタルピーを低減することができる。また、改質水との熱交換によりアノードオフガスを十分に冷却することで凝縮器62においてアノードオフガス中に含まれる水蒸気の凝縮を促進することができ、外部から水を補給することなく、凝縮水を改質水として用いて燃料電池システム10を運転する所謂水自立運転を安定して行なうことが容易となる。 Further, the anode off-gas that has passed through the first heat exchanger 25 is further cooled by being heat-exchanged with the reforming water in the second heat exchanger 26, and then discharged out of the housing 29 to the condenser 62. supplied. Since water has a relatively large heat of evaporation and can evaporate in a relatively low-temperature region within the housing, the anode off-gas can be sufficiently cooled by heat-exchanging the anode off-gas with the liquid-phase reforming water. That is, it is possible to reduce the enthalpy that the anode off-gas carries away to the outside of the housing 29 . Further, by sufficiently cooling the anode off-gas through heat exchange with the reforming water, the condensation of water vapor contained in the anode off-gas can be promoted in the condenser 62. is used as the reforming water to operate the fuel cell system 10 stably in a so-called water self-sustaining operation.
 以上説明した本実施形態の燃料電池システム10では、ハウジング29内において、アノードオフガス配管73を流通するアノードオフガスとカソードガス配管72を流通するカソードガスとの間で熱交換する第1熱交換器25と、アノードオフガス配管73の第1熱交換器25よりも下流側を流通するアノードオフガスと改質水との間で熱交換する第2熱交換器26と、を備える。アノードオフガスとの熱交換により昇温したカソードガスが燃料電池スタック21へ供給されることにより、燃料電池スタック21の温度をその運転に適した温度(高温状態)に保持することができる。また、水は蒸発熱が比較的大きく且つハウジング内における比較的低温域にて蒸発可能であるため、アノードオフガスを更に改質水と熱交換させることで、ハウジング29内でアノードオフガスを十分に冷却することができ、アノードオフガスがハウジング29外へ持ち去るエンタルピーを低減することができる。これらの結果、燃料電池スタック21の発電効率を向上させることができる。 In the fuel cell system 10 of the present embodiment described above, the first heat exchanger 25 exchanges heat between the anode offgas flowing through the anode offgas pipe 73 and the cathode gas flowing through the cathode gas pipe 72 in the housing 29. and a second heat exchanger 26 that exchanges heat between the anode offgas flowing downstream of the first heat exchanger 25 in the anode offgas pipe 73 and the reforming water. By supplying the cathode gas heated by heat exchange with the anode off-gas to the fuel cell stack 21, the temperature of the fuel cell stack 21 can be maintained at a temperature suitable for its operation (high temperature state). Further, since water has a relatively large heat of evaporation and can evaporate in a relatively low-temperature region within the housing, the anode off-gas is sufficiently cooled within the housing 29 by further heat-exchanging the anode off-gas with the reforming water. , and the enthalpy carried away by the anode off-gas to the outside of the housing 29 can be reduced. As a result, the power generation efficiency of the fuel cell stack 21 can be improved.
 また、本実施形態の燃料電池システム10では、第2熱交換器25は、アノードオフガスと気化器22に流入した原燃料ガスおよび改質水との間で熱交換するため、原燃料ガスを予熱することができると共に改質水の気化を促進することができる。更に、第2熱交換器26を気化器22に内蔵しているため、装置をよりコンパクトにすることができる。 In addition, in the fuel cell system 10 of the present embodiment, the second heat exchanger 25 exchanges heat between the anode off-gas and the raw fuel gas and reforming water flowing into the vaporizer 22, so that the raw fuel gas is preheated. It is possible to accelerate the vaporization of the reforming water. Furthermore, since the second heat exchanger 26 is built in the evaporator 22, the device can be made more compact.
 上述した実施形態では、第1熱交換器25は、アノードオフガスとカソードガスとの間で熱交換するものとした。しかし、第1熱交換器は、改質器23の内部にアノードオフガスが流通するアノードオフガス流路を有して構成され、当該アノードオフガス流路を流通するアノードオフガスと改質器23を流通するガスとの間で熱交換するようにしてもよい。また、第1熱交換器は、アノードオフガスとアノードガス配管71を流通するアノードガスとの間で熱交換するようにしてもよい。さらに、第1熱交換器は、アノードオフガスと原燃料ガス供給管31における脱硫器38と気化器22との間を流通する原燃料ガスとの間で熱交換するようにしてもよい。これらの流体は、いずれも、燃料電池スタック21に向かって燃料電池スタック21の上流側を流れる流体であり、アノードオフガスと熱交換によって昇温させられて燃料電池スタック21に供給されることで、燃料電池スタック21の温度をその運転に適した温度に保持することができる。 In the embodiment described above, the first heat exchanger 25 exchanges heat between the anode off-gas and the cathode gas. However, the first heat exchanger is configured to have an anode off-gas flow path through which the anode off-gas flows inside the reformer 23, and the anode off-gas flowing through the anode off-gas flow path and the reformer 23 flow through the anode off-gas flow path. You may make it heat-exchange between gas. Also, the first heat exchanger may exchange heat between the anode off-gas and the anode gas flowing through the anode gas pipe 71 . Further, the first heat exchanger may exchange heat between the anode off-gas and the raw fuel gas flowing between the desulfurizer 38 and the vaporizer 22 in the raw fuel gas supply pipe 31 . All of these fluids are fluids that flow toward the fuel cell stack 21 on the upstream side of the fuel cell stack 21, and are supplied to the fuel cell stack 21 after being heated by heat exchange with the anode off-gas. The temperature of the fuel cell stack 21 can be maintained at a temperature suitable for its operation.
 上述した実施形態では、燃料電池システム10は、アノードオフガスとカソードガスとの間で熱交換する第1熱交換器25と、第1熱交換器25を通過したアノードオフガスと原燃料ガスおよび改質水との間で熱交換する第2熱交換器26と、を備えるものとした。しかし、図2の燃料電池システム110に示すように、第1熱交換器25および第2熱交換器26に加えて、第2熱交換器26を通過したアノードオフガスと改質水単体(液相)との間で熱交換する熱交換器126を備えてもよい。熱交換器126は、ハウジング29内に設置され、アノードオフガス配管73の第2熱交換器26よりも下流側かつ凝縮器62よりも上流側を流通するアノードオフガスと、改質水供給管41の気化器22よりも上流を流通する改質水との間で熱交換を行なう。アノードオフガスが液相状態の改質水と熱交換することで、アノードオフガスを更に冷却することができ、アノードオフガスが持ち去るエンタルピーを更に低減することができる。熱交換器126を備える場合、第2熱交換器26は、アノードオフガスが気相状態の改質水(水蒸気)と熱交換されるように構成されてもよい。 In the above-described embodiment, the fuel cell system 10 includes the first heat exchanger 25 that exchanges heat between the anode offgas and the cathode gas; and a second heat exchanger 26 that exchanges heat with water. However, as shown in the fuel cell system 110 of FIG. 2, in addition to the first heat exchanger 25 and the second heat exchanger 26, the anode off-gas and the reformed water alone (liquid phase) have passed through the second heat exchanger 26. ) may also be provided with a heat exchanger 126 for exchanging heat between the The heat exchanger 126 is installed in the housing 29 , and the anode offgas flowing downstream of the second heat exchanger 26 and upstream of the condenser 62 in the anode offgas pipe 73 and the reforming water supply pipe 41 . Heat is exchanged with the reformed water flowing upstream of the vaporizer 22 . By exchanging heat between the anode off-gas and the liquid reforming water, the anode off-gas can be further cooled, and the enthalpy carried away by the anode off-gas can be further reduced. When the heat exchanger 126 is provided, the second heat exchanger 26 may be configured such that the anode off-gas is heat-exchanged with the reforming water (water vapor) in the vapor phase state.
 また、図3の燃料電池システム210に示すように、第1熱交換器25および第2熱交換器26に代えて、第1熱交換器225および第2熱交換器226を備えてもよい。第1熱交換器225は、凝縮器62よりも上流側のアノードオフガス配管73を流通するアノードオフガスと、凝縮器62よりも下流側のアノードオフガス配管74を流通するアノードオフガスとの間で熱交換を行なう。第2熱交換器226は、アノードオフガス配管73の第1熱交換器225よりも下流側かつ凝縮器62よりも上流側を流通するアノードオフガスと、改質水供給管41における気化器22の手前を流通する改質水(液相)との間で熱交換を行なう。これにより、凝縮器62によって冷却させられたアノードオフガスを、第1熱交換器225によって加熱してから燃焼器24へ供給することができ、燃焼器24の温度低下を抑制することができ、気化器22や改質器23、燃料電池スタック21の温度を適温に保持することができる。また、第1熱交換器225を通過したアノードオフガスを液相の改質水と熱交換することにより、アノードオフガスを十分に冷却してアノードオフガスがハウジング29外へ持ち去るエンタルピーを低減することができる。 Also, as shown in the fuel cell system 210 of FIG. 3, a first heat exchanger 225 and a second heat exchanger 226 may be provided instead of the first heat exchanger 25 and the second heat exchanger 26. The first heat exchanger 225 exchanges heat between the anode off-gas flowing through the anode off-gas pipe 73 upstream of the condenser 62 and the anode off-gas flowing through the anode off-gas pipe 74 downstream of the condenser 62 . do The second heat exchanger 226 combines anode offgas, which flows downstream of the first heat exchanger 225 in the anode offgas pipe 73 and upstream of the condenser 62 , with the reforming water supply pipe 41 before the vaporizer 22 . heat exchange with the reformed water (liquid phase) flowing through. As a result, the anode off-gas cooled by the condenser 62 can be heated by the first heat exchanger 225 and then supplied to the combustor 24, thereby suppressing a temperature drop in the combustor 24 and vaporizing the gas. The temperature of the reactor 22, the reformer 23, and the fuel cell stack 21 can be maintained at appropriate temperatures. In addition, by heat-exchanging the anode off-gas that has passed through the first heat exchanger 225 with the liquid-phase reforming water, the anode off-gas can be sufficiently cooled and the enthalpy of the anode off-gas carried out of the housing 29 can be reduced. .
 図4,図5,図6は、それぞれ図1,図2,図3の燃料電池システム10,110,210の変形例である燃料電池システム10B,110B,210Bの概略構成図である。図4,図5,図6の燃料電池システム10B,110B,210Bのうち図1,図2,図3の燃料電池システム10,110,210と同様の構成については同一の符号を付し、その詳細な説明は重複するから省略する。 4, 5, and 6 are schematic configuration diagrams of fuel cell systems 10B, 110B, and 210B, which are modifications of the fuel cell systems 10, 110, and 210 of FIGS. 1, 2, and 3, respectively. Among the fuel cell systems 10B, 110B, and 210B shown in FIGS. 4, 5, and 6, the same components as those of the fuel cell systems 10, 110, and 210 shown in FIGS. A detailed description is omitted because it overlaps.
 変形例の燃料電池システム10B,110B,210Bでは、燃料電池スタック21Bは、燃料電池スタック21と同様の構成であるが、可逆作動固体酸化物セルスタックとして用いられる。すなわち、燃料電池スタック21Bは、動作モードとして、各実施形態の燃料電池システム10,110,210と同様に水素と酸素との反応により発電する発電動作(FCモード)の他、電源から両電極間に電力が供給された状態で高温水蒸気電解により水素を生成する電解動作(ECモード)を有する。動作モードは、電力の需要に応じて選択することができる。例えば、負荷Lが電力を要求している場合にはFCモードを選択し、負荷Lが電力を要求していない場合にはECモードを選択することができる。また、デマンドレスポンス契約を締結した燃料電池システム10B,110B,210Bにおいては、電力の需要量を減らす下げDRが要求された場合にはFCモードを選択し、電力の需要量を増やす上げDRが要求された場合にはECモードを選択することができる。 In the modified fuel cell systems 10B, 110B, and 210B, the fuel cell stack 21B has the same configuration as the fuel cell stack 21, but is used as a reversible solid oxide cell stack. That is, the fuel cell stack 21B has, as an operation mode, an electric power generation operation (FC mode) in which electric power is generated by a reaction between hydrogen and oxygen, as in the fuel cell systems 10, 110, and 210 of each embodiment, and an electric power generation operation (FC mode) between the power source and both electrodes. It has an electrolysis operation (EC mode) in which hydrogen is generated by high-temperature steam electrolysis while power is supplied to. The operating mode can be selected according to power demand. For example, the FC mode can be selected when load L is requesting power, and the EC mode can be selected when load L is not requesting power. In addition, in the fuel cell systems 10B, 110B, and 210B with which the demand response contract has been concluded, when a lower DR that reduces the power demand is requested, the FC mode is selected, and a higher DR that increases the power demand is requested. EC mode can be selected.
 変形例の燃料電池システム10B,110B,210Bは、いずれも、還流配管81から分岐すると共に水素タンク95に接続された回収配管91と、回収配管91に設置されたガスポンプ92と、回収配管91における還流配管81との分岐点とガスポンプ93との間に設置された開閉弁93と、を備える。開閉弁93は、FCモードで閉弁され、ECモードで開弁される。さらに、燃料電池システム10B,110B,210Bの燃料電池スタック21Bにおける燃料極(FCモードにおいてはアノードで、ECモードにおいてはカソード)側の端子と空気極(FCモードにおいてはカソードで、ECモードにおいてはアノード)側の端子とには、高温水蒸気電解に必要な電圧の電力が供給されるよう図示しない電源が接続される。電源としては、系統電源や、太陽光発電装置などの再生可能エネルギ、蓄電池などを用いることができる。 Each of the modified fuel cell systems 10B, 110B, and 210B includes a recovery pipe 91 branched from a reflux pipe 81 and connected to a hydrogen tank 95, a gas pump 92 installed in the recovery pipe 91, and a and an on-off valve 93 installed between the branch point with the reflux pipe 81 and the gas pump 93 . The on-off valve 93 is closed in FC mode and opened in EC mode. Furthermore, the fuel electrode (anode in FC mode, cathode in EC mode) side terminal and air electrode (cathode in FC mode, cathode in EC mode) in fuel cell stack 21B of fuel cell systems 10B, 110B, 210B A power source (not shown) is connected to the terminal on the anode side so as to supply electric power at a voltage required for high-temperature steam electrolysis. As a power supply, a system power supply, renewable energy such as a solar power generation device, a storage battery, or the like can be used.
 ECモードでは、燃料電池スタック21Bの燃料極には、水蒸気と若干量の水素ガスとが導入され、燃料電池スタック21Bの空気極には、エアが導入される。そして、電源により燃料電池スタック21B(可逆作動固体酸化物形セルスタック)の端子間に所定電圧の電力が供給されると、燃料極に導入された水蒸気は、燃料極において電解作用により水素と酸素イオン(O2-)とに分解される。そして、当該酸素イオンが電解質を透過することで空気極において酸素ガスが生成される。なお、燃料極には、水蒸気と共に若干量の水素ガスも供給されるため、燃料極が還元雰囲気に保たれ、当該燃料極が酸化劣化するのを抑制することができる。燃料極で生成された水素ガスは、電解未反応の水蒸気と共に燃料極オフガスとしてアノードオフガス配管73に排出され、凝縮器62へ供給される。そして、凝縮器62で水蒸気が除去された後、凝縮器62を通過した水素を含む燃料極オフガスは、還流配管81および回収配管91を通って、水素タンク95に貯留される。なお、水素タンク95に貯留された水素ガスは、FCモードでアノードガスとして用いられてもよいし、ECモードで用いられてもよい。凝縮器62を通過した燃料極オフガスの一部は、アノードオフガス配管74を通って燃焼器24へ供給され、空気極からカソードオフガス配管75を通って燃焼器24へ供給される酸素ガスを含む空気極オフガスと混合されて燃焼させられる。 In the EC mode, water vapor and a small amount of hydrogen gas are introduced to the fuel electrode of the fuel cell stack 21B, and air is introduced to the air electrode of the fuel cell stack 21B. Then, when electric power of a predetermined voltage is supplied between the terminals of the fuel cell stack 21B (reversible solid oxide cell stack) from a power source, the water vapor introduced into the fuel electrode is converted into hydrogen and oxygen by electrolysis at the fuel electrode. It is decomposed into ions (O 2- ). Oxygen gas is generated at the air electrode by the permeation of the oxygen ions through the electrolyte. Since a small amount of hydrogen gas is supplied to the fuel electrode together with water vapor, the fuel electrode is maintained in a reducing atmosphere, and oxidative deterioration of the fuel electrode can be suppressed. The hydrogen gas produced at the fuel electrode is discharged to the anode offgas pipe 73 as fuel electrode offgas together with water vapor that has not undergone electrolysis reaction, and is supplied to the condenser 62 . After water vapor is removed by the condenser 62 , the hydrogen-containing fuel electrode off-gas that has passed through the condenser 62 passes through the reflux pipe 81 and the recovery pipe 91 and is stored in the hydrogen tank 95 . The hydrogen gas stored in the hydrogen tank 95 may be used as anode gas in the FC mode, or may be used in the EC mode. A part of the fuel electrode off-gas that has passed through the condenser 62 is supplied to the combustor 24 through the anode off-gas pipe 74, and air containing oxygen gas is supplied from the air electrode to the combustor 24 through the cathode off-gas pipe 75. It is mixed with pole off-gas and combusted.
 ここで、図4の変形例の燃料電池システム10Bにおいては、ECモードにおいて、燃料極から排出された水素ガスと水蒸気とを含む燃料極オフガスは、第1熱交換器25と第2熱交換器26とを順に通過してからモジュールケース29外の凝縮器62に供給される。また、凝縮器62を通過して燃焼器24に導入される水素ガスを含む燃料極オフガスと空気極から燃焼器24に導入される酸素ガスを含む空気極オフガスとの燃焼により生成される燃焼排ガスは、第3熱交換器27を通過してからモジュールケース29外へ排出される。これにより、変形例の燃料電池システム10Bでは、第3熱交換器27と第1熱交換器25とにおいて、エアポンプ53からのエアをそれぞれ燃焼排ガスと燃料極から排出された燃料極オフガスとの熱交換により順に昇温してから燃料電池スタック21Bの空気極に供給することができる。また、第2熱交換器26を含む気化器22において、改質水タンク42から気化器22へ供給された水(原料水)を第1熱交換器25を通過した後の燃料極オフガスとの熱交換と燃焼器24の燃焼熱とにより水蒸気に変換すると共に当該水蒸気を昇温してから燃料電池スタック21Bの燃料極に供給することができる。比較的低温の水との間で熱交換を行なうことで、燃料極オフガスがハウジング29外へ持ち去るエンタルピーを低減することができる。この結果、高温水蒸気電解に必要な熱(燃料電池スタック21Bの昇温に必要な熱や、水蒸気の生成や昇温に必要な熱など)を得ることができ、電解効率をより向上させることができる。また、第1熱交換器25は、気化器22内に含まれるため、第1熱交換器25の全体を気化器22外に設ける構成に比して、第1熱交換器25の配置スペースを削減して、発電モジュール20(燃料電池システム10)の大型化を抑制することができる。 Here, in the fuel cell system 10B of the modified example of FIG. 4, in the EC mode, the fuel electrode off-gas containing hydrogen gas and water vapor discharged from the fuel electrode is 26 in order, and then supplied to the condenser 62 outside the module case 29 . In addition, combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 through the condenser 62 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 passes through the third heat exchanger 27 and is discharged out of the module case 29 . As a result, in the fuel cell system 10B of the modified example, in the third heat exchanger 27 and the first heat exchanger 25, the air from the air pump 53 is used to heat the combustion exhaust gas and the fuel electrode off-gas discharged from the fuel electrode, respectively. It is possible to supply the air electrode of the fuel cell stack 21B after sequentially raising the temperature by the exchange. Further, in the vaporizer 22 including the second heat exchanger 26, the water (raw water) supplied from the reforming water tank 42 to the vaporizer 22 is mixed with the fuel electrode offgas after passing through the first heat exchanger 25. The steam can be converted into steam by heat exchange and the combustion heat of the combustor 24, and the steam can be heated and then supplied to the fuel electrode of the fuel cell stack 21B. By exchanging heat with relatively low-temperature water, the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced. As a result, the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved. can. In addition, since the first heat exchanger 25 is included in the evaporator 22, compared to a configuration in which the entire first heat exchanger 25 is provided outside the evaporator 22, the arrangement space for the first heat exchanger 25 is reduced. It is possible to reduce the size of the power generation module 20 (the fuel cell system 10) and suppress the increase in size.
 図5の変形例の燃料電池システム110Bにおいては、ECモードにおいて、燃料極から排出された水素ガスと水蒸気とを含む燃料極オフガスは、第1熱交換器25と第2熱交換器26と熱交換器126とを順に通過してからモジュールケース29外の凝縮器62に供給される。また、凝縮器62を通過して燃焼器24に導入される水素ガスを含む燃料極オフガスと空気極から燃焼器24に導入される酸素ガスを含む空気極オフガスとの燃焼により生成される燃焼排ガスは、第3熱交換器27を通過してからモジュールケース29外へ排出される。これにより、変形例の燃料電池システム110Bでは、第3熱交換器27と第1熱交換器25とにおいて、エアポンプ53からのエアをそれぞれ燃焼排ガスと燃料極から排出された燃料極オフガスとの熱交換により順に昇温してから燃料電池スタック21Bの空気極に供給することができる。また、熱交換器126において、第1および第2熱交換器25,26を通過した後の燃料極オフガスとの熱交換により、改質水タンク42から気化器22へ供給された水(原料水)を水蒸気に変換することができる。さらに、第2熱交換器26を含む気化器22において、第1熱交換器25を通過し且つ熱交換器126を通過する前の燃料極オフガスとの熱交換と燃焼器24の燃焼熱とにより、熱交換器126を通過した水蒸気を昇温してから燃料電池スタック21Bの燃料極に供給することができる。比較的低温の水との間で熱交換を行なうことで、燃料極オフガスがハウジング29外へ持ち去るエンタルピーを低減することができる。この結果、高温水蒸気電解に必要な熱(燃料電池スタック21Bの昇温に必要な熱や、水蒸気の生成や昇温に必要な熱など)を得ることができ、電解効率をより向上させることができる。また、第1熱交換器25は、気化器22内に含まれるため、第1熱交換器25の全体を気化器22外に設ける構成に比して、第1熱交換器25の配置スペースを削減して、発電モジュール20(燃料電池システム10)の大型化を抑制することができる。 In the fuel cell system 110B of the modified example of FIG. 5, in the EC mode, the fuel electrode off-gas containing hydrogen gas and water vapor discharged from the fuel electrode passes through the first heat exchanger 25, the second heat exchanger 26, and the heat After passing through the exchanger 126 in order, it is supplied to the condenser 62 outside the module case 29 . In addition, combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 through the condenser 62 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 passes through the third heat exchanger 27 and is discharged out of the module case 29 . As a result, in the fuel cell system 110B of the modified example, in the third heat exchanger 27 and the first heat exchanger 25, the air from the air pump 53 is used to heat the combustion exhaust gas and the fuel electrode off-gas discharged from the fuel electrode, respectively. It is possible to supply the air electrode of the fuel cell stack 21B after sequentially raising the temperature by the exchange. Further, in the heat exchanger 126, the water (raw water ) can be converted to water vapor. Furthermore, in the vaporizer 22 including the second heat exchanger 26, by heat exchange with the fuel electrode offgas that has passed through the first heat exchanger 25 and before passing through the heat exchanger 126 and the combustion heat of the combustor 24 , the steam that has passed through the heat exchanger 126 can be heated and then supplied to the fuel electrode of the fuel cell stack 21B. By exchanging heat with relatively low-temperature water, the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced. As a result, the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved. can. In addition, since the first heat exchanger 25 is included in the evaporator 22, compared to a configuration in which the entire first heat exchanger 25 is provided outside the evaporator 22, the arrangement space for the first heat exchanger 25 is reduced. It is possible to reduce the size of the power generation module 20 (the fuel cell system 10) and suppress the increase in size.
 図6の変形例の燃料電池システム210Bにおいては、ECモードにおいて、燃料極から排出された水素ガスと水蒸気とを含む燃料極オフガスは、第1熱交換器225と第2熱交換器226とを順に通過してからモジュールケース29外の凝縮器62に供給される。凝縮器62を通過した後の水素ガスを含む燃料極オフガスは、第1熱交換器225で凝縮器62を通過する前の燃料極オフガスとの熱交換により昇温させられた後、燃焼器24へ供給される。また、燃焼器24に導入される水素ガスを含む燃料極オフガスと空気極から燃焼器24に導入される酸素ガスを含む空気極オフガスとの燃焼により生成される燃焼排ガスは、第3熱交換器27を通過してからモジュールケース29外へ排出される。これにより、変形例の燃料電池システム210Bでは、第3熱交換器27において、エアポンプ53からのエアを燃焼排ガスとの熱交換により昇温してから燃料電池スタック21Bの空気極に供給することができる。また、第2熱交換器226において、第1熱交換器225を通過した後の燃料極オフガスとの熱交換により、改質水タンク42から気化器22へ供給された水(原料水)を水蒸気に変換すると共に当該水蒸気を昇温してから燃料電池スタック21Bの燃料極に供給することができる。比較的低温の水との間で熱交換を行なうことで、燃料極オフガスがハウジング29外へ持ち去るエンタルピーを低減することができる。この結果、高温水蒸気電解に必要な熱(燃料電池スタック21Bの昇温に必要な熱や、水蒸気の生成や昇温に必要な熱など)を得ることができ、電解効率をより向上させることができる。 In the fuel cell system 210B of the modified example in FIG. After passing through in order, it is supplied to the condenser 62 outside the module case 29 . After passing through the condenser 62 , the fuel electrode off-gas containing hydrogen gas is heated in the first heat exchanger 225 by heat exchange with the fuel electrode off-gas before passing through the condenser 62 . supplied to Further, the combustion exhaust gas generated by combustion of the fuel electrode off-gas containing hydrogen gas introduced into the combustor 24 and the air electrode off-gas containing oxygen gas introduced from the air electrode into the combustor 24 is transferred to the third heat exchanger. After passing through 27 , it is discharged out of the module case 29 . As a result, in the fuel cell system 210B of the modified example, in the third heat exchanger 27, the temperature of the air from the air pump 53 is raised by heat exchange with the combustion exhaust gas, and then supplied to the air electrode of the fuel cell stack 21B. can. In addition, in the second heat exchanger 226, the water (raw water) supplied from the reforming water tank 42 to the vaporizer 22 is converted into steam by heat exchange with the fuel electrode offgas after passing through the first heat exchanger 225. , and the temperature of the water vapor can be raised before being supplied to the fuel electrode of the fuel cell stack 21B. By exchanging heat with relatively low-temperature water, the enthalpy that the fuel electrode off-gas carries out of the housing 29 can be reduced. As a result, the heat necessary for high-temperature steam electrolysis (the heat required for raising the temperature of the fuel cell stack 21B, the heat required for generating steam and raising the temperature, etc.) can be obtained, and the electrolysis efficiency can be further improved. can.
 実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施形態では、燃料電池スタック21が本発明の「燃料電池」に相当し、改質器23が「改質部」に相当し、気化器22が「気化部」に相当し、ハウジング29が「ハウジング」に相当し、原燃料ガス供給装置30が「原燃料ガス供給部」に相当し、改質水供給装置40が「改質水供給部」に相当し、エア供給装置50が「カソードガス供給部」に相当し、アノードオフガス配管73が「アノードオフガス流路」に相当し、第1熱交換器25が「第1熱交換部」に相当し、第2熱交換器26が「第2熱交換部」に相当する。また、燃焼器24が「燃焼部」に相当し、アノードオフガス配管73,74が「アノードオフガス流路」に相当し、凝縮器62が「冷却部」に相当し、第1熱交換器225が「第1熱交換部」に相当し、第2熱交換器226が「第2熱交換部」に相当する。また、燃料電池スタック21Bが「可逆作動固体酸化物形セルスタック」に相当する。また、回収配管91が「回収路」に相当し、水素タンク95が「タンク」に相当し、開閉弁93が「開閉弁」に相当し、ガスポンプ92が「ポンプ」に相当する。また、還流配管81が「還流路」に相当する。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of Means for Solving the Problems will be explained. In the embodiment, the fuel cell stack 21 corresponds to the "fuel cell" of the present invention, the reformer 23 corresponds to the "reforming section", the vaporizer 22 corresponds to the "vaporization section", and the housing 29 corresponds to the " The raw fuel gas supply device 30 corresponds to the “raw fuel gas supply unit”, the reforming water supply device 40 corresponds to the “reforming water supply unit”, and the air supply device 50 corresponds to the “cathode gas supply unit”. The anode offgas pipe 73 corresponds to the "anode offgas channel", the first heat exchanger 25 corresponds to the "first heat exchange section", and the second heat exchanger 26 corresponds to the "second Equivalent to "heat exchange section". Further, the combustor 24 corresponds to the "combustion section", the anode offgas pipes 73 and 74 correspond to the "anode offgas flow path", the condenser 62 corresponds to the "cooling section", and the first heat exchanger 225 It corresponds to the "first heat exchange section", and the second heat exchanger 226 corresponds to the "second heat exchange section". Also, the fuel cell stack 21B corresponds to a "reversible operation solid oxide cell stack". The recovery pipe 91 corresponds to the "recovery path", the hydrogen tank 95 to the "tank", the on-off valve 93 to the "on-off valve", and the gas pump 92 to the "pump". Also, the reflux pipe 81 corresponds to the "reflux path".
 なお、実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施形態が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施形態は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。 Note that the correspondence relationship between the main elements of the embodiment and the main elements of the invention described in the column of Means for Solving the Problem indicates that the embodiment implements the invention described in the column of Means to Solve the Problem. Since it is an example for specifically explaining the mode for solving the problem, it does not limit the elements of the invention described in the column of the means for solving the problem. That is, the interpretation of the invention described in the column of Means to Solve the Problem should be made based on the description in that column, and the embodiment should be based on the description of the invention described in the column of Means to Solve the Problem. This is only a specific example.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As described above, the mode for carrying out the present invention has been described using the embodiment, but the present invention is not limited to such an embodiment at all, and various forms can be used without departing from the scope of the present invention. Of course, it can be implemented.
 本発明は、燃料電池システムの製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of fuel cell systems.
1 原燃料供給源、2 電力系統、3 電力ライン、4 負荷、10,110,210,10B,110B,210B 燃料電池システム、20 発電モジュール、21,21B 燃料電池スタック、22 気化器、23 改質器、24 燃焼器、25,225 第1熱交換器、26,226 第2熱交換器、27 第3熱交換器、28 燃焼触媒、29 ハウジング、30 原燃料ガス供給装置、31 原燃料ガス供給管、32 開閉弁、33 オリフィス、35 ゼロガバナ、36 ガスポンプ、38 脱硫器、40 改質水供給装置、41 改質水供給管、42 改質水タンク、43 改質水ポンプ、44 凝縮水配管、50 エア供給装置、51 エア供給管、52 エアフィルタ、53 エアポンプ、61 貯湯タンク、62 凝縮器、63 循環配管、64 循環ポンプ、71 アノードガス配管、72 カソードガス配管、73,74 アノードオフガス配管、75 カソードオフガス配管、76 燃焼排ガス配管、81 還流配管、82 開閉弁、83 オリフィス、90 パワーコンディショナ、91 回収配管、92 ガスポンプ、93 開閉弁、95 水素タンク、126 熱交換器。 1 raw fuel supply source, 2 power system, 3 power line, 4 load, 10, 110, 210, 10B, 110B, 210B fuel cell system, 20 power generation module, 21, 21B fuel cell stack, 22 vaporizer, 23 reformer vessel, 24 combustor, 25, 225 first heat exchanger, 26, 226 second heat exchanger, 27 third heat exchanger, 28 combustion catalyst, 29 housing, 30 raw fuel gas supply device, 31 raw fuel gas supply Pipe, 32 On-off valve, 33 Orifice, 35 Zero governor, 36 Gas pump, 38 Desulfurizer, 40 Reformed water supply device, 41 Reformed water supply pipe, 42 Reformed water tank, 43 Reformed water pump, 44 Condensed water pipe, 50 Air supply device, 51 Air supply pipe, 52 Air filter, 53 Air pump, 61 Hot water storage tank, 62 Condenser, 63 Circulation pipe, 64 Circulation pump, 71 Anode gas pipe, 72 Cathode gas pipe, 73, 74 Anode off gas pipe, 75 Cathode offgas piping, 76 Combustion exhaust gas piping, 81 Recirculation piping, 82 On-off valve, 83 Orifice, 90 Power conditioner, 91 Recovery piping, 92 Gas pump, 93 On-off valve, 95 Hydrogen tank, 126 Heat exchanger.

Claims (7)

  1.  アノードガスとカソードガスとの反応により発電する燃料電池と、
     水蒸気を用いて原燃料ガスを前記アノードガスに改質する改質部と、
     改質水を気化して前記水蒸気を生成する気化部と、
     断熱性を有し、前記燃料電池と前記改質部と前記気化部とを収容するハウジングと、
     前記原燃料ガスを前記気化部へ供給する原燃料ガス供給部と、
     前記改質水を前記気化部へ供給する改質水供給部と、
     前記カソードガスを前記燃料電池へ供給するカソードガス供給部と、
     前記燃料電池からのアノードオフガスを前記ハウジング外へ導出するアノードオフガス流路と、
     前記ハウジング内に設けられ、前記アノードオフガス流路を流通するアノードオフガスと前記燃料電池に向かって該燃料電池の上流側を流れる流体との間で熱交換する第1熱交換部と、
     前記ハウジング内に設けられ、前記アノードオフガス流路の前記第1熱交換部よりも下流側を流通するアノードオフガスと前記改質水との間で熱交換する第2熱交換部と、
     を備える燃料電池システム。
    a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas;
    a reforming unit that reforms the raw fuel gas into the anode gas using water vapor;
    a vaporization unit that vaporizes the reforming water to generate the steam;
    a housing that has heat insulation properties and accommodates the fuel cell, the reforming section, and the vaporization section;
    a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit;
    a reformed water supply unit that supplies the reformed water to the vaporization unit;
    a cathode gas supply unit that supplies the cathode gas to the fuel cell;
    an anode off-gas flow path for leading the anode off-gas from the fuel cell to the outside of the housing;
    a first heat exchanging part provided in the housing for exchanging heat between the anode off-gas flowing through the anode off-gas channel and the fluid flowing upstream of the fuel cell toward the fuel cell;
    a second heat exchange section provided in the housing for exchanging heat between the reforming water and the anode offgas flowing downstream of the first heat exchange section in the anode offgas flow path;
    a fuel cell system.
  2.  請求項1に記載の燃料電池システムであって、
     前記流体は、前記カソードガスであり、
     前記第1熱交換部は、前記アノードオフガスと前記カソードガスとの間で熱交換する、
     燃料電池システム。
    The fuel cell system according to claim 1,
    the fluid is the cathode gas;
    The first heat exchange section exchanges heat between the anode off-gas and the cathode gas.
    fuel cell system.
  3.  請求項1または2に記載の燃料電池システムであって、
     前記第2熱交換部は、前記気化器内に設けられ、前記アノードオフガスと前記気化器にそれぞれ供給された原燃料ガスおよび改質水との間で熱交換する、
     燃料電池システム。
    3. The fuel cell system according to claim 1 or 2,
    The second heat exchange section is provided in the vaporizer and exchanges heat between the anode off-gas and the raw fuel gas and reforming water respectively supplied to the vaporizer.
    fuel cell system.
  4.  アノードガスとカソードガスとの反応により発電する燃料電池と、
     水蒸気を用いて原燃料ガスを前記アノードガスに改質する改質部と、
     改質水を気化して前記水蒸気を生成する気化部と、
     燃焼熱により前記改質部と前記気化部とを加熱する燃焼部と、
     断熱性を有し、前記燃料電池と前記改質部と前記気化部と前記燃焼部とを収容するハウジングと、
     前記原燃料ガスを前記気化部へ供給する原燃料ガス供給部と、
     前記改質水を前記気化部へ供給する改質水供給部と、
     前記カソードガスを前記燃料電池へ供給するカソードガス供給部と、
     前記燃料電池からのアノードオフガスを前記ハウジング外に一旦導出した後、前記ハウジング内に導入して前記燃焼部へ供給するアノードオフガス流路と、
     前記ハウジング外に設けられ、前記アノードオフガス流路を流通するアノードオフガスを冷却する冷却部と、
     前記ハウジング内に設けられ、前記アノードオフガス流路の前記冷却部よりも上流側を流通するアノードオフガスと前記アノードオフガス流路の前記冷却部よりも下流側を流通するアノードオフガスとの間で熱交換する第1熱交換部と、
     前記ハウジング内に設けられ、前記アノードオフガス流路の前記第1熱交換部よりも下流側かつ前記冷却部よりも上流側を流通するアノードオフガスと前記改質水との間で熱交換する第2熱交換部と、
     を備える燃料電池システム。
    a fuel cell that generates electricity through a reaction between an anode gas and a cathode gas;
    a reforming unit that reforms the raw fuel gas into the anode gas using water vapor;
    a vaporization unit that vaporizes the reforming water to generate the steam;
    a combustion section that heats the reforming section and the vaporization section with combustion heat;
    a housing having heat insulating properties and housing the fuel cell, the reforming section, the vaporization section, and the combustion section;
    a raw fuel gas supply unit that supplies the raw fuel gas to the vaporization unit;
    a reformed water supply unit that supplies the reformed water to the vaporization unit;
    a cathode gas supply unit that supplies the cathode gas to the fuel cell;
    an anode off-gas flow path for introducing the anode off-gas from the fuel cell to the outside of the housing, introducing it into the housing, and supplying it to the combustion section;
    a cooling unit provided outside the housing for cooling the anode off-gas flowing through the anode off-gas channel;
    heat exchange between the anode off-gas provided in the housing and flowing upstream of the cooling portion of the anode off-gas channel and the anode off-gas flowing downstream of the cooling portion of the anode off-gas channel; a first heat exchange section to
    A second heat exchanger is provided in the housing and exchanges heat between the reforming water and the anode offgas flowing downstream of the first heat exchange section and upstream of the cooling section of the anode offgas flow path. a heat exchange section;
    a fuel cell system.
  5.  請求項1、2または4に記載の燃料電池システムであって、
     前記燃料電池は、可逆作動固体酸化物形セルにより構成され、
     アノードガスとカソードガスとの反応により発電する発電動作と、前記燃料電池に対して電力が供給された状態で水蒸気電解により水素を生成する電解動作と、を切り替え可能である、
     燃料電池システム。
    5. The fuel cell system according to claim 1, 2 or 4,
    The fuel cell is composed of a reversible solid oxide cell,
    It is possible to switch between a power generation operation of generating electricity through a reaction between an anode gas and a cathode gas and an electrolysis operation of generating hydrogen by water vapor electrolysis while electric power is being supplied to the fuel cell.
    fuel cell system.
  6.  請求項5に記載の燃料電池システムであって、
     前記ハウジング外において前記アノードオフガス流路とタンクとを連通する回収路と、前記回収路に設けられた開閉弁と、前記回収路に設けられたポンプと、を有し、前記電解動作時において前記開閉弁を開弁して前記ポンプを駆動することにより、前記アノードオフガス流路を流れる水素を含むオフガスを前記タンクに回収する回収部を備える、
     燃料電池システム。
    A fuel cell system according to claim 5,
    outside the housing, the anode offgas channel and the tank are communicated with each other; an on-off valve provided in the recovery path; and a pump provided in the recovery path. a recovery unit configured to recover off-gas containing hydrogen flowing through the anode off-gas channel into the tank by opening an on-off valve and driving the pump;
    fuel cell system.
  7.  請求項6に記載の燃料電池システムであって、
     前記アノードオフガス流路に接続され、前記アノードオフガス流路を流れるアノードオフガスを前記原燃料ガス供給部に還流させる還流路を有し、
     前記回収路は、前記還流路から分岐して前記タンクに接続される、
     燃料電池システム。
     
    A fuel cell system according to claim 6,
    a return path connected to the anode off-gas flow path for recirculating the anode off-gas flowing through the anode off-gas flow path to the raw fuel gas supply unit;
    the recovery path is branched from the return path and connected to the tank;
    fuel cell system.
PCT/JP2023/007116 2022-02-28 2023-02-27 Fuel cell system WO2023163182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029830 2022-02-28
JP2022029830 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163182A1 true WO2023163182A1 (en) 2023-08-31

Family

ID=87766237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007116 WO2023163182A1 (en) 2022-02-28 2023-02-27 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2023163182A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377265U (en) * 1986-11-11 1988-05-23
JPH04169073A (en) * 1990-10-31 1992-06-17 Kawasaki Heavy Ind Ltd Exhaust heat recovery method and device for fuel cell
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
WO2014167764A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Fuel cell system
JP2016524303A (en) * 2013-07-09 2016-08-12 セレス インテレクチュアル プロパティー カンパニー リミテッド Improved fuel cell system and method
JP2021134390A (en) * 2020-02-27 2021-09-13 株式会社豊田中央研究所 Steam electrolysis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377265U (en) * 1986-11-11 1988-05-23
JPH04169073A (en) * 1990-10-31 1992-06-17 Kawasaki Heavy Ind Ltd Exhaust heat recovery method and device for fuel cell
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
WO2014167764A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Fuel cell system
JP2016524303A (en) * 2013-07-09 2016-08-12 セレス インテレクチュアル プロパティー カンパニー リミテッド Improved fuel cell system and method
JP2021134390A (en) * 2020-02-27 2021-09-13 株式会社豊田中央研究所 Steam electrolysis system

Similar Documents

Publication Publication Date Title
JP5214190B2 (en) Fuel cell system and operation method thereof
US8062802B2 (en) Fuel cell heat exchange systems and methods
US20060251934A1 (en) High temperature fuel cell system with integrated heat exchanger network
JP3943405B2 (en) Fuel cell power generation system
JP2019169419A (en) Fuel cell system
JP2018195377A (en) Fuel battery and composite power generation system
WO2023163182A1 (en) Fuel cell system
KR102674817B1 (en) Fuel cell system
JP2006302792A (en) Fuel cell system
JP2007242493A (en) Fuel cell system and its operation stopping method
WO2023182490A1 (en) Fuel cell system
AU2007315974B2 (en) Fuel cell heat exchange systems and methods
JP5171103B2 (en) Fuel cell cogeneration system
JP2014157811A (en) Fuel cell device
JP5502521B2 (en) Fuel cell system
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JP2007188894A (en) Fuel cell power generating system
JP4176130B2 (en) Fuel cell power generation system
JP2007103034A (en) Fuel cell system and its starting method
JP7557335B2 (en) Fuel Cell Systems
WO2024195700A1 (en) Solid oxide-type electrolytic cell system
CN114586205B (en) Hybrid power generation system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP5212889B2 (en) Fuel cell system
JP2024126036A (en) Fuel Cell Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760180

Country of ref document: EP

Kind code of ref document: A1