WO2023163085A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2023163085A1
WO2023163085A1 PCT/JP2023/006629 JP2023006629W WO2023163085A1 WO 2023163085 A1 WO2023163085 A1 WO 2023163085A1 JP 2023006629 W JP2023006629 W JP 2023006629W WO 2023163085 A1 WO2023163085 A1 WO 2023163085A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
combustion chamber
cylinder
port
gear
Prior art date
Application number
PCT/JP2023/006629
Other languages
French (fr)
Japanese (ja)
Inventor
忠美 近藤
Original Assignee
株式会社日本ビデオセンター
忠美 近藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本ビデオセンター, 忠美 近藤 filed Critical 株式会社日本ビデオセンター
Publication of WO2023163085A1 publication Critical patent/WO2023163085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/01Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with one single cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/08Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with ratchet and pawl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/36Crank gearings; Eccentric gearings without swinging connecting-rod, e.g. with epicyclic parallel motion, slot-and-crank motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to engines.
  • a reciprocating engine moves a piston through each process of intake, compression, explosion, and exhaust, and converts the reciprocating motion of the connecting rod, which is connected to the piston, into rotational motion of the crankshaft with a predetermined link mechanism, and outputs rotational power.
  • the piston is rotatably supported at the tip of the connecting rod, and the reciprocating motion of the piston and the tip of the connecting rod is converted into the rotational motion of the base end of the connecting rod, which is then cranked via a link mechanism consisting of a crank pin and a crank arm. Rotational motion of the shaft is transmitted.
  • the rotation conversion structure of the piston motion in the reciprocating engine disclosed in Japanese Patent Application Laid-Open No. 2015-224745 includes a connecting rod fixed to the piston, a planetary gear mechanism for converting linear motion to rotary motion, and its internal gear. and a drive shaft pivotally supported at the center of the planetary gear mechanism, the planetary gear mechanism meshing with a pair of internal gears in each internal gear and having a pitch diameter of 1/2 that of the internal gear
  • a planetary gear, a connecting rod pivotally supported via a connecting rod and a pin and fixed to the planetary gear, and a fixed rod fixed to the planetary gear and fixed to the drive shaft, and the center of the pin is always the connecting rod. It is configured to be arranged so as to be positioned on the axis of the As a result, side pressure of the piston hardly occurs in the cylinder, friction loss is reduced, the size and weight of the engine can be reduced, and vibration and noise are reduced.
  • the proximal large diameter portion of the connecting rod rotates along the circumference with the length of the crank arm as the radius. Therefore, the reciprocating distance between the top dead center and the bottom dead center of the connecting rod is equal to the diameter of the crank arm.
  • the crank arm must be lengthened, which causes problems such as an increase in the size of the crankcase. Length may be limited.
  • the reciprocating distance is shortened, that is, if the stroke is shortened, there is a risk that the length of the crank arm and the length of the connecting rod that constitute the crank mechanism that returns reciprocating motion to rotary motion will be limited.
  • the piston motion rotation conversion structure disclosed in JP-A-2016-075208 provides a conversion mechanism consisting of an internal gear and a planetary gear mechanism instead of the crank arm, and a conventional crank.
  • the rotary motion of the crank arm in the structure is converted into the rotation of the planetary gear that rolls in contact with the internal gear, causing the piston to reciprocate linearly, and the length of the crank arm does not affect the reciprocating motion.
  • the planetary gears that are internally in contact with the internal gear may be displaced or slipped from the internal gear due to the pressure applied to the piston, making it impossible to correctly convert the force.
  • the device since the number of parts related to the rotation return structure is large, the device may become complicated, requiring time and effort and cost for assembly.
  • the problem to be solved by the present invention is to provide an engine in which the bore and stroke can be freely designed without being restricted by the length of the connecting rod or the crank arm.
  • the engine according to claim 1 comprises a substantially cylindrical piston having piston heads on both left and right end faces, a through hole having a predetermined inner diameter formed along the radial direction of the piston at the center of the peripheral wall of the piston; an internal gear formed along the inner wall of the through hole; a gear that meshes with the internal gear; a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear; a crankshaft fixed to the proximal end of the crank arm; a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
  • a cylinder case comprising a cylindrical cylinder into which the piston is inserted, and a cylinder case in which combustion chambers facing the piston heads are respectively connected to both ends of the cylinder, When the piston reciprocates in the left-right direction in the cylinder, the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a
  • the engine according to claim 2 is characterized in that, in the invention according to claim 1, the diameter of the piston is set to the diameter of the vicinity of the center of the peripheral wall portion with respect to the diameter of the piston skirt formed to be connected to the piston head on both the left and right end faces. is thinly formed.
  • the engine according to claim 3 is the invention according to claim 1, wherein the diameter of the piston is set to the diameter of the vicinity of the center of the peripheral wall portion with respect to the diameter of the piston skirt formed to be connected to the piston head on the left and right end surfaces. or is gradually increased from the side of the piston skirt opposite to the piston head toward the center of the peripheral wall to form the vicinity of the center of the peripheral wall into a substantially spherical shape.
  • the engine according to claim 4 is the invention according to claim 1, in which the opposite side of the piston head is cut away from the piston skirt formed to be connected to the piston head on both left and right end faces, A flat portion having the through hole is formed near the center of the peripheral wall portion of the piston.
  • the engine according to claim 5 is the invention according to claim 1, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided, When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
  • the engine according to claim 6 is the invention according to claim 1, further comprising an injection device having a spray port arranged at a predetermined position in the combustion chamber, When the piston head abruptly compresses air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined amount of fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
  • the engine according to claim 7 is the invention according to claim 5 or claim 6, wherein an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber; The intake port and the exhaust port are provided at predetermined positions in the combustion chamber.
  • the engine according to claim 8 is, in the invention according to claim 5 or 6, an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber; providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
  • the intake port is provided with a piston reed valve for restricting the combustible gas mixture or the air to flow in one direction into the cylinder.
  • a ninth aspect of the invention is directed to the fifth or sixth aspect of the invention, wherein an intake port having an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
  • a crankcase is provided so as to surround the through hole containing at least the crankshaft and the crank arm,
  • the intake port is provided with a crankcase reed valve that restricts the combustible gas mixture or the air to flow in one direction into the crankcase, and the crankcase along the radial direction about the crankshaft.
  • a bypass port is provided that communicates between the crankcase and the cylinder and has an open end on the cylinder side that is located on the side opposite to the combustion chamber with respect to the exhaust port.
  • the engine according to claim 10 is, in the invention according to claim 5 or claim 6, an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
  • a crankcase is provided so as to surround the through hole containing at least the crankshaft and the crank arm, disposing the intake port at a predetermined position along the axial direction of the crankshaft of the crankcase;
  • the intake port is arranged to face the vicinity of the peripheral edge of the rotor surface of the eccentric free rotor provided with a notch formed by cutting a predetermined position of the peripheral edge of the rotor surface in an arc shape,
  • the intake port is configured to be opened when overlapping with the notch portion and closed when overlapping with the peripheral edge portion as the eccentric free rotor rotates, arranging the exhaust port at a predetermined position on the side wall of the cylinder;
  • a bypass port is provided that communicates between the
  • the engine according to claim 11 comprises a pair of substantially cylindrical small-diameter portions, and a substantially cylindrical large-diameter portion having a larger diameter than the small-diameter portions and sandwiched between the small-diameter portions.
  • a piston in which a piston head and a piston skirt connected to the piston head are formed on the end face of the large diameter portion, and a through hole having a predetermined inner diameter is formed in the center of the large diameter portion along the radial direction; an internal gear formed along the inner wall of the through hole; a gear that meshes with the internal gear; a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear; a crankshaft fixed to the proximal end of the crank arm; a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
  • the engine according to claim 12 is the invention according to claim 11, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided, When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
  • the engine according to claim 13 is the invention according to claim 11, further comprising an injection device having a spray port arranged at a predetermined position in the combustion chamber, When the piston head rapidly compresses the air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
  • the engine according to claim 15 is the invention according to claim 12 or 13, wherein an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber; providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
  • the intake port is provided with a piston reed valve for restricting the combustible gas mixture or the air to flow in one direction into the cylinder.
  • a cylinder case formed by connecting pressure chambers; a bypass port communicating between the combustion chamber and the intake and exhaust pressure regulating chamber;
  • the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a predetermined direction;
  • the crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
  • the eccentric free rotor rotates in the through hole in a direction opposite to the direction of rotation of the crank arm.
  • the engine according to claim 17 is the invention according to claim 16, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided, When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
  • the engine according to claim 18 is, in the invention according to claim 16, provided with an injection device having a spray port arranged at a predetermined position in the combustion chamber, When the piston head abruptly compresses air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined amount of fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
  • the engine according to claim 19 is the engine according to claim 17 or claim 18, wherein an intake port having an intake port for supplying the combustible mixed gas or the air to the intake and exhaust pressure regulating chamber; an exhaust port having an exhaust port for exhausting a combustible gas mixture or an exhaust gas after combustion of the fuel from the combustion chamber;
  • the intake port is provided at a predetermined position in the intake/exhaust pressure regulating chamber
  • the exhaust port is provided at a predetermined position in the combustion chamber
  • a piston reed valve that regulates the unidirectional flow of the combustible gas mixture or the air toward the intake/exhaust pressure regulating chamber
  • a space between the piston reed valve and the intake/exhaust pressure regulating chamber is provided with an open end of the bypass port on the intake and exhaust pressure regulating chamber side.
  • the engine according to claim 20 is the invention according to claim 1, claim 11, or claim 16, wherein the ratio of the inner diameter of the internal gear to the diameter of the gear is 2:1. Characterized by
  • Claim 21 is the engine of claim 1, claim 11, or claim 16, wherein the axial center of the eccentric free rotor has a minor axis to major axis ratio of 1:3. It is characterized by being provided at a position where
  • the piston head is formed on both the left and right end surfaces of the substantially cylindrical piston, and the through hole having a predetermined inner diameter is provided in the center of the peripheral wall portion along the radial direction of the piston. Then, an internal gear is formed in the through hole, and a gear meshing with the internal gear and a disk-shaped eccentric free rotor having substantially the same diameter as the inner diameter of the through hole are superimposed on the gear and arranged in the through hole. Furthermore, a crank arm having a crank pin at its distal end and a crank shaft at its proximal end is provided for rotatably supporting the gear and the eccentric free rotor.
  • the crankshaft can be rotated via the gear meshed with the internal gear driven by the piston.
  • the reciprocating distance between the top dead center and the bottom dead center of the piston corresponds to the diameter of the circle drawn by the large diameter portion of the connecting rod. Therefore, the reciprocating distance of the piston is limited to the diameter of the circle drawn at the tip of the crank arm connected to the large diameter portion.
  • the diameter of the circle formed by the large-diameter portion of the connecting rod, ie, the reciprocating distance of the piston is applied to the engine according to the present invention, it corresponds to the inner diameter of the internal gear.
  • the crank arm provided in the engine according to the present invention is configured to rotate along a circle drawn by a crank pin that supports a gear that meshes with the internal gear. Therefore, in the engine according to the present invention, if the crank arm is set to rotate once during one reciprocation of the piston, similar to the operation of the crank arm that rotates once during one reciprocation of the piston in the conventional reciprocating engine, Preferably, the ratio of the inner diameter of the gear to the diameter of the gear is 2:1. As a result, if the reciprocating distance of the piston is constant, the length of the crank arm according to the present invention can be reduced to half the length of the conventional crank arm.
  • the engine according to the present invention does not have a connecting rod, so that the crankshaft can be easily rotated at a high speed.
  • the length of the crank arm according to the present invention is set to be the same as the length of the conventional crank arm, the engine according to the present invention can obtain twice the gain as compared with the conventional reciprocating engine. , the piston can be moved greatly. Therefore, the stroke distance of the piston can be extended to easily achieve a long stroke. As a result, the combustion efficiency of the engine can be improved, the low-speed torque can be increased, and the fuel consumption can be improved.
  • an eccentric free rotor is provided which is rotatably fitted in the through hole.
  • the eccentric free rotor is configured to rotate in a direction opposite to the rotational direction of the crank arm when the piston reciprocates.
  • the eccentric free rotor can receive the stress applied to the through-hole due to the reciprocating motion of the piston, thereby preventing distortion of the through-hole.
  • the eccentric free rotor fitted in the through-hole receives the impact transmitted from the piston head to the through-hole, it is possible to prevent the gear from slipping on the internal gear, thereby preventing damage to the internal gear or the gear. can be prevented.
  • the position of the axis of the eccentric free-rotor supported by the crankpin is the same as the gear axis relative to the internal gear. , that is, the position where the ratio of the minor axis to the major axis is 1:3.
  • the engine according to the present invention is configured such that the piston linearly reciprocates within the opposed cylinders. As a result, the side pressure of the piston due to the piston pressing against the inner wall of the cylinder can be suppressed, so the friction loss of the piston can be reduced. As a result, it is possible to suppress the generation of vibration or noise due to the contact between the piston and the cylinder.
  • the length of the substantially cylindrical piston it is possible to freely design from a long stroke to a short stroke.
  • an optimal engine such as an engine with improved fuel efficiency, an engine with increased low-speed torque, or a high-output engine.
  • the substantially cylindrical piston has piston heads on both left and right end faces.
  • piston heads on both left and right end faces.
  • an intake port having an intake port for supplying a combustible gas mixture or air to the combustion chamber and an exhaust port having an exhaust port for discharging exhaust gas from the combustion chamber are provided to provide a two-stroke engine.
  • the positions of the intake and exhaust ports can be arbitrarily set according to the type of engine or four-stroke engine.
  • the intake port and the exhaust port may be provided at predetermined positions in the combustion chamber.
  • the type of engine differs depending on the position of the intake port. For example, when an air intake port is provided at a predetermined position in a cylinder and a piston reed valve is provided to regulate the air flow in one direction toward the cylinder into the intake port, a piston reed valve type two-stroke engine is configured. be.
  • a crankcase reed valve type 2-stroke the engine is configured.
  • the intake port is provided at a predetermined position of the crankcase, and an eccentric free rotor is provided with a notch formed by cutting the peripheral edge of the rotor surface in an arc shape, and the intake port is arranged opposite to the eccentric free rotor,
  • a rotary disc valve type 2-stroke engine is used. Can be configured.
  • the engine according to the present invention can easily have a long stroke or a short stroke, and can freely select 4-stroke or 2-stroke.
  • the engine according to the present invention can be freely designed in terms of stroke length, and can be freely designed in accordance with the performance required of the engine, such as improved fuel efficiency or higher output.
  • FIG. 1 is an explanatory diagram showing the outline of the configuration of an engine according to a first embodiment
  • FIG. It is an explanatory view showing an outline of composition of a piston with which an engine concerning a 1st example is provided.
  • 1 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of the engine according to the first embodiment
  • FIG. 4 is an explanatory diagram showing an example of operation of a piston of the engine according to the first embodiment
  • FIG. 4 is a cross-sectional view along the axial direction of the piston, schematically showing another configuration of the piston of the engine according to the first embodiment
  • It is an explanatory view showing an outline of composition of a horizontally opposed 4-cylinder engine based on the engine concerning a 1st example.
  • FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment
  • FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment
  • FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment
  • FIG. 10 is a cross-sectional view along the axial direction of the piston, showing the outline of the configuration of the engine according to the second embodiment
  • FIG. 11 is a cross-sectional view along the axial direction of the piston, showing the outline of another configuration of the engine according to the second embodiment
  • FIG. 11 is a cross-sectional view along the axial direction of the piston, showing the outline of another configuration of the engine according to the second embodiment;
  • FIG. 12 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine shown in FIG. 11;
  • FIG. 11 is an explanatory diagram showing the outline of the configuration of the piston of the engine according to the third embodiment;
  • FIG. 11 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of an engine according to a third embodiment;
  • FIG. 11 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine according to the third embodiment;
  • FIG. 11 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of an engine according to a fourth embodiment;
  • FIG. 11 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine according to the fourth embodiment;
  • FIG. 1 is an explanatory diagram showing the outline of the configuration of the engine according to the present embodiment
  • FIG. 2 is the explanatory diagram showing the outline of the configuration of the piston of the engine according to the present embodiment.
  • the engine 10 has a piston 11 and a cylinder case 20, as shown in FIG.
  • the piston 11 is formed of a substantially cylindrical body, and has piston heads 12, 12 on both left and right end surfaces. formed.
  • a through hole 14 having a predetermined inner diameter is formed in the center of the peripheral wall along the radial direction of the substantially cylindrical body.
  • the through hole 14 has an internal gear 14a, as shown in FIG.
  • the internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
  • the through hole 14 has a gear 15 and an eccentric free rotor 16 as shown in FIGS.
  • the gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a.
  • the ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
  • the eccentric free rotor 16 is formed in a disk shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable.
  • the axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
  • the gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
  • the crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
  • the crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a.
  • the ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is 1:2, as shown in FIG.
  • the gear 15 rotates twice inside the internal gear 14a, returns to the initial position at the beginning of rotation, and rotates the crankshaft 19 through the crank arm 18 once. Thereby, the reciprocating motion of the piston 11 can be converted into rotary motion of the crankshaft 19 via the orbiting motion of the gear 15 .
  • the gear 15 supported by the crank pin 17 is configured to mesh with the internal gear 14a of the through hole 14 and rotate, but the configuration is not limited to this.
  • a planetary gear consisting of one or more planetary gears may be meshed between the internal gear 14a and the gear 15 to freely adjust the gear ratio of the crank arm 18 and the crankshaft 19 to the internal gear 14a. good.
  • the eccentric free rotor 16 is supported by a crank pin 17 together with the gear 15, as shown in FIGS. While the gear 15 meshes with the internal gear 14 a and rolls in the through hole 14 , the eccentric free rotor 16 has an eccentric shaft center that causes the rotation of the gear 15 , that is, the displacement of the crank pin 17 . Along with this, it circulates around the axis of the through hole 14 . At this time, as shown in FIGS. 3 and 4, when the direction of rotation (arrow T) of gear 15 that rotates crank arm 18 is the forward direction, the direction of rotation of eccentric free rotor 16 is indicated by arrow F. reverse direction.
  • the eccentric free rotor 16 is supported by the crank pin 17 together with the gear 15, the axial center of the eccentric free rotor is equal to the minor axis when the diameter of the eccentric free rotor is divided into four parts. This is the position where the ratio to the major axis is 1:3.
  • the eccentric free rotor can be rotated once in the direction of arrow F while the gear rotates in the direction of arrow T twice.
  • the eccentric free rotor 16 fitted in the through hole 14 can rotate within the through hole 14 without interfering with the rolling of the gear 15 accompanying the reciprocating motion of the piston 11, that is, the rotation of the crank arm 18. can.
  • the eccentric free rotor 16 can receive the stress applied to the through hole 14 by the reciprocating motion of the piston 11. It is possible to prevent the through hole 14 and the internal gear 14a formed along the inner wall of the through hole 14 from being distorted. Therefore, it is possible to prevent the gear 15 from slipping on the internal gear 14a and from missing teeth.
  • the cylinder case 20 has a cylindrical cylinder 20a, as shown in FIGS.
  • Combustion chambers 21, 21 having a predetermined shape are formed to be connected to both end surfaces of the cylinder.
  • the combustion chamber 21 has a spark plug 22, an intake port 23, and an exhaust port 24 at predetermined positions.
  • the ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11 in the combustion chamber 21. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20 .
  • the above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
  • an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • An intake port 23 provided in the intake port is configured to draw combustible mixed gas into the combustion chamber 21, and an intake valve (not shown) covers the intake port 23 so as to be openable and closable.
  • the exhaust port 24 provided in the exhaust port is configured to exhaust the exhaust gas remaining in the combustion chamber 21 after explosive combustion to the outside of the combustion chamber 21, and the exhaust port 24 is opened and closed by an exhaust valve (not shown). covered as much as possible.
  • the intake valve or the exhaust valve is configured to open and close the intake port 23 or the exhaust port 24 by following the rotation of the crankshaft 19, that is, the movement of the piston 11, using a cam, rocker arm, or the like.
  • the combustible gas mixture is alternately supplied to the combustion chambers 21, 21 provided at the left and right ends of the cylinder 20 for explosive combustion, thereby causing the piston 11 to reciprocate left and right as shown in FIG. and the crankshaft 19 can be rotated.
  • FIG. 4 is an explanatory view showing the positional relationship between the two when the gear 15 rotates along the internal gear 14a as the piston 11 reciprocates in the cylinder 20a.
  • the ratio of the inner diameter R of the internal gear 14a formed on the inner circumference of the through hole 14 to the outer diameter r of the gear 15 supported by the crank pin 17 is 2:1. Therefore, the crank arm 18 rotates with respect to the reciprocating motion of the internal gear 14a, that is, the piston 11 having the through hole 14, as described below.
  • the moving distance of the right end piston head 12 of the piston 11 is L
  • the starting end of the right end that is, the position of the top dead center
  • L1 the end of the left end, that is, the position of the bottom dead center
  • FIG. 4(a) shows the case where the left end of the internal gear 14a and the left end of the gear 15 are in contact with each other, and the piston head of the piston 11 is at the top dead center L0. This is the initial position where the gear 15 starts rotating. From here, gear 15 rotates clockwise in the direction of arrow T and eccentric free rotor 16 rotates in the direction of arrow F counterclockwise.
  • FIG. 4(b) shows a case where the gear 15 rotates half clockwise from FIG. 4(a) and is in contact with the lower end of the internal gear 14a. At this time, the position of the right side piston head 12 becomes the position of L/2 on the forward path.
  • FIG. 4(c) shows a case where the gear 15 rotates clockwise from FIG.
  • FIG. 4(d) shows a case where the gear 15 rotates half clockwise from FIG. 4(c) and is in contact with the upper end of the internal gear 14a. At this time, the position of the right piston head 12 becomes the position of L/2 on the way back. Further, when the gear 15 rotates half from FIG. 4(d), the gear 15 returns to the initial position shown in FIG. 4(a). At this time, the crank arm 18 rotates once to rotate the crankshaft 19 once, and the position of the right piston head 12 returns to the top dead center L0. By repeating the above operation, the linear reciprocating motion of the piston 11 can be converted into the rotary motion of the crankshaft 19 via the rotary motion of the gear 15 meshing with the internal gear 14a in the through hole 14. .
  • the eccentric free rotor 16 rotates at a position along the length of the crank arm 18 from the crankshaft 19 to the crankpin 17 in accordance with the displacement of the rotation axis of the gear 15, that is, the crankpin 17. is displaced, and rotates in the counterclockwise direction (arrow F) in the direction opposite to the rotation direction of the gear 15 in the through hole 14 .
  • the eccentric free rotor 16 fitted in the through hole 14 slides in the through hole 14 while displacing the axial center. is received by the eccentric free rotor 16, and the through hole 14 can be prevented from being distorted.
  • the engine 10 shown in FIGS. 1 to 4 is a four-stroke engine configured to repeat an intake stroke, a compression stroke, an explosion stroke, and an exhaust stroke.
  • the operation of the right piston head 12 of the piston 11 shown in FIG. 4 will now be described.
  • the intake stroke is performed when the right side piston head 12 moves from the top dead center L0 toward the bottom dead center L1 as shown in FIG. 4(c) through FIG. 4(a) to FIG. 4(b). It is a process.
  • a combustible gas mixture is thereby drawn into the combustion chamber 21 and the cylinder 20 .
  • the compression process is performed when the right piston head 12 moves from the bottom dead center L1 toward the top dead center L0 as shown in FIG. 4(a) through FIG. 4(c) to FIG. 4(d). It is a process. Thereby, the combustible gas mixture filled in the cylinder 20 is compressed toward the combustion chamber 21 .
  • the explosion process is performed when the right piston head 12 moves from the top dead center L0 toward the bottom dead center L1 as shown in FIG. 4(c) through FIG. 4(a) to FIG. 4(b). It is a process. As a result, the combustible gas mixture compressed in the combustion chamber 21 is ignited by the spark plug to generate explosive combustion.
  • the exhaust process is performed when the right side piston head 12 moves from the bottom dead center L1 toward the top dead center L0 as shown in FIG. 4(a) through FIG. 4(c) to FIG. 4(d). It is a process. As a result, the piston 11 pushed to the bottom dead center L1 by the explosive combustion generated in the combustion chamber 21 moves toward the top dead center L0, and the piston head 12 pushes out the exhaust gas filling the cylinder. . Each step is repeated for the left piston head 12 of the piston 11 as well. At this time, when the intake stroke is performed on the right side, the compression stroke is performed on the left side, the compression stroke is performed on the right side, the explosion stroke is performed on the left side, and the explosion stroke is performed on the right side.
  • the exhaust process is performed on the left side, and when the exhaust process is performed on the right side, the intake process is performed on the left side, and each process is performed alternately on the left and right sides. Therefore, the engine 10 shown in FIGS. 1 to 4 is a horizontally opposed two-cylinder engine configured to alternately perform each process on the left and right sides.
  • the engine 10A shown in FIG. 5 includes a piston 11A having a shorter piston length than the engine 10, and a cylinder case 20A having a shorter cylinder length corresponding to the piston 11A.
  • the through hole 14, and the internal gear, gear, crank pin, crank arm, and crank shaft in the through hole 14 are the same as those of the engine 10, so the description thereof is omitted.
  • the connecting rods are omitted and the pistons 11 and 11A are configured to linearly reciprocate within the cylinders of the cylinder cases 20 and 20A. It is possible to minimize the occurrence of piston slap, where the piston swings around the piston pin and collides with the bore wall surface. Therefore, like the piston 11A shown in FIG.
  • the piston skirt length can be designed with a minimum length.
  • the engine 10A can be constructed with a short overall length of the piston 11A, the engine 10A can be constructed compactly, and the weight can be reduced, and the amount of oil used for protecting the piston can also be reduced.
  • the piston 11 is configured to linearly reciprocate.
  • the piston 11 has a simple configuration of a substantially cylindrical body, the cylinder inner diameter, that is, the stroke amount of the bore and the piston 11 can be freely designed. It can be freely designed from a stroke to a long stroke.
  • the shape of the piston according to this embodiment is not limited to the configuration related to the pistons 11 and 11A shown in FIGS. It may be configured.
  • the diameter of the piston 11B is smaller than the diameters of the piston skirts 13, 13 in the vicinity of the through hole 14. It has a constricted shape sandwiching the .
  • the diameter of the piston 11C shown in FIG. 7 gradually increases from the piston skirts 13, 13 toward the vicinity of the through hole 14, and the center of the peripheral wall portion of the through hole 14 of the piston 11B expands into a substantially spherical shape. It has a rectangular shape.
  • a piston 11D shown in FIG. 8 has a through hole 14 formed in a planar flat portion 11a connected to the piston skirts 13, 13 by notching the front and rear peripheral wall portions along the axial direction of the through hole 14. It is shaped like a As a result, compared to the substantially cylindrical piston 11, the weight of the piston 11D can be reduced by the amount corresponding to the notch.
  • the opposed piston heads 12, 12 explode alternately.
  • the engine 10 is a horizontally opposed two-cylinder engine, and the engine 10 as a whole is configured to perform unequal interval explosions, which continue two explosion processes on the left and right sides, followed by a process in which the explosion processes are not performed on the left and right sides.
  • the engine 10B is configured in order to suppress the vibration accompanying this unevenly spaced explosion.
  • the engine 10B shown in FIG. 9 extends the crankshaft 19 to make the engine 10 shown in FIG.
  • Each unit is called a first unit 30 and a second unit 31 .
  • the configurations of the respective pistons 11 and cylinder cases 20 are the same as described above, so descriptions thereof will be omitted.
  • the phase angle of the crank formed by the crank arm 18 of the second unit 31 with respect to the crank arm 18 of the first unit 30 is 180 degrees ( ⁇ ).
  • the piston on the side of the first unit 30 and the piston on the side of the second unit 31 can alternately perform reciprocating motions, thereby canceling vibrations in the horizontal direction.
  • the engine 10B as a whole can be configured to perform equidistant explosions. The equidistant explosion will be explained below.
  • the horizontally opposed four-cylinder engine 10B having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
  • the phase difference between the crank angles of the first crank arm 13a and the second crank arm 13b of the horizontally opposed four-cylinder engine 10C is 180 degrees ( ⁇ ). Therefore, as shown in FIG. 9, when the right piston head 12R of the piston 11 on the first unit 30 side is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the second The right piston head 12R of the piston 11 on the unit 31 side is positioned at the top dead center L0, and the left piston head L is positioned at the bottom dead center L1.
  • the engine 10B operates in a linear reciprocating motion such that the pistons 11 of the first unit 30 and the pistons 11 of the second unit 31 alternately alternate in opposite directions.
  • Table 1 The relationship in each process of the piston heads 12, 12 of the units 30, 31 is shown in Table 1 below.
  • the arrows in the table indicate the phase directions of the crank arm 18 of the first unit 30 and the crank arm 18 of the second unit 31. For example, if the arrow is " ⁇ " in the first unit 30, the phase difference is 180 degrees. It is assumed that the second unit 31, which is ( ⁇ ), is proceeding in the opposite direction, “ ⁇ ”.
  • the explosion process performed by the right piston head 12R of the second unit 31 in the item number line 1 is the right piston head 12R of the first unit 30 in the item number line 2, and the The left side piston head 12L and the left side piston head 12L of the second unit 31 are sequentially performed in the fourth line of the item number.
  • the explosion process by allocating the explosion process so that the four piston heads are sequentially performed, in each process performed by the four cylinders provided at both ends of the first unit 30 and the second unit 31, one of the combustion It can be arranged that the explosion process always takes place in the chamber 21 . Therefore, when viewed as a whole engine 10B, it can be configured to perform equidistant explosions.
  • 10 to 13 are explanatory diagrams showing the outline of the configuration when the four-stroke engine 10 shown in the first embodiment is replaced by two-stroke engines 10C, 10D, 10E, and 10F.
  • the configuration of the piston 11 associated with the engines 10C, 10D, and 10E is the same as that of the first embodiment, so the description is omitted.
  • the basic configuration is that combustion chambers 21, 21 of a predetermined shape are formed at both ends of a cylindrical cylinder 20a, and a spark plug 22 is arranged at a predetermined position of the combustion chamber 21. It is the same as the cylinder case 20 of the embodiment.
  • the difference between the engine 10 according to the first embodiment and the engines 10C, 10D and 10E according to the second embodiment is the position of the intake port of the intake port provided at a predetermined position on the peripheral wall of the cylinder 20a and the position of the exhaust port of the exhaust port. is.
  • the configuration of the cylinder case 20 by changing the configuration of the cylinder case 20, the configuration can be easily changed from the 4-stroke type to the 2-stroke type, or vice versa.
  • An engine 10C shown in FIG. 10 has a cylinder case 20B with a cylindrical cylinder 20b. Combustion chambers 21, 21 are connected to both ends of the cylinder 20b.
  • An intake port 23b provided with an intake port and an exhaust port 24b provided with an exhaust port are formed in the peripheral wall portion of the cylinder 20b.
  • the intake port 23b is formed near the bottom dead center L1 of the left and right end piston heads 12, 12 of the piston 11.
  • the intake port having the intake port 23b is configured to be branched in a T-shape so as to be able to intake combustible mixed gas into the combustion chambers at both left and right ends.
  • a piston reed valve 35 is arranged in the vicinity of the intake port 23b so that the combustible mixed gas can be sucked in one direction toward the cylinder 20. As shown in FIG. As a result, it is possible to prevent backflow of combustible mixed gas or post-explosion exhaust gas from the cylinder 20b side into the intake port.
  • the exhaust ports 24b are formed in the vicinity of the combustion chamber 21 and in the vicinity of the top dead center L0 of the piston heads 12, 12, respectively.
  • the engine 10C shown in FIG. 10 has a configuration called a so-called piston-reed-valve two-stroke engine.
  • a combustible fuel is formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio.
  • the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 .
  • the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 .
  • the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like.
  • an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • the engine 10C having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 makes one reciprocation.
  • the intake/compression process refers to the process of taking in and compressing the combustible gas mixture into the cylinder 20b and the combustion chambers 21,21.
  • the intake port 23b and the exhaust port 24b are exposed in the cylinder 20b, and the piston head 12 moves to the bottom dead center L1, thereby creating negative pressure in the cylinder 20b.
  • a combustible gas mixture is taken in through the intake port. Since the piston reed valve 35 closes the intake port after intake, it is possible to prevent exhaust gas from flowing back into the intake port.
  • the compressed combustible mixed gas is ignited by a spark plug (not shown) provided in the combustion chamber 21 and explodes, and the combustion pressure causes the piston head 12 to move from the top dead center L0 to the bottom dead center L1 move towards
  • the exhaust port 24b is first exposed in the cylinder 20b, the exhaust gas is exhausted, and a negative pressure is generated in the cylinder 20b whose volume is still expanding.
  • the intake port 23b is exposed, the combustible mixed gas is drawn into the cylinder 20b. Since the piston reed valve 35 closes the intake port after intake, exhaust gas can be prevented from flowing back into the intake port.
  • the piston head 12 moves from the bottom dead center L1 toward the top dead center L0, residual exhaust gas in the cylinder 20b is scavenged from the exhaust port.
  • An engine 10D shown in FIG. 11 has the same configuration of a piston 11 and a cylinder 20b as that of the engine 10C described above, so description thereof will be omitted.
  • the difference between the engine 10C and the engine 10D is the presence or absence of the crankcase 36.
  • the crankcase 36 accommodates the crankshaft 19 and the crank arm 18 and surrounds the vicinity of the through hole 14 of the piston 11 together with the cylinder 20b.
  • An intake port having an intake port 23c along the radial direction of the crankshaft 19 is formed in communication with the crankcase 36 .
  • a crankcase reed valve 37 is arranged in the intake port.
  • both ends of the cylinder 20b which is connected to the crankcase 36 and the combustion chambers 21, 21, are communicated with a pair of bypass ports 38 so that the combustible gas mixture can be supplied from the crankcase 38 to the combustion chambers 21, 21.
  • a cylinder-side open end 38 a of the bypass is formed near the bottom dead center L 1 of the piston head 12 .
  • a schematic configuration of the crankcase 36 is shown. have a room.
  • the intake and exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b through a bypass port 38.
  • Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber.
  • the combustible mixed gas is supplied from the intake port 23c, and then the pressurized combustible mixed gas is burned through the bypass port 38 Air is drawn into chamber 21 .
  • the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engine 10C.
  • the engine 10D shown in FIG. 11 has a configuration called a so-called crankcase reed valve type two-stroke engine.
  • a combustible spark plug 22 formed by mixing fuel and air sprayed from the carburetor or injection in a predetermined ratio is similar to the engine described in the first embodiment.
  • the gas mixture When the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 .
  • the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 .
  • the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like.
  • an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • the engine 10D having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 reciprocates once. Since these operations are the same as those of the engine 10C, description thereof will be omitted.
  • the difference in operation between the engine 10D shown in FIG. 11 and the engine 10C is due to the difference between the crankcase reed valve 37 and the bypass port 38 provided in the engine 10D and the piston reed valve 35 provided in the engine 10C. It is a thing.
  • the combustible gas mixture is decompressed by the eccentric free rotor 16 in the crankcase 36 and taken into the intake/exhaust pressure regulating chamber on the side where the negative pressure is generated.
  • the combustible gas mixture filled in the intake/exhaust pressure regulating chamber is pressurized by the eccentric free rotor.
  • the combustible gas mixture can be alternately fed into the combustion chambers 21, 21 connected to the left and right ends of the cylinder 20b.
  • the intake/compression stroke when the piston head 12 is positioned at the bottom dead center L1, the combustible gas mixture pressurized in the intake/exhaust pressure regulating chamber passes through the open end 38a of the bypass port 38 to the cylinder 20b. Inhale.
  • the piston head 12 moves from the bottom dead center L1 to the top dead center L0 and the exhaust port 24b is closed, the combustible gas mixture is compressed in the combustion chamber 21. Subsequently, in the combustion/exhaust/scavenging process, the compressed combustible mixed gas is ignited, explodes and burns, and presses the piston head 12 with the combustion pressure.
  • the exhaust port 24b is first exposed and the exhaust gas is exhausted.
  • the eccentric free rotor 16 presses the combustible gas mixture in the intake and exhaust pressure regulating chamber of the crankcase 36.
  • the eccentric free rotor 16 pressurizes the combustible gas mixture in the intake and exhaust pressure regulating chambers communicating with the left and right cylinders 20b and the combustion chambers 21, 21 in the crankcase 36, to the cylinders 20b. It can be pumped in or decompressed to create a negative pressure to inhale through the intake port. As a result, the intake efficiency for combustible mixed gas and the exhaust/scavenging efficiency for exhaust gas can be improved to improve fuel efficiency.
  • the engine 10E shown in FIG. 12 differs from the engines 10C and 10D in the shape of the eccentric free rotor 16.
  • the eccentric free rotor 16 has a pair of notch portions 16b formed by notching predetermined positions of the peripheral edge portion 16a in an arc shape.
  • the engine 10E also has a crankcase 36 that accommodates the crankshaft 19 and the crank arm 18 and that surrounds the cylinder 20b.
  • An intake port having an intake port 23d is connected to the crankcase 36 along the axial direction of the crankshaft.
  • the intake port 23 d is arranged so as to face the peripheral edge portion 16 a and the notch portion 16 b of the eccentric free rotor 16 .
  • the combustible gas mixture sucked into the crankcase 36 through the intake port flows back into the intake port when the intake port 23d overlaps the peripheral edge portion 16a and is closed. can be prevented.
  • the intake port 23d overlaps with the notch 16b and is exposed inside the crankcase 36, the combustible gas mixture can be taken into the crankcase 36.
  • the eccentric free rotor 16 rotates in synchronism with the rotation of the crankshaft 19, it is predetermined that the intake port 23d is opened by exposing it at the notch portion 16b and is closed by covering it with the peripheral edge portion 16a.
  • crankcase 36 and the combustion chambers 21, 21 provided at the left and right ends of the cylinder 20b are connected by a pair of bypass ports 38, so that the combustible gas mixture can be supplied from the crankcase 36 to the combustion chambers 21, 21.
  • a cylinder side open end 38 a of the bypass port 38 is formed near the bottom dead center L1 of the piston head 12 .
  • a schematic configuration of the crankcase 36 is shown. have a room.
  • the intake and exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b through a bypass port 38.
  • Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber.
  • the combustible gas mixture is supplied from the intake port 23d overlapping the notch 16b, and then the pressurized combustible gas mixture. is taken into the combustion chamber 21 through the bypass port 38 .
  • the eccentric free rotor 16 rotates once, that is, while the piston makes one reciprocation, the pressurization process and the depressurization process are sequentially performed in each of the intake and exhaust pressure regulating chambers.
  • the notch 16b is arranged opposite to a predetermined position on the periphery of the eccentric free rotor 16. As shown in FIG. As a result, the combustible gas mixture can be alternately sent through the bypass port 38 to the combustion chambers 21, 21 at the left and right ends of the engine 10E shown in FIG.
  • the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engines 10C and 10D. In this manner, the engine 10E shown in FIG. 12 has a configuration called a so-called rotary disc valve type two-stroke engine.
  • a combustible fuel is formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio.
  • the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 .
  • the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 .
  • the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like.
  • an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • the engine 10E having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 reciprocates once. Since these operations are the same as those of the engine 10C, description thereof will be omitted.
  • the difference in operation between the engine 10E shown in FIG. 12 and the engine 10D shown in FIG. The difference is between the intake ports provided along the crankshaft and the intake ports provided along the radial direction of the crankshaft. In the case of the engine 10E, when the intake port 23d overlapping the notch 16b is exposed to the intake/exhaust pressure regulating chamber as the eccentric free rotor 16 rotates, the pressure in the intake/exhaust pressure regulating chamber is reduced by the eccentric free rotor 16.
  • the combustible mixed gas is smoothly drawn into the intake/exhaust pressure regulating chamber.
  • the peripheral portion 16a of the eccentric free rotor 16 covers and closes the intake port 23d
  • the inside of the intake/exhaust pressure regulating chamber is pressurized, and the air is drawn through the bypass port 38 into the cylinder 20b.
  • the combustible gas mixture pressurized in the intake/exhaust pressure regulating chamber is drawn into the cylinder through the open end 38a of the bypass port 38. be done. Thereafter, when the piston head 12 moves from the bottom dead center L1 to the top dead center L0 and the exhaust port 24b is closed, the combustible gas mixture is compressed in the combustion chamber 21. Subsequently, in the combustion/exhaust/scavenging process, the compressed combustible mixed gas is ignited, explodes and burns, and presses the piston head 12 with the combustion pressure.
  • the combustible gas mixture can be alternately drawn into the left and right combustion chambers 21, 21 while the eccentric free rotor 16 rotates once within the through hole 14.
  • the intake efficiency for combustible mixed gas and the exhaust/scavenging efficiency for exhaust gas can be improved to improve fuel efficiency.
  • An engine 10F shown in FIG. 13 is a horizontally opposed four-cylinder engine based on the crankcase reed valve type two-stroke engine 10D.
  • the engine 10F is composed of a third unit 40 and a fourth unit 41 each including the horizontally opposed two-cylinder engine of the engine 10D as one unit.
  • the configuration of the piston 11 and the cylinder 20b of each unit is the same as that of the engine 10D, so the explanation is omitted.
  • the third unit 40 and the fourth unit 41 are arranged side by side along the crankshaft 19 direction.
  • the crankcase 36A of the engine 10F is provided so as to surround the vicinity of the crankshaft 19 of the third unit 40 and the fourth unit 41 together with the cylinder 20b.
  • the engine 10F has a crank arm 18 associated with the third unit 40 and a crank arm 18 associated with the fourth unit 31, as shown in FIG.
  • the crank arms 18 are opposed to each other with the crankshaft 19 interposed therebetween, and are configured to form a crank angle of 180 degrees ( ⁇ ) with each other.
  • the crankcase 36A is provided with an intake port having an intake port 23c along the radial direction of the crankshaft 19 between the third unit 40 and the fourth unit 41, and the intake port is provided with an intake port 23c similar to that of the engine 10D. is provided with a crankcase reed valve (not shown).
  • a bypass port 38 is provided between the crankcase 36A and the cylinder 20b so as to communicate with the combustion chambers 21, 21 of the third unit 40 and the fourth unit 41.
  • FIG. 1 a schematic configuration of the crankcase 36A is shown.
  • the intake/exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b of each unit 40, 41 through a bypass port 38.
  • Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber.
  • the combustible mixed gas is supplied from the intake port 23c, and then the pressurized combustible mixed gas is burned through the bypass port 38 Air is drawn into chamber 21 .
  • the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engine 10D described above.
  • the spark plug 22 similarly to the engine described in the first embodiment, has a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When compressed by the piston 11 at , a spark is emitted from the electrode of the ignition plug 22 .
  • the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like.
  • an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • the engine 10F shown in FIG. 13 has a configuration in which a so-called crankcase reed valve type two-stroke engine is assembled with horizontally opposed four cylinders.
  • the engine 10F having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
  • the crank angle phase difference between the crank arm 18 of the third unit 40 and the crank arm 18 of the fourth unit 41 is 180 degrees ( ⁇ ). Therefore, as shown in FIG. 13, when the right piston head 12R of the third unit 40 is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the right side of the fourth unit 41 The piston head 12R is positioned at the top dead center L0, and the left piston head 12L is positioned at the bottom dead center L1.
  • the left and right piston heads 12R, 12L of the third unit 40, 12R, 12L, The left and right piston heads 12R and 12L of the fourth unit 41 operate so as to perform linear reciprocating motion in opposite directions.
  • Table 2 below shows the relationship in each process of the piston heads 12R and 12L of the units 40 and 41.
  • the arrows in the table represent the direction of the phase of the crank arm 18. For example, when the piston 11 moves according to the arrow " ⁇ " in the third unit 40, the phase difference is 180 degrees ( ⁇ ) in the fourth unit 41. , the piston 11 is moving in the opposite direction " ⁇ ".
  • the right piston head 12R of the third unit 40 and the left piston head 12L of the fourth unit 41 perform the intake/compression process.
  • the right piston head 12R of the 4 unit 41 performs combustion, exhaust, and scavenging strokes.
  • the third unit 40 and the fourth unit 41 can be configured so that the explosion process is always performed in one of the cylinders 20. FIG. Therefore, evenly spaced explosions can be performed in the entire engine 10F.
  • the horizontally opposed four-cylinder engine was exemplified, but the number of cylinders related to the horizontally opposed engine is not limited to these.
  • a horizontally opposed engine of 6 cylinders, 8 cylinders, 10 cylinders, 12 cylinders, 16 cylinders, etc. may be constructed.
  • the phase difference between each unit is set to a predetermined angle such as 120 degrees (4 ⁇ /3), 72 degrees ( ⁇ /5), 60 degrees ( ⁇ /3), 45 degrees ( ⁇ /4), etc.
  • vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
  • a balance weight may be attached to the crankshaft 19 to suppress vibration.
  • the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in the conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight.
  • conventional connecting rods in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotating motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
  • FIG. 14 is an explanatory diagram showing the outline of the configuration of the piston provided in the engine according to the third embodiment
  • FIG. 15 is a plan view showing the outline of the construction of the engine according to the third embodiment.
  • the engine 10G has a piston 11B and a cylinder case 20C.
  • the piston 11B comprises a pair of small diameter portions 50, 50 and a large diameter portion 51 sandwiched between the small diameter portions 50, 50 along the axial direction of the piston 11B.
  • the small-diameter portions 50, 50 have piston heads 12, 12 on the end faces opposite to the large-diameter portion 51, respectively, and a piston skirt 13 is formed to connect the piston heads 12, 12 to the large-diameter portion 51 side.
  • the large diameter portion 51 is formed on the same axis as the small diameter portions 50, 50 and the piston 11B.
  • a through-hole 14 having a predetermined inner diameter is formed along the radial direction of the large-diameter portion 51 at the center of the peripheral wall portion of the large-diameter portion 51 .
  • the through hole 14 has an internal gear 14a as shown in FIG.
  • the internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
  • a gear 15 and an eccentric free rotor 16 are arranged in the through hole 14, as shown in FIG.
  • the gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a.
  • the ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
  • the eccentric free rotor 16 is formed in a disc shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable.
  • the axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
  • the gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
  • the crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
  • the crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a. Since the relationship between the gear and the internal gear is the same as that of the engine 10 of the first embodiment, the explanation is omitted. Also, the eccentric free rotor 16 is the same as the engine 10 described in the first embodiment, so the description is omitted.
  • the cylinder case 20C comprises a pair of cylinders 20c into which the small diameter portions 50, 50 of the piston 11B are fitted, and a housing 53 into which the large diameter portion 51 is fitted.
  • Combustion chambers 21, 21 having a predetermined shape are formed on the opposite side of the cylinder 20c to the housing 53.
  • the combustion chamber 21 is provided with an ignition plug 22 and an exhaust port having an exhaust port 24c at a predetermined position.
  • the ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11 in the combustion chamber 21. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20c.
  • the above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
  • an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • An exhaust port having an exhaust port 24c communicates with the combustion chamber 21 and has an exhaust valve 54 that covers the exhaust port 24c.
  • the exhaust valve 54 is configured to periodically open and close the exhaust port 24c by following the rotation of the crankshaft 19, that is, the movement of the piston 11B, using a cam, a rocker arm, or the like.
  • the exhaust port 24c is closed, the pressure in the combustion chamber 21 can be increased, and when the exhaust port 24c is open, the explosive combustion residuals remaining in the cylinder 20c and in the combustion chamber 21 can be increased. of exhaust gas can be exhausted and scavenged out of the cylinder 20c and the combustion chamber 21.
  • an intake port having an intake port 23b communicates with the peripheral wall of the cylinder 20c near the housing 53 side.
  • Piston reed valves 35 capable of unidirectionally inhaling into the left and right cylinders 20c are arranged in the intake ports.
  • the left and right cylinders 20c are configured so that the combustible gas mixture is periodically drawn.
  • the housing 53 has a length that allows the large diameter portion 51 of the piston 11B to linearly reciprocate.
  • the shoulder portion 52 of the piston 11B is configured to face the stepped connecting portion between the housing 53 and the cylinder 20c. This can prevent the small-diameter portion 50 fitted to the cylinder 20c from coming off from the cylinder 20b.
  • excess oil out of the oil that lubricates the inside of the cylinder case 20C accumulates in the space through the piston skirt 13.
  • the shoulder portion 52 can re-supply the oil stored in the space to the piston skirt 13 side. The shoulder portion 52 can push back into the cylinder 20c the combustible gas mixture that has leaked from the cylinder 20c through the gap between the piston skirt 13 and the cylinder 20c.
  • the engine 10G having the above configuration has a configuration corresponding to the piston lead valve type engine 10C shown in FIG.
  • An engine 10H shown in FIG. 16 is a horizontally opposed four-cylinder engine based on the above-described engine 10G.
  • the engine 10H is composed of a fifth unit 60 and a sixth unit 61, each of which is a horizontally opposed two-cylinder engine related to the engine 10G. Since the configuration of each unit 60, 61 is the same as that of the engine 10G, description thereof will be omitted.
  • the fifth unit 60 and the sixth unit 61 are arranged side by side along the crankshaft 19 direction.
  • the engine 10H has a crank arm 18 associated with the fifth unit 60 and a crank arm 18 associated with the sixth unit 61, as shown in FIG.
  • the crank arms 18 are arranged opposite to each other with the crankshaft 19 interposed therebetween, and are configured to form a crank angle of 180 degrees ( ⁇ ) with each other.
  • An intake port 23b is provided at a predetermined position of the cylinder 20c near the bottom dead center L1 of the small diameter portion 50 of the piston 11B.
  • the intake port provided with the intake port 23b is formed in a T shape so as to communicate with the respective intake ports 23b of the fifth unit 60 and the sixth unit 61 facing each other.
  • an exhaust port having an exhaust port 24c and an exhaust valve 54 is formed in a T shape so as to communicate with the exhaust ports 24c of the fifth unit 60 and the sixth unit 61 facing each other.
  • the ignition plug 22 similarly to the engine described in the first embodiment, has a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When compressed by the piston 11 at , a spark is emitted from the electrode of the spark plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 .
  • the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like.
  • an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 .
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • the engine 10H shown in FIG. 16 has a configuration in which a so-called piston lead valve type two-stroke engine is assembled into horizontally opposed four cylinders.
  • the engine 10H having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
  • the crank angle phase difference between the crank arm 18 of the fifth unit 60 and the crank arm 18 of the sixth unit 61 is 180 degrees ( ⁇ ). Therefore, as shown in FIG. 16, when the right piston head 12R of the sixth unit 61 is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the right side of the fifth unit 60 The piston head 12R is positioned at the top dead center L0, and the left piston head 12L is positioned at the bottom dead center L1.
  • the left and right piston heads 12R, 12L of the fifth unit 60, and the left and right piston heads 12R, 12L, The left and right piston heads 12R, 12L of the sixth unit 61 operate so as to linearly reciprocate in opposite directions. Since this operation conforms to the operation of the engine 10F, detailed description thereof will be omitted.
  • the fifth unit 60 and the sixth unit 61 can be configured so that the explosion process is always performed in one of the cylinders 20c. Therefore, evenly spaced explosions can be performed in the entire engine 10H.
  • the number of cylinders related to the horizontally opposed engine is not limited to these.
  • a horizontally opposed engine with cylinders, 10 cylinders, 12 cylinders, 16 cylinders, etc. may be constructed.
  • the phase difference between each unit is set to a predetermined angle such as 120 degrees (4 ⁇ /3), 72 degrees ( ⁇ /5), 60 degrees ( ⁇ /3), 45 degrees ( ⁇ /4), etc.
  • vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
  • a balance weight may be attached to the crankshaft 19 to suppress vibration.
  • the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in the conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight.
  • conventional connecting rods in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotating motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
  • FIG. 17 is an explanatory diagram showing the outline of the configuration of the engine according to the fourth embodiment.
  • the engine 10I as shown in FIG. 17, has a piston 11C and a cylinder case 20D that houses the piston 11C.
  • the piston 11C has piston heads 12, 12 at both left and right ends, and a through hole 14 at the center of the peripheral wall.
  • the through hole 14 has an internal gear 14a as shown in FIG.
  • the internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
  • a gear 15 and an eccentric free rotor 16 are arranged in the through hole 14, as shown in FIG.
  • the gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a.
  • the ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
  • the eccentric free rotor 16 is formed in a disc shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable.
  • the axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
  • the gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
  • the crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
  • the crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a. Since the relationship between the gear and the internal gear is the same as that of the engine 10 of the first embodiment, the explanation is omitted. Also, the eccentric free rotor 16 is the same as the engine 10 described in the first embodiment, so the description is omitted.
  • the cylinder case 20D has a cylinder 20d with a combustion chamber 65 on one side and an intake/exhaust pressure regulating chamber 66 on the other side.
  • a piston 11C housed in the cylinder 20d is configured to slide between the combustion chamber 65 and the intake/exhaust pressure regulating chamber 66 to reciprocate.
  • the combustion chamber 65 has an exhaust port 68 with a spark plug 22 and an exhaust port 67 in place.
  • the ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11C in the combustion chamber 65. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20d.
  • the above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
  • an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 65.
  • a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
  • An exhaust port 68 having an exhaust port 67 communicates with the combustion chamber 65 and has an exhaust valve 69 that covers the exhaust port 67 .
  • the exhaust valve 69 is configured to periodically open and close the exhaust port 67 by following the rotation of the crankshaft 19, that is, the movement of the piston 11C, using a cam, a rocker arm, or the like. Thereby, when the exhaust port 67 is closed, the pressure in the combustion chamber 65 can be increased, and when the exhaust port 67 is open, the explosive combustion residuals remaining in the cylinder 20d and in the combustion chamber 65 can be increased. of exhaust gas can be exhausted and scavenged out of cylinder 20d and combustion chamber 65.
  • An intake port 70 having an intake port 71 communicates with the intake/exhaust pressure regulating chamber 66 .
  • the intake port 70 has a reed valve 72 that regulates the flow of the combustible gas mixture in one direction.
  • An open end 73a of the bypass port 73 on the intake/exhaust pressure regulating chamber 66 side is provided between the intake port 71 of the intake port 70 and the lead valve 72, and an open end 73b on the combustion chamber 65 side is provided on the combustion chamber 65 side piston head. 12 is formed at a predetermined position near the bottom dead center L1.
  • the engine 10I having the above configuration operates as described below. Description will be made with reference to the attached drawings.
  • the engine 10I is a two-stroke engine consisting of an intake/compression process and an explosion/exhaust/scavenging process.
  • the intake/compression process first, when the piston head 12 on the intake/exhaust pressure regulating chamber 66 side moves from the top dead center L0 to the bottom dead center L1, air is drawn into the intake/exhaust pressure regulating chamber 66 through the intake port 70 .
  • the open end 73b of the bypass port 73 on the side of the combustion chamber 65 is blocked by the piston 11C, so the intake/exhaust pressure regulating chamber 66 is filled with the combustible gas mixture through the intake port .
  • the combustible gas mixture pressurized from the intake/exhaust pressure regulating chamber 66 flows in at once and remains in the cylinder 20d on the side of the combustion chamber 65. Exhaust gas is scavenged at once.
  • the engine 10I is configured such that the piston head 12 on the side of the intake/exhaust pressure regulating chamber 66 takes in and compresses the combustible mixed gas, and pushes it into the combustion chamber 65 side at once through the bypass port 73 .
  • the intake efficiency and the scavenging/exhaust efficiency on the combustion chamber 65 side can be increased, and the fuel efficiency can be improved.
  • An engine 10J shown in FIG. 18 is an in-line four-cylinder engine based on the engine 10I described above.
  • the engine 10J has the engine 10I as a basic unit, and as shown in FIG. They are arranged side by side. Since the configuration of each unit 75, 76, 77, 78 is the same as that of the engine 10I, the description thereof will be omitted.
  • the crank arms 18 of the seventh unit 75 and the tenth unit 78 and the crank arms 18 of the eighth unit 76 and the ninth unit 77 are opposed to each other with the crankshaft 19 interposed therebetween. They are arranged facing each other in the direction and are configured to form a crank angle of 180 degrees ( ⁇ ) with each other.
  • the engine 10J is branched so that the combustible gas mixture can be supplied from the intake port 70 toward the intake ports 71 of the units 75, 76, 77, and 78.
  • Exhaust gases discharged from the exhaust ports 67 of the units 75, 76, 77, and 78 are collectively exhausted through the exhaust port 68.
  • the engine 10J having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
  • the crank arms 18 of the seventh unit 75 and the tenth unit 78, and the crank arms 18 of the eighth unit 76 and the ninth unit 77 are arranged opposite to each other with the crankshaft 19 interposed therebetween, 180 degrees ( ⁇ ). Therefore, as shown in FIG. 18, the intake/exhaust pressure regulating chamber 66 side piston heads 12 of the seventh unit 75 and the tenth unit 78 are positioned at the top dead center L0, and the combustion chamber 65 side piston heads 12 are positioned at the bottom dead center L1.
  • the intake/exhaust pressure regulating chamber 66 side piston heads 12 of the eighth unit 76 and the ninth unit 77 are positioned at the bottom dead center L1, and the combustion chamber 65 side piston heads 12 are at the top dead center L0. positioned.
  • the pistons 11C associated with the set consisting of the seventh unit 75 and tenth unit 78 and the set consisting of the eighth unit 76 and ninth unit 77 are linearly arranged so as to alternate in opposite directions.
  • the set of pistons 11C consisting of the seventh unit 75 and tenth unit 78 and the set of pistons 11C consisting of the eighth unit 76 and ninth unit 77 linearly move in opposite directions alternately. reciprocating motion.
  • each unit Since the operation of each unit conforms to the operation of the engine 10I, detailed description will be omitted.
  • the explosion process is always performed in one of the cylinders 20d in the set consisting of the seventh unit 75 and the tenth unit 78 and the set consisting of the eighth unit 76 and the ninth unit 77. can be configured to Therefore, evenly spaced explosions can be performed in the entire engine 10J.
  • the pistons 11C of the set consisting of the seventh unit 75 and the tenth unit 78 and the set consisting of the eighth unit 76 and the ninth unit 77 alternately linearly reciprocate in opposite directions for each set.
  • the arrangement method of the seventh unit 75 to the tenth unit 78 is not limited to this, and the combustion chambers are arranged in a V-shape so that the positions of the combustion chambers alternate. You can make it work. Further, the number of cylinders is not limited to these, and a multi-cylinder engine may be configured by increasing or decreasing the number of basic configuration units related to the engine 10I.
  • the phase difference between each unit is set to a predetermined angle such as 120 degrees (4 ⁇ /3), 72 degrees ( ⁇ /5), 60 degrees ( ⁇ /3), 45 degrees ( ⁇ /4),
  • a predetermined angle such as 120 degrees (4 ⁇ /3), 72 degrees ( ⁇ /5), 60 degrees ( ⁇ /3), 45 degrees ( ⁇ /4)
  • vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
  • a balance weight may be attached to the crankshaft 19 to suppress vibration.
  • the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in a conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight.
  • conventional connecting rods in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotary motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
  • the through hole 14 having the internal gear 14a is formed in the center of the peripheral wall of the piston, which is a substantially cylindrical body with the piston heads arranged on both left and right ends, and the internal gear 14a is connected to the crank pin.
  • a gear 15 pivotally supported by 17 is configured to roll.
  • the heat generated in the cylinder can be suppressed, and the heat conversion efficiency of the engine can be improved, so that the output characteristics of each engine can be improved, and the fuel efficiency can be improved.
  • the amplitude of the reciprocating motion of the piston in the cylinder and the relationship between the bore and the stroke can be freely adjusted without being restricted by the length of the connecting rod or the crank arm as in the conventional engine.
  • the piston is configured to reciprocate linearly within the cylinder.
  • the connecting rod since the connecting rod oscillates, a lateral force is generated in the piston with respect to the cylinder, causing a piston slap phenomenon in which the piston strikes the inner wall of the cylinder.
  • a piston skirt is formed below the piston.
  • the length of the piston skirt can be minimized and the length of the piston can be shortened.
  • the clearance between the piston and cylinder can be further narrowed, the play of the piston ring can be eliminated, and the length of the piston crown can be shortened, so together with the shortened piston skirt, the piston itself can be made compact.
  • the connecting rod is omitted and the piston is configured to linearly reciprocate.
  • the movement of the crank arm and connecting rod causes the piston to collide with the inner wall of the cylinder, and stress is applied to the connecting rod and crank arm.
  • the piston collides with the inner wall of the cylinder, and the friction loss of the piston against the cylinder due to vibration is greatly reduced. Since the load on the crank arm can also be reduced, unnecessary heat generated by the engine itself due to friction can be suppressed, and combustion efficiency can be improved, which is expected to significantly improve heat loss.
  • the engine according to the present embodiment is not limited to being mounted on an automobile, but can be applied to vehicles having an internal combustion engine such as ships, aircraft, and locomotives. It may be applied to a generator or the like. In any case, the above effect can be expected, and not only the fuel consumption can be improved, but also the burden on the environment can be greatly reduced.

Abstract

[Problem] To provide an engine, the bore and stroke of which can be freely designed without being limited by the length of a connecting rod or crank arm. [Solution] This engine comprises: a substantially columnar piston 11 equipped with piston heads 12 on both left and right end faces; an internal gear 14a that is formed along the inner wall of a through hole 14 having a predetermined inner diameter and formed along the radial direction of the piston at the center of the peripheral wall of the piston; a gear 15 meshing with the internal gear; a substantially rod-shaped crank arm 18 having at the leading end a crank pin 17 that pivotally supports the gear, and a crank shaft 19 at the base end; a disk-shaped eccentric free rotor 16 having approximately the same diameter as the inner diameter of the through hole, rotatably fitted into the through hole, and pivotally supported by the crank pin together with the gear; and a cylinder case 20 equipped with a cylindrical cylinder 20a into which the piston is inserted, and formed by connecting a combustion chamber 21 facing the piston head to both ends of the cylinder.

Description

エンジンengine
 本発明は、エンジンに関するものである。 The present invention relates to engines.
 レシプロエンジンは、吸気、圧縮、爆発、排気の各工程によってピストンを動かし、当該ピストンに連結されているコンロッドの往復運動を所定のリンク機構でクランク軸の回転運動に変換して、回転動力を出力するように構成されている。
 従来、ピストンはコンロッドの先端で回動自在に軸支され、ピストン及びコンロッド先端部の往復運動が、コンロッド基端部の回転運動に変換され、クランクピン、クランクアームからなるリンク機構を介してクランク軸の回転運動が伝達されている。
A reciprocating engine moves a piston through each process of intake, compression, explosion, and exhaust, and converts the reciprocating motion of the connecting rod, which is connected to the piston, into rotational motion of the crankshaft with a predetermined link mechanism, and outputs rotational power. is configured to
Conventionally, the piston is rotatably supported at the tip of the connecting rod, and the reciprocating motion of the piston and the tip of the connecting rod is converted into the rotational motion of the base end of the connecting rod, which is then cranked via a link mechanism consisting of a crank pin and a crank arm. Rotational motion of the shaft is transmitted.
 また、特開2015-224745号に開示されているレシプロエンジンに於けるピストン運動の回転変換構造は、ピストンに固定したコンロッドと、直線運動を回転運動に変換する遊星歯車機構部と、その内歯車の中心位置で軸支される駆動軸と、から少なくとも構成し、遊星歯車機構部が、一対の内歯車と、各内歯車内で噛合すると共にそのピッチ円直径が内歯車の1/2である遊星歯車と、コンロッドとピンを介して軸支すると共に遊星歯車に固着した連結杆と、遊星歯車に固着すると共に駆動軸に固着した固定杆と、から成され、且つ、ピンの中心が常にコンロッドの軸心線上に位置するように配置されるように構成されている。これによって、ピストンの側圧がシリンダーに殆ど生じないものとなり、摩擦損失が軽減されると共に、エンジンの小型化や軽量化が可能なものとなり、更に振動や騒音の発生が減少するようにしている。 Further, the rotation conversion structure of the piston motion in the reciprocating engine disclosed in Japanese Patent Application Laid-Open No. 2015-224745 includes a connecting rod fixed to the piston, a planetary gear mechanism for converting linear motion to rotary motion, and its internal gear. and a drive shaft pivotally supported at the center of the planetary gear mechanism, the planetary gear mechanism meshing with a pair of internal gears in each internal gear and having a pitch diameter of 1/2 that of the internal gear A planetary gear, a connecting rod pivotally supported via a connecting rod and a pin and fixed to the planetary gear, and a fixed rod fixed to the planetary gear and fixed to the drive shaft, and the center of the pin is always the connecting rod. It is configured to be arranged so as to be positioned on the axis of the As a result, side pressure of the piston hardly occurs in the cylinder, friction loss is reduced, the size and weight of the engine can be reduced, and vibration and noise are reduced.
特開2015-224745号公報JP 2015-224745 A
 従来のクランク構造の場合、コンロッドの基端側大径部がクランクアームの長さを半径とする円周に沿って回転している。そのため、コンロッドの上死点と下死点間の往復距離は、クランクアームの直径と等しい。これによって、往復距離を長くする、すなわち、ロングストローク化した場合、クランクアームを長くしなければならず、クランクケースが大型化する等の問題が生じるため、現状ではエンジンの設計段階でクランクアームの長さに制限がかかってしまうおそれがある。一方、往復距離を短くする、すなわち、ショートストローク化した場合、往復運動を回転運動へ返還するクランク機構を構成するクランクアームの長さとコンロッドの長さに制限がかかってしまうおそれがある。 In the case of the conventional crank structure, the proximal large diameter portion of the connecting rod rotates along the circumference with the length of the crank arm as the radius. Therefore, the reciprocating distance between the top dead center and the bottom dead center of the connecting rod is equal to the diameter of the crank arm. As a result, if the reciprocating distance is lengthened, that is, if the stroke is lengthened, the crank arm must be lengthened, which causes problems such as an increase in the size of the crankcase. Length may be limited. On the other hand, if the reciprocating distance is shortened, that is, if the stroke is shortened, there is a risk that the length of the crank arm and the length of the connecting rod that constitute the crank mechanism that returns reciprocating motion to rotary motion will be limited.
 上記の問題に対して、上記の特開2016-075208号に開示されているピストン運動の回転変換構造は、クランクアームに替えて内歯車と遊星歯車機構からなる変換機構を設けて、従来のクランク構造におけるクランクアームの回転動作を、内歯車に内接して転動する遊星歯車の回転に変換し、ピストンを直線的に往復運動させると共に、当該往復運動にクランクアームの長さが影響しないように構成している。
 しかしながら、上記の回転変換構造によれば、内歯車に内接している遊星歯車がピストンに加わる圧力によって内歯車からズレたり、滑ったりして正しく力を変換することができないおそれがある。また、回転返還構造に係る部品点数が多いことから、装置が複雑化して組立に手間暇及びコストがかかるおそれがある。
In response to the above problem, the piston motion rotation conversion structure disclosed in JP-A-2016-075208 provides a conversion mechanism consisting of an internal gear and a planetary gear mechanism instead of the crank arm, and a conventional crank. The rotary motion of the crank arm in the structure is converted into the rotation of the planetary gear that rolls in contact with the internal gear, causing the piston to reciprocate linearly, and the length of the crank arm does not affect the reciprocating motion. Configure.
However, according to the above-described rotation conversion structure, there is a possibility that the planetary gears that are internally in contact with the internal gear may be displaced or slipped from the internal gear due to the pressure applied to the piston, making it impossible to correctly convert the force. In addition, since the number of parts related to the rotation return structure is large, the device may become complicated, requiring time and effort and cost for assembly.
 したがって、本発明が解決しようとする課題は、コンロッド又はクランクアームの長さに制限されずボアとストロークを自在に設計することができるエンジンを提供することを目的とする。 Therefore, the problem to be solved by the present invention is to provide an engine in which the bore and stroke can be freely designed without being restricted by the length of the connecting rod or the crank arm.
 請求項1に記載のエンジンは、左右両端面にそれぞれピストンヘッドを備えた略円柱体状のピストンと、
当該ピストンの周壁部中心に、前記ピストンの径方向に沿って形成された所定の内径を有する貫通孔と、
当該貫通孔の内壁に沿って形成された内歯車と、
当該内歯車と噛合する歯車と、
当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
当該クランクアームの基端に固定されたクランク軸と、
前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
前記ピストンが挿嵌される円筒形状のシリンダーを備え、前記ピストンヘッドがそれぞれ対向する燃焼室を前記シリンダー両端にそれぞれ連接してなるシリンダーケースと、から構成され、
当該シリンダー内を、前記ピストンが左右方向へ往復運動するとき、
前記ピストンに従動して往復運動する前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とする。
The engine according to claim 1 comprises a substantially cylindrical piston having piston heads on both left and right end faces,
a through hole having a predetermined inner diameter formed along the radial direction of the piston at the center of the peripheral wall of the piston;
an internal gear formed along the inner wall of the through hole;
a gear that meshes with the internal gear;
a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
a crankshaft fixed to the proximal end of the crank arm;
a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
A cylinder case comprising a cylindrical cylinder into which the piston is inserted, and a cylinder case in which combustion chambers facing the piston heads are respectively connected to both ends of the cylinder,
When the piston reciprocates in the left-right direction in the cylinder,
the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a predetermined direction;
The crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
The eccentric free rotor rotates in the through hole in a direction opposite to the direction of rotation of the crank arm.
 請求項2に記載のエンジンは、請求項1に記載の発明において、前記ピストンの直径を、左右両端面の前記ピストンヘッドに連接形成したピストンスカートの径に対して、前記周壁部中心近傍の径を細く形成したことを特徴とする。 The engine according to claim 2 is characterized in that, in the invention according to claim 1, the diameter of the piston is set to the diameter of the vicinity of the center of the peripheral wall portion with respect to the diameter of the piston skirt formed to be connected to the piston head on both the left and right end faces. is thinly formed.
 請求項3に記載のエンジンは、請求項1に記載の発明において、前記ピストンの直径を、左右両端面の前記ピストンヘッドに連接形成したピストンスカートの径に対して、前記周壁部中心近傍の径を太く、又は当該ピストンスカートの反ピストンヘッド側から前記周壁部中心に向かって漸増させて当該周壁部中心近傍を略球体状に形成したことを特徴とする。 The engine according to claim 3 is the invention according to claim 1, wherein the diameter of the piston is set to the diameter of the vicinity of the center of the peripheral wall portion with respect to the diameter of the piston skirt formed to be connected to the piston head on the left and right end surfaces. or is gradually increased from the side of the piston skirt opposite to the piston head toward the center of the peripheral wall to form the vicinity of the center of the peripheral wall into a substantially spherical shape.
 請求項4に記載のエンジンは、請求項1に記載の発明において、左右両端面の前記ピストンヘッドに連接形成したピストンスカートの反ピストンヘッド側を切り欠いて、
前記ピストンの前記周壁部中心近傍に前記貫通孔を備えた平面部を形成したことを特徴とする。
The engine according to claim 4 is the invention according to claim 1, in which the opposite side of the piston head is cut away from the piston skirt formed to be connected to the piston head on both left and right end faces,
A flat portion having the through hole is formed near the center of the peripheral wall portion of the piston.
 請求項5に記載のエンジンは、請求項1に記載の発明において、前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする。
The engine according to claim 5 is the invention according to claim 1, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided,
When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
 請求項6に記載のエンジンは、請求項1に記載の発明において、前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする。
The engine according to claim 6 is the invention according to claim 1, further comprising an injection device having a spray port arranged at a predetermined position in the combustion chamber,
When the piston head abruptly compresses air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined amount of fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
 請求項7に記載のエンジンは、請求項5若しくは請求項6に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
前記吸気口と前記排気口を前記燃焼室の所定位置に設けたことを特徴とする。
The engine according to claim 7 is the invention according to claim 5 or claim 6, wherein an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
The intake port and the exhaust port are provided at predetermined positions in the combustion chamber.
 請求項8に記載のエンジンは、請求項5若しくは請求項6に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
前記吸気口を前記シリンダーの所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
前記吸気ポートに、前記シリンダー内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブを設けたことを特徴とする。
The engine according to claim 8 is, in the invention according to claim 5 or 6, an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
The intake port is provided with a piston reed valve for restricting the combustible gas mixture or the air to flow in one direction into the cylinder.
 請求項9に記載のエンジンは、請求項5若しくは請求項6に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
少なくとも前記クランク軸と前記クランクアームを内包した前記貫通孔を囲橈するようにクランクケースを設けて、
前記吸気ポートに、前記クランクケース内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するクランクケースリードバルブを設け、前記クランク軸を中心とした放射方向に沿った前記クランクケースの所定位置に前記吸気口を配置し、
前記排気口を前記シリンダーの側壁部の所定位置に配置し、
前記クランクケースと前記シリンダーを連通すると共に、前記排気口よりも反燃焼室側にシリンダー側開口端が配置されたバイパスポートを設けたことを特徴とする。
A ninth aspect of the invention is directed to the fifth or sixth aspect of the invention, wherein an intake port having an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
A crankcase is provided so as to surround the through hole containing at least the crankshaft and the crank arm,
The intake port is provided with a crankcase reed valve that restricts the combustible gas mixture or the air to flow in one direction into the crankcase, and the crankcase along the radial direction about the crankshaft. arranging the air inlet at a predetermined position of the case,
arranging the exhaust port at a predetermined position on the side wall of the cylinder;
A bypass port is provided that communicates between the crankcase and the cylinder and has an open end on the cylinder side that is located on the side opposite to the combustion chamber with respect to the exhaust port.
 請求項10に記載のエンジンは、請求項5若しくは請求項6に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
少なくとも前記クランク軸と前記クランクアームを内包した前記貫通孔を囲橈するようにクランクケースを設けて、
当該クランクケースの前記クランク軸の軸方向に沿った所定位置に前記吸気口を配置し、
当該吸気口は、ローター面周縁部の所定位置を弧状に切り欠いて形成した切欠部を備えた前記偏心フリーローターの前記ローター面周縁近傍と対向配置され、
前記吸気口は、前記偏心フリーローターの回転にしたがって、前記切欠部と重なり合ったとき開放され、前記周縁部と重なり合ったとき閉鎖されるように構成し、
前記排気口を前記シリンダーの側壁部の所定位置に配置し、
前記クランクケースと前記シリンダーを連通すると共に、前記排気口よりも反燃焼室側にシリンダー側開口端が配置されたバイパスポートを設けたことを特徴とする。
The engine according to claim 10 is, in the invention according to claim 5 or claim 6, an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
A crankcase is provided so as to surround the through hole containing at least the crankshaft and the crank arm,
disposing the intake port at a predetermined position along the axial direction of the crankshaft of the crankcase;
The intake port is arranged to face the vicinity of the peripheral edge of the rotor surface of the eccentric free rotor provided with a notch formed by cutting a predetermined position of the peripheral edge of the rotor surface in an arc shape,
The intake port is configured to be opened when overlapping with the notch portion and closed when overlapping with the peripheral edge portion as the eccentric free rotor rotates,
arranging the exhaust port at a predetermined position on the side wall of the cylinder;
A bypass port is provided that communicates between the crankcase and the cylinder and has an open end on the cylinder side that is located on the side opposite to the combustion chamber with respect to the exhaust port.
 請求項11に記載のエンジンは、一対の略円柱状の小径部と、当該小径部よりも大径の略円柱状で前記小径部に挟まれた大径部とからなり、前記小径部の反大径部側の端面にピストンヘッドと当該ピストンヘッドに連接するピストンスカートが形成され、前記大径部の中心部に所定の内径を有する貫通孔が径方向に沿って形成されたピストンと、
前記貫通孔の内壁に沿って形成された内歯車と、
当該内歯車と噛合する歯車と、
当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
当該クランクアームの基端に固定されたクランク軸と、
前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
前記小径部が挿嵌される一対の円筒形状のシリンダーと、当該シリンダーと連接し、前記大径部が嵌合されるハウジングを備え、前記シリンダーの反ハウジング側端部に前記ピストンヘッドが対向する燃焼室を有するシリンダーケースと、から構成され、
前記シリンダー内を、前記小径部が往復運動するとき、
当該小径部に従動して前記大径部が往復運動して、前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とする。
The engine according to claim 11 comprises a pair of substantially cylindrical small-diameter portions, and a substantially cylindrical large-diameter portion having a larger diameter than the small-diameter portions and sandwiched between the small-diameter portions. a piston in which a piston head and a piston skirt connected to the piston head are formed on the end face of the large diameter portion, and a through hole having a predetermined inner diameter is formed in the center of the large diameter portion along the radial direction;
an internal gear formed along the inner wall of the through hole;
a gear that meshes with the internal gear;
a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
a crankshaft fixed to the proximal end of the crank arm;
a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
A pair of cylindrical cylinders into which the small-diameter portions are inserted and a housing connected to the cylinders and into which the large-diameter portions are fitted are provided, and the piston head faces the ends of the cylinders on the opposite side of the housing. a cylinder case having a combustion chamber,
When the small diameter portion reciprocates in the cylinder,
The large diameter portion reciprocates following the small diameter portion, and the gear meshed with the internal gear rotates in the through hole in a predetermined direction,
The crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
The eccentric free rotor rotates in the through hole in a direction opposite to the direction of rotation of the crank arm.
 請求項12に記載のエンジンは、請求項11に記載の発明において、前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする。
The engine according to claim 12 is the invention according to claim 11, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided,
When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
 請求項13に記載のエンジンは、請求項11に記載の発明において、前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする。
The engine according to claim 13 is the invention according to claim 11, further comprising an injection device having a spray port arranged at a predetermined position in the combustion chamber,
When the piston head rapidly compresses the air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
 請求項14に記載のエンジンは、請求項12に若しくは請求項13に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
前記吸気口と前記排気口を前記燃焼室の所定位置に設けたことを特徴とする。
The engine according to claim 14 is the invention according to claim 12 or claim 13, wherein an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting an exhaust gas after combustion of the gas mixture or the fuel from the combustion chamber;
The intake port and the exhaust port are provided at predetermined positions in the combustion chamber.
 請求項15に記載のエンジンは、請求項12若しくは請求項13に記載の発明において、前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
前記吸気口を前記シリンダーの所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
前記吸気ポートに、前記シリンダー内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブを設けたことを特徴とする。
The engine according to claim 15 is the invention according to claim 12 or 13, wherein an intake port provided with an intake port for supplying the combustible mixed gas or the air to the combustion chamber; providing an exhaust port having an exhaust port for exhausting the exhaust gas after the gas or the fuel is burned from the combustion chamber;
providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
The intake port is provided with a piston reed valve for restricting the combustible gas mixture or the air to flow in one direction into the cylinder.
 請求項16に記載のエンジンは、左右両端面にそれぞれピストンヘッドを備えた略円柱体状のピストンと、
当該ピストンの周壁部中心に、前記ピストンの径方向に沿って形成された所定の内径を有する貫通孔と、
当該貫通孔の内壁に沿って形成された内歯車と、
当該内歯車と噛合する歯車と、
当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
当該クランクアームの基端に固定されたクランク軸と、
前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
前記ピストンが挿嵌される円筒形状のシリンダーを備え、当該シリンダーの一端に一の前記ピストンヘッドが対向する燃焼室を連接し、前記シリンダーの他端に他の前記ピストンヘッドが対向する吸排気調圧室を連接してなるシリンダーケースと、
前記燃焼室と前記吸排気調圧室とを連通するバイパスポートと、から構成され、
当該シリンダー内を、前記ピストンが左右方向へ往復運動するとき、
前記ピストンに従動して往復運動する前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とする。
The engine according to claim 16 comprises a substantially cylindrical piston having piston heads on both left and right end faces,
a through hole having a predetermined inner diameter formed along the radial direction of the piston at the center of the peripheral wall of the piston;
an internal gear formed along the inner wall of the through hole;
a gear that meshes with the internal gear;
a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
a crankshaft fixed to the proximal end of the crank arm;
a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
An intake/exhaust adjuster comprising a cylindrical cylinder into which the piston is inserted, a combustion chamber facing one of the piston heads at one end of the cylinder, and another piston head facing the other end of the cylinder. a cylinder case formed by connecting pressure chambers;
a bypass port communicating between the combustion chamber and the intake and exhaust pressure regulating chamber;
When the piston reciprocates in the left-right direction in the cylinder,
the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a predetermined direction;
The crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
The eccentric free rotor rotates in the through hole in a direction opposite to the direction of rotation of the crank arm.
 請求項17に記載のエンジンは、請求項16に記載の発明において、前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする。
The engine according to claim 17 is the invention according to claim 16, wherein a spark plug having an electrode arranged at a predetermined position in the combustion chamber is provided,
When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. It is characterized by being made to be
 請求項18に記載のエンジンは、請求項16に記載の発明において、前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする。
The engine according to claim 18 is, in the invention according to claim 16, provided with an injection device having a spray port arranged at a predetermined position in the combustion chamber,
When the piston head abruptly compresses air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined amount of fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. It is characterized by being made to burn.
 請求項19に記載のエンジンは、請求項17若しくは請求項18に記載の発明において、前記可燃性混合気体又は前記空気を前記吸排気調圧室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
前記吸気口を前記吸排気調圧室の所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
前記吸気ポートに、前記吸排気調圧室内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブと、当該ピストンリードバルブと前記吸排気調圧室との間に前記バイパスポートの吸排気調圧室側開口端とを設けたことを特徴とする。
The engine according to claim 19 is the engine according to claim 17 or claim 18, wherein an intake port having an intake port for supplying the combustible mixed gas or the air to the intake and exhaust pressure regulating chamber; an exhaust port having an exhaust port for exhausting a combustible gas mixture or an exhaust gas after combustion of the fuel from the combustion chamber;
The intake port is provided at a predetermined position in the intake/exhaust pressure regulating chamber, the exhaust port is provided at a predetermined position in the combustion chamber,
a piston reed valve that regulates the unidirectional flow of the combustible gas mixture or the air toward the intake/exhaust pressure regulating chamber; and a space between the piston reed valve and the intake/exhaust pressure regulating chamber. is provided with an open end of the bypass port on the intake and exhaust pressure regulating chamber side.
 請求項20に記載のエンジンは、請求項1、請求項11、若しくは請求項16のいずれかに記載の発明において、前記内歯車の内径と前記歯車の直径の比が2対1であることを特徴とする。 The engine according to claim 20 is the invention according to claim 1, claim 11, or claim 16, wherein the ratio of the inner diameter of the internal gear to the diameter of the gear is 2:1. Characterized by
 請求項21に記載のエンジンは、請求項1、請求項11、若しくは請求項16のいずれかに記載の発明において、前記偏心フリーローターの軸心を、短径と長径の比が1対3となる位置に設けたことを特徴とする。 Claim 21 is the engine of claim 1, claim 11, or claim 16, wherein the axial center of the eccentric free rotor has a minor axis to major axis ratio of 1:3. It is characterized by being provided at a position where
 本発明に係るエンジンによれば、略円柱体のピストンの左右両端面にピストンヘッドを形成し、周壁部中心にピストンの径方向に沿って所定の内径を備えた貫通孔を設けた。そして、当該貫通孔に内歯車を形成して、当該内歯車と噛合する歯車と、貫通孔の内径と略同径の円盤状偏心フリーローターを歯車に重ね合わせて貫通孔内に配設した。さらに、歯車と偏心フリーローターを回動自在に軸支するクランクピンを先端に備え、基端にクランク軸を備えるクランクアームを設けた。
 これによって、ピストンがシリンダー内を往復運動したとき、当該ピストンに従動する内歯車と噛合されている歯車を介して、クランク軸を回転させることができる。
 ここで、従来のレシプロエンジンは、ピストンの上死点と下死点間の往復距離がコンロッドの大径部で描かれる円の直径に相当する。そのため、ピストンの往復距離は、当該大径部と接続されるクランクアームの先端で描かれる円の直径に制限されている。
 一方、コンロッドの大径部による円の直径、すなわちピストンの往復距離を本発明に係るエンジンに当てはめた場合、内歯車の内径に相当する。このとき、本発明に係るエンジンが備えるクランクアームは、内歯車に噛合する歯車を軸支するクランクピンで描かれる円に沿って回転するように構成されている。したがって、従来のレシプロエンジンにおいてピストンが一往復する間に一回転するクランクアームの動作と同様に、本発明に係るエンジンにおいてピストンが一往復する間にクランクアームを一回転するように設定すると、内歯車の内径と歯車の直径の比は2対1とすることが好ましい。
 これによって、ピストンの往復距離を一定にすると、従来のクランクアームの長さに対して、本発明に係るクランクアームの長さは、半分にすることができる。これと併せて、本発明に係るエンジンはコンロッドを有していないことから、大幅に軽量化することできるので、クランク軸の高回転化を容易に行うことができる。
 また、本発明に係るクランクアームの長さを従来のクランクアームの長さと同じ長さにした場合は、従来のレシプロエンジンに対して本発明に係るエンジンは、2倍の利得を得ることができ、ピストンを大きく動かすことができる。そのため、ピストンのストローク距離を伸ばして容易にロングストローク化することができる。これによって、エンジンの燃焼効率を改善し、低速トルクを増大して燃費を改善することができる。
 そして、本発明によれば、貫通孔内へ回動自在に嵌合された偏心フリーローターを設けた。当該偏心フリーローターは、ピストンの往復運動時にクランクアームの回転方向に対して、相反する方向へ回転するように構成されている。これによって、ピストンの往復運動によって貫通孔へ加わる応力を、偏心フリーローターで受けることができ、貫通孔の歪みを防止することができる。
 さらに、貫通孔内に嵌合された偏心フリーローターが、ピストンヘッドから貫通孔へ伝導する衝撃を受け止めるので、内歯車上で歯車が滑ることを防止することができ、内歯車又は歯車の破損を防止することができる。加えて、歯車が内歯車に沿って一回転する間に偏心フリーローターを逆方向へ一回転させるため、クランクピンで軸支される偏心フリーローターの軸心の位置は、内歯車に対する歯車の軸の位置、すなわち、短径と長径の比が1対3となる位置とすることが好ましい。
 そして、本発明に係るエンジンは、対向配置されたシリンダー内をピストンが直線的に往復運動するように構成されている。これによって、ピストンがシリンダー内壁に対して押圧することによるピストンの側圧を抑制することができるのでピストンの摩擦損失を軽減させることができる。その結果、ピストンとシリンダーの接触に伴う振動の発生或いは騒音の発生を抑制することができる。さらに、略円柱体のピストンの長さを調整することによって、ロングストロークからショートストロークまで自在に設計することができ、エンジンを備えた車両、船舶、飛行機、ポンプ、発電機、農機具等の用途に合わせて、燃費を向上させたエンジン、低速トルクを増大させたエンジン、又は高出力のエンジン等、最適なエンジンを提供することができる。
According to the engine of the present invention, the piston head is formed on both the left and right end surfaces of the substantially cylindrical piston, and the through hole having a predetermined inner diameter is provided in the center of the peripheral wall portion along the radial direction of the piston. Then, an internal gear is formed in the through hole, and a gear meshing with the internal gear and a disk-shaped eccentric free rotor having substantially the same diameter as the inner diameter of the through hole are superimposed on the gear and arranged in the through hole. Furthermore, a crank arm having a crank pin at its distal end and a crank shaft at its proximal end is provided for rotatably supporting the gear and the eccentric free rotor.
As a result, when the piston reciprocates within the cylinder, the crankshaft can be rotated via the gear meshed with the internal gear driven by the piston.
Here, in the conventional reciprocating engine, the reciprocating distance between the top dead center and the bottom dead center of the piston corresponds to the diameter of the circle drawn by the large diameter portion of the connecting rod. Therefore, the reciprocating distance of the piston is limited to the diameter of the circle drawn at the tip of the crank arm connected to the large diameter portion.
On the other hand, when the diameter of the circle formed by the large-diameter portion of the connecting rod, ie, the reciprocating distance of the piston, is applied to the engine according to the present invention, it corresponds to the inner diameter of the internal gear. At this time, the crank arm provided in the engine according to the present invention is configured to rotate along a circle drawn by a crank pin that supports a gear that meshes with the internal gear. Therefore, in the engine according to the present invention, if the crank arm is set to rotate once during one reciprocation of the piston, similar to the operation of the crank arm that rotates once during one reciprocation of the piston in the conventional reciprocating engine, Preferably, the ratio of the inner diameter of the gear to the diameter of the gear is 2:1.
As a result, if the reciprocating distance of the piston is constant, the length of the crank arm according to the present invention can be reduced to half the length of the conventional crank arm. In addition, since the engine according to the present invention does not have a connecting rod, the weight can be significantly reduced, so that the crankshaft can be easily rotated at a high speed.
Further, when the length of the crank arm according to the present invention is set to be the same as the length of the conventional crank arm, the engine according to the present invention can obtain twice the gain as compared with the conventional reciprocating engine. , the piston can be moved greatly. Therefore, the stroke distance of the piston can be extended to easily achieve a long stroke. As a result, the combustion efficiency of the engine can be improved, the low-speed torque can be increased, and the fuel consumption can be improved.
Further, according to the present invention, an eccentric free rotor is provided which is rotatably fitted in the through hole. The eccentric free rotor is configured to rotate in a direction opposite to the rotational direction of the crank arm when the piston reciprocates. As a result, the eccentric free rotor can receive the stress applied to the through-hole due to the reciprocating motion of the piston, thereby preventing distortion of the through-hole.
Furthermore, since the eccentric free rotor fitted in the through-hole receives the impact transmitted from the piston head to the through-hole, it is possible to prevent the gear from slipping on the internal gear, thereby preventing damage to the internal gear or the gear. can be prevented. In addition, since the eccentric free-rotor rotates once in the opposite direction while the gear makes one rotation along the internal gear, the position of the axis of the eccentric free-rotor supported by the crankpin is the same as the gear axis relative to the internal gear. , that is, the position where the ratio of the minor axis to the major axis is 1:3.
The engine according to the present invention is configured such that the piston linearly reciprocates within the opposed cylinders. As a result, the side pressure of the piston due to the piston pressing against the inner wall of the cylinder can be suppressed, so the friction loss of the piston can be reduced. As a result, it is possible to suppress the generation of vibration or noise due to the contact between the piston and the cylinder. Furthermore, by adjusting the length of the substantially cylindrical piston, it is possible to freely design from a long stroke to a short stroke. In addition, it is possible to provide an optimal engine such as an engine with improved fuel efficiency, an engine with increased low-speed torque, or a high-output engine.
 また、本発明に係るエンジンによれば、略円柱体のピストンは左右両端面にピストンヘッドを有している。すなわち、従来の水平対向2気筒エンジンに似て、クランク軸を中心にして、左右両端にピストンヘッドと、当該ピストンヘッドに対向する燃焼室を備えたシリンダーを有するエンジンを構成することができる。
 ここで、点火プラグが有する電極を燃焼室の所定の位置に設けた場合は、ピストンヘッドで燃焼室へ圧縮した可燃性混合気体へスパークを飛ばして点火爆発させる内燃機関を構成することができ、燃焼室の所定の位置に配置した噴霧口を備える噴射装置を設けた場合は、ピストンヘッドで燃焼室へ圧縮した高温高圧空気に噴霧口から燃料を霧状に噴霧して燃焼させる内燃機関を構成することができる。
 また、それらの内燃機関において、可燃性混合気体又は空気を燃焼室へ供給する吸気口を備えた吸気ポートと、燃焼室から排気ガスを排気する排気口を備えた排気ポートを設けて、2ストロークエンジン又は4ストロークエンジンのタイプに合わせて、吸気口と排気口の位置を任意に設定することができる。
 このとき、4ストロークエンジンの場合は、吸気口と排気口を燃焼室の所定位置に設ければよい。
 一方、2ストロークエンジンの場合は、吸気口を設ける位置によって、エンジンの形式が異なる。たとえば、吸気口をシリンダーの所定位置に設けて、吸気ポート内へシリンダーに向かって気流が一方向で流れるように規制するピストンリードバルブを設けた場合は、ピストンリードバルブ型2ストロークエンジンが構成される。また、吸気口をクランクケースの所定位置に設けて、吸気ポート内にクランクケースに向かって気流が一方向に流れるように規制するクランクケースリードバルブを設けた場合は、クランクケースリードバルブ型2ストロークエンジンが構成される。さらにまた、吸気口をクランクケースの所定位置に設けると共にローター面の周縁部を弧状に切り欠いて形成した切欠部を備えた偏心フリーローターを設けて、吸気口を偏心フリーローターに対向配置し、当該偏心フリーローターの回転にしたがって、吸気口が切欠部と重なり合ったときは開放され、吸気口が周縁部と重なり合ったときは閉鎖されるようにした場合は、ロータリーディスクバルブ型の2ストロークエンジンを構成することができる。
 上記のように、本発明に係るエンジンは、ロングストローク化又はショートストローク化を容易に行うことができると共に、4ストローク若しくは2ストロークを自在に選択することができる。これによって、本発明に諮るエンジンは、ストローク長を自在に設計することができ、燃費の効率改善又は高出力化等、エンジンに要求される性能に合わせて自在に設計することができる。
Further, according to the engine of the present invention, the substantially cylindrical piston has piston heads on both left and right end faces. In other words, similar to a conventional horizontally opposed two-cylinder engine, it is possible to configure an engine having cylinders with piston heads at both left and right ends of a crankshaft and combustion chambers facing the piston heads.
Here, when the electrode of the ignition plug is provided at a predetermined position in the combustion chamber, it is possible to configure an internal combustion engine that ignites and explodes by sending a spark to the combustible gas mixture compressed into the combustion chamber by the piston head, If an injection device with a spray port located at a predetermined position in the combustion chamber is provided, it constitutes an internal combustion engine in which fuel is atomized from the spray port into the high-temperature, high-pressure air compressed into the combustion chamber by the piston head. can do.
In addition, in those internal combustion engines, an intake port having an intake port for supplying a combustible gas mixture or air to the combustion chamber and an exhaust port having an exhaust port for discharging exhaust gas from the combustion chamber are provided to provide a two-stroke engine. The positions of the intake and exhaust ports can be arbitrarily set according to the type of engine or four-stroke engine.
At this time, in the case of a four-stroke engine, the intake port and the exhaust port may be provided at predetermined positions in the combustion chamber.
On the other hand, in the case of a two-stroke engine, the type of engine differs depending on the position of the intake port. For example, when an air intake port is provided at a predetermined position in a cylinder and a piston reed valve is provided to regulate the air flow in one direction toward the cylinder into the intake port, a piston reed valve type two-stroke engine is configured. be. In addition, if the intake port is provided at a predetermined position in the crankcase and a crankcase reed valve is provided in the intake port to restrict the airflow to the crankcase in one direction, a crankcase reed valve type 2-stroke the engine is configured. Furthermore, the intake port is provided at a predetermined position of the crankcase, and an eccentric free rotor is provided with a notch formed by cutting the peripheral edge of the rotor surface in an arc shape, and the intake port is arranged opposite to the eccentric free rotor, When the intake port is opened when the intake port overlaps the notch and is closed when the intake port overlaps the peripheral edge according to the rotation of the eccentric free rotor, a rotary disc valve type 2-stroke engine is used. Can be configured.
As described above, the engine according to the present invention can easily have a long stroke or a short stroke, and can freely select 4-stroke or 2-stroke. As a result, the engine according to the present invention can be freely designed in terms of stroke length, and can be freely designed in accordance with the performance required of the engine, such as improved fuel efficiency or higher output.
第1実施例に係るエンジンの構成の概略を示す説明図である。1 is an explanatory diagram showing the outline of the configuration of an engine according to a first embodiment; FIG. 第1実施例に係るエンジンが備えるピストンの構成の概略を示す説明図である。It is an explanatory view showing an outline of composition of a piston with which an engine concerning a 1st example is provided. 第1実施例に係るエンジンの構成の概略を示すピストンの軸方向に沿った断面図である。1 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of the engine according to the first embodiment; FIG. 第1実施例に係るエンジンのピストンの動作例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of operation of a piston of the engine according to the first embodiment; 第1実施例に係るエンジンのピストンの他の構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 4 is a cross-sectional view along the axial direction of the piston, schematically showing another configuration of the piston of the engine according to the first embodiment; 第1実施例に係るエンジンに基づいた水平対向4気筒エンジンの構成の概略を示す説明図である。It is an explanatory view showing an outline of composition of a horizontally opposed 4-cylinder engine based on the engine concerning a 1st example. 第1実施例に係るエンジンのピストンについて、他形状の構成の概略を示す説明図である。FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment; 第1実施例に係るエンジンのピストンについて、他形状の構成の概略を示す説明図である。FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment; 第1実施例に係るエンジンのピストンについて、他形状の構成の概略を示す説明図である。FIG. 5 is an explanatory diagram showing an outline of the configuration of another shape for the piston of the engine according to the first embodiment; 第2実施例に係るエンジンの構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 10 is a cross-sectional view along the axial direction of the piston, showing the outline of the configuration of the engine according to the second embodiment; 第2実施例に係るエンジンの他の構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 11 is a cross-sectional view along the axial direction of the piston, showing the outline of another configuration of the engine according to the second embodiment; 第2実施例に係るエンジンの他の構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 11 is a cross-sectional view along the axial direction of the piston, showing the outline of another configuration of the engine according to the second embodiment; 図11に記載のエンジンに基づいた水平対向4気筒エンジンの構成の概略を示す説明図である。FIG. 12 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine shown in FIG. 11; 第3実施例に係るエンジンのピストンの構成の概略を示す説明図である。FIG. 11 is an explanatory diagram showing the outline of the configuration of the piston of the engine according to the third embodiment; 第3実施例に係るエンジンの構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 11 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of an engine according to a third embodiment; 第3実施例に係るエンジンに基づいた水平対向4気筒エンジンの構成の概略を示す説明図である。FIG. 11 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine according to the third embodiment; 第4実施例に係るエンジンの構成の概略を示すピストンの軸方向に沿った断面図である。FIG. 11 is a cross-sectional view along the axial direction of a piston showing the outline of the configuration of an engine according to a fourth embodiment; 第4実施例に係るエンジンに基づいた水平対向4気筒エンジンの構成の概略を示す説明図である。FIG. 11 is an explanatory diagram showing the outline of the configuration of a horizontally opposed four-cylinder engine based on the engine according to the fourth embodiment;
 本発明に係るエンジンの実施例を、添付した図面にしたがって以下説明する。図1は、本実施例に係るエンジンの構成の概略を示した説明図であり、図2は、本実施例に係るエンジンが有するピストンの構成の概略を示した説明図である。 An embodiment of the engine according to the present invention will be described below with reference to the attached drawings. FIG. 1 is an explanatory diagram showing the outline of the configuration of the engine according to the present embodiment, and FIG. 2 is the explanatory diagram showing the outline of the configuration of the piston of the engine according to the present embodiment.
 エンジン10は、図1に示すように、ピストン11と、シリンダーケース20を有している。
 ピストン11は、図2に示すように、略円柱体からなり、左右両端面にピストンヘッド12,12を有し、略円柱体の周壁部には、ピストンヘッド12に連接してピストンスカート13が形成されている。
 そして、周壁部の中心には、略円柱体の径方向に沿って所定の内径を有する貫通孔14が形成されている。
The engine 10 has a piston 11 and a cylinder case 20, as shown in FIG.
As shown in FIG. 2, the piston 11 is formed of a substantially cylindrical body, and has piston heads 12, 12 on both left and right end surfaces. formed.
A through hole 14 having a predetermined inner diameter is formed in the center of the peripheral wall along the radial direction of the substantially cylindrical body.
 貫通孔14は、図3に示すように、内歯車14aを有している。内歯車14aは、貫通孔14の軸方向に沿って刻まれた歯を、貫通孔14の内壁の周方向に沿って並設して構成されている。
 また、貫通孔14内には、図1~図3に示すように、歯車15と偏心フリーローター16を有している。
 歯車15は、軸方向に沿って歯が刻まれ、内歯車14aと噛合して転動可能に構成されている。歯車15の直径rと、内歯車14aの内径Rとの比は、1:2となるように構成されている。
 偏心フリーローター16は、貫通孔14の内径と略同径の円盤状に形成され、滑動自在かつ回動自在に貫通孔14に嵌合されている。偏心フリーローター16の軸心は、当該偏心フリーローター16の直径を4等分し、短径と長径の比が1:3となる位置に設けられている。
 歯車15と偏心フリーローター16は、クランクピン17で軸支されている。
The through hole 14 has an internal gear 14a, as shown in FIG. The internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
Further, the through hole 14 has a gear 15 and an eccentric free rotor 16 as shown in FIGS.
The gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a. The ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
The eccentric free rotor 16 is formed in a disk shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable. The axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
The gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
 クランクアーム18は、先端にクランクピン17を有し、基端にクランク軸19を有している。
 歯車15が内歯車14aに沿って一周したとき、クランクアーム18は、クランク軸19を一回転させるように構成されている。
 ここで、歯車15の直径rと、内歯車14aの内径Rとの比は、1:2となるように構成されていることから、図4に示すように、ピストン11が一往復したとき、歯車15は内歯車14a内を2回転して回転開始当初の初期位置に戻り、クランクアーム18を介してクランク軸19を一回転させる。
 これによって、ピストン11の往復運動は、歯車15の周回運動を介してクランク軸19の回転運動へ変換することができる。
 なお、本実施例に係るエンジン10では、クランクピン17が軸支している歯車15を、貫通孔14の内歯車14aと噛合させて転動させる構成としたが、これに限定されるものでは無く、内歯車14aと歯車15との間に1つ又は2つ以上の遊星歯車からなる遊星ギヤを噛ませて内歯車14aに対するクランクアーム18、クランク軸19のギヤ比を調整自在な構成としても良い。
The crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
The crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a.
Here, since the ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is 1:2, as shown in FIG. The gear 15 rotates twice inside the internal gear 14a, returns to the initial position at the beginning of rotation, and rotates the crankshaft 19 through the crank arm 18 once.
Thereby, the reciprocating motion of the piston 11 can be converted into rotary motion of the crankshaft 19 via the orbiting motion of the gear 15 .
In the engine 10 according to the present embodiment, the gear 15 supported by the crank pin 17 is configured to mesh with the internal gear 14a of the through hole 14 and rotate, but the configuration is not limited to this. Alternatively, a planetary gear consisting of one or more planetary gears may be meshed between the internal gear 14a and the gear 15 to freely adjust the gear ratio of the crank arm 18 and the crankshaft 19 to the internal gear 14a. good.
 偏心フリーローター16は、図3及び図4に示すように、歯車15と共にクランクピン17で軸支されている。そして、歯車15が内歯車14aと噛合して貫通孔14内を転動する構成に対し、偏心フリーローター16は、偏心させた軸心が、歯車15の転動、すなわちクランクピン17の変位に伴って貫通孔14の軸を中心にして周回する。このとき、図3及び図4に示すように、クランクアーム18を回転させる歯車15の回転方向(矢印T)の方向を順方向としたとき、偏心フリーローター16の回転方向は、矢印Fで示した逆方向となる。また、図示したように、偏心フリーローター16は、歯車15と共にクランクピン17で軸支されていることから、偏心フリーローターの軸心は、偏心フリーローターの直径を4分割したとき、短径と長径との比が1:3となる位置となる。ここに偏心フリーローターの軸心を設けることによって、歯車が矢印T方向へ2回転する間に、偏心フリーローターを矢印F方向へ一回転させることができる。 The eccentric free rotor 16 is supported by a crank pin 17 together with the gear 15, as shown in FIGS. While the gear 15 meshes with the internal gear 14 a and rolls in the through hole 14 , the eccentric free rotor 16 has an eccentric shaft center that causes the rotation of the gear 15 , that is, the displacement of the crank pin 17 . Along with this, it circulates around the axis of the through hole 14 . At this time, as shown in FIGS. 3 and 4, when the direction of rotation (arrow T) of gear 15 that rotates crank arm 18 is the forward direction, the direction of rotation of eccentric free rotor 16 is indicated by arrow F. reverse direction. As shown in the figure, since the eccentric free rotor 16 is supported by the crank pin 17 together with the gear 15, the axial center of the eccentric free rotor is equal to the minor axis when the diameter of the eccentric free rotor is divided into four parts. This is the position where the ratio to the major axis is 1:3. By providing the axis of the eccentric free rotor here, the eccentric free rotor can be rotated once in the direction of arrow F while the gear rotates in the direction of arrow T twice.
 これによって、貫通孔14に嵌合された偏心フリーローター16は、ピストン11の往復運動に伴う歯車15の転動、すなわちクランクアーム18の回転を妨げることなく、貫通孔14内で回転することができる。そして、貫通孔14へ偏心フリーローター16を滑動自在かつ回動自在に嵌合したことによって、偏心フリーローター16は、ピストン11の往復運動によって貫通孔14に掛かる応力等を受け止めることができるので、当該貫通孔14及び当該貫通孔14の内壁に沿って形成された内歯車14aが歪むことを防止することができる。そのため、歯車15が内歯車14a上で滑ったり、歯が欠けたりすることを防止することができる。 As a result, the eccentric free rotor 16 fitted in the through hole 14 can rotate within the through hole 14 without interfering with the rolling of the gear 15 accompanying the reciprocating motion of the piston 11, that is, the rotation of the crank arm 18. can. By slidably and rotatably fitting the eccentric free rotor 16 into the through hole 14, the eccentric free rotor 16 can receive the stress applied to the through hole 14 by the reciprocating motion of the piston 11. It is possible to prevent the through hole 14 and the internal gear 14a formed along the inner wall of the through hole 14 from being distorted. Therefore, it is possible to prevent the gear 15 from slipping on the internal gear 14a and from missing teeth.
 シリンダーケース20は、図1から図4に示すように、円筒状のシリンダー20aを有している。当該シリンダーの両端面には、所定形状の燃焼室21,21が連接形成されている。当該燃焼室21は、所定位置に点火プラグ22と、吸気ポートの吸気口23と、排気ポートの排気口24が形成されている。 The cylinder case 20 has a cylindrical cylinder 20a, as shown in FIGS. Combustion chambers 21, 21 having a predetermined shape are formed to be connected to both end surfaces of the cylinder. The combustion chamber 21 has a spark plug 22, an intake port 23, and an exhaust port 24 at predetermined positions.
 点火プラグ22は、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、通電され点火して火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってシリンダー20内でピストン11が動作する。
 なお、上記の可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。
The ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11 in the combustion chamber 21. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20 .
The above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
 また、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Alternatively, instead of the ignition plug, an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 吸気ポートが備える吸気口23は、可燃性混合気体を燃焼室21内へ吸気されるように構成され、当該吸気口23を吸気バルブ(図示略)が開閉可能に覆蓋している。
 排気ポートが備える排気口24は、燃焼室21内に残留している爆発燃焼後の排気ガスを燃焼室21外へ排気するように構成され、当該排気口24を排気バルブ(図示略)が開閉可能に覆蓋している。
 吸気バルブ又は排気バルブは、カム、ロッカーアーム等でクランク軸19の回転、すなわちピストン11の動作に従動して吸気口23又は排気口24を開閉するように構成されている。
 これによって、シリンダー20の左右両端に設けた燃焼室21,21内へ可燃性混合気体を交互に供給して爆発燃焼させることによって、図4に示すように、ピストン11を左右へ往復運動させることができ、クランク軸19を回転させることができる。
An intake port 23 provided in the intake port is configured to draw combustible mixed gas into the combustion chamber 21, and an intake valve (not shown) covers the intake port 23 so as to be openable and closable.
The exhaust port 24 provided in the exhaust port is configured to exhaust the exhaust gas remaining in the combustion chamber 21 after explosive combustion to the outside of the combustion chamber 21, and the exhaust port 24 is opened and closed by an exhaust valve (not shown). covered as much as possible.
The intake valve or the exhaust valve is configured to open and close the intake port 23 or the exhaust port 24 by following the rotation of the crankshaft 19, that is, the movement of the piston 11, using a cam, rocker arm, or the like.
As a result, the combustible gas mixture is alternately supplied to the combustion chambers 21, 21 provided at the left and right ends of the cylinder 20 for explosive combustion, thereby causing the piston 11 to reciprocate left and right as shown in FIG. and the crankshaft 19 can be rotated.
 上記の構成を備えたエンジン10は、次に説明するように動作する。添付した図面にしたがって以下説明する。
 図4は、シリンダー20a内におけるピストン11の往復運動に伴い、内歯車14aに沿って歯車15が回転するときの両者の位置関係を示す説明図である。
The engine 10 having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
FIG. 4 is an explanatory view showing the positional relationship between the two when the gear 15 rotates along the internal gear 14a as the piston 11 reciprocates in the cylinder 20a.
 貫通孔14の内周に形成した内歯車14aの内径Rと、クランクピン17が軸支している歯車15の外径rの比は、2対1に構成されている。そのため、以下のように内歯車14a、すなわち貫通孔14を備えたピストン11の往復運動に対してクランクアーム18が回転する。ここで、図4に示すように、ピストン11の右端側ピストンヘッド12の移動距離をLとし、右端側の始端、すなわち上死点の位置をL0、左端側の終端、すなわち下死点の位置をL1とする。
 図4(a)は、内歯車14a左端と歯車15の左端が接し、ピストン11のピストンヘッドが上死点L0の位置にある場合を示している。これを歯車15の回転が始まる初期位置とする。ここから、歯車15は時計回りの矢印Tの向きに回転し、偏心フリーローター16は逆時計回りの矢印Fの向きに回転する。
 図4(b)は、図4(a)から歯車15が時計回りに半回転し、内歯車14aの下端に接している場合である。このとき、右側ピストンヘッド12の位置は往路途中でL/2の位置となる。
 図4(c)は、図4(a)から歯車15が時計回りに一回転し、内歯車14aの右端に接している場合である。このとき、右側ピストンヘッド12の位置は、下死点L1の位置となり、ここからピストン11の往復運動は折り返しとなる。
 図4(d)は、図4(c)から歯車15が時計回りに半回転し、内歯車14aの上端に接している場合である。このとき、右側ピストンヘッド12の位置は、復路途中でL/2の位置となる。
 さらに、図4(d)から歯車15が半回転したとき、歯車15は、図4(a)の初期位置へ帰還する。このとき、クランクアーム18が一回転してクランク軸19を一回転させ、右側ピストンヘッド12の位置は、上死点L0へ帰還する。
 上記の動作を繰り返すことによって、ピストン11の直線的な往復運動を、貫通孔14内の内歯車14aと噛合する歯車15の回転運動を介して、クランク軸19の回転運動へ変換することができる。
The ratio of the inner diameter R of the internal gear 14a formed on the inner circumference of the through hole 14 to the outer diameter r of the gear 15 supported by the crank pin 17 is 2:1. Therefore, the crank arm 18 rotates with respect to the reciprocating motion of the internal gear 14a, that is, the piston 11 having the through hole 14, as described below. Here, as shown in FIG. 4, the moving distance of the right end piston head 12 of the piston 11 is L, the starting end of the right end, that is, the position of the top dead center is L0, the end of the left end, that is, the position of the bottom dead center is L1.
FIG. 4(a) shows the case where the left end of the internal gear 14a and the left end of the gear 15 are in contact with each other, and the piston head of the piston 11 is at the top dead center L0. This is the initial position where the gear 15 starts rotating. From here, gear 15 rotates clockwise in the direction of arrow T and eccentric free rotor 16 rotates in the direction of arrow F counterclockwise.
FIG. 4(b) shows a case where the gear 15 rotates half clockwise from FIG. 4(a) and is in contact with the lower end of the internal gear 14a. At this time, the position of the right side piston head 12 becomes the position of L/2 on the forward path.
FIG. 4(c) shows a case where the gear 15 rotates clockwise from FIG. 4(a) and is in contact with the right end of the internal gear 14a. At this time, the position of the right piston head 12 becomes the position of the bottom dead center L1, and the reciprocating motion of the piston 11 turns back from here.
FIG. 4(d) shows a case where the gear 15 rotates half clockwise from FIG. 4(c) and is in contact with the upper end of the internal gear 14a. At this time, the position of the right piston head 12 becomes the position of L/2 on the way back.
Further, when the gear 15 rotates half from FIG. 4(d), the gear 15 returns to the initial position shown in FIG. 4(a). At this time, the crank arm 18 rotates once to rotate the crankshaft 19 once, and the position of the right piston head 12 returns to the top dead center L0.
By repeating the above operation, the linear reciprocating motion of the piston 11 can be converted into the rotary motion of the crankshaft 19 via the rotary motion of the gear 15 meshing with the internal gear 14a in the through hole 14. .
 偏心フリーローター16は、図4に示すように、歯車15の回転軸、すなわちクランクピン17の変位にしたがって、クランク軸19からクランクピン17までのクランクアーム18の長さの位置で偏心フリーローター16の軸心が変位し、貫通孔14内を歯車15の回転方向とは逆方向(矢印F)の反時計回りに回転する。
 これによって、ピストン11が往復運動するとき、貫通孔14に嵌合された偏心フリーローター16は、当該貫通孔14内で軸心を変位させながら滑動するので、燃焼爆発によってピストンヘッド12からピストン11が受ける力を偏心フリーローター16で受け、貫通孔14が歪むことを防止することができる。
As shown in FIG. 4, the eccentric free rotor 16 rotates at a position along the length of the crank arm 18 from the crankshaft 19 to the crankpin 17 in accordance with the displacement of the rotation axis of the gear 15, that is, the crankpin 17. is displaced, and rotates in the counterclockwise direction (arrow F) in the direction opposite to the rotation direction of the gear 15 in the through hole 14 .
As a result, when the piston 11 reciprocates, the eccentric free rotor 16 fitted in the through hole 14 slides in the through hole 14 while displacing the axial center. is received by the eccentric free rotor 16, and the through hole 14 can be prevented from being distorted.
 次に、図4に示したように、シリンダー20a内でピストン11を往復運動させたとき、燃焼室21,21で行われる各工程について説明する。
 図1~図4に示したエンジン10は、4ストロークエンジンであって、吸気工程、圧縮工程、爆発工程、排気工程を繰り返すように構成されている。ここで、図4に示したピストン11の右側ピストンヘッド12の動作について説明する。
 吸気工程は、図4(a)から図4(b)を経て、図4(c)のように、右側ピストンヘッド12が上死点L0から下死点L1に向かって移動するときに行われる工程である。これによって、燃焼室21及びシリンダー20内へ可燃性混合気体が吸気される。
 圧縮工程は、図4(c)から図4(d)を経て、図4(a)のように、右側ピストンヘッド12が下死点L1から上死点L0に向かって移動するときに行われる工程である。これによって、シリンダー20内に満たされた可燃性混合気体は、燃焼室21へ向かって圧縮される。
 爆発工程は、図4(a)から図4(b)を経て、図4(c)のように、右側ピストンヘッド12が上死点L0から下死点L1に向かって移動するときに行われる工程である。これによって、燃焼室21で圧縮された可燃性混合気体が、点火プラグで点火されて爆発燃焼が発生する。
 排気工程は、図4(c)から図4(d)を経て、図4(a)のように、右側ピストンヘッド12が下死点L1から上死点L0に向かって移動するときに行われる工程である。これによって、燃焼室21内で発生した爆発燃焼によって下死点L1まで押圧されたピストン11が上死点L0へ向かって運動して、ピストンヘッド12がシリンダー内に充満している排気ガスを押し出す。
 そして、ピストン11の左側ピストンヘッド12においても同様に各工程が繰り返される。このとき、右側で吸気工程が行われているとき、左側では圧縮工程が行われ、右側で圧縮工程が行わているとき、左側では爆発工程が行われ、右側で爆発工程が行われているとき、左側では排気工程が行われ、右側で排気工程が行われているとき、左側では吸気工程が行われ、各工程が左右で互い違いに行われるように構成されている。
 したがって、図1から図4に示したエンジン10は、左右で互い違いに各工程を行うように構成した水平対向2気筒エンジンである。
Next, as shown in FIG. 4, each process performed in the combustion chambers 21, 21 when the piston 11 is reciprocated within the cylinder 20a will be described.
The engine 10 shown in FIGS. 1 to 4 is a four-stroke engine configured to repeat an intake stroke, a compression stroke, an explosion stroke, and an exhaust stroke. The operation of the right piston head 12 of the piston 11 shown in FIG. 4 will now be described.
The intake stroke is performed when the right side piston head 12 moves from the top dead center L0 toward the bottom dead center L1 as shown in FIG. 4(c) through FIG. 4(a) to FIG. 4(b). It is a process. A combustible gas mixture is thereby drawn into the combustion chamber 21 and the cylinder 20 .
The compression process is performed when the right piston head 12 moves from the bottom dead center L1 toward the top dead center L0 as shown in FIG. 4(a) through FIG. 4(c) to FIG. 4(d). It is a process. Thereby, the combustible gas mixture filled in the cylinder 20 is compressed toward the combustion chamber 21 .
The explosion process is performed when the right piston head 12 moves from the top dead center L0 toward the bottom dead center L1 as shown in FIG. 4(c) through FIG. 4(a) to FIG. 4(b). It is a process. As a result, the combustible gas mixture compressed in the combustion chamber 21 is ignited by the spark plug to generate explosive combustion.
The exhaust process is performed when the right side piston head 12 moves from the bottom dead center L1 toward the top dead center L0 as shown in FIG. 4(a) through FIG. 4(c) to FIG. 4(d). It is a process. As a result, the piston 11 pushed to the bottom dead center L1 by the explosive combustion generated in the combustion chamber 21 moves toward the top dead center L0, and the piston head 12 pushes out the exhaust gas filling the cylinder. .
Each step is repeated for the left piston head 12 of the piston 11 as well. At this time, when the intake stroke is performed on the right side, the compression stroke is performed on the left side, the compression stroke is performed on the right side, the explosion stroke is performed on the left side, and the explosion stroke is performed on the right side. , the exhaust process is performed on the left side, and when the exhaust process is performed on the right side, the intake process is performed on the left side, and each process is performed alternately on the left and right sides.
Therefore, the engine 10 shown in FIGS. 1 to 4 is a horizontally opposed two-cylinder engine configured to alternately perform each process on the left and right sides.
 また、図5に示したエンジン10Aは、エンジン10と比べてピストン長を短くしたピストン11Aと、当該ピストン11Aにあわせてシリンダー長を短くしたシリンダーケース20Aとから構成されている。貫通孔14と、当該貫通孔14内の内歯車、歯車、クランクピン、クランクアームとクランク軸については、エンジン10と同様であるから説明を省略する。このように、本実施例に係るエンジン10,10Aでは、コンロッドを省いてピストン11,11Aがシリンダーケース20,20Aのシリンダー内で直線的に往復運動するように構成したことから、コンロッドの傾きによってピストンがピストンピンを中心に首を振ってボア壁面に衝突するピストンスラップの発生を極限まで抑え込むことができる。
 そのため、図5に示したピストン11Aのように、ピストンスカート長を最小限の長さで設計することができる。これによって、エンジン10Aは、ピストン11Aの全長を短く構成し、エンジン10Aをコンパクトに構成して、軽量化することができ、またピストン保護のためのオイル使用量も減らすことができる。
The engine 10A shown in FIG. 5 includes a piston 11A having a shorter piston length than the engine 10, and a cylinder case 20A having a shorter cylinder length corresponding to the piston 11A. The through hole 14, and the internal gear, gear, crank pin, crank arm, and crank shaft in the through hole 14 are the same as those of the engine 10, so the description thereof is omitted. In this way, in the engines 10 and 10A according to this embodiment, the connecting rods are omitted and the pistons 11 and 11A are configured to linearly reciprocate within the cylinders of the cylinder cases 20 and 20A. It is possible to minimize the occurrence of piston slap, where the piston swings around the piston pin and collides with the bore wall surface.
Therefore, like the piston 11A shown in FIG. 5, the piston skirt length can be designed with a minimum length. As a result, the engine 10A can be constructed with a short overall length of the piston 11A, the engine 10A can be constructed compactly, and the weight can be reduced, and the amount of oil used for protecting the piston can also be reduced.
 本実施例に係るエンジン10によれば、ピストン11が直線的に往復運動するように構成した。これによって、従来のエンジンのようにピストンがコンロッドでクランクアームとリンクしている構成と比べて、コンロッドを省いたことによる当該コンロッドのモーメントによる揺動、振動を抑制することができる。さらに、ピストンの反対側に設けて、それらの振動を相殺するためのバランスウェイトを省いたり、又は軽量化したりすることができるので、コンロッドを省いたことと合わせてエンジン10を軽量化することができる。
 さらに、ピストン11が略円柱体からなる簡略な構成としたことから、シリンダー内径、すなわち、ボアとピストン11のストローク量を自在に設計することができ、エンジン10の使用目的に合わせて、ショートストロークからロングストロークまで自在に設計することができる。
According to the engine 10 of this embodiment, the piston 11 is configured to linearly reciprocate. As a result, compared to a configuration in which the piston is linked to the crank arm by a connecting rod as in a conventional engine, it is possible to suppress rocking and vibration caused by the moment of the connecting rod due to the omission of the connecting rod. Furthermore, it is possible to omit or reduce the weight of the balance weight provided on the opposite side of the piston to offset their vibration. can.
Furthermore, since the piston 11 has a simple configuration of a substantially cylindrical body, the cylinder inner diameter, that is, the stroke amount of the bore and the piston 11 can be freely designed. It can be freely designed from a stroke to a long stroke.
 また、本実施例に係るピストンの形状は、図1~図4及び図5に示したピストン11,11Aに係る構成に限定されるものではなく、たとえば、図6から図8に示したような構成としても良い。
 図6に示したピストン11Bは、当該ピストン11Bの直径が、ピストンスカート13,13の直径に対して、貫通孔14近傍の直径を細く構成して、ピストン11Bの貫通孔14近傍の周壁部中心を挟んでくびれた形状としたものである。
 図7に示したピストン11Cは、当該ピストン11Cの直径が、ピストンスカート13,13から、貫通孔14近傍に向かって漸増させて、ピストン11Bの貫通孔14の周壁部中心が略球体状に膨らんだ形状としたものである。
 このように、ピストンヘッド12,12に連接するピストンスカート13,13の直径に対して、貫通孔14近傍の径が異なるように構成することによって、たとえば、図6の場合は、内歯車14と歯車15の大きさをそのままにボアを大きくしてショートストローク化することができ、図7の場合は、内歯車14と歯車15の大きさをそのままにボアを小さくしてロングストローク化することができる。
 また、図8に示したピストン11Dは、貫通孔14の軸方向に沿って前後周壁部を切り欠いて、ピストンスカート13,13に連接する平板状の平面部11aに貫通孔14が開けられている形状にしたものである。これによって、略円柱体状のピストン11と比べて、切り欠いた分ピストン11Dを軽量化することができる。
Further, the shape of the piston according to this embodiment is not limited to the configuration related to the pistons 11 and 11A shown in FIGS. It may be configured.
In the piston 11B shown in FIG. 6, the diameter of the piston 11B is smaller than the diameters of the piston skirts 13, 13 in the vicinity of the through hole 14. It has a constricted shape sandwiching the .
In the piston 11C shown in FIG. 7, the diameter of the piston 11C gradually increases from the piston skirts 13, 13 toward the vicinity of the through hole 14, and the center of the peripheral wall portion of the through hole 14 of the piston 11B expands into a substantially spherical shape. It has a rectangular shape.
In this way, by making the diameter of the vicinity of the through hole 14 different from the diameter of the piston skirts 13, 13 connected to the piston heads 12, 12, for example, in the case of FIG. A short stroke can be achieved by enlarging the bore while maintaining the size of the gear 15. In the case of FIG. can.
A piston 11D shown in FIG. 8 has a through hole 14 formed in a planar flat portion 11a connected to the piston skirts 13, 13 by notching the front and rear peripheral wall portions along the axial direction of the through hole 14. It is shaped like a As a result, compared to the substantially cylindrical piston 11, the weight of the piston 11D can be reduced by the amount corresponding to the notch.
 ここで、図1に示したエンジン10は、上記したように、対向配置されたピストンヘッド12,12が交互に爆発を行う、いわば従来のエンジンでいうところのクランク位相角が180度(π)の水平対向2気筒エンジンであって、エンジン10全体としては左右連続して2回爆発工程を続けた後、爆発工程が左右で行われない工程が続く不等間隔爆発を行うように構成されている。この不等間隔爆発に伴う振動を抑制するためにエンジン10Bを構成した。
 図9に示したエンジン10Bは、クランク軸19を延伸して、図1に示したエンジン10を一ユニットとし、当該ユニットを2基並設して水平対向4気筒エンジンに構成したものである。各ユニットを第1ユニット30と、第2ユニット31と称する。それぞれのピストン11とシリンダーケース20の構成については、上記と同様であるから説明を省略する。
 ここで、第1ユニット30のクランクアーム18に対して、第2ユニット31のクランクアーム18が成すクランクの位相角度は180度(π)となるように構成されている。これによって、第1ユニット30側のピストンと第2ユニット31側のピストンは互い違いに交互に往復運動を行うことができ、水平方向の振動を相殺することができる。また、一方のユニットで行われている不等間隔爆発と、他方のユニットで行われている不等間隔爆発を組み合わせることによって、エンジン10B全体では等間隔爆発を行うように構成することができる。当該等間隔爆発については、以下説明する。
Here, in the engine 10 shown in FIG. 1, as described above, the opposed piston heads 12, 12 explode alternately. is a horizontally opposed two-cylinder engine, and the engine 10 as a whole is configured to perform unequal interval explosions, which continue two explosion processes on the left and right sides, followed by a process in which the explosion processes are not performed on the left and right sides. there is The engine 10B is configured in order to suppress the vibration accompanying this unevenly spaced explosion.
The engine 10B shown in FIG. 9 extends the crankshaft 19 to make the engine 10 shown in FIG. Each unit is called a first unit 30 and a second unit 31 . The configurations of the respective pistons 11 and cylinder cases 20 are the same as described above, so descriptions thereof will be omitted.
Here, the phase angle of the crank formed by the crank arm 18 of the second unit 31 with respect to the crank arm 18 of the first unit 30 is 180 degrees (π). As a result, the piston on the side of the first unit 30 and the piston on the side of the second unit 31 can alternately perform reciprocating motions, thereby canceling vibrations in the horizontal direction. Further, by combining the unequal interval explosions performed by one unit and the unequal interval explosions performed by the other unit, the engine 10B as a whole can be configured to perform equidistant explosions. The equidistant explosion will be explained below.
 上記の構成を備えた水平対向4気筒エンジン10Bは、次に説明するように動作する。添付した図面にしたがって以下説明する。
 水平対向4気筒エンジン10Cの第1クランクアーム13aと第2クランクアーム13bのクランク角の位相差が180度(π)である。
 そのため、図9に示すように、第1ユニット30側のピストン11の右側ピストンヘッド12Rが下死点L1に位置し、左側ピストンヘッド12Lが上死点L0に位置している場合に、第2ユニット31側のピストン11の右側ピストンヘッド12Rは上死点L0に位置し、左側ピストンヘッドLは下死点L1に位置している。このように、エンジン10Bは、第1ユニット30のピストン11と第2ユニット31のピストン11が互い違いに相反する方向へ入れ替わるように直線的な往復運動で動作する。
 各ユニット30,31が有するピストンヘッド12,12の各工程における関係を下記の表1に表す。表中の矢印は第1ユニット30のクランクアーム18と、第2ユニット31のクランクアーム18の位相の向きを表し、たとえば、第1ユニット30で矢印が「→」の場合、位相差が180度(π)である第2ユニット31は反対方向の「←」へ進んでいるものとする。
The horizontally opposed four-cylinder engine 10B having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
The phase difference between the crank angles of the first crank arm 13a and the second crank arm 13b of the horizontally opposed four-cylinder engine 10C is 180 degrees (π).
Therefore, as shown in FIG. 9, when the right piston head 12R of the piston 11 on the first unit 30 side is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the second The right piston head 12R of the piston 11 on the unit 31 side is positioned at the top dead center L0, and the left piston head L is positioned at the bottom dead center L1. In this manner, the engine 10B operates in a linear reciprocating motion such that the pistons 11 of the first unit 30 and the pistons 11 of the second unit 31 alternately alternate in opposite directions.
The relationship in each process of the piston heads 12, 12 of the units 30, 31 is shown in Table 1 below. The arrows in the table indicate the phase directions of the crank arm 18 of the first unit 30 and the crank arm 18 of the second unit 31. For example, if the arrow is "→" in the first unit 30, the phase difference is 180 degrees. It is assumed that the second unit 31, which is (π), is proceeding in the opposite direction, “←”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 エンジン10Bは、表1に示したように、項番1行目において、第1ユニット30の左側ピストンヘッド12Lが吸気工程を行っているとき、第1ユニット30のピストン11は、右側ピストンヘッド12Rの方へ向かって水平移動するので、右側ピストンヘッド12Rでは圧縮工程が行われる。このとき、位相差が180度(π)である第2ユニット31では、右側ピストンヘッド12Rで爆発工程が行われて、第2ユニット31のピストン11は左側ピストンヘッド12Lの方へ向かって水平移動し、左側ピストンヘッド12Lでは排気工程が行われる。
 そして、項番1行目で第2ユニット31の右側ピストンヘッド12Rが行った爆発工程は、項番2行目では第1ユニット30の右側ピストンヘッド12R、項番3行目で同ユニット30の左側ピストンヘッド12L、項番4行目で第2ユニット31の左側ピストンヘッド12Lと順次行われる。
 このように、爆発工程を4か所のピストンヘッドで順次行うように振り分けることによって、第1ユニット30と第2ユニット31の両端に設けた4気筒がそれぞれ実行する各工程において、いずれかの燃焼室21において常に爆発工程が行われるように構成することができる。そのため、エンジン10B全体としてみたとき、等間隔爆発を行うように構成することができる。
 また、第1ユニット30と第2ユニット31に係るそれぞれのピストン11が、互いに相反する方向へ交互に直線的な往復運動を行うので、ピストン11の動作に起因する振動を相殺することができ、ピストンスカートがシリンダー20内壁を押圧して発生する側圧を抑制し、ピストンスカートがシリンダー内壁を摺動する際の摩擦損失を軽減させることができる。その結果、ピストンとシリンダーの接触に伴う振動の発生或いは騒音の発生を抑制することができる。
In the engine 10B, as shown in Table 1, in the first line of the item number, when the left side piston head 12L of the first unit 30 is performing an intake stroke, the piston 11 of the first unit 30 moves to the right side piston head 12R. A compression stroke takes place in the right piston head 12R as it moves horizontally toward . At this time, in the second unit 31 with a phase difference of 180 degrees (π), the explosion process is performed in the right piston head 12R, and the piston 11 of the second unit 31 moves horizontally toward the left piston head 12L. An exhaust process is performed in the left piston head 12L.
The explosion process performed by the right piston head 12R of the second unit 31 in the item number line 1 is the right piston head 12R of the first unit 30 in the item number line 2, and the The left side piston head 12L and the left side piston head 12L of the second unit 31 are sequentially performed in the fourth line of the item number.
In this way, by allocating the explosion process so that the four piston heads are sequentially performed, in each process performed by the four cylinders provided at both ends of the first unit 30 and the second unit 31, one of the combustion It can be arranged that the explosion process always takes place in the chamber 21 . Therefore, when viewed as a whole engine 10B, it can be configured to perform equidistant explosions.
In addition, since the pistons 11 of the first unit 30 and the second unit 31 alternately perform linear reciprocating motions in mutually opposite directions, vibration caused by the motion of the pistons 11 can be canceled, The side pressure generated by the piston skirt pressing the inner wall of the cylinder 20 can be suppressed, and the friction loss when the piston skirt slides on the inner wall of the cylinder can be reduced. As a result, it is possible to suppress the generation of vibration or noise due to the contact between the piston and the cylinder.
 続いて、第1実施例に記載したエンジン10について、使用目的に合わせた他の実施例を添付した図面にしたがっていくつか例示する。
 図10から図13は、第1実施例で示した4ストロークエンジン10を2ストロークエンジン10C,10D,10E,10Fとした場合の構成の概略を示した説明図である。
Next, some examples of the engine 10 described in the first embodiment will be illustrated according to the attached drawings in accordance with other embodiments adapted to the purpose of use.
10 to 13 are explanatory diagrams showing the outline of the configuration when the four-stroke engine 10 shown in the first embodiment is replaced by two- stroke engines 10C, 10D, 10E, and 10F.
 エンジン10C,10D,10Eに係るピストン11の構成は、第1実施例と同様であるから説明を省略する。また、シリンダーケースについても、円筒形状のシリンダー20aの両端に所定形状の燃焼室21,21が形成され、当該燃焼室21の所定位置に点火プラグ22が配置されている基本的な構成は第1実施例のシリンダーケース20と同一である。
 第1実施例に係るエンジン10と第2実施例に係るエンジン10C,10D,10Eの相違点は、シリンダー20a周壁部の所定位置に設けた吸気ポートの吸気口と、排気ポートの排気口の位置である。
 このように、第2実施例に係るエンジンによれば、シリンダーケース20の構成を変えることによって、4ストローク型から2ストローク型へ、又はその逆に容易に構成を組み替えることができる。
The configuration of the piston 11 associated with the engines 10C, 10D, and 10E is the same as that of the first embodiment, so the description is omitted. Further, with respect to the cylinder case, the basic configuration is that combustion chambers 21, 21 of a predetermined shape are formed at both ends of a cylindrical cylinder 20a, and a spark plug 22 is arranged at a predetermined position of the combustion chamber 21. It is the same as the cylinder case 20 of the embodiment.
The difference between the engine 10 according to the first embodiment and the engines 10C, 10D and 10E according to the second embodiment is the position of the intake port of the intake port provided at a predetermined position on the peripheral wall of the cylinder 20a and the position of the exhaust port of the exhaust port. is.
Thus, according to the engine of the second embodiment, by changing the configuration of the cylinder case 20, the configuration can be easily changed from the 4-stroke type to the 2-stroke type, or vice versa.
 図10に示すエンジン10Cは、円筒状のシリンダー20bを備えたシリンダーケース20Bを有している。シリンダー20bは、その両端に燃焼室21,21が連接形成されている。またシリンダー20bの周壁部には、吸気ポートが備える吸気口23bと、排気ポートが備える排気口24bが形成されている。
 吸気口23bは、ピストン11の左右両端ピストンヘッド12,12の下死点L1近傍に形成されている。当該吸気口23bを有する吸気ポートは、左右両端の燃焼室へ可燃性混合気体を吸気可能にT字状に枝分かれして構成されている。そして、吸気口23b近傍にピストンリードバルブ35が配置されており、可燃性混合気体をシリンダー20に向かって一方向に吸気できるように構成されている。これによって、シリンダー20b側から吸気ポート内へ向かって可燃性混合気体又は爆発後の排気ガスの逆流を防止することができる。
 また、排気口24bは、燃焼室21の近傍でピストンヘッド12,12の上死点L0近傍にそれぞれ形成されている。
 このように、図10に示したエンジン10Cは、いわゆるピストンリードバルブ式の2ストロークエンジンと呼ばれる構成を有している。
An engine 10C shown in FIG. 10 has a cylinder case 20B with a cylindrical cylinder 20b. Combustion chambers 21, 21 are connected to both ends of the cylinder 20b. An intake port 23b provided with an intake port and an exhaust port 24b provided with an exhaust port are formed in the peripheral wall portion of the cylinder 20b.
The intake port 23b is formed near the bottom dead center L1 of the left and right end piston heads 12, 12 of the piston 11. As shown in FIG. The intake port having the intake port 23b is configured to be branched in a T-shape so as to be able to intake combustible mixed gas into the combustion chambers at both left and right ends. A piston reed valve 35 is arranged in the vicinity of the intake port 23b so that the combustible mixed gas can be sucked in one direction toward the cylinder 20. As shown in FIG. As a result, it is possible to prevent backflow of combustible mixed gas or post-explosion exhaust gas from the cylinder 20b side into the intake port.
The exhaust ports 24b are formed in the vicinity of the combustion chamber 21 and in the vicinity of the top dead center L0 of the piston heads 12, 12, respectively.
Thus, the engine 10C shown in FIG. 10 has a configuration called a so-called piston-reed-valve two-stroke engine.
 なお、図10では点火プラグ22の図示を省略したが、第1実施例に記載のエンジンと同様に、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、点火プラグ22の電極から火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってピストン11が動作する。また、第1実施例に記載したように、可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。さらに、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Although the illustration of the ignition plug 22 is omitted in FIG. 10, as in the engine described in the first embodiment, a combustible fuel is formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 . Also, as described in the first embodiment, the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like. Further, instead of the ignition plug, an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 上記の構成を有するエンジン10Cは、ピストン11が一往復する間に、吸気・圧縮工程と、燃焼・排気・掃気行程を行って動作する。
 吸気・圧縮工程は、シリンダー20b内及び燃焼室21,21内へ可燃性混合気体を吸気して圧縮する工程を言う。当該工程では、ピストン11が下死点L1のとき、吸気口23bと排気口24bがシリンダー20b内に露出し、ピストンヘッド12が下死点L1へ移動したことによって負圧が発生したシリンダー20b内へ、吸気ポートから可燃性混合気体が吸気される。
 吸気後は、ピストンリードバルブ35が吸気ポートを閉鎖するので、吸気ポート内へ排気ガスが逆流することを防止することができる。そして、ピストンヘッド12が下死点L1から上死点L0へ向かって移動し、吸気口23b、排気口24bと順次閉じられたとき、ピストンヘッド12が燃焼室21へ向かって可燃性混合気体を圧縮する。
 燃焼・排気・掃気工程は、圧縮された可燃性混合気体を燃焼爆発させて、爆発後の排気ガスを排気し、可燃性混合気体を新たに吸気する際に、シリンダー20b内から排気ガスを押し出して掃気する工程を言う。当該工程では、圧縮された可燃性混合気体が燃焼室21に設けた点火プラグ(図示略)で点火されて爆発燃焼し、この燃焼圧力によって、ピストンヘッド12が上死点L0から下死点L1に向かって移動する。このとき、まずシリンダー20b内で排気口24bが露出し、排気ガスが排気され、なおも容積が拡大するシリンダー20b内に負圧が発生する。そして、吸気口23bが露出したとき、可燃性混合気体がシリンダー20b内へ吸気される。吸気後はピストンリードバルブ35が吸気ポートを閉鎖するので、吸気ポート内へ排気ガスが逆流することを防止することができる。そして、ピストンヘッド12が下死点L1から上死点L0に向かって移動する際にシリンダー20b内の残留排気ガスが排気口から掃気される。
The engine 10C having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 makes one reciprocation.
The intake/compression process refers to the process of taking in and compressing the combustible gas mixture into the cylinder 20b and the combustion chambers 21,21. In this process, when the piston 11 is at the bottom dead center L1, the intake port 23b and the exhaust port 24b are exposed in the cylinder 20b, and the piston head 12 moves to the bottom dead center L1, thereby creating negative pressure in the cylinder 20b. , a combustible gas mixture is taken in through the intake port.
Since the piston reed valve 35 closes the intake port after intake, it is possible to prevent exhaust gas from flowing back into the intake port. Then, when the piston head 12 moves from the bottom dead center L1 toward the top dead center L0, and the intake port 23b and the exhaust port 24b are sequentially closed, the piston head 12 moves toward the combustion chamber 21 and discharges the combustible gas mixture. Compress.
In the combustion/exhaust/scavenging process, the compressed combustible mixed gas is combusted and exploded, the exhaust gas after the explosion is exhausted, and when the combustible mixed gas is newly taken in, the exhaust gas is pushed out from the cylinder 20b. It means the process of scavenging. In this process, the compressed combustible mixed gas is ignited by a spark plug (not shown) provided in the combustion chamber 21 and explodes, and the combustion pressure causes the piston head 12 to move from the top dead center L0 to the bottom dead center L1 move towards At this time, the exhaust port 24b is first exposed in the cylinder 20b, the exhaust gas is exhausted, and a negative pressure is generated in the cylinder 20b whose volume is still expanding. Then, when the intake port 23b is exposed, the combustible mixed gas is drawn into the cylinder 20b. Since the piston reed valve 35 closes the intake port after intake, exhaust gas can be prevented from flowing back into the intake port. When the piston head 12 moves from the bottom dead center L1 toward the top dead center L0, residual exhaust gas in the cylinder 20b is scavenged from the exhaust port.
 図11に示すエンジン10Dは、ピストン11とシリンダー20bの構成が上記したエンジン10Cと同様であるから説明を省略する。エンジン10Cとエンジン10Dの相違点は、クランクケース36の有無である。クランクケース36は、クランク軸19及びクランクアーム18が収納され、ピストン11の貫通孔14近傍をシリンダー20bと共に囲橈するように構成されている。
 そして、クランクケース36は、クランク軸19の放射方向に沿って吸気口23cを備えた吸気ポートが連通形成されている。これによって、可燃性混合気体は、吸気ポートを介して吸気口23cからクランクケース36内に吸気されるように構成されている。また、当該吸気ポート内には、クランクケースリードバルブ37が配置されている。これによって、クランクケース36側から吸気ポート内へ向かって可燃性混合気体又は爆発後の排気ガスの逆流を防止することができる。
 さらに、クランクケース36と燃焼室21,21に連接するシリンダー20bの両端部は一対のバイパスポート38で連通され、クランクケース38から燃焼室21,21へ可燃性混合気体を供給可能に構成されている。バイパスのシリンダー側開口端38aは、ピストンヘッド12の下死点L1近傍に形成されている。
 なお、本実施例においては、クランクケース36の構成の概略を図示しているが、クランクケース36は、ピストン11の軸方向に沿って内部を少なくとも2つの部屋に分割してなる吸排気調圧室を有している。当該吸排気調圧室は、シリンダー20bの両端に連接形成した燃焼室21,21とバイパスポート38を通じて連通している。また各吸排気調圧室は、クランク軸19に沿って回転する偏心フリーローター16がその回転によって一方の部屋を加圧したとき、他方の部屋は減圧されるように構成されている。これによって、吸排気調圧室では、減圧と加圧が交互に行われ、減圧時に吸気口23cから可燃性混合気体が供給され、その後、加圧された可燃性混合気体はバイパスポート38を通じて燃焼室21へ吸気される。
 一方、排気ポートが備える排気口24bは、上記のエンジン10Cと同様に、燃焼室21側でピストンヘッド12の上死点L0近傍に形成されている。
 このように、図11に示したエンジン10Dは、いわゆるクランクケースリードバルブ式の2ストロークエンジンと呼ばれる構成を有している。
An engine 10D shown in FIG. 11 has the same configuration of a piston 11 and a cylinder 20b as that of the engine 10C described above, so description thereof will be omitted. The difference between the engine 10C and the engine 10D is the presence or absence of the crankcase 36. As shown in FIG. The crankcase 36 accommodates the crankshaft 19 and the crank arm 18 and surrounds the vicinity of the through hole 14 of the piston 11 together with the cylinder 20b.
An intake port having an intake port 23c along the radial direction of the crankshaft 19 is formed in communication with the crankcase 36 . As a result, the combustible mixed gas is drawn into the crankcase 36 from the intake port 23c through the intake port. A crankcase reed valve 37 is arranged in the intake port. As a result, it is possible to prevent backflow of combustible mixed gas or post-explosion exhaust gas from the crankcase 36 side into the intake port.
Further, both ends of the cylinder 20b, which is connected to the crankcase 36 and the combustion chambers 21, 21, are communicated with a pair of bypass ports 38 so that the combustible gas mixture can be supplied from the crankcase 38 to the combustion chambers 21, 21. there is A cylinder-side open end 38 a of the bypass is formed near the bottom dead center L 1 of the piston head 12 .
In this embodiment, a schematic configuration of the crankcase 36 is shown. have a room. The intake and exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b through a bypass port 38. Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber. During decompression, the combustible mixed gas is supplied from the intake port 23c, and then the pressurized combustible mixed gas is burned through the bypass port 38 Air is drawn into chamber 21 .
On the other hand, the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engine 10C.
Thus, the engine 10D shown in FIG. 11 has a configuration called a so-called crankcase reed valve type two-stroke engine.
 なお、図11では点火プラグ22の図示を省略したが、第1実施例に記載のエンジンと同様に、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、点火プラグ22の電極から火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってピストン11が動作する。また、第1実施例に記載したように、可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。さらに、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Although the illustration of the spark plug 22 is omitted in FIG. 11, a combustible spark plug 22 formed by mixing fuel and air sprayed from the carburetor or injection in a predetermined ratio is similar to the engine described in the first embodiment. When the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 . Also, as described in the first embodiment, the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like. Further, instead of the ignition plug, an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 上記の構成を有するエンジン10Dは、上記のエンジン10Cと同様、ピストン11が一往復する間に、吸気・圧縮工程と、燃焼・排気・掃気行程を行って動作する。これらの動作についてはエンジン10Cと同様であるから説明を省略する。
 図11に示したエンジン10Dと、上記のエンジン10Cとの間で動作の相違点は、エンジン10Dに設けたクランクケースリードバルブ37及びバイパスポート38と、エンジン10Cが有するピストンリードバルブ35の違いによるものである。
 エンジン10Dの場合、可燃性混合気体は、クランクケース36内で偏心フリーローター16によって減圧され、負圧が発生している側の吸排気調圧室へ吸気される。一方で、可燃性混合気体が満たされた吸排気調圧室に満たされている可燃性混合気体は、偏心フリーローターによって加圧される。このように交互に減圧と加圧を繰り返すことによって、シリンダー20bの左右両端に連接した燃焼室21,21へ交互に可燃性混合気体を送り込むことができる。
 そして、吸気・圧縮工程では、ピストンヘッド12が下死点L1に位置しているとき、吸排気調圧室内で加圧された可燃性混合気体が、バイパスポート38の開口端38aを通じて、シリンダー20b内へ吸気される。その後、ピストンヘッド12が下死点L1から上死点L0へ移動して、排気口24bが閉鎖されると、燃焼室21内で可燃性混合気体が圧縮される。
 続いて、燃焼・排気・掃気工程では、圧縮された可燃性混合気体が点火されて爆発燃焼し、ピストンヘッド12を燃焼圧力で押圧する。ピストンヘッド12が上死点L0から下死点L1へ移動するとき、まず排気口24bが露出し、排気ガスが排気される。ここで、ピストンヘッド12の移動に伴って燃焼室21内及びシリンダー20b内は負圧が発生する一方で、クランクケース36の吸排気調圧室では、偏心フリーローター16によって可燃性混合気体が加圧される。さらにピストンヘッド12が移動するとバイパスポート38の開口端38aが露出し、吸排気調圧室で加圧された可燃性混合気体がシリンダー20b内へ吸気され、当該シリンダー20b内に残留していた排気ガスを排気口24bから掃気する。
 このように、エンジン10Dでは、クランクケース36内で偏心フリーローター16が左右のシリンダー20b及び燃焼室21,21内と通じている吸排気調圧室で可燃性混合気体を加圧してシリンダー20bへ送り込み、又は減圧して負圧を発生させて吸気ポートから吸気することができる。これによって、可燃性混合気体に係る吸気効率と、排気ガスに係る排気・掃気効率を向上させて燃費を改善することができる。
Like the engine 10C, the engine 10D having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 reciprocates once. Since these operations are the same as those of the engine 10C, description thereof will be omitted.
The difference in operation between the engine 10D shown in FIG. 11 and the engine 10C is due to the difference between the crankcase reed valve 37 and the bypass port 38 provided in the engine 10D and the piston reed valve 35 provided in the engine 10C. It is a thing.
In the case of the engine 10D, the combustible gas mixture is decompressed by the eccentric free rotor 16 in the crankcase 36 and taken into the intake/exhaust pressure regulating chamber on the side where the negative pressure is generated. On the other hand, the combustible gas mixture filled in the intake/exhaust pressure regulating chamber is pressurized by the eccentric free rotor. By alternately repeating depressurization and pressurization in this manner, the combustible gas mixture can be alternately fed into the combustion chambers 21, 21 connected to the left and right ends of the cylinder 20b.
In the intake/compression stroke, when the piston head 12 is positioned at the bottom dead center L1, the combustible gas mixture pressurized in the intake/exhaust pressure regulating chamber passes through the open end 38a of the bypass port 38 to the cylinder 20b. Inhale. Thereafter, when the piston head 12 moves from the bottom dead center L1 to the top dead center L0 and the exhaust port 24b is closed, the combustible gas mixture is compressed in the combustion chamber 21.
Subsequently, in the combustion/exhaust/scavenging process, the compressed combustible mixed gas is ignited, explodes and burns, and presses the piston head 12 with the combustion pressure. When the piston head 12 moves from the top dead center L0 to the bottom dead center L1, the exhaust port 24b is first exposed and the exhaust gas is exhausted. Here, while negative pressure is generated in the combustion chamber 21 and the cylinder 20b as the piston head 12 moves, the eccentric free rotor 16 presses the combustible gas mixture in the intake and exhaust pressure regulating chamber of the crankcase 36. pressured. When the piston head 12 further moves, the open end 38a of the bypass port 38 is exposed, the combustible gas mixture pressurized in the intake/exhaust pressure regulating chamber is sucked into the cylinder 20b, and the exhaust gas remaining in the cylinder 20b Gas is scavenged from exhaust port 24b.
In this way, in the engine 10D, the eccentric free rotor 16 pressurizes the combustible gas mixture in the intake and exhaust pressure regulating chambers communicating with the left and right cylinders 20b and the combustion chambers 21, 21 in the crankcase 36, to the cylinders 20b. It can be pumped in or decompressed to create a negative pressure to inhale through the intake port. As a result, the intake efficiency for combustible mixed gas and the exhaust/scavenging efficiency for exhaust gas can be improved to improve fuel efficiency.
 図12に示すエンジン10Eは、上記エンジン10C,10Dと偏心フリーローター16の形状が相違している。当該偏心フリーローター16は、周縁部16aの所定位置を弧状に切り欠いて形成した一対の切欠部16bを有している。
 また、エンジン10Eは、クランク軸19及びクランクアーム18が収納され、シリンダー20bを囲橈するように構成されたクランクケース36を有している。当該クランクケース36は、クランク軸の軸方向に沿って吸気口23dを備えた吸気ポートが接続されている。
 吸気口23dは、偏心フリーローター16の周縁部16a及び切欠部16bと対向するように配置されている。これによって、吸気ポートを介してクランクケース36内へ吸気される可燃性混合気体は、吸気口23dが周縁部16aと重なり合って閉鎖されているとき、吸気ポート内へ向かって可燃性混合気体が逆流することを防止することができる。一方、吸気口23dが切欠部16bと重なり合ってクランクケース36内に露出しているとき、クランクケース36内へ可燃性混合気体を吸気することができる。そして、偏心フリーローター16は、クランク軸19の回転と同期して回転していることから、吸気口23dを切欠部16bで露出させて開放し、周縁部16aで覆蓋して閉鎖することを所定の周期で繰り返すことができる。
 さらに、クランクケース36とシリンダー20bの左右両端に設けた燃焼室21,21は一対のバイパスポート38で接続され、クランクケース36から燃焼室21,21へ可燃性混合気体を供給可能に構成されている。バイパスポート38のシリンダー側開口端38aは、ピストンヘッド12の下死点L1近傍に形成されている。
 なお、本実施例においては、クランクケース36の構成の概略を図示しているが、クランクケース36は、ピストン11の軸方向に沿って内部を少なくとも2つの部屋に分割してなる吸排気調圧室を有している。当該吸排気調圧室は、シリンダー20bの両端に連接形成した燃焼室21,21とバイパスポート38を通じて連通している。また各吸排気調圧室は、クランク軸19に沿って回転する偏心フリーローター16がその回転によって一方の部屋を加圧したとき、他方の部屋は減圧されるように構成されている。これによって、吸排気調圧室では、減圧と加圧が交互に行われ、減圧時に切欠部16bと重なり合った吸気口23dから可燃性混合気体が供給され、その後、加圧された可燃性混合気体はバイパスポート38を通じて燃焼室21へ吸気される。ここで、偏心フリーローター16が一回転する間、すなわちピストンが一往復する間に、各吸排気調圧室で加圧工程と減圧工程が順次行われ、シリンダー20bの左右両端に設けた各燃焼室21,21へ順次可燃性混合気体を送り込むため、切欠部16bを偏心フリーローター16の周縁の所定位置に対向配置した。これによって、図12に示したエンジン10Eの左右両端の各燃焼室21,21へ交互にバイパスポート38を通じて可燃性混合気体を順次送り込むことができる。
一方、排気ポートが備える排気口24bは、上記のエンジン10C,10Dと同様に、燃焼室21側でピストンヘッド12の上死点L0近傍に形成されている。
 このように、図12に示したエンジン10Eは、いわゆるロータリーディスクバルブ式の2ストロークエンジンと呼ばれる構成を有している。
The engine 10E shown in FIG. 12 differs from the engines 10C and 10D in the shape of the eccentric free rotor 16. As shown in FIG. The eccentric free rotor 16 has a pair of notch portions 16b formed by notching predetermined positions of the peripheral edge portion 16a in an arc shape.
The engine 10E also has a crankcase 36 that accommodates the crankshaft 19 and the crank arm 18 and that surrounds the cylinder 20b. An intake port having an intake port 23d is connected to the crankcase 36 along the axial direction of the crankshaft.
The intake port 23 d is arranged so as to face the peripheral edge portion 16 a and the notch portion 16 b of the eccentric free rotor 16 . As a result, the combustible gas mixture sucked into the crankcase 36 through the intake port flows back into the intake port when the intake port 23d overlaps the peripheral edge portion 16a and is closed. can be prevented. On the other hand, when the intake port 23d overlaps with the notch 16b and is exposed inside the crankcase 36, the combustible gas mixture can be taken into the crankcase 36. As shown in FIG. Since the eccentric free rotor 16 rotates in synchronism with the rotation of the crankshaft 19, it is predetermined that the intake port 23d is opened by exposing it at the notch portion 16b and is closed by covering it with the peripheral edge portion 16a. can be repeated in a cycle of
Further, the crankcase 36 and the combustion chambers 21, 21 provided at the left and right ends of the cylinder 20b are connected by a pair of bypass ports 38, so that the combustible gas mixture can be supplied from the crankcase 36 to the combustion chambers 21, 21. there is A cylinder side open end 38 a of the bypass port 38 is formed near the bottom dead center L1 of the piston head 12 .
In this embodiment, a schematic configuration of the crankcase 36 is shown. have a room. The intake and exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b through a bypass port 38. Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber. During decompression, the combustible gas mixture is supplied from the intake port 23d overlapping the notch 16b, and then the pressurized combustible gas mixture. is taken into the combustion chamber 21 through the bypass port 38 . Here, while the eccentric free rotor 16 rotates once, that is, while the piston makes one reciprocation, the pressurization process and the depressurization process are sequentially performed in each of the intake and exhaust pressure regulating chambers. In order to sequentially feed the combustible gas mixture into the chambers 21, 21, the notch 16b is arranged opposite to a predetermined position on the periphery of the eccentric free rotor 16. As shown in FIG. As a result, the combustible gas mixture can be alternately sent through the bypass port 38 to the combustion chambers 21, 21 at the left and right ends of the engine 10E shown in FIG.
On the other hand, the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engines 10C and 10D.
In this manner, the engine 10E shown in FIG. 12 has a configuration called a so-called rotary disc valve type two-stroke engine.
 なお、図12では点火プラグ22の図示を省略したが、第1実施例に記載のエンジンと同様に、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、点火プラグ22の電極から火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってピストン11が動作する。また、第1実施例に記載したように、可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。さらに、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Although the illustration of the ignition plug 22 is omitted in FIG. 12, as in the engine described in the first embodiment, a combustible fuel is formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When the gas mixture is compressed by the piston 11 within the combustion chamber 21 , it is configured to cause a spark to fly from the electrode of the spark plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 . Also, as described in the first embodiment, the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like. Further, instead of the ignition plug, an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 上記の構成を有するエンジン10Eは、上記のエンジン10C,10Dと同様、ピストン11が一往復する間に、吸気・圧縮工程と、燃焼・排気・掃気行程を行って動作する。これらの動作についてはエンジン10Cと同様であるから説明を省略する。
 図12に示したエンジン10Eと、図11に示したエンジン10Dとの間で動作の相違点は、偏心フリーローター16を用いたロータリーディスクバルブとクランクケースリードバルブ、及びクランク軸19の軸方向に沿って設けられた吸気ポートと、クランク軸の放射方向に沿って設けられた吸気ポートの違いである。
 エンジン10Eの場合、偏心フリーローター16の回転に伴って、切欠部16bと重なり合った吸気口23dが吸排気調圧室に対し露出したとき、当該吸排気調圧室内は、偏心フリーローター16によって減圧されて負圧が発生している状態となっているので、スムーズに吸排気調圧室内へ可燃性混合気体が吸気される。その後、偏心フリーローター16の周縁部16aが吸気口23dを覆蓋して閉鎖したとき、吸排気調圧室内が加圧され、バイパスポート38を通じてシリンダー20b内へ吸気される。この吸排気調圧室内における減圧と加圧のタイミングを2ストローク機関の吸気・圧縮工程と、爆発・排気・掃気工程と重ね合わせると次のようになる。
 吸気・圧縮工程では、ピストンヘッド12が下死点L1に位置しているとき、吸排気調圧室内で加圧された可燃性混合気体が、バイパスポート38の開口端38aを通じて、シリンダー内へ吸気される。その後、ピストンヘッド12が下死点L1から上死点L0へ移動して、排気口24bが閉鎖されると、燃焼室21内で可燃性混合気体が圧縮される。
 続いて、燃焼・排気・掃気工程では、圧縮された可燃性混合気体が点火されて爆発燃焼し、ピストンヘッド12を燃焼圧力で押圧する。ピストンヘッド12が上死点L0から下死点L1へ移動するとき、まず排気口24bが露出し、排気ガスが排気される。ここで、ピストンヘッド12の移動に伴って燃焼室21内及びシリンダー20b内は負圧が発生する一方で、吸排気調圧室側では、偏心フリーローター16によって可燃性混合気体が加圧される。さらにピストンヘッド12が移動するとバイパスポート38の開口端38aが露出し、加圧された可燃性混合気体がシリンダー20b内へ吸気され、残留していた排気ガスを排気口24bから掃気する。
 このようにして、エンジン10Eでは、貫通孔14内で偏心フリーローター16が一回転する間に、左右の燃焼室21,21へ交互に可燃性混合気体を吸気することができる。これによって、可燃性混合気体に係る吸気効率と、排気ガスに係る排気・掃気効率を向上させて燃費を改善することができる。
Like the engines 10C and 10D, the engine 10E having the above configuration operates by performing an intake/compression stroke and a combustion/exhaust/scavenging stroke while the piston 11 reciprocates once. Since these operations are the same as those of the engine 10C, description thereof will be omitted.
The difference in operation between the engine 10E shown in FIG. 12 and the engine 10D shown in FIG. The difference is between the intake ports provided along the crankshaft and the intake ports provided along the radial direction of the crankshaft.
In the case of the engine 10E, when the intake port 23d overlapping the notch 16b is exposed to the intake/exhaust pressure regulating chamber as the eccentric free rotor 16 rotates, the pressure in the intake/exhaust pressure regulating chamber is reduced by the eccentric free rotor 16. As a result, the combustible mixed gas is smoothly drawn into the intake/exhaust pressure regulating chamber. After that, when the peripheral portion 16a of the eccentric free rotor 16 covers and closes the intake port 23d, the inside of the intake/exhaust pressure regulating chamber is pressurized, and the air is drawn through the bypass port 38 into the cylinder 20b. When the timing of decompression and pressurization in the intake/exhaust pressure regulating chamber is overlapped with the intake/compression process and the explosion/exhaust/scavenging process of the two-stroke engine, the following results are obtained.
In the intake/compression stroke, when the piston head 12 is positioned at the bottom dead center L1, the combustible gas mixture pressurized in the intake/exhaust pressure regulating chamber is drawn into the cylinder through the open end 38a of the bypass port 38. be done. Thereafter, when the piston head 12 moves from the bottom dead center L1 to the top dead center L0 and the exhaust port 24b is closed, the combustible gas mixture is compressed in the combustion chamber 21.
Subsequently, in the combustion/exhaust/scavenging process, the compressed combustible mixed gas is ignited, explodes and burns, and presses the piston head 12 with the combustion pressure. When the piston head 12 moves from the top dead center L0 to the bottom dead center L1, the exhaust port 24b is first exposed and the exhaust gas is exhausted. Negative pressure is generated in the combustion chamber 21 and the cylinder 20b as the piston head 12 moves, while the combustible gas mixture is pressurized by the eccentric free rotor 16 on the intake/exhaust pressure regulating chamber side. . Further movement of the piston head 12 exposes the open end 38a of the bypass port 38, allowing the pressurized combustible gas mixture to be drawn into the cylinder 20b and scavenging any remaining exhaust gases through the exhaust port 24b.
In this manner, in the engine 10E, the combustible gas mixture can be alternately drawn into the left and right combustion chambers 21, 21 while the eccentric free rotor 16 rotates once within the through hole 14. As a result, the intake efficiency for combustible mixed gas and the exhaust/scavenging efficiency for exhaust gas can be improved to improve fuel efficiency.
 そして、図13に示すエンジン10Fは、上記したクランクケースリードバルブ式の2ストロークエンジン10Dを基に水平対向4気筒化したエンジンである。
 エンジン10Fは、上記のエンジン10Dに係る水平対向2気筒エンジンを1ユニットとした第3ユニット40と第4ユニット41とから構成されている。各ユニットのピストン11及びシリンダー20bの構成は、エンジン10Dと同様であるから説明を省略する。
 第3ユニット40と第4ユニット41は、クランク軸19方向に沿って並設されて構成されている。エンジン10Fのクランクケース36Aは、第3ユニット40と第4ユニット41のクランク軸19近傍をシリンダー20bごと囲橈するように設けられている。
 エンジン10Fは、図13に示すように、第3ユニット40に係るクランクアーム18と、第4ユニット31に係るクランクアーム18を有している。当該クランクアーム18は、互いにクランク軸19を挟んで相反する方向に対向配置され、互いに180度(π)のクランク角を成すように構成されている。
 そして、クランクケース36Aは、第3ユニット40と第4ユニット41の間に、クランク軸19の放射方向に沿って吸気口23cを備えた吸気ポートが設けられ、当該吸気ポートにはエンジン10Dと同様にクランクケースリードバルブ(図示略)が設けられている。さらに、第3ユニット40と第4ユニット41の各燃焼室21,21と連通するように、クランクケース36Aとシリンダー20bとの間にバイパスポート38が設けられている。
 なお、本実施例においては、クランクケース36Aの構成の概略を図示しているが、クランクケース36Aは、ピストン11の軸方向に沿って内部を少なくとも4つの部屋に分割してなる吸排気調圧室を有している。当該吸排気調圧室は、各ユニット40,41のシリンダー20bの両端に連接形成した燃焼室21,21とバイパスポート38を通じて連通している。また各吸排気調圧室は、クランク軸19に沿って回転する偏心フリーローター16がその回転によって一方の部屋を加圧したとき、他方の部屋は減圧されるように構成されている。これによって、吸排気調圧室では、減圧と加圧が交互に行われ、減圧時に吸気口23cから可燃性混合気体が供給され、その後、加圧された可燃性混合気体はバイパスポート38を通じて燃焼室21へ吸気される。
 一方、排気ポートが備える排気口24bは、上記のエンジン10Dと同様に、燃焼室21側でピストンヘッド12の上死点L0近傍に形成されている。
 また、点火プラグ22は、第1実施例に記載のエンジンと同様に、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、点火プラグ22の電極から火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってピストン11が動作する。また、第1実施例に記載したように、可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。さらに、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。
 このように、図13に示したエンジン10Fは、いわゆるクランクケースリードバルブ式の2ストローク型エンジンを水平対向4気筒に組んだ構成を有している。
An engine 10F shown in FIG. 13 is a horizontally opposed four-cylinder engine based on the crankcase reed valve type two-stroke engine 10D.
The engine 10F is composed of a third unit 40 and a fourth unit 41 each including the horizontally opposed two-cylinder engine of the engine 10D as one unit. The configuration of the piston 11 and the cylinder 20b of each unit is the same as that of the engine 10D, so the explanation is omitted.
The third unit 40 and the fourth unit 41 are arranged side by side along the crankshaft 19 direction. The crankcase 36A of the engine 10F is provided so as to surround the vicinity of the crankshaft 19 of the third unit 40 and the fourth unit 41 together with the cylinder 20b.
The engine 10F has a crank arm 18 associated with the third unit 40 and a crank arm 18 associated with the fourth unit 31, as shown in FIG. The crank arms 18 are opposed to each other with the crankshaft 19 interposed therebetween, and are configured to form a crank angle of 180 degrees (π) with each other.
The crankcase 36A is provided with an intake port having an intake port 23c along the radial direction of the crankshaft 19 between the third unit 40 and the fourth unit 41, and the intake port is provided with an intake port 23c similar to that of the engine 10D. is provided with a crankcase reed valve (not shown). Furthermore, a bypass port 38 is provided between the crankcase 36A and the cylinder 20b so as to communicate with the combustion chambers 21, 21 of the third unit 40 and the fourth unit 41. As shown in FIG.
In this embodiment, a schematic configuration of the crankcase 36A is shown. have a room. The intake/exhaust pressure regulating chamber communicates with combustion chambers 21, 21 connected to both ends of the cylinder 20b of each unit 40, 41 through a bypass port 38. Each of the intake and exhaust pressure regulating chambers is constructed such that when the eccentric free rotor 16 rotating along the crankshaft 19 pressurizes one chamber by its rotation, the other chamber is decompressed. As a result, decompression and pressurization are alternately performed in the intake/exhaust pressure regulating chamber. During decompression, the combustible mixed gas is supplied from the intake port 23c, and then the pressurized combustible mixed gas is burned through the bypass port 38 Air is drawn into chamber 21 .
On the other hand, the exhaust port 24b provided in the exhaust port is formed near the top dead center L0 of the piston head 12 on the combustion chamber 21 side, as in the engine 10D described above.
In addition, the spark plug 22, similarly to the engine described in the first embodiment, has a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When compressed by the piston 11 at , a spark is emitted from the electrode of the ignition plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 . Also, as described in the first embodiment, the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like. Further, instead of the ignition plug, an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
As described above, the engine 10F shown in FIG. 13 has a configuration in which a so-called crankcase reed valve type two-stroke engine is assembled with horizontally opposed four cylinders.
 上記の構成を備えたエンジン10Fは、次に説明するように動作する。添付した図面にしたがって以下説明する。
 第3ユニット40のクランクアーム18と第4ユニット41のクランクアーム18のクランク角の位相差は、180度(π)となるように構成されている。
 そのため、図13に示すように、第3ユニット40の右側ピストンヘッド12Rが下死点L1に位置し、左側ピストンヘッド12Lが上死点L0に位置している場合に、第4ユニット41の右側ピストンヘッド12Rは上死点L0に位置し、左側ピストンヘッド12Lは下死点L1に位置している。このように、第3ユニット40と第4ユニット41に係る各ピストン11が互い違いに相反する方向へ入れ替わるように直線的な往復運動をすることによって、第3ユニット40の左右ピストンヘッド12R,12L、第4ユニット41の左右ピストンヘッド12R,12Lが互い違いに相反する方向へ直線的な往復運動を行うように動作する。
 各ユニット40,41が有するピストンヘッド12R,12Lの各工程における関係を下記の表2に表す。表中の矢印はクランクアーム18の位相の向きを表し、たとえば、第3ユニット40で矢印「→」にしたがってピストン11が動いている場合、位相差が180度(π)である第4ユニット41のピストン11は反対方向の「←」へ進んでいるものとする。
The engine 10F having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
The crank angle phase difference between the crank arm 18 of the third unit 40 and the crank arm 18 of the fourth unit 41 is 180 degrees (π).
Therefore, as shown in FIG. 13, when the right piston head 12R of the third unit 40 is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the right side of the fourth unit 41 The piston head 12R is positioned at the top dead center L0, and the left piston head 12L is positioned at the bottom dead center L1. In this way, the left and right piston heads 12R, 12L of the third unit 40, 12R, 12L, The left and right piston heads 12R and 12L of the fourth unit 41 operate so as to perform linear reciprocating motion in opposite directions.
Table 2 below shows the relationship in each process of the piston heads 12R and 12L of the units 40 and 41. The arrows in the table represent the direction of the phase of the crank arm 18. For example, when the piston 11 moves according to the arrow "→" in the third unit 40, the phase difference is 180 degrees (π) in the fourth unit 41. , the piston 11 is moving in the opposite direction "←".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、項番1行目において、第3ユニット40の左側ピストンヘッド12Lが吸気・圧縮工程を行っているとき、同ユニット40のピストン11は、左側ピストンヘッド12Lの方へ向かって水平移動するので、右側ピストンヘッド12R側では燃焼・排気・掃気工程が行われる。このとき、第3ユニット40との位相差が180度(π)である第4ユニット41では、右側ピストンヘッド12Rで吸気・圧縮工程が行われて、同ユニット41のピストン11は右側ピストンヘッド12Rの方へ向かって水平移動し、左側ピストンヘッド12Lでは燃焼・排気・掃気工程が行われる。
 そして、項番2行目では逆に、第3ユニット40の右側ピストンヘッド12Rと第4ユニット41の左側ピストンヘッド12Lで吸気・圧縮工程が行われ、第3ユニット40の左側ピストンヘッド12Lと第4ユニット41の右側ピストンヘッド12Rで燃焼・排気・掃気行程が行われる。
 このように、エンジン10Fでは、第3ユニット40と第4ユニット41において、いずれかのシリンダー20内で常に爆発工程が行われるように構成することができる。そのため、エンジン10F全体で、等間隔爆発を行わせることができる。
 また、第3ユニット40と第4ユニット41に係るそれぞれのピストン11が、互いに相反する方向へ交互に直線的な往復運動を行うので、ピストン11の動作に起因する振動を相殺することができ、ピストンスカート13がシリンダー20内壁を押圧して発生する側圧を抑制し、ピストンスカート13がシリンダー内壁を摺動する際の摩擦損失を軽減させることができる。その結果、ピストン11とシリンダー20bの接触に伴う振動の発生或いは騒音の発生を抑制することができる。
 なお、説明を省略したが、上記のピストンリードバルブ型エンジン10C、ロータリーディスクバルブ型エンジン10Eに基づいて水平対向4気筒エンジンを構成した場合であっても、上記のクランクケースリードバルブ型と同様の効果を得ることができる。
As shown in Table 2, in the first line of item number, when the left piston head 12L of the third unit 40 is performing the intake/compression stroke, the piston 11 of the same unit 40 moves toward the left piston head 12L. Since the piston head 12R moves horizontally, combustion, exhaust, and scavenging processes are performed on the right side of the piston head 12R. At this time, in the fourth unit 41, which has a phase difference of 180 degrees (π) with the third unit 40, the right piston head 12R performs an intake/compression process, and the piston 11 of the fourth unit 41 moves to the right piston head 12R. , and the left piston head 12L performs combustion, exhaust, and scavenging processes.
On the second line of the item number, on the contrary, the right piston head 12R of the third unit 40 and the left piston head 12L of the fourth unit 41 perform the intake/compression process. The right piston head 12R of the 4 unit 41 performs combustion, exhaust, and scavenging strokes.
Thus, in the engine 10F, the third unit 40 and the fourth unit 41 can be configured so that the explosion process is always performed in one of the cylinders 20. FIG. Therefore, evenly spaced explosions can be performed in the entire engine 10F.
In addition, since the pistons 11 of the third unit 40 and the fourth unit 41 alternately perform linear reciprocating motions in mutually opposite directions, vibration caused by the motion of the pistons 11 can be canceled, The side pressure generated by the piston skirt 13 pressing the inner wall of the cylinder 20 can be suppressed, and the friction loss when the piston skirt 13 slides on the inner wall of the cylinder can be reduced. As a result, it is possible to suppress the occurrence of vibration or noise due to the contact between the piston 11 and the cylinder 20b.
Although the description is omitted, even if a horizontally opposed four-cylinder engine is configured based on the piston reed valve type engine 10C and the rotary disk valve type engine 10E, the same crankcase reed valve type engine can be used. effect can be obtained.
 また、上記では水平対向4気筒エンジンについて例示したが、水平対向エンジンに係る気筒数はこれらに限定されるものでは無く、エンジン10C,10D,10Eに係る基本構成の水平2気筒ユニットを増減して6気筒、8気筒、10気筒、12気筒、16気筒等の水平対向エンジンを構成するようにしても良い。この場合、各ユニット間の位相差を、たとえば、120度(4π/3)、72度(π/5)、60度(π/3)、45度(π/4)等、所定の角度、好ましくは各ユニットが備えるクランクアーム18がクランク軸19を中心に円周に対してバランスよく配置されるように設定することによって、一次振動、偶力振動、二次振動等の振動を各ユニット間で互いに相殺するようにすることができる。
 そして、上記のいずれの場合であっても、クランク軸19にバランスウェイトを取り付けて振動を抑制するようにしても良い。
 上記のように構成した各エンジンでは、クランク軸19を周回するクランクアーム18の長さを従来のエンジンが備えるクランクアームの長さよりも短くすることができるので、クランク軸19を周回する慣性モーメントを打ち消すバランスウェイトを軽量化させることができる。さらに、従来、先端が往復運動を行い、基端が回転運動を行うコンロッドには往復運動に因る振動と回転運動に因る振動が発生するが、当該コンロッドを省いた本実施例に係るエンジンによれば、コンロッドの動作を起因とする振動成分、振動原因を除去することができる。これによって、エンジンに生じる一次振動、偶力振動、二次振動等の振動のうち、コンロッドの動作を起因とする影響を除去することができる。
In the above description, the horizontally opposed four-cylinder engine was exemplified, but the number of cylinders related to the horizontally opposed engine is not limited to these. A horizontally opposed engine of 6 cylinders, 8 cylinders, 10 cylinders, 12 cylinders, 16 cylinders, etc. may be constructed. In this case, the phase difference between each unit is set to a predetermined angle such as 120 degrees (4π/3), 72 degrees (π/5), 60 degrees (π/3), 45 degrees (π/4), etc. Preferably, by setting the crank arm 18 provided in each unit so that it is arranged in a well-balanced manner around the circumference of the crankshaft 19, vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
In any of the above cases, a balance weight may be attached to the crankshaft 19 to suppress vibration.
In each engine configured as described above, the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in the conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight. Furthermore, conventional connecting rods, in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotating motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
 続いて、本発明のエンジンについて、他の実施例を添付した図面にしたがって説明する。
 図14は、第3実施例に係るエンジンが備えるピストンの構成の概略を示した説明図であり、図15は、第3実施例に係るエンジンの構成の概略を示す平面図である。
Next, another embodiment of the engine of the present invention will be described with reference to the accompanying drawings.
FIG. 14 is an explanatory diagram showing the outline of the configuration of the piston provided in the engine according to the third embodiment, and FIG. 15 is a plan view showing the outline of the construction of the engine according to the third embodiment.
 エンジン10Gは、図15に示すように、ピストン11Bとシリンダーケース20Cを有している。
 ピストン11Bは、図14に示すように、一対の小径部50,50と、ピストン11Bの軸方向に沿って当該小径部50,50に挟まれた大径部51とからなる。
 小径部50,50は、反大径部51側の端面にそれぞれピストンヘッド12,12を有し、当該ピストンヘッド12,12から大径部51側にピストンスカート13が連接形成されている。
 大径部51は、小径部50,50とピストン11Bの同一軸上に形成されている。大径部51の小径部50,50と接する両端面には、肩部52が形成されている。大径部51の周壁部中心には、当該大径部51の径方向に沿って所定の内径を有する貫通孔14が形成されている。
The engine 10G, as shown in FIG. 15, has a piston 11B and a cylinder case 20C.
As shown in FIG. 14, the piston 11B comprises a pair of small diameter portions 50, 50 and a large diameter portion 51 sandwiched between the small diameter portions 50, 50 along the axial direction of the piston 11B.
The small- diameter portions 50, 50 have piston heads 12, 12 on the end faces opposite to the large-diameter portion 51, respectively, and a piston skirt 13 is formed to connect the piston heads 12, 12 to the large-diameter portion 51 side.
The large diameter portion 51 is formed on the same axis as the small diameter portions 50, 50 and the piston 11B. Shoulder portions 52 are formed on both end surfaces of the large-diameter portion 51 that are in contact with the small- diameter portions 50 , 50 . A through-hole 14 having a predetermined inner diameter is formed along the radial direction of the large-diameter portion 51 at the center of the peripheral wall portion of the large-diameter portion 51 .
 貫通孔14は、図14に示すように、内歯車14aを有している。内歯車14aは、貫通孔14の軸方向に沿って刻まれた歯を、貫通孔14の内壁の周方向に沿って並設して構成されている。
 また、貫通孔14内には、図14に示すように、歯車15と偏心フリーローター16が配設されている。
 歯車15は、軸方向に沿って歯が刻まれ、内歯車14aと噛合して転動可能に構成されている。歯車15の直径rと、内歯車14aの内径Rとの比は、1:2となるように構成されている。
 偏心フリーローター16は、貫通孔14の内径と略同径の円盤状に形成され、滑動自在かつ回動自在に貫通孔14に嵌合されている。偏心フリーローター16の軸心は、当該偏心フリーローター16の直径を4等分し、短径と長径の比が1:3となる位置に設けられている。
 歯車15と偏心フリーローター16は、クランクピン17で軸支されている。
The through hole 14 has an internal gear 14a as shown in FIG. The internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
A gear 15 and an eccentric free rotor 16 are arranged in the through hole 14, as shown in FIG.
The gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a. The ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
The eccentric free rotor 16 is formed in a disc shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable. The axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
The gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
 クランクアーム18は、先端にクランクピン17を有し、基端にクランク軸19を有している。
 歯車15が内歯車14aに沿って一周したとき、クランクアーム18は、クランク軸19を一回転させるように構成されている。当該歯車と内歯車との関係は第1実施例のエンジン10と同様であるから説明を省略する。また、偏心フリーローター16についても、第1実施例に記載したエンジン10と同様であるから説明を省略する。
The crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
The crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a. Since the relationship between the gear and the internal gear is the same as that of the engine 10 of the first embodiment, the explanation is omitted. Also, the eccentric free rotor 16 is the same as the engine 10 described in the first embodiment, so the description is omitted.
 シリンダーケース20Cは、図15に示すように、ピストン11Bの小径部50,50が嵌合する一対のシリンダー20cと大径部51が嵌合するハウジング53から構成されている。
 シリンダー20cの反ハウジング53側には、所定形状の燃焼室21,21が形成されている。当該燃焼室21は、所定位置に点火プラグ22と排気口24cを備えた排気ポートが配設されている。
As shown in FIG. 15, the cylinder case 20C comprises a pair of cylinders 20c into which the small diameter portions 50, 50 of the piston 11B are fitted, and a housing 53 into which the large diameter portion 51 is fitted.
Combustion chambers 21, 21 having a predetermined shape are formed on the opposite side of the cylinder 20c to the housing 53. As shown in FIG. The combustion chamber 21 is provided with an ignition plug 22 and an exhaust port having an exhaust port 24c at a predetermined position.
 点火プラグ22は、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、通電され点火して火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってシリンダー20c内でピストン11が動作する。
 なお、上記の可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。
The ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11 in the combustion chamber 21. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20c.
The above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
 また、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Alternatively, instead of the ignition plug, an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 排気口24cを備えた排気ポートは、燃焼室21と連通し、排気口24cを覆蓋する排気バルブ54を有している。当該排気バルブ54は、カム、ロッカーアーム等でクランク軸19の回転、すなわちピストン11Bの動作に従動して排気口24cを周期的に開閉するように構成されている。これによって、排気口24cが閉じているとき、燃焼室21内の圧力を高めることができ、排気口24cが開放されているとき、シリンダー20c内及び燃焼室21内に残留している爆発燃焼後の排気ガスをシリンダー20c及び燃焼室21外へ排気及び掃気することができる。 An exhaust port having an exhaust port 24c communicates with the combustion chamber 21 and has an exhaust valve 54 that covers the exhaust port 24c. The exhaust valve 54 is configured to periodically open and close the exhaust port 24c by following the rotation of the crankshaft 19, that is, the movement of the piston 11B, using a cam, a rocker arm, or the like. As a result, when the exhaust port 24c is closed, the pressure in the combustion chamber 21 can be increased, and when the exhaust port 24c is open, the explosive combustion residuals remaining in the cylinder 20c and in the combustion chamber 21 can be increased. of exhaust gas can be exhausted and scavenged out of the cylinder 20c and the combustion chamber 21.
 また、図15に示すように、シリンダー20c周壁部のハウジング53側近傍には、吸気口23bを備えた吸気ポートが連通されている。当該吸気ポート内には、左右の各シリンダー20c内へ向かって一方向に吸気可能なピストンリードバルブ35がそれぞれ配置されている。これによって、左右両側の各シリンダー20cは、周期的に可燃性混合気体が吸気されるように構成されている。 Also, as shown in FIG. 15, an intake port having an intake port 23b communicates with the peripheral wall of the cylinder 20c near the housing 53 side. Piston reed valves 35 capable of unidirectionally inhaling into the left and right cylinders 20c are arranged in the intake ports. As a result, the left and right cylinders 20c are configured so that the combustible gas mixture is periodically drawn.
 ハウジング53は、図15に示すように、ピストン11Bの大径部51が直線的に往復運動可能な長さに構成されている。また、ピストン11Bの肩部52が、ハウジング53とシリンダー20cの段状に形成された連接部分と対向するように構成されている。これによって、シリンダー20cに嵌合された小径部50が当該シリンダー20bから抜脱することを防止することができる。
 また、ハウジング53は、引き出された小径部50との間に空間が形成されることから、シリンダーケース20C内を潤滑しているオイルのうち、余分なオイルがピストンスカート13を通じて当該空間内へ溜まり、また肩部52は当該空間内に貯留しているオイルを再度ピストンスカート13側へ供給させることができる。
 そして、肩部52は、シリンダー20cからピストンスカート13との隙間を通じて漏れ出た可燃性混合気体をシリンダー20c内へ押し戻すことができる。
As shown in FIG. 15, the housing 53 has a length that allows the large diameter portion 51 of the piston 11B to linearly reciprocate. Further, the shoulder portion 52 of the piston 11B is configured to face the stepped connecting portion between the housing 53 and the cylinder 20c. This can prevent the small-diameter portion 50 fitted to the cylinder 20c from coming off from the cylinder 20b.
In addition, since a space is formed between the housing 53 and the small diameter portion 50 that is pulled out, excess oil out of the oil that lubricates the inside of the cylinder case 20C accumulates in the space through the piston skirt 13. In addition, the shoulder portion 52 can re-supply the oil stored in the space to the piston skirt 13 side.
The shoulder portion 52 can push back into the cylinder 20c the combustible gas mixture that has leaked from the cylinder 20c through the gap between the piston skirt 13 and the cylinder 20c.
 上記の構成を備えたエンジン10Gは、上記の図10に示したピストンリードバルブ型エンジン10Cに準じる構成を有するものであるから、その動作に係る詳細な説明は省略する。 The engine 10G having the above configuration has a configuration corresponding to the piston lead valve type engine 10C shown in FIG.
 そして、図16に示すエンジン10Hは、上記したエンジン10Gを基に水平対向4気筒化したエンジンである。
 エンジン10Hは、上記のエンジン10Gに係る水平対向2気筒エンジンを1ユニットとした第5ユニット60と第6ユニット61とから構成されている。各ユニット60,61の構成は、エンジン10Gと同様であるから説明を省略する。
 第5ユニット60と第6ユニット61は、クランク軸19方向に沿って並設されて構成されている。
 エンジン10Hは、図16に示すように、第5ユニット60に係るクランクアーム18と、第6ユニット61に係るクランクアーム18を有している。当該クランクアーム18は、互いにクランク軸19を挟んで相反する方向に対向配置され、互いに180度(π)のクランク角を成すように構成されている。
An engine 10H shown in FIG. 16 is a horizontally opposed four-cylinder engine based on the above-described engine 10G.
The engine 10H is composed of a fifth unit 60 and a sixth unit 61, each of which is a horizontally opposed two-cylinder engine related to the engine 10G. Since the configuration of each unit 60, 61 is the same as that of the engine 10G, description thereof will be omitted.
The fifth unit 60 and the sixth unit 61 are arranged side by side along the crankshaft 19 direction.
The engine 10H has a crank arm 18 associated with the fifth unit 60 and a crank arm 18 associated with the sixth unit 61, as shown in FIG. The crank arms 18 are arranged opposite to each other with the crankshaft 19 interposed therebetween, and are configured to form a crank angle of 180 degrees (π) with each other.
 ピストン11Bの小径部50の下死点L1近傍であって、シリンダー20cの所定位置には吸気口23bが設けられている。当該吸気口23bを備えた吸気ポートは、図16に示すように、互いに対向する第5ユニット60と第6ユニット61の各吸気口23bと連通するようにT字状に形成され、ピストンリードバルブ35を有している。
 また同様に、排気口24c及び排気バルブ54を備えた排気ポートは、互いに対向する第5ユニット60と第6ユニット61の各排気口24cと連通するようにT字状に形成されている。
 これによって、第5ユニット60と第6ユニット61双方のシリンダー20c及び燃焼室21へ可燃性混合気体を吸気させることができ、またシリンダー20cから排気ガスを排気、掃気することができる。
An intake port 23b is provided at a predetermined position of the cylinder 20c near the bottom dead center L1 of the small diameter portion 50 of the piston 11B. As shown in FIG. 16, the intake port provided with the intake port 23b is formed in a T shape so as to communicate with the respective intake ports 23b of the fifth unit 60 and the sixth unit 61 facing each other. 35.
Similarly, an exhaust port having an exhaust port 24c and an exhaust valve 54 is formed in a T shape so as to communicate with the exhaust ports 24c of the fifth unit 60 and the sixth unit 61 facing each other.
As a result, the combustible gas mixture can be drawn into the cylinders 20c and the combustion chambers 21 of both the fifth unit 60 and the sixth unit 61, and the exhaust gas can be exhausted and scavenged from the cylinders 20c.
 また、点火プラグ22は、第1実施例に記載のエンジンと同様に、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室21内でピストン11によって圧縮されたとき、点火プラグ22の電極から火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってピストン11が動作する。また、第1実施例に記載したように、可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。さらに、点火プラグに替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室21に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。
 このように、図16に示したエンジン10Hは、いわゆるピストンリードバルブ式の2ストローク型エンジンを水平対向4気筒に組んだ構成を有している。
Further, the ignition plug 22, similarly to the engine described in the first embodiment, has a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio. When compressed by the piston 11 at , a spark is emitted from the electrode of the spark plug 22 . When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 . Also, as described in the first embodiment, the combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and may be natural gas, hydrogen gas or It may be an internal combustion engine that explodes or burns combustible gas extracted from biomass or the like. Further, instead of the ignition plug, an injection device (not shown) for atomizing the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 21 . In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
In this manner, the engine 10H shown in FIG. 16 has a configuration in which a so-called piston lead valve type two-stroke engine is assembled into horizontally opposed four cylinders.
 上記の構成を備えたエンジン10Hは、次に説明するように動作する。添付した図面にしたがって以下説明する。
 第5ユニット60のクランクアーム18と第6ユニット61のクランクアーム18のクランク角の位相差は、180度(π)となるように構成されている。
 そのため、図16に示すように、第6ユニット61の右側ピストンヘッド12Rが下死点L1に位置し、左側ピストンヘッド12Lが上死点L0に位置している場合に、第5ユニット60の右側ピストンヘッド12Rは上死点L0に位置し、左側ピストンヘッド12Lは下死点L1に位置している。このように、第5ユニット60と第6ユニット61に係る各ピストン11Bが互い違いに相反する方向へ入れ替わるように直線的な往復運動をすることによって、第5ユニット60の左右ピストンヘッド12R,12L、第6ユニット61の左右ピストンヘッド12R,12Lが互い違いに相反する方向へ直線的な往復運動を行うように動作する。当該動作については、エンジン10Fの動作に準ずるものであるから詳細な説明は省略する。
 このように、エンジン10Hでは、第5ユニット60と第6ユニット61において、いずれかのシリンダー20c内で常に爆発工程が行われるように構成することができる。そのため、エンジン10H全体で、等間隔爆発を行わせることができる。
 また、第5ユニット60と第6ユニット61に係るそれぞれのピストン11Bが、互いに相反する方向へ交互に直線的な往復運動を行うので、ピストン11Bの動作に起因する振動を相殺することができ、ピストンスカート13がシリンダー20c内壁を押圧して発生する側圧を抑制し、ピストンスカート13がシリンダー20c内壁を摺動する際の摩擦損失を軽減させることができる。その結果、ピストン11とシリンダー20cの接触に伴う振動の発生或いは騒音の発生を抑制することができる。
The engine 10H having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
The crank angle phase difference between the crank arm 18 of the fifth unit 60 and the crank arm 18 of the sixth unit 61 is 180 degrees (π).
Therefore, as shown in FIG. 16, when the right piston head 12R of the sixth unit 61 is positioned at the bottom dead center L1 and the left piston head 12L is positioned at the top dead center L0, the right side of the fifth unit 60 The piston head 12R is positioned at the top dead center L0, and the left piston head 12L is positioned at the bottom dead center L1. In this way, the left and right piston heads 12R, 12L of the fifth unit 60, and the left and right piston heads 12R, 12L, The left and right piston heads 12R, 12L of the sixth unit 61 operate so as to linearly reciprocate in opposite directions. Since this operation conforms to the operation of the engine 10F, detailed description thereof will be omitted.
Thus, in the engine 10H, the fifth unit 60 and the sixth unit 61 can be configured so that the explosion process is always performed in one of the cylinders 20c. Therefore, evenly spaced explosions can be performed in the entire engine 10H.
In addition, since the respective pistons 11B of the fifth unit 60 and the sixth unit 61 alternately perform linear reciprocating motions in directions opposite to each other, vibration caused by the motion of the pistons 11B can be canceled, The side pressure generated by the piston skirt 13 pressing the inner wall of the cylinder 20c can be suppressed, and the friction loss when the piston skirt 13 slides on the inner wall of the cylinder 20c can be reduced. As a result, it is possible to suppress the occurrence of vibration or noise due to the contact between the piston 11 and the cylinder 20c.
 なお、上記では水平対向4気筒エンジンについて例示したが、水平対向エンジンに係る気筒数はこれらに限定されるものでは無く、エンジン10Gに係る基本構成の水平2気筒ユニットを増減して6気筒、8気筒、10気筒、12気筒、16気筒等の水平対向エンジンを構成するようにしても良い。この場合、各ユニット間の位相差を、たとえば、120度(4π/3)、72度(π/5)、60度(π/3)、45度(π/4)等、所定の角度、好ましくは各ユニットが備えるクランクアーム18がクランク軸19を中心に円周に対してバランスよく配置されるように設定することによって、一次振動、偶力振動、二次振動等の振動を各ユニット間で互いに相殺するようにすることができる。
 そして、上記のいずれの場合であっても、クランク軸19にバランスウェイトを取り付けて振動を抑制するようにしても良い。
 上記のように構成した各エンジンでは、クランク軸19を周回するクランクアーム18の長さを従来のエンジンが備えるクランクアームの長さよりも短くすることができるので、クランク軸19を周回する慣性モーメントを打ち消すバランスウェイトを軽量化させることができる。さらに、従来、先端が往復運動を行い、基端が回転運動を行うコンロッドには往復運動に因る振動と回転運動に因る振動が発生するが、当該コンロッドを省いた本実施例に係るエンジンによれば、コンロッドの動作を起因とする振動成分、振動原因を除去することができる。これによって、エンジンに生じる一次振動、偶力振動、二次振動等の振動のうち、コンロッドの動作を起因とする影響を除去することができる。
Although the horizontally opposed 4-cylinder engine was exemplified above, the number of cylinders related to the horizontally opposed engine is not limited to these. A horizontally opposed engine with cylinders, 10 cylinders, 12 cylinders, 16 cylinders, etc. may be constructed. In this case, the phase difference between each unit is set to a predetermined angle such as 120 degrees (4π/3), 72 degrees (π/5), 60 degrees (π/3), 45 degrees (π/4), etc. Preferably, by setting the crank arm 18 provided in each unit so that it is arranged in a well-balanced manner around the circumference of the crankshaft 19, vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
In any of the above cases, a balance weight may be attached to the crankshaft 19 to suppress vibration.
In each engine configured as described above, the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in the conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight. Furthermore, conventional connecting rods, in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotating motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
 続いて、本発明のエンジンについて、他の実施例を添付した図面にしたがって説明する。
 図17は、第4実施例に係るエンジンの構成の概略を示す説明図である。
Next, another embodiment of the engine of the present invention will be described with reference to the accompanying drawings.
FIG. 17 is an explanatory diagram showing the outline of the configuration of the engine according to the fourth embodiment.
 エンジン10Iは、図17に示すように、ピストン11Cと当該ピストン11Cを収納するシリンダーケース20Dとを有している。
 ピストン11Cは、ピストンヘッド12,12を左右両端に有し、周壁部中心に貫通孔14を有している。
The engine 10I, as shown in FIG. 17, has a piston 11C and a cylinder case 20D that houses the piston 11C.
The piston 11C has piston heads 12, 12 at both left and right ends, and a through hole 14 at the center of the peripheral wall.
 貫通孔14は、図17に示すように、内歯車14aを有している。内歯車14aは、貫通孔14の軸方向に沿って刻まれた歯を、貫通孔14の内壁の周方向に沿って並設して構成されている。
 また、貫通孔14内には、図17に示すように、歯車15と偏心フリーローター16が配設されている。
 歯車15は、軸方向に沿って歯が刻まれ、内歯車14aと噛合して転動可能に構成されている。歯車15の直径rと、内歯車14aの内径Rとの比は、1:2となるように構成されている。
 偏心フリーローター16は、貫通孔14の内径と略同径の円盤状に形成され、滑動自在かつ回動自在に貫通孔14に嵌合されている。偏心フリーローター16の軸心は、当該偏心フリーローター16の直径を4等分し、短径と長径の比が1:3となる位置に設けられている。
 歯車15と偏心フリーローター16は、クランクピン17で軸支されている。
The through hole 14 has an internal gear 14a as shown in FIG. The internal gear 14 a is configured by arranging teeth cut along the axial direction of the through hole 14 along the circumferential direction of the inner wall of the through hole 14 .
A gear 15 and an eccentric free rotor 16 are arranged in the through hole 14, as shown in FIG.
The gear 15 has teeth cut along the axial direction, and is configured to be able to roll by meshing with the internal gear 14a. The ratio of the diameter r of the gear 15 and the inner diameter R of the internal gear 14a is set to 1:2.
The eccentric free rotor 16 is formed in a disc shape having substantially the same diameter as the inner diameter of the through hole 14 and is fitted in the through hole 14 so as to be slidable and rotatable. The axial center of the eccentric free rotor 16 divides the diameter of the eccentric free rotor 16 into four equal parts, and is provided at a position where the ratio of the minor axis to the major axis is 1:3.
The gear 15 and the eccentric free rotor 16 are supported by a crankpin 17 .
 クランクアーム18は、先端にクランクピン17を有し、基端にクランク軸19を有している。
 歯車15が内歯車14aに沿って一周したとき、クランクアーム18は、クランク軸19を一回転させるように構成されている。当該歯車と内歯車との関係は第1実施例のエンジン10と同様であるから説明を省略する。また、偏心フリーローター16についても、第1実施例に記載したエンジン10と同様であるから説明を省略する。
The crank arm 18 has a crankpin 17 at its distal end and a crankshaft 19 at its proximal end.
The crank arm 18 is configured to rotate the crankshaft 19 once when the gear 15 completes one turn along the internal gear 14a. Since the relationship between the gear and the internal gear is the same as that of the engine 10 of the first embodiment, the explanation is omitted. Also, the eccentric free rotor 16 is the same as the engine 10 described in the first embodiment, so the description is omitted.
 シリンダーケース20Dは、図17に示すように、一方に燃焼室65を有し、他方に吸排気調圧室66を備えたシリンダー20dを有している。そして、シリンダー20d内に収納されるピストン11Cは、燃焼室65と吸排気調圧室66間を滑動して往復運動するように構成されている。
 燃焼室65は、所定の位置に点火プラグ22と排気口67を備えた排気ポート68を有している。
As shown in FIG. 17, the cylinder case 20D has a cylinder 20d with a combustion chamber 65 on one side and an intake/exhaust pressure regulating chamber 66 on the other side. A piston 11C housed in the cylinder 20d is configured to slide between the combustion chamber 65 and the intake/exhaust pressure regulating chamber 66 to reciprocate.
The combustion chamber 65 has an exhaust port 68 with a spark plug 22 and an exhaust port 67 in place.
 点火プラグ22は、キャブレター又はインジェクションから噴霧された燃料と空気を所定の割合で混合して形成された可燃性混合気体が、燃焼室65内でピストン11Cによって圧縮されたとき、通電され点火して火花を飛ばすように構成されている。当該火花が燃焼室で可燃性混合気体を爆発燃焼させたとき、ピストンヘッド12に圧力がかかってシリンダー20d内でピストン11が動作する。
 なお、上記の可燃性混合気体は、空気中にガソリン又はアルコールを噴霧して形成されたものであるがこれに限定されたものでは無く、天然ガス、水素ガス或いはバイオマス等から抽出される可燃性ガスを爆発又は燃焼させる内燃機関であっても良い。
The ignition plug 22 is energized and ignited when a combustible gas mixture formed by mixing fuel and air sprayed from the carburetor or injection at a predetermined ratio is compressed by the piston 11C in the combustion chamber 65. Configured to shoot sparks. When the spark causes the combustible gas mixture to explode and burn in the combustion chamber, pressure is applied to the piston head 12 to move the piston 11 within the cylinder 20d.
The above combustible gas mixture is formed by spraying gasoline or alcohol into the air, but is not limited thereto, and combustible gas extracted from natural gas, hydrogen gas, biomass, etc. It may be an internal combustion engine that explodes or burns gas.
 また、点火プラグ22に替えて液体燃料を霧状にして噴霧する噴射装置(図示略)を設け、当該噴射装置と連通する噴霧口を燃焼室65に設けても良い。この場合は、ピストンヘッド12で圧縮された高温高圧の空気に軽油等の燃料を噴霧して燃焼させるディーゼル機関を構成することができる。 Alternatively, instead of the ignition plug 22, an injection device (not shown) that atomizes and sprays the liquid fuel may be provided, and a spray port communicating with the injection device may be provided in the combustion chamber 65. In this case, a diesel engine can be constructed in which fuel such as light oil is sprayed into the high-temperature, high-pressure air compressed by the piston head 12 for combustion.
 排気口67を備えた排気ポート68は、燃焼室65と連通し、排気口67を覆蓋する排気バルブ69を有している。当該排気バルブ69は、カム、ロッカーアーム等でクランク軸19の回転、すなわちピストン11Cの動作に従動して排気口67を周期的に開閉するように構成されている。これによって、排気口67が閉じているとき、燃焼室65内の圧力を高めることができ、排気口67が開放されているとき、シリンダー20d内及び燃焼室65内に残留している爆発燃焼後の排気ガスをシリンダー20d及び燃焼室65外へ排気及び掃気することができる。 An exhaust port 68 having an exhaust port 67 communicates with the combustion chamber 65 and has an exhaust valve 69 that covers the exhaust port 67 . The exhaust valve 69 is configured to periodically open and close the exhaust port 67 by following the rotation of the crankshaft 19, that is, the movement of the piston 11C, using a cam, a rocker arm, or the like. Thereby, when the exhaust port 67 is closed, the pressure in the combustion chamber 65 can be increased, and when the exhaust port 67 is open, the explosive combustion residuals remaining in the cylinder 20d and in the combustion chamber 65 can be increased. of exhaust gas can be exhausted and scavenged out of cylinder 20d and combustion chamber 65.
 吸排気調圧室66は、吸気口71を備えた吸気ポート70が連通している。吸気ポート70は、可燃性混合気体の流れを一方向へ規制するリードバルブ72を有している。 An intake port 70 having an intake port 71 communicates with the intake/exhaust pressure regulating chamber 66 . The intake port 70 has a reed valve 72 that regulates the flow of the combustible gas mixture in one direction.
 燃焼室65と吸排気調圧室66は、バイパスポート73によって連通されている。バイパスポート73の吸排気調圧室66側の開口端73aは、吸気ポート70の吸気口71とリードバルブ72の間に設けられ、燃焼室65側の開口端73bは、燃焼室65側ピストンヘッド12の下死点L1近傍の所定位置に形成されている。 The combustion chamber 65 and the intake/exhaust pressure regulating chamber 66 communicate with each other through a bypass port 73 . An open end 73a of the bypass port 73 on the intake/exhaust pressure regulating chamber 66 side is provided between the intake port 71 of the intake port 70 and the lead valve 72, and an open end 73b on the combustion chamber 65 side is provided on the combustion chamber 65 side piston head. 12 is formed at a predetermined position near the bottom dead center L1.
 上記の構成を有するエンジン10Iは、次に説明するように動作する。添付した図面にしたがって説明する。
 エンジン10Iは、吸気・圧縮工程と、爆発・排気・掃気工程とからなる2ストロークエンジンである。
 吸気・圧縮工程は、まず吸排気調圧室66側のピストンヘッド12が上死点L0から下死点L1に移動するとき、吸気ポート70から吸排気調圧室へ吸気される。このとき、バイパスポート73の燃焼室65側開口端73bは、ピストン11Cで塞がれているので、吸排気調圧室66には吸気ポート70を通じて可燃性混合気体が満たされる。そして、吸排気調圧室66側のピストンヘッド12が下死点L1から上死点L0に向かうとき、吸排気調圧室66の可燃性混合気体は圧縮され、ピストン11Cがズレてバイパスポート73の燃焼室65側開口端73bが開放された瞬間に燃焼室65側へ圧縮された可燃性混合気体が流入する。このとき流入するガス圧で燃焼室65側のシリンダー20d内に残留していた排気ガスは掃気される。
 そして、燃焼室65側のピストンヘッド12が下死点L1から上死点L0に向かうとき、燃焼室65側に満たされた可燃性混合気体は圧縮される。
 続いて、爆発・排気・掃気工程は、燃焼室65内へ圧縮された可燃性混合気体を爆発燃焼させる工程から始まる。当該爆発燃焼後、排気・掃気工程では、排気バルブ69が開放され、排気ガスが排気口67から排出される。このとき、燃焼室65側はピストンヘッド12が上死点L0から下死点L1に向かうので負圧が発生する。そしてバイパスポート73の燃焼室65側開口端72bが開放された瞬間、吸排気調圧室66から加圧された可燃性混合気体が一気に流入して、燃焼室65側のシリンダー20d内に残留していた排気ガスが一気に掃気される。
 このように、エンジン10Iは、吸排気調圧室66側のピストンヘッド12が可燃性混合気体を吸気すると共に圧縮し、バイパスポート73を通じて燃焼室65側へ一気に押し込む構成とした。これによって、燃焼室65側の吸気効率及び掃排気効率を上げることができ、燃費を向上させることができる。
The engine 10I having the above configuration operates as described below. Description will be made with reference to the attached drawings.
The engine 10I is a two-stroke engine consisting of an intake/compression process and an explosion/exhaust/scavenging process.
In the intake/compression process, first, when the piston head 12 on the intake/exhaust pressure regulating chamber 66 side moves from the top dead center L0 to the bottom dead center L1, air is drawn into the intake/exhaust pressure regulating chamber 66 through the intake port 70 . At this time, the open end 73b of the bypass port 73 on the side of the combustion chamber 65 is blocked by the piston 11C, so the intake/exhaust pressure regulating chamber 66 is filled with the combustible gas mixture through the intake port . Then, when the piston head 12 on the side of the intake/exhaust pressure regulating chamber 66 moves from the bottom dead center L1 to the top dead center L0, the combustible gas mixture in the intake/exhaust pressure regulating chamber 66 is compressed, and the piston 11C shifts to the bypass port 73. The compressed combustible mixed gas flows into the combustion chamber 65 at the moment the open end 73b on the combustion chamber 65 side is opened. At this time, the exhaust gas remaining in the cylinder 20d on the side of the combustion chamber 65 is scavenged by the inflowing gas pressure.
Then, when the piston head 12 on the side of the combustion chamber 65 moves from the bottom dead center L1 to the top dead center L0, the combustible gas mixture filling the side of the combustion chamber 65 is compressed.
Subsequently, the explosion-exhaust-scavenging process begins with the process of explosively burning the combustible gas mixture compressed into the combustion chamber 65 . After the explosive combustion, the exhaust valve 69 is opened and the exhaust gas is discharged from the exhaust port 67 in the exhaust/scavenging process. At this time, since the piston head 12 moves from the top dead center L0 to the bottom dead center L1 on the combustion chamber 65 side, a negative pressure is generated. At the moment when the open end 72b of the bypass port 73 on the side of the combustion chamber 65 is opened, the combustible gas mixture pressurized from the intake/exhaust pressure regulating chamber 66 flows in at once and remains in the cylinder 20d on the side of the combustion chamber 65. Exhaust gas is scavenged at once.
In this way, the engine 10I is configured such that the piston head 12 on the side of the intake/exhaust pressure regulating chamber 66 takes in and compresses the combustible mixed gas, and pushes it into the combustion chamber 65 side at once through the bypass port 73 . As a result, the intake efficiency and the scavenging/exhaust efficiency on the combustion chamber 65 side can be increased, and the fuel efficiency can be improved.
 そして、図18に示すエンジン10Jは、上記したエンジン10Iを基に直列4気筒化したエンジンである。
 エンジン10Jは、上記のエンジン10Iを基本ユニットとして、図18に示すように、第7ユニット75、第8ユニット76、第9ユニット77、第10ユニット78とクランク軸19を共有するように直列に並設されて構成されている。各ユニット75,76,77,78の構成は、エンジン10Iと同様であるから説明を省略する。
 エンジン10Jは、図18に示すように、第7ユニット75と第10ユニット78のクランクアーム18と、第8ユニット76と第9ユニット77のクランクアーム18が、互いにクランク軸19を挟んで相反する方向に対向配置され、互いに180度(π)のクランク角を成すように構成されている。
An engine 10J shown in FIG. 18 is an in-line four-cylinder engine based on the engine 10I described above.
The engine 10J has the engine 10I as a basic unit, and as shown in FIG. They are arranged side by side. Since the configuration of each unit 75, 76, 77, 78 is the same as that of the engine 10I, the description thereof will be omitted.
In the engine 10J, as shown in FIG. 18, the crank arms 18 of the seventh unit 75 and the tenth unit 78 and the crank arms 18 of the eighth unit 76 and the ninth unit 77 are opposed to each other with the crankshaft 19 interposed therebetween. They are arranged facing each other in the direction and are configured to form a crank angle of 180 degrees (π) with each other.
 エンジン10Jは、図18に示すように、吸気ポート70から各ユニット75,76,77,78の各吸気口71へ向かって可燃性混合気体を供給可能に枝分かれして構成されている。
 また、各ユニット75,76,77,78の排気口67から排気された排気ガスは、排気ポート68を通じてまとめられて排気されるように構成されている。
As shown in FIG. 18, the engine 10J is branched so that the combustible gas mixture can be supplied from the intake port 70 toward the intake ports 71 of the units 75, 76, 77, and 78. As shown in FIG.
Exhaust gases discharged from the exhaust ports 67 of the units 75, 76, 77, and 78 are collectively exhausted through the exhaust port 68. As shown in FIG.
 上記の構成を備えたエンジン10Jは、次に説明するように動作する。添付した図面にしたがって以下説明する。
 第7ユニット75と第10ユニット78のクランクアーム18と、第8ユニット76と第9ユニット77のクランクアーム18が、互いにクランク軸19を挟んで相反する方向に対向配置され、互いに180度(π)のクランク角を成すように構成されている。
 そのため、図18に示すように、第7ユニット75と第10ユニット78の吸排気調圧室66側ピストンヘッド12が上死点L0に位置し、燃焼室65側ピストンヘッド12が下死点L1に位置している場合に、第8ユニット76と第9ユニット77の吸排気調圧室66側ピストンヘッド12は下死点L1に位置し、燃焼室65側ピストンヘッド12は上死点L0に位置している。このように、第7ユニット75と第10ユニット78とからなる組と、第8ユニット76と第9ユニット77とからなる組に係る各ピストン11Cが互い違いに相反する方向へ入れ替わるように直線的な往復運動をすることによって、第7ユニット75と第10ユニット78とからなる組のピストン11Cと、第8ユニット76と第9ユニット77とからなる組のピストン11Cが互い違いに相反する方向へ直線的な往復運動を行うように動作する。各ユニットの動作については、エンジン10Iの動作に準ずるものであるから詳細な説明は省略する。
 このように、エンジン10Jでは、第7ユニット75と第10ユニット78とからなる組と、第8ユニット76と第9ユニット77とからなる組において、いずれかのシリンダー20d内で常に爆発工程が行われるように構成することができる。そのため、エンジン10J全体で、等間隔爆発を行わせることができる。
 また、第7ユニット75と第10ユニット78とからなる組と、第8ユニット76と第9ユニット77とからなる組のピストン11Cが、組ごとに相反する方向へ交互に直線的な往復運動を行うので、ピストン11Cの動作に起因する振動を相殺することができ、ピストン11Cがシリンダー20d内壁を押圧して発生する側圧を抑制し、ピストン11Cがシリンダー20d内壁を摺動する際の摩擦損失を軽減させることができる。その結果、ピストン11Cとシリンダー20dの接触に伴う振動の発生或いは騒音の発生を抑制することができる。
The engine 10J having the above configuration operates as described below. A description will be given below with reference to the attached drawings.
The crank arms 18 of the seventh unit 75 and the tenth unit 78, and the crank arms 18 of the eighth unit 76 and the ninth unit 77 are arranged opposite to each other with the crankshaft 19 interposed therebetween, 180 degrees (π ).
Therefore, as shown in FIG. 18, the intake/exhaust pressure regulating chamber 66 side piston heads 12 of the seventh unit 75 and the tenth unit 78 are positioned at the top dead center L0, and the combustion chamber 65 side piston heads 12 are positioned at the bottom dead center L1. , the intake/exhaust pressure regulating chamber 66 side piston heads 12 of the eighth unit 76 and the ninth unit 77 are positioned at the bottom dead center L1, and the combustion chamber 65 side piston heads 12 are at the top dead center L0. positioned. In this way, the pistons 11C associated with the set consisting of the seventh unit 75 and tenth unit 78 and the set consisting of the eighth unit 76 and ninth unit 77 are linearly arranged so as to alternate in opposite directions. By reciprocating, the set of pistons 11C consisting of the seventh unit 75 and tenth unit 78 and the set of pistons 11C consisting of the eighth unit 76 and ninth unit 77 linearly move in opposite directions alternately. reciprocating motion. Since the operation of each unit conforms to the operation of the engine 10I, detailed description will be omitted.
Thus, in the engine 10J, the explosion process is always performed in one of the cylinders 20d in the set consisting of the seventh unit 75 and the tenth unit 78 and the set consisting of the eighth unit 76 and the ninth unit 77. can be configured to Therefore, evenly spaced explosions can be performed in the entire engine 10J.
Also, the pistons 11C of the set consisting of the seventh unit 75 and the tenth unit 78 and the set consisting of the eighth unit 76 and the ninth unit 77 alternately linearly reciprocate in opposite directions for each set. Therefore, it is possible to cancel the vibration caused by the operation of the piston 11C, suppress the side pressure generated by the piston 11C pressing the inner wall of the cylinder 20d, and reduce the friction loss when the piston 11C slides on the inner wall of the cylinder 20d. can be reduced. As a result, it is possible to suppress the occurrence of vibration or noise due to the contact between the piston 11C and the cylinder 20d.
 なお、上記では直列4気筒エンジンについて例示したが、第7ユニット75乃至第10ユニット78に係る配置方法はこれに限定されるものではなく、燃焼室が交互の位置になるようにV型に配置するようにしても良い。また、気筒数はこれらに限定されるものでは無く、エンジン10Iに係る基本構成のユニットを増減して多気筒エンジンを構成するようにしても良い。この場合、各ユニット間の位相差を、たとえば、120度(4π/3)、72度(π/5)、60度(π/3)、45度(π/4)等、所定の角度、好ましくは各ユニットが備えるクランクアーム18がクランク軸19を中心に円周に対してバランスよく配置されるように設定することによって、一次振動、偶力振動、二次振動等の振動を各ユニット間で互いに相殺するようにすることができる。
 そして、上記のいずれの場合であっても、クランク軸19にバランスウェイトを取り付けて振動を抑制するようにしても良い。
 上記のように構成した各エンジンでは、クランク軸19を周回するクランクアーム18の長さを従来のエンジンが備えるクランクアームの長さよりも短くすることができるので、クランク軸19を周回する慣性モーメントを打ち消すバランスウェイトを軽量化させることができる。さらに、従来、先端が往復運動を行い、基端が回転運動を行うコンロッドには往復運動に因る振動と回転運動に因る振動が発生するが、当該コンロッドを省いた本実施例に係るエンジンによれば、コンロッドの動作を起因とする振動成分、振動原因を除去することができる。これによって、エンジンに生じる一次振動、偶力振動、二次振動等の振動のうち、コンロッドの動作を起因とする影響を除去することができる。
Although the in-line four-cylinder engine has been exemplified above, the arrangement method of the seventh unit 75 to the tenth unit 78 is not limited to this, and the combustion chambers are arranged in a V-shape so that the positions of the combustion chambers alternate. You can make it work. Further, the number of cylinders is not limited to these, and a multi-cylinder engine may be configured by increasing or decreasing the number of basic configuration units related to the engine 10I. In this case, the phase difference between each unit is set to a predetermined angle such as 120 degrees (4π/3), 72 degrees (π/5), 60 degrees (π/3), 45 degrees (π/4), Preferably, by setting the crank arm 18 provided in each unit so that it is arranged in a well-balanced manner around the circumference of the crank shaft 19, vibrations such as primary vibration, couple vibration, secondary vibration, etc. can be made to cancel each other out.
In any of the above cases, a balance weight may be attached to the crankshaft 19 to suppress vibration.
In each engine configured as described above, the length of the crank arm 18 that revolves around the crankshaft 19 can be made shorter than the length of the crank arm provided in a conventional engine, so the moment of inertia that revolves around the crankshaft 19 can be reduced to It is possible to reduce the weight of the counterbalance weight. Furthermore, conventional connecting rods, in which the distal end reciprocates and the proximal end rotates, generate vibration due to the reciprocating motion and vibration due to the rotary motion. According to this, it is possible to eliminate the vibration component and the cause of vibration caused by the operation of the connecting rod. As a result, it is possible to eliminate the influence of the movement of the connecting rod among the vibrations such as the primary vibration, the couple vibration, and the secondary vibration that occur in the engine.
 本実施例に係るエンジンによれば、左右両端にピストンヘッドを配設した略円柱体からなるピストンの周壁部中心に内歯車14aを備えた貫通孔14を形成し、当該内歯車14aをクランクピン17が軸支する歯車15が転動するように構成した。これによって、ピストンの往復運動を、内歯車15aに沿って転動する歯車の回転運動に変換し、さらに歯車によって回転されるクランクアーム18を介してクランク軸19の回転運動へ変換することができる。
 そして、本実施例に係るピストンはシリンダー内を直線的に往復運動することから、当該ピストンをシリンダー内で往復させたとき、ピストンの側壁がシリンダー内壁を押圧する側圧を抑制することができ、ピストンがシリンダーの内壁へ偏って接触することを防ぎ、ピストンのシリンダーに対する摩擦損失を軽減することができる。これによって、シリンダーに発生する熱を抑制することができるので、エンジンの熱変換効率を改善することができることから、各エンジンの出力特性を改善し、燃費を改善することができる。
According to the engine of this embodiment, the through hole 14 having the internal gear 14a is formed in the center of the peripheral wall of the piston, which is a substantially cylindrical body with the piston heads arranged on both left and right ends, and the internal gear 14a is connected to the crank pin. A gear 15 pivotally supported by 17 is configured to roll. Thereby, the reciprocating motion of the piston can be converted into rotary motion of the gear rolling along the internal gear 15a and further into rotary motion of the crankshaft 19 via the crank arm 18 rotated by the gear. .
Further, since the piston according to the present embodiment reciprocates linearly in the cylinder, when the piston reciprocates in the cylinder, the side pressure of the side wall of the piston pressing against the inner wall of the cylinder can be suppressed. can be prevented from contacting the inner wall of the cylinder unevenly, and the friction loss of the piston to the cylinder can be reduced. As a result, the heat generated in the cylinder can be suppressed, and the heat conversion efficiency of the engine can be improved, so that the output characteristics of each engine can be improved, and the fuel efficiency can be improved.
 また、本実施例に係るエンジンによれば、シリンダー内でピストンが往復運動する振幅、ボアとストロークの関係を、従来のエンジンのようにコンロッド又はクランクアームの長さに制限されることなく、自在に設計することができる。これによって、たとえば、エンジンをコンパクトにかつ軽量に構成することができる。
 加えて、本実施例に係るエンジンによれば、ピストンがシリンダー内を直線的に往復運動するように構成した。ここで、従来のエンジンに係るクランク構造であれば、コンロッドが揺動するために、シリンダーに対してピストンに横方向の力が発生し、ピストンがシリンダーの内壁を打つピストンスラップ現象が発生し、これを抑制するため、ピストンの下方にピストンスカートを形成していた。しかしながら、本実施例に係るエンジンにおいては、その構成上ピストンスラップ現象は発生し難いことから、ピストンスカートの長さを最小限に抑えることができ、ピストンの長さを短くすることができる。さらに、ピストンとシリンダー間のクリアランスをより一層狭くし、ピストンリングの遊びを無くすことができ、ピストン冠部の長さを短くすることができるので、短くしたピストンスカートと合わせて、ピストン自体をコンパクトに構成することができる。
Further, according to the engine of this embodiment, the amplitude of the reciprocating motion of the piston in the cylinder and the relationship between the bore and the stroke can be freely adjusted without being restricted by the length of the connecting rod or the crank arm as in the conventional engine. can be designed to This allows, for example, a compact and lightweight construction of the engine.
In addition, according to the engine of this embodiment, the piston is configured to reciprocate linearly within the cylinder. Here, in the crank structure of a conventional engine, since the connecting rod oscillates, a lateral force is generated in the piston with respect to the cylinder, causing a piston slap phenomenon in which the piston strikes the inner wall of the cylinder. In order to suppress this, a piston skirt is formed below the piston. However, in the engine according to the present embodiment, since the piston slap phenomenon is unlikely to occur due to its configuration, the length of the piston skirt can be minimized and the length of the piston can be shortened. In addition, the clearance between the piston and cylinder can be further narrowed, the play of the piston ring can be eliminated, and the length of the piston crown can be shortened, so together with the shortened piston skirt, the piston itself can be made compact. can be configured to
 また、本実施例に係るエンジンによれば、コンロッドを省き、ピストンが直線的に往復運動を行うように構成した。これにより、従来のエンジンでは無しえなかったボア×ストロークの新たな設計を取り入れることができ、大径のボアに対して、さらにストローク長を長くして、燃焼室内の燃焼効率を向上させることができ、熱損失に対する大きな改善が見込める。また、従来のエンジンではクランクアームとコンロッドの動きに伴ってピストンがシリンダーの内壁に衝突し、コンロッドとクランクアームに対して互いに応力が加わることによって、可燃性混合気体の爆発に伴う発熱のみならず、エンジンの構造物の動作によってもまた大きく発熱していたが、本実施例に係るエンジンによれば、ピストンがシリンダーの内壁に衝突し、振動することによるシリンダーに対するピストンの摩擦損失を大きく減らすと共に、クランクアームにかかる負荷についても軽減することができることから、摩擦等によるエンジン自体の余計な発熱を抑えて、燃焼効率を向上させることができ、熱損失に対する大きな改善が見込める。 Also, according to the engine according to this embodiment, the connecting rod is omitted and the piston is configured to linearly reciprocate. As a result, it is possible to incorporate a new design of bore and stroke that was not possible with conventional engines, and it is possible to further increase the stroke length for a large diameter bore and improve the combustion efficiency in the combustion chamber. , and a significant improvement in heat loss can be expected. In a conventional engine, the movement of the crank arm and connecting rod causes the piston to collide with the inner wall of the cylinder, and stress is applied to the connecting rod and crank arm. However, according to the engine of this embodiment, the piston collides with the inner wall of the cylinder, and the friction loss of the piston against the cylinder due to vibration is greatly reduced. Since the load on the crank arm can also be reduced, unnecessary heat generated by the engine itself due to friction can be suppressed, and combustion efficiency can be improved, which is expected to significantly improve heat loss.
 なお、本実施例に係るエンジンは、自動車に搭載される場合に限定されず、船舶、航空機、機関車等、内燃機関を備える乗り物に適用することができ、また、内燃機関を備えたポンプ、発電機等に適用しても良い。いずれの場合であっても、上記の効果を見込めることができ、燃料消費の改善のみならず、環境に対する負担も大きく軽減することができる。 The engine according to the present embodiment is not limited to being mounted on an automobile, but can be applied to vehicles having an internal combustion engine such as ships, aircraft, and locomotives. It may be applied to a generator or the like. In any case, the above effect can be expected, and not only the fuel consumption can be improved, but also the burden on the environment can be greatly reduced.
 10,10A,10B,10C,10D,10E,10F,10G,10H,10I,10J…エンジン、
14…貫通孔、14a…内歯車、15…歯車、16…偏心フリーローター、17…クランクピン、18…クランクアーム、19…クランク軸。
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I, 10J... engine,
DESCRIPTION OF SYMBOLS 14... Through-hole, 14a... Internal gear, 15... Gear, 16... Eccentric free rotor, 17... Crank pin, 18... Crank arm, 19... Crank shaft.

Claims (21)

  1.  左右両端面にそれぞれピストンヘッドを備えた略円柱体状のピストンと、
    当該ピストンの周壁部中心に、前記ピストンの径方向に沿って形成された所定の内径を有する貫通孔と、
    当該貫通孔の内壁に沿って形成された内歯車と、
    当該内歯車と噛合する歯車と、
    当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
    当該クランクアームの基端に固定されたクランク軸と、
    前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
    前記ピストンが挿嵌される円筒形状のシリンダーを備え、前記ピストンヘッドがそれぞれ対向する燃焼室を前記シリンダー両端にそれぞれ連接してなるシリンダーケースと、から構成され、
    当該シリンダー内を、前記ピストンが左右方向へ往復運動するとき、
    前記ピストンに従動して往復運動する前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
    前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
    前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とするエンジン。
    a substantially cylindrical piston having piston heads on both left and right end faces;
    a through hole having a predetermined inner diameter formed along the radial direction of the piston at the center of the peripheral wall of the piston;
    an internal gear formed along the inner wall of the through hole;
    a gear that meshes with the internal gear;
    a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
    a crankshaft fixed to the proximal end of the crank arm;
    a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
    A cylinder case comprising a cylindrical cylinder into which the piston is inserted, and a cylinder case in which combustion chambers facing the piston heads are respectively connected to both ends of the cylinder,
    When the piston reciprocates in the left-right direction in the cylinder,
    the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a predetermined direction;
    The crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
    An engine according to claim 1, wherein said eccentric free rotor rotates in said through hole in a direction opposite to the direction of rotation of said crank arm.
  2.  前記ピストンの直径を、左右両端面の前記ピストンヘッドに連接形成したピストンスカートの径に対して、前記周壁部中心近傍の径を細く形成したことを特徴とする請求項1に記載のエンジン。 The engine according to claim 1, wherein the diameter of the piston is formed such that the diameter near the center of the peripheral wall portion is smaller than the diameter of the piston skirt formed to be connected to the piston head on the left and right end faces.
  3.  前記ピストンの直径を、左右両端面の前記ピストンヘッドに連接形成したピストンスカートの径に対して、前記周壁部中心近傍の径を太く、又は当該ピストンスカートの反ピストンヘッド側から前記周壁部中心に向かって漸増させて当該周壁部中心近傍を略球体状に形成したことを特徴とする請求項1に記載のエンジン。 The diameter of the piston is set so that the diameter near the center of the peripheral wall portion is larger than the diameter of the piston skirt formed on the left and right end surfaces of the piston head, or the diameter of the piston skirt is shifted from the opposite side of the piston head to the center of the peripheral wall portion. 2. An engine according to claim 1, wherein said peripheral wall portion is formed in a substantially spherical shape near the center of said peripheral wall portion by gradually increasing toward it.
  4.  左右両端面の前記ピストンヘッドに連接形成したピストンスカートの反ピストンヘッド側を切り欠いて、
    前記ピストンの前記周壁部中心近傍に前記貫通孔を備えた平面部を形成したことを特徴とする請求項1に記載のエンジン。
    The opposite side of the piston skirt, which is connected to the piston head on the left and right end faces, is cut away,
    2. An engine according to claim 1, wherein a plane portion having said through hole is formed near the center of said peripheral wall portion of said piston.
  5.  前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
    前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする請求項1に記載のエンジン。
    providing a spark plug having an electrode disposed at a predetermined position in the combustion chamber;
    When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. 2. An engine according to claim 1, characterized in that it is adapted to
  6.  前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
    前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする請求項1に記載のエンジン。
    providing an injection device having a spray port located at a predetermined position in the combustion chamber;
    When the piston head rapidly compresses the air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. 2. An engine according to claim 1, characterized in that it is combusted.
  7.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    前記吸気口と前記排気口を前記燃焼室の所定位置に設けたことを特徴とする請求項5若しくは請求項6に記載のエンジン。
    An intake port having an intake port that supplies the combustible gas mixture or the air to the combustion chamber, and an exhaust port that discharges exhaust gas after the combustible gas mixture or the fuel is burned from the combustion chamber. provided with an exhaust port,
    7. An engine according to claim 5, wherein said intake port and said exhaust port are provided at predetermined positions in said combustion chamber.
  8.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    前記吸気口を前記シリンダーの所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
    前記吸気ポートに、前記シリンダー内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブを設けたことを特徴とする請求項5又は請求項6に記載のエンジン。
    An intake port having an intake port that supplies the combustible gas mixture or the air to the combustion chamber, and an exhaust port that discharges exhaust gas after the combustible gas mixture or the fuel is burned from the combustion chamber. provided with an exhaust port,
    providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
    7. The engine according to claim 5, wherein the intake port is provided with a piston reed valve that restricts the combustible gas mixture or the air to flow into the cylinder in one direction. .
  9.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    少なくとも前記クランク軸と前記クランクアームを内包した前記貫通孔を囲橈するようにクランクケースを設けて、
    前記吸気ポートに、前記クランクケース内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するクランクケースリードバルブを設け、前記クランク軸を中心とした放射方向に沿った前記クランクケースの所定位置に前記吸気口を配置し、
    前記排気口を前記シリンダーの側壁部の所定位置に配置し、
    前記クランクケースと前記シリンダーを連通すると共に、前記排気口よりも反燃焼室側にシリンダー側開口端が配置されたバイパスポートを設けたことを特徴とする請求項5若しくは請求項6に記載のエンジン。
    An intake port having an intake port for supplying the combustible mixed gas or the air to the combustion chamber, and an exhaust port for discharging exhaust gas after the combustible mixed gas or the fuel is burned from the combustion chamber. provided with an exhaust port,
    A crankcase is provided so as to surround the through-hole containing at least the crankshaft and the crank arm,
    The intake port is provided with a crankcase reed valve that restricts the combustible gas mixture or the air to flow in one direction into the crankcase, and the crankcase along the radial direction about the crankshaft. arranging the air inlet at a predetermined position of the case,
    arranging the exhaust port at a predetermined position on the side wall of the cylinder;
    7. An engine according to claim 5, further comprising a bypass port communicating between said crankcase and said cylinder, and having an open end on the side of the cylinder located on the opposite side of the combustion chamber than said exhaust port. .
  10.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    少なくとも前記クランク軸と前記クランクアームを内包した前記貫通孔を囲橈するようにクランクケースを設けて、
    当該クランクケースの前記クランク軸の軸方向に沿った所定位置に前記吸気口を配置し、
    当該吸気口は、ローター面周縁部の所定位置を弧状に切り欠いて形成した切欠部を備えた前記偏心フリーローターの前記ローター面周縁近傍と対向配置され、
    前記吸気口は、前記偏心フリーローターの回転にしたがって、前記切欠部と重なり合ったとき開放され、前記周縁部と重なり合ったとき閉鎖されるように構成し、
    前記排気口を前記シリンダーの側壁部の所定位置に配置し、
    前記クランクケースと前記シリンダーを連通すると共に、前記排気口よりも反燃焼室側にシリンダー側開口端が配置されたバイパスポートを設けたことを特徴とする請求項5若しくは請求項6に記載のエンジン。
    An intake port having an intake port that supplies the combustible gas mixture or the air to the combustion chamber, and an exhaust port that discharges exhaust gas after the combustible gas mixture or the fuel is burned from the combustion chamber. provided with an exhaust port,
    A crankcase is provided so as to surround the through hole containing at least the crankshaft and the crank arm,
    disposing the intake port at a predetermined position along the axial direction of the crankshaft of the crankcase;
    The intake port is arranged to face the vicinity of the peripheral edge of the rotor surface of the eccentric free rotor provided with a notch formed by cutting a predetermined position of the peripheral edge of the rotor surface in an arc shape,
    The intake port is configured to be opened when overlapping with the notch portion and closed when overlapping with the peripheral edge portion as the eccentric free rotor rotates,
    arranging the exhaust port at a predetermined position on the side wall of the cylinder;
    7. The engine according to claim 5, further comprising a bypass port that communicates between the crankcase and the cylinder, and has a cylinder-side open end arranged on a side opposite to the combustion chamber from the exhaust port. .
  11.  一対の略円柱状の小径部と、当該小径部よりも大径の略円柱状で前記小径部に挟まれた大径部とからなり、前記小径部の反大径部側の端面にピストンヘッドと当該ピストンヘッドに連接するピストンスカートが形成され、前記大径部の中心部に所定の内径を有する貫通孔が径方向に沿って形成されたピストンと、
    前記貫通孔の内壁に沿って形成された内歯車と、
    当該内歯車と噛合する歯車と、
    当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
    当該クランクアームの基端に固定されたクランク軸と、
    前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
    前記小径部が挿嵌される一対の円筒形状のシリンダーと、当該シリンダーと連接し、前記大径部が嵌合されるハウジングを備え、前記シリンダーの反ハウジング側端部に前記ピストンヘッドが対向する燃焼室を有するシリンダーケースと、から構成され、
    前記シリンダー内を、前記小径部が往復運動するとき、
    当該小径部に従動して前記大径部が往復運動して、前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
    前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
    前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とするエンジン。
    A pair of substantially cylindrical small-diameter portions and a substantially cylindrical large-diameter portion having a larger diameter than the small-diameter portions and sandwiched between the small-diameter portions. and a piston skirt connected to the piston head, and a through hole having a predetermined inner diameter is formed in the center of the large diameter portion along the radial direction;
    an internal gear formed along the inner wall of the through hole;
    a gear that meshes with the internal gear;
    a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
    a crankshaft fixed to the proximal end of the crank arm;
    a disc-shaped eccentric free rotor having a diameter substantially equal to the inner diameter of the through hole, rotatably fitted into the through hole, and supported by the crank pin together with the gear;
    A pair of cylindrical cylinders into which the small-diameter portions are inserted and a housing connected to the cylinders and into which the large-diameter portions are fitted are provided, and the piston head faces the ends of the cylinders on the opposite side of the housing. a cylinder case having a combustion chamber,
    When the small diameter portion reciprocates in the cylinder,
    The large diameter portion reciprocates following the small diameter portion, and the gear meshed with the internal gear rotates in the through hole in a predetermined direction,
    While the crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
    An engine according to claim 1, wherein said eccentric free rotor rotates in said through hole in a direction opposite to the direction of rotation of said crank arm.
  12.  前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
    前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする請求項11に記載のエンジン。
    providing a spark plug having an electrode disposed at a predetermined position in the combustion chamber;
    When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. 12. An engine according to claim 11, characterized in that it is adapted to
  13.  前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
    前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする請求項11に記載のエンジン。
    providing an injection device having a spray port located at a predetermined position in the combustion chamber;
    When the piston head rapidly compresses the air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. 12. An engine according to claim 11, characterized in that it is combusted.
  14.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    前記吸気口と前記排気口を前記燃焼室の所定位置に設けたことを特徴とする請求項12若しくは請求項13に記載のエンジン。
    An intake port having an intake port for supplying the combustible mixed gas or the air to the combustion chamber, and an exhaust port for discharging exhaust gas after the combustible mixed gas or the fuel is burned from the combustion chamber. provided with an exhaust port,
    14. An engine according to claim 12 or 13, wherein said intake port and said exhaust port are provided at predetermined positions in said combustion chamber.
  15.  前記可燃性混合気体又は前記空気を前記燃焼室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    前記吸気口を前記シリンダーの所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
    前記吸気ポートに、前記シリンダー内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブを設けたことを特徴とする請求項12若しくは請求項13に記載のエンジン。
    An intake port having an intake port for supplying the combustible mixed gas or the air to the combustion chamber, and an exhaust port for discharging exhaust gas after the combustible mixed gas or the fuel is burned from the combustion chamber. provided with an exhaust port,
    providing the intake port at a predetermined position in the cylinder and providing the exhaust port at a predetermined position in the combustion chamber;
    14. The engine according to claim 12 or 13, wherein the intake port is provided with a piston reed valve that restricts the combustible gas mixture or the air to flow in one direction into the cylinder. .
  16.  左右両端面にそれぞれピストンヘッドを備えた略円柱体状のピストンと、
    当該ピストンの周壁部中心に、前記ピストンの径方向に沿って形成された所定の内径を有する貫通孔と、
    当該貫通孔の内壁に沿って形成された内歯車と、
    当該内歯車と噛合する歯車と、
    当該歯車を軸支するクランクピンを先端に有する略棒体状のクランクアームと、
    当該クランクアームの基端に固定されたクランク軸と、
    前記貫通孔の前記内径と略同径で、前記貫通孔内へ回動自在に嵌合され、前記歯車と共に前記クランクピンで軸支された円盤状の偏心フリーローターと、
    前記ピストンが挿嵌される円筒形状のシリンダーを備え、当該シリンダーの一端に一の前記ピストンヘッドが対向する燃焼室を連接し、前記シリンダーの他端に他の前記ピストンヘッドが対向する吸排気調圧室を連接してなるシリンダーケースと、
    前記燃焼室と前記吸排気調圧室とを連通するバイパスポートと、から構成され、
    当該シリンダー内を、前記ピストンが左右方向へ往復運動するとき、
    前記ピストンに従動して往復運動する前記内歯車に噛合された前記歯車が、前記貫通孔内を所定の方向へ回動し、
    前記歯車を軸支する前記クランクピンを介して、前記クランクアームが前記クランク軸を所定の方向へ回動させると共に、
    前記偏心フリーローターが、前記貫通孔内を前記クランクアームの回転方向と相反する方向へ回動するようにしたことを特徴とするエンジン。
    a substantially cylindrical piston having piston heads on both left and right end faces;
    a through hole having a predetermined inner diameter formed along the radial direction of the piston at the center of the peripheral wall of the piston;
    an internal gear formed along the inner wall of the through hole;
    a gear that meshes with the internal gear;
    a substantially rod-shaped crank arm having a crank pin at its tip that supports the gear;
    a crankshaft fixed to the proximal end of the crank arm;
    a disc-shaped eccentric free rotor that has a diameter substantially equal to the inner diameter of the through hole, is rotatably fitted into the through hole, and is supported by the crank pin together with the gear;
    An intake/exhaust adjuster comprising a cylindrical cylinder into which the piston is inserted, a combustion chamber facing one of the piston heads at one end of the cylinder, and another piston head facing the other end of the cylinder. a cylinder case formed by connecting pressure chambers;
    a bypass port communicating between the combustion chamber and the intake and exhaust pressure regulating chamber;
    When the piston reciprocates in the left-right direction in the cylinder,
    the gear meshed with the internal gear that reciprocates following the piston rotates in the through hole in a predetermined direction;
    The crank arm rotates the crank shaft in a predetermined direction via the crank pin that supports the gear,
    An engine according to claim 1, wherein said eccentric free rotor rotates in said through hole in a direction opposite to the direction of rotation of said crank arm.
  17.  前記燃焼室の所定位置に配置される電極を備えた点火プラグを設け、
    前記ピストンヘッドが空気と霧状にした燃料を所定の割合で混合して形成された可燃性混合気体を前記燃焼室で圧縮したとき、当該可燃性混合気体が、前記電極から発生したスパークで点火されるようにしたことを特徴とする請求項16に記載のエンジン。
    providing a spark plug having an electrode disposed at a predetermined position in the combustion chamber;
    When the piston head compresses in the combustion chamber a combustible gas mixture formed by mixing air and atomized fuel in predetermined proportions, the combustible gas mixture is ignited by sparks generated by the electrodes. 17. An engine according to claim 16, characterized in that it is adapted to
  18.  前記燃焼室の所定位置に配置される噴霧口を備えた噴射装置を設け、
    前記ピストンヘッドが前記燃焼室で空気を急激に圧縮して高温高圧空気を形成したとき、前記噴射装置が所定の燃料を前記噴霧口から霧状に噴霧して、当該燃料を前記高温高圧空気で燃焼させるようにしたことを特徴とする請求項16に記載のエンジン。
    providing an injection device having a spray port located at a predetermined position in the combustion chamber;
    When the piston head abruptly compresses air in the combustion chamber to form high-temperature, high-pressure air, the injection device sprays a predetermined amount of fuel from the spray port in the form of a mist, and sprays the fuel with the high-temperature, high-pressure air. 17. An engine according to claim 16, characterized in that it is combusted.
  19.  前記可燃性混合気体又は前記空気を前記吸排気調圧室へ供給する吸気口を備えた吸気ポートと、前記可燃性混合気体又は前記燃料が燃焼した後の排気ガスを前記燃焼室から排気する排気口を備えた排気ポートを設け、
    前記吸気口を前記吸排気調圧室の所定位置に設け、前記排気口を前記燃焼室の所定位置に設け、
    前記吸気ポートに、前記吸排気調圧室内に向かって前記可燃性混合気体又は前記空気が一方向で流れるように規制するピストンリードバルブと、当該ピストンリードバルブと前記吸排気調圧室との間に前記バイパスポートの吸排気調圧室側開口端とを設けたことを特徴とする請求項17若しくは請求項18に記載のエンジン。
    an intake port having an intake port for supplying the combustible gas mixture or the air to the intake and exhaust pressure regulating chamber; Provide an exhaust port with a mouth,
    The intake port is provided at a predetermined position in the intake/exhaust pressure regulating chamber, the exhaust port is provided at a predetermined position in the combustion chamber,
    a piston reed valve that regulates the unidirectional flow of the combustible gas mixture or the air toward the intake/exhaust pressure regulating chamber; and a space between the piston reed valve and the intake/exhaust pressure regulating chamber. 19. The engine according to claim 17 or 18, wherein an open end of the bypass port on the side of the intake and exhaust pressure regulating chamber is provided.
  20.  前記内歯車の内径と前記歯車の直径の比が2対1であることを特徴とする請求項1、請求項11、若しくは請求項16のいずれかに記載のエンジン。 An engine according to any one of claims 1, 11, or 16, characterized in that the ratio of the inner diameter of said internal gear to the diameter of said gear is 2:1.
  21.  前記偏心フリーローターの軸心を、短径と長径の比が1対3となる位置に設けたことを特徴とする請求項1、請求項11、若しくは請求項16のいずれかに記載のエンジン。 The engine according to any one of claims 1, 11 and 16, characterized in that the axial center of the eccentric free rotor is provided at a position where the ratio of the minor axis to the major axis is 1:3.
PCT/JP2023/006629 2022-02-25 2023-02-24 Engine WO2023163085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027947A JP2023124276A (en) 2022-02-25 2022-02-25 engine
JP2022-027947 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023163085A1 true WO2023163085A1 (en) 2023-08-31

Family

ID=87766059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006629 WO2023163085A1 (en) 2022-02-25 2023-02-24 Engine

Country Status (2)

Country Link
JP (1) JP2023124276A (en)
WO (1) WO2023163085A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221569A (en) * 1975-08-10 1977-02-18 Hachiro Michioka Piston-crank mechanism
JPS549363A (en) * 1977-05-05 1979-01-24 Huf Franz J Hypo cycloid motion transmitting device
JPS5757951A (en) * 1980-09-24 1982-04-07 Kazuhiko Yoneda Reciprocative linear/rotary motion conversion mechanism
JPS63167031A (en) * 1986-12-26 1988-07-11 Toshiaki Tsujioka Internal combustion engine
US4936111A (en) * 1988-02-26 1990-06-26 Battelle Memorial Institute Crossed piston compressor with vernier offset port means
JPH07150920A (en) * 1993-06-25 1995-06-13 Mcculloch Corp Improvement of four-stroke internal combustion engine
JP2015507158A (en) * 2012-02-09 2015-03-05 ムーグ インコーポレーテッド Rotary actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221569A (en) * 1975-08-10 1977-02-18 Hachiro Michioka Piston-crank mechanism
JPS549363A (en) * 1977-05-05 1979-01-24 Huf Franz J Hypo cycloid motion transmitting device
JPS5757951A (en) * 1980-09-24 1982-04-07 Kazuhiko Yoneda Reciprocative linear/rotary motion conversion mechanism
JPS63167031A (en) * 1986-12-26 1988-07-11 Toshiaki Tsujioka Internal combustion engine
US4936111A (en) * 1988-02-26 1990-06-26 Battelle Memorial Institute Crossed piston compressor with vernier offset port means
JPH07150920A (en) * 1993-06-25 1995-06-13 Mcculloch Corp Improvement of four-stroke internal combustion engine
JP2015507158A (en) * 2012-02-09 2015-03-05 ムーグ インコーポレーテッド Rotary actuator

Also Published As

Publication number Publication date
JP2023124276A (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US7556014B2 (en) Reciprocating machines
EA006116B1 (en) Rotary machine and thermal cycle
JP5904686B2 (en) Variable stroke mechanism for internal combustion engines
JPH09144554A (en) High-efficiency engine
JP2010520402A (en) Rotating internal combustion engine having an annular chamber
US10035413B2 (en) Hybrid drive system for a motor vehicle, and method of operating a motor vehicle
JP2008516142A (en) V-twin structure having an assembly in the field of rotating machinery
WO2023163085A1 (en) Engine
KR101135847B1 (en) Three-stroke internal combustion engine
JP3377968B2 (en) Internal combustion rotary engine and compressor
WO2013051303A1 (en) Three-output-shaft internal combustion engine
WO2023068219A1 (en) Crank structure and reciprocating engine provided with said crank structure
WO1999031363B1 (en) Orbital internal combustion engine
JP2006516695A (en) Improved engine
JP7354482B1 (en) Intake or exhaust valve mechanism of reciprocating internal combustion engine
US7188598B2 (en) Rotary mechanical field assembly
JP2023060794A (en) Crank structure and reciprocating engine equipped with the crank structure
US6941903B2 (en) System and method for adding air to an explosion chamber in an engine cylinder
KR100336159B1 (en) Combustion Motor
JP6126282B2 (en) Engine and compressor
WO2013035367A1 (en) Working gas-generating device
JPH01313629A (en) 4-cycle oval engine
JPH03182631A (en) Four-cycle rotary piston engine
RU2165030C2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760084

Country of ref document: EP

Kind code of ref document: A1