WO2023163073A1 - Method for producing electrode - Google Patents

Method for producing electrode Download PDF

Info

Publication number
WO2023163073A1
WO2023163073A1 PCT/JP2023/006589 JP2023006589W WO2023163073A1 WO 2023163073 A1 WO2023163073 A1 WO 2023163073A1 JP 2023006589 W JP2023006589 W JP 2023006589W WO 2023163073 A1 WO2023163073 A1 WO 2023163073A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
electrode composition
layer
substrate
Prior art date
Application number
PCT/JP2023/006589
Other languages
French (fr)
Japanese (ja)
Inventor
堀江英明
草野亮介
横山祐一郎
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023163073A1 publication Critical patent/WO2023163073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode manufacturing method.
  • a general lithium-ion battery is an assembled battery in which a plurality of single cells each having a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode current collector, and a negative electrode active material layer are laminated, as described in Patent Document 1. It is configured to be sealed with a battery exterior material in such a state.
  • a positive electrode is composed of a positive electrode current collector and a positive electrode active material layer
  • a negative electrode is composed of a negative electrode current collector and a negative electrode active material layer.
  • an active material is applied onto a sheet-like substrate serving as a current collector, and the active material on the substrate is pressed by a roll press. After that, a method of cutting to a predetermined length is known.
  • the strength of the manufactured electrodes may be insufficient.
  • An object of the present invention is to provide an electrode manufacturing method capable of obtaining an electrode having excellent strength without cracks or the like.
  • an electrode according to the present invention it is possible to obtain an electrode having excellent strength without cracking or the like.
  • FIG. 1 is a schematic cross-sectional view showing a secondary battery module according to the first embodiment.
  • FIG. 2 is a flow chart showing the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment in order of steps.
  • FIG. 3 is a schematic perspective view showing an example of a masking step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment.
  • FIG. 4 is a schematic perspective view showing an example of the supply step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment.
  • FIG. 5 is a schematic perspective view showing an example of a removing step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a secondary battery module according to the first embodiment.
  • FIG. 2 is a flow chart showing the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment in order of steps.
  • FIG. 3 is a schematic perspective view showing an
  • FIG. 6 is a schematic side cross-sectional view showing an example of a pressurizing step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment.
  • FIG. 7 is a flowchart showing a method for manufacturing an electrode of a lithium ion secondary battery according to the second embodiment in order of steps.
  • Embodiments in which the method for producing an electrode according to the present invention is applied to the production of electrodes for lithium ion secondary batteries will be described in detail below with reference to the drawings.
  • the following embodiments disclose a method of manufacturing an electrode for a lithium ion secondary battery.
  • a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to the lithium ion secondary battery, and includes other secondary batteries.
  • Lithium-ion secondary batteries include not only the embodiments described below, but also batteries using a liquid material for the electrolyte and batteries using a solid material for the electrolyte (so-called all-solid-state batteries).
  • the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector.
  • a battery with a body When the resin current collector is used as a resin current collector for a bipolar electrode, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode.
  • the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of
  • FIG. 1 is a schematic cross-sectional view showing a secondary battery module according to the first embodiment.
  • a negative electrode 2 composed of a negative electrode current collector 11 and a negative electrode active material layer 12, and a positive electrode 3 composed of a positive electrode active material layer 14 and a positive electrode current collector 15 are laminated with a separator 13 interposed therebetween.
  • It is configured as a battery cell 20 consisting of a laminated battery (single battery) on a flat plate. That is, the battery cell 20 constituting the secondary battery module 1 has a negative electrode current collector 11, a negative electrode active material layer 12, a separator 13, a positive electrode active material layer 14, and a positive electrode current collector 15, which are stacked upward. It is formed in a substantially rectangular flat plate shape as a whole.
  • the secondary battery module 1 further includes an annular frame member 9 arranged around the periphery of the battery cells 20 .
  • the edge of the separator 13 is embedded in the frame member 9 to support the separator 13, and the frame member 9 brings the positive electrode current collector 15 and the negative electrode current collector 11 into surface contact with the upper and lower surfaces thereof. They are fixed on top of each other.
  • the frame member 9 can determine the positional relationship among the negative electrode current collector 11 , the separator 13 , and the positive electrode current collector 15 .
  • the gap between the negative electrode current collector 11 and the separator 13 and the gap between the separator 13 and the positive electrode current collector 15 are adjusted in advance according to the capacity of the battery.
  • the negative electrode current collector 11, the separator 13, and the positive electrode current collector 15 can be fixed to each other.
  • a negative electrode current supply layer 10 as a conductor layer is laminated on the lower side of the negative electrode current collector 11 in a planar shape, and a positive electrode current extraction layer, which is also a conductor layer, is laminated on the upper side of the positive electrode current collector 15 .
  • 16 are stacked in a plane.
  • the negative current supply layer 10 and the positive current extraction layer 16 are provided with conductive parts 7 and 8 to which current is supplied, respectively.
  • an exterior film (not shown) that covers the battery cells 20, the negative electrode current supply layer 10, and the positive electrode current extraction layer 16 may be provided.
  • the exterior film for example, it is made of an insulating material, and it is possible to use a known material used in batteries, preferably a laminate film.
  • a laminate film As the laminate film, a three-layer laminate film having a nylon film on the outside, an aluminum foil in the center, and an adhesive layer such as modified polypropylene on the inside can be preferably used.
  • the secondary battery module 1 to which the present invention is applied is not limited to the case where the battery cells 20 of the lithium ion secondary battery are composed of single cells.
  • an assembled battery may be formed by stacking and connecting a plurality of battery cells 20 .
  • the conductive portion 8 connected to the positive electrode current extraction layer 16 of the uppermost battery cell 20 and the negative electrode current of the lowermost battery cell 20 are connected to each other.
  • a current may be freely supplied via the conductive portion 7 connected to the supply layer 10 .
  • the battery cells 20 that are connected to each other are stacked such that the lower surface of the negative electrode current supply layer 10 and the upper surface of the positive electrode current extraction layer 16 are adjacent to each other.
  • a plurality of battery cells 20 may be connected in parallel, or series connection and parallel connection may be combined. By configuring such an assembled battery, high capacity and high output can be obtained.
  • the conductive portions 7 and 8 connected to the negative current supply layer 10 and the positive current extraction layer 16 of each battery cell 20 may be configured to independently supply current.
  • the positive electrode active material layer contains a positive electrode active material as an electrode composition.
  • transition metal oxides eg MnO 2 and V 2 O 5
  • transition metal sulfides eg MoS 2 and TiS 2
  • conductive polymers eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole, etc., and two or more of them may be used in combination.
  • the lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
  • the positive electrode active material is a coated positive electrode active material coated with a conductive aid and a coating resin.
  • the periphery of the positive electrode active material is covered with the coating resin, the volume change of the electrode is moderated, and the expansion of the electrode can be suppressed.
  • Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof.
  • metallic conductive agents aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.
  • carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof.
  • One of these conductive aids may be used alone, or two or more thereof may be used in combination.
  • these alloys or metal oxides may be used.
  • a conductive additive particularly preferably a carbon-based conductive additive.
  • These conductive aids may also be those obtained by coating a conductive material [preferably a metal one of the above conductive aids] around a particulate ceramic material or a resin material by plating or the like.
  • the shape (form) of the conductive aid is not limited to the particle form, and may be in a form other than the particle form, such as carbon nanofibers, carbon nanotubes, etc., which are practically used as so-called filler-type conductive aids. can be
  • the ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0.01 to 1. :50, more preferably 1:0.2 to 1:3.0.
  • a compound (b1) having two or more groups capable of reacting with a carboxyl group of (b1), a compound (b2) having two or more radically polymerizable groups, and a group capable of reacting with a carboxyl group of (meth)acrylic acid (a12) and a compound (b3) each having one or more radically polymerizable groups, and a non-aqueous two polymer composition comprising a cross-linking agent (b) consisting of at least one selected from the group consisting of A secondary battery active material coating resin can be preferably used.
  • the weight ratio of the ester compound (a11) and (meth)acrylic acid (a12) [ester compound (a11)/(meth)acrylic acid (a12)] is 10/90 to 90/10 is preferred.
  • the positive electrode active material layer may contain a conductive support agent in addition to the conductive support agent contained in the coated positive electrode active material.
  • a conductive support agent in addition to the conductive support agent contained in the coated positive electrode active material.
  • the conductive aid the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
  • the positive electrode active material layer preferably contains a positive electrode active material and is a non-binding material that does not contain a binder that binds the positive electrode active materials together.
  • the non-bound body means that the position of the positive electrode active material is not fixed by a binder (also referred to as a binder), and the positive electrode active material and the current collector are irreversibly fixed to each other. means no.
  • the positive electrode active material layer may contain an adhesive resin.
  • an adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-54703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower, and , and those described as adhesives in JP-A-10-255805 can be suitably used.
  • adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means
  • a solution-drying type electrode binder used as a binding material is one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Therefore, the solution-drying type electrode binder (binding material) and the adhesive resin are different materials.
  • the thickness of the positive electrode active material layer is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
  • the negative electrode active material layer contains a negative electrode active material as an electrode composition.
  • a negative electrode active material known negative electrode active materials for lithium ion batteries can be used.
  • cokes for example, pitch coke, needle coke, petroleum coke, etc.
  • carbon fibers etc.
  • silicon-based materials silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles with silicon and / Or those coated with silicon carbide, silicon particles or silicon oxide particles whose surfaces are coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (such as polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium and titanium, etc.), metal oxides (titanium oxides
  • the negative electrode active material is a coated negative electrode active material coated with the same conductive aid and coating resin as the coated positive electrode active material described above.
  • the conductive aid and the coating resin the same conductive aid and coating resin as those of the coated positive electrode active material described above can be suitably used.
  • the negative electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated negative electrode active material.
  • a conductive aid the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
  • the negative electrode active material layer is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together. Also, like the positive electrode active material layer, it may contain an adhesive resin.
  • the thickness of the negative electrode active material layer is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
  • the positive electrode current collector and the negative electrode current collector may be metal current collectors, but are preferably flexible resin current collectors made of, for example, a conductive polymer material.
  • the shape of the resin current collector is not particularly limited, and may be a sheet-like current collector made of a conductive polymer material or a deposited layer made of fine particles made of a conductive polymer material.
  • the thickness of the resin current collector is not particularly limited, it is preferably 50 ⁇ m to 500 ⁇ m.
  • the conductive polymer material constituting the resin current collector for example, a conductive polymer or a resin obtained by adding a conductive agent to the resin can be used.
  • the conductive agent that constitutes the conductive polymer material the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
  • resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyethernitrile
  • PTFE poly Tetrafluoroethylene
  • SBR polyacrylonitrile
  • PAN polymethyl acrylate
  • PMA polymethyl methacrylate
  • PVdF polyvinylidene fluoride
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene film and porous polypropylene, non-woven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. , alumina, titania, and other known separators for lithium ion batteries.
  • the positive electrode active material layer and the negative electrode active material layer contain an electrolytic solution.
  • an electrolytic solution a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing known lithium ion batteries, can be used.
  • Lithium salts of organic acids such as LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiC(CF 3 SO 2 ) 3 are included.
  • imide-based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc. ] and LiPF6 .
  • non-aqueous solvent those used in known electrolytic solutions can be used.
  • compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
  • the electrolyte concentration of the electrolytic solution is preferably 15 mol/L to 5 mol/L, more preferably 1.5 mol/L to 4 mol/L, even more preferably 2 mol/L to 3 mol/L. If the electrolyte concentration of the electrolytic solution is less than 1 mol/L, the battery may not have sufficient input/output characteristics, and if it exceeds 5 mol/L, the electrolyte may precipitate.
  • the electrolyte concentration of the electrolytic solution can be confirmed by extracting the lithium ion battery electrode or the electrolytic solution constituting the lithium ion battery without using a solvent or the like and measuring the concentration.
  • FIG. 2 is a flow chart showing the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment in order of steps.
  • the method for manufacturing the electrodes (positive electrode and negative electrode) includes a masking step S1 of placing a mask layer on the substrate, a supplying step S2 of supplying the electrode composition on the substrate, and The method includes a removing step S3 for intermittently leaving the electrode composition, a pressing step S4 for pressing the electrode composition on the substrate using a roll press, and a cutting step S5 for cutting out the electrode.
  • the order of the removing step S3 and the pressurizing step S4 is not particularly limited. Therefore, the pressure step S4 may be performed after the removal step S3 is performed, or the removal step S3 may be performed after the pressure step S4 is performed. Moreover, you may perform removal process S3 and pressurization process S4 simultaneously. Below, the case where the removing step S3 is performed first and then the pressurizing step S4 is performed will be described.
  • a mask layer 110 having openings A1, A2, A3, A4, and A5 having sizes corresponding to intermittently arranged electrode composition layer arrangement portions is continuously formed. It is placed on a sheet-like base material 100 .
  • the openings of the mask layer 110 here, only A1, A2, A3, A4 and A5 are shown
  • the electrode composition layer arrangement portion is intermittently arranged means that the electrode composition layer arrangement portion (electrode composition layer arrangement portion) and the electrode composition layer are arranged on the surface of the substrate 100. is not disposed (electrode composition layer non-arranged portion), and two or more electrode composition layer disposed portions exist and are not in contact with each other.
  • the distance between the electrode composition layer arrangement portions provided so as not to contact each other may be constant or may be different.
  • a long sheet-like current collector is used as the base material 100 .
  • a long film of, for example, a resin current collector is used as the current collector of the electrodes (the positive electrode current collector and the negative electrode current collector).
  • a long film of a separator may be used instead of the current collector.
  • a transfer film may be used as the substrate 100, and the active material layer formed on the transfer film may be transferred onto the current collector.
  • an electrode composition containing an electrode active material is continuously supplied onto the substrate.
  • Continuous supply means that the electrode composition is continuously supplied so as to straddle two or more electrode composition layer arrangement portions formed by the removal step S3 described later.
  • the electrode composition may be supplied intermittently.
  • the electrode composition formed on the substrate by the intermittent supply of the electrode composition is removed by the removal step described later to form two or more electrode composition layer arrangement portions.
  • Supplying onto the substrate includes not only supplying directly onto the surface of the substrate but also supplying the electrode composition onto another member placed on the substrate. Therefore, in the supplying step, the electrode composition is directly or indirectly supplied onto the substrate.
  • the thickness of the electrode composition provided on the substrate may be adjusted as needed.
  • methods for adjusting the thickness of the electrode composition include methods using a squeegee, a rotating roller, a doctor blade, an applicator, and the like.
  • the step of adjusting the thickness of the electrode composition may be performed by the device used in the supply step S2 described above, or may be performed by using a device different from the device used in the supply step.
  • the electrode composition 120 is continuously supplied onto the elongated sheet-like substrate 100 .
  • the supplied electrode composition 120 is deposited so as to fill the openings A1, A2, A3, A4 and A5 of the mask layer 140 placed on the substrate 100 and cover the mask layer 110.
  • FIG. As the electrode composition 120, the above-described electrode active material (coated positive electrode active material or coated negative electrode active material coated with a conductive aid and a coating resin) is used.
  • the electrode composition 120 is continuously supplied from a hopper placed on the substrate 100 while changing the relative position between the hopper capable of quantitatively supplying the electrode composition 120 and the substrate 100. method can be used.
  • a method for changing the relative position between the hopper and the substrate 100 is not particularly limited, and the substrate 100 may be moved in one direction by a belt conveyor. Moreover, the method of providing a wheel in a hopper and driving a wheel, the method of winding up a hopper in one direction by a winch, etc. may be used. The change speed of the relative position between the hopper and the substrate can be appropriately adjusted by the density and thickness of the electrode composition layer 120 and the viscosity of the electrode composition layer.
  • the thickness of the supplied electrode composition may be adjusted using a squeegee.
  • Removal step S3 In the removing step S3, part of the electrode composition supplied onto the substrate 100 is removed to form an electrode composition layer on the electrode composition layer arrangement portion of the substrate surface. The region where the electrode composition layer was not formed becomes the electrode composition layer non-arranged portion.
  • the pressing step S4 is performed after the removing step S3 and the size of the electrode composition layer is changed by the pressing step S4, an electrode that has a desired shape after pressing is used. It is preferable to set the size of the composition layer in advance.
  • the removal step S3 An example of the removal step S3 will be described with reference to FIG.
  • the mask layer 110 is removed from the substrate 100.
  • the electrode composition 120 placed in the openings of the mask layer 110 remains on the substrate 100 .
  • the electrode composition 120 supplied on the mask layer 140 is removed from the substrate 100 together with the mask layer 110 .
  • an electrode composition layer composed of the electrode composition 120 is formed on the substrate 100. 120A is formed intermittently.
  • the electrode composition 120 is continuously supplied onto the substrate 100 by a supply step. Subsequently, on the electrode composition 120 deposited on the substrate 100 by the masking process, a cover layer having a size corresponding to the electrode composition layer is placed at each place where the electrode composition layer is to be arranged. Subsequently, in the removal step, the electrode composition 120 that is not covered with the cover layer is removed by suction with a suction device, and then the cover layer is removed from the electrode composition 120, thereby forming the electrode composition on the substrate 100.
  • An electrode composition layer of material 120 can be intermittently deposited.
  • the electrode composition supplied onto the substrate in the supplying step S3 is pressed by a roll press to obtain a coated active material layer.
  • the linear pressure in the roll press is not particularly limited, and can be adjusted according to the composition of the electrode composition, the fluidity of the electrode composition, and the density of the electrode composition.
  • the present inventor found that using a coated active material as an electrode composition, the surface temperature of the roll press in the pressing step of the electrode composition was reduced to It was conceived that an electrode having excellent strength can be obtained by performing the pressurizing step with the value set within a predetermined range.
  • the pressurizing step S4 An example of the pressurizing step S4 will be described with reference to FIG.
  • the electrode composition layer 120 placed on the substrate 100 is pressed by roll presses 140a and 140b.
  • a coating active material layer 130 is formed on the substrate 100 by pressing the electrode composition layer 120 .
  • the surface temperatures of the roll presses 140a and 140b are adjusted to a predetermined temperature within the range of 70° C. or more and less than 100° C., and the temperature-controlled roll presses 140a and 140b are used to press the electrodes.
  • Composite layer 120 is pressed.
  • the pressurizing step S4 shown in FIG. 6 is an example of the pressurizing step performed after the removing step S3.
  • the member (for example, the mask layer) used in the removing step may be pressurized together with the electrode composition layer.
  • the coating resin that coats the coating active material which is the material of the electrode composition layer 120
  • the coating resin that coats the coating active material will not melt sufficiently when the electrode composition layer 120 is pressed. While the strength of the electrode is ensured by melting the coating resin that coats the coated active material during pressurization, if the melting of the coating resin is insufficient, the manufactured electrode will not have excellent strength.
  • the surface temperature of the roll presses 140a and 140b is 100° C. or higher, the substrate 100 on which the electrode composition layer 120 is arranged may deteriorate. In particular, when a resin current collector is used as the base material 100, there is a high possibility of deterioration.
  • the performance of the base material 100 is maintained, and the coated active material is compressed by pressing with heating.
  • the coating resin covering the is sufficiently melted, and an electrode having excellent strength can be obtained.
  • the peripheral speed of the roll presses 140a and 140b during the pressing step S4 is 5 mm/s or more and 40 mm/s or less.
  • the peripheral speed of the roll presses 140a and 140b is less than 5 mm/s, depending on the material of the base material 100 (particularly the resin current collector) on which the electrode composition layer 120 is arranged, the electrode composition layer 120 may not move during pressurization. The heat transfer from the roll presses 140a and 140b may be excessive and the substrate 100 may be degraded.
  • the peripheral speed of the roll presses 140a and 140b is more than 40 mm/s, depending on the material of the coating resin that coats the coated active material in the electrode composition layer 120, the roll presses 140a and 140b onto the electrode composition layer 120 during pressurization Insufficient heat transfer from 140b may result in insufficient melting of the coating resin.
  • the surface temperature of the roll presses 140a and 140b is adjusted to a temperature within the range of 70 ° C. or more and less than 100 ° C., and the peripheral speed of the roll presses 140a and 140b is adjusted to 5 mm / s or more and 40 mm / s or less.
  • a coating resin having a glass transition temperature Tg in the range of ⁇ 70° C. or more and 50° C. or less is used as the coating resin that coats the coating active material that is the material of the electrode composition layer 120. is desirable. If a coating resin having a glass transition temperature Tg of less than ⁇ 70° C. is used as the coating resin for the coating active material of the electrode composition layer 120, the crystallinity of the coating resin is too high. Adjusting the temperature of 140b within the predetermined range may not be reflected in the electrode strength. When a coating resin having a glass transition temperature Tg of more than 50° C.
  • the surface temperature of the roll presses 140a and 140b during the pressing step S4 is set within the predetermined range described above, for example. If the temperature is less than about 100° C., which is the maximum value, the coating resin is considered to flow, but the coating resin cannot be melted sufficiently, which may not be reflected in the electrode strength.
  • the surface temperature of the roll presses 140a and 140b is adjusted to a temperature within the range of 70 ° C. or more and less than 100 ° C., and the glass transition temperature Tg is a temperature within the range of -70 ° C. or more and 50 ° C. or less.
  • the surface temperature of the roll presses 140a and 140b during the pressing step S4 is the glass transition temperature Tg of the coating resin that coats the coating active material that is the material of the electrode composition layer 120. It is desirable to adjust the temperature so that the difference in temperature falls within the range of 70°C or higher and 150°C or lower. If the difference is less than 70° C., the coating resin that coats the coating active material, which is the material of the electrode composition layer 120 , will not melt sufficiently when the electrode composition layer 120 is pressurized. If the difference exceeds 150° C., the substrate 100 (particularly the resin current collector) on which the electrode composition layer 120 is arranged may deteriorate.
  • the surface temperature of the roll presses 140a and 140b is set to a temperature within the range of 70° C. or more and less than 100° C., and the surface temperature and the glass transition temperature of the coating resin that coats the coating active material that is the material of the electrode composition layer 120.
  • the base material 100 having a plurality of coated active material layers 130 formed on the surface is cut at the electrode composition layer non-arrangement portion, and the current collector (positive electrode current collector or negative electrode current collector) is cut. Individual electrodes (positive electrodes or negative electrodes) provided with a coating active material layer (positive electrode active material layer or negative electrode active material layer) are cut out.
  • the method for cutting the base material is not particularly limited, and includes known cutting methods (rotary cutting blade, guillotine blade, Thomson cutting, laser cutting, etc.).
  • an electrode (positive electrode or negative electrode) of a lithium ion secondary battery can be manufactured.
  • the positive electrode manufactured by the electrode manufacturing method described above and the negative electrode manufactured by the electrode manufacturing method described above are laminated so that the coated active material layers (positive electrode active material layer and negative electrode active material layer) face each other with a separator interposed to form a battery cell, and the battery cell is covered with an exterior film and sealed. method.
  • FIG. 7 is a flowchart showing a method for manufacturing an electrode of a lithium ion secondary battery according to the second embodiment in order of steps.
  • the masking step S1, the supplying step S2, and the removing step S3 are sequentially performed, as in the first embodiment.
  • the heating step S11 is performed as a pre-process of the pressing step S4, and then the pressing step S4 and the cutting step S5 are sequentially performed in the same manner as in the first embodiment.
  • the order of the removing step S3, the heating step S11, and the pressing step S4 is not particularly limited. Therefore, the heating step S11 and the pressurizing step S4 may be performed after the removing step S3, or the removing step S3 may be performed after the heating step S11 and the pressurizing step S4 are performed.
  • Heating step S11 In the heating step S11, prior to the pressing step S4, the electrode composition supplied onto the substrate in the supplying step S3 is preliminarily heated. Specifically, using a heating press that heats in a plane or a roll press that heats linearly, the surface temperature of the heating press or roll press is set to a temperature equivalent to the temperature in the subsequent pressing step S4, that is, 70 C. to less than 100.degree. C. to heat the electrode composition on the substrate. At this time, unlike the pressurizing step S4, the electrode composition on the substrate is heated with almost no pressurization.
  • the pressurizing step S4 is performed as in the first embodiment.
  • the heating step S11 is first performed prior to the pressurizing step S4, so that the coating resin that coats the coating active material, which is the material of the electrode composition layer, melts.
  • the coating resin is in a state of being appropriately melted by the heating step S11, so there is no concern that the surface temperature of the roll press will deteriorate the substrate on which the electrode composition layer is arranged.
  • the electrode composition layer can be pressurized by adjusting the degree. As a result, it is possible to obtain an electrode having excellent strength by sufficiently melting the coating resin of the electrode composition layer by roll pressing while suppressing deterioration of the base material.
  • the cutting step S5 is performed in the same manner as in the first embodiment to manufacture the electrodes (positive electrode or negative electrode) of the lithium ion secondary battery.
  • an electrode for a lithium-ion secondary battery having excellent strength that does not cause cracks or the like while reliably suppressing deterioration of the base material on which the electrode composition layer is formed. can be obtained.
  • a method for manufacturing an electrode according to an embodiment of the present invention includes a supplying step of supplying an electrode composition containing a coated active material onto a substrate; A pressurizing step of pressurizing the electrode composition using a roll press adjusted to a surface temperature of 70 ° C. or more and less than 100 ° C.; have
  • the peripheral speed of the roll press in the pressing step is 5 mm/s or more and 40 mm/s or less.
  • the difference between the surface temperature of the roll press in the pressing step and the glass transition temperature of the coating resin of the coating active material is 70°C or higher and 150°C or lower.
  • the glass transition temperature of the coating resin is -70°C or higher and 50°C or lower.
  • the pressurizing step Before the pressurizing step, It has a heating step of heating the electrode composition supplied onto the substrate.
  • the electrode composition in the supplying step, is continuously supplied onto the substrate, Before or after the pressurizing step, there is a removing step of removing a part of the electrode composition continuously supplied onto the substrate to intermittently leave the electrode composition on the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

In a production process of an electrode of a lithium ion secondary battery according to the present invention, the surface temperatures of roll presses (140a, 140b) are controlled to a predetermined temperature within the range of 70°C to 100°C during a pressing step, and an electrode composition layer (120) is pressed with use of the temperature-controlled roll presses (140a, 140b), thereby forming a coated active material layer (130). Consequently, the present invention enables the achievement of an electrode that has excellent strength, while suppressing the occurrence of cracking or the like in the electrode.

Description

電極の製造方法Electrode manufacturing method
 本発明は、電極の製造方法に関するものである。 The present invention relates to an electrode manufacturing method.
 近時では、高容量で小型軽量な電池として、リチウムイオン電池が注目されている。一般的なリチウムイオン電池は、例えば特許文献1のように、正極集電体、正極活物質層、セパレータ、負極集電体、及び負極活物質層が積層された単電池を複数重ねて組電池とされた状態で、電池外装材により封止されて構成されている。リチウムイオン電池では、正極集電体及び正極活物質層により正電極が、負極集電体及び負極活物質層により負電極がそれぞれ構成され、電極とされている。 Recently, lithium-ion batteries have been attracting attention as high-capacity, compact and lightweight batteries. A general lithium-ion battery is an assembled battery in which a plurality of single cells each having a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode current collector, and a negative electrode active material layer are laminated, as described in Patent Document 1. It is configured to be sealed with a battery exterior material in such a state. In a lithium ion battery, a positive electrode is composed of a positive electrode current collector and a positive electrode active material layer, and a negative electrode is composed of a negative electrode current collector and a negative electrode active material layer.
 リチウムイオン電池の電極を製造するには、例えば特許文献2のように、集電体となるシート状の基材上に活物質を塗布し、基材上の活物質をロールプレスにより加圧した後、所定の長さに切断する方法が知られている。 In order to manufacture an electrode for a lithium ion battery, for example, as in Patent Document 2, an active material is applied onto a sheet-like substrate serving as a current collector, and the active material on the substrate is pressed by a roll press. After that, a method of cutting to a predetermined length is known.
特許第6070822号公報Japanese Patent No. 6070822 特開2016-181469号公報JP 2016-181469 A
 しかしながら、従来の電極の製造方法では、製造された電極の強度が不十分となる場合がある。例えば加圧工程を行った後や形成された電極に電解液を供給した後に、電極にひび割れが生じるという問題があった。 However, with conventional electrode manufacturing methods, the strength of the manufactured electrodes may be insufficient. For example, there is a problem that cracks occur in the electrode after performing the pressurizing step or after supplying the electrolyte solution to the formed electrode.
 本発明は、ひび割れ等が発生することのない優れた強度の電極を得ることができる、電極の製造方法を提供することを目的とする。 An object of the present invention is to provide an electrode manufacturing method capable of obtaining an electrode having excellent strength without cracks or the like.
 本発明者は、上記のような知見に基づいて鋭意検討を重ねた結果、以下に示す発明の態様に想到した。 As a result of intensive studies based on the above findings, the inventor has arrived at the following aspects of the invention.
 基材上に電極組成物を供給する供給工程と、
 70℃以上100℃未満の表面温度に調節されたロールプレスを用いて、前記電極組成物を加圧する加圧工程と、
 を有する、
 電極の製造方法。
A supplying step of supplying the electrode composition onto the substrate;
A pressurizing step of pressurizing the electrode composition using a roll press adjusted to a surface temperature of 70 ° C. or more and less than 100 ° C.;
having
A method of manufacturing an electrode.
 本発明に係る電極の製造方法によれば、ひび割れ等が発生することのない優れた強度の電極を得ることができる。 According to the method for manufacturing an electrode according to the present invention, it is possible to obtain an electrode having excellent strength without cracking or the like.
図1は、第1の実施形態に係る二次電池モジュールを示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a secondary battery module according to the first embodiment. 図2は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法を工程順に示すフロー図である。FIG. 2 is a flow chart showing the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment in order of steps. 図3は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法におけるマスキング工程の一例を示す概略斜視図である。FIG. 3 is a schematic perspective view showing an example of a masking step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment. 図4は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法における供給工程の一例を示す概略斜視図である。FIG. 4 is a schematic perspective view showing an example of the supply step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment. 図5は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法における除去工程の一例を示す概略斜視図である。FIG. 5 is a schematic perspective view showing an example of a removing step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment. 図6は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法における加圧工程の一例を示す概略側断面図である。FIG. 6 is a schematic side cross-sectional view showing an example of a pressurizing step in the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment. 図7は、第2の実施形態によるリチウムイオン二次電池の電極の製造方法を工程順に示すフロー図である。FIG. 7 is a flowchart showing a method for manufacturing an electrode of a lithium ion secondary battery according to the second embodiment in order of steps.
 以下、本発明による電極の製造方法をリチウムイオン二次電池の電極の製造に適用した諸実施形態について、図面を参照しながら詳細に説明する。
 以下の諸実施形態では、リチウムイオン二次電池の電極の製造方法を開示する。以下では、リチウムイオン二次電池の例を示すが、本発明に係る二次電池の種類としてリチウムイオン二次電池に限定されず、他の二次電池を含む。リチウムイオン二次電池の場合は、以下で説明する態様だけではなく、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態におけるリチウムイオン電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、バイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態におけるリチウムイオン電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。
Embodiments in which the method for producing an electrode according to the present invention is applied to the production of electrodes for lithium ion secondary batteries will be described in detail below with reference to the drawings.
The following embodiments disclose a method of manufacturing an electrode for a lithium ion secondary battery. Although an example of a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to the lithium ion secondary battery, and includes other secondary batteries. Lithium-ion secondary batteries include not only the embodiments described below, but also batteries using a liquid material for the electrolyte and batteries using a solid material for the electrolyte (so-called all-solid-state batteries). In addition, the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. Including a battery with a body. When the resin current collector is used as a resin current collector for a bipolar electrode, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be In addition, the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of
 [第1の実施形態]
 先ず、第1の実施形態について説明する。
[First embodiment]
First, the first embodiment will be described.
(リチウムイオン二次電池の構成)
 本実施形態について説明するにあたり、先ず、本実施形態で製造される電極を備えたリチウムイオン二次電池の二次電池モジュールの構成について述べる。図1は、第1の実施形態に係る二次電池モジュールを示す概略断面図である。
(Structure of lithium ion secondary battery)
Before describing this embodiment, first, the configuration of a secondary battery module for a lithium-ion secondary battery having electrodes manufactured according to this embodiment will be described. FIG. 1 is a schematic cross-sectional view showing a secondary battery module according to the first embodiment.
 二次電池モジュール1は、負極集電体11及び負極活物質層12からなる負電極2と、正極活物質層14及び正極集電体15からなる正電極3とが、セパレータ13を介して積層させた平板上の積層電池(単電池)からなる電池セル20として構成される。即ち、二次電池モジュール1を構成する電池セル20は、負極集電体11、負極活物質層12、セパレータ13、正極活物質層14、正極集電体15が上方向に向けて積層され、全体として略矩形平板状に形成されている。 In the secondary battery module 1, a negative electrode 2 composed of a negative electrode current collector 11 and a negative electrode active material layer 12, and a positive electrode 3 composed of a positive electrode active material layer 14 and a positive electrode current collector 15 are laminated with a separator 13 interposed therebetween. It is configured as a battery cell 20 consisting of a laminated battery (single battery) on a flat plate. That is, the battery cell 20 constituting the secondary battery module 1 has a negative electrode current collector 11, a negative electrode active material layer 12, a separator 13, a positive electrode active material layer 14, and a positive electrode current collector 15, which are stacked upward. It is formed in a substantially rectangular flat plate shape as a whole.
 二次電池モジュール1は、更に電池セル20の周縁に配設される環状の枠部材9を備えている。枠部材9は、セパレータ13の端部が埋め込まれてなることで当該セパレータ13を支持すると共に、枠部材9は、その上面及び下面に正極集電体15及び負極集電体11を面接触させた上でそれぞれ固定している。負極集電体11、正極集電体15及びセパレータ13の周縁部がこの枠部材9を介して固定されることにより、負極活物質層12及び正極活物質層14を外部に漏洩させることなく強固に封止することが可能となる。また、枠部材9は、負極集電体11、セパレータ13、正極集電体15のそれぞれの位置関係を定めることができる。負極集電体11とセパレータ13との間隔、セパレータ13と正極集電体15との間隔は、電池の容量に応じて予め調整されるが、枠部材9を通じてこの調整された間隔を保持できるように負極集電体11、セパレータ13、正極集電体15を固定することができる。 The secondary battery module 1 further includes an annular frame member 9 arranged around the periphery of the battery cells 20 . The edge of the separator 13 is embedded in the frame member 9 to support the separator 13, and the frame member 9 brings the positive electrode current collector 15 and the negative electrode current collector 11 into surface contact with the upper and lower surfaces thereof. They are fixed on top of each other. By fixing the peripheral edge portions of the negative electrode current collector 11, the positive electrode current collector 15, and the separator 13 through the frame member 9, the negative electrode active material layer 12 and the positive electrode active material layer 14 are firmly prevented from leaking to the outside. It becomes possible to seal to Further, the frame member 9 can determine the positional relationship among the negative electrode current collector 11 , the separator 13 , and the positive electrode current collector 15 . The gap between the negative electrode current collector 11 and the separator 13 and the gap between the separator 13 and the positive electrode current collector 15 are adjusted in advance according to the capacity of the battery. The negative electrode current collector 11, the separator 13, and the positive electrode current collector 15 can be fixed to each other.
 負極集電体11の下側には、導電体層としての負極側電流供給層10が平面状に積層され、正極集電体15の上側には、同じく導電体層としての正極側電流取出層16が平面状に積層されている。負極側電流供給層10及び正極側電流取出層16には、それぞれ電流が供給される箇所となる導電部7,8が形成されている。 A negative electrode current supply layer 10 as a conductor layer is laminated on the lower side of the negative electrode current collector 11 in a planar shape, and a positive electrode current extraction layer, which is also a conductor layer, is laminated on the upper side of the positive electrode current collector 15 . 16 are stacked in a plane. The negative current supply layer 10 and the positive current extraction layer 16 are provided with conductive parts 7 and 8 to which current is supplied, respectively.
 二次電池モジュール1では、電池セル20、負極側電流供給層10及び正極側電流取出層16を覆う不図示の外装フィルムを設けてもよい。外装フィルムとしては、例えば絶縁材料からなり、電池に用いられている公知の材質のものを用いることが可能であり、好ましくはラミネートフィルムである。ラミネートフィルムとしては、外側にナイロンフィルム、中心にアルミニウム箔、内側に変性ポリプロピレン等の接着層を有した3層ラミネートフィルムを好ましく用いることができる。 In the secondary battery module 1, an exterior film (not shown) that covers the battery cells 20, the negative electrode current supply layer 10, and the positive electrode current extraction layer 16 may be provided. As the exterior film, for example, it is made of an insulating material, and it is possible to use a known material used in batteries, preferably a laminate film. As the laminate film, a three-layer laminate film having a nylon film on the outside, an aluminum foil in the center, and an adhesive layer such as modified polypropylene on the inside can be preferably used.
 なお、本発明を適用した二次電池モジュール1は、リチウムイオン二次電池の電池セル20を単電池で構成される場合に限定されるものではない。例えば、電池セル20を複数に亘り積層させて接続した組電池を形成するものであってもよい。 It should be noted that the secondary battery module 1 to which the present invention is applied is not limited to the case where the battery cells 20 of the lithium ion secondary battery are composed of single cells. For example, an assembled battery may be formed by stacking and connecting a plurality of battery cells 20 .
 このような組電池では、複数の電池セル20を直列接続することにより、最上段の電池セル20の正極側電流取出層16に接続された導電部8と最下段の電池セル20の負極側電流供給層10に接続された導電部7を介して電流を供給自在に構成するようにしてもよい。かかる場合には、互いに接続する電池セル20の負極側電流供給層10の下面と正極側電流取出層16の上面が隣接するように積層されている。更にこのような組電池を形成する場合には、複数の電池セル20を並列接続するようにしてもよいし、直列接続と並列接続とを組み合わせてもよい。このような組電池を構成することにより、高容量、高出力と得ることができる。これ以外には、個々の電池セル20の負極側電流供給層10及び正極側電流取出層16にそれぞれ接続された導電部7,8から独立に電流を供給自在に構成するようにしてもよい。 In such an assembled battery, by connecting a plurality of battery cells 20 in series, the conductive portion 8 connected to the positive electrode current extraction layer 16 of the uppermost battery cell 20 and the negative electrode current of the lowermost battery cell 20 are connected to each other. A current may be freely supplied via the conductive portion 7 connected to the supply layer 10 . In such a case, the battery cells 20 that are connected to each other are stacked such that the lower surface of the negative electrode current supply layer 10 and the upper surface of the positive electrode current extraction layer 16 are adjacent to each other. Furthermore, when forming such an assembled battery, a plurality of battery cells 20 may be connected in parallel, or series connection and parallel connection may be combined. By configuring such an assembled battery, high capacity and high output can be obtained. Alternatively, the conductive portions 7 and 8 connected to the negative current supply layer 10 and the positive current extraction layer 16 of each battery cell 20 may be configured to independently supply current.
 以下、電池セル20を構成する各構成材料の好ましい態様について説明する。 Preferred aspects of each constituent material constituting the battery cell 20 will be described below.
 正極活物質層には、電極組成物として正極活物質が含まれる。
 正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属元素が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び遷移金属元素が3種類以上である複合酸化物[例えばLiMM'M”(M、M'及びM”はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用しても良い。
 なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであっても良い。
The positive electrode active material layer contains a positive electrode active material as an electrode composition.
Examples of positive electrode active materials include composite oxides of lithium and transition metals {composite oxides containing one type of transition metal element (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 , etc.), transition metal elements are two kinds of composite oxides (for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and a composite oxide containing three or more transition metal elements [for example, LiM a M′ b M″ c O 2 (M, M′ and M″ are different transition metal elements and satisfies a + b + c = 1 . ), transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole), etc., and two or more of them may be used in combination.
Note that the lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
 本実施形態では、正極活物質は、導電助剤及び被覆樹脂で被覆された被覆正極活物質である。
 正極活物質の周囲が被覆樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。
In this embodiment, the positive electrode active material is a coated positive electrode active material coated with a conductive aid and a coating resin.
When the periphery of the positive electrode active material is covered with the coating resin, the volume change of the electrode is moderated, and the expansion of the electrode can be suppressed.
 導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、炭素系導電助剤[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられる。
 これらの導電助剤は1種単独で用いられても良いし、2種以上併用しても良い。また、これらの合金又は金属酸化物として用いられても良い。
Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof.
One of these conductive aids may be used alone, or two or more thereof may be used in combination. Moreover, these alloys or metal oxides may be used.
 なかでも、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤及びこれらの混合物であり、更に好ましくは銀、金、アルミニウム、ステンレス及び炭素系導電助剤であり、特に好ましくは炭素系導電助剤である。
 また、これらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[好ましくは、上記した導電助剤のうち金属のもの]をめっき等でコーティングしたものでも良い。
Among them, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids and mixtures thereof are more preferable, and silver, gold, aluminum, stainless steel and carbon are more preferable. A conductive additive, particularly preferably a carbon-based conductive additive.
These conductive aids may also be those obtained by coating a conductive material [preferably a metal one of the above conductive aids] around a particulate ceramic material or a resin material by plating or the like.
 導電助剤の形状(形態) は、粒子形態に限られず、粒子形態以外の形態であっても良く、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であっても良い。 The shape (form) of the conductive aid is not limited to the particle form, and may be in a form other than the particle form, such as carbon nanofibers, carbon nanotubes, etc., which are practically used as so-called filler-type conductive aids. can be
 被覆樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆樹脂(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。 The ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0.01 to 1. :50, more preferably 1:0.2 to 1:3.0.
 被覆樹脂としては、例えば、炭素数4~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)、(メタ)アクリル酸(a12)並びに(メタ)アクリル酸(a12)のカルボキシル基と反応しうる基を2つ以上有する化合物(b1)、ラジカル重合性を有する基を2つ以上有する化合物(b2)及び(メタ)アクリル酸(a12)のカルボキシル基と反応しうる基とラジカル重合性を有する基をそれぞれ1つ以上有する化合物(b3)からなる群から選ばれる少なくとも1種からなる架橋剤(b)を含んでなる単量体組成物を重合してなる非水系二次電池活物質被覆樹脂を好適に用いることができる。この非水系二次電池活物質被覆樹脂では、エステル化合物(a11)と(メタ)アクリル酸(a12)の重量比[エステル化合物(a11)/(メタ)アクリル酸(a12)]が10/90~90/10であることが好ましい。 As the coating resin, for example, an ester compound (a11) of a monohydric aliphatic alcohol having 4 to 12 carbon atoms and (meth)acrylic acid, (meth)acrylic acid (a12) and (meth)acrylic acid (a12) A compound (b1) having two or more groups capable of reacting with a carboxyl group of (b1), a compound (b2) having two or more radically polymerizable groups, and a group capable of reacting with a carboxyl group of (meth)acrylic acid (a12) and a compound (b3) each having one or more radically polymerizable groups, and a non-aqueous two polymer composition comprising a cross-linking agent (b) consisting of at least one selected from the group consisting of A secondary battery active material coating resin can be preferably used. In this non-aqueous secondary battery active material coating resin, the weight ratio of the ester compound (a11) and (meth)acrylic acid (a12) [ester compound (a11)/(meth)acrylic acid (a12)] is 10/90 to 90/10 is preferred.
 また、正極活物質層は、被覆正極活物質に含まれる導電助剤以外にも導電助剤を含んでも良い。
 導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
Moreover, the positive electrode active material layer may contain a conductive support agent in addition to the conductive support agent contained in the coated positive electrode active material.
As the conductive aid, the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
 正極活物質層は、正極活物質を含み、正極活物質同士を結着する結着材を含まない非結着体であることが好ましい。
 ここで、非結着体とは、正極活物質が結着材(バインダともいう)により位置を固定されておらず、正極活物質同士及び正極活物質と集電体が不可逆的に固定されていないことを意味する。
The positive electrode active material layer preferably contains a positive electrode active material and is a non-binding material that does not contain a binder that binds the positive electrode active materials together.
Here, the non-bound body means that the position of the positive electrode active material is not fixed by a binder (also referred to as a binder), and the positive electrode active material and the current collector are irreversibly fixed to each other. means no.
 正極活物質層には、粘着性樹脂が含まれていても良い。
 粘着性樹脂としては、例えば、特開2017-54703号公報に記載された非水系二次電池活物質被覆樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805号公報に粘着剤として記載されたもの等を好適に用いることができる。
The positive electrode active material layer may contain an adhesive resin.
As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-54703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower, and , and those described as adhesives in JP-A-10-255805 can be suitably used.
 なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着材として用いられる溶液乾燥型の電極バインダは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。
 従って、溶液乾燥型の電極バインダ(結着材)と粘着性樹脂とは異なる材料である。
In addition, adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means On the other hand, a solution-drying type electrode binder used as a binding material is one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other.
Therefore, the solution-drying type electrode binder (binding material) and the adhesive resin are different materials.
 正極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることがより好ましい。 Although the thickness of the positive electrode active material layer is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
 負極活物質層には、電極組成物として負極活物質が含まれる。
 負極活物質としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
The negative electrode active material layer contains a negative electrode active material as an electrode composition.
As the negative electrode active material, known negative electrode active materials for lithium ion batteries can be used. ), cokes (for example, pitch coke, needle coke, petroleum coke, etc.) and carbon fibers, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles with silicon and / Or those coated with silicon carbide, silicon particles or silicon oxide particles whose surfaces are coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (such as polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium and titanium, etc.), metal oxides (titanium oxides and lithium-titanium oxides, etc.) and metal alloys (e.g., lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.), etc., and these and carbon-based materials and the like.
 本実施形態では、負極活物質は、上述した被覆正極活物質と同様の導電助剤及び被覆樹脂で被覆された被覆負極活物質である。
 導電助剤及び被覆樹脂としては、上述した被覆正極活物質と同様の導電助剤及び被覆樹脂を好適に用いることができる。
In this embodiment, the negative electrode active material is a coated negative electrode active material coated with the same conductive aid and coating resin as the coated positive electrode active material described above.
As the conductive aid and the coating resin, the same conductive aid and coating resin as those of the coated positive electrode active material described above can be suitably used.
 また、負極活物質層は、被覆負極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。 In addition, the negative electrode active material layer may contain a conductive aid other than the conductive aid contained in the coated negative electrode active material. As the conductive aid, the same conductive aid as contained in the above-described coated positive electrode active material can be suitably used.
 負極活物質層は、正極活物質層と同様に、負極活物質同士を結着する結着材を含まない非結着体であることが好ましい。また、正極活物質層と同様に、粘着性樹脂が含まれていても良い。 Like the positive electrode active material layer, the negative electrode active material layer is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials together. Also, like the positive electrode active material layer, it may contain an adhesive resin.
 負極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることがより好ましい。 Although the thickness of the negative electrode active material layer is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
 正極集電体及び負極集電体は、金属集電体でもよいが、例えば導電性高分子材料からなり、可撓性を有する樹脂集電体であることが好ましい。
 樹脂集電体の形状は特に限定されず、導電性高分子材料からなるシート状の集電体、及び、導電性高分子材料で構成された微粒子からなる堆積層であっても良い。
 樹脂集電体の厚さは、特に限定されないが、50μm~500μmであることが好ましい。
The positive electrode current collector and the negative electrode current collector may be metal current collectors, but are preferably flexible resin current collectors made of, for example, a conductive polymer material.
The shape of the resin current collector is not particularly limited, and may be a sheet-like current collector made of a conductive polymer material or a deposited layer made of fine particles made of a conductive polymer material.
Although the thickness of the resin current collector is not particularly limited, it is preferably 50 μm to 500 μm.
 樹脂集電体を構成する導電性高分子材料としては例えば、導電性高分子や、樹脂に必要に応じて導電剤を添加したものを用いることができる。
 導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
As the conductive polymer material constituting the resin current collector, for example, a conductive polymer or a resin obtained by adding a conductive agent to the resin can be used.
As the conductive agent that constitutes the conductive polymer material, the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
 導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
 電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、更に好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
Examples of resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, more preferably polyethylene (PE), polypropylene (PP) and polymethylpentene (PMP).
 セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene film and porous polypropylene, non-woven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. , alumina, titania, and other known separators for lithium ion batteries.
 正極活物質層及び負極活物質層には電解液が含まれる。
 電解液としては、公知のリチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する公知の電解液を使用することができる。
The positive electrode active material layer and the negative electrode active material layer contain an electrolytic solution.
As the electrolytic solution, a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing known lithium ion batteries, can be used.
 電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiN(FSO、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらのうち、電池出力及び充放電サイクル特性の観点から好ましいのはイミド系電解質[LiN(FSO、LiN(CFSO及びLiN(CSO等]及びLiPFである。 As the electrolyte , those used in known electrolytic solutions can be used . Lithium salts of organic acids such as LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiC(CF 3 SO 2 ) 3 are included. Among these, imide-based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc. ] and LiPF6 .
 非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
 電解液の電解質濃度は、15mol/L~5mol/Lであることが好ましく、1.5mol/L~4mol/Lであることがより好ましく、2mol/L~3mol/Lであることが更に好ましい。
 電解液の電解質濃度が1mol/L未満であると、電池の充分な入出力特性が得られないことがあり、5mol/Lを超えると、電解質が析出してしまうことがある。
 なお、電解液の電解質濃度は、リチウムイオン電池用電極又はリチウムイオン電池を構成する電解液を、溶媒等を用いずに抽出して、その濃度を測定することで確認することができる。
The electrolyte concentration of the electrolytic solution is preferably 15 mol/L to 5 mol/L, more preferably 1.5 mol/L to 4 mol/L, even more preferably 2 mol/L to 3 mol/L.
If the electrolyte concentration of the electrolytic solution is less than 1 mol/L, the battery may not have sufficient input/output characteristics, and if it exceeds 5 mol/L, the electrolyte may precipitate.
The electrolyte concentration of the electrolytic solution can be confirmed by extracting the lithium ion battery electrode or the electrolytic solution constituting the lithium ion battery without using a solvent or the like and measuring the concentration.
(電極の製造方法)
 以下、リチウムイオン二次電池の電極(正電極及び負電極)の製造方法にについて説明する。
 図2は、第1の実施形態によるリチウムイオン二次電池の電極の製造方法を工程順に示すフロー図である。
(Method for manufacturing electrode)
A method for manufacturing electrodes (a positive electrode and a negative electrode) for a lithium ion secondary battery will be described below.
FIG. 2 is a flow chart showing the method for manufacturing the electrode of the lithium ion secondary battery according to the first embodiment in order of steps.
 本実施形態に係る電極(正電極及び負電極)の製造方法は、基材上にマスク層を載置するマスキング工程S1、基材上に電極組成物を供給する供給工程S2、基材上に電極組成物を間欠的に残す除去工程S3、及びロールプレスを用いて基材上の電極組成物を加圧する加圧工程S4、及び電極を切り出す切断工程S5を備えている。 The method for manufacturing the electrodes (positive electrode and negative electrode) according to the present embodiment includes a masking step S1 of placing a mask layer on the substrate, a supplying step S2 of supplying the electrode composition on the substrate, and The method includes a removing step S3 for intermittently leaving the electrode composition, a pressing step S4 for pressing the electrode composition on the substrate using a roll press, and a cutting step S5 for cutting out the electrode.
 本実施形態では、除去工程S3と加圧工程S4の順序は特に限定されない。従って、除去工程S3を行ってから加圧工程S4を行ってもよいし、加圧工程S4を行ってから除去工程S3を行ってもよい。また、除去工程S3及び加圧工程S4を同時に行ってもよい。以下では、先ず除去工程S3を行い、その後、加圧工程S4を行う場合について説明する。 In this embodiment, the order of the removing step S3 and the pressurizing step S4 is not particularly limited. Therefore, the pressure step S4 may be performed after the removal step S3 is performed, or the removal step S3 may be performed after the pressure step S4 is performed. Moreover, you may perform removal process S3 and pressurization process S4 simultaneously. Below, the case where the removing step S3 is performed first and then the pressurizing step S4 is performed will be described.
(マスキング工程S1)
 マスキング工程S1では、図3に示すように、間欠的に配置された電極組成物層配置部に対応する大きさの開口部A1,A2,A3,A4及びA5を有するマスク層110を、連続するシート状の基材100上に載置する。基材100上にマスク層110が載置された状態では、マスク層110の開口(ここでは、A1,A2,A3,A4及びA5のみ図示する。)から基材100の電極組成物層配置部が露出する。ここで、電極組成物層配置部が間欠的に配置されているとは、基材100の表面に、電極組成物層が配置される部分(電極組成物層配置部)と、電極組成物層が配置されていない部分(電極組成物層非配置部)とが存在し、電極組成物層配置部が2個以上存在し、かつ、互いに接触していない状態を意味する。互いに接触しないように設けられた電極組成物層配置部同士の距離は、一定であってもよく、異なっていてもよい。
(Masking step S1)
In the masking step S1, as shown in FIG. 3, a mask layer 110 having openings A1, A2, A3, A4, and A5 having sizes corresponding to intermittently arranged electrode composition layer arrangement portions is continuously formed. It is placed on a sheet-like base material 100 . In the state where the mask layer 110 is placed on the base material 100, the openings of the mask layer 110 (here, only A1, A2, A3, A4 and A5 are shown) to the electrode composition layer arrangement portion of the base material 100. is exposed. Here, the electrode composition layer arrangement portion is intermittently arranged means that the electrode composition layer arrangement portion (electrode composition layer arrangement portion) and the electrode composition layer are arranged on the surface of the substrate 100. is not disposed (electrode composition layer non-arranged portion), and two or more electrode composition layer disposed portions exist and are not in contact with each other. The distance between the electrode composition layer arrangement portions provided so as not to contact each other may be constant or may be different.
 本実施形態では、基材100としては、長尺シート状の集電体が用いられる。この場合、上述した電極の集電体(正極集電体及び負極集電体)となる例えば樹脂集電体の長尺フィルムが使用される。集電体の代わりにセパレータの長尺フィルムを用いてもよい。また、基材100として例えば転写用フィルムを用い、当該転写用フィルム上に形成された活物質層を集電体上に転写するようにしてもよい。 In this embodiment, a long sheet-like current collector is used as the base material 100 . In this case, a long film of, for example, a resin current collector is used as the current collector of the electrodes (the positive electrode current collector and the negative electrode current collector). A long film of a separator may be used instead of the current collector. Alternatively, for example, a transfer film may be used as the substrate 100, and the active material layer formed on the transfer film may be transferred onto the current collector.
(供給工程S2)
 供給工程S2では、基材上に電極活物質を含む電極組成物を連続的に供給する。
 連続的に供給する、とは、後述する除去工程S3によって形成される2以上の電極組成物層配置部に跨るように、電極組成物を途切れないように供給することを意味する。この時、電極組成物を間欠的に供給してもよい。ただし、電極組成物を間欠的に供給する場合、電極組成物を間欠的に供給することで基材上に形成された電極組成物を、後述する除去工程によって2以上の電極組成物層配置部とする必要がある。従って、間欠的に供給された1つの電極組成物に1つの電極組成物層配置部しか形成しない場合は、基材上に電極組成物を連続的に供給しているとはいえない。
(Supplying step S2)
In the supply step S2, an electrode composition containing an electrode active material is continuously supplied onto the substrate.
Continuous supply means that the electrode composition is continuously supplied so as to straddle two or more electrode composition layer arrangement portions formed by the removal step S3 described later. At this time, the electrode composition may be supplied intermittently. However, when the electrode composition is intermittently supplied, the electrode composition formed on the substrate by the intermittent supply of the electrode composition is removed by the removal step described later to form two or more electrode composition layer arrangement portions. should be Therefore, when only one electrode composition layer placement portion is formed in one electrode composition that is intermittently supplied, it cannot be said that the electrode composition is continuously supplied onto the substrate.
 また基材上に供給するとは、基材の表面に直接供給するだけでなく、基材の上に配置された別の部材上に電極組成物を供給する場合も含む。従って、供給工程では、基材上に、直接又は間接的に電極組成物を供給する。 Supplying onto the substrate includes not only supplying directly onto the surface of the substrate but also supplying the electrode composition onto another member placed on the substrate. Therefore, in the supplying step, the electrode composition is directly or indirectly supplied onto the substrate.
 基材上に供給された電極組成物の厚さは、必要に応じて調整してもよい。
 電極組成物の厚さを調整する方法としては、スキージ、回転ローラ、ドクターブレード、アプリケータ等を用いる方法が挙げられる。電極組成物の厚さを調整する工程は、上述した供給工程S2において用いられる装置によって行われてもよく、供給工程において用いられる装置とは別の装置を用いて行われてもよい。
The thickness of the electrode composition provided on the substrate may be adjusted as needed.
Examples of methods for adjusting the thickness of the electrode composition include methods using a squeegee, a rotating roller, a doctor blade, an applicator, and the like. The step of adjusting the thickness of the electrode composition may be performed by the device used in the supply step S2 described above, or may be performed by using a device different from the device used in the supply step.
 供給工程S2の一例について、図4を参照しながら説明する。
 供給工程S2では、長尺シート状の基材100上に、電極組成物120を連続的に供給する。供給された電極組成物120は、基材100上に載置されたマスク層140の開口A1,A2,A3,A4及びA5内を埋め込んでマスク層110上を覆うように堆積される。電極組成物120としては、上述した電極活物質(導電助剤及び被覆樹脂で被覆された被覆正極活物質又は被覆負極活物質)が用いられる。
An example of the supply step S2 will be described with reference to FIG.
In the supply step S<b>2 , the electrode composition 120 is continuously supplied onto the elongated sheet-like substrate 100 . The supplied electrode composition 120 is deposited so as to fill the openings A1, A2, A3, A4 and A5 of the mask layer 140 placed on the substrate 100 and cover the mask layer 110. FIG. As the electrode composition 120, the above-described electrode active material (coated positive electrode active material or coated negative electrode active material coated with a conductive aid and a coating resin) is used.
 具体的には、定量的に電極組成物120を供給可能なホッパーと基材100との相対位置を変化させながら、基材100上に配置されたホッパーから、電極組成物120を連続的に供給する方法を用いることができる。 Specifically, the electrode composition 120 is continuously supplied from a hopper placed on the substrate 100 while changing the relative position between the hopper capable of quantitatively supplying the electrode composition 120 and the substrate 100. method can be used.
 ホッパーと基材100との相対位置を変化させる方法は特に限定されず、ベルトコンベアによって基材100を一方向に移動させてもよい。また、ホッパーに車輪を設け、車輪を駆動させる方法や、ホッパーをウインチにより一方向に巻き取る方法等であってもよい。
 ホッパーと基材との相対位置の変化速度は、電極組成物層120の密度や厚さ、及び電極組成物層の粘度により適宜調整することができる。
A method for changing the relative position between the hopper and the substrate 100 is not particularly limited, and the substrate 100 may be moved in one direction by a belt conveyor. Moreover, the method of providing a wheel in a hopper and driving a wheel, the method of winding up a hopper in one direction by a winch, etc. may be used.
The change speed of the relative position between the hopper and the substrate can be appropriately adjusted by the density and thickness of the electrode composition layer 120 and the viscosity of the electrode composition layer.
 供給工程の他の一例として、基材100上に電極組成物を間欠的に供給した後、供給された電極組成物についてスキージを用いて厚み調整するようにしてもよい。 As another example of the supplying process, after intermittently supplying the electrode composition onto the substrate 100, the thickness of the supplied electrode composition may be adjusted using a squeegee.
(除去工程S3)
 除去工程S3では、基材100上に供給された電極組成物の一部を除去して、基材表面の電極組成物層配置部に電極組成物層を形成する。電極組成物層が形成されなかった領域が、電極組成物層非配置部となる。
 なお、除去工程S3よりも後に加圧工程S4が行われる場合であって、加圧工程S4によって電極組成物層の大きさが変化する場合には、加圧後に所望の形状となるような電極組成物層の大きさを予め設定しておくことが好ましい。
(Removal step S3)
In the removing step S3, part of the electrode composition supplied onto the substrate 100 is removed to form an electrode composition layer on the electrode composition layer arrangement portion of the substrate surface. The region where the electrode composition layer was not formed becomes the electrode composition layer non-arranged portion.
In the case where the pressing step S4 is performed after the removing step S3 and the size of the electrode composition layer is changed by the pressing step S4, an electrode that has a desired shape after pressing is used. It is preferable to set the size of the composition layer in advance.
 除去工程S3の一例について、図5を参照しながら説明する。
 除去工程S3では、マスク層110を基材100上から除去する。このとき、マスク層110の開口部の中に配置されている電極組成物120は基材100上に残存することとなる。一方、マスク層140上に供給された電極組成物120は、マスク層110と共に基材100上から除去される。マスク層110の開口部(A1、A2、A3、A4及びA5)があった領域だけに電極組成物120が残存することで、基材100上には、電極組成物120からなる電極組成物層120Aが間欠的に形成される。
An example of the removal step S3 will be described with reference to FIG.
In the removing step S3, the mask layer 110 is removed from the substrate 100. FIG. At this time, the electrode composition 120 placed in the openings of the mask layer 110 remains on the substrate 100 . Meanwhile, the electrode composition 120 supplied on the mask layer 140 is removed from the substrate 100 together with the mask layer 110 . By leaving the electrode composition 120 only in the regions where the openings (A1, A2, A3, A4 and A5) of the mask layer 110 were, an electrode composition layer composed of the electrode composition 120 is formed on the substrate 100. 120A is formed intermittently.
 マスキング工程、供給工程、及び除去工程の他の一例について説明する。ここでは、先ず供給工程により基材100上に電極組成物120を連続的に供給する。続いて、マスキング工程により基材100上に堆積した電極組成物120上に、電極組成物層に対応する大きさのカバー層を電極組成物層が配置される場所にそれぞれ載置する。続いて、除去工程により、カバー層によって覆われていない電極組成物120を、吸引器によって吸引除去した後、カバー層を電極組成物120上から除去することによって、基材100上に、電極組成物120からなる電極組成層を間欠的に配置することができる。 Another example of the masking process, supply process, and removal process will be explained. Here, first, the electrode composition 120 is continuously supplied onto the substrate 100 by a supply step. Subsequently, on the electrode composition 120 deposited on the substrate 100 by the masking process, a cover layer having a size corresponding to the electrode composition layer is placed at each place where the electrode composition layer is to be arranged. Subsequently, in the removal step, the electrode composition 120 that is not covered with the cover layer is removed by suction with a suction device, and then the cover layer is removed from the electrode composition 120, thereby forming the electrode composition on the substrate 100. An electrode composition layer of material 120 can be intermittently deposited.
(加圧工程S4)
 加圧工程S4では、供給工程S3によって基材上に供給された電極組成物を、ロールプレスにより加圧して、被覆活物質層を得る。ロールプレスにおける線圧は特に限定されず、電極組成物の組成、電極組成物の流動性及び電極組成物の密度に応じて、調整することができる。
(Pressure step S4)
In the pressing step S4, the electrode composition supplied onto the substrate in the supplying step S3 is pressed by a roll press to obtain a coated active material layer. The linear pressure in the roll press is not particularly limited, and can be adjusted according to the composition of the electrode composition, the fluidity of the electrode composition, and the density of the electrode composition.
 本発明者は、リチウムイオン電池において、強度に優れた電極を得る製造方法について鋭意検討した結果、電極組成物として被覆活物質を用いて、電極組成物の加圧工程におけるロールプレスの表面温度を所定範囲内の値に設定して加圧工程を行うことにより、強度に優れた電極が得られることに想到した。 As a result of intensive studies on a manufacturing method for obtaining an electrode having excellent strength in a lithium ion battery, the present inventor found that using a coated active material as an electrode composition, the surface temperature of the roll press in the pressing step of the electrode composition was reduced to It was conceived that an electrode having excellent strength can be obtained by performing the pressurizing step with the value set within a predetermined range.
 加圧工程S4の一例について、図6を参照しながら説明する。
 加圧工程S4では、基材100上に配置された電極組成物層120をロールプレス140a及び140bにより加圧する。電極組成物層120の加圧によって、基材100上に被覆活物質層130が形成される。本実施形態では、加圧工程の際に、ロールプレス140a及び140bの表面温度を70℃以上100℃未満の範囲内の所定温度に調節し、温度調節されたロールプレス140a及び140bを用いて電極組成物層120を加圧する。
An example of the pressurizing step S4 will be described with reference to FIG.
In the pressing step S4, the electrode composition layer 120 placed on the substrate 100 is pressed by roll presses 140a and 140b. A coating active material layer 130 is formed on the substrate 100 by pressing the electrode composition layer 120 . In this embodiment, during the pressurizing step, the surface temperatures of the roll presses 140a and 140b are adjusted to a predetermined temperature within the range of 70° C. or more and less than 100° C., and the temperature-controlled roll presses 140a and 140b are used to press the electrodes. Composite layer 120 is pressed.
 なお、図6に示す加圧工程S4は、除去工程S3の後に行われる加圧工程の例である。除去工程S3の前に加圧工程S4を行う場合には、除去工程で使用される部材(例えばマスク層)を、電極組成物層と共に加圧するようにしてもよい。 Note that the pressurizing step S4 shown in FIG. 6 is an example of the pressurizing step performed after the removing step S3. When the pressurizing step S4 is performed before the removing step S3, the member (for example, the mask layer) used in the removing step may be pressurized together with the electrode composition layer.
 ロールプレス140a及び140bの表面温度が70℃未満であると、電極組成物層120の加圧時に電極組成物層120の材料である被覆活物質を被覆する被覆樹脂が十分に溶融しない。加圧時に被覆活物質を被覆する被覆樹脂が溶融することにより電極強度が確保されるところ、被覆樹脂の溶融が不十分であると、製造された電極について優れた強度が得られない。
 ロールプレス140a及び140bの表面温度が100℃以上であると、電極組成物層120が配置された基材100が劣化するおそれがある。特に基材100として樹脂集電体を用いた場合に劣化する可能性が高い。
 ロールプレス140a及び140bの表面温度を70℃以上100℃未満の範囲内に調節して加圧工程S4を行うことにより、基材100の性能を保持しつつ、加熱を伴う加圧により被覆活物質を被覆する被覆樹脂が十分に溶融して、優れた強度の電極が得られることとなる。
If the surface temperature of the roll presses 140a and 140b is less than 70° C., the coating resin that coats the coating active material, which is the material of the electrode composition layer 120, will not melt sufficiently when the electrode composition layer 120 is pressed. While the strength of the electrode is ensured by melting the coating resin that coats the coated active material during pressurization, if the melting of the coating resin is insufficient, the manufactured electrode will not have excellent strength.
If the surface temperature of the roll presses 140a and 140b is 100° C. or higher, the substrate 100 on which the electrode composition layer 120 is arranged may deteriorate. In particular, when a resin current collector is used as the base material 100, there is a high possibility of deterioration.
By performing the pressing step S4 while adjusting the surface temperature of the roll presses 140a and 140b within the range of 70° C. or more and less than 100° C., the performance of the base material 100 is maintained, and the coated active material is compressed by pressing with heating. The coating resin covering the is sufficiently melted, and an electrode having excellent strength can be obtained.
 また、本実施形態では、加圧工程S4時におけるロールプレス140a及び140bの周速度を、5mm/s以上40mm/s以下とすることが望ましい。
 ロールプレス140a及び140bの周速度が5mm/s未満であると、電極組成物層120が配置された基材100(特に樹脂集電体)の材質によっては加圧時における電極組成物層120へのロールプレス140a及び140bからの熱伝達が過剰となり、基材100が劣化する場合がある。
 ロールプレス140a及び140bの周速度が40mm/s超であると、電極組成物層120において被覆活物質を被覆する被覆樹脂の材質によっては加圧時における電極組成物層120へのロールプレス140a及び140bからの熱伝達が不十分となり、被覆樹脂が十分に溶融しない場合がある。
 ロールプレス140a及び140bの表面温度を、70℃以上100℃未満の範囲内の温度に調節すると共に、ロールプレス140a及び140bの周速度を5mm/s以上40mm/s以下に調節して加圧工程S4を行うことにより、優れた強度の電極が確実に得られることとなる。
Further, in this embodiment, it is desirable that the peripheral speed of the roll presses 140a and 140b during the pressing step S4 is 5 mm/s or more and 40 mm/s or less.
When the peripheral speed of the roll presses 140a and 140b is less than 5 mm/s, depending on the material of the base material 100 (particularly the resin current collector) on which the electrode composition layer 120 is arranged, the electrode composition layer 120 may not move during pressurization. The heat transfer from the roll presses 140a and 140b may be excessive and the substrate 100 may be degraded.
When the peripheral speed of the roll presses 140a and 140b is more than 40 mm/s, depending on the material of the coating resin that coats the coated active material in the electrode composition layer 120, the roll presses 140a and 140b onto the electrode composition layer 120 during pressurization Insufficient heat transfer from 140b may result in insufficient melting of the coating resin.
The surface temperature of the roll presses 140a and 140b is adjusted to a temperature within the range of 70 ° C. or more and less than 100 ° C., and the peripheral speed of the roll presses 140a and 140b is adjusted to 5 mm / s or more and 40 mm / s or less. By carrying out S4, an electrode having excellent strength can be reliably obtained.
 また、本実施形態では、電極組成物層120の材料である被覆活物質を被覆する被覆樹脂として、そのガラス転移温度Tgが-70℃以上50℃以下の範囲内の温度である被覆樹脂を用いることが望ましい。
 ガラス転移温度Tgが-70℃未満である被覆樹脂を電極組成物層120の被覆活物質の被覆樹脂に用いると、被覆樹脂の結晶性が高過ぎるため、加圧工程S4時におけるロールプレス140a及び140bの温度を上記の所定範囲内に調節しても、電極強度に反映されない可能性がある。
 ガラス転移温度Tgが50℃超である被覆樹脂を電極組成物層120の被覆活物質の被覆樹脂に用いると、加圧工程S4時におけるロールプレス140a及び140bの表面温度を例えば上述した所定範囲における最大値である100℃未満程度とすれば被覆樹脂が流動すると考えられるが、被覆樹脂が十分に溶融しきれず、電極強度に反映されない可能性がある。
 ロールプレス140a及び140bの表面温度を、70℃以上100℃未満の範囲内の温度に調節すると共に、ガラス転移温度Tgが-70℃以上50℃以下の範囲内の温度である被覆樹脂を、電極組成物層120の材料である被覆活物質を被覆する被覆樹脂に用いることにより、優れた強度の電極が確実に得られることとなる。
In addition, in the present embodiment, as the coating resin that coats the coating active material that is the material of the electrode composition layer 120, a coating resin having a glass transition temperature Tg in the range of −70° C. or more and 50° C. or less is used. is desirable.
If a coating resin having a glass transition temperature Tg of less than −70° C. is used as the coating resin for the coating active material of the electrode composition layer 120, the crystallinity of the coating resin is too high. Adjusting the temperature of 140b within the predetermined range may not be reflected in the electrode strength.
When a coating resin having a glass transition temperature Tg of more than 50° C. is used as the coating resin for the coated active material of the electrode composition layer 120, the surface temperature of the roll presses 140a and 140b during the pressing step S4 is set within the predetermined range described above, for example. If the temperature is less than about 100° C., which is the maximum value, the coating resin is considered to flow, but the coating resin cannot be melted sufficiently, which may not be reflected in the electrode strength.
The surface temperature of the roll presses 140a and 140b is adjusted to a temperature within the range of 70 ° C. or more and less than 100 ° C., and the glass transition temperature Tg is a temperature within the range of -70 ° C. or more and 50 ° C. or less. By using it for the coating resin that coats the coating active material, which is the material of the composition layer 120, an electrode with excellent strength can be obtained without fail.
 また、本実施形態では、加圧工程S4時におけるロールプレス140a及び140bの表面温度を、当該表面温度と電極組成物層120の材料である被覆活物質を被覆する被覆樹脂のガラス転移温度Tgとの差分が70℃以上150℃以下の範囲内の温度となるように調節することが望ましい。
 当該差分が70℃未満であると、電極組成物層120の加圧時に電極組成物層120の材料である被覆活物質を被覆する被覆樹脂が十分に溶融しない。
 当該差分が150℃超であると、電極組成物層120が配置された基材100(特に樹脂集電体)が劣化するおそれがある。
 ロールプレス140a及び140bの表面温度を、70℃以上100℃未満の範囲内の温度であり、且つ当該表面温度と電極組成物層120の材料である被覆活物質を被覆する被覆樹脂のガラス転移温度Tgとの差分が70℃以上150℃以下の範囲内の温度となるように調節して加圧工程S4を行うことにより、優れた強度の電極が確実に得られることとなる。
Further, in the present embodiment, the surface temperature of the roll presses 140a and 140b during the pressing step S4 is the glass transition temperature Tg of the coating resin that coats the coating active material that is the material of the electrode composition layer 120. It is desirable to adjust the temperature so that the difference in temperature falls within the range of 70°C or higher and 150°C or lower.
If the difference is less than 70° C., the coating resin that coats the coating active material, which is the material of the electrode composition layer 120 , will not melt sufficiently when the electrode composition layer 120 is pressurized.
If the difference exceeds 150° C., the substrate 100 (particularly the resin current collector) on which the electrode composition layer 120 is arranged may deteriorate.
The surface temperature of the roll presses 140a and 140b is set to a temperature within the range of 70° C. or more and less than 100° C., and the surface temperature and the glass transition temperature of the coating resin that coats the coating active material that is the material of the electrode composition layer 120. By performing the pressing step S4 while adjusting the temperature so that the difference from Tg is within the range of 70° C. or higher and 150° C. or lower, an electrode having excellent strength can be obtained without fail.
(切断工程S5)
 切断工程S5では、表面に複数の被覆活物質層130が形成された基材100について、電極組成物層非配置部で切断して、集電体(正極集電体又は負極集電体)上に被覆活物質層(正極活物質層又は負極活物質層)が設けられてなる個々の電極(正電極又は負電極)を切り出す。基材を切断する方法は特に限定されないが、公知の切断方法(回転式切断刃、ギロチン刃、トムソン型及びレーザーによる切断等)が挙げられる。
(Cutting step S5)
In the cutting step S5, the base material 100 having a plurality of coated active material layers 130 formed on the surface is cut at the electrode composition layer non-arrangement portion, and the current collector (positive electrode current collector or negative electrode current collector) is cut. Individual electrodes (positive electrodes or negative electrodes) provided with a coating active material layer (positive electrode active material layer or negative electrode active material layer) are cut out. The method for cutting the base material is not particularly limited, and includes known cutting methods (rotary cutting blade, guillotine blade, Thomson cutting, laser cutting, etc.).
 以上のようにして、リチウムイオン二次電池の電極(正電極又は負電極)を製造することができる。 As described above, an electrode (positive electrode or negative electrode) of a lithium ion secondary battery can be manufactured.
 本実施形態により製造された電極を用いてリチウムイオン二次電池を製造するには、例えば、上述した電極の製造方法により製造された正電極と、上述した電極の製造方法により製造された負電極とを、セパレータを介して、被覆活物質層同士(正極活物質層と負極活物質層)が対向するように積層して電池セルを作製し、この電池セルを外装フィルムで被覆して封止する方法が挙げられる。 In order to manufacture a lithium ion secondary battery using the electrode manufactured according to the present embodiment, for example, the positive electrode manufactured by the electrode manufacturing method described above and the negative electrode manufactured by the electrode manufacturing method described above are laminated so that the coated active material layers (positive electrode active material layer and negative electrode active material layer) face each other with a separator interposed to form a battery cell, and the battery cell is covered with an exterior film and sealed. method.
 以上説明したように、本実施形態によれば、ひび割れ等が発生することのない優れた強度のリチウムイオン二次電池の電極を得ることができる。 As described above, according to the present embodiment, it is possible to obtain an electrode of a lithium-ion secondary battery that is free from cracks and has excellent strength.
 [第2の実施形態]
 以下、第2の実施形態について説明する。本実施形態では、第1の実施形態と同様にリチウムイオン二次電池用の電極の製造方法を開示するが、製造プロセスが一部異なる点で第1の実施形態と相違する。
 図7は、第2の実施形態によるリチウムイオン二次電池の電極の製造方法を工程順に示すフロー図である。
[Second embodiment]
A second embodiment will be described below. This embodiment discloses a method for manufacturing an electrode for a lithium-ion secondary battery in the same manner as in the first embodiment, but differs from the first embodiment in that the manufacturing process is partially different.
FIG. 7 is a flowchart showing a method for manufacturing an electrode of a lithium ion secondary battery according to the second embodiment in order of steps.
 本実施形態による電極の製造方法では、第1の実施形態と同様に、マスキング工程S1、供給工程S2、及び除去工程S3を順次行う。続いて、加圧工程S4の事前工程として加熱工程S11を行い、その後、第1の実施形態と同様に加圧工程S4及び切断工程S5を順次行う。 In the electrode manufacturing method according to the present embodiment, the masking step S1, the supplying step S2, and the removing step S3 are sequentially performed, as in the first embodiment. Subsequently, the heating step S11 is performed as a pre-process of the pressing step S4, and then the pressing step S4 and the cutting step S5 are sequentially performed in the same manner as in the first embodiment.
 本実施形態では、除去工程S3と加熱工程S11及び加圧工程S4との順序は特に限定されない。従って、除去工程S3を行ってから加熱工程S11及び加圧工程S4を行ってもよいし、加熱工程S11及び加圧工程S4を行ってから除去工程S3を行ってもよい。 In this embodiment, the order of the removing step S3, the heating step S11, and the pressing step S4 is not particularly limited. Therefore, the heating step S11 and the pressurizing step S4 may be performed after the removing step S3, or the removing step S3 may be performed after the heating step S11 and the pressurizing step S4 are performed.
 (加熱工程S11)
 加熱工程S11では、加圧工程S4に先立って、供給工程S3によって基材上に供給された電極組成物を予備的に加熱する。
 具体的には、面状に加熱する加熱プレス機又は線状に加熱するロールプレスを用いて、加熱プレス機又はロールプレスの表面温度を、続く加圧工程S4における温度と同等の温度、即ち70℃以上100℃未満の範囲内の所定温度に調節して、基材上の電極組成物を加熱する。このとき、加圧工程S4とは異なり、基材上の電極組成物を殆ど加圧することなく加熱する。
(Heating step S11)
In the heating step S11, prior to the pressing step S4, the electrode composition supplied onto the substrate in the supplying step S3 is preliminarily heated.
Specifically, using a heating press that heats in a plane or a roll press that heats linearly, the surface temperature of the heating press or roll press is set to a temperature equivalent to the temperature in the subsequent pressing step S4, that is, 70 C. to less than 100.degree. C. to heat the electrode composition on the substrate. At this time, unlike the pressurizing step S4, the electrode composition on the substrate is heated with almost no pressurization.
 加熱工程S11の後、第1の実施形態と同様に加圧工程S4を行う。
 本実施形態では、加圧工程S4に先立って先ず加熱工程S11を行うことにより、電極組成物層の材料である被覆活物質を被覆する被覆樹脂が溶融する。引き続き加圧工程S4を行う際に、加熱工程S11により被覆樹脂が適度に溶融した状態とされているため、ロールプレスの表面温度を電極組成物層が配置された基材を劣化させる懸念のない程度に調節して電極組成物層を加圧することができる。これにより、基材の劣化を確実に抑えつつも、ロールプレスにより電極組成物層の被覆樹脂を十分に溶融して優れた強度の電極を得ることができる。
After the heating step S11, the pressurizing step S4 is performed as in the first embodiment.
In this embodiment, the heating step S11 is first performed prior to the pressurizing step S4, so that the coating resin that coats the coating active material, which is the material of the electrode composition layer, melts. When the pressure step S4 is subsequently performed, the coating resin is in a state of being appropriately melted by the heating step S11, so there is no concern that the surface temperature of the roll press will deteriorate the substrate on which the electrode composition layer is arranged. The electrode composition layer can be pressurized by adjusting the degree. As a result, it is possible to obtain an electrode having excellent strength by sufficiently melting the coating resin of the electrode composition layer by roll pressing while suppressing deterioration of the base material.
 しかる後、第1の実施形態と同様に切断工程S5を行って、リチウムイオン二次電池の電極(正電極又は負電極)が製造される。 After that, the cutting step S5 is performed in the same manner as in the first embodiment to manufacture the electrodes (positive electrode or negative electrode) of the lithium ion secondary battery.
 以上説明したように、本実施形態によれば、電極組成物層が形成される基材の劣化を確実に抑えながら、ひび割れ等が発生することのない優れた強度のリチウムイオン二次電池の電極を得ることができる。 As described above, according to the present embodiment, an electrode for a lithium-ion secondary battery having excellent strength that does not cause cracks or the like while reliably suppressing deterioration of the base material on which the electrode composition layer is formed. can be obtained.
 本発明の一実施形態に係る電極の製造方法は、基材上に、被覆活物質を含む電極組成物を供給する供給工程と、
 70℃以上100℃未満の表面温度に調節されたロールプレスを用いて、前記電極組成物を加圧する加圧工程と、
 を有する。
A method for manufacturing an electrode according to an embodiment of the present invention includes a supplying step of supplying an electrode composition containing a coated active material onto a substrate;
A pressurizing step of pressurizing the electrode composition using a roll press adjusted to a surface temperature of 70 ° C. or more and less than 100 ° C.;
have
 上記一実施形態では、前記加圧工程における前記ロールプレスの周速度は、5mm/s以上40mm/s以下である。 In the above embodiment, the peripheral speed of the roll press in the pressing step is 5 mm/s or more and 40 mm/s or less.
 上記一実施形態では、前記加圧工程における前記ロールプレスの表面温度と、前記被覆活物質の被覆樹脂のガラス転移温度との差分が、70℃以上150℃以下である。 In the above embodiment, the difference between the surface temperature of the roll press in the pressing step and the glass transition temperature of the coating resin of the coating active material is 70°C or higher and 150°C or lower.
 上記一実施形態では、前記被覆樹脂のガラス転移温度が-70℃以上50℃以下である。 In the above embodiment, the glass transition temperature of the coating resin is -70°C or higher and 50°C or lower.
 上記一実施形態では、前記加圧工程の前に、
 前記基材上に供給された前記電極組成物を加熱する加熱工程を有する。
In the above embodiment, before the pressurizing step,
It has a heating step of heating the electrode composition supplied onto the substrate.
 上記一実施形態では、前記供給工程において、前記基材上に前記電極組成物を連続的に供給し、
 前記加圧工程の前又は後に、前記基材上に連続的に供給された前記電極組成物の一部を除去し、前記基材上に前記電極組成物を間欠的に残す除去工程を有する。
In the above embodiment, in the supplying step, the electrode composition is continuously supplied onto the substrate,
Before or after the pressurizing step, there is a removing step of removing a part of the electrode composition continuously supplied onto the substrate to intermittently leave the electrode composition on the substrate.
 以上説明した発明態様によれば、ひび割れ等が発生することのない優れた強度の電極を得ることができる。 According to the aspect of the invention described above, it is possible to obtain an electrode with excellent strength that does not cause cracks or the like.
1 二次電池モジュール
2 負電極
3 正電極
7,8 導電部
9 枠部材
10 負極側電流供給層
11 負極集電体
12 負極活物質層
13 セパレータ
14 正極活物質層
15 正極集電体
16 正極側電流取出層
20 電池セル
100 基材
110 マスク層
120 電極組成物
120A 電極組成物層
130 被覆活物質層
140a,140b ロールプレス
1 Secondary Battery Module 2 Negative Electrode 3 Positive Electrodes 7, 8 Conductive Part 9 Frame Member 10 Negative Electrode Side Current Supply Layer 11 Negative Electrode Current Collector 12 Negative Electrode Active Material Layer 13 Separator 14 Positive Electrode Active Material Layer 15 Positive Electrode Current Collector 16 Positive Electrode Side Current extraction layer 20 Battery cell 100 Base material 110 Mask layer 120 Electrode composition 120A Electrode composition layer 130 Covered active material layers 140a, 140b Roll press

Claims (4)

  1.  基材上に、ガラス転移温度が-70℃以上50℃以下である被覆樹脂で被覆された被覆活物質を含む電極組成物を供給する供給工程と、
     70℃以上100℃未満の表面温度に調節されたロールプレスを用いて、前記電極組成物を加圧する加圧工程と、
     前記供給工程の後、前記加圧工程の前に、前記基材上に供給された前記電極組成物を加熱する加熱工程と、
     を有する、
     電極の製造方法。
    A supply step of supplying an electrode composition containing a coated active material coated with a coating resin having a glass transition temperature of −70° C. or more and 50° C. or less onto a substrate;
    A pressurizing step of pressurizing the electrode composition using a roll press adjusted to a surface temperature of 70 ° C. or more and less than 100 ° C.;
    a heating step of heating the electrode composition supplied onto the substrate after the supplying step and before the pressing step;
    having
    A method of manufacturing an electrode.
  2.  前記加圧工程における前記ロールプレスの周速度は、5mm/s以上40mm/s以下である、
     請求項1に記載の電極の製造方法。
    The peripheral speed of the roll press in the pressing step is 5 mm / s or more and 40 mm / s or less.
    A method for manufacturing the electrode according to claim 1 .
  3.  前記加圧工程における前記ロールプレスの表面温度と、前記被覆活物質の被覆樹脂のガラス転移温度との差分が、70℃以上150℃以下である、
     請求項1に記載の電極の製造方法。
    The difference between the surface temperature of the roll press in the pressing step and the glass transition temperature of the coating resin of the coating active material is 70° C. or more and 150° C. or less.
    A method for manufacturing the electrode according to claim 1 .
  4.  前記供給工程では、前記基材上に前記電極組成物を連続的に供給し、
     前記加圧工程の前又は後に、前記基材上に連続的に供給された前記電極組成物の一部を除去し、前記基材上に前記電極組成物を間欠的に残す除去工程を有する、
     請求項1に記載の電極の製造方法。
    In the supplying step, the electrode composition is continuously supplied onto the substrate,
    Before or after the pressurizing step, a removing step of removing a part of the electrode composition continuously supplied onto the substrate and intermittently leaving the electrode composition on the substrate;
    A method for manufacturing the electrode according to claim 1 .
PCT/JP2023/006589 2022-02-22 2023-02-22 Method for producing electrode WO2023163073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022026177A JP2023122455A (en) 2022-02-22 2022-02-22 Electrode manufacturing method
JP2022-026177 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023163073A1 true WO2023163073A1 (en) 2023-08-31

Family

ID=87766043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006589 WO2023163073A1 (en) 2022-02-22 2023-02-22 Method for producing electrode

Country Status (2)

Country Link
JP (1) JP2023122455A (en)
WO (1) WO2023163073A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161785B2 (en) * 2020-08-25 2022-10-27 株式会社北電子 game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245788A (en) * 2008-03-31 2009-10-22 Hitachi Vehicle Energy Ltd Roll press device
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2013180166A1 (en) * 2012-05-29 2013-12-05 日本ゼオン株式会社 Composite particles for electrochemical element electrodes, electrochemical element electrode, and electrochemical element
KR20190051354A (en) * 2017-11-06 2019-05-15 주식회사 엘지화학 Method for manufacturing positive electrode
JP2021027043A (en) * 2019-08-06 2021-02-22 三洋化成工業株式会社 Method for manufacturing electrode material for lithium ion battery, and device for manufacturing electrode material for lithium ion battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113701A (en) * 1997-06-09 1999-01-06 Asahi Chem Ind Co Ltd Manufacture of battery electrode and equipment thereof
JP2009218053A (en) * 2008-03-10 2009-09-24 Panasonic Corp Coating device and lithium ion secondary battery manufactured by using the same
WO2011061825A1 (en) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 Lithium secondary battery and process for producing same
WO2012090368A1 (en) * 2010-12-28 2012-07-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP5757331B2 (en) * 2011-06-30 2015-07-29 株式会社豊田自動織機 Method for producing negative electrode for lithium ion secondary battery
WO2013129571A1 (en) * 2012-02-29 2013-09-06 日本ゼオン株式会社 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
JP6209900B2 (en) * 2013-08-22 2017-10-11 日産自動車株式会社 Sheet electrode manufacturing method and rolling device control method
JP2016046037A (en) * 2014-08-21 2016-04-04 日立化成株式会社 Manufacturing method of negative electrode for lithium ion battery and lithium ion battery obtained by the manufacturing method
KR102413750B1 (en) * 2017-04-19 2022-06-27 니폰 에이 엔 엘 가부시키가이샤 The binder for the electrode, and the composition for the electrode and electrode
JP2019164993A (en) * 2018-03-14 2019-09-26 株式会社リコー Electrode forming composition, electrode manufacturing method, and non-aqueous storage element manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245788A (en) * 2008-03-31 2009-10-22 Hitachi Vehicle Energy Ltd Roll press device
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2013180166A1 (en) * 2012-05-29 2013-12-05 日本ゼオン株式会社 Composite particles for electrochemical element electrodes, electrochemical element electrode, and electrochemical element
KR20190051354A (en) * 2017-11-06 2019-05-15 주식회사 엘지화학 Method for manufacturing positive electrode
JP2021027043A (en) * 2019-08-06 2021-02-22 三洋化成工業株式会社 Method for manufacturing electrode material for lithium ion battery, and device for manufacturing electrode material for lithium ion battery

Also Published As

Publication number Publication date
JP2023122455A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
DK2965369T3 (en) SOLID BATTERY SAFETY AND MANUFACTURING PROCEDURES
JP5382130B2 (en) Method for producing solid electrolyte battery
JP5200367B2 (en) Bipolar battery electrode
CN111463437B (en) All-solid battery
JP6522494B2 (en) All solid storage device and method of manufacturing the same
WO2021025072A1 (en) Method for manufacturing lithium ion cell
JP2014107182A (en) Lithium ion secondary battery and method of manufacturing the same
WO2023163073A1 (en) Method for producing electrode
WO2019156172A1 (en) Lithium ion secondary battery, lithium ion secondary battery negative electrode structure, and production method for lithium ion secondary battery
KR102303703B1 (en) Solid-state battery and method for manufacturing the same
CN111540902B (en) All-solid-state battery and method for manufacturing same
US11637326B2 (en) Laminate
JP4518850B2 (en) Secondary battery electrode plate, method for producing the same, and secondary battery using the electrode plate
JPWO2020137388A1 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
JP2022123498A (en) Method and apparatus for manufacturing lithium-ion battery members
JP7135916B2 (en) laminate
US20200254738A1 (en) Laminate
JP2013073685A (en) Electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2022173004A1 (en) Manufacturing method and manufacturing device for lithium ion battery members
JP7510749B2 (en) How lithium-ion batteries are manufactured
JP2020161471A (en) Manufacturing method of all-solid battery, and all-solid battery
WO2023163193A1 (en) Powder supply device, device for manufacturing electrode for lithium-ion battery, method for manufacturing electrode for lithium-ion battery, method for manufacturing electrode material for lithium-ion battery, device for manufacturing electrode material for lithium-ion battery, electrode for lithium-ion battery, and lithium-ion battery
CN115513602B (en) Manufacturing process of power battery containing interface management layer structure electrode
WO2022244759A1 (en) Inspection method for layered sheet, production method for layered sheet, and production method for battery pack
JP2023124413A (en) Method for manufacturing electrode material for lithium ion battery, manufacturing device for electrode material for lithium ion battery, electrode for lithium-ion battery, and lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760072

Country of ref document: EP

Kind code of ref document: A1