WO2023162988A1 - α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置 - Google Patents

α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置 Download PDF

Info

Publication number
WO2023162988A1
WO2023162988A1 PCT/JP2023/006269 JP2023006269W WO2023162988A1 WO 2023162988 A1 WO2023162988 A1 WO 2023162988A1 JP 2023006269 W JP2023006269 W JP 2023006269W WO 2023162988 A1 WO2023162988 A1 WO 2023162988A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry powder
pregelatinized starch
minutes
less
pregelatinized
Prior art date
Application number
PCT/JP2023/006269
Other languages
English (en)
French (fr)
Inventor
勝 福井
昭博 西岡
智則 香田
Original Assignee
株式会社アルファテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファテック filed Critical 株式会社アルファテック
Publication of WO2023162988A1 publication Critical patent/WO2023162988A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/14Cold water dispersible or pregelatinised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/16Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing a dry powder of pregelatinized starch, a dry powder of pregelatinized starch, a dry powder of pregelatinized buckwheat, and an apparatus for producing a dry powder of pregelatinized starch.
  • a dry powder of pregelatinized starch is usually obtained by adding water to starch, followed by heating and drying (for example, Patent Document 1).
  • the dry powder of pregelatinized starch can be eaten only by adding water and kneading appropriately without steaming, and has a wide range of applications.
  • the gelatinization of starch caused by heating starch with water is referred to as "gelatinization".
  • composition of starch a known technique is to pulverize a mixture of heated rice and water with a stone grinder in a moist state to decompose most of the amylopectin contained in the rice and reduce its molecular weight (patent Reference 2).
  • Patent Literature 2 proposes a manufacturing method for obtaining pregelatinized flour by simultaneously applying shear while heating grains to a temperature of 80° C. or higher.
  • JP-A-3-67555 JP 2017-163849 A Japanese Patent No. 4767128
  • pregelatinized starch dry powder has the following problems. • The degree of gelatinization can be reduced due to the fixation of the crushing part of the grain and the accompanying abrasion due to the strong contact between the grain and the crushing part. ⁇ If the grain is contaminated with foreign matter, damage may occur in the crushing unit.
  • the obtained pregelatinized starch dry powder also had problems with its processing properties due to the difficulty of maintaining and adjusting elasticity and viscosity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel method and apparatus for producing pregelatinized starch dry powder.
  • a further object of the present invention is to provide a pregelatinized starch dry powder having novel properties (eg, good processing properties).
  • the present inventors found that in the production of pregelatinized starch dry powder, the above problems can be solved by pulverizing the grains using a rigid member adjusted so that the gap interval is variable, and have completed the present invention. completed. Specifically, the present invention provides the following.
  • a method for producing pregelatinized starch dry powder A step of subjecting the grains to a manufacturing apparatus equipped with a grinding mechanism and temperature control means and grinding them under shear conditions,
  • the pulverization mechanism is at least two rigid members arranged facing each other; a pressing member that presses at least one of the rigid members so that a gap between the rigid members can be varied by a force from the opposing surface side of the rigid members;
  • the temperature adjustment means adjusts the grain temperature in the process of being sheared by the crushing mechanism,
  • the rigid member is arranged so as to be able to shear and pulverize the grain supplied to the gap formed by the opposing surfaces of the rigid member. Production method.
  • (Requirement 2A) have at least 3 regions indicative of starch in gel filtration chromatography. Of the three regions, the region from 120 minutes to less than 145 minutes is "A”, the region from 145 minutes to less than 190 minutes is "B”, and the region from 190 minutes to less than 250 minutes When "C” is used, both the following formulas (1) and (2) are satisfied.
  • Formula (2) (Requirement 2B) Crystallinity is 22.5% or less.
  • the 14% by mass aqueous solution of the pregelatinized starch dry powder has a viscosity of 30 Pa s or more and 500 Pa s or less at 35°C, and The dry powder of pregelatinized starch according to (2) or (3), wherein the aqueous solution has a viscosity of 300 Pa ⁇ s or more immediately after being heated at 95°C for 5 minutes.
  • An apparatus for producing pregelatinized starch dry powder comprising a pulverization mechanism and temperature control means,
  • the pulverization mechanism is at least two rigid members arranged facing each other; a pressing member that presses at least one of the rigid members so that a gap between the rigid members can be varied by a force from the opposing surface side of the rigid members;
  • the temperature adjustment means adjusts the grain temperature in the process of being sheared by the crushing mechanism,
  • the rigid member is arranged so as to be able to shear and pulverize the grain supplied to the gap formed by the opposing surfaces of the rigid member. Manufacturing equipment.
  • a novel method and apparatus for producing pregelatinized starch dry powder are provided. Further, the present invention provides a pregelatinized starch dry powder with novel properties (eg, good processing properties).
  • FIG. 1 is a schematic diagram of a mortar-type pulverizer used in Examples.
  • FIG. FIG. 4 shows the results of gel filtration chromatography analysis in Examples.
  • FIG. 4 shows the results of gel filtration chromatography analysis in Examples.
  • FIG. 2 is a diagram showing the degree of crystallinity of the dry powder of pregelatinized starch prepared in Examples.
  • FIG. 2 is a diagram showing the relationship between loss modulus and shear strain of pregelatinized starch dry powder prepared in Examples.
  • FIG. 4 is a diagram showing analysis results of viscosity profiles over time in Examples.
  • FIG. 2 is a diagram showing the relationship between loss modulus and shear strain of pregelatinized starch dry powder prepared in Examples.
  • FIG. 4 is a diagram showing analysis results of viscosity profiles over time in Examples.
  • the method for producing a dry powder of pregelatinized starch of the present invention (hereinafter also referred to as "the production method of the present invention") satisfies all of the following requirements.
  • the grains are subjected to a manufacturing device equipped with a grinding mechanism and temperature control means and ground under shear conditions.
  • the crushing mechanism includes at least two rigid members arranged to face each other, and a pressing member that presses at least one of the rigid members so that the gap between the rigid members can be varied by a force from the opposing surface side of the rigid members.
  • the temperature adjustment means adjusts the kernel temperature during the process of being sheared by the crushing mechanism.
  • the rigid member is arranged so as to shear and comminute the grain fed into the gap formed by the opposing faces of the rigid member.
  • the present inventors have also found that when pulverization is performed under shearing conditions in a state in which the gap between the mortars is variable, it is possible to unexpectedly produce pregelatinized starch dry powder having novel properties by adjusting the pressure. Found it. Specifically, this pregelatinized starch dry powder is excellent in elasticity and maintenance and adjustment of viscosity, and has good processability. The reason for this is not clear, but is presumed as follows. When a shearing pressure is applied to the grain flour with a variable gap between the mortars, the molecular weight distribution of the pregelatinized starch dry powder is broadened compared to the conventional method using a fixed mortar (Fig. 3). .
  • the shearing pressure is not variable in the conventional method, the molecular weight of the resulting pregelatinized starch dry powder tends to concentrate on small molecular weights.
  • the dry powder of pregelatinized starch obtained by pulverizing under shear conditions in a state where the gap between the mortars is variable has both large and small molecular weight distributions. According to the dry powder of pregelatinized starch obtained as a result, for example, it becomes easy to prepare a gel having a good "body", which will be described later. As a result of studies by the present inventors, it was found that a pregelatinized starch dry powder having a wide molecular weight distribution can achieve, for example, good processing characteristics and moderate elasticity, which will be described later.
  • the crushing mechanism has at least a rigid member and a pressing member.
  • the "rigid member” is a member that is arranged so that at least two of them are opposed to each other, and that shears and pulverizes the grains supplied between them.
  • the gap between the arranged rigid members is preferably 0 to 30 mm, more preferably 0 to 1 mm when no grain is supplied.
  • this gap interval is variable as described later.
  • the rigid member can be of any shape, material, etc. that are employed as mortars and rollers in conventionally known devices.
  • the "pressing member” is arranged on the side opposite to the facing surfaces of the two rigid members, and changes the gap between the rigid members.
  • the gap interval varies depending on the force generated from the opposing surface side of the rigid member (for example, the force caused by crushing grains, etc.).
  • the biasing member can be any biasing means (eg spring).
  • the pressing member regulates the pressure exerted by the rigid member on the grain to achieve comminution under shear conditions.
  • the lower limit of the load applied to the grain by the biasing means is such that the grain is sufficiently sheared, and a dry powder of pregelatinized starch that satisfies one or more of (requirement 1A) and (requirement 1C), which will be described later, is likely to be obtained. From this point of view, it is preferably 15 kN/m 2 or more, more preferably 20 kN/m 2 or more, and still more preferably 30 kN/m 2 or more.
  • the upper limit of the load applied to the grain by the biasing means sufficiently varies the gap between the rigid members, and satisfies (requirements 1B), (requirements 1C), (requirements 2A), and (requirements 2B) described later. It is preferably 40 MN/m 2 or less, more preferably 30 MkN/m 2 or less, and even more preferably 25 MN/m 2 or less, from the viewpoint that a dry powder of pregelatinized starch that satisfies one or more of these is easily obtained.
  • the number of pressing members is not particularly limited, and they may be arranged to press both of the two rigid members, or may be arranged to press one of them.
  • the conditions for pulverizing grains by the pulverizing mechanism are not particularly limited, but from the viewpoint of facilitating sufficient shearing, the rigid member preferably has a shear rate of 90 to 600 seconds ⁇ 1 , more preferably 280 to 600 seconds ⁇ It may be rotated to be 1 .
  • the temperature adjusting means adjusts the grain temperature during the process of being sheared by the crushing mechanism.
  • the temperature adjusting means may be a conventionally known heater. Grains may be sheared at, for example, preferably 80° C. or higher, more preferably 100 to 200° C., from the viewpoint of facilitating the realization of sufficient gelatinization.
  • the grain to be subjected to the production method of the present invention is not particularly limited as long as it is a grain containing starch as a main component, and any grain conventionally used as a raw material for pregelatinized starch dry powder. can be adopted.
  • Grains include, for example, rice, buckwheat, wheat, adzuki beans, and corn.
  • water may or may not be added to the grains.
  • the production method of the present invention preferably does not include the step of adding water to grains.
  • Dry pregelatinized starch powder obtained by the production method of the present invention According to the production method of the present invention, as described above, dry pregelatinized starch is excellent in maintaining and adjusting elasticity and viscosity, and has good processing characteristics. A powder is obtained.
  • the pregelatinized starch dry powder obtained from the production method of the present invention can be, for example, the following pregelatinized starch dry powder or pregelatinized buckwheat dry powder.
  • the pregelatinized starch dry powder of the present invention includes the following two aspects.
  • Pregelatinized starch dry powder A pregelatinized starch dry powder that satisfies all of the following requirements.
  • (Requirement 1A) Have at least three peaks indicative of starch in gel filtration chromatography.
  • Pregelatinized starch dry powder A pregelatinized starch dry powder that satisfies all of the following requirements.
  • (Requirement 2A) have at least 3 regions indicative of starch in gel filtration chromatography. Of the three regions, the region from 120 minutes to less than 145 minutes is "A”, the region from 145 minutes to less than 190 minutes is "B”, and the region from 190 minutes to less than 250 minutes When "C” is used, both the following formulas (1) and (2) are satisfied.
  • Formula (2) (Requirement 2B) Crystallinity is 22.5% or less.
  • the above-mentioned pregelatinized starch dry powder has a combination of properties (that is, each of the above requirements) that are different from existing pregelatinized starch dry powders.
  • the present inventors created such a novel pregelatinized starch dry powder by the production method of the present invention.
  • pregelatinized starch dry powder includes grains (rice, buckwheat, wheat, red bean, corn, etc.) whose main component is starch that have been pregelatinized (gelatinized, non-crystallized).
  • Pregelatinized starch dry powder according to the first aspect The pregelatinized starch dry powder according to the first aspect (hereinafter also referred to as “first pregelatinized starch dry powder”) has (requirements 1A) to ( All requirements 1C) are satisfied. However, in addition to these, the first pregelatinized starch dry powder may or may not satisfy (requirement 2A) described later.
  • the first dry powder of pregelatinized starch has at least three peaks indicative of starch in its gel filtration chromatography.
  • the "peak indicating starch" can be specified by the following method.
  • Each peak is based on the portion of the rising edge of the graph from the lowest value to the highest value to the next lowest value.
  • the graph may appear as shoulders. In that case, for example, the point where the downward curve becomes gentle or the point where the upward curve becomes gentle is used as the boundary of the peak.
  • the first pregelatinized starch dry powder has at least 3, preferably at least 4 peaks indicative of starch. Although the upper limit of the number of peaks indicating starch is not particularly limited, it is usually 4 or less. In the present invention, the first, second, third, ... n-th peaks are retention time intervals (e.g., 120 minutes or more to less than 145 minutes, 145 minutes or more to less than 190 minutes, 190 minutes or more to less than 250 minutes).
  • Gel filtration chromatography in the first pregelatinized starch dry powder may have, but is not limited to, the following three peaks.
  • Retention time 120 minutes or more to less than 145 minutes 1st peak from high molecular weight side Retention time 145 minutes or more to less than 190 minutes: 2nd peak from high molecular weight side Retention time 190 minutes or more to less than 250 minutes: From high molecular weight side third peak
  • the n-th peak from the high molecular weight side means the n-th peak counted from the shortest chromatographic retention time (elution time).
  • the first peak from the high molecular weight side means the peak observed at the shortest retention time.
  • the ratio of each peak area to the total of the three peak areas can satisfy the following ranges.
  • the first peak from the high molecular weight side has a lower intensity than the third peak from the high molecular weight side
  • the value (peak height) of the first peak from the high molecular weight side is means lower than the value of the third peak from the high molecular weight side.
  • the inventors of the present invention have found that in the pregelatinized starch dry powder obtained using the production apparatus of Japanese Patent No. 4767128, which does not have a pressing member, there are only two peaks indicating starch, and the first peak from the high molecular weight side is is lower than the second peak from the high molecular weight side (for example, the first peak is less than half of the second peak) (see “Comparative Example Conventional Method" in Figure 2 reference.).
  • the first peak from the high molecular weight side is preferably 0.5 times or less, more preferably 0.4 times or less, lower in strength than the third peak from the high molecular weight side. is.
  • the upper limit of the crystallinity of the first pregelatinized starch dry powder is 22.5% or less, preferably 20.0% or less, more preferably 17.0% or less, or 14.0% or less.
  • the lower limit of the crystallinity of the first pregelatinized starch dry powder is preferably 1.0% or more, more preferably 2.0% or more, still more preferably 4.0% or more, and still more preferably 7.0% or more. , more preferably 12.0% or more.
  • Crystalstallinity in the present invention is specified by the method shown in the Examples.
  • Pregelatinized starch dry powder according to the second aspect The pregelatinized starch dry powder according to the second aspect (hereinafter also referred to as “second pregelatinized starch dry powder”) is (requirement 2A) and ( All requirements 2B) are satisfied. However, the second pregelatinized starch dry powder may or may not satisfy (requirement 1B) in addition to these requirements.
  • the second dry powder of pregelatinized starch has at least three regions indicating starch in its gel filtration chromatography. Of the above three regions, the region from 120 minutes to less than 145 minutes is "A”, the region from 145 minutes to less than 190 minutes is "B”, and the region from 190 minutes to less than 250 minutes When "C” is used, both the following formulas (1) and (2) are satisfied.
  • region “A” may correspond to peak areas from 120 minutes or more to less than 145 minutes.
  • Region “B” may correspond to peak areas from retention times greater than or equal to 145 minutes to less than 190 minutes.
  • Region “C” may correspond to peak areas from retention times greater than or equal to 190 minutes to less than 250 minutes.
  • the pregelatinized starch dry powder satisfying the above formula means that the proportion of low-molecular-weight starch is higher than that of high-molecular-weight starch. According to the production method of the present invention, it is easy to realize a molecular weight distribution having such a relationship. This is presumed to be the result of shear forces converting a moderate proportion of the high molecular weight starch to the low molecular weight form.
  • the lower limit of "A/(A+B+C)" is more than 0.05, preferably 0.08 or more, more preferably 0.1 or more.
  • the upper limit of "A/(A+B+C)" is preferably 0.45 or less, more preferably 0.40 or less.
  • the lower limit of "C/(A+B+C)" is more than 0.2, preferably 0.25 or more, more preferably 0.30 or more.
  • the upper limit of "C/(A+B+C)" is preferably 0.90 or less, more preferably 0.80 or less.
  • B/(A+B+C) is not particularly limited, but may satisfy the following requirements.
  • the lower limit of "B/(A+B+C)” is preferably 0.15 or more, more preferably 0.20 or more.
  • the upper limit of "B/(A+B+C)” is preferably 0.70 or less, more preferably 0.60 or less.
  • first and second pregelatinized starch dry powders are not particularly limited, but pregelatinized starch with better processing characteristics can be obtained by satisfying any or all of the following requirements. Starch dry powder is easy to obtain.
  • the ⁇ -starch dry powder has the maximum value of the loss modulus in the gelation test at the peak appearing between shear strains of 0.03 and 0.25 at the time of shear strain of 0.001. is preferably greater than the value at .
  • the pregelatinized starch dry powder obtained using the production apparatus of Japanese Patent No. 4767128 which does not have a pressing member, exhibits a constant loss elastic modulus at small strain immediately after preparation, but when the strain increases (for example, strain near 0.1), the loss modulus no longer rises. Such kinetics result in a reduction in so-called "body”. Furthermore, after being stored (rested), the loss modulus rises sharply and becomes hard.
  • the pregelatinized starch dry powder of the present invention which satisfies the above requirements, unexpectedly, the loss elastic modulus tends to increase even when the strain is large (see FIGS. 5 and 7). Therefore, according to the dry powder of pregelatinized starch of the present invention, it is possible to easily prepare a firm gel. It was also found that the pregelatinized starch dry powder of the present invention is suppressed from abrupt change in loss modulus even after storage.
  • the "gelation test” is performed by the method shown in Examples.
  • Viscosity The ⁇ -starch dry powder may satisfy either or both of the following.
  • (Viscosity requirement 1) A 14% by mass aqueous solution of pregelatinized starch dry powder has a viscosity of 30 Pa s or more and 500 Pa s or less at 35°C, and immediately after heating the aqueous solution at 95°C for 5 minutes. Viscosity is 300 Pa ⁇ s or more.
  • (Viscosity requirement 2) The viscosity of a 14% by mass aqueous solution of pregelatinized starch dry powder immediately after heating at 95°C for 5 minutes is 1000 Pa ⁇ s or more.
  • the dry powder of pregelatinized starch of the present invention can satisfy the above-described viscosity characteristics, it is particularly easy to adjust the initial viscosity, and the viscosity after heat processing can also be adjusted.
  • the pregelatinized starch dry powder of the present invention that satisfies the above viscosity characteristics is suitable for the following uses. ⁇ Baking, etc. that requires proper viscosity maintenance and workability from molding to baking. ⁇ Noodle making, etc. that can be processed without using binders and can achieve various textures (koshi, crispness, etc.).
  • the viscosity of the pregelatinized starch dry powder can be determined by the viscosity profile over time.
  • the term "viscosity profile over time" means data indicating changes in viscosity with changes in temperature over time. More specifically, the viscosity profile over time is determined by the method shown in the Examples.
  • the viscosity at 35°C is 30 Pa ⁇ s or more and 500 Pa ⁇ s or less, preferably 70 Pa ⁇ s or more and 400 Pa ⁇ s or less.
  • the viscosity immediately after heating at 95°C for 5 minutes is 300 Pa ⁇ s or more, preferably 350 Pa ⁇ s or more.
  • the upper limit is not particularly limited, it is usually 1300 Pa ⁇ s or less.
  • the viscosity immediately after heating at 95°C for 5 minutes is 1000 Pa ⁇ s or more, preferably 1250 Pa ⁇ s or more.
  • the upper limit is not particularly limited, it is usually 2000 Pa ⁇ s or less.
  • the moisture content of the dry powder of ⁇ -starch is preferably 12.5% by mass or less, more preferably 10.0% by mass or less, and even more preferably 8.0% by mass or less.
  • the "water content” is the total amount of water contained in the dry powder of pregelatinized starch.
  • Moisture content can be determined by a moisture meter (such as an infrared moisture meter).
  • the use of the dry powder of pregelatinized starch of the present invention is not particularly limited, and it can be used for any of the same uses as the dry powder of pregelatinized starch known in the art (foods, pharmaceuticals, etc.).
  • the pregelatinized starch dry powder of the present invention is excellent in processability, and thus can be used as a good substitute for pregelatinized starch dry powders that have been conventionally used.
  • the present inventors discovered the following novel pregelatinized buckwheat dry powder.
  • the pregelatinized buckwheat dry powder can be obtained, for example, by applying the production method of the present invention to buckwheat.
  • Pregelatinized buckwheat dry powder A dry powder of pregelatinized buckwheat having a crystallinity of 18.0% or less.
  • the upper limit of the crystallinity of the pregelatinized buckwheat dried powder is 18.0% or less, preferably 15.0% or less.
  • the lower limit of the crystallinity of the pregelatinized buckwheat dry powder is preferably 1.0% or more, more preferably 2.0% or more, still more preferably 4.0% or more, still more preferably 7.0% or more, and even more preferably is 12.0% or more.
  • Pregelatinized buckwheat dry powder having a water content of 12.5% by mass or less.
  • the upper limit of the moisture content of the pregelatinized buckwheat dry powder is 12.5% by mass or less, preferably 10.0% by mass or less.
  • the lower limit of the moisture content of the pregelatinized buckwheat dry powder is preferably 3.0% by mass or more, more preferably 5.0% by mass or more.
  • the maximum value of the peak appearing between shear strains of 0.03 and 0.25 is 1.30 times or more greater than the value at shear strain of 0.001. is preferred, and 1.31 times or more is more preferred.
  • the upper limit in the above is not particularly limited, it is usually 1.50 times or less.
  • the present invention also includes an apparatus for producing pregelatinized starch comprising the following pulverization mechanism and temperature control means.
  • the pulverizing mechanism includes at least two rigid members arranged to face each other, and at least one of the rigid members so that the gap between the rigid members can be varied by a force from the opposing surface side of the rigid members. and a pressing member for pressing.
  • the temperature adjustment means adjusts the kernel temperature during the process of being sheared by the crushing mechanism.
  • the rigid member is arranged to shear and comminute grain fed into the gap formed by the opposing surfaces of the rigid member.
  • the form of the apparatus for producing pregelatinized starch of the present invention can be a mortar-type grinder (for example, an apparatus having the structure shown in Fig. 1).
  • the dry powder of pregelatinized starch of the present invention is obtained by subjecting grains to the above-mentioned production apparatus and pulverizing them under shearing conditions.
  • pregelatinized starch dry powder pregelatinized rice dry powder
  • the grains were pulverized with a mortar-type pulverizer by the following method to prepare pregelatinized starch dry powder.
  • This grinder has a similar structure to the device shown in FIG. 1 of Japanese Patent No. 4767128. Specifically, it is equipped with a crushing mechanism having an upper mill and a lower mill (corresponding to rigid members) arranged opposite to each other, a temperature adjusting means capable of adjusting the temperature of the upper mill, a grain supply port, a grain outlet, and the like. . In this crusher, the grains supplied to the grain supply port are fed into the space between the upper and lower mills, and are crushed by the action of the upper and lower mills. The pulverized material (pregelatinized starch dry powder) can be recovered from the grain outlet.
  • a crushing mechanism having an upper mill and a lower mill (corresponding to rigid members) arranged opposite to each other, a temperature adjusting means capable of adjusting the temperature of the upper mill, a grain supply port, a grain outlet, and the like.
  • the grains supplied to the grain supply port are fed into the space between the upper and lower mills, and are crushed by the action of the upper and lower mills.
  • a spring (corresponding to a pressing member) is provided under the lower mill and modified so that it can also move in the vertical direction with respect to the surface facing the upper mill.
  • the spring used had a load surface pressure (load per unit area) in the range of 9.70 kN/m 2 to 56.80 kN/m 2 .
  • Fig. 1 shows a schematic diagram of the mortar-type crusher used in this example.
  • Fig. 2 shows the results of gel filtration chromatography analysis of the dry powder of gelatinized rice (dry powder of gelatinized rice).
  • the region from 120 minutes to less than 145 minutes is “A”
  • the region from 145 minutes to less than 190 minutes is “B”
  • the region from 190 minutes to less than 250 minutes When the region is "C”, both the following formulas (1) and (2) are satisfied, so when using a spring with a load of "43.09 kN / m ⁇ 2", (Requirement 2A) also found to satisfy A/(A+B+C)>0.05 Formula (1) C/(A+B+C)>0.2 Formula (2)
  • crystalline rice flour means dry rice powder obtained without shearing the grains.
  • the numerical value represented by the unit “kN/m ⁇ 2" means the load of the spring used.
  • conventional method means the dry powder of gelatinized rice obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • Example 1 means the gelatinized rice puree obtained in the same manner as in Example 1 of Japanese Patent Application Laid-Open No. 2017-163849.
  • Prioror art 2 means the gelatinized rice puree obtained in the same manner as in Example 2 of Japanese Patent Application Laid-Open No. 2017-163849.
  • “1st”, “2nd”, and “3rd” are respectively the region from 120 minutes to less than 145 minutes, the region from 145 minutes to less than 190 minutes, and the range from 190 minutes to less than 250 minutes. means the area of
  • the higher the load the more the molecular weight distribution changed. from above to less than 145 minutes) had a higher intensity than the third peak from the high molecular weight side (elution time: from 190 minutes or more to less than 250 minutes).
  • Fig. 4 plots the relationship between the load of the spring used for shearing and the crystallinity of the obtained pregelatinized starch dry powder (pregelatinized rice dry powder).
  • the result with a load of "0" is the result of shearing without using a spring.
  • the crystallinity was about 1.29%, as shown in FIG. 4 using a load of "43.09 kN/m ⁇ 2". Therefore, when using a load of "43.09 kN / m ⁇ 2", as described above, not only (Requirements 1A), (Requirements 1B), and (Requirements 2A), but also (Requirements 1C) and (Requirements 2B) A dry powder of pregelatinized starch satisfying the above was obtained. In addition, when a load of "11.75 kN/m ⁇ 2" or more was used, it was easy to obtain a dry powder of pregelatinized starch that satisfies (requirements 1C) and (requirements 2B).
  • the crystallinity is about 1.2%, about 1.5%, and about 1.5%, all of which satisfied (requirements 1C) and (requirements 2B).
  • pregelatinized starch dry powders are pregelatinized starch dry powders with a degree of crystallinity of more than 12% (pregelatinized starch dry powders with low amorphousness), or crystalline It was a pregelatinized starch dry powder with a degree of conversion of less than 1% (pregelatinized starch dry powder with excessive amorphousness).
  • the degree of crystallinity of the obtained pregelatinized starch dry powder varies depending on whether or not the gap between the rigid members is varied by the force from the opposing surface side of the rigid members, and the extent of that change. It is a surprising finding that they are completely different.
  • Table 1 is a table showing the moisture content of each pregelatinized starch dry powder.
  • load means the load of the spring used.
  • conventional method means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • FIG. 5 is a diagram showing the relationship between loss modulus and shear strain for each pregelatinized starch dry powder obtained.
  • "conventional method” means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • the pregelatinized starch dry powder obtained by shearing using a load of "19.58 kN/m ⁇ 2" to "43.09 kN/m ⁇ 2" has a peak appearing between shear strains of 0.03 and 0.25. was greater than the value at a shear strain of 0.001.
  • the temporal viscosity profile was obtained by analyzing the temporal gelatinization viscosity behavior under the following conditions. 43 g of water was added to pregelatinized starch dry powder (7.0 g) to prepare a sample (14% by mass aqueous solution of pregelatinized starch dry powder). Then, using "MCR301" (Anton Paar), each sample was subjected to a temperature change over 1400 seconds. The temperature program was set as follows. First, the temperature was equilibrated at 35°C, then increased by 10°C per minute to 95°C, held for 6 minutes, and finally decreased by 10°C per minute until reaching 35°C. The paddle rotation speed was set to 160 rpm.
  • Table 2 is a table showing the viscosity of each sample.
  • load means the load of the spring used.
  • initial viscosity means the viscosity of the sample at 35°C.
  • viscosity after heating means the viscosity of the sample immediately after heating at 95°C for 5 minutes.
  • conventional method means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • the viscosity when shearing is performed using a spring, the viscosity is within the range of 30 Pa s or more and 500 Pa s or less at 35 ° C., and the viscosity immediately after heating at 95 ° C. for 5 minutes was in the range of 300 Pa ⁇ s or more.
  • the viscosity was high at 35°C, the viscosity became low after heating, showing completely different dynamics from the pregelatinized starch dry powder obtained using a spring.
  • FIG. 6 shows the resulting viscosity profile over time.
  • "conventional method” means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4,767,128.
  • the first peak (about 400 sec) of the viscosity profile over time was much larger (more than twice) than the initial value (0 sec). Also, after the first peak (approximately 400 sec), the values were always higher than the initial values.
  • pregelatinized starch dry powder pregelatinized buckwheat dry powder
  • a dry powder of pregelatinized buckwheat was prepared by using buckwheat (buckwheat) instead of rice in the same manner as in ⁇ Preparation of pregelatinized starch dry powder (pregelatinized rice dry powder)>.
  • the obtained pregelatinized starch dry powder pregelatinized buckwheat dry powder
  • Table 3 is a table showing the relationship between the load of the spring used for shearing and the crystallinity of the obtained pregelatinized starch dry powder (pregelatinized buckwheat dry powder).
  • load means the load of the spring used.
  • conventional method means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • Table 4 is a table showing the moisture content of each pregelatinized starch dry powder.
  • load means the load of the spring used.
  • conventional method means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • FIG. 7 is a diagram showing the relationship between the loss modulus and the shear strain for the dry powder of pregelatinized rice (dry powder of pregelatinized buckwheat).
  • "conventional method” means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • the maximum value at the peak appearing between shear strains of 0.03 and 0.25 was larger than the value at shear strain of 0.001.
  • FIG. 8 is a temporal viscosity profile of the dry powder of pregelatinized rice (dry powder of pregelatinized buckwheat).
  • "conventional method” means the result of using the gelatinized rice dry powder obtained in the same manner as in the example of Japanese Patent No. 4767128.
  • the dry powder of pregelatinized buckwheat obtained in this example was easy to adjust the viscosity and had excellent handling properties.
  • the pregelatinized buckwheat dry powder can be processed without using a binder, and can achieve various textures (such as elasticity and crispness), and is suitable for making noodles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Nutrition Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明の課題は、新規なα化澱粉乾燥粉末の製造方法及び製造装置の提供を課題とする。さらに、本発明は、新規な特性(例えば、良好な加工特性)を有するα化澱粉乾燥粉末の提供を課題とする。 本発明は、穀粒を、所定の粉砕機構及び温度調整手段を備える製造装置に供し、剪断条件下で粉砕する工程を含む、α化澱粉乾燥粉末の製造方法を提供する。

Description

α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置
 本発明は、α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置に関する。
 α化澱粉乾燥粉末は、通常、澱粉に水を添加した後、加熱及び乾燥することで得られる(例えば、特許文献1)。α化澱粉乾燥粉末は、蒸煮せずに加水して適度に練るだけで喫食でき、その応用範囲が広い。なお、澱粉を水とともに加熱することで生じる、澱粉の糊化を「α化」という。
 澱粉の構成に関して、加熱した米と水の混合物を、石臼式磨砕機で、湿度のある状態で粉砕し、米に含まれるアミロペクチンの多くを分解し低分子量化する技術が知られている(特許文献2)。
 他方で、α化澱粉乾燥粉末の製造には、生穀粒(β穀粒=結晶性)に水及び熱を加えてα化(α穀粒=非結晶性)した後、乾燥してから製粉するという工程を要する。そのため、その製造工程が長く複雑であり、生産コストが高くなるという問題があった。
 これを踏まえ、コスト削減等の観点から、水を添加せずにα化澱粉乾燥粉末を製造する方法等も提案されている。例えば、特許文献2では、穀粒を80℃以上の温度に加熱しながら、剪断を同時に加えることでα化穀粉を得る製造方法が提案されている。
特開平3-67555号公報 特開2017-163849号公報 特許第4767128号公報
 しかし、α化澱粉乾燥粉末の製造には、以下のような課題があった。
・穀粒の粉砕部の固定、及びそれにともなう穀粒と粉砕部との強い接触による摩耗で、糊化度が低下し得る。
・穀粒に異物が混入した場合、粉砕部に損傷が生じ得る。
 さらに、得られたα化澱粉乾燥粉末についても、弾性や粘度の維持及び調整等の困難性から、加工特性に課題があった。
 本発明は、以上の実情に鑑みてなされたものであり、新規なα化澱粉乾燥粉末の製造方法及び製造装置の提供を課題とする。
 さらに、本発明は、新規な特性(例えば、良好な加工特性)を有するα化澱粉乾燥粉末の提供を課題とする。
 本発明者らは、α化澱粉乾燥粉末の製造において、隙間間隔が可変するように調整された剛性部材を用いて穀粒の粉砕を行うことで上記課題を解決できる点を見出し、本発明を完成させた。具体的に、本発明は以下を提供する。
 (1) α化澱粉乾燥粉末の製造方法であって、
 穀粒を、粉砕機構及び温度調整手段を備える製造装置に供し、剪断条件下で粉砕する工程を含み、
 前記粉砕機構は、
 対向配置された少なくとも2つの剛性部材と、
 前記剛性部材の対向面側からの力によって前記剛性部材同士の隙間間隔が可変するように、前記剛性部材の少なくとも1つを押圧する押圧部材と、を有し、
 前記温度調整手段は、前記粉砕機構によって剪断される過程の穀粒温度を調整し、
 前記剛性部材は、前記剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される、
製造方法。
 (2) 以下の要件を全て満たすα化澱粉乾燥粉末。
(要件1A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つのピークを有する。
(要件1B)前記少なくとも3つのピークにおいて、高分子量側から1番目のピークが、高分子量側から3番目のピークよりも低い強度である。
(要件1C)結晶化度が22.5%以下である。
 (3) 以下の要件を全て満たすα化澱粉乾燥粉末。
(要件2A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つの領域を有する。
 前記3つの領域のうち、120分以上から145分未満までの領域を「A」とし、145分以上から190分未満までの領域を「B」とし、190分以上から250分未満までの領域を「C」とした場合、以下の式(1)及び式(2)をいずれも満たす。
 A/(A+B+C)>0.05  式(1)
 C/(A+B+C)>0.2   式(2)
(要件2B)結晶化度が22.5%以下である。
 (4) ゲル化試験における損失弾性率において、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも大きい、(2)又は(3)に記載のα化澱粉乾燥粉末。
 (5) 前記α化澱粉乾燥粉末の14質量%水溶液が、35℃において、30Pa・s以上500Pa・s以下の粘度を有し、かつ、
 前記水溶液を、95℃で5分間加熱した直後の粘度が、300Pa・s以上である、(2)又は(3)に記載のα化澱粉乾燥粉末。
 (6) 前記α化澱粉乾燥粉末の14質量%水溶液における、95℃で5分間加熱した直後の粘度が、1000Pa・s以上である、(2)又は(3)に記載のα化澱粉乾燥粉末。
 (7) 含水率が、12.5質量%以下である、(2)又は(3)に記載のα化澱粉乾燥粉末。
 (8) 結晶化度が18.0%以下である、α化そば乾燥粉末。
 (9) 含水率が、12.5質量%以下である、α化そば乾燥粉末。
 (10) ゲル化試験における損失弾性率において、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも1.30倍以上大きい、(8)又は(9)に記載のα化そば乾燥粉末。
 (11) 粉砕機構及び温度調整手段を備えるα化澱粉乾燥粉末の製造装置であって、
 前記粉砕機構は、
 対向配置された少なくとも2つの剛性部材と、
 前記剛性部材の対向面側からの力によって前記剛性部材同士の隙間間隔が可変するように、前記剛性部材の少なくとも1つを押圧する押圧部材と、を有し、
 前記温度調整手段は、前記粉砕機構によって剪断される過程の穀粒温度を調整し、
 前記剛性部材は、前記剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される、
製造装置。
 本発明によれば、新規なα化澱粉乾燥粉末の製造方法及び製造装置が提供される。さらに、本発明によれば、新規な特性(例えば、良好な加工特性)を有するα化澱粉乾燥粉末が提供される。
実施例で使用した臼式粉砕機の模式図である。 実施例におけるゲル濾過クロマトグラフィー解析の結果を示す図である。 実施例におけるゲル濾過クロマトグラフィー解析の結果を示す図である。 実施例で作製したα化澱粉乾燥粉末の結晶化度を示す図である。 実施例で作製したα化澱粉乾燥粉末の損失弾性率と剪断ひずみとの関係を示す図である。 実施例における経時的粘度プロファイルの解析結果を示す図である。 実施例で作製したα化澱粉乾燥粉末の損失弾性率と剪断ひずみとの関係を示す図である。 実施例における経時的粘度プロファイルの解析結果を示す図である。
 以下に、本発明の実施形態を詳細に説明するが、本発明はこれに特に限定されない。
<α化澱粉乾燥粉末の製造方法>
 本発明のα化澱粉乾燥粉末の製造方法(以下、「本発明の製造方法」ともいう。)は、以下の要件を全て満たす。
・穀粒を、粉砕機構及び温度調整手段を備える製造装置に供し、剪断条件下で粉砕する工程を含む。
・粉砕機構は、対向配置された少なくとも2つの剛性部材と、剛性部材の対向面側からの力によって剛性部材同士の隙間間隔が可変するように、剛性部材の少なくとも1つを押圧する押圧部材と、を有する。
・温度調整手段は、粉砕機構によって剪断される過程の穀粒温度を調整する。
・剛性部材は、剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される。
 α化澱粉乾燥粉末の従来の製造方法としては、2つの臼を軸に固定し、その間に配置した穀粒を、臼の回転によって磨り潰して粉砕する方法が知られる(例えば、日本国特許第4767128号公報)。
 このような従来の方法では、臼同士の間隔を調整しつつ固定することで、穀粉の粒径やα化度、結晶化度等を調整していた。
 しかし、固定式の臼を用いた粉砕機では、対向した臼同士を圧着かつ固定して穀粒を粉砕するため、それにともなう摩耗によって糊化度が低下する可能性があった。
 この場合、臼同士の間隙を空けて固定したとしても、穀粒に該間隙以上の大きさの異物が混入していた場合には、装置が停止したり、臼の損傷が生じたりし、問題の解決とはなりがたい。
 さらに、対象穀物の特徴を鑑みながら臼同士の間隔の微調整を行うことは困難であり、所望の特性を有する穀粉を得ることは難しかった。
 そこで、本発明者らが鋭意検討した結果、臼同士の隙間間隔が可変な状態で、剪断条件下で粉砕を行うと、穀粒に加わる圧力が可変となり、臼(粉砕部)の保護や、粉砕の効率化を実現できることを見出した。例えば、臼を可動式にすることで、穀粒を圧力で押さえつつ粉砕しながらも、異物(例えば、過度な大きさや硬さを有するもの)が混入した際には、間隙が空いて異物を排出でき、装置を保護できる。
 したがって、本発明の製造方法によれば、異物について容易に対応できる。さらには、本発明の製造方法は、加圧機構を持つ大型機械に導入できるので、大量生産の際の異物にも対応できる。
 さらに、本発明者らは、臼同士の隙間間隔が可変な状態において、剪断条件下で粉砕を行うと、圧力調整によって、意外にも、新規な特性を有するα化澱粉乾燥粉末を製造できることも見出した。具体的には、このα化澱粉乾燥粉末は、弾力性や、粘度の維持調整に優れ、良好な加工特性を有する。
 その理由は定かではないが以下のように推察される。
 穀粉に対し、臼同士の隙間間隔が可変な状態で剪断圧力が与えられると、固定式の臼を用いる従来法と比較して、α化澱粉乾燥粉末を構成する分子量分布が広がる(図3)。
 具体的には、従来法では剪断圧力が可変しないので、得られるα化澱粉乾燥粉末の分子量は、小さな分子量に集中しやすくなる。
 一方、臼同士の隙間間隔が可変な状態において、剪断条件下で粉砕して得られるα化澱粉乾燥粉末では、大きな分子量にも、小さな分子量にも分布する。この結果得られるα化澱粉乾燥粉末によれば、例えば、後述する良好な「コシ」を有するゲルを作製しやすくなる。
 本発明者らの検討の結果、分子量分布の広がりを有するα化澱粉乾燥粉末は、例えば、良好な加工特性や、後述する適度なコシを実現できることがわかった。
 以下、本発明の製造方法について詳述する。
(1)粉砕機構
 粉砕機構は、剛性部材と、押圧部材と、を少なくとも有する。
 本発明において「剛性部材」とは、少なくとも2つが互いに対向するように配置され、その間に供給された穀粒を剪断して粉砕する部材である。
 配置された剛性部材同士の隙間間隔は、充分な剪断を実現しやすくする観点等から、穀粒が供給されていない状態で、好ましくは0~30mm、より好ましくは0~1mmであり得る。ただし、この隙間間隔は後述するとおり可変する。
 剛性部材は、従来知られる装置において臼やローラーとして採用される任意の形状、材質等であり得る。
 本発明において「押圧部材」とは、2つの剛性部材の対向面とは逆側の面側に配置され、剛性部材同士の隙間間隔を可変させるものである。
 ただし、隙間間隔は、剛性部材の対向面側から生じる力(例えば、穀粒の粉砕にともなって生じる力等)によって可変する。
 押圧部材は、任意の付勢手段(例えば、スプリング)であり得る。
 本発明では、押圧部材によって剛性部材から穀粒へかかる圧力が調整され、剪断条件下での粉砕が実現する。
 付勢手段によって穀粒に負荷される荷重の下限は、穀粒を充分に剪断し、後述する(要件1A)、及び(要件1C)のうち1以上を満たすα化澱粉乾燥粉末が得られやすいという観点から、好ましくは15kN/m以上、より好ましくは20kN/m以上、さらに好ましくは30kN/m以上である。
 付勢手段によって穀粒に負荷される荷重の上限は、剛性部材同士の隙間間隔を充分に可変し、後述する(要件1B)、(要件1C)、(要件2A)、及び(要件2B)のうち1以上を満たすα化澱粉乾燥粉末が得られやすいという観点から、好ましくは40MN/m以下、より好ましくは30MkN/m以下、さらに好ましくは25MN/m以下である。
 押圧部材の数は特に限定されず、2つの剛性部材の両方を押圧するように配置してもよいし、片方を押圧するように配置してもよい。
 粉砕機構による穀粒の粉砕条件は特に限定されないが、充分な剪断を実現しやすくする観点等から、剛性部材を、剪断速度が好ましくは90~600秒-1、より好ましくは280~600秒-1となるように回転させてもよい。
(2)温度調整手段
 温度調整手段は、粉砕機構によって剪断される過程の穀粒温度を調整する。
 温度調整手段は、従来知られるヒーターであり得る。
 穀粒の剪断は、充分なα化を実現しやすくする観点等から、例えば、好ましくは80℃以上、より好ましくは100~200℃で行われ得る。
(3)穀粒
 本発明の製造方法に供される穀粒は、澱粉を主成分とする穀粒であれば特に限定されず、従来、α化澱粉乾燥粉末の原料として用いられる任意の穀粒を採用できる。
 穀粒としては、例えば、米、そば、小麦、小豆、トウモロコシ等が挙げられる。
(4)その他の構成
 製造装置のその他の構成は、従来知られる構成(穀粒供給口、穀粒取出口等)を目的等に応じて採用できる。
 本発明の製造方法において、穀粒に対し水を添加してもよく、水を添加しなくともよい。
 簡便にα化澱粉乾燥粉末を得る観点から、本発明の製造方法は、穀粒に対し水を添加する工程を含まないことが好ましい。
(5)本発明の製造方法から得られるα化澱粉乾燥粉末
 本発明の製造方法によれば、上記のとおり、弾力性や、粘度の維持調整に優れ、良好な加工特性を有するα化澱粉乾燥粉末が得られる。
 本発明の製造方法から得られるα化澱粉乾燥粉末は、例えば、以下のα化澱粉乾燥粉末やα化そば乾燥粉末であり得る。
<α化澱粉乾燥粉末>
 本発明のα化澱粉乾燥粉末は、以下の2態様を包含する。
(第1の態様に係るα化澱粉乾燥粉末)
 以下の要件を全て満たすα化澱粉乾燥粉末。
(要件1A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つのピークを有する。
(要件1B)前記少なくとも3つのピークにおいて、高分子量側から1番目のピークが、高分子量側から3番目のピークよりも低い強度である。
(要件1C)結晶化度が22.5%以下である。
(第2の態様に係るα化澱粉乾燥粉末)
 以下の要件を全て満たすα化澱粉乾燥粉末。
(要件2A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つの領域を有する。
 前記3つの領域のうち、120分以上から145分未満までの領域を「A」とし、145分以上から190分未満までの領域を「B」とし、190分以上から250分未満までの領域を「C」とした場合、以下の式(1)及び式(2)をいずれも満たす。
 A/(A+B+C)>0.05  式(1)
 C/(A+B+C)>0.2   式(2)
(要件2B)結晶化度が22.5%以下である。
 上記α化澱粉乾燥粉末は、既存のα化澱粉乾燥粉末とは異なる特性(すなわち、上記各要件)を組み合わせて備える。本発明者らは、このような新規なα化澱粉乾燥粉末を、本発明の製造方法によって創出した。
 本発明において「α化澱粉乾燥粉末」とは、澱粉を主成分とする穀粒(米、そば、小麦、小豆、トウモロコシ等)をα化(糊化、非結晶化)したものを包含する。
 以下、それぞれの態様に係るα化澱粉乾燥粉末について説明する。
(1)第1の態様に係るα化澱粉乾燥粉末
 第1の態様に係るα化澱粉乾燥粉末(以下、「第1のα化澱粉乾燥粉末」ともいう。)は、(要件1A)乃至(要件1C)を全て満たす。ただし、第1のα化澱粉乾燥粉末は、これらにくわえて、後述する(要件2A)をさらに満たしていてもよく、満たしていなくともよい。
(1-1)要件1Aについて
 第1のα化澱粉乾燥粉末は、そのゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つのピークを有する。
 本発明において「ゲル濾過クロマトグラフィー」は、実施例に示した方法で取得する。
 本発明において「澱粉を示すピーク」は、以下の方法で特定し得る。
 各ピークは、グラフの立ち上がりの最低値から最高値を経て次の最低値に至る部分を基本とする。ただし、例えば、肩としてグラフが表れる場合がある。その場合、例えば、下降曲線が緩やかになる点、もしくは上昇曲線が緩やかになる点をピークの境目とする。
 第1のα化澱粉乾燥粉末は、澱粉を示すピークを、少なくとも3つ、好ましくは少なくとも4つ有する。澱粉を示すピーク数の上限は特に限定されないが、通常4つ以下である。
 また、本発明において、第1、第2、第3、・・・第nのピークは、保持時間の間隔(例えば、120分以上から145分未満、145分以上から190分未満、190分以上から250分未満)によって区別する。
 第1のα化澱粉乾燥粉末におけるゲル濾過クロマトグラフィーは、特に限定されないが、以下の3つのピークを有し得る。
 保持時間120分以上から145分未満:高分子量側から1番目のピーク
 保持時間145分以上から190分未満:高分子量側から2番目のピーク
 保持時間190分以上から250分未満:高分子量側から3番目のピーク
 なお、本発明において「高分子量側からn番目のピーク」とは、クロマトグラフィーの保持時間(溶出時間)が短いものから数えたn番目のピークを意味する。
 例えば、「高分子量側から1番目のピーク」は、最も短い保持時間で観測されたピークを意味する。
 第1のα化澱粉乾燥粉末は、上記3つのピーク面積合計に占める各ピーク面積の割合が以下の範囲を満たし得る。
 高分子量側から1番目のピーク:5~30%
 高分子量側から2番目のピーク:50~60%
 高分子量側から3番目のピーク:10~45%
(1-2)要件1Bについて
 要件1Aにおける、澱粉を示す少なくとも3つのピークにおいて、高分子量側から1番目のピークは、高分子量側から3番目のピークよりも低い強度である。
 本発明において、「高分子量側から1番目のピークが、高分子量側から3番目のピークよりも低い強度である」とは、高分子量側から1番目のピークの値(ピークの高さ)が、高分子量側から3番目のピークの値よりも低いことを意味する。
 本発明の製造方法によれば、このような関係にあるピークを実現しやすい。これは、剪断の力により高分子の澱粉が適度な割合で低分子形態へと変化した結果と推測される。
 なお、本発明者らは、押圧部材を有しない、特許第4767128号公報の製造装置を使って得られるα化澱粉乾燥粉末では、澱粉を示すピークが2つしかなく、高分子量側から1番目のピークは、高分子量側から2番目のピークよりも低いこと(例えば、1番目のピークが、2番目のピークの半分以下であること)を確認した(図2の「比較例 従来法」を参照。)。
 第1のα化澱粉乾燥粉末において、高分子量側から1番目のピークは、高分子量側から3番目のピークよりも、好ましくは0.5倍以下、より好ましくは0.4倍以下、低い強度である。
(1-3)要件1Cについて
 第1のα化澱粉乾燥粉末の結晶化度は、22.5%以下である。つまり、第1のα化澱粉乾燥粉末は、非晶部分の割合が高い。
 第1のα化澱粉乾燥粉末の結晶化度の上限は、22.5%以下、好ましくは20.0%以下、より好ましくは17.0%以下、又は14.0%以下である。
 第1のα化澱粉乾燥粉末の結晶化度の下限は、好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは4.0%以上、さらに好ましくは7.0%以上、さらに好ましくは12.0%以上である。
 本発明において「結晶化度」は、実施例に示した方法で特定する。
(2)第2の態様に係るα化澱粉乾燥粉末
 第2の態様に係るα化澱粉乾燥粉末(以下、「第2のα化澱粉乾燥粉末」ともいう。)は、(要件2A)及び(要件2B)を全て満たす。ただし、第2のα化澱粉乾燥粉末は、これらの要件にくわえて、(要件1B)をさらに満たしていてもよく、満たしていなくともよい。
 以下、第1のα化澱粉乾燥粉末における要件と重複する要件は、適宜説明を省略する。
(2-1)要件2Aについて
 第2のα化澱粉乾燥粉末は、そのゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つの領域を有する。
 上記3つの領域のうち、120分以上から145分未満までの領域を「A」とし、145分以上から190分未満までの領域を「B」とし、190分以上から250分未満までの領域を「C」とした場合、以下の式(1)及び式(2)をいずれも満たす。
 A/(A+B+C)>0.05  式(1)
 C/(A+B+C)>0.2   式(2)
 上記各領域は、ゲル濾過クロマトグラフィーにおけるピーク面積に相当し得る。
 例えば、領域「A」は、120分以上から145分未満までのピーク面積に相当し得る。領域「B」は、保持時間145分以上から190分未満までのピーク面積に相当し得る。領域「C」は、保持時間190分以上から250分未満までのピーク面積に相当し得る。
 上記式を満たすα化澱粉乾燥粉末は、高分子の澱粉よりも、低分子の澱粉の割合が高いことを意味する。
 本発明の製造方法によれば、このような関係にある分子量分布を実現しやすい。これは、剪断の力により高分子の澱粉が適度な割合で低分子形態へと変化した結果と推測される。
 式(1)において、「A/(A+B+C)」の下限は、0.05超、好ましくは0.08以上、より好ましくは0.1以上である。
 式(1)において、「A/(A+B+C)」の上限は、好ましくは0.45以下、より好ましくは0.40以下である。
 式(2)において、「C/(A+B+C)」の下限は、0.2超、好ましくは0.25以上、より好ましくは0.30以上である。
 式(2)において、「C/(A+B+C)」の上限は、好ましくは0.90以下、より好ましくは0.80以下である。
 要件2Aにおいて、「B/(A+B+C)」は特に限定されないが、以下の要件を満たしていてもよい。
 「B/(A+B+C)」の下限は、好ましくは0.15以上、より好ましくは0.20以上である。
 「B/(A+B+C)」の上限は、好ましくは0.70以下、より好ましくは0.60以下である。
(2-2)要件2Bについて
 第2のα化澱粉乾燥粉末の結晶化度は、22.5%以下である。
 (要件2B)の詳細は、(要件1C)同様である。
(3)その他の要件
 第1及び第2のα化澱粉乾燥粉末について、その他の要件は特に限定されないが、以下の要件のいずれか、又は全てを満たすことで、より加工特性が良好なα化澱粉乾燥粉末が得られやすい。
(3-1)損失弾性率
 α化澱粉乾燥粉末は、ゲル化試験における損失弾性率について、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも大きいことが好ましい。
 α化澱粉乾燥粉末は、ゲル化試験における損失弾性率が経時的に低下することが常識である。しかし、本発明のα化澱粉乾燥粉末は、このような常識に反し、損失弾性率が一時的に上昇しやすい(図5及び7参照。)。
 また、押圧部材を有しない、特許第4767128号公報の製造装置を使って得られるα化澱粉乾燥粉末では、作製直後、小さいひずみでは一定の損失弾性率を示すものの、ひずみが大きくなると(例えば、0.1付近のひずみ)、損失弾性率が上昇しなくなる。このような動態は、いわゆる「コシ」の低減をもたらす。さらに、貯蔵(寝かし)を経ると、急激に損失弾性率が上昇し硬くなる。
 他方で、上記要件を満たす本発明のα化澱粉乾燥粉末によれば、意外にも、ひずみが大きい場合であっても、損失弾性率が上昇しやすい(図5及び7参照。)。したがって、本発明のα化澱粉乾燥粉末によれば、コシがあるゲルを容易に作製できる。
 また、本発明のα化澱粉乾燥粉末は、貯蔵を経ても、損失弾性率の急激な変化が抑制されていることも見出された。
 本発明において「ゲル化試験」は、実施例に示した方法で行う。
(3-2)粘度
 α化澱粉乾燥粉末は、以下のいずれか、又は両方を満たしていてもよい。
(粘度要件1)α化澱粉乾燥粉末の14質量%水溶液が、35℃において、30Pa・s以上500Pa・s以下の粘度を有し、かつ、該水溶液を、95℃で5分間加熱した直後の粘度が、300Pa・s以上である。
(粘度要件2)α化澱粉乾燥粉末の14質量%水溶液における、95℃で5分間加熱した直後の粘度が、1000Pa・s以上である。
 通常の澱粉乾燥粉末は、水を加えても吸水せず、粘性を生じないが、α化澱粉乾燥粉末は吸水し粘性を生じる。しかし、α化澱粉乾燥粉末の粘度は、従来、調整が困難であり、ハンドリング特性に劣っていた。このため、従来は、α化澱粉乾燥粉末とともに、結晶性澱粉を配合し、粘度の調整が行われていた。
 これに対し、本発明のα化澱粉乾燥粉末は、上記粘度特性を満たし得るので、特に、初期粘度の調整が容易であるうえ、加熱加工後の粘度も調整可能である。
 例えば、上記粘度特性を満たす本発明のα化澱粉乾燥粉末は、以下の用途に適する。
・成形から焼成までの適切な粘度維持や加工性を要求される、製パン等。
・つなぎを使わずに加工でき、多種の食感(コシ、歯切れ等)を実現可能な、製麺等。
 α化澱粉乾燥粉末の粘度は、経時的粘度プロファイルによって特定できる。
 本発明において「経時的粘度プロファイル」とは、経時的な温度変化にともなう、粘度変化を示すデータを意味する。より詳細には、経時的粘度プロファイルは実施例に示す方法で特定される。
 (粘度要件1)について、35℃における粘度は、30Pa・s以上500Pa・s以下、好ましくは70Pa・s以上400Pa・s以下である。
 (粘度要件1)について、95℃で5分間加熱した直後の粘度は、300Pa・s以上、好ましくは350Pa・s以上である。上限は特に限定されないが、通常は、1300Pa・s以下である。
 (粘度要件2)について、95℃で5分間加熱した直後の粘度は、1000Pa・s以上、好ましくは1250Pa・s以上である。上限は特に限定されないが、通常は、2000Pa・s以下である。
(3-3)含水率
 α化澱粉乾燥粉末の含水率は、好ましくは12.5質量%以下、より好ましくは10.0質量%以下、さらに好ましくは8.0質量%以下である。
 本発明において、「含水率」とは、α化澱粉乾燥粉末に含まれる水分の総量である。
 含水率は、水分計(赤外線水分計等)によって特定できる。
(4)用途
 本発明のα化澱粉乾燥粉末の用途は特に限定されず、従来知られるα化澱粉乾燥粉末と同様の用途(食品、医薬品等)等の任意の用途に使用され得る。
 上述のとおり、本発明のα化澱粉乾燥粉末は加工特性に優れるため、従来用いられていた、α化澱粉乾燥粉末の良好な代替品として利用できる。
<α化そば乾燥粉末>
 本発明者らは、以下の新規なα化そば乾燥粉末を見出した。該α化そば乾燥粉末は、例えば、本発明の製造方法を、そばの実に対して適用することで得られる。
(第1の態様に係るα化そば乾燥粉末)
 結晶化度が18.0%以下である、α化そば乾燥粉末。
 α化そば乾燥粉末の結晶化度の上限は、18.0%以下、好ましくは15.0%以下である。
 α化そば乾燥粉末の結晶化度の下限は、好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは4.0%以上、さらに好ましくは7.0%以上、さらに好ましくは12.0%以上である。
(第2の態様に係るα化そば乾燥粉末)
 含水率が、12.5質量%以下である、α化そば乾燥粉末。
 α化そば乾燥粉末の含水率の上限は、12.5質量%以下、好ましくは10.0質量%以下である。
 α化そば乾燥粉末の含水率の下限は、好ましくは3.0質量%以上、より好ましくは5.0質量%以上である。
 いずれの態様でも、α化そば乾燥粉末は、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも、1.30倍以上大きいことが好ましく、1.31倍以上大きいことがより好ましい。
 なお、上記における上限は特に限定されないが、通常、1.50倍以下である。
<α化澱粉乾燥粉末の製造装置>
 本発明は、下記の粉砕機構及び温度調整手段を備えるα化澱粉の製造装置も包含する。
 該製造装置において、粉砕機構は、対向配置された少なくとも2つの剛性部材と、剛性部材の対向面側からの力によって、剛性部材同士の隙間間隔が可変するように、剛性部材の少なくとも1つを押圧する押圧部材と、を有する。
 温度調整手段は、粉砕機構によって剪断される過程の穀粒温度を調整する。
 剛性部材は、剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される。
 本発明のα化澱粉の製造装置の形態は、臼式粉砕機(例えば、図1の構成を有する装置)であり得る。
 本発明の好ましい態様において、本発明のα化澱粉乾燥粉末は、穀粒を上記製造装置に供し、剪断条件下で粉砕することで得られる。
 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
<α化澱粉乾燥粉末の作製(α化米乾燥粉末)>
 以下の方法により、臼式粉砕機によって穀粒を粉砕し、α化澱粉乾燥粉末を作製した。
(1)臼式粉砕機の準備
 小型の温度制御型臼式粉砕機を準備した。
 この粉砕機は、日本国特許第4767128号の図1に示される装置と同様の構造を有する。具体的には、対向配置された上臼及び下臼(剛性部材に相当する。)を備える粉砕機構、上臼の温度を調整できる温度調整手段、穀粒供給口、穀粒取出口等を備える。
 この粉砕機では、穀粒供給口に供給した穀粒が、上臼と下臼との隙間空間に供給され、上臼及び下臼の作用によって粉砕される。粉砕物(α化澱粉乾燥粉末)は穀粒取出口から回収できる。
 この粉砕機の上臼と下臼は位置が固定されており、下臼は、上臼との対向面に対して水平方向に回転し、穀粒に剪断力を与える。
 本例では、下臼の下にスプリング(押圧部材に相当する。)を設け、上臼との対向面に対して垂直方向にも可動するように改造した。
 スプリングは、荷重の面圧(単位面積当たりの荷重)が、9.70kN/m~56.80kN/mの範囲であるものを用いた。荷重の値が高いほど、上臼と下臼との隙間間隔が可変しにくくなる。
 本例で用いた臼式粉砕機の模式図を図1に示す。
(2)穀粒の剪断
 穀粒として、令和2年度山形県産米「はえぬき」、及びを準備した。
 この穀粒を臼式粉砕機に供給し、上臼と下臼との隙間(約0mm)で剪断し、粉砕した。なお、本例において、穀粒への加水は行っていない。
 得られた粉砕物がα化澱粉乾燥粉末(α化米乾燥粉末)に相当する。
 なお、剪断の温度は、120℃に設定した。剪断速度は、500sec-1に設定した。
(3)α化澱粉乾燥粉末の分析
 得られたα化澱粉乾燥粉末(α化米乾燥粉末)について、ゲル濾過クロマトグラフィー解析、結晶化度の測定、含水率の測定、及びゲル化試験を行った。
(3-1)ゲル濾過クロマトグラフィー解析
 α化澱粉乾燥粉末(20mg)に、蒸留水1.6mLを加え、ホモジナイザーで懸濁したのち、5M NaOHを0.4ml加え撹拌後、37℃で、30分間糊化した。
 次いで、蒸留水及び溶離液(0.05M NaOH/0.2% NaCl)を各2mL加え、混和し、5μmのフィルターで濾過したものをサンプル液として調製した。
 サンプル液5mLをゲル濾過カラム(Toyopearl HW75S×2-65S-55S、Φ2cm×30cm×4本)にアプライし、溶離液0.05M NaOH/0.2% NaCl、流速1mL/minの条件でゲル濾過を行った。
 検出はIRディテクターを用い、100分から260分の検出値を用いた。
 α化米乾燥粉末(α化米乾燥粉末)のゲル濾過クロマトグラフィー解析の結果を図2に示す。
 図2中、「比較例 従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を意味する。
 図2中、単位「kN/^2」で表される数値は、上臼及び下臼の間にかかる、面積(m)あたりの荷重を意味する。以下、単位「kN/^2」について同様である。
 図2中、「通常米粉」とは、穀粒の剪断を行わずに得た米乾燥粉末を意味する。
 図2に示されるとおり、荷重「43.09kN/m^2」の荷重を用いた場合、澱粉を示す少なくとも3つのピークが認められた(溶出時間:120分以上から145分未満まで、145分以上から190分未満まで、及び、190分以上から250分未満まで)。
 また、高分子量側から1番目のピーク(溶出時間:120分以上から145分未満まで)が、高分子量側から3番目のピーク(溶出時間:190分以上から250分未満まで)よりも高い強度だった。
 したがって、「43.09kN/m^2」の荷重を用いた場合、(要件1A)、及び(要件1B)をそれぞれ満たすα化澱粉乾燥粉末が得られた。
 さらに、上記3つの領域のうち、120分以上から145分未満までの領域を「A」とし、145分以上から190分未満までの領域を「B」とし、190分以上から250分未満までの領域を「C」とした場合、以下の式(1)及び式(2)をいずれも満たしたことから、荷重「43.09kN/m^2」のスプリングを用いた場合、(要件2A)も満たすことがわかった。
 A/(A+B+C)>0.05  式(1)
 C/(A+B+C)>0.2   式(2)
 これに対し、図2に示されるとおり、「11.75kN/m^2」の荷重を用いた場合では、145分以上から190分未満までのピークしか認められなかった。
 したがって、「11.75kN/m^2」の荷重を用いた場合、(要件1A)、(要件1B)、及び(要件2A)を満たさないα化澱粉乾燥粉末が得られた。
 さらに、スプリングの荷重を変化させて得られたα化米乾燥粉末(α化米乾燥粉末)のゲル濾過クロマトグラフィーについて、3つのピーク面積合計に占める、各ピーク面積の割合の結果を図3に示す。
 図3中、「結晶性米粉」とは、穀粒の剪断を行わずに得た米乾燥粉末を意味する。
 図3中、単位「kN/m^2」で表される数値は、用いたスプリングの荷重を意味する。
 図3中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を意味する。
 図3中、「先行文献2 実施例1」とは、日本国特開2017-163849号の実施例1と同様にして得られたα化米ピューレ状物を意味する。
 図3中、「先行文献2 実施例2」とは、日本国特開2017-163849号の実施例2と同様にして得られたα化米ピューレ状物を意味する。
 図3中、「1st」、「2nd」、「3rd」とは、それぞれ、120分以上から145分未満までの領域、145分以上から190分未満までの領域、190分以上から250分未満までの領域を意味する。
 図3に示されるとおり、荷重が高くなるほど分子量分布が変化し、「26.64kN/m^2」以上のスプリングを用いた場合には、高分子量側から1番目のピーク(溶出時間:120分以上から145分未満まで)が、高分子量側から3番目のピーク(溶出時間:190分以上から250分未満まで)よりも高い強度だった。
 このように、剪断の際に、剛性部材の対向面側からの力によって剛性部材同士の隙間間隔を可変させるかどうかで、得られるα化澱粉乾燥粉末のゲル濾過クロマトグラフィーが全く異なることは意外な知見である。
(3-2)結晶化度の測定
 広角X線回折の測定結果に基づき、ピークを非晶散乱及び結晶反射に分離した。
 得られた、非晶散乱によるピークの積分値を「S」、結晶反射によるピークの積分値を「S」し、下式に基づきα化澱粉乾燥粉末の結晶化度を算出した。
 結晶化度(%)=(Sc/(Sc+Sa))×100
(広角X線回折の測定条件)
 測定機器:「RINT-RAPID」、Rigaku社製
 スキャンスピード:4°/min
 測定角度:5~35°
 管電圧:40kV
 管電流:30mA
 図4は、剪断に用いたスプリングの荷重と、得られたα化澱粉乾燥粉末(α化米乾燥粉末)の結晶化度との関係をプロットしたものである。なお、図4において、荷重が「0」である結果は、スプリングを用いずに剪断を行った結果である。
 図4の「43.09kN/m^2」の荷重を用いた結果のとおり、結晶化度は約1.29%だった。
 したがって、「43.09kN/m^2」の荷重を用いた場合、上記のとおり、(要件1A)、(要件1B)、及び(要件2A)だけではなく、(要件1C)及び(要件2B)をも満たすα化澱粉乾燥粉末が得られた。
 また、荷重「11.75kN/m^2」以上の荷重を用いた場合、(要件1C)及び(要件2B)を満たすα化澱粉乾燥粉末が得られやすかった。
 また、図4に示されるとおり、荷重「43.09kN/m^2」、「48.97kN/m^2」、及び「56.81kN/m^2」において、結晶化度は、それぞれ、約1.2%、約1.5%、及び約1.5%であり、いずれも、(要件1C)及び(要件2B)を満たしていた。
 これに対し、荷重「9.79kN/m^2」以下の荷重を用いた場合、(要件1C)及び(要件2B)を満たさないだけではなく、非晶化が充分ではないことから、諸性能が劣るα化澱粉乾燥粉末が得られた。
 なお、図示していないが、これらのα化澱粉乾燥粉末は、結晶化度が12%超であるα化澱粉乾燥粉末(非晶性が低いα化澱粉乾燥粉末)であるか、又は、結晶化度が1%未満であるα化澱粉乾燥粉末(非晶性が過剰であるα化澱粉乾燥粉末)であった。また、結晶化度が1%未満であるα化澱粉乾燥粉末を得る際には、非常に強い剪断負荷やエネルギーを要したが、結晶化度が1%以上であるα化澱粉乾燥粉末とテクスチャー等はほぼ変わらなかった。
 このように、剪断の際に、剛性部材の対向面側からの力によって剛性部材同士の隙間間隔を可変させるかどうかや、その程度に応じて、得られるα化澱粉乾燥粉末の結晶化度が全く異なることは意外な知見である。
(3-3)含水率の測定
 以下の条件でα化澱粉乾燥粉末(α化米乾燥粉末)の含水率を測定した。
 測定には、赤外線水分計「FD-720」(KITT社製)を用いた。
 測定試料は3gに設定し、乾燥温度は105℃に設定した。
 30秒間の水分変化量を測定し、測定開始から0.01w/w%以下になった時点で測定終了した。水分変化量から含水率を算出した。
 表1は、各α化澱粉乾燥粉末の含水率を示した表である。
 表1中、「荷重」とは、用いたスプリングの荷重を意味する。
 表1中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
Figure JPOXMLDOC01-appb-T000001
(3-4)損失弾性率の測定
 以下の条件でα化澱粉乾燥粉末(α化米乾燥粉末)のゲル化を行い、損失弾性率を測定した。
(3-4-1)米ゲルの作製
 各α化澱粉乾燥粉末に対し、ドライベース重量の3倍量の水を加え、以下の条件で高速剪断撹拌によってゲル化を行った。
[高速剪断撹拌の条件]
 装置:「ロボクープR-5plus」(FMI社)
 撹拌条件:回転数1500rpm、撹拌時間3分
(3-4-2)動的粘弾性の測定
 以下の条件で、0.01%~100%における損失弾性率「G”」の測定を行った。
 なお、測定中の米ゲルの乾燥を防ぐため、各測定前にサンプル側面に四隣オイルを塗布した。また、測定前に測定温度(測定開始温度)で5分間保持し、温度を平衡化した。
[測定条件]
 装置:「MCR301」(Anton Paar社)
 治具:25mmパラレルプレート
 条件:ひずみ0.01~100%、周波数1Hz、温度25℃
 図5は、得られた各α化澱粉乾燥粉末について、損失弾性率と剪断ひずみとの関係を示した図である。
 図5中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
 「19.58kN/m^2」~「43.09kN/m^2」の荷重を用いた剪断によって得られたα化澱粉乾燥粉末は、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも大きかった。
 このように、剪断の際に、剛性部材の対向面側からの力によって剛性部材同士の隙間間隔を可変させるかによって、α化澱粉乾燥粉末の損失弾性率の動態が全く異なることは意外な知見である。
(3-5)経時的粘度プロファイルの解析
 以下の条件で経時的糊化粘度挙動を解析し、経時的粘度プロファイルを取得した。
 α化澱粉乾燥粉末(7.0g)に水43gを加え、サンプル(α化澱粉乾燥粉末の14質量%水溶液)を作製した。
 次いで、「MCR301」(Anton Paar社)を用い、各サンプルに対し、1400秒にわたって温度変化を与えた。
 温度プログラムは以下のように設定した。まず、35℃で温度を平衡化したのち、毎分10℃ずつ昇温させて95℃にし、6分間温度を保持し、最後に35℃になるまで毎分10℃ずつ降下させた。なお、パドル回転数は160rpmに設定した。
 表2は、各サンプルの粘度を示した表である。
 表2中、「荷重」とは、用いたスプリングの荷重を意味する。
 表2中、「初期粘度」とは、35℃におけるサンプルの粘度を意味する。
 表2中、「加熱後粘度」とは、95℃で5分間加熱した直後のサンプル粘度を意味する。
 表2中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるとおり、スプリングを用いて剪断を行った場合、35℃において、30Pa・s以上500Pa・s以下の範囲内の粘度を有し、かつ、95℃で5分間加熱した直後の粘度は、300Pa・s以上の範囲内だった。
 他方、「従来法」では、35℃における粘度は高かいにもかかわらず、加熱後の粘度が低くなり、スプリングを用いて得られたα化澱粉乾燥粉末とは全く異なる動態を示した。
 図6は、得られた経時的粘度プロファイルを示す。
 図6中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
 図6に示されるとおり、スプリングを用いて剪断を行った場合、経時的粘度プロファイルの第1ピーク(約400sec)が、初期値(0sec)よりも遥かに大きかった(2倍以上)。また、第1ピーク(約400sec)以降も、初期値よりも常に高い値を示した。
 これに対し、スプリングを用いないで剪断を行った場合、経時的粘度プロファイルの第1ピークと、初期値との間には、2.0倍未満の差しか認められなかった。さらに、第1ピーク(約400sec)以降に、初期値の値よりも低い値が認められた。
(3-6)α化澱粉乾燥粉末(α化米乾燥粉末)の評価
 本例で得られたα化米乾燥粉末は、粘度の調整が容易であり、ハンドリング特性が優れていた。
 また、該α化米乾燥粉末は、つなぎを使わずに加工でき、多種の食感(コシ、歯切れ等)を実現可能であり、製パン等に適していた。
<α化澱粉乾燥粉末の作製(α化そば乾燥粉末)>
 上記<α化澱粉乾燥粉末の作製(α化米乾燥粉末)>と同様の方法により、米の代わりにそば(そばの実)を用いて、α化そば乾燥粉末を作製した。
 得られたα化澱粉乾燥粉末(α化そば乾燥粉末)について、ゲル濾過クロマトグラフィー解析、結晶化度の測定、含水率の測定、及びゲル化試験を行った。
 表3は、剪断に用いたスプリングの荷重と、得られたα化澱粉乾燥粉末(α化そば乾燥粉末)の結晶化度との関係を示した表である。
 表3中、「荷重」とは、用いたスプリングの荷重を意味する。
 表3中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
Figure JPOXMLDOC01-appb-T000003
 表4は、各α化澱粉乾燥粉末の含水率を示した表である。
 表4中、「荷重」とは、用いたスプリングの荷重を意味する。
 表4中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
Figure JPOXMLDOC01-appb-T000004
 図7は、α化米乾燥粉末(α化そば乾燥粉末)について、損失弾性率と剪断ひずみとの関係を示した図である。
 図7中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
 α化澱粉乾燥粉末は、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも大きかった。
 図8は、α化米乾燥粉末(α化そば乾燥粉末)の経時的粘度プロファイルである。
 図8中、「従来法」とは、日本国特許第4767128号の実施例と同様にして得られたα化米乾燥粉末を用いた結果を意味する。
 本例で得られたα化そば乾燥粉末は、粘度の調整が容易であり、ハンドリング特性が優れていた。
 また、該α化そば乾燥粉末は、つなぎを使わずに加工でき、多種の食感(コシ、歯切れ等)を実現可能であり、製麺等に適していた。

Claims (11)

  1.  α化澱粉乾燥粉末の製造方法であって、
     穀粒を、粉砕機構及び温度調整手段を備える製造装置に供し、剪断条件下で粉砕する工程を含み、
     前記粉砕機構は、
     対向配置された少なくとも2つの剛性部材と、
     前記剛性部材の対向面側からの力によって前記剛性部材同士の隙間間隔が可変するように、前記剛性部材の少なくとも1つを押圧する押圧部材と、を有し、
     前記温度調整手段は、前記粉砕機構によって剪断される過程の穀粒温度を調整し、
     前記剛性部材は、前記剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される、
    製造方法。
  2.  以下の要件を全て満たすα化澱粉乾燥粉末。
    (要件1A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つのピークを有する。
    (要件1B)前記少なくとも3つのピークにおいて、高分子量側から1番目のピークが、高分子量側から3番目のピークよりも低い強度である。
    (要件1C)結晶化度が22.5%以下である。
  3.  以下の要件を全て満たすα化澱粉乾燥粉末。
    (要件2A)ゲル濾過クロマトグラフィーにおいて、澱粉を示す少なくとも3つの領域を有する。
     前記3つの領域のうち、120分以上から145分未満までの領域を「A」とし、145分以上から190分未満までの領域を「B」とし、190分以上から250分未満までの領域を「C」とした場合、以下の式(1)及び式(2)をいずれも満たす。
     A/(A+B+C)>0.05  式(1)
     C/(A+B+C)>0.2   式(2)
    (要件2B)結晶化度が22.5%以下である。
  4.  ゲル化試験における損失弾性率において、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも大きい、請求項2又は3に記載のα化澱粉乾燥粉末。
  5.  前記α化澱粉乾燥粉末の14質量%水溶液が、35℃において、30Pa・s以上500Pa・s以下の粘度を有し、かつ、
     前記水溶液を、95℃で5分間加熱した直後の粘度が、300Pa・s以上である、請求項2又は3に記載のα化澱粉乾燥粉末。
  6.  前記α化澱粉乾燥粉末の14質量%水溶液における、95℃で5分間加熱した直後の粘度が、1000Pa・s以上である、請求項2又は3に記載のα化澱粉乾燥粉末。
  7.  含水率が、12.5質量%以下である、請求項2又は3に記載のα化澱粉乾燥粉末。
  8.  結晶化度が18.0%以下である、α化そば乾燥粉末。
  9.  含水率が、12.5質量%以下である、α化そば乾燥粉末。
  10.  ゲル化試験における損失弾性率において、剪断ひずみ0.03~0.25の間に現れるピークにおける最大値が、剪断ひずみ0.001の時点での値よりも1.30倍以上大きい、請求項8又は9に記載のα化そば乾燥粉末。
  11.  粉砕機構及び温度調整手段を備えるα化澱粉乾燥粉末の製造装置であって、
     前記粉砕機構は、
     対向配置された少なくとも2つの剛性部材と、
     前記剛性部材の対向面側からの力によって前記剛性部材同士の隙間間隔が可変するように、前記剛性部材の少なくとも1つを押圧する押圧部材と、を有し、
     前記温度調整手段は、前記粉砕機構によって剪断される過程の穀粒温度を調整し、
     前記剛性部材は、前記剛性部材の対向面によって形成される隙間に供給された穀粒を剪断して粉砕可能に配置される、
    製造装置。
PCT/JP2023/006269 2022-02-25 2023-02-21 α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置 WO2023162988A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022028038 2022-02-25
JP2022-028038 2022-02-25
JP2022-076663 2022-05-06
JP2022076663 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023162988A1 true WO2023162988A1 (ja) 2023-08-31

Family

ID=87765949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006269 WO2023162988A1 (ja) 2022-02-25 2023-02-21 α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置

Country Status (1)

Country Link
WO (1) WO2023162988A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038368A (ja) * 2016-09-09 2018-03-15 国立大学法人山形大学 アルファ化デンプン粉の製造方法
US20180305257A1 (en) * 2017-04-20 2018-10-25 United States Gypsum Company Gypsum set accelerator and method of preparing same
JP2018198570A (ja) * 2017-05-29 2018-12-20 国立大学法人 東京大学 櫛形構造のグルカンを含むゲル組成物
WO2019235142A1 (ja) * 2018-06-08 2019-12-12 昭和産業株式会社 結晶澱粉分解物、及び該結晶澱粉分解物を用いた飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、肥料、及びこれらの改質剤、並びに、前記結晶澱粉分解物、飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、及び肥料の製造方法
JP2021029201A (ja) * 2019-08-27 2021-03-01 国立大学法人山形大学 アルファ化デンプン粉の製造方法
JP2021113312A (ja) * 2020-01-20 2021-08-05 三栄源エフ・エフ・アイ株式会社 α化改質澱粉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038368A (ja) * 2016-09-09 2018-03-15 国立大学法人山形大学 アルファ化デンプン粉の製造方法
US20180305257A1 (en) * 2017-04-20 2018-10-25 United States Gypsum Company Gypsum set accelerator and method of preparing same
JP2018198570A (ja) * 2017-05-29 2018-12-20 国立大学法人 東京大学 櫛形構造のグルカンを含むゲル組成物
WO2019235142A1 (ja) * 2018-06-08 2019-12-12 昭和産業株式会社 結晶澱粉分解物、及び該結晶澱粉分解物を用いた飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、肥料、及びこれらの改質剤、並びに、前記結晶澱粉分解物、飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、及び肥料の製造方法
JP2021029201A (ja) * 2019-08-27 2021-03-01 国立大学法人山形大学 アルファ化デンプン粉の製造方法
JP2021113312A (ja) * 2020-01-20 2021-08-05 三栄源エフ・エフ・アイ株式会社 α化改質澱粉

Similar Documents

Publication Publication Date Title
Yu et al. Effects of different milling methods on physicochemical properties of common buckwheat flour
Li et al. Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave
Li et al. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power
Wang et al. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems
Niu et al. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product
Ullah et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling
JP5854835B2 (ja) 細穀粉及び/又は粗穀粉を製造する装置及び方法
Brittain Effects of mechanical processing on phase composition
Ming et al. Effect of superfine grinding on the physico‐chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders
JP2011526538A5 (ja)
Dharmaraj et al. Influence of hydrothermal processing on functional properties and grain morphology of finger millet
JP2014518154A (ja) 微砕物および/または粗砕物を製造する方法および装置
WO2023162988A1 (ja) α化澱粉乾燥粉末の製造方法、α化澱粉乾燥粉末、α化そば乾燥粉末、及びα化澱粉乾燥粉末の製造装置
Zhang et al. Removing starch granule-associated surface lipids affects structure of heat-moisture treated hull-less barley starch
Inamdar et al. Influence of stone chakki settings on the characteristics of whole wheat flour (Atta) and its chapati making quality
Smejtková et al. Rating of malt grist fineness with respect to the used grinding equipment
Zhang et al. Effects of superfine grinding on physicochemical properties and morphological structure of coix seed powders
Espinosa-Ramírez et al. Assessment of the quality of fresh nixtamalized maize doughs with different degrees of cooking and milling: A comparison of Mixolab and RVA analyses
Zhang et al. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food
Qian et al. Milling and roasting impact pasting and rheological properties of oat flours and quality of steamed oat cakes
JP3780154B2 (ja) 玄米粉の製造方法,玄米粉を用いたパン類,キビ粉の製造方法及びキビ粉を用いたパン類
JP4767128B2 (ja) α化穀粉の製造方法及び製造装置
KR20130029287A (ko) 손상 전분 함량을 저하시킨 건식 쌀가루 제분 방법
JP2008301769A (ja) 米麺及びその製造方法
JP2007075104A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024503177

Country of ref document: JP

Kind code of ref document: A